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SUMMARY

Global predicate detection is an important problem in many distributed systems. It aims at

detecting whether a certain distributed property has been satisfied during the system execution.

The traditional algorithms to solve this problem are based on logical clocks. They explore the

causal relationship between events occurring during the execution of the distributed program.

However, this also makes these algorithms not suitable to detect global properties in a physical

time and dynamic fashion. Furthermore, in arising new types of distributed systems, such as

large-scale wireless sensor networks and modular robotics, where events are locality driven and

the scale of the system is large with individual process having limited computation resources,

the traditional algorithms simply cannot handle the complexities.

To address these issues, we first propose the concept of locality-aware predicate (LAP)

which aims at detecting predicates within a local region. Although a LAP detects predicates

only within a certain local region, observing the local area consistently requires considering the

entire system in a consistent manner. This raises the challenge of making the complexities of

the corresponding predicate detection algorithms scale-free. We design algorithms for detecting

both stable and unstable LAPs and show that our algorithms are scale-free.

We also propose the methodology of hierarchical repeated detection. This approach of de-

tecting predicates relies only on neighborhood communications to collaboratively detect global

predicates. Compared with the traditional predicate detection algorithms, hierarchical detec-

tion incurs a much smaller cost which is distributed across all nodes in the system, and is

xiii



SUMMARY (Continued)

capable of continuing the detection even when individual node crashes during the detection.

The performance evaluation of our proposed algorithm shows its great potential for detecting

predicates in networks where individual process only has limited computation resources and is

prone to crash failure.

Furthermore, we propose the Instantaneously detection algorithm which is built on top of

the hierarchical detection methodology. We combine several approximation techniques with the

hierarchical detection method to make the algorithm capable of detecting predicates in physical

time even when synchronized physical clock is not available in the system. Since the detection is

achieved via neighborhood communication only, this algorithm can detect predicates in physical

time with a high accuracy while still relies solely on logical clocks.

xiv



CHAPTER 1

INTRODUCTION

1.1 Motivation

A distributed system is a collection of independent entities interconnected via a commu-

nication network that cooperate with each other to solve problems. Being characterized as a

collection of autonomous processes communicating over a communication network, a distributed

system has the following unique features (1):

• No common physical clock: Although each process might has its own physical clock,

there is no way to perfectly synchronize the physical clocks of all processes in the dis-

tributed system. Thus, asynchrony amongst processes is unavoidable in a distributed

system.

• No shared memory: Being connected via a communication network, the only way to

share information with other processes in a distributed system is through message passing.

This feature also implies the absence of common physical clock.

In the past few decades, distributed systems have gained wide applications. The motivation

for using distributed systems involves some or all of the followings (1):

• Inherently distributed computations: For some applications, such as a server/client

application or money transferring applications, the underlying computation is inherently

distributed.

1
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• Resource sharing: In some applications, such as a large-scale distributed database, it

can be very expansive or even impractical to replicate the data on all hosts. Furthermore,

storing all the data on a single host can also incur heavy costs. For such applications,

dividing the data into smaller chunks and distributing them onto multiple hosts is neces-

sary.

• Accessing geographically remote data: In order for a process to access data that

is not local, message passing between the two hosts to deliver the data is necessary.

Furthermore, with the advances in the design of mobile devices and in the wireless com-

munication technique, systems such as Wireless Sensor Networks (WSNs) emerge which

can share data that is geographically distributed within the network.

• Enhanced reliability: Because of the geographical distribution of processes as well as

the potential replication of data and executions, the failure of a single host has very lim-

ited impact on the entire network. The distributed system inherently provides increased

reliability.

• Increased performance/cost ratio: The cooperation between processes in the dis-

tributed system partitions a task across various processes in the network. This feature

as well as the sharing of data and resource increase the performance/cost ratio for a

distributed system.

A major problem in reasoning with the execution of a distributed system is the detection

of distributed properties. Detecting such properties over a distributed execution is important

for various purposes such as monitoring, synchronization, coordination, and debugging of a
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distributed system. However, the difficulty of observing the states of a distributed system is

very high. This is because of the inherent features of a distributed system, i.e., the absence

of common physical clocks and shared memories. Arisen from these features, the asynchrony

of the message transmission and local executions in a distributed system present challenges to

observing its state. Furthermore, due to the concurrent execution at each process and the vary-

ing communication delays, different executions of the same distributed program can generate

different sequences of global states. This non-determinism further adds to the complexity of

detecting distributed properties.

To solve this problem, many distributed predicate detection algorithms have been proposed.

Predicate detection is to specify a statement on the variables local to different processes in the

distributed system and aims at detecting whether this statement becomes true during the

execution of the distributed system. For example, deadlock detection is a predicate detection

problem. A deadlock represents a system state in which a subset of the processes are blocked

on one another, each waiting for a resource to be released by another. The wait-for relation

can be represented by a graph and a deadlock indicates that there is a cycle in the graph.

This condition can be specified using local variables indicating the wait-for relation. Another

example of predicate detection is the mutual exclusion problem. The mutual exclusion problem

requires that at any time the number of processes in the critical section is no more than 1.

This condition can also be specified using local variables indicating whether a process is in the

critical section. Thus, it can be monitored by a predicate detection algorithm. A predicate

can be stable or unstable. A stable predicate stays true once it becomes true; the unstable
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predicate does not have such a property. The deadlock detection problem is a stable predicate

while the mutual exclusion problem is an unstable predicate.

In recent years, new types of distributed systems have emerged in areas such as wireless

sensor networks (WSNs) and modular robotics. These emerging areas share some common

properties such as large scale and being locality driven. Also, individual processes in such

systems usually only have limited computation resources. To manage, monitor, and reason

about the distributed execution in these systems, predicate detection has also found applications

in these new areas (2; 3; 4). For example, in a WSN deployed environment, the user might

be interested in seeing whether the average temperature in the monitored field is above a

certain value. In this case, each sensor node has its own temperature reading tempi, which

is a local variable, and the situation that the user wants to monitor can be expressed as a

predicate on local variables: “avgi∈P (tempi) ≥ 20◦C”. The detection of a satisfaction of

this predicate indicates that the situation which the user is interested in has occurred in the

monitored field. However, due to the inherent differences between these new systems and the

traditional distributed systems, new solutions that take into consideration the uniqueness of

these new systems are needed.

We observe that in traditional distributed systems, the predicate detection algorithms are

run for the entire system. This is due to the fact that geographical information has no impact on

the detection of distributed properties in a traditional distributed system. For example, when

a deadlock is detected in the system, the processes involved in the cyclic waiting can be either

geographically far apart from each other or just sitting next to each other; when two processes
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enter the critical section simultaneously and the mutual exclusion condition is broken, the two

processes could be either across the entire network or just neighbors to each other.

However, when the number of processes becomes large and the events are locality driven,

the situation becomes different. For example, to detect an explosion event in a WSN deployed

field, we need to detect both the temperature and the sound level as “temperature > 150◦C”

and “sound > 60dB”. Assuming each sensor can only sense one particular parameter, this

statement is a predicate specified on the local variables of multiple sensors. However, to make

the detection of such a predicate meaningful, the processes whose local variables satisfy this

predicate should be close to each other. If the above predicate is detected in two sensors which

are far apart from each other, then the satisfaction of this predicate may not necessarily mean

that an explosion has happened in the field. Running the predicate detection algorithm within

the entire network thus have two drawbacks when detecting predicates in such situations. (i)

The cost of running the algorithm for the whole network is high. (ii) The information gained

does not represent the predicate well enough. Thus, from the above example, we can see that

when detecting a distributed property in such networks, users are usually more interested in

the state of a local region rather than the entire network.

Another observation is that the existing unstable predicate detection algorithms can only

detect the first occurrence of the predicate satisfaction. This is due to the fact that in traditional

distributed systems, predicate detection is more commonly used for debugging purposes. In such

situations, the users are more interested in knowing whether a certain condition has been met

during the execution of the distributed program. For example, the user can define an unstable
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predicate as “xi > 30 ∧ yj < 25” where xi and yj are local variables on processes Pi and Pj .

When such a condition is satisfied in the system, the user wants to hang the execution of the

distributed program. In such a situation, it is only necessary to know the first time this unstable

predicate becomes true in the system and there is no need to know the subsequent occurrences

of the predicate satisfactions.

On the other hand, when continuous monitoring is required in the system, knowing all

occurrences of predicate satisfactions becomes necessary. This is especially true for unstable

predicates. One example is data stream processing, where persistent tracking of the specified

pattern, which can be expressed as predicates, is required. In such cases, the corresponding

predicates could become true multiple times, and the monitoring program needs to detect all

occurrences. As shown in (5), the traditional detection algorithms can detect predicates only

once and will hang after the initial detection. They cannot detect multiple occurrences because

detecting subsequent occurrences is not simply rerunning those one-time detection algorithms,

but requires elaborate processing to ensure safety and liveness. Furthermore, in large-scale

locality-driven networks, node failures can be common. Thus, a solution that can detect all

occurrences of the predicate satisfactions and can also recover from the potential node crash

failures is also necessary in a large-scale locality-driven network.

Also, we observe that, due to the lack of synchronized physical clocks, the traditional de-

tection algorithms rely solely on logical clocks and the causal relationships between events.

Thus, they can only make statements about whether the specified predicate has been satisfied

based on all consistent observations of the distributed program’s execution. While this is good
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at guaranteeing the occurrence or the opposite of a certain property during the distributed

program’s execution, this is insufficient to detect predicates in physical time. This is because

physical time detection is concerned with only the current run, while traditional detection al-

gorithms are concerned with all consistent runs of the distributed program. In long-running

applications requiring a continuous monitoring program, the program will not be executed mul-

tiple times, thus there is no need to consider predicate satisfactions not within the current run

of the program. In such cases, detecting the predicate satisfactions in physical time, i.e. within

only the current run of the distributed program, becomes the requirement.

To address the above situations, we propose the concept of locality-aware predicates (LAP).

Locality-aware predicates are similar to classical predicates. They can also be categorized

in the same way as the classical ones. The difference lies in that LAP detects a predicate

in a user-defined area within the system and thus takes into consideration the geographical

information of the processes whose local variables satisfy the predicate. We also propose the

hierarchical repeated detection algorithm for unstable predicates. It establishes a hierarchy in

the network and repeatedly detects all occurrences of the predicate satisfactions at each level

in the hierarchy. Due to its ability to detect a partial predicate of the global predicate, this

algorithm can easily resume the detection after a node crashes. Furthermore, we propose the

Instantaneously detection algorithm, which combines the hierarchical detection methodology

with several approximation techniques to enable the detection of predicates in physical time.

This algorithm achieves a high detection accuracy without incurring the cost of maintaining

physical synchronized clocks.
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1.2 Related Work

Detecting whether or not a given distributed property is satisfied is essential to monitoring,

synchronization, coordination, and debugging of a distributed system. Predicates can be either

stable or unstable. A stable predicate remains true once it becomes true. Detecting whether a

certain stable predicate has become true in an ongoing distributed computation is a fundamental

problem for many applications in distributed systems. Examples of stable predicates include

termination (the system is in a terminated state with processes in an idle state and no messages

in the channels), deadlock (a subset of processes are involved in a circular wait), and garbage

collection (an object is a garbage if it has no pointer to it).

Snapshots have been used to detect stable predicates. A snapshot of a distributed system

consists of a consistent collection of local states of processes and a consistent view of the

corresponding channel states. The first paper formalizing and solving the global snapshot

problem by Chandy and Lamport (6) assumes FIFO channels. Since the Chandy-Lamport

algorithm, recording the snapshot in systems with non-FIFO channels has also been studied

(7; 8; 9; 10; 11). The details can be referred from a survey (12). The Lai-Yang algorithm (7)

and the Mattern algorithm (11) are non-freezing or non-inhibitory (8; 9), while the algorithm

by Helary (10) is inhibitory in contrast. In recent years, the snapshot problem in large-scale

distributed systems, such as P2P networks and supercomputer clusters, has also been studied

(13; 14; 15). The corresponding algorithms could be used to detect stable predicates in large-

scale systems.
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Another recent work (4) introduced the concept of “locally distributed predicates”, which

is similar to the concept of LAP that we propose. However, that paper formalized and gave

an algorithm to detect only a stable predicate within a linear chain or ring topology. It does

not consider the detection of unstable predicates, which are more common in systems such as

WSNs or modular robotics, and it associates the predicate with only a linear topology, which

is insufficient to represent a local region. Also, (4) assumes FIFO channels, which is not a very

practical assumption in networks such as WSNs where communication channels may not be

reliable or FIFO. Putting aside the shortcomings in (4), it also shows that detecting predicates

in a local region rather than the entire network is starting to gain researchers’ attention.

On the other hand, the unstable predicate does not satisfy the same property of a stable

predicate and may hold only intermittently. This makes it more difficult to detect. This is

because an instantaneous observation of the whole distributed system is impossible to obtain

due to the absence of a common physical clock. Furthermore, the non-determinism arisen from

the asynchrony in message transmissions and in local executions adds to the complexity of

detecting an unstable predicate. Algorithms to detect general unstable predicates were given

in (16). However, it incurs an exponential complexity. In fact, detecting an unstable predicate

has been show to be an NP-complete problem. Due to the exponential computation complexity

associated with detecting a general unstable predicate, most of the works have been focused

on specific subclass, i.e. conjunctive unstable predicates (16), which can be more efficient

detected. A conjunctive predicate is one which can be specified in the form of ∧iΦi, where Φi

is a local predicate defined on variables local to process Pi. Due to the asynchrony in message
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transmissions and in local executions, two modalities under which an unstable predicate Φ holds

were also defined (16). The Possibly(Φ) modality checks if there exists a consistent observation

of the execution such that Φ holds in a global state of the observation, and the Definitely(Φ)

modality checks if for every consistent observation of the execution, there exists a global state

of it in which Φ holds.

In (17; 18), Garg and Waldecker gave centralized algorithms to detect Definitely (Φ) and

Possibly(Φ), respectively. In (17), they presented an interval-based approach to detect pred-

icates under the Definitely(Φ) modality. In (1), an interval-based algorithm that adopts a

unified approach to detect both Possibly(Φ) and Definitely(Φ) was given. Several distributed

algorithms were also proposed. Garg and Chase (19) and Hurfin et al. (20) presented dis-

tributed algorithms to detect Possibly(Φ). Chandra and Kshemkalyani (21) gave a distributed

algorithm for detecting Definitely(Φ).

More recently, predicate detection has been applied to systems such as WSNs. It is argued in

(5) that when detecting predicates in continuous monitoring programs such as a WSN, usually

the application requires the monitoring program to raise an alarm each time the predicate is

satisfied. One example is data stream processing (22), where persistent tracking of the specified

pattern, which can be expressed as predicates, is required. Another example is the industrial

process monitoring program such as in the chemical manufacturing industry, where the system

is monitored for events of both temperature and pressure exceeding certain thresholds. In

such cases, the corresponding predicates could become true multiple times, and the monitoring

program needs to detect all occurrences. None of the above traditional detection algorithms are
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capable of conducting such a continuous monitoring of unstable predicates within the system.

As shown in (5), these algorithms can detect predicates only once and will hang after the initial

detection. They cannot detect multiple occurrences because detecting subsequent occurrences

is not simply rerunning those one-time detection algorithms, but requires elaborate processing

to ensure safety and liveness. In (5), a centralized repeated detection algorithm which can

detect all occurrences of Definitely(Φ) is given.

A similar technique called computation slicing was introduced by Garg and Mittal (23).

Computation slicing aims at capturing all consistent cuts in the original computation which

satisfy a certain global predicate. Those consistent cuts are given in the form of a slice, i.e.

a condensed computation, where each event in the slice is a metaevent formed by grouping

multiple events in the original computation together. Each metaevent in the slice corresponds

to a join-irreducible element in the sublattice of the lattice of consistent cuts of the original

computation induced by the global predicate. The slice has the property that each consistent

cut of the slice corresponds to a consistent cut in the original computation that satisfies the

global predicate and all such consistent cuts in the original computation correspond to some

consistent cut in the slice. In the paper that initially introduced computation slicing (23), a

centralized algorithm was given to compute the slice for a regular predicate under the Possibly

modality. Besides that, centralized online (24) and distributed online (25) algorithms are also

presented for compute the slice for regular predicates under the Possibly modality.

Compared with computation slicing, repeated detection has three major differences. First,

repeated detection is based on interval solution sets while the computation slicing technique
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is based on consistent cuts. On each individual process, the number of intervals in which the

local predicate is true is much less than the number of local events. Thus, repeated detection

has a much less exploration space than that of the computation slicing. Second, the output of

the computation slicing algorithms is a condensed computation. A traversal of the sublattice

induced by the slice is still necessary if the user is interested in knowing the states of the system

when the predicate becomes true. In repeated detection technique, each predicate satisfaction

is directly output. The last major difference lies in the fact that computation slicing technique

is currently not able to handle predicates under Definitely modality, while repeated detection

can detect predicates under this modality.

However, when it comes to detecting unstable predicates in physical time, none of the

above logical time based algorithms is sufficient(26). This is because both Possibly(φ) and

Definitely(φ) predicate detection algorithms are concerned with all consistent runs of the dis-

tributed program, while physical time detection is concerned with only the current run. In

long-running applications requiring a continuous monitoring program, the program will not be

executed multiple times, thus there is no need to consider predicate satisfactions not within

the current run of the program. In such cases, detecting the predicate satisfactions in physical

time, i.e. within only the current run of the distributed program, becomes the requirement.

We term the detection of predicates/events in physical time as the Instantaneously modality.

The problem of detecting predicates under the Instantaneously modality without access to

synchronized physical clocks has been attempted in previous works such as (27; 28). In (27), the

author maintains a middle-ware logical clock which adds artificial causal relationships between
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events by sending a broadcast message each time a local interval starts. In this way, two events

that are previously not comparable using logical time may now become sequentialized. In (28),

the authors use the Definitely(φ) detection algorithm to approximately detect predicates under

the Instantaneously modality. While this approach ensures every detected predicate satisfaction

also occurs in physical time, due to the limitations of the Definitely(φ) modality, this approach

cannot detect the occurrences of predicate satisfactions in physical time that do not satisfy

the Definitely(φ) detection condition. As a result, both methods suffer from a low detection

accuracy.

1.3 Goals and Contributions

1.3.1 Goals

Locality-aware predicates aim at specifying and detecting predicates for a specific user-

defined local region in large-scale locality driven networks such as modular robotics or WSNs.

We name the local region within which the predicate is detected an “area of interest”. In such

systems, users are usually more interested in the state of a local region, i.e. an area of interest,

rather than the entire system. This is because:

1. The number of processes in the system is large, thus knowing the state of the entire system

can be quite expensive.

2. The information gained from the state of a certain local region in the system can better

represent a predicate than the state of the entire system.

Our goals in this work are:
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1. Formally define locality-aware predicates by designing a model representing the area of

interest

2. Design algorithms to detect stable locality-aware predicates.

In solving these problems, we face the following challenges:

1. Although a LAP detects predicates only within a certain area of interest, observing the

area consistently still requires considering the entire system in a consistent manner. Since

all existing algorithms for getting a consistent view of the system requires either a global

snapshot of the entire system or vector clocks of the size of the system, new solutions are

thus needed.

2. Since the predicate is only detected within an area of interest, the complexity of detection

algorithms should be affected by the size of the area of interest not the size of the entire

network. Thus, the detection algorithms should be scale-free.

In addition, we further explore the problem of LAP detection. We extend our LAP detection

algorithms to enable the detection of unstable conjunctive LAPs. This makes our LAP detection

algorithms able to deal with even more types of predicates. Our goals in this work are:

1. Design algorithms to detect unstable conjunctive LAPs

2. Make our detection algorithms scale-free.

We face the same challenges as we do in solving the stable LAP detection problem. In addition,

some challenges unique to the unstable conjunctive LAP detection problem arises:



15

1. Unstable conjunctive predicate detection algorithms require the establishment of vector

clocks. However, in a large-scale network, it is impractical to assume such logical clocks

are established within the entire network.

Furthermore, hierarchical repeated detection algorithm aims at distributing the detection of

all occurrences of predicate satisfactions within the whole system and providing fault-tolerance.

It does so by establishing a hierarchy in the network and detecting all predicate satisfactions

at each level in the hierarchy.

Our goals in this work are:

1. Design an algorithm to detect strong unstable conjunctive predicates in a hierarchical and

repeated manner.

2. Design the algorithm in such a way that it can recover from node crash failures.

In solving this problem, we face the following challenges:

1. Due to the nature of unstable predicates, their satisfactions within the system keep fluc-

tuating with time. In long-running applications where continuous monitoring is required,

repeated detection is essential because manual intervention after one detection of predi-

cate satisfaction to reset the detection algorithm is not practical or even possible. Thus,

it is necessary to do repeated detection when detecting unstable conjunctive predicates

in the network.



16

2. Centralized algorithms are not desirable due to the limited computation resources avail-

able to individual processes. This is especially true when detecting unstable conjunctive

predicates since repeated detection will be performed.

3. Due to the scale of the system is large, individual node crash failures can be common.

Finally, the Instantaneously detection algorithm aims at detecting predicate satisfactions

in physical time. It further extends the hierarchical detection methodology by enabling the

detection of Possibly(Φ) conjunctive predicates. Furthermore, it combines the hierarchical

detection algorithm with two novel approximation techniques so that the integrated algorithm

can detect predicates in physical time with a high accuracy while still relies solely on logical

clocks.

Our goals in this work are:

1. Extend the hierarchical detection methodology to enable the detection of weak unstable

conjunctive predicates.

2. Design approximation techniques that work with the hierarchical detection algorithm to

detect predicate satisfactions in physical time.

In solving this problem, we face the following challenges:

1. It has been shown in (5) that performing repeated detection under the Possibly(Φ) modal-

ity incurs an exponential complexity. We need to design approximation algorithms that

can bring down the cost.
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2. Detecting predicate satisfactions in physical time requires approximation techniques that

minimizes the impact of the asynchrony in message transmissions.

1.3.2 Contributions

The contributions in this work are as follows.

By solving the stable LAP problem, we make the following contributions:

1. Motivate and propose the concept of locality-aware predicates in large-scale networks.

2. Propose the first algorithm to detect stable LAP for such networks and assume non-FIFO

channels. The algorithm can detect both stable conjunctive LAP and stable relational

LAP. The algorithm is highly efficient and the message count, message size, storage cost,

and bandwidth complexities are scale-free, i.e., they are independent of the size of the

entire network.

3. To design the above algorithm, we also make the following incidental contributions.

(a) Present the first distributed algorithm to create a breadth-first search tree (BFST)

for a specified region within a network.

(b) Present the first distributed algorithm to record a consistent snapshot within a spec-

ified region of a network.

The message count, message space, storage cost, and bandwidth complexities of both

these algorithms are also scale-free.

Compared with other similar algorithms, our stable LAP detection algorithm has several

advantages. We compare the features of these algorithms with our stable LAP detection al-
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gorithm in Table I. Specially, we compare with Chandy-Lamport snapshot algorithm (6) and

Mattern’s non-FIFO snapshot algorithm (11). We also compare with the two algorithms, LDP-

Basic and LDP-Snapshot, introduced in (4). They both detect a locally distributed predicate

within a linear topology only.

TABLE I

COMPARISON OF FEATURES OF ALGORITHMS FOR DETECTING STABLE
PREDICATES IN LARGE-SCALE DISTRIBUTED SYSTEMS.

Feature Non- Non-FIFO Locality Scale-
freezing Channel awareness free

Chandy-Lamport (6)
√

× No ×
Modified C-L

√
× Spanning ×

(Section 3.1.2) tree
Mattern’s Non-FIFO

√ √
No ×

Snapshot (11)
LDP-Basic (4)

√
× Linear chain

√

LDP-Snapshot (4) × × Linear chain
√

LAP Algorithms
√ √

BFST or
√

any tree

By solving the unstable conjunctive LAP problem, we make the following contributions:

1. We design the regional vector clock using virtual IDs in the local region.

2. We develop a scale-free algorithm, i.e., an algorithm whose complexity is independent of

the size of the system, for detecting unstable conjunctive LAP in a large-scale system.

3. More importantly, we develop the encoded vector clock (EVC) technique which optimizes

the time and space complexity of vector clocks. We show how to detect unstable conjunc-
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tive LAP using EVC. This makes detecting unstable conjunctive LAP more practical in

a large-scale system.

By solving the hierarchical repeated detection problem for Definitely(Φ), we also make the

following contributions:

1. We present the first decentralized hierarchical algorithm to detect Definitely(Φ) in a large-

scale distributed system.

2. Hierarchical detection, which is also strongly desirable for large-scale systems, necessarily

requires detection of all occurrences of the predicate satisfaction, which we do in our

algorithm. None of the existing detection algorithms for Definitely(Φ) (except the recent

centralized algorithm in (5)) can do such repeated detection of all occurrences of Φ. They

all hang if a node fails.

3. The hierarchical detection in our algorithm makes it capable of handling node failures or

mobility. In our algorithm, each process detects the predicate in the subtree rooted at

itself. When a node fails or moves, the detection of the predicate in the system can be

easily resumed because our algorithm has the ability to detect a partial predicate of the

global predicate and deal with a reconfigured tree. The same cannot be achieved by the

existing centralized or distributed detection algorithms.

4. We give a performance analysis of our hierarchical detection algorithm for message, space

and time complexity. The result shows that our algorithm is superior to the only known

algorithm for repeated detection (5), which is centralized.
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TABLE II

COMPARISON OF FEATURES OF ALGORITHMS FOR DETECTING UNSTABLE
PREDICATES.

Feature Distributed Repeated Detection within Detecting Detecting
Detection local regions Definitely(Φ) Possibly(Φ)

Centralized (6) × × ×
√ √

Garg and Chase
√

× × ×
√

(19)
Hurfin et al. (20)

√
× × ×

√

Chandra and
√

× ×
√

×
Kshemkalyani (21)
Centralized Repeated ×

√
×

√
×

Detection (5)
Hierarchical
Repeated

√ √ √ √
×

Detection

Compared with other similar algorithms, our hierarchical repeated unstable conjunctive

predicate detection algorithm also has several advantages. We compare with the centralized

interval-based unstable predicate detection algorithm (1), and several distributed unstable pred-

icate detection algorithms (19; 20; 21) . We also compare with the centralized repeated detection

algorithm proposed in (5). The result is shown in Table II.

By solving the Instantaneously detection problem, we make the following contributions:

1. We present the innovative hierarchical detection algorithm for Possibly(φ) modality. This

algorithm relies only on neighborhood communications to collaboratively detect global

predicates.

2. We present two approximation techniques that work with the hierarchical detection algo-

rithm to enable the detection of event/predicate in physical time with a high accuracy.
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3. We evaluate our detection algorithm by measuring its performance with a parameterized

synthetic benchmark and analyzing its accuracy under various conditions.

Compared with the other two algorithms that detect predicates under the Instantaneously

modality based on logical clocks (27; 28), our algorithm is superior in the fact that it reaches

a high detection accuracy under various network conditions.

Chapter 2 gives the system model and background on predicate detection. Chapter 3

discusses the problem of detecting a stable locality-aware predicate and presents the algorithms

to do so. Chapter 4 discusses the problem of detection unstable conjunctive LAPs and give the

corresponding algorithms. Chapter 5 discusses the problem of detecting a conjunctive unstable

predicate for Definitely(Φ) in a hierarchical and repeated manner. Chapter 6 discusses the

problem of detecting predicates in physical time without relying on the synchronized physical

clock. The conclusion and future directions of this work are given in Chapter 7.

Portions of Chapter 3 have been previously published in Elsevier Journal of Parallel and

Distributed Computing (29). Portions of Chapter 4 have been previously published in the

proceedings of IEEE 12th International Symposium on Parallel and Distributed Computing

(30). Portions of Chapter 5 have been previously published in IEEE Transactions on Parallel

and Distributed Systems (31).



CHAPTER 2

SYSTEM MODEL AND BACKGROUND

In this chapter, we introduce the concepts that are related to our work and define the

terminology that will be used in later chapters.

2.1 System Model

A distributed system is an undirected graph (P,L), where P is the set of processes and L

is the set of communication links. Let n = |P |. The n processes asynchronously communicate

with each other via the channels in L. A channel Lij is the communication link from processes

Pi to Pj . Since the graph representing the network is undirected, if Lij ∈ L, Lji ∈ L. We do

not assume FIFO channels, thus the messages may be delivered out of order. The execution of

a process Pi produces a sequence of events Ei = 〈e0i , e1i , e2i , · · · 〉, where eki is the kth event at

process Pi. An event at a process can be message receiving, message sending, or an internal

event. Let E = ∪i∈PEi denote the set of events executed in a distributed execution. The causal

precedence relation between events induces an irreflexive partial order on E. This relation is

defined as Lamport’s “happens before” relation (32), and denoted as ≺. An execution of a

distributed system is thus denoted by the tuple (E,≺).

Two processes Pi and Pj are neighbors if Lij ∈ L. If the network is a wireless network, each

process can communicate only with other processes within its communication range. Thus, not

all pairs of processes Pi, Pj ∈ P can be neighbors, and the topology of the network cannot

22



23

be considered as a complete graph. Therefore, messages transmitted within such a network

usually traverse multiple hops. A message sent along channel Lij is denoted as mij and has

two associated events send(mij) and recv(mij) happening at processes Pi and Pj , respectively.

The state of a process Pi is defined by the contents of variables local to Pi. We denote the

state of process Pi after event eji executed and before event ej+1
i as Sji . Sji is a result of the

sequence of all the events executed by Pi up to eji . For an event eki and a process state Sji ,

eki ≺ S
j
i iff 1 ≤ k ≤ j.

On the other hand, the state of a channel Lij is defined as the set of messages in transit in

Lij , and it depends on the local states of the processes on which the channel is incident. We

denote the state of a channel Lij as SCx,yij and formally define it as follows:

Definition 1. (Channel state) The state of a channel SCx,yij is defined as {mij |send(mij) ≺

Sxi ∧ recv(mij) 6≺ Syj }.

Thus, channel state SCx,yij denotes the set of messages sent by process Pi up to exi that

process Pj have not received until eyj .

A global state GS of the execution of a distributed system is a collection of the states of

all the processes and channels. For a global state GS to be consistent, all messages that are
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recorded as received in the global state should also be recorded as sent. Basically, a consistent

global state ensures that

∀mij , if recv(mij) ≺ S
yj
j then send(mij) ≺ Sxii .

A consistent global state denotes a meaningful observation of the distributed system.

A cut C is a subset of E such that if ei ∈ C then ∀e′i ≺ ei, e
′
i ∈ C. A consistent cut (6) C

is a subset of E such that if e ∈ C then ∀e′ ≺ e, e′ ∈ C. A cut divides the set of events in a

distributed execution into a PAST and a FUTURE set. The events in C form the PAST set

PAST (C), and the events not in C form the FUTURE set FUTURE(C). Thus, a consistent

cut ensures that all messages received in the PAST set of the cut was also sent the PAST set.

A cut corresponds to a global state of the execution of the distributed system, and a consistent

cut corresponds to a consistent global state. Therefore, we denote the state of a process Pi

or a channel Lij in a global state, with respect to the corresponding cut C, as SCi or SCCij ,

respectively.

We also assume vector clocks (33; 34) are available. Each process Pi maintains a vector

clock Vi of n integers. Such a vector clock can provide logical time in the system. Due to the

lack of perfectly synchronized physical clocks in a distributed system, logical clocks such as

vector clocks can be a substitute for physical clocks in causality-based applications. The vector

clock is updated according to the following rules.

1. Before an internal event happens at process Pi, Vi[i] = Vi[i] + 1.



25

2. Before process Pi sends a message, it first executes Vi[i] = Vi[i] + 1, then it sends the

message piggybacked with Vi.

3. When a process Pj receives a message with timestamp U from Pi, it executes

∀k ∈ [1 . . . n], Vj [k] = max(Vj [k], U [k]);

Vj [j] = Vj [j] + 1;

before delivering the message.

Vector clocks inherently capture the partial order (E,≺) and the causality relation between

events in the execution of a distributed system. The “happens before” relation ≺ between

two events can be checked by comparing their corresponding vector clock timestamps, i.e.,

ei ≺ ej ⇔ Vei < Vej , where Vei < Vej means ∀a ∈ [1, n], Vei [a] ≤ Vej [a] and ∃b ∈ [1, n] such that

Vei [b] < Vej [b].

2.2 Background

In this section, we survey the existing works on predicate detection in the literature.

The problem of predicate detection is to specify a statement on the variable local to different

processes in the network and to detect whether this statement becomes true during the execu-

tion of the distributed system. Detecting whether a predicate has become true in an ongoing

distributed computation is a fundamental problem for many applications in distributed sys-

tems. It is important for various purposes such as monitoring, synchronization, coordination,

and debugging of a distributed system. As an example, the system might be monitoring the

occurrence of a deadlock in the execution, which is a predicate over local variables of different

processes in the network. Predicate detection has also found application in wireless sensor net-
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works (WSNs) (2) and modular robotics (3; 4). For example, in a WSN deployed field, to detect

whether an explosion has happened, we can define a predicate over the temperature and the

loudness of sound as Φ = “temperature > 150◦C and “ sound > 60dB”. The two parameters

will be sensed by two different sensors. Thus, this problem is a predicate detection problem.

By solving the problem of predicate detection, we gain the ability to monitor the system.

There are many predicate types and detection algorithms studied in the literature (1). In

the reset of this section, we summarize the major classes of predicates and present the existing

detection algorithms.

2.2.1 Stable/Unstable Predicates

A predicate can be either stable or unstable.

Definition 2. (Stable predicate) A stable predicate is a predicate that remains true once it is

found true within a consistent global state (6).

Definition 3. (Unstable predicate) An unstable predicate is a predicate that is not stable and

hence may hold only intermittently (16).

Examples of stable predicates include termination (the system is in a terminated state

with processes in idle state and no in-transit messages in the channels), deadlock (a subset of

processes are involved in a circular wait), and garbage collection (an object is a garbage if it

has no pointer to it). The stable predicate detection problem has been well-studied and many

solutions have been proposed for solving the general problem (e.g., (6; 35; 36; 37)) as well as

the special cases (e.g., (38; 39; 40; 41)).



27

Unstable predicates, on the other hand, is a more general type of predicates. It does not

require the predicate to remain true once it becomes true for the first time. For example, in

a field deployed with sensors measuring temperature, a predicate Ψ =“average temperature is

above 50◦F” is an unstable predicate. Thus, we can observe that unstable predicates monitor

the system for properties that keep fluctuating with time. Due to the nature of unstable

predicates and the unavailability of perfectly synchronized physical clock, we cannot detect

unstable predicates using the same way as detecting stable predicates by capture a consistent

global state. This is because:

• Even the unstable predicate is found true in a consistent global state, it may not have

actually held in the execution;

• Even the unstable predicate is true for a transient period in the execution, it may not be

detected by periodically capturing a consistent global state.

Thus, the difficulty of detecting unstable predicates makes it necessary to find a new way of

detecting predicates.

2.2.2 Possibly/Definitely Time Modalities

To address the challenges presented by unstable predicates, we observe that:

• To detect an unstable predicate, it is necessary to examine the entire execution of the

distributed program rather than individual global states of the execution. Thus, it makes

sense to define the unstable predicates on the observation of the execution.
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• For the same distributed program, even if it is deterministic, the satisfaction of an unstable

predicate can change in different executions. Thus, it also makes sense to define the

unstable predicates on all observations of the executions of the distributed program.

Due to the asynchrony in message transmissions and in local executions, different executions

of the same distributed program can generate different sequences of global states. Therefore,

whether an unstable predicate gets detected within all consistent observations of an execution or

within some consistent observation of an execution, can be different. Thus, two time modalities

under which an unstable predicate Φ can be detected (42) have been defined:

Definition 4. (Possibly(Φ)) There exists a consistent observation of the execution such that Φ

can be detected in a global state of the observation.

Definition 5. (Definitely(Φ)) For every consistent observation of the execution, there exists a

global state of it in which Φ can be detected.

To illustrate Possibly(Φ) and Definitely(Φ), we consider the example in Figure 1. The timing

diagram of the execution of this distributed program in shown in Figure 1(a). The execution

is run at processes P1 and P2. Event eki denotes the kth event at process Pi. Variable a is local

to P1 and variable b is local to P2. The state lattice for the execution is shown in Figure 1(b).

Each state is labeled by a tuple (c1, c2), where c1 and c2 are the event counts at P1 and P2,

respectively.

We observe that any path in the state lattice that goes from (0, 0) to (6, 5) can be an

execution of the distributed program and provides an serialization of the events happening at
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Figure 1. Example to illustrate Possibly(Φ) and Definitely(Φ). (a) The timing diagram of the
execution. (b) The state lattice for the execution.

two processes which does not break any of the causal relationship shown in the timing diagram.

We also observe that different executions of the distributed program may not pass the same

intermediate states as the state transitions from (0, 0) to (6, 5).

We now define two predicates:

Φ = ”a+ b = 5”

Ψ = ”a− b = 3”

From the state lattice in Figure 1, we can observe that
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• Definitely(Φ) holds. No matter which path in the state lattice the execution of the

distributed program traverses, it always goes through state (4, 3). At (4, 3), a + b = 5.

So, Φ will always be true. Therefore, Definitely(Φ) holds.

• Possibly(Ψ) holds. Notice that, at state (2, 1) a−b = 3. So, there exists at least one state

in which Ψ is true. Thus, Possibly(Ψ) holds.

• Definitely(Ψ) does not hold. The states in which Ψ is true are circled in the dashed

line. We observe that, in the state lattice there exist paths from (0, 0) to (6, 5) that do

not traverse any state in the circled ones. So, there can be executions of the distributed

program in which the predicate Ψ will never be true. Thus, Definitely(Ψ) does not hold.

From the above example, we can see that for a predicate Φ, if Definitely(Φ) holds then

predicate Φ must have become true at some instance during the execution of the distributed

program; if only Possibly(Φ) holds then we can only say that the predicate might have turned

true at some instance but it is not guaranteed. Possibly(Φ) is useful when we want to ensure

certain property never turns true during the execution. We can guarantee so by detecting that

Possibly(Φ) does not hold.

Another observation from the above example is that in order to detect an unstable predicate,

it seems necessary to explore the entire state lattice. If the event parallelism in the execution

of the distributed program is high, the number of states that need to be checked can be up to

en for n processes and a maximum of e events per process. In fact, it has been shown that

detecting unstable predicates using the state lattice is actually an NP-complete problem (42).
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2.2.3 Conjunctive/Relational Predicates

In Section 2.2.1, we have shown how to categorize a predicate into either a stable class or

an unstable class. Below, we introduce another way of categorizing predicates. Based on the

function on the local variables in the predicate statement, we can define the following types of

predicates (16):

Definition 6. (relational predicate) A relational predicate is a predicate that is expressed as an

arbitrary relation on the variables in the system.

Definition 7. (conjunctive predicate) A conjunctive predicate is a predicate that can be ex-

pressed as the conjunction of local predicates.

Let xi and yj be local variables at process Pi and Pj , respectively. Then Φ = “avg(xi, yj) =

35” is a relational predicate, while Ψ = “xi > 20 ∧ yj < 45” is a conjunctive predicate. This

categorization of conjunctive/relational predicates is orthogonal to the categorization of sta-

ble/unstable predicates. Thus, a stable predicate can be either conjunctive or relational. So is

an unstable predicate.

Although detecting a general unstable predicate may incur an exponential complexity, there

exist polynomial solutions for detecting conjunctive unstable predicates. For any cut C of an

execution of a distributed program, if the conjunctive unstable predicate Φ is false in this cut

C, then there is at least one process Pi such that the state of Pi with respect to C, i.e. SCi , will

never form part of any cut C ′ such that Φ is true in C ′. This local state of Pi, S
C
i , is hence a

forbidden state and we can safely advance the local state of Pi to the next event and evaluate
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Φ in the resulting cut. In this way, we eliminate the need of doing an exponential search in the

state lattice and we have a solution that only need to check O(en) states.

We want to point out here that, being able to detect a conjunctive unstable predicate in

polynomial time does not negate the fact that detecting unstable predicates is an NP-complete

problem. This is because detecting an arbitrary unstable predicate, i.e. a relational unstable

predicate in particular, is inherently an entirely different problem compared to the one of

detecting conjunctive unstable predicates only.

In (1), an interval based solution to detect conjunctive unstable predicates has been pro-

posed. An interval at a process Pi is the time duration in which the local predicate is true. Such

an interval at process Pi is identified by the pair of events that turn the local predicate true and

false, respectively. Due to the lack of synchronized physical clocks at each process, the start and

end events of an interval x, denoted as min(x) and max(x), respectively, are identified by vector

clocks. In the solution proposed in (1), the detection of either Possibly(Φ) or Definitely(Φ) is

to identify a set of intervals, containing one interval per process in which the local predicate

is true, such that a certain condition is satisfied within this set. In (18; 17; 43), it was shown

that the conditions to be satisfied for Possibly(Φ) or Definitely(Φ) to be true within a set X of

intervals are as follows:

Definitely(Φ) : ∀xi, xj ∈ X,min(xi) ≺ max(xj) (2.1)

Possibly(Φ) : ∀xi, xj ∈ X,max(xi) 6≺ min(xj) (2.2)
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We illustrate Equation 2.1 and Equation 2.2 using the following examples in Figure 2.

From Figure 2(a), we can observe that for two intervals x1 and x2, if Equation 2.1 is satisfied

P
1   

P
2  

 

x

y

(a) Definitely(Φ) (b) ¬Possibly(Φ)

min(y) max(y)

min(x) max(x)
P

1   

P
2  

 

x
y

min(y) max(y)

min(x) max(x)

Figure 2. Example to illustrate the conditions for Definitely(Φ) and ¬Possibly(Φ) for two
processes.

on the two intervals, then the two intervals has to overlap at a certain instance in any consistent

observation of the execution. Thus, the predicate Φ is guaranteed to be true and Definitely(Φ)

is detected. From Figure 2(b), we can observe that for two intervals x1 and x2, if the negation of

Equation 2.2, i.e. (max(x1) ≺ min(x2))∨ (max(x2) ≺ min(x1)), is satisfied on the two intervals,

then the two intervals are guaranteed to not overlap at a certain instance in any consistent

observation of the execution. Thus the predicate Φ is guaranteed to be false and Possibly(Φ)

does not hold. For a system of more than 2 processes, in order for Possibly(Φ) or Definitely(Φ)

to be true in a set of n intervals, Equation 2.1 or Equation 2.2 has to be satisfied for any pair

of two intervals in the set, respectively.
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2.2.4 Existing Detection Algorithms

In this subsection, we briefly present the existing predicate detection algorithms. In Section

2.2.4.1, we present the algorithms that can detect stable predicates in a non-FIFO network (as

the system model assumes non-FIFO channels in Section 2.1). In Section 2.2.4.2, we present

the algorithms that detect various types of unstable predicates.

2.2.4.1 Detecting Stable Predicates Using Snapshots

Snapshots have been used to detect stable predicates. A snapshot of a distributed system

consists of a consistent collection of local states of processes and a consistent view of the

corresponding channel states. The first paper studying the global snapshot problem by Chandy

and Lamport (6) assumes FIFO channels. Since then, much literature has also studied this

problem with non-FIFO channels (8; 9; 10; 7; 11). The details can be referred from a survey

in (12). In recent years, snapshot in large-scale distributed systems, such as P2P networks and

supercomputer clusters, has also been studied (13; 14; 15). The corresponding algorithms could

be used to detect stable predicates, but they have complexities of Ω(N logN), where N is the

total number of processes in the entire system.

We will use two techniques from the above papers. One is called white/red coloring by Lai

and Yang (7), used for recording process states. The other is called vector counter by Mattern

(11), used for recording channel states in conjunction with the white/red coloring coloring

technique.

White/red coloring has these basic rules:

1. A process is initially white and immediately becomes red after it takes a local snapshot.
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2. A white (or red) process sends white (or red) colored messages.

3. Upon receiving a red message, a white process takes a local snapshot.

Essentially, a process piggybacks a one bit status information on all outgoing communication

messages. This indicates whether or not the process has taken its local state. After every

process takes its local state, the set of those local states form a consistent cut.

Vector counter technique is for recording channel states. This technique requires each pro-

cess to separately count the number of white messages that it has sent to any other process

in a local vector. Every process also counts the number of white messages received from all

other processes. First, a control message circulates through every process, through either a

convergecast in a tree topology or circulating around a ring topology, to calculate the total

number of white messages sent to each process. After this, the control message is broadcast to

all processes, and each process waits until it has received all in-transit white messages according

to the corresponding white message counter in the vector. All the white messages received by

Pj from Pi after Pj turns red form the channel state SCij .

2.2.4.2 Unstable Predicate Detection Algorithms

Algorithms to detect both Possibly(Φ) and Definitely(Φ) for a conjunctive or relational

unstable predicate were given in (42). This algorithm utilizes the state lattice and thus incurs

an exponential complexity. Due to the exponential complexity of detecting relational predicates,

most work on unstable predicate detection is focused on conjunctive ones.

In (17; 18), Garg and Waldecker gave centralized algorithms to detect Definitely (Φ) and

Possibly(Φ), respectively. In (17), the interval-based approach was initially introduced to detect



36

Definitely(Φ). In (1), an algorithm that adopts a unified approach to detect both Possibly(Φ)

and Definitely(Φ) based on intervals was given. For a network of n processes and an execution

in which the local predicate becomes true at most p times at a process, the detection algorithm

in (1) has a space and time complexity of O(pn2). It also generates O(pn) messages, each of

size O(n).

The centralized detection algorithm has the drawback that all the computation occurs at a

single process. This uneven distribution of time and space complexity makes such algorithms

undesirable in systems where individual processes have limited resources. Several distributed al-

gorithms were thus proposed. Garg and Chase (19) and Hurfin et al. (20) presented distributed

algorithms to detect Possibly(Φ). Both algorithms have space, time and message complexities

being O(mn2), where m is the maximum number of messages sent by any process. Chandra

and Kshemkalyani (21) gave a distributed algorithm for detecting Definitely(Φ). Its space and

time complexities are O(min(pn,mn2)) and its message complexity is O(min(pn2,mn2)).

When detecting unstable predicates in continuous monitoring programs, usually the appli-

cation requires the monitoring program to raise an alarm each time the predicate turns true.

In such cases, none of these algorithms (17; 18; 19; 20; 21) are applicable. As shown in (5),

these algorithms can detect unstable predicates only once and will hang after the initial de-

tection. They cannot detect multiple occurrences because detecting subsequent occurrences is

not simply rerunning those one-time detection algorithms, but requires elaborate processing

to ensure safety and liveness. In (5), a centralized repeated detection algorithm which can

detect all satisfactions of Definitely(Φ) in O(pn3) time is given. However, all the time/space
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costs incurred by this algorithm happen at the sink. It is also shown in (5) that detecting all

satisfactions of Possibly(Φ) takes exponential time.



CHAPTER 3

DETECTING STABLE LOCALITY-AWARE PREDICATES

This chapter is based on our previous publication (29). In this chapter, we discuss the

problem of detecting stable locality-aware predicates and present the algorithms to detect such

predicates. Unless otherwise specified, all the predicates in the rest of this chapter are stable

predicates. In our proposed solution, to detect a stable locality-aware predicate, a 3-stage

procedure is required.

1. The interacted process initiates the construction of an overlay network that corresponds to

the local region specified by the user (Algorithm 1 in Section 3.2). This incurs a one-time

cost for establishing the local region.

2. A distributed snapshot within this region is recorded (Algorithm 2 in Section 3.3) each

time the region is to be consistently observed.

3. The recorded snapshot is used for the detection of the predicate (Algorithm 3 in Section

3.4).

The rest of this chapter is organized as follows. Section 2 gives the system model and a

background on predicate detection as well as snapshot algorithms. Section 3.1 discusses the

challenges in modeling and detecting locality-aware predicates and why a three-stage detection

process is necessary. Section 3.2, which focuses on the first stage, introduces how we model

the area of interest and proposes the algorithm to construct an overlay network that represents

38
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this area. Section 3.3, which focuses on the second stage, presents how we modify the existing

algorithms to solve the new problem - to construct a snapshot within the area of interest in

a large-scale non-FIFO network. Section 3.4, which focuses on the third stage, presents the

algorithm to detect stable conjunctive LAP and stable relational LAP. Section 3.5 analyzes the

complexities of these algorithms in terms of the number of messages, the message sizes, and

the storage and bandwidth costs. Section 3.6 briefly discusses some special cases of detecting

stable LAP.

3.1 Locality-Aware Predicates

3.1.1 Motivation

Locality-aware predicates aim at specifying predicates for a local region in a large-scale

locality driven network such as modular robotics or WSNs. In such a system, the state of a

local region, rather than of the entire system, can be of more interest. This is because: (i) the

number of processes in the system is large, thus knowing the state of the entire system can be

quite expensive; (ii) the processes’ interactions are local, driven by neighborhood proximity;

and (iii) the properties of these interactions can only be captured by predicates over local

regions.

Consider the following examples. In a token-passing system, the detection of a predicate,

Φ =number of tokens is greater than 5, defined for the global system might not contain any

useful information, since the system contains many processes and the total number of tokens can

easily exceed 5. However, if Φ is defined on a local region, then the detection of this predicate

provides insight towards this particular region, and thus better captures the interactions within
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the local region. To detect an explosion event in a WSN deployed field, we need to detect

both the temperature and the sound level, as “temp > 150C
∧
sound > 60dB”. Assuming each

sensor can only sense one parameter, this statement is a predicate specified on the local variables

of multiple sensors. To make the detection of such a predicate meaningful, the processes whose

local variables satisfy this predicate should be close to each other. If the above predicate is

detected in sensors which are far apart, then that may not imply that an explosion occurred.

In a large-scale locality-driven system, such as WSNs, users are usually interested in such kinds

of properties within a certain region. Further examples are the number of patients in a specific

area in a WSN monitored hospital environment, and the number of hostile entities in a certain

region in a WSN monitored battlefield.

3.1.2 Detecting Locality-Aware Predicates

When using snapshots to detect predicates, we need to build a consistent cut among the

processes over which the predicate is to be detected. For locality-aware predicates, the set of

processes over which we detect the predicate is not the entire network. One trivial solution

is to take a global snapshot and detect the locality-aware predicate based on a subset of this

snapshot. However, the complexity of such a solution is affected by the size of the network. To

better solve this problem, we need to design algorithms that are scale-free, meaning that the

size of the entire system does not affect the complexity of the algorithms. For this purpose, we

need to take the snapshot only within the area of interest.

One seemingly possible solution to design a scale-free algorithm for recording a snapshot

within the area of interest would be to run the Chandy-Lamport snapshot algorithm with hop
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count, that is, to count the number of hops the marker message has traversed from the initiator

and stop sending markers once the hop count reaches a certain value. We term this algorithm

as the modified Chandy-Lamport (modified C-L) algorithm. It has three drawbacks.

1. The overlay network that this algorithm constructs is a spanning tree. If we want to cover

all processes within a certain distance from the initiator, a spanning tree is not sufficient

since the spanning tree does not find the shortest paths.

2. Using the modified C-L snapshot algorithm will require the communication channels to

be FIFO. This is not practical in networks such as WSNs.

3. Most importantly, the modified C-L algorithm can go wrong with the recorded process

states and the recorded channel states within the area of interest. This is because it

is unable to track messages that transitively traverse outside the area of interest and

potentially reenter the area. Fixing this problem requires taking a system-wide global

snapshot, which will make the solution non-scale-free.

In essence, the modified C-L algorithm cannot construct a consistent sub-cut over the area of

interest in a scale-free manner.

Besides the Chandy-Lamport snapshot algorithm, all the existing non-FIFO snapshot algo-

rithms (13; 14; 15; 7; 10; 11) cannot be directly applied to solve the problem in a non-FIFO

network. There are two reasons. First, most of the existing algorithms rely on a spanning

tree overlay network (7; 10; 11) or an even more rigid overlay network such as a hypercube

(13; 14; 15). Second, when capturing the process states and the channel states, the existing

algorithms are designed for the entire network and will cause the complexity to be non-scale-free.
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So, a new solution is needed. It needs to be scale-free, capable of constructing an overlay

network that represents the area of interest, and effectively and efficiently takes a snapshot

within the area of interest. In addition, it detects a predicate within the area of interest. We

design such a solution as a three-stage procedure, as outlined in the beginning of this chapter.

A detailed comparison of features between potential solutions to the problem of detecting

stable LAP is presented in Table I. Specifically, we compare with the Chandy-Lamport snapshot

algorithm (6), the modified C-L algorithm, and Mattern’s non-FIFO snapshot algorithm (11).

We also compare with the two algorithms, LDP-Basic and LDP-Snapshot (4), that can detect

a locally distributed predicate (LDP) within a linear topology only. Both these algorithms

work only if the communication is single-hop to direct physical neighbors, and the underlying

channels are FIFO. LDP-Basic can only detect a stable predicate that does not depend on

channel states, while LDP-Snapshot uses freezing to detect a stable predicate that may depend

on channel states. Lastly, we compare with our proposed solution, which we term as LAP

algorithms. The Lai-Yang algorithm (7) requires unbounded memory to track all past messages,

whereas the Helary algorithm (10) is freezing; both these algorithms have highly undesirable

features and hence are not considered.

Some classification to design our solutions (LAP algorithms) is introduced next. When

taking a snapshot, we need to ensure there is no orphan message (1) present in the snapshot.

For the processes within the area of interest, messages can be categorized into 4 types, as

illustrated in Figure 3.

1. Messages transmitted entirely within the area of interest,
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Figure 3. Four types of messages.

2. Messages whose source and destination are within the area of interest, but some of the

transmitting intermediate processes are outside the area,

3. Messages sent from within the area of interest to some processes outside it,

4. Messages sent from outside the area of interest to some processes within it.

Since our goal is to take a snapshot for processes within the area of interest, type 3 and

4 messages can be ignored when checking for orphan messages. This is because whether such

messages are orphan messages depends on the states of processes outside the local region. So,

theoretically we need to check that there are no orphan messages only among type 1 and 2

messages. To classify a message as one of the four types, the algorithm needs to know the

source and destination processes, and whether they belong to the area of interest. Although

a scale-free solution of space complexity O(d) might seem possible by simply tracking whether

each neighbor of a process in the area of interest is also in the area of interest, this will not work

because channel states may not be captured correctly. This is because each pair of processes
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Pi and Pj communicate over a logical channel Cij . Even though Pi and Pj may be in the area

of interest, they may not be neighbors in (P,L); and therefore it is necessary to know whether

each other process is in the area of interest. Furthermore, a message sent along Cij may traverse

outside the area of interest over physical links and hence it is necessary to record the states of

logical links rather than physical links in the area of interest.

3.2 Modeling Area of Interest

The key aspect of specifying a locality-aware predicate is to specify the area of interest. So

the first stage of the solution is to construct a topology that can represent the area of interest.

We want to detect the predicate in an area centered at the process Pr the user interacts with

and the “radius” of the area is k, meaning that processes in the area are within distance k

in terms of the number of edges from Pr. This circular region is a natural model for the

area of interest, particularly in WSNs and modular robotics applications because it captures

geographical proximity. To achieve this, we need a topology that covers all the processes in

such an area; a simple spanning tree will not suffice because it may not include all the processes

within k hops from Pr; see Figure 4 for an illustration of this concept. For this purpose, we use

a local breadth-first search tree (BFST) as the topology to model the local region. The local

BFST is rooted at process Pr with height k.

A distributed algorithm to construct a BFST was given by Chandy and Misra (44). However

the BFST is constructed for the entire network and their algorithm has an O(N2d) message

count complexity. To construct a local BFST, we face the challenge of determining when the

algorithm terminates. Trivial solutions such as the asynchronous Bellman-Ford algorithm (1)
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(a) (b)

Pr Pr

Figure 4. Illustration of covering an area centered at P0 with radius 2. Bold edges are tree
edges. (a) A spanning tree might exclude some processes such as x and y because it does not

find shortest paths (b) A local BFST includes all the processes.

do not have any mechanism to determine when to terminate. Although the Chandy-Misra

algorithm (44) proposed a way to determine termination by counting the number of acknowl-

edgments, we cannot directly adapt that algorithm by using a hop restriction. This is because

a process temporarily k hops away from Pr may later discover a shorter path. Thus, we need to

design a solution that can correctly and efficiently determine when the algorithm terminates.

Compared with the Chandy-Misra algorithm (44), our algorithm also generates fewer acknowl-

edgment messages. Besides that, our algorithm is capable of determining the list of children

for each process in the local BFST when the algorithm terminates. This is important for the

later stages in our stable LAP detection solution. We use two types of control messages in the

algorithm Local BFST (Pr, k), which is listed as Algorithm 1.
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Algorithm 1: Local BFST (Pr, k)

i. Pr initiates the construction of local BFST:
1 dist = 0, pred undefined, child list empty, T = {i};
2 send (1, Pr, k) to all neighbors;
3 num = # of neighbors;

ii. Pi receives length(s, Pj , k) from Pj :

4 if s < dist then
5 if dist =∞ then
6 T = T

⋃
{i};

7 if num > 0 then
8 send ack(negative, dist, ∅) to pred;

9 pred = Pj ; dist = s; child list = 〈〉; num = 0;
10 if s+ 1 ≤ k then
11 send a message length(s+ 1, Pi, k) to every neighbor except Pj ;
12 num = # of neighbors −1;

13 if num == 0 then
14 send ack(positive, dist, T ) to pred;
15 T = ∅;

16 else
17 send ack(negative, s, ∅) to Pj ;
18 remove Pj from child list;

iii. Pi receives ack(∗, s, T ′) from Pj :

19 T = T
⋃
T ′;

20 if s 6= dist+ 1 then
21 discard the ack message;

22 else
23 num = num− 1;
24 if ack is positive then
25 add Pj to child list;

26 if num == 0 then
27 if pred 6= Pi then
28 send ack(positive, dist, T ) to pred;
29 T = ∅;
30 else
31 broadcast terminate(T ) on local BFST;
32 terminate the algorithm;

iv. Pi receives terminate(X) from Pj :

33 X identifies the process set in the area of interest;
34 propagate the terminate(X) on local BFST;
35 terminate the algorithm;
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1. A message length (s, Pj , k) received at Pi indicates that there is a path of length s from

Pr to Pi with Pj being the predecessor of Pi. The distance limitation k is also contained

in this message.

2. A message ack (positive/negative, s, pids) acknowledges a length message sent from Pj

to Pi after a certain condition is met. An ack can be either positive or negative, and also

carries the length parameter s of the corresponding length message. The parameter pids

is a set that contains the process identifiers of some of the nodes in the sub-tree traversed.

This parameter is non-empty only on positive acks.

Each process Pi also maintains several local variables.

1. dist: the length of the shortest path from Pr to Pi known so far. Pr initializes dist to 0,

other processes initialize dist to ∞.

2. pred : the predecessor on the shortest path from Pr to Pi known so far, and is initially

undefined. The message length (dist, pred, k) is received from pred.

3. num: the number of unacknowledged length messages, initialized to 0.

4. child list: a list of processes that become a child process of Pi in the tree topology,

initialized to the empty list.

5. T : a set of some of the process identifiers in the sub-tree, initialized to ∅.

Correctness

Observation 1. Once a process receives a length message, the process will always have some

parent pred and will always be a part of the local BFST.
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Observation 2. For a process Pi in the local BFST, its neighbors that are also in the local

BFST are exactly those processes Pj to which Pi sent a length message or from which Pi received

a length message.

Observation 3. The variable dist is a strictly decreasing function and can change at most k

times.

Theorem 1. Algorithm 1 identifies all the processes in the local BFST, defined as a BFST

rooted at Pr with height k.

Proof. Define min dist(Pi) as the length of the shortest path from Pr to Pi. We say that a

process gets engaged by a message length(x, ∗, ∗) if x < dist at the process. By Observation 1,

the process will be part of the local BFST. We prove the theorem by induction on min dist(Pi),

using the hypothesis, “If min dist(Pi) = x ≤ k, then Pi is included in the local BFST.”

min dist(Pi) = 1: Pr sends length(1, Pr, k) to all its neighbors. The last engagement of any

process Pi having min dist(Pi) = 1 is by the length(1, Pr, k) it receives. By Observation 2, Pi

is included in the local BFST.

min dist(Pi) = x (x ≤ k − 1): Assume the induction hypothesis is true.

min dist(Pi) = x + 1 (x ≤ k − 1): By the induction hypothesis, each process Pj such that

min dist(Pj) = x gets last engaged by a message length(x, ∗, k), and by line (11), sends

length(x + 1, Pj , k) to all its neighbors except pred, where min dist(pred) = x − 1. Thus,

any process Pi such that min dist(Pi) = x+ 1 ≤ k will receive at least one length(x+ 1, ∗, k)

message, and get last engaged by the first such message. By Observation 2, Pi is included in

the local BFST.
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Further, if min dist(Pi) = k, by line (11), Pi will not send any length(k+1, Pi, k) messages,

and no process Pj having min dist(Pj) > k will ever be engaged and will not be identified as

part of the local BFST.

Algorithm 1 is guaranteed to terminate correctly. When process Pi sends the length mes-

sages to its neighbors, the counter num is set to the number of length messages sent (line 12).

Whenever an ack is received, either positive or negative, the counter decreases by 1 (line 23).

Furthermore, each time Pi discovers a shorter path, it will reset its counter to 0 (line 9). We also

make sure that Pi will only decrease its counter when the distance marked in the ack message

received matches Pi’s current dist (lines 20-21). By performing these operations, Pi can know

whether all length messages corresponding to its current dist have been acknowledged. This

is guaranteed to happen because for each length message generated, exactly one ack message

will be sent back. When this happens, all the processes in the temporary sub-tree rooted at Pi

(this sub-tree might still change if any process discovers a shorter path via some process outside

this sub-tree) also have their num being 0. When Pr’s num becomes 0, the counter num at

all processes in the local BFST must have already turned 0. This ensures that all processes in

the local BFST have been discovered and every process in the local BFST has discovered the

shortest path, because otherwise there will be at least one process whose num is not 0.

Upon termination at the root Pr, all processes in the area centered at Pr with radius k form

a local BFST, and are also identified at Pr. The identifiers of all the processes get collected

in the T parameter at the root. Consider any Pi that has received some length message. Pi

sends i ∈ T to the first parent Pj to which it sends a positive ack. (Pj has a smaller dist
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value.) Pj will add i to its T variable (line (19)). Observe from lines (13-14) and (26-28) and

Observation 3 that Pj has not yet sent any positive ack, or if it has, it will still send one more

to a new parent. Pj ’s T variable containing i is now included in the first positive ack it sends

to some parent, say Pk. (Pk has an even smaller dist value.) Inductively, within k hops, Pi’s

identifier i reaches Pr on some positive ack, after which Pr terminates. Thus, every process

that has received a length message is included in T at Pr.

Each process in this local BFST also knows its parent (pred) and children (child list) upon

termination. Each process’ parent is correctly identified because pred is always set to the

predecessor on the shortest path known so far. For the list of children, each time a positive ack

is received at Pi from Pj , Pj has already set its pred to Pi. Thus, Pi adds Pj to its child list.

However, it is possible that Pj later discovers a shorter path and sets its pred to a different

process. Thus Pi needs to remove Pj from its child list. This is achieved in our algorithm.

Notice that when Pj discovers a shorter path, it will send length messages to all its neighbors,

except the predecessor on the shorter path; thus, a length message gets sent to Pi. When this

happens, only one of 3 situations could occur, as illustrated in Figure 5(b,c,d). In each case, Pi

can discover that it is no longer Pj ’s parent and can safely remove Pj from its child list: this

happens in line (18) for cases (b,c) and in line (9) for case (d).

This guarantees that for any process Pi, its child list contains all and only all the processes

that becomes Pi’s children.

When the root terminates, it needs to broadcast a terminate message in the local BFST, in

order for other processes in the local BFST to learn of the termination. This is because they
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(a) (b) (c) (d)
Figure 5. Illustration of dynamic changes to child list. (a) Initially Pj is Pi’s child, with Pi’s
dist being 5 and Pj ’s dist being 6. (b) Pj discovers a shorter path with dist being 5 and sends
a length message to Pi. (c) Pj discovers a shorter path with dist being 4 and sends a length
message to Pi. (d) Pj discovers a shorter path with dist being 3 and sends a length message
to Pi. In (b) and (c), Pi can discover Pj is no longer its child and can safely remove Pj from

its child list in line (18). In (d), Pi becomes Pj ’s child and resets its child list in line (9).

would not otherwise know if a shorter path than that per their current knowledge is still being

searched. The non-root processes terminate when they receive the terminate broadcast from

their parent, pred. All the local BFST processes also learn of which other processes are in the

local BFST when they receive the T parameter on the terminate message.

We denote the total number of processes in the entire system as N and the number of

processes in the area of interest as n. The complexity of Algorithm 1 is scale-free (to be shown

in Section 3.5), meaning that its complexity is affected only by n, k, and d, but not by N .

This is a feature shared by all the algorithms introduced in this chapter. Being scale-free is

important to locality-aware predicate detection because a locality-aware predicate models a

property within a local region. Having an algorithm with complexity relative to N will make

it non-scalable and thus not applicable in large-scale distributed systems. We will give the

detailed complexity analysis in Section 3.5.
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With Algorithm 1, we ensure that in the first stage we can dynamically construct an overlay

network covering all the processes in the area of interest with a relatively low cost. Note that

Algorithm 1 is not robust to churn because of the intricate interactions among the various length

and ack messages.

3.3 Consistent Sub-cut Construction

Now, we assume that Algorithm 1 has already run and a local BFST rooted at Pr is

constructed. In the second stage, a snapshot within the area of interest is taken. We base

our algorithm on top of the white/red coloring and vector counter techniques discussed in

Section 2.2.4.1. For capturing process states, the white/red coloring technique is sufficient to

identify pre-recording and post-recording messages in non-FIFO systems. Also, it does not

incur any extra overhead besides associating a one bit data with the messages. However, for

capturing channel states, the vector counter technique does not solve the problem in a scale-free

manner. This technique is designed for capturing channel states while taking a global snapshot.

It also ensures that all the in-transit messages while taking the snapshot get delivered to the

destination when the algorithm terminates. Directly applying this technique will incur an

O(N) storage cost and bandwidth cost, thus causing the solution to be non-scale-free. Instead

of maintaining a size N vector to count white messages sent to/received from every process in

the system, each process Pi in the area of interest only maintains a size n = |T | vector to count

the white messages traversing on logical channels to processes within the area of interest. Recall

that T is the set of processes in the local BFST, as computed by Algorithm 1. We assume the

n processes in T are Pl1 , Pl2 , . . . , Pln and Pr associates this mapping, which maps the ID i of
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process Pi = Pla in the local BFST to a virtual ID a in the range [1, n], with the terminate

message in Algorithm 1. Thus every process has a unique position in a size-n vector. This is

important for the local variables introduced later.

As we need a scale-free algorithm, no process can start coloring the messages white at

system initialization time because it does not know the area of interest, and hence would have

to track the messages sent to all N processes. As the local BFST is formed on-the-fly, we are

faced with the challenge of identifying (i) when to begin coloring the messages as white, (ii)

when to begin counting the white messages sent to each other process in the BFST, and (iii)

when to start counting the white messages received. These operations are essential to ensure

that the recorded channel states are complete. We claim that no coordination is needed among

the processes in the local BFST to begin these operations.

Observation 4. A process in the BFST can begin coloring messages sent to processes in the

BFST as white and counting the white messages sent to (and received from) others in the BFST,

at any time before recording its local snapshot. The count of incoming white messages should

begin no later than receiving the first white message.

This follows from the fact that each logical channel is independent and the message count

is per logical channel. The above observation is implemented in the one-time pre-processing for

the algorithm.

So, for our algorithm, each process Pli maintains the following local variables:

1. colorli records the color of Pli as either white or red; initialized to white.
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2. wmsg sentli [1 . . . n] is a vector of size n. wmsg sentli [j] counts the total number of white

messages sent to process Plj in the local BFST.

3. wmsg to recvli is an integer variable which accumulates the count about the total number

of white messages it should receive (from processes that are also in the local BFST) in

order to complete the recording of channel states for the consistent sub-cut.

4. wmsg recvdli is an integer variable which counts the number of white messages received

(from processes that are also in the local BFST).

There are three types of control messages in the algorithm:

1. An INIT message gets broadcast within the area of interest via edges of the local BFST

constructed in the first stage. It initiates the algorithm and serves as a red communication

message in case some process in the local region has not received any communication

messages from other processes in the same local region.

2. A Cvg Acc White message convergecasts the wmsg sent vector.

3. A Bcast Acc White message broadcasts the wmsg sent vectors accumulated at the root.

In addition to these control messages, each process will also receive white or red communication

messages which they also need to handle accordingly.

Our algorithm is listed in Algorithm 2. The one-time pre-processing after the local BFST

is constructed involves the following action.

• As part of the initialization, recall that in Algorithm 1, the root process broadcasts the

terminate(T ) on the local BFST to inform the processes of the IDs of the processes in the
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local BFST. As each process gets engaged by the broadcast, it now initializes the size-n

vector wmsg sent[1 . . . n], starts coloring messages white, and counting the number of

such messages sent to each other process in the local BFST, and received from processes

in the local BFST. (If a white message is received before the terminate(T ) broadcast is

received, the wmsg recvdlj variable is updated right away.)

For each snapshot to be collected after the pre-processing step, the algorithm is executed in

five phases:

1. The root of the local BFST initiates a one-to-all broadcast of an INIT control message

along the BFST edges to inform all processes in the tree about the commencement of

taking the snapshot.

2. The number of white messages sent along each logical channel whose both end-points

are incident on processes within the local BFST is determined in this phase along with

recording the local snapshot. First, upon receiving the INIT control message or a red

computation message, a white process turns red and records its local state. A process

might have already turned red before receiving the INIT message; in this case, it sim-

ply ignores the INIT message. Second, when a leaf node Pli turns red, it initiates a

convergecast to component-wise accumulate the wmsg sentli [1 . . . n] vector in the local

BFST.

3. After executing the second phase in which the root accumulates the wmsg sentli vec-

tors from all nodes in the local BFST into Cvg Acc White(W ), the root initiates a
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Algorithm 2: Construction of Consistent Sub-cut(Pr, k, φ)

Initialization: Pli initializes the algorithm at the end of Algorithm 1:
1. Pr: On broadcasting terminate(T ), initialize wmsg sent[1 . . . n],

start coloring messages white and start counting white
messages sent to processes in T . Also operate wmsg recvd.

2. Pli ∈ local BFST: On receiving terminate(X), initialize
wmsg sent[1 . . . n], start coloring messages white and start
counting white messages sent to processes in T . Also operate
wmsg recvd.

i. Pr starts collecting the snapshot:

1 send an INIT (φ) message to all processes connected by local
BFST edges and to Pr itself;

ii. White process Pli receives an INIT or a red communication message from Plj :

2 colorli = red;
3 if Pli 6= Plj then
4 send an INIT message to all children in local BFST;

5 record local state pertinent to φ;
6 if Pli is a leaf node in local BFST then
7 initiate convergecast Cvg Acc White(wmsg sent[1 . . . n]);

iii. Pli receives Cvg Acc White(W [1 . . . n]) from Plj :

8 participate in convergecast by accumulating the W vectors from all children in
local BFST and its own wmsg sent vector recorded in the local snapshot;

9 if Pli 6= Pr then
10 send Cvg Acc White(W ) to parent;

11 else
12 initiate broadcast Bcast Acc White(W );

iv. Pli receives an Bcast Acc White(W ) message from Plj :

13 wmsg to recvli = W [i];
14 if Pli is not a leaf node then
15 propagate Bcast Acc White(W ) to child nodes;

v. Red process Pli receives a white or uncolored message msg from Plj :

16 if Plj is in local BFST then
17 record msg as part of channel state SClj li ;
18 if msg is white then
19 wmsg recvdli++;
20 if wmsg to recvli = wmsg recvdli then
21 terminate the algorithm locally;
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Bcast Acc White(W ) to inform each process in the local BFST of the number of white

messages sent to it up to the snapshot recording.

4. As each process gets engaged by the Bcast Acc White, it saves in wmsg to recvli =

W [i] the number of white messages it should receive in order to complete channel state

recording.

5. The channel states are recorded in this phase. When a red process Pli receives a white or

an uncolored message from Plj (which is also in the local BFST), Pli adds such a message

to the channel state SClj li and increments wmsg recvdli if the message was white. Once

Pli determines that wmsg to recvli = wmsg recvdli , it terminates the algorithm locally.

It is now ready to participate in the LAP evaluation (Algorithm 3).

Correctness

To prove that Algorithm 2 is correct, we need to show that the process states do not contain

an orphan message and that the channel states are complete.

• Since a white process records its local state upon receiving the first red communication

message or the INIT message, there will be only white communication messages in its

recorded local state. Also, since a white process turns red after recording its local state,

all the send events of white messages would have been recorded. Thus, the process states

do not contain orphan messages.
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• Since the algorithm does not terminate locally at a red process until it has received the

correct number of white messages on each incoming channel from any other process also

in the local BFST (line 20), this guarantees that the channel states are complete.

In our algorithm, as the messages are colored white and counted only after the local BFST

is formed, no additional overhead is required before the detection of a stable LAP. How-

ever, the first snapshot recorded by our algorithm may record some incomplete channel

states. This is because some (uncolored) message generated before the pre-processing

step may get delivered to the destination after the snapshot and channel state recording

is completed at the destination. Such a potentially incomplete channel state recording

can be avoided by introducing a small delay between the initialization step and step (i).

This is because (even with non-FIFO channels,) messages will eventually be delivered.

In wireless transmission protocols such as IEEE 802.11 (45), although the value of the

ACK timeout is not defined in the specification, the general setting is SIFS + ACK +

Round Trip Propagation Delay (46), which is usually tens of microseconds. Repeated

invocations of Algorithm 2 are often needed to test for a stable LAP, and are sequential

and spaced apart. Hence, for the second and subsequent invocations, the possibility of an

incompletely recorded channel state becomes zero very quickly.

Observe that the definition of a consistent sub-cut (Section 2.1) is not concerned with

transitive inconsistencies caused by Type-2 messages of Figure 3. However, observe that we

can easily modify Algorithm 2 to prevent inconsistencies caused by Type-2 messages as follows:

instead of coloring with two colors, sub-cut snapshot sequence numbers are needed. The message
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coloring rule is modified to use sequence numbers. All the processes in the system follow this

rule but only the processes in the local BFST execute Algorithm 2.

After running Algorithm 2, the snapshot within the area of interest is recorded. This

provides the foundation for detecting locality-aware predicates.

3.4 Detecting Locality-Aware Predicates

The third stage of detecting locality-aware predicates (LAP) is to actually detect the pred-

icate based on the recorded distributed snapshot. Section 3.4.1 formally defines a LAP and

gives examples. Section 3.4.2 presents the algorithm for detecting stable LAP, and discusses

how it can be adapted for conjunctive LAP and for relational LAP.

3.4.1 Formal Definition

Definition 8. A LAP Q = (φ, k, Pr) is a predicate φ over the states of processes within the

local BFST rooted at Pr with height k.

• If φ is conjunctive, then LAP Q is conjunctive.

• if φ is relational, then LAP Q is relational.

Examples of Conjunctive LAP

• Q1 = (φ, 3, Pr), where φ = ∧flagPi , for Pi in a height-3 local BFST rooted at Pr.

Q1 is true if each process in Pr’s local region with radius 3 has set its flag.

• Q2 = (φ, 5, Pr), where φ = ∧terminatedPi , for Pi in a height-5 local BFST rooted at Pr.

Q2 is true if each process in Pr’s local region with radius 5 has terminated.
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• Q3 = (φ, 5, Pr), where φ = ∧tempPi > 50, for Pi in a height-5 local BFST rooted at Pr.

Q3 is true if each sensor in Pr’s local region with radius 5 has a temperature reading

greater than 50°F in a WSN monitored field.

Examples of Relational LAP

• Q4 = (φ, 5, Pr), where φ =
∑

Pi∈local BFST tokenPi ≥ 3.

Q4 is true if there are at least 3 tokens among processes within an area of radius 5 from

Pr.

• Q5 = (φ, 6, Pr) = average of tempPi ≥ 50, for Pi in the local BFST rooted at Pr.

Q5 is true if (in a WSN monitored field) the average temperature sensed within an area

of radius 6 from Pr is larger than 50°F.

3.4.2 Stable LAP Detection Algorithm

In order to detect a stable LAP Q = (φ, k, Pr) in the system, a set of process states satisfying

Q needs to be found. To achieve this:

1. The set of states needs to form a consistent sub-cut. By running Algorithm 2 from Section

3.3, every process in the local BFST holds a local state which is part of a consistent sub-

cut.

2. The predicate φ needs to be evaluated over the set of states. To achieve this, we execute

Algorithm 3 which collects the set of states recorded in the consistent sub-cut, and then

evaluates φ over this set.



61

Algorithm 3 is a convergecast within which the set of states recorded in the consistent sub-

cut over the area of interest is collected at Pr using the tree edges in the local BFST. The

convergecast uses the State message type. Each process Pi in the local BFST maintains the

following variables:

• vi: the variable(s) of the locally recorded snapshot state relevant to the evaluation of φ

is/are stored;

• Vi: accumulates the snapshot states reported by processes in Pi’s sub-tree within the local

BFST;

• #childreni: the number of children nodes in the local BFST; and

• child counti: the number of children from which a State message has been received.

Detection begins at leaf processes which have terminated Algorithm 2. These leaf processes in

the local BFST initiates the convergecast by reporting the locally recorded state variable vi to

their parents in a State message. When an intermediate node Pi receives a State message, it

accumulates the contained states from its sub-tree. When a State message has been received

from all the children and Algorithm 2 has also terminated locally, Pi adds its own local snapshot

state vi to Vi. If Pi is not the initiator Pr, then Pi sends a State(Vi) message to its parent in

the local BFST. However, if Pi was the initiator Pr, it evaluates the predicate φ over the set of

states V . The algorithm is listed in Algorithm 3.
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Algorithm 3: Stable LAP Detection Algorithm for Q = (φ, k, Pr) (code for Pi)

i. When Pi, which is a leaf node, terminates Algorithm 2:

1 send State({vi}) to parent; terminate;

ii. Pi receives State(X) from child Pj :

2 child counti = child counti + 1;
3 Vi = Vi

⋃
X;

4 if child counti = #childreni then
5 await (local termination of Algorithm 2);
6 Vi = Vi

⋃
{vi};

7 if Pi 6= Pr then
8 send State(Vi) to parent in local BFST; terminate;
9 else

10 evaluate φ(Vi); terminate;

Adaptation to Conjunctive LAP

The local variable vi can be recorded as a boolean for a conjunctive predicate. The local

variable Vi that accumulates the states of processes within the sub-tree rooted at Pi can be

represented as a boolean to correspond to the (partial) evaluation of φ (over the sub-tree).

This is because the evaluation of a conjunctive predicate is based on an aggregation operation,

namely the AND operator.

• Aggregation operations are defined as those operations that are associative, thereby allow-

ing the input to be processed in any order, and do not require all the input to be present

before evaluation begins.

The size of a State message is thus O(1). The broadcast phase can be terminated at an

intermediate node Pi if the local conjunct evaluated over Vi is false. Pi would behave as a leaf

node and send a State message immediately to its parent. The number of State messages is

thus between 1 and n− 1.
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Adaptation to Relational LAP

The local variable Vi may be as large as the number of nodes in the sub-tree rooted at

Pi, and hence varies from 1 to n. However, many relational predicates have their evaluations

based on aggregation operations, e.g., addition, minimum, maximum, and average functions,

and hence Vi is of size 1. Only for relational predicates whose evaluation is not based on

aggregation operations, e.g., the median or the mode of a set of values, the size of Vi could be as

large as n. The above observations on the size of Vi also hold for the size of the State message.

The number of State messages is n− 1.

Observe that for conjunctive predicates, it was possible to curtail the broadcast and con-

vergecast overhead each time the local conjunct evaluated to false at a process. The same

approach does not work for a relational predicate. However, we can cut down the overhead of

predicate evaluation. We propose a classification of predicates as follows:

• Incremental predicate: This is a predicate whose satisfaction can be determined for at

least one input without evaluating the predicate fully over all variables.

All conjunctive LAPs, such as Q1, Q2, Q3 are incremental predicates. Some relational

predicates that are non-conjunctive, such as Q4, are also incremental predicates.

• Non-incremental predicate: This is a predicate whose satisfaction for every input can be

determined only after evaluating it fully over all variables.

Some relational predicates, such as Q5, are non-incremental predicates.
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Depending on the locally recorded snapshot values, the evaluation of relational predicates

that are incremental may be determined without considering all the variables. If Algorithm 3

is modified to perform an iterative deepening breadth-first collection of the recorded vi, i.e., a

layer-by-layer reporting of the vi’s to Pr, the number of messages used is Ω(1); however, it will

use O(nk) number of messages.

3.5 Complexity Analysis

We evaluate the complexities of our algorithms using four metrics:

• message count: count of the total number of messages generated by the algorithm.

• message size: the total size of all the control messages generated by the algorithm. It can

be formalized as
∑

i(# type i messages * size of type i messages).

• storage cost: the space complexity at each process. Since Pr is responsible for storing the

final results in Algorithm 3, we do not take Pr into consideration for this measure.

• bandwidth cost: bandwidth usage of a channel measures the total size of messages sent

along that channel. The maximum bandwidth usage among all channels in the system is

the bandwidth cost of the algorithm.

As mentioned before, all the algorithms share the scale-free feature. The complexities are

evaluated within a degree-d bounded network. The results are shown in Table III.

3.5.1 Algorithm 1 (Local BFST)

Message count complexity: The local variable dist at each process in the area of interest can

hold a value only within the range [0, k]. As per Observation 3, the local variable dist strictly
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TABLE III

COMPLEXITY EVALUATION OF STABLE LAP ALGORITHMS IN A DEGREE-D
BOUNDED NETWORK.

Metric Local BFST Consistent Stable LAP Stable LAP
(Algorithm 1) Sub-Cut aggregation non-aggregation

(Algorithm 2) based φ based φ
(Algorithm 3) (Algorithm 3)

Message count O(nkd) O(n) O(n) O(n)
Message size O(n2) O(n2) O(n) O(nk)
Storage cost O(n) O(n) O(1) O(n)
Bandwidth cost O(n) O(n) O(1) O(n)

decreases. Each time process Pi’s dist decreases, it will send at most di − 1 length messages

to its neighbors. Thus, each process can only send length messages to its neighbors up to k

times. Each length message has one ack message. This gives a message count complexity of

O(k
∑n

i=1 di). In a degree-d bounded system, this is O(nkd). Further, there are n−1 terminate

messages.

Message size complexity: The size of length control messages is O(1). The sum of sizes of

ack messages is bounded by O(nk2d) because the identifier of a node at distance j contributes

to the T parameter j times. The size of a terminate is n. So the message size complexity is

O(nk2d+ n2) = O(n2).

Storage cost complexity: During the execution of Algorithm 1, each process has to maintain

a child list which is of O(d) size. In addition, at the end of the algorithm, the root of the local

BFST broadcasts the identifiers of all the processes in the local BFST using the terminate(T)



66

message. This incurs an O(n) storage cost at each process in the local BFST. So, the total

storage cost is O(n).

Bandwidth cost complexity: The value of each process’ local variable dist can be only be-

tween 0 to k. Each time a process’ local dist decreases, it will send a message to all its neighbors.

Since dist strictly decreases, each process can only send up to k messages to each neighbor via

the same channel. The size of length message is O(1). For the ack message, although its size

is O(n), the total size of ack messages sent by a single process is also O(n) since no process

identifier will be sent more than once. So the bandwidth cost is O(n+ k) = O(n).

3.5.2 Algorithm 2 (Consistent Sub-cut)

Message count complexity: The INIT message is broadcast within the local BFST only

once, thus causing a O(n) complexity. The modified vector counter technique uses another

convergecast (Cvg Acc White) and broadcast (Bcast Acc White), thus causing another O(n)

complexity. So the total message count complexity is O(n).

Message size complexity: The INIT control message has size O(1). The two types of control

messages – Cvg Acc White and Bcast Acc White – both have sizes of O(n). So, the message

size complexity is O(n2).

Storage cost complexity: Each process maintains a size-n vector wmsg sentli . So the storage

cost is O(n).

Bandwidth cost complexity: The INIT message (of size O(1)), and the Cvg Acc White and

Bcast Acc White messages (of size O(n) each) traverse the edges of the BFST once. So the

bandwidth cost is O(n).
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3.5.3 Algorithm 3 (Stable LAP)

Recall that this algorithm works for aggregation based and non-aggregation based LAP.

Aggregation based predicates include all conjunctive predicates and some non-conjunctive pred-

icates. Non-aggregation based predicates include the remaining relational predicates.

Message count complexity: To detect the stable LAP, each process in the local BFST sends

a State message to its parent in the BFST. So the message count complexity is O(n). This

result holds for aggregation based and non-aggregation based LAP.

Message size complexity: For aggregation based LAP, the State message, which is sent n−1

times, is of size O(1). Thus, the message size complexity for aggregation based LAP is O(n).

For non-aggregation based LAP, for i ∈ [0, k − 1], the dk−i nodes in the local BFST that

are k − i hops away from Pr cumulatively send dk−i State messages of size di to their parents.

Thus, the cumulative size of all the State messages is
∑k−1

i=0 d
k−idi = kdk = kn. Thus, the

message size complexity for non-aggregation based LAP is O(kn).

Storage cost complexity: For aggregation based LAP, the storage cost complexity is O(1)

because that suffices to store the local variables vi, Vi, num children, and child count.

For non-aggregation based LAP, the space at Pi for Vi equals the number of nodes in the

sub-tree rooted at Pi. At a distance i from Pr, this is dk−i. In the worst case, this is O(n).

Bandwidth cost complexity: One State message is sent on each local BFST channel for both

aggregation based LAP and non-aggregation based LAP. The size of the State message is O(1)

for aggregation based LAP and O(n) for aggregation based LAP. Hence, the bandwidth cost

complexity for the two classes is O(1) and O(n), respectively.
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TABLE IV

COMPLEXITY COMPARISON BETWEEN LAP ALGORITHMS AND SOME EXISTING
ALGORITHMS TO DETECT STABLE PREDICATES.

Metric Message Count Message Size Storage Bandwidth

Chandy-Lamport (6) O(N2) O(N2) O(N) O(1)
(only snapshot recording considered)
Mattern’s Non-FIFO Snapshot (11) O(N) O(N2) O(N) O(N)
(only snapshot recording considered)
LDP-Basic (4) O(dk−1) O(kdk−1) O(k) O(dk−2)
(recording and predicate evaluation)
LDP-Snapshot (4) O(d2k−2) O(kd2k−2) O(k) O(dk−1)
(recording and predicate evaluation)
Stable LAP Initialization cost O(nkd) O(n2) O(n) O(n)
(Algorithm 1)
Stable LAP (aggregation based) O(n) O(n2) O(n) O(n)
(Algorithms 2+3)
Stable LAP (non-aggregation based) O(n) O(n2) O(n) O(n)
(Algorithms 2+3)

3.5.4 Comparison with Other Algorithms

From the previous analysis, we can see that all the algorithms proposed in this chapter are

indeed scale-free. Taking the dominant complexity of those algorithms, we compare them with

the complexities of some existing algorithms to detect stable predicates. Table IV shows the

result.

Notice that both Chandy-Lamport’s and Mattern’s snapshot algorithms have complexities

that are affected by N . This is true even when using these algorithms to detect LAP because

these algorithms do not have the features that a scale-free solution requires. Further, only the

cost of snapshot recording is listed; Mattern’s algorithm has an added cost of spanning tree or
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ring creation, and both these algorithms have another added cost of global state collection for

predicate evaluation, that they do not address.

In a degree-d bounded network, where n = dk−1, both LDP-Basic and LDP-Snapshot have

a similar complexity compared to LAP algorithms. However, LDP-Basic and LDP-Snapshot

cannot detect a predicate within a local region that is more complex than a linear topology and

they cannot work in a system with non-FIFO channels or using multi-hop channels, as outlined

earlier in Table I.

The costs of our LAP algorithms can be split into two parts. (1) A one-time initialization

cost (of Algorithm 1) for creating a BFST for predicate detection for Q = (φ, k, Pr). (2) The

recurring cost incurred by Algorithms 2 and 3 each time the predicate Q needs to be evaluated.

3.6 Special Cases

Repeated Detection

The algorithms for detecting locality-aware predicates we introduced can also repeatedly

detect LAP predicates within the same region. To achieve repeated detection within the same

region, Algorithm 1 needs to run only once for constructing the local BFST. Each time a new

detection begins, a new consistent sub-cut needs to be constructed. Hence Algorithm 2 will run

repeatedly; we can alternate the roles of the two colors or cyclically use two from a set of three

colors.

Weaker Stable Predicates

The locality-aware predicates we discussed so far target stable predicates. By detecting a

weaker form of stable predicates, we can further cut down the algorithm complexity.
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A weaker form of stable predicates, named as strong stable predicate, was defined in (41).

A strong stable predicate is a stable predicate that, if true on some consistent

cut, must remain true on all subsequent consistent cuts. Termination and deadlock

are strong stable, though distributed garbage collection is not (41).

Detecting a strong stable predicate requires recording only consistent process states; observ-

ing the corresponding consistent channel states is not necessary. So, to detect a locality-aware

strong stable predicate, we can simplify the second stage, namely that of constructing a consis-

tent sub-cut. Applying only the white/red coloring technique is sufficient for detecting locality-

aware strong stable predicates. This reduces the message size complexity of Algorithm 2 to

O(n), and its storage and bandwidth complexities to O(1) (refer to Table III). Consequently,

the corresponding entries for strong stable LAP (aggregation-based) and strong stable LAP

(non-aggregation based) in Table IV will also reduce.

Modeling Area of Interest

If reduction of the initialization algorithm’s complexity is needed, we can sacrifice the ac-

curacy of modeling the area of interest. We can use a spanning tree instead of the local BFST,

potentially leaving some processes within the area of interest unconsidered, to reduce the com-

plexity of Algorithm 1. Compared with the complexities of Algorithm 1 discussed in Table III,

we can achieve O(nd) message count complexity and message size complexity, and O(1) com-

plexity in storage cost and bandwidth cost if we construct only a spanning tree. The changes

to Algorithm 1 are as follows. In line (4), replace the test by “dist =∞”; delete lines (7-8); in

line (31), replace “BFST” by “ST”.



CHAPTER 4

DETECTING UNSTABLE LOCALITY-AWARE PREDICATES

This chapter is based on our previous publication (30). In this chapter, we further explore

the problem of LAP detection. Besides stable predicates, another important type of predicate

is the unstable predicate whose satisfaction keeps fluctuating with time. This type of predicate

is also very common during the execution of a distributed program. Unstable predicate models

the dynamic global properties during the execution of a distributed program. Detecting such

predicates is important for various purposes such as monitoring, synchronization, coordination,

and debugging. Thus, this makes detecting unstable conjunctive LAPs a relevant problem in

large-scale locality-driven networks.

The rest of this chapter is organized as follows. Section 4.1 presents the basic detection

algorithm which is scale-free. Section 4.2 presents the encoded vector clock (EVC) technique

and shows how we use it to optimize the detection algorithm.

4.1 Detecting Unstable Conjunctive LAP

4.1.1 Establishing the Regional Vector Clock

We already showed in the previous chapter how to model the local region and construct a

local BFST to represent it. To detect unstable conjunctive LAPs, we cannot directly apply the

detection algorithms (17; 1) within the local region. These interval-based algorithms require the

establishment of vector clocks, which are used to identify the start and end events of an interval.

71
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In a large-scale system, it is impractical to assume a vector clock is initially maintained for the

entire system. Churn in the system makes such a system-wide vector clock further impractical.

Even if we are to establish such vector clocks for the system, it will incur an O(N) (N is the

number of processes in the entire system) storage cost at each process. This causes the solution

to be non-scale-free. Being scale-free is important for LAP detection algorithms, because we

do not want to incur time and space complexities relevant to the size of the entire network to

observe only a part of the system. Thus, we need to dynamically establish a vector clock only

for the processes in the detection region.

To establish the regional vector clock, each process in the detection region needs to be

assigned a unique virtual ID that is within the range [1, n], where n is the number of processes

in the detection region. By constructing the local BFST, we assume that Pr has already

collected the real IDs of all processes in the local BFST and each process knows its parent

and children in the BFST. Pr then assigns the virtual ID 1 to itself and a unique virtual ID

in the range [2, n] for every other process in the local BFST. In this way, each process gets

mapped to a unique position in the size-n vector. Process Pr then broadcasts this mapping

between the real IDs to the virtual IDs within the local BFST. Each process that receives this

map initializes a size-n vector V . To capture all causal relations consistently during the initial

phase of establishing the regional vector clock, another convergecast and broadcast (1) need to

be performed within the local BFST. This ensures that no message piggybacked with a vector

clock timestamp is received until the recipient process in the detection region has established
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the size-n vector locally. This establishment of the regional vector clock is shown in Algorithm

4.

Algorithm 4: Establishing Regional Vector Clock (Code for Pi in the region)

integer: V ID
array of integer: V
HashMap of 〈integer, integer〉: map // Maps real IDs of processes in BFST to virtual IDs in
the range [1, n]

Pr initiates the algorithm:

1 V ID = 1;
2 generate map, with the constraint that map(r) = 1;
3 broadcast ASSIGN(map, n) message in the local BFST;

Pi(i 6= r) receives ASSIGN(map, n) message from parent:

4 V ID = map(i);
5 initialize size n vector V ;
6 if Pi is not leaf node then
7 send ASSIGN(map, n) message to all children;

8 else
9 convergecast FINISH message to Pr;

Pr receives FINISH message:

10 broadcast READY message within the local BFST;

Pi receives READY message:

11 start piggybacking messages with vector clock timestamps;

Notice that, by broadcasting the mapping between the real IDs to the virtual IDs within

the local BFST, every process in the detection region knows the identifications of all processes

within the region. In this way, each process in the region can also determine whether it is

sending/receiving a message to/from a process outside the region.

The regional vector clocks are updated by the following rules (33; 34).

1. Before an internal event happens at process with virtual ID i, V [i] = V [i] + 1.
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2. Before process with virtual ID i sends a message, it first executes V [i] = V [i] + 1, then it

sends the message piggybacked with V .

3. When process with virtual ID i receives a message piggybacked with timestamp U , it

executes ∀k ∈ [1 . . . n], V [k] = max(V [k], U [k]);

V [i] = V [i] + 1; before delivering the message.

For detecting unstable LAP, the regional vector clock only tracks the causal relations among

the processes in the local BFST. However, whenever there is a message going out of or coming

into the region, a potential transitive causal relation is introduced if some process inside the

region sends a message to a process outside the region which later sends another message back

into the region. In order for the detection algorithm to work correctly, those transitive causal

relations also need to be captured. This requires all the processes outside the region to store

the vector clock timestamps they receive piggybacked on messages and to piggyback those

timestamps with every outgoing message. However, processes outside the detection region do

not advance the vector clock timestamps stored locally, since they do not contribute to the

causal relations between processes inside the detection region.

4.1.2 Detecting Unstable Conjunctive LAP

With the regional vector clock established, we can run the detection algorithm given as

Algorithm 5, based on (1), within the detection region. Process Pr locally maintains n queues,

Q1, Q2, . . . , Qn numbered using virtual IDs. Whenever a new interval x finishes at some process

in the detection region, this process sends the vector clock timestamps of min(x) and max(x) and

its virtual ID to Pr. Pr then enqueues the interval x onto queue Qi. By tracking the intervals
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Algorithm 5: Detecting Unstable Conjunctive LAP, adapted from (1)

queues for all n processes in the detection region: Q1, Q2, . . . , Qn ←⊥
sets of integer: updatedQueues, newUpdatedQueues ← {}
integer: V ID

When interval x finishes at Pi:
1 send (min(x),max(x), V ID) to Pr;

On receiving an interval (min(I),max(I), V ID) at Pr:

2 Enqueue the interval onto queue QV ID;
3 if number of intervals on QV ID is 1 then
4 updatedQueues = {VID};
5 while updatedQueues is not empty do
6 newUpdatedQueues = {};
7 for each a ∈ updatedQueues do
8 if Qa is not empty then
9 x = head of Qa;

10 for b = 1 . . . n, b 6= a do
11 if Qb is not empty then
12 y = head of Qb;
13 if min(x) 6≺ max(y) then
14 add b to newUpdatedQueues;

15 if min(y) 6≺ max(x) then
16 add a to newUpdatedQueues;

17 if max(x) ≺ min(y) then
18 add a to newUpdatedQueues;

19 if max(y) ≺ min(x) then
20 add b to newUpdatedQueues;

21 Delete heads of all Qh where h ∈ newUpdatedQueues;
22 updatedQueues = newUpdatedQueues;

23 if all queues are non-empty then
24 report predicate detected. Heads of queues form the solution;
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from all n processes, Pr repeatedly checks the heads of all n queues using the conditions in

(Equation 2.2) or (Equation 2.1) in Section 2 to check whether Possibly(Φ) or Definitely(Φ)

is detected within the region. This check is done with virtual IDs. If any interval is found to

violate those conditions, Pr deletes this interval from the corresponding queue.

4.1.3 Ticking at Relevant Communication Events

In Algorithm 5, observe that the 4 causality tests in the innermost loop essentially check if

ei ≺ fj , where ei and fj are either the start or end events of some intervals, which are relevant

events to the detection of LAP. This test using vector timestamps is O(1) time, namely if

V (ei)[i] ≤ V (fj)[i]. This test is equally valid even if the regional vector clock does not tick at

message send and message receive events, as long as such events are not relevant to the local

predicate, i.e., do not alter the truth value of the local predicate. Most predicates may not

depend on the message send or receive events which only serve to transmit and establish causal

relationships among the relevant events. Thus, it is not necessary to advance the local clock

component at send and receive events, unless the events modify some variable and change the

truth value of the predicate. Thus, we have the rule:

Relevancy test: Tick the local component of the regional vector clock only at a relevant event,

which is defined to be an event that alters the truth value of the predicate.

Figure 6 illustrates a computation in which the truth values of the local predicates are

not changed by the send or receive events. The syntax of a send is send(dest, var), which is

to send the value of local variable var to dest. The syntax of a receive is rcv(source, var),

which is to store the value received from source into local variable var. The predicate is
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b = 8 send(P1, b) rcv(P1, a) b = 9
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Figure 6. Illustration of the “relevant event” test. Each process has local variables a, b, and c.
The conjunctive predicate ψ = a1 > 3

∧
b2 = 8 is to be detected. The operations performed at

each event are shown. By not ticking the vector clock for message send and receive events
that are not relevant, the causal relations between the two intervals x and y at processes P1

and P2 are still correctly captured.

ψ = a1 > 3
∧
b2 = 8. The send event at P1 is not relevant to the local predicate. The send

event at P2 does not alter the truth value of the local predicate. The receive event at P1 modifies

the variable a1 but does not alter the truth value of the local predicate. The receive event at

P2 does not modify any variable on which the local predicate depends.

By applying this relevancy test, multiple events may have the same vector timestamp, such

as the two receive events in Figure 6. However, the lattice of relevant events, which now

excludes send events and receive events that are not relevant to the predicate (i.e., do not alter

the truth value of the predicate), still remains isomorphic to the lattice of timestamps assigned

to them. This property is sufficient for the correctness of our algorithm. It is particularly useful

in conjunction with the encoded vector clocks optimization that we develop in Section 4.2.
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4.2 Encoded Vector Clock (EVC) Optimization

Although the solution proposed in Section 4.1 detects the unstable conjunctive LAP in a

scale-free manner without incurring a complexity relevant to N , due to message diffusion and

the need to capture transitive causal relations, it will eventually incur an O(n) storage cost

in every process in the entire system. This is a cost that we cannot afford, especially in a

large-scale system.

To solve this problem, we develop the encoded vector clock (EVC) technique. Charron-Bost

has shown that to capture the partial order on E, the size of the vector clock can be as large

as the dimension of the partial order (47), which is the size of the system N . Instead of using

a vector of size O(N), it was suggested that the vector can be encoded into a single number

using N distinct prime numbers (47). In the case of detecting unstable LAP, the dimension of

the partial order that is relevant can be captured by the size of the detection region, as shown

in Section 4.1. Thus, a regional vector clock containing n elements

V = 〈v1, v2, · · · , vn〉

can be encoded by n distinct prime numbers p1, p2, · · · , pn as:

Enc(V ) = pv11 ∗ p
v2
2 ∗ · · · ∗ p

vn
n



79

However, only being able to encode a vector clock into a single number is insufficient to track

causal relations. To build on that work, we develop EVC technique to show how to implement

the basic operations of a vector clock.

4.2.1 Encoded Vector Clock Operations

Local Tick: Whenever the logical time advances locally, the local component of the vector

clock needs to tick. This happens as increasing the local component in the vector by 1:

V [i] = V [i] + 1

While using EVC, this operation is equivalent to multiplying the EVC timestamp by the

local prime number pi,

Enc(V ) = Enc(V ) ∗ pi

Merge: Whenever one process sends a message to another process, with vector clock times-

tamps piggybacked, the recipient of the message needs to merge the piggybacked vector clock

with its own local vector clock. For two vector clock timestamps

V1 = 〈v1, v2, · · · , vn〉 and V2 = 〈v′1, v′2, · · · , v′n〉

merging them yields:

U = 〈u1, u2, · · · , un〉, where ui = max(vi, v
′
i)



80

The encodings of V1, V2, and U are:

Enc(V1) = pv11 ∗ p
v2
2 ∗ · · · ∗ p

vn
n

Enc(V2) = p
v′1
1 ∗ p

v′2
2 ∗ · · · ∗ p

v′n
n

Enc(U) =

n∏
i=1

p
max(v1,v′1)
i

It would be better to merge Enc(V1) and Enc(V2) into Enc(U) without knowing the n prime

numbers. This can be achieved by observing that Enc(U) is the LCM of Enc(V1) and Enc(V2).

So, by computing the LCM of two EVC timestamps, these two timestamps can be merged

without knowing the n prime numbers.

Comparison: Furthermore, the vector clock needs a mechanism to compare two timestamps.

To compare two vector clock timestamps, a component-wise comparison between the corre-

sponding elements of two vectors is needed. The comparison has two results:

i) V1 ≺ V2 if ∀j ∈ [1, n], V1[j] ≤ V2[j] and ∃j, V1[j] < V2[j]

ii) V1‖V2 if V1 6≺ V2 and V2 6≺ V1

To compare two EVC timestamps, it is only necessary to test if Enc(Vj) mod Enc(Vi) = 0.

Thus,

i) Enc(V1) ≺ Enc(V2) if Enc(V1) < Enc(V2) and Enc(V2) mod Enc(V1) = 0

ii) Enc(V1)‖Enc(V2) if Enc(V1) 6≺ Enc(V2) and Enc(V2) 6≺ Enc(V1)
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TABLE V

CORRESPONDENCE BETWEEN VECTOR CLOCKS AND EVC

Operation Vector Clock Encoded Vector Clock

Representing clock V = 〈v1, v2, · · · , vn〉 Enc(V ) = pv11 ∗ p
v2
2 ∗ · · · ∗ pvnn

Local Tick V [i] = V [i] + 1 Enc(V ) = Enc(V ) ∗ pi
(at process Pi)
Merge Merge V1 and V2 yields V Merge Enc(V1) and Enc(V2) yields

where V [j] = max(V1[j], V2[j]) Enc(V ) = LCM(Enc(V1), Enc(V2))
Compare V1 ≺ V2: ∀j ∈ [1, n], V1[j] ≤ V2[j], Enc(V1) ≺ Enc(V2): Enc(V1) < Enc(V2),

and ∃j, V1[j] < V2[j] and Enc(V2) mod Enc(V1) = 0

The correspondence between the three basic operations of the vector clock and EVC is

shown in Table V. These operations using EVC are illustrated in Figure 7. If send events and

receive events are not relevant to the local predicates, the local clocks do not need to tick at

such events, as explained in Section 4.1.3. In that case, the EVC timestamp 27000 in Figure 7

now is only 60.

With EVC, we can reduce the computing and storage cost for processes within the detection

region. Instead of each maintaining a vector of size O(n), processes within the detection region

now only need to maintain a single integer.

More importantly, for processes outside the detection region, we can also cut down the

storage cost and make the solution more practical for large-scale systems. For a process Pj

outside the region, when it first receives a message piggybacked with an EVC timestamp, it

simply stores this single number. Although Pj will not tick the vector clock locally since there

is no corresponding component in the vector clock for Pj , it may still receive multiple messages

from within the detection region and needs to be able to merge the vector clock timestamps it
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Figure 7. Illustration of using EVC for capturing causal relations. The local prime number for
each process is shown beside its ID. The vectors shown in the diagram are only explaining the
EVC timestamps. In real scenarios, only the number shown beside each vector is stored and

transmitted.

receives. When this happens, Pj simply executes the merge operation by calculating the LCM

of two numbers.

Figure 8 illustrates how the encoded vector clock works when the detection region is estab-

lished and the vector clock is maintained only for processes with the region. If send events and

receive events are not relevant to the local predicates, the local clocks do not need to tick at

such events, as explained in Section 4.1.3. In that case, the EVC timestamp 72 in Figure 8 now

is only 6.

After using EVC, when Pr compares two vector clock timestamps at line 13, 15, 17, and

19 in Algorithm 5, Pr will compare two EVC timestamps using the operation described in

Table V. Whenever a new interval x finishes at some process in the detection region, the EVC

timestamps of events min(x) and max(x) are sent to Pr, where LAP detection is performed.
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Figure 8. Illustration of using EVC for capturing causal relations within a local region of the
network. Here, EVC is built for only P2 and P3. The local prime numbers for those two

process are shown beside its ID. Again, the vectors in the diagram are only to help
understand the EVC timestamps.

4.2.2 Complexity

Comparing with vector clocks, EVC has advantages in time, space, and message size com-

plexity. Each process only needs to store a single number. If we assume that the local space for

storing this number is bounded, then the storage cost is only O(1). When reporting intervals

using EVC timestamps, the message size complexity also becomes O(1). For time complexity,

all operations except computing LCM take O(1) time. For computing LCM(a, b), we have:

LCM(a, b) =
a ∗ b

GCD(a, b)

By applying the Euclidean algorithm, we can compute GCD(a, b) without factoring the two

numbers. It is also well known that the time complexity of Euclidean algorithm is O(h2), where
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h is number of digits of the smaller number in base 10. If we assume the numbers are bounded,

O(h2) becomes O(1) and we can compute LCM in O(1) time.

The only drawback for assuming a bounded space for storing the numbers is that eventually

it will overflow. When overflow happens, we can adapt the vector clock resetting technique (48)

which enables us to reuse the smaller numbers. The clock resetting algorithm will incur an O(n)

message count complexity and an O(d) storage cost at each process in the region, where d is

the maximum degree of processes in the region. The details of adapting the resetting technique

are discussed in the next subsection. In Table VI, we compare the time complexity and the

storage cost of the three basic operations, which are local tick, merge, and compare, for vector

clock and EVC.

TABLE VI

COMPARISON OF THE TIME AND SPACE COMPLEXITY OF THE THREE BASIC
OPERATIONS

Vector Encoded Vector Clock Encoded Vector Clock
Clock (unbounded storage) (bounded storage)

Local Tick O(1) O(1) O(1)

Merge O(n) O(h2) O(1)

Compare O(n) O(1) O(1)

Storage O(n) unbounded O(1) +O(d) (with resetting)

For a system with N processes and assuming the local predicate becomes true at most m

times at each process, Algorithm 5 has a time and space complexity of O(N2m) at the sink. It

also has an O(mN) message count complexity and an O(mN2) message size complexity. When
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detecting unstable conjunctive LAP, the factor N is reduced to n, thus resulting in a time

and space complexity of O(n2m) at the sink plus an O(mn) message count complexity and an

O(mn2) message size complexity. After using EVC, the time and space complexity at the sink

is further reduced to O(nm), since the intervals are now identified by two integers rather than

two vectors. The message size complexity also gets reduced to O(mn).

For non-sink nodes in Algorithm 5, the only complexity comes from maintaining the vector

clock. In a system with N processes, that will be an O(N) space complexity. When detecting

unstable conjunctive LAP, the space complexity at those non-sink nodes within the detection

region becomes O(n), and also for processes outside the detection region. By using EVC, the

space complexity for all processes gets further reduced to O(1). Even with the clock resetting,

the space complexity for non-sink processes within the detection region is O(d), still less than

O(n). This makes Algorithm 5 a better scale-free solution for detecting unstable conjunctive

LAP.

4.2.3 Resetting EVC

For n processes in the detection region and fi relevant events at each process Pi, the max-

imum EVC timestamp across all processes is O(
∏n
i=1 p

fi
i ). From this observation, we can see

that EVC timestamps grow very fast and overflow is unavoidable. Fortunately, we can adapt

the clock resetting technique (48) to solve this problem.

The clock resetting technique divides the execution of a distributed system into multiple

phases. Each time the clock overflows at one process inside the detection region, the resetting

algorithm terminates the current phase by sending control messages within the region to make
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sure there is no computation message sending from the previous phase to the next phase. It

also introduces artificial causal relations to ensure every event happening in the next phase

happens after the events in the previous phase.

For EVC, this clock resetting technique can be used to reset the EVCs of the processes in

the detection region. For processes outside the detection region, we can utilize the phase ID to

reset their locally stored EVC timestamp. Each process Pi in the detection region maintains

the ID of the current phase it is in. Each time the resetting algorithm is executed, the phase

ID is increased by 1. Whenever a process in the detection region sends a message to processes

outside the region, the phase ID is also piggybacked. Processes outside the detection region also

need to store the phase ID, in addition to the EVC timestamp. Whenever a process outside

the detection region receives a message with a phase ID larger than the locally stored value, it

deduces that a reset has taken place in the detection region and it can safely replace the locally

stored EVC timestamp with the one piggybacked on the message.

Furthermore, it is possible that the overflow could happen at a process outside the detection

region. If this happens, the outside process starts piggybacking its outgoing messages with a re-

setting flag. Processes inside the detection region do not reset their EVCs until a message chain

is established between the overflowing process and a process inside the detection region. Thus,

the resetting technique can be adapted and used as described above to ensure the correctness

of the operation even when clock overflow is unavoidable.



CHAPTER 5

HIERARCHICAL REPEATED DETECTION

This chapter is based on our previous publication (31). In this chapter, we present a

decentralized algorithm that detects Definitely(Φ) in a large-scale system. This algorithm

assumes a pre-constructed spanning tree (1; 49) in the system and detects the predicate in

a hierarchical manner. By establishing a hierarchy in the system, our algorithm divides the

task of detecting a predicate among different levels in the hierarchy. Each node detects the

predicate within the subtree rooted at itself. If one node fails, the detection of the predicate in

the remaining processes could be easily resumed because the hierarchical detection manner gives

our algorithm the ability to detect a partial predicate of the global predicate. The hierarchical

structure of our algorithm also provides a finer-grained monitoring in those large-scale systems

where grouping is established and the monitoring is needed at the group level. In addition, our

algorithm detects the predicates in a repeated manner (5). In long-running applications where

continuous monitoring is required, repeated detection is essential because manual intervention

after one detection of predicate satisfaction to reset the detection algorithm is not practical or

even possible.

The rest of the chapter is organized as follows. Section 5.1 presents the hierarchical detection

algorithm and its theoretical foundation. Section 5.2 shows how our algorithm deals with node

failures and node mobility. Section 5.3 analyses the complexity of the hierarchical detection

algorithm.

87



88

5.1 Hierarchical Detection

5.1.1 Basic Idea and Challenges

Our hierarchical detection algorithm works as follows. We assume a spanning tree is already

constructed in the system (1; 49). The algorithm utilizes this spanning tree to establish a

hierarchy for detecting Definitely(Φ). Each non-leaf node in the tree only maintains queues

to track intervals that are sent by its children or that occur locally. Whenever a new interval

occurs at a leaf node, it is transmitted to the leaf node’s parent which tries to detect the

predicate within the subtree rooted at itself. If the predicate is detected in the subtree, the

root of the subtree aggregates the set of intervals within which the predicate is detected, and

transmits this aggregated interval to its parent. The aggregated interval is treated as a normal

interval at the higher levels in the hierarchy, and is used for detecting the predicate within an

even larger subtree. Once an aggregated interval is sent to the parent (higher level process),

the parent detects occurrences of the predicate within the larger subtree rooted at itself using

aggregated intervals received from its children, and generates the aggregated intervals for its

level once a satisfaction of the predicate is detected. Whenever the predicate is detected at

some subtree, the root of that subtree will perform the operations necessary for doing repeated

detection within that subtree. The same procedure repeats at each level of the hierarchy. At

the root of the spanning tree, the predicate is detected for the entire system.

Thus, the difficulties in realizing this algorithm are: (i) how to aggregate a set of intervals,

and (ii) how to do repeated detection of Definitely(Φ) using aggregated intervals from a lower

level in the hierarchy.
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Figure 9. The approach in (17) works only if the intervals are nested.

In (17), the authors outlined an approach for hierarchical detection of Definitely(Φ) by

trying to address (i) above. But their approach lacks in the following aspects.

1. In (17), the authors assumed a specific partial order in a set of intervals where Definitely(Φ)

is detected. This partial order requires that the intervals in the set can be ordered into

x1, x2, . . . , xk such that ∀i, j ∈ [1, k], if i < j then min(xi) ≺ min(xj)∧max(xj) ≺ max(xi).

So their approach requires the set of intervals within which Definitely(Φ) is detected to

be nested as shown in Figure 9. However, such a relation need not always hold when

Definitely(Φ) is satisfied.

2. The approach in (17) does not do repeated detection. Being able to detect all occurrences

of the predicate at each level is essential to hierarchical detection.

We assume the hierarchy is formed as shown in Figure 10(a). From Figure 10(b), observe

that the first set of intervals detected at P2 satisfying Definitely(Φ) consists of x1 and x2, and

its aggregation will be sent to the process in the higher level, i.e., P3. In addition to receiving

this solution set, after P3 receives interval x5 from P4 and interval x4 occurs at P3, P3 will

start the detection at the higher level. However, Definitely(Φ) cannot be detected in the set
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{x1, x2, x4, x5}. If only a one-time detection algorithm runs at P2, which is the case in the

approach in (17), then the only set of intervals P2 ever reports to P3 is {x1, x2} and the later

occurrence of the predicate for P1 and P2 in the set {x1, x3} will remain undetected. Therefore,

the set {x1, x3, x4, x5} within which the predicate could be detected for all 4 processes will never

be detected by P3. Notice that, in this example, no single process is detecting the predicate for

the entire system. Only hierarchical detection is performed. This example shows that being able

to find all occurrences of the predicate at each level is necessary to the hierarchical detection

algorithm.

P2   

P3  
 

P1   

P4   

x1

x4
x2

x3

x5

P1    P3  
  P4   

(a)

(b)

P2   

Figure 10. (a) The spanning tree consists of 4 processes. (b) Timing diagram showing the
relation between intervals.

Without a proper way to aggregate intervals and without a way to repeatedly detect predi-

cates, the approach given in (17) will fail to detect the predicates at the intermediate nodes as

well as at the top of the hierarchy.
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5.1.2 Example Scenario of Our Algorithm

In this subsection, still using Figure 10, we show how our algorithm handles an example

scenario where the user wants to monitor the system for a certain event “Φ = ∧iTempi >

50deg”, where Tempi is the temperature reading at process Pi.

When Definitely(Φ) is first detected in {x1, x2} at P2 for processes P1 and P2, our algorithm

will identify one interval from this set such that it will never form part of a future solution set

detected by P2. After identifying such an interval, in this case x2, P2 will remove it from

its corresponding queue after sending the aggregated interval of set {x1, x2} to P3. P2 then

continues the detection for later occurrences of the predicate. When interval x3 finishes, P2 will

detect a second occurrence of the predicate in the set {x1, x3} and send another aggregated

interval to P3. At process P3, after local interval x4 finishes and P3 receives intervals from both

its children, P2 and P4, P3 will attempt to detect the predicate within the tree rooted at itself.

The first attempt will fail, since the set {x1, x2, x4, x5} does not satisfy Definitely(Φ). As part

of this failed attempt, P3 will remove the aggregation of {x1, x2} from its queue. When P3

receives the aggregation of {x1, x3} from P2, a second attempt to detect the predicate begins.

This time, the predicate is detected in the set {x1, x3, x4, x5}. Thus the predicate is detected

for all 4 processes. After the first detection at P3, the algorithm will not hang. Another interval

from the solution set will be identified for removal, and the detection will continue running.

From this example, we can observe that the key aspects of our hierarchical detection algo-

rithm lie in

1. the way to aggregate a solution set, and
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2. the way to identify at least one interval from a solution set for removal to ensure progress

for repeated detection

at each level in the hierarchy. In the rest of this section, we will show how we solve these

problems.

5.1.3 Aggregation of Intervals to Detect Definitely(Φ)

In (17; 43), it was shown that for Definitely(Φ) to hold in a set X of intervals, the following

needs to be true

∀xi, xj ∈ X,min(xi) < max(xj)

This property was named as overlap(X). Our objective is to decentralize the detection of

Definitely(Φ). We first consider the scenario where Definitely(Φ) has been detected in each of

the two sets of intervals X and Y and we want to detect Definitely(Φ) in X ∪ Y .

Assume now, we have 4 processes in the system with their timing diagram shown in Fig-

ure 11(a). The intervals occurring at each process are shaded. The vector clock timestamps

identifying the lower and higher bound of each interval are also illustrated in the figure. In-

tervals x1 from process P1 and x2 from process P3 form set X, while intervals y1 and y2 from

process P2 and P4, respectively, form set Y . It can be checked that both overlap(X) and

overlap(Y ) are true.

To show that Definitely(Φ) is also detected in all 4 processes, equivalently overlap(X ∪ Y ),

we need to show

∀i, j ∈ {1, 2},min(xi) < max(yj) ∧min(yj) < max(xi) (5.1)
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Figure 11. Example showing the aggregation of intervals for detecting Definitely(Φ). (a) The
timing diagram of the system is given. An interval from each process is marked in shade along
with the vector clock timestamps identifying the lower and higher bounds. (b) The two sets of
intervals X and Y consisting of intervals from (a) are shown. The way to aggregate each set is

also illustrated. Component-wise maximums among all lower bounds in the same set are
marked in bold while the component-wise minimums among all higher bounds in the same set

are marked in underline.

From Figure 11(b), we can observe that, if we take the component-wise maximum of min(x1)

and min(x2) (illustrated in bold) to form a new vector u, then the first conjunct in Equation 5.1

is equivalent to

∀j ∈ {1, 2}, u < max(yj) (5.2)

Likewise, taking the component-wise minimum of max(y1) and max(y2) (illustrated in under-

line) to form another new vector r, Equation 5.2 is equivalent to u < r. The same operations
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can also be applied to show the second conjunct of Equation 5.1 using aggregated vectors q and

v.

This gives the inspiration to aggregate a set of intervals into a single one in order to detect

Definitely(Φ) in a larger set of intervals. For sets X and Y in Figure 11, their aggregated

intervals are denoted as u(X) and u(Y ), respectively. The way to aggregate those two sets

using component-wise minimum or maximum is shown in Figure 11(b).

Formally, for an arbitrary set X of intervals, satisfying overlap(X), we define an aggregation

function u(X) of intervals in X, in terms of vector timestamps, as:

∀i ∈ [1, n],min(u(X))[i] = max
x∈X

(min(x)[i]) (5.3)

∀i ∈ [1, n],max(u(X))[i] = min
x∈X

(max(x)[i]) (5.4)

With this formal definition of the aggregation function u, we show the following theorem.

Theorem 2. Let X, Y and Z be sets of intervals, such that Z = X ∪ Y . Then overlap(Z) iff

overlap(X) ∧ overlap(Y ) ∧ overlap(u(X),u(Y )).

Proof. (⇒) overlap(X) and overlap(Y ) are clearly true since X,Y ⊆ Z. Now consider an

interval y ∈ Y . Since overlap(Z), ∀x ∈ X,min(x) < max(y). Thus min(u(X)) < max(y).

Since this is true for all y ∈ Y , min(u(X)) < max(u(Y )). The same deduction applies to

min(u(Y )) < max(u(X)). So, we have overlap(u(X),u(Y )).

(⇐) From overlap(u(X),u(Y )) we have min(u(X)) < max(u(Y ))∧min(u(Y )) < max(u(X)).

For any interval x ∈ X, we have min(x) < min(u(X)). For any interval y ∈ Y , we have
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max(u(Y )) < max(y). Since min(u(X)) < max(u(Y )), we have for any x ∈ X and any y ∈ Y ,

min(x) < max(y). Similarly, we can deduce that for any x ∈ X and any y ∈ Y , min(y) <

max(x). Since we already have overlap(X) and overlap(Y ), now we have overlap(Z).

Theorem 2 shows that we can aggregate a set of intervals X into a single interval u(X) which

can represent the entire set in detecting Definitely(Φ) within an even larger set of intervals.

u(X) is uniquely identified by min(u(X)) and max(u(X)). These are not events but cuts in

execution (E,≺), identified by their vector timestamps.

Theorem 2 only covers the union of two sets of intervals. In the spanning tree, some processes

may have more than 2 children. Below, we extend Theorem 2 to scenarios involving more than

two sets of intervals.

Lemma 1. Let X1, X2, . . . , Xd be d sets of intervals, and Z be the union of all d sets. Thus

Z = ∪di=1Xi. Then overlap(Z) iff ∧di=1overlap(Xi) ∧ overlap(u(X1),u(X2), . . . ,u(Xd))

Proof. (⇒) ∧di=1overlap(Xi) is clearly true since Xi ⊂ Z. Since overlap(Z), we have ∀i, j ∈

[1, d], overlap(Xi ∪Xj). Thus, according to Theorem 2, we have

∀i, j ∈ [1, d], overlap(u(Xi),u(Xj)).

This means, ∀i, j ∈ [1, d],min(u(Xi)) < max(u(Xj)). Thus, we have

overlap(u(X1),u(X2), . . . ,u(Xd))
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(⇐) Since ∧di=1overlap(Xi) ∧ overlap(u(X1),u(X2), . . . ,u(Xd)), we have

∀i, j ∈ [1, d], overlap(Xi ∪Xj).

This means, by picking any two intervals y1, y2 from Z, it is always true that min(y1) < max(y2).

This is because there will always be a pair of i, j ∈ [1, d], such that y1 ∈ Xi and y2 ∈ Xj . So,

we have overlap(Z).

For our hierarchical detection algorithm, each process Pi in the spanning tree detects

Definitely(Φ) within the subtree rooted at itself. Once the predicate is detected, Pi aggregates

the set of intervals within which the predicate is detected using u and sends the aggregated

interval to its parent. At higher levels in the spanning tree, the predicate within the subtree

will be detected based on aggregated intervals received from child processes. Lemma 1 ensures

that, by testing the overlap property on the aggregated intervals, the predicate can be detected

within a larger set of intervals. At higher levels, the aggregation function will also be applied

to the aggregated intervals. However, we notice that, for two sets of intervals X and Y ,

u(u(X),u(Y )) = u(X ∪ Y ) (5.5)

So, applying the aggregation function on aggregated intervals is equivalent to applying it on

the union of all sets.
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5.1.4 Repeated Detection

In (5), the author showed how repeated detection can be done in the centralized Definitely(Φ)

detection algorithm. Basically, repeated detection requires identifying a certain interval from a

solution set such that this single interval cannot be part of a future solution set.

Doing the same in the hierarchical detection algorithm is more complex. In the hierarchical

algorithm, the detection takes place at each level. At higher levels, the solution set consists

of both aggregated intervals and non-aggregated intervals. Each aggregated interval represents

a solution set at the lower level. Identifying a certain interval for removal now is to identify

a solution set that cannot be part of a future solution at a higher level, and removing an

aggregated interval x in the solution set will remove all the intervals aggregated by x. This is

very different from the situation in the centralized algorithm in which the sink only needs to

consider non-aggregated intervals. Below, we show how repeated detection can be done in the

hierarchical detection algorithm.

First, for aggregated intervals generated at the same process, we have

Theorem 3. For an aggregated interval u(X) generated at process Pa and a later aggregated

interval u(X ′) generated at the same process, min(u(X)) < max(u(X)) < min(u(X ′)) <

max(u(X ′)).

Proof. Since u(X) is an aggregated interval, the set of intervals X it aggregates satisfy the

condition overlap(X). Thus ∀xi, xj ∈ X,min(xi) < max(xj). Also, according to the definition

in Equation 5.3 and Equation 5.4, we know that the elements in min(u(X)) and max(u(X)) are

equal to the component-wise maximum or minimum among all min(xi) or max(xi), respectively.
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Since ∀xi, xj ∈ X,min(xi) < max(xj), we have ∀xi, xj ∈ X,∀l ∈ [1, n],min(xi)[l] ≤ max(xj)[l].

Thus, ∀l ∈ [1, n],min(u(X))[l] ≤ max(u(X))[l]. So, min(u(X)) < max(u(X)). The same can

also be shown for u(X ′).

Since u(X ′) is generated after u(X), it means X ′ is a solution set within the subtree rooted

at Pa that occurs after the solution set X. Thus, there exists at least one interval x′b in

X ′, such that x′b occurs after the corresponding interval xb in X which comes from the same

process. So, we have max(xb) < min(x′b). Also, according to the definition in Equation 5.3 and

Equation 5.4, we know that ∀xi ∈ X,∀x′i ∈ X ′,max(u(X)) < max(xi)∧min(x′i) < min(u(X ′)).

Thus, max(u(X)) < min(u(X ′)).

For any two intervals x and x′ that occur (local intervals) or are generated (aggregated

intervals) at the same process, if max(x) < min(x′), we call x′ a successor of x and denote

it as succ(x). Theorems 1 and 2 prove that the aggregated intervals are treated just as the

non-aggregated intervals at the higher levels in the hierarchy. Now we show how we can identify

an interval, aggregated or not, from a solution set such that it can be safely removed.

In order for an interval xi in a solution set to be part of a future solution set, there needs to

be at least one interval xj from the same solution set, such that overlap(xi, succ(xj)) is true.

From (5), we know that this is equivalent to

min(succ(xj)) < max(xi) (5.6)
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Then, if for all intervals xj(j 6= i) from the solution set X, Equation 5.6 is false, we have that

overlap(xi, succ(xj)) is false for all xj(j 6= i) from the solution set. Thus xi can be safely

removed from the head of the queue. So, we have

remove xi iff ∀xj ∈ X(j 6= i),min(succ(xj)) 6< max(xi) (5.7)

Since max(xj) < min(succ(xj)), from (5), we know the test condition in Equation 5.7 can be

approximated to

remove xi iff ∀xj ∈ X(j 6= i),max(xj) 6< max(xi) (5.8)

Since we do not know the values in min(succ(xj)) until that interval gets reported from the

lower level, in order to identify the interval for removal as soon as possible, the approximated

condition in Equation 5.8 is what we use to prune the queues. Although it is only an approxi-

mation, we now show that it is actually correct and capable of always identifying at least one

interval for removal.

Theorem 4. (Safety) Once a solution set X is detected at any process in the hierarchy, only

intervals xi ∈ X (xi may be aggregated or not) that cannot be part of another solution are

removed from their queues.

Proof. Since Equation 5.8 ⇒ Equation 5.7, any interval removed using the condition in Equa-

tion 5.8 will also satisfy the condition in Equation 5.7. Thus, those intervals cannot be part

of any future solution set. Therefore, even if Equation 5.8 is only an approximation, it still

guarantees safety.
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Theorem 5. (Liveness) For any solution set X detected at any process in the hierarchy, at

least one interval (aggregated or not) gets removed from its queue.

Proof. Assume that the condition in Equation 5.8 cannot be satisfied by some solution set X.

Then, it means that for any intervals xi ∈ X, aggregated or not, there exists another interval

xj ∈ X, such that max(xj) < max(xi). This condition will eventually cause one interval xk

to satisfy max(xk) < max(xk), which is impossible. So the assumption is false, and thus the

condition in Equation 5.8 holds for any solution set. Thus, Equation 5.8 guarantees liveness.

With the safety and liveness of the condition in Equation 5.8 proved, we can safely use it

to prune the queues so that future occurrences of the predicate at each level in the hierarchy

can be repeatedly detected.

5.1.5 Hierarchical Detection Algorithm

With Theorems 2, 4 and 5, we have the theoretical foundation for the hierarchical detection

algorithm outlined in Section 5.1.1. The algorithm is listed in Algorithm 6. Each process

in the spanning tree tracks the intervals occurring locally and those sent from its children.

The intervals sent from a child process can be non-aggregated intervals or aggregated ones,

depending on whether the child is a leaf node. By checking the intervals received in the queues

(Lines (1)-(17)), each process attempts to detect the predicate within the subtree rooted at

itself. Once a solution set is found (Line (18)), the root of the subtree aggregates the set

and sends it to its parent (Lines (19)-(20)). At the higher level in the hierarchy, the parent

determines if the predicate can be detected in an even larger subtree rooted at itself by repeating
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Algorithm 6: Hierarchical decentralized detection of conjunctive definitely predicates,
adapted from (5) (Code for Pi)

number of children: l
queue for Pi: Q0 ←⊥
queues for children: Q1, Q2, . . . , Ql ←⊥
set of int: updatedQueues, newUpdated ← {}
int: count
On receiving an interval from child Pj at Pi:

1 Enqueue the interval onto queue Qj ;
2 if number of intervals on Qj is 1 then
3 updatedQueues = {j};
4 while updatedQueues is not empty do
5 newUpdated = {};
6 for each a ∈ updatedQueues do
7 if Qa is not empty then
8 x = head of Qa;
9 for b = 0 . . . l(b 6= a) do

10 if Qb is not empty then
11 y = head of Qb;
12 if min(x) 6< max(y) then
13 add b to newUpdated ;

14 if min(y) 6< max(x) then
15 add a to newUpdated ;

16 Delete heads of all Qc where c ∈ newUpdated;
17 updatedQueues = newUpdated ;
18 if all queues are non-empty ∧ updatedQueues = ∅ then
19 if Pi has parent in the spanning tree then
20 report u(heads of all queues) to parent;

21 else
22 report predicate detected;

23 for a = 0 . . . l do
24 count = 0;
25 for b = 0 . . . l(b 6= a) do
26 for c = 1 . . . n do
27 if max(head(Qa))[c] < max(head(Qb))[c] then
28 count+ +; break;

29 if count = l then
30 add a to newUpdated ;

31 Delete heads of all Qa where a ∈ newUpdated;
32 updatedQueues = newUpdated ;
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the same detection procedure (Lines (1)-(17)). When the root of the spanning detects a solution

set, a satisfaction of the predicate is detected within the whole system (Lines (21)-(22)).

Each time the predicate is detected at some process, Lines (23)-(32) prune the heads of the

queues so that future occurrences of the predicate at the same level can be repeatedly detected.

For each interval xi in the solution set X, this procedure checks xi against all other intervals xj

in X to see if ∀xj ∈ X(j 6= i),max(xj) 6< max(xi). Each time an interval xi is to be checked, a

counter is initialized to 0. For each interval xj(j 6= i), if max(xj) 6< max(xi) then the counter

is increased by 1. After xi is checked against all other intervals xj , if the counter equals l,

which is the total number of intervals in the solution set X minus 1, then interval xi satisfies

the condition in Equation 5.8. Thus, we can safely remove xi from the corresponding queue. In

Algorithm 6, the intervals to be processed can be aggregated intervals. Thus when comparing

the vector timestamps of two intervals (Lines (12), (14), (26)-(27)), we cannot compare them

in O(1) time as we can do with the normal intervals. This will affect the time complexity of

this algorithm. For details, please refer to the supplementary file.

Although Algorithm 6 has the same basic structure as the centralized algorithm given in (5),

it is essentially different. Algorithm 6 detects Definitely(Φ) in a hierarchical manner and per-

forms tests on aggregated intervals. Instead of one central server process maintaining n queues,

each process in Algorithm 6 maintains queues only for itself and its children in the spanning

tree. When the predicate is detected at non-root processes, the solution set is aggregated for

processes in the higher level to detect the predicate in a larger area.
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To summarize, Theorems 2, 4, and 5 together guarantee that Algorithm 6 is correct, meaning

that all the predicate occurrences in the system are detected and there are no false alarms.

5.2 Fault-Tolerance

5.2.1 Potential Failures In the System

In a large-scale wireless network, the following situations could result in changes to the

spanning tree. 1) A node crashes and loses all the communication link with its previous neigh-

bors. 2) A node moves out of the communication range of some or all of its previous neighbors.

3) A node reduces communication range due to loss of power. These situations are illustrated

in Figure 12. In a large-scale wireless network, these situations can be common, especially if

individual node only has limited power and is prone to crash failures. To handle these situ-

ations, a mechanism to reconstruct the spanning tree after the node failures is required. In

this paper, we do not consider the problem of reconstructing the degree-bounded spanning tree

after node failures. We expect some spanning tree reestablishment mechanism at a lower layer

to handle the reconstruction of the degree-bounded spanning tree. This problem is universal,

ranging from electric power transmission grids to LAN configurations to higher-layer tree over-

lays. Readers are referred to the reconstruction approaches by Yang and Fei (50) and Jeon

et al. (51). We instead focus on how the hierarchical detection algorithm should behave to

seamlessly transition across the changes in the underlying spanning tree caused by the recon-

struction mechanism. We assume that failures do not occur during message transmissions. This

assumption is reasonable because, compared with the duration of intervals, the time to transmit

a message is usually much less.
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(a)

(c)

(b)

(d)

Figure 12. (a) The initial topology of the spanning tree. Bold lines indicate tree edges, while
dashed lines indicate disconnected tree edges due to either (b) node crash, (c) decreasing
power or (d) node mobility. In order to reconstruct the spanning tree, new tree edges are

added.

No matter which of the above listed three situations happens, their effects to individual

nodes in the spanning tree after the reconstruction mechanism takes place can be categorized

into one or more of the following three changes:

1. The node loses one child

2. The node gains an additional child

3. The node’s parent gets switched

Thus in order for our algorithm to correctly resume the detection, meaning no missed predicate

occurrences, it needs to be able to handle these listed changes at all the nodes that are affected

by the reconstruction mechanism.
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5.2.2 Dealing with Changes In the Spanning Tree

The main challenge is to prevent missed predicate occurrences. It is possible to miss a

predicate occurrence in 2 ways: when the changes to a node happen before the node’s local

interval finishes and when the changes happen after the local interval finishes.

Take the example in Figure 13 as an illustration. The messages are not drawn in the timing-

diagram for clarity. If two intervals satisfy the overlap relation, they appear as overlapped in

the horizontal direction in Figure 13 (c). The spanning tree is initially constructed as shown in

Figure 13 (a). The failure happens, say for instance, when process P5 moves away to become

P3’s child. This triggers the spanning tree reconstruction mechanism and the reconstructed

spanning tree is shown in Figure 13 (b).

If this change happens after interval x5 finishes, the reconstruction affects processes P2, P3,

and P5. For P2, it loses one child, and the interval x5 received by P2 now has no corresponding

child process. For P3, it gains a new child. However, there is no corresponding interval queue in

P3 to accept intervals from P5. In addition, the intervals P3 later reports to P1 is the aggregation

of intervals from both P3 and P5. Compared with the intervals P1 receives from P3 before the

spanning tree changes, the new intervals from P3 now represent a different set of processes:

{P3, P5}. For P5, it now has a different parent process. Thus, it needs to report its intervals

to the new parent. These effects on processes P2, P3 and P5 resulting from the spanning tree

reconstruction could all potentially cause missed predicate occurrences.

On the other hand, P5 and P2 could be disconnected before interval x5 finishes. In this

scenario, the aggregated intervals reported by P2 do not contain interval x5. If P3 reports
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Figure 13. (a) The spanning tree consists of 5 processes. (b) Due to either node mobility or
decreasing power of process P5, the structure of the spanning tree is changed. (c) Intervals on

each process are represented by line segments.

interval x3 to P1 before P5 becomes P3’s child, then it is possible that P1 will not receive

interval x5 as part of any aggregated intervals and thus miss the detection of the predicate in

the set {x1, x2, x3, x5, x6}.

With the above two possible ways in which the changes in the spanning tree can affect the

detection algorithm, we observe that our algorithm’s hierarchical detection manner can help to

seamlessly transition across the changes and guarantee the correctness.

Our proposed solution works as follows:

1. Whenever a process Pi loses a child Pj , Pi flags the queue corresponding to Pj as lost.

However, Pi does not remove this queue until all the remaining intervals in the queue are
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processed and the queue becomes empty. If Pj once again becomes Pi’s child before the

queue turns empty, Pi removes the flag.

2. When Pi gains a new child Pk, Pi needs to create a new queue to process intervals from Pk.

Also, when Pi receives the first interval from Pk, it needs to check whether this interval

overlaps with the most recent interval reported by Pi to its parent. If so, Pi needs to send

a new aggregated interval to its parent.

3. When Pi switches parent, Pi reports subsequent intervals to the new parent.

4. When Pi’s child Pj sends intervals that represent a different set of processes, Pi appends

the new intervals into the same queue corresponding to Pj .

5.2.3 Algorithm Augmentation for Fault-Tolerance

The addition of fault-tolerance to the hierarchical detection algorithm is listed in Algorithm

7. After the spanning tree is changed, each process that has its parent or children changed

in the reconstructed spanning tree needs to update its local queues accordingly (Lines 1-7).

Each process also needs to remember the most recent reported interval in order to guarantee

all predicate occurrences are detected (Line 8).

Although the structure of the spanning tree changes, due to the fact that the hierarchical

manner of the algorithm stays the same, it will not affect the detection of the future occur-

rences of the predicate within the system. Furthermore, Theorems 2, 4, and 5 still ensure the

correctness of further detections of the predicate.
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Algorithm 7: Hierarchical Detection with Fault-Tolerance (Code for Pi)

Interval: previous ←⊥
set of boolean: flag

Pi loses a child Pj :

1 flagj = true;

Pi gains a new child Pk:

2 if Qk exists then
3 flagk = false;

4 else
5 create a local queue Qk initialized to ⊥;

On receiving the first interval xk from newly added child Pk:

6 if overlap(xk, previous) then
7 send u(xk, previous) to parent;

Each time Pi reports an interval x to parent:

8 previous = x;

Each time Pi removes an interval from local queue Qj :

9 if flagj and Qj is empty then
10 remove Qj ;

Even if multiple occurrences of the failures in Section 5.2.1 happen concurrently, our algo-

rithm is capable of resuming the detection after the spanning tree is locally reconstructed for

each such failure. This is because, in Algorithm 7, each process Pi only needs to check the

changes in its children and parent after the spanning tree reconstruction. Thus, each process

Pi only needs to react to local changes.

Below, we show that Algorithm 7 guarantees all predicate occurrences are detected with the

presence of potential failures happening during the detection. Notice that, we only show that

this statement is guaranteed for the entire system, not for every subset of processes grouped by

a subtree in the system. This is because, with fault-tolerance considerations, the spanning tree

may keep changing. Thus, any subtree in the system may exist only temporarily. Requiring the
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detection of all occurrences of the predicate within any subtree while the subtree itself could

change at any time is thus impractical.

Theorem 6. (Completeness) Any occurrence of the predicate for the entire system will be

detected by some solution set X at the root process.

Proof. With fault-tolerance handling, Theorem 2 is not impacted because the logic to aggregate

intervals stays the same. Theorem 3 will also not be affected because we do not remove intervals

even if the corresponding process disconnects. Thus, even with potential nodes leaving and

joining, it is always true that for an aggregated interval u(X) and a later aggregated interval

u(X ′) generated at the same process, we can find a interval x′b in X ′ and the corresponding

entry xb in X such that max(xb) < min (x′b). With Theorem 3 not affected, Theorems 4 and 5

will also hold.

Furthermore, if process Pi switches parent before its local interval finishes, we also make

sure Pi’s new parent will process this local interval if it can be part of a global solution set.

Thus, if interval xi from Pi is part of a global solution set, xi will become part of an aggregated

interval and eventually reach the root process where the occurrence of the predicate will be

detected.

With Theorems 2, 4, 5, and 6, it is guaranteed that our proposed fault-tolerance handling

will ensure the correctness of the detection algorithm when transitioning across changes of the

underlying spanning tree.
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5.3 Complexity

We analyse the complexity of the hierarchical detection algorithm using three metrics: space

complexity, time complexity and message complexity, in terms of the following parameters

(Notice that n = dh):

• n: the number of nodes in the network

• p: the maximum number of intervals per process

• d: the maximum number of children any process in the spanning tree can have

• h: the height of the spanning tree

• α: the probability that intervals from d children overlap and can be aggregated at one

higher level

• m: the maximum number of messages sent by any process.

Table VII summarized the results.

5.3.1 Message Complexity

In the hierarchical detection algorithm, the messages are transmitted along the edges of the

spanning tree. For the leaf nodes in the spanning tree, each time an interval completes locally,

it sends this interval to its parent. A non-leaf node only sends one aggregated interval to its

parent once it detects the predicate within the subtree rooted at itself.

At a leaf node (level 1), all intervals occurring locally are sent to its parent. At level i, the

number of aggregated intervals generated by a single process is dα times the number of intervals

received from any child in level i − 1. This can be justified using the reasoning in (5). Each
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TABLE VII

COMPLEXITY COMPARISON BETWEEN HIERARCHICAL DETECTION AND THE
CENTRALIZED REPEATED DETECTION ALGORITHM

Our Hierarchical Centralized Repeated
Algorithm Detection Algorithm (5)

Space Complexity O(pn2) O(pn2)
(distributed across (at the sink node)

all processes)

Time Complexity O(d2pn2) O(pn3)
(distributed across (at the sink node)

all processes)

Message Complexity pn p (d
h−2d)(dh−d−h)−d

(d−1)2

time an aggregated interval is generated at a certain process, the predicate is detected within

the corresponding subtree. Hence, at level i, αi−1di−1p number of aggregated intervals will be

sent to level i+ 1. Then, we can derive the total number of messages transmitted in the system

for hierarchical detection algorithm. For a spanning tree of degree d and height h,

total # of msgs =

h−1∑
i=1

dh−ipdi−1αi−1

= pdh−1
1− αh−1

1− α
(5.9)

We now compare with the message complexity of the centralized repeated detection algo-

rithm (5). Notice that each message in hierarchical detection is transmitted only 1 hop, always

to the immediate parent. For a message that traverses h hops in a wired or wireless network,

it is equivalent to h point-to-point messages, since the communication channels are occupied h



112

times. Thus, when running the centralized repeated detection algorithm in the same network

where the sink collects intervals from the other processes via a spanning tree of degree d and

height h, we need to account for the cost coming from each message having to traverse several

hops to reach the sink.

In the centralized algorithm (5), messages sent from level i need to traverse h − i hops to

reach the sink. Furthermore, each local interval needs to be transmitted all the way to the

sink. So at level i, across all nodes at that level in the spanning tree, pdh−i(h − i) messages

are generated by the centralized algorithm. We can thus deduce the total number of messages

generated by the centralized repeated detection algorithm (5).

total # of msgs =

h−1∑
i=1

pdh−i(h− i)

= ph

h−1∑
i=1

dh−i − p
h−1∑
i=1

idh−i (5.10)

Let k =
∑h−1

i=1 id
h−i, then

dk =
h−1∑
i=1

idh−i+1

(d− 1)k =
h∑
i=2

di + (h− 1)d

=
d2(1− dh−1)

1− d
+ (h− 1)d

k =
dh+1 + d2h− 2d2 − dh+ d

(d− 1)2
(5.11)
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Substituting Equation 5.11 into Equation 5.10, we have

total # of msgs = p
(dh − 2d)(dh− d− h)− d

(d− 1)2
(5.12)

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 3  3.5  4  4.5  5  5.5  6  6.5  7

# 
of

 m
es

sa
ge

s 

Height of the spanning tree

Hierarchical Detection with α = 0.1
Hierarchical Detection with α = 0.45

Centralized Detection

Figure 14. Message complexity comparison between hierarchical and centralized detection,
with d = 2, p = 20.

Figure 14 and Figure 15 compare the message complexity between hierarchical detection

algorithm (Equation 5.9) and the centralized repeated detection algorithm (5) (Equation 5.12)

with different parameters. In Figure 14, d = 2 and α is set to 0.1 and 0.45. In Figure 15, α takes

the same values while d is set to 4. From these two graphs, we can observe that for the same p,

the height h and degree d of the spanning tree, or equivalently the size of the network, impacts
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the total number of messages. Also, with a smaller α, the number of messages decreases.

Furthermore, observe that p is a linear factor in both Equation 5.9 and Equation 5.12. So, if

we fix other parameters, as p increases, the total number of messages also increases linearly.

Hence, the hierarchical detection algorithm has a better message complexity compared to the

centralized repeated detection algorithm, especially when the system is large-scale.

Furthermore, for two networks of the same size (n being the same), we compare the message

complexity of hierarchical detection algorithm and the centralized detection algorithm (5) run-

ning on different spanning trees generated within the network in Figure 16. For two spanning

trees, one with d = 2 and h = 12 while the other with d = 8 and h = 4, we observe that they

represent networks of the same size since 212 = 84 = dh. From Figure 16, we can see that,
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even if the two networks are of the same size, the one with a larger height of the spanning tree

generates more messages. This can be reasoned from the fact that h is a dominant factor in

Equation 5.9. Notice that, as far as h > 2, the hierarchical detection algorithm is different

from the centralized one (5). When h = 2, then no aggregation will happen in the network,

and the hierarchical detection algorithm becomes centralized. From this observation, we know

that the hierarchical detection algorithm will have a better performance when the spanning

tree generated in the network is flat, meaning that the spanning tree has a larger degree d and

a smaller height h.
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Figure 16. Message complexity comparison of hierarchical detection within networks of the
same size but with different spanning tree topologies. Note that p = 20.
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We also observe from Figure 17 that for the same spanning tree configuration, the central-

ized algorithm (5) will always generate more messages compared to the hierarchical detection

algorithm, no matter what value α takes. This observation further demonstrates that the hi-

erarchical detection algorithm has a better message complexity than the centralized algorithm

(5).

5.3.2 Space Complexity

In hierarchical detection, each process other than the leaf nodes only needs to maintain

O(d) queues. The number of intervals in the local queue Q0 is O(p). Also, each process needs

to store the aggregate intervals from its O(d) children.

In the worst case, the space complexity is the number of intervals in all the nodes. Equa-

tion 5.9 gives the total number of aggregated intervals. Observe that n = dh. Thus, the total

number of aggregated intervals is affected by 1−αh−1

1−α , which is
∑h−1

i=1 α
i−1 and is bounded by

h− 1. As n = dh, we know 1−αh−1

1−α is O(log(n)) worst case.

Furthermore, for a particular predicate Φ, α can be treated as a constant since α is only

related to the predicate Φ and the execution of the distributed system. Thus 1−αh−1

1−α is O(1).

1−αh−1

1−α only becomes large when α→ 1 and h is very large. This means that almost all attempts

to detect the predicate at every level of the hierarchy will succeed in a large-scale network. This

is an impractical assumption. For a practical value of α, even as large as 0.5, 1−αh−1

1−α is still ≤ 2.

For impractical values of α, 1−αh−1

1−α will be bounded by min(h, 1
1−α). From the above analysis,

we can conclude that the total number of aggregated intervals stored in all processes is O(pn).
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The fact that 1−αh−1

1−α is bounded by min(h, 1
1−α) also shows that, with a flat spanning tree

configuration, the performance of the hierarchical detection algorithm will be better.

In addition, each process will store its local O(p) intervals, and that is an additional O(pn)

intervals across the whole network. Since the storage size of both regular intervals and ag-

gregated intervals is O(n), the storage cost of the hierarchical detection algorithm is O(pn2),

distributed across all the nodes in the network.

Compared to the centralized repeated detection algorithm (5), which incurs an O(pn2)

storage cost at the sink/root of the spanning tree, hierarchical detection algorithm does not

place all the storage cost at a single process, which makes it suitable for large-scale systems

where a single process cannot afford storing all the data.

5.3.3 Time Complexity

From Section 5.3.2, we know that there are O(pn) aggregated intervals and O(pn) non-

aggregated intervals stored across all nodes in the network. When running the hierarchical

detection algorithm, each node needs to check all intervals stored locally (Lines (1)-(22)) to

detect Definitely(Φ). Since the total number of intervals is O(pn), and each interval will be

compared with O(d) other intervals with each comparison taking O(n) time, Lines (1)-(22) in

the hierarchical detection algorithm will incur an O(dn2p) time complexity distributed across

all the nodes in the network. For Lines (23)-(33), each time the predicate is detected at some

node, this part of the code will be executed. Since Lines (23)-(33) compare the heads of O(d)

queues, each time Lines (23)-(33) execute, they will take O(d2n) time. Since the total number

of aggregated intervals is O(pn) across all nodes, the maximum number of times the predicate
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can be detected across all levels in the spanning tree is O(pn). Thus, Lines (23)-(33) incurs

an O(d2n2p) time complexity across all iterations and all nodes in the network. Furthermore,

the augmented code for fault-tolerance will not affect the time complexity. Lines (a)-(e) incur

an O(n) time cost which is dominated by Line (1)-(33) and Lines (34)-(35) incur an O(1)

cost. Also, the code in Lines (36)-(45) will only be executed if the structure of the spanning

tree is changed. So, in total, the time complexity of the hierarchical detection algorithm is

O(d2n2p), spread across all n nodes. We observe that, with a flat tree, the time complexity of

the hierarchical detection algorithm will increase since the degree in the spanning tree becomes

larger.

In a large-scale network running the hierarchical detection algorithm, h > 2, otherwise the

algorithm becomes a centralized algorithm. Since n = dh, we infer that n > d2. Thus, com-

paring the hierarchical detection algorithm with the centralized repeated detection algorithm,

which incurs an O(pn3) time complexity, the hierarchical detection algorithm has a lower time

complexity, especially when h is large. Furthermore, this time complexity is distributed across

all nodes, which is not the case in the centralized algorithm.

5.3.4 Cost of Maintaining the Spanning Tree

The cost of maintaining the spanning tree happens at a lower layer in the system. There are

many existing works studying the maintenance and reconstruction of a spanning tree (50; 51).

The reconstruction mechanism developed by Yang and Fei (50) adopted a proactive approach.

In their solution, each node in the spanning tree pre-computes a rescue plan to calculate a MST

between its parent and immediate children under certain degree constraint. Once a node fails,
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all the affected nodes can directly communicate with their respective parents-to-be to quickly

reconstruct the spanning tree. Note that, after the initial pre-computation, only those nodes

affected by the failed one need to recalculate the rescue plan.

With such a proactive approach, the spanning tree reconstruction mechanism developed by

Yang and Fei (50) shows a very good performance. The reconstruction mechanism will incur

a time complexity of O(d2 log(d)) at each node affected by the failed node. Furthermore, the

simulation results show that, with a network of 1600 nodes, the average time to reconstruct the

spanning tree is always less than 400 ms. Compared with the duration of the intervals, which

are typically seconds, the time spent to reconstruct the spanning tree after a node crashes or

moves is very short. The simulation results also show that for reconstructing the spanning tree,

each affected node only needs to contact 1 node to find its new parent. This also generates a

very low bandwidth cost in the network.

As a conclusion, with a proper spanning tree reconstruction mechanism such as the one

developed by Yang and Fei (50), the cost of maintaining the spanning tree is very low. Thus

it is reasonable to put the emphasize on the cost of the detection algorithm itself, rather than

the cost associated with maintaining the spanning tree.



CHAPTER 6

INSTANTANEOUS DETECTION

In this chapter, we propose an approximation algorithm for detecting predicate satisfactions

in physical time. It adopts the hierarchical detection methodology to collaboratively detect

predicates relying only on neighborhood communication. Compared with (27), the inaccuracy

of our algorithm is bounded only by the message transmission delay over a single hop, which is

considerably lower than that of a system broadcast especially when the scale of the network is

large. Furthermore, different from (28), our approximation algorithm is based on Possibly(φ)

modality. This enables our algorithm to detect more occurrences of predicate satisfactions in

physical time. As a result, our detection algorithm incurs a low time/storage cost at each

process and reaches a very high accuracy.

The rest of this chapter is organized as follows. Section 6.1 formally defines the Instanta-

neously modality. Section 6.2 presents the main idea of our approach and gives the detection

algorithm. Section 6.3 shows the evaluation of our approach by means of simulations.

6.1 Instantaneously Modality

The Instantaneously modality can be better illustrated using the lattice of global states.

Below, we consider the same example shown in Figure 1 redrawn in Figure 18 with the current

run indicated. Similarly, The timing diagram of this distributed program’s execution is shown

in Figure 18(a). Event eki denotes the kth event at process Pi. The corresponding lattice of

121
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Figure 18. (a) The timing diagram of the execution. (b) The state lattice for the execution.
Bold edges indicate current run δ.

global states for the execution is shown in Figure 18(b). Each state is labeled by a tuple (c1, c2),

where c1 and c2 are the event number at P1 and P2, respectively.

Both Possibly(φ) and Definitely(φ) are concerned with all runs of the same distributed

program. So, for a predicate φ = ”a − b = 3”, when we say Possibly(φ) holds or Definitely(φ)

does not hold, they are all with respect to the entire state lattice in Figure 18(b). On the other

hand, the Instantaneously modality focuses on what happened in physical time. The detection

of predicate under such modality should test whether the predicate is satisfied only within the

sequences of global states that occurred in physical time. Thus, predicate φ does not hold under

Instantaneously modality in the execution depicted in Figure 18 because the current run δ does

not traverse any global state in which φ is true. With this example, we formally define the

Instantaneously modality as follows:



123

Definition 9. Instantaneously(δ, φ): Within the current run δ, there exists a physical time

global state of it in which φ holds.

We observe that, without access to a global clock, predicates under the Instantaneously

modality cannot be detected with a 100% accuracy. In the next section, we present a novel

approximation algorithm that detects predicates under the Instantaneously modality with a

high accuracy.

6.2 Detecting Predicates in Physical Time

6.2.1 Basic Ideas

In (28), the authors approximate predicate detection under the Instantaneously modality

with detection algorithms for the Definitely(φ) modality. Although Definitely(φ) modality is

concerned with all runs of the same distributed program, due to its property that a predicate

satisfaction under the Definitely(φ) modality is guaranteed to happen in every run of the dis-

tributed program, the predicate satisfactions detected under Definitely(φ) modality will also

occur in physical time. However, this property also imposes the limitation that any predicate

satisfactions occurring in physical time that do not satisfy the Definitely(φ) detection condition

(Equation 2.1) will not be detected.

Instead, the approach we adopt is based on Possibly(φ) modality. This frees the detection

algorithm from the limitation imposed by the Definitely(φ) modality, but introduce its own

limitations. Therefore, to deal with these limitations, we propose an innovative hierarchical de-

tection technique for predicate detection under the Possibly(φ) modality. Hierarchical detection

technique is a decentralized way to collaboratively detect predicates among a network span-
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ning tree. This technique can reduce the time/storage cost on each process, thus making the

algorithm applicable in a resource-constraint system. Furthermore, we give two approximation

techniques that work on top of the hierarchical detection algorithm. The first approximation

technique is to enable the detection algorithm to perform repeated detection, so our algorithm

is capable of providing continuous monitoring in long-running applications. The second one is

to focus the detection on the current run δ, so predicate satisfactions that meet the Possibly(φ)

detection condition in Equation 2.2 yet do not occur in physical time are less likely to be

reported. In the rest of this section, we will discuss the details of our detection algorithm.

6.2.2 Hierarchical Detection

In this subsection, we show how we decentralize the detection of the Possibly(φ) modality in

a hierarchical fashion. The detection condition for Possibly(φ) is already given in Equation 2.2.

If we know the process at which an interval x occurred, which we denote as ORIG(x), then

Equation 2.2 is equivalent to

∀xi, xj ∈ X,max(xi)[ORIG(xi)] > min(xj)[ORIG(xi)], (6.1)

We denote this property as antichain(X).

Now we assume 4 processes in the network with their timing diagram shown in Figure 19(a).

The intervals occurring at each process is marked in shade, and the vector timestamps identi-

fying the lower and upper bound of each interval are illustrated in the figure. Intervals x1 from
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Figure 19. Examples showing the aggregation of intervals for detecting Possibly(φ). In (a),
the timing diagram of the system is given. Intervals from each process is marked in shade

along with the vector clock timestamps identifying the lower and higher bounds. In (b), the
two sets of intervals X and Y consisting of intervals from (a) are shown. The way to

aggregate each set is also illustrated in (b). Notice that, component-wise maximum among all
lower bounds in the same set are marked in bold while the element corresponding to
ORIG(xi) or ORIG(yi) for each interval xi and yi is marked in bold and italic.

process P1 and x2 from process P3 form set X, while intervals y1 and y2 from process P2 and

P4, respectively, form set Y . We can see that both antichain(X) and antichain(Y ) are true.

Now, if we want to show that Possibly(φ) is detected in all 4 processes, we need to show

that

∀i, j ∈ {1, 2}, max(xi)[ORIG(xi)] > min(yj)[ORIG(xi)] ∧

max(yj)[ORIG(yj)] > min(xi)[ORIG(yj)] (6.2)
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Observe in Figure 19(b) that, if we take the component-wise maximum of min(y1) and min(y2)

(illustrated in bold) to form a new vector q, we can see that the first conjunct in Equation 6.2

is equivalent to

∀i ∈ {1, 2},max(xi)[ORIG(xi)] > q[ORIG(xi)] (6.3)

Furthermore, if we combine the upper bounds of intervals x1 and x2, i.e., max(x1) and max(x2),

into a new vector v by taking max(x1)[ORIG(x1)] and max(x2)[ORIG(x2)] (illustrated in bold

and italic) to fill the corresponding position in v and leave the remaining elements in v as 0,

then Equation 6.3 is equivalent to

∀i ∈ {1, 2}, v[ORIG(xi)] > u[ORIG(xi)].

Using the same operations, the second conjunct in Equation 6.2 can also be reduced using

aggregated vectors u and r.

This example gives us the hint for aggregating a set of intervals when detecting Possibly(φ).

For set X and Y in Figure 19, their aggregated intervals are denoted as t(X) and t(Y ),

respectively. The way to aggregate those two sets is shown in Figure 19(b).

For an aggregated interval t(X), we define ORIG(t(X)), the processes from which this

aggregated interval comes from, as the set of processes whose intervals are aggregated by t(X).

Formally,

ORIG(t(X)) = {ORIG(x)|x ∈ X}
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As an example, in Figure 19, ORIG(t(X)) = {P1, P3}.

With this updated definition of ORIG(X), we formally define t(X) as

min(t(X))[i] = max
x∈X

min(x)[i] (6.4)

max(t(X))[i] =


max(x)[i] : ∃x ∈ X, such that i ∈ ORIG(x)

0 : otherwise

(6.5)

When we are comparing the aggregated intervals with other intervals for the antichain prop-

erty, we need to compare multiple elements rather than one element because for an aggre-

gated interval t(X), ORIG(t(X)) contains multiple processes. This makes it necessary to

define a new relation w between two intervals x and y, aggregated or not, as x w y ≡ ∀i ∈

ORIG(x),max(x)[i] > min(y)[i]. Thus, the antichain property defined in Equation 6.1 is

equivalent to ∀xi, xj ∈ X,xi w xj .

With this updated definition of antichain property and the aggregation function t, we give

the following theorem for decentralizing the detection of Possibly(φ).

Theorem 7. Let X, Y and Z be sets of intervals, such that Z = X ∪ Y . Then antichain(Z)

iff antichain(X) ∧ antichain(Y ) ∧ antichain(t(X),t(Y )).

Proof. (⇒) antichain(X) and antichain(Y ) are clearly true since X,Y ⊆ Z. Now consider an

interval x ∈ X. Since antichain(Z), ∀y ∈ Y, x w y. Thus x w t(Y ). The same deduction

applies to any interval x ∈ X. So we have ∀x ∈ X,x w t(Y ). Thus t(X) w t(Y ). Similarly,

t(Y ) w t(X). So, we have antichain(t(X),t(Y )).
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(⇐) From antichain(t(X),t(Y )) we have t(X) w t(Y ) ∧ t(Y ) w t(X). For any interval

x ∈ X, since ORIG(x) ⊆ ORIG(t(X)), we have ∀x ∈ X,x w t(Y ). Also, for any y ∈ Y ,

we have min(y) ≺ min(t(Y )). So, ∀x ∈ X,∀y ∈ Y, x w y. The same proof also applies to

∀x ∈ X,∀y ∈ Y, y w x. Since we already have antichain(X) ∧ antichain(Y ), we now have

antichain(Z).

Theorem 7 only deals with the situation containing only 2 interval sets. We can also deduce

the following lemma from Theorem 7 to cover general situations where more than 2 interval

sets need to be aggregated.

Lemma 2. Let X1, X2, . . . , Xd be d sets of intervals, and Z be the union of all d sets. Thus

Z = ∪di=1Xi. Then antichain(Z) iff ∧di=1antichain(Xi) ∧ antichain(t(X1),t(X2), . . . ,t(Xd))

Proof. (⇒) ∧di=1antichain(Xi) is clearly true since Xi ⊂ Z. Since antichain(Z), we have

∀i, j ∈ [1, d], antichain(Xi ∪Xj). Thus, according to Theorem 7, we have

∀i, j ∈ [1, d], antichain(u(Xi),u(Xj)).

This means, ∀i, j ∈ [1, d],u(Xi) w u(Xj). Thus, we have antichain(u(X1),u(X2), . . . ,u(Xd))

(⇐) Since ∧di=1antichain(Xi) ∧ antichain(u(X1),u(X2), . . . ,u(Xd)), we have

∀i, j ∈ [1, d], antichain(Xi ∪Xj).
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This means, by picking any two intervals y1, y2 from Z, it is always true that y1 w max(y2).

This is because there will always be a pair of i, j ∈ [1, d], such that y1 ∈ Xi and y2 ∈ Xj . So,

we have antichain(Z).

With Theorem 7 and Lemma 2, we can detect Possibly(φ) in a hierarchical manner. For

our hierarchical detection algorithm, each process Pi in the spanning tree detects the predicate

within the subtree rooted at itself. Once the predicate is detected, Pi aggregates the set of

intervals within which the predicate is detected using t and sends the aggregated interval to its

parent. At higher levels in the spanning tree, the predicate within the subtree will be detected

based on aggregated intervals received from child processes. Lemma 2 ensures that, by testing

the antichain property on the aggregated intervals, the predicate can be detected within a

larger set of intervals. With the level goes higher in the hierarchy, the predicate is also detected

within a larger group in the network.

6.2.3 Repeated Detection for Instantaneously(δ, φ)

Repeated detection is a feature that enables the predicate detection algorithms to perform

continuous monitoring by detecting every instance of predicate satisfactions. Basically, repeated

detection requires identifying certain removable intervals from a solution set such that these

intervals cannot be part of a future solution set. This problem has been studied before for the

Definitely(φ) modality (5; 31). For hierarchical detection algorithm, repeated detection is also

a requirement as it prevents the detection of the predicate at each level in the hierarchy from

hanging after the first detection. This is shown in our previous work (31) which presents a

hierarchical detection algorithm for the Definitely(φ) modality.
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(a) (b)
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Figure 20. Example illustrating the repeated detection technique in the context of aggregated
intervals. (a) Timing diagram showing 4 processes with their corresponding intervals

illustrated in shade. (b) Spanning tree consisting of these 4 processes establishes a hierarchy
in the network. Note that dotted line indicates an interval start maker, thin straight line

indicates an unaggregated interval, and the bold straight line indicates an aggregated interval.
Only relevant ones are drawn.

In (5), it has been shown that for repeated detection of the Definitely(φ) modality, removable

intervals xi in the solution set X must satisfy the condition in Equation 5.8. This condition

essentially identifies the set of intervals in the solution set X that can never become part of a

future solution in all possible runs of the distributed program. For the Instantaneously(δ, φ)

modality, we need to identify the interval that will not become part of a future solution only in

the current run δ. We observe that once the predicate is detected, the interval in the solution

set that finishes first in the current run is the one we are looking for. This is illustrated in

Figure 20(a). Two intervals appear as overlapped in the horizontal direction if they overlap in

physical time. Notice that, in the run depicted in Figure 20(a), interval a1 finishes first in the

solution set {a1, b1, c1, d1}. When a1 finishes, no subsequent intervals on other processes have

started yet. Thus, a1 cannot become part of a future solution set.

This way of identifying removable intervals is essentially equivalent to the one for the

Definitely(φ) modality(Equation 5.8) . We observe that, the condition given in Equation 5.8
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actually identifies all the intervals xi in the solution set X that might be the one finishing first in

any of all possible runs. Since Definitely(φ) detects predicate satisfactions that are guaranteed

to occur in all runs, all such intervals xi identified by Equation 5.8 are removable.

Although this idea for performing repeated detection is straightforward, it is not trivial to

implement. Due to the lack of global synchronized clocks, there is no way to precisely tell

which interval in the solution set finishes first. To address this problem, we propose the first

approximation technique. Since immediately after an interval finishes, it either gets transmitted

to the upper level in the hierarchy or enters the local queue for detection, we propose to estimate

the interval’s finishing time by its receiving time, i.e., the time when the interval is received

by process in an upper level or enters the local queue. Each process that receives intervals will

maintain a queue Arriv that keeps track of intervals in the order they are received. Notice how

the hierarchical detection algorithm helps to improve the accuracy. In a centralized setting, this

approximation technique would require all processes to send the intervals to the fusion server

over multiple hops. Such a convergecast will be extremely inaccurate due to the unpredictable

delays of message transmission over multiple hops and the scheduling of intermediate processes.

With the hierarchical detection algorithm, the intervals only need to be transmitted to each

process’s immediate parent in the spanning tree. Thus, the message will be transmitted over a

single hop and thus significantly improve the approximation technique’s accuracy.

Furthermore, to work with the aggregated intervals generated by the hierarchical detection

algorithm, this approximation technique also needs to handle the following situation. Since

each aggregated interval represents a set of intervals, when performing repeated detection with
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aggregated intervals, we need to find the one which contains the interval that finishes first among

all the intervals represented by the aggregated intervals to be checked. Take the illustration

in Figure 20 as an example. From Figure 20(b), we know that P2 receives intervals from P1

and sends aggregated intervals to P3. Figure 20(a) shows that the predicate is satisfied twice

globally in solution set {a1, b1, c1, d1} and {a2, b1, c1, d1}. When performing repeated detection,

although t(X2) is received by P3 later than d1, t(X2)’s receiving time should be considered

the same as t(X1)’s receiving time. This is because both t(X1) and t(X2) aggregate interval

b1 and the interval that finishes first in all the intervals in X2 must finish earlier than b1. So,

t(X2) finishes no later than t(X1).

This approximation technique will generate errors when the network transmission time is

high. In such cases, the approximation technique will identify the wrong interval as removable,

thus will miss detections of predicate satisfactions occurring in physical time and will produce

false negatives in the detection results.

With this example, we give the formal algorithm for performing repeated detection in Al-

gorithm 8.

6.2.4 Detection Pruning Technique

The hierarchical detection technique for the Possibly(φ) modality is still not sufficient for

detecting predicates under the Instantaneously(δ, φ) modality. Since the Possibly(φ) modality

considers all runs of the same distributed program, it is possible that predicate satisfactions

meeting the Possibly(φ) detection condition but not occurring in physical time will be detected.

A mechanism that focuses the algorithm’s detection on the current run δ is thus necessary.
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Algorithm 8: Repeated detection for Instantaneously(δ, φ) (Code for Pi)

arrival queue: Arriv ←⊥
When local interval x finishes:

1 if Pi is a leaf node then
2 set x’s flag as true;
3 send x to Pi’s parent in the spanning tree;

4 else
5 set x’s flag as true;
6 Enqueue x onto the local queue corresponding to Pi;

On receiving an interval x from child Pj :

7 if x’s flag is set to true then
8 Append x at the end of Arriv;

9 else
10 Insert x at the position of the most recent interval from Pj with a true flag in Arriv;

On detecting the predicate satisfaction in interval set X:

11 generate aggregated interval t(X);
12 if all intervals in set X have their flags set to true then
13 set t(X)’s flag to true;
14 set the flags of all intervals in set X to false;

15 else
16 send t(X) to Pi’s parent in the spanning tree;

17 Delete the head of the interval queue corresponding to Pk from which interval Arriv.getHead()
is received;

We observe that, such excessive detection of predicate satisfactions happens when there is no

causal relationships among a set of intervals. For example, in Figure 21(a), there is no message

transmission between any 2 of the 3 processes during the time period shown. So, interval x1, x2

and x3 are not comparable under the causal relationship. However, x1 clearly does not overlap

with the other intervals in the current run δ depicted in the figure. To address this problem,

we propose another approximation technique that aims at pruning these excessive detections.

Assume in Figure 21(b) that P2 and P3 send intervals to P1 for detection. P2 and P3 now send

markers to P1 right after their local intervals start (the dotted line in Figure 21(a)), and P1
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Figure 21. By sending markers right after local interval starts, our detection algorithm is able
to prune false positives. (a) P2 and P3 send markers to P1 right after their local intervals start.
(b) P2 and P3 send intervals to P1 for detection. (c) P1’s Arriv queue maintaining the orders
in which intervals and interval start markers are received at P1. Circled entries represent the
interval start markers of the corresponding intervals. Since interval x1’s entry appears before
interval x2 and x3’s interval start markers, P1 deduces that x1 does not overlap with x2 or x3.

receives these markers in the Arriv queue (introduced in Section 6.2.3). Then based on the

order maintained in the Arriv queue, P1 can tell that those 2 markers are received after its local

interval x1 finishes, and it estimates that x1 does not overlap with x2 and x3 (Figure 21(c)).

These interval start markers essentially add additional relationships between intervals, so the

detecting process can tell whether intervals overlap when causal relationships are insufficient.

This technique approximates the starting time of a local interval by the receiving time of the

corresponding interval start marker. Since the inaccuracy in this approximation technique is

again bounded by the single hop transmission time, our approximation still holds a relatively

high accuracy.

Furthermore, this detection pruning technique also works well with the aggregated inter-

vals generated in the hierarchical detection algorithms. In the hierarchical detection algorithm,

other than parents of leaf nodes, most processes will receive aggregated intervals from its chil-
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dren. There is no way to precisely approximate an aggregated interval’s start time because it

represents a set of intervals. However, we can approximate the aggregated interval’s start time

with the sender’s local interval’s start time. For example, assume P2 in Figure 21(b) is now

parent of other processes in the spanning tree and it sends aggregated intervals to P1. Then

for all aggregated intervals sent from P2 that aggregates interval x2, we approximate their start

time by the receiving time of x2’s interval start marker. This approximation is valid because,

among all the intervals aggregated by one such aggregated interval from P2, the interval that

starts earliest will start no later than x2. Additionally, this approach generates only 1 interval

start marker for all aggregated intervals that aggregate x2. This ensures that the total num-

ber of interval start markers is dominated by the number of intervals and aggregated intervals

transmitted during the detection.

This approximation technique will generate errors when the network transmission time is

high. In such cases, less excessive detections will be pruned and false positives will be generated

by our algorithm.

With the above example, we give the formal algorithm for detection pruning technique in

Algorithm 9.

6.2.5 Integrated Detection Algorithm

With the techniques introduced in the previous subsections, we give the integrated detection

algorithm for the Instantaneously(δ, φ) modality in Algorithm 10. Each process in the spanning

tree tracks the intervals occurring locally and those sent from its children. The intervals sent

from a child process can be aggregated or non-aggregated intervals, depending on whether the
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Algorithm 9: Detection Pruning Technique (Code for Pi)

arrival queue: Arriv ←⊥
When local interval x starts:

1 send an interval start marker to the parent in the spanning tree;

On receiving an interval start marker x:

2 Append x at the end of Arriv;

When interval x is being checked for predicate satisfactions:

3 if x is a non-aggregated interval then
4 marker = x’s interval start marker;

5 if x is an aggregated interval from Pj containing Pj’s local interval xj then
6 marker = xj ’s interval start marker;

7 Remove all intervals which appears in Arriv before marker from their corresponding interval
queues;

child is a leaf node. By checking the intervals received (Lines (1)-(18)), each process attempts

to detect the predicate within the subtree rooted at itself. Line (7) invokes Lines (3)-(7) in

Algorithm 9 to perform the detection pruning technique. Once a solution set is found (Line

(19)), the root of the subtree aggregates the set and sends it to its parent (Lines (20)-(21)). At

the higher level in the hierarchy, the parent determines if the predicate can be detected in an

even larger subtree rooted at itself by repeating the same detection procedure (Lines (1)-(18)).

When the root of the spanning detects a solution set, a satisfaction of the predicate is detected

within the whole system (Lines (22)-(23)). Each time the predicate is detected at some process,

Line (24) invokes Lines (11)-(17) in Algorithm 8 to perform the repeated detection technique.

6.2.6 Complexity Analysis of the Detection Algorithm

The hierarchical detection algorithm decentralizes the entire detection procedure onto all

the processes. Thus it naturally incurs only a small time and storage cost on each process. We
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Algorithm 10: Instantaneously(δ, φ) detection algorithm (Code for Pi)

# of children: l
queue for Pi: Q0 ←⊥
queues for children: Q1, Q2, . . . , Ql ←⊥
set of int: updatedQueues, newUpdated ← {}
On receiving an interval from child Pj at Pi:

1 Enqueue the interval onto queue Qj ;
2 if number of intervals on Qj is 1 then
3 updatedQueues = {j};
4 while updatedQueues is not empty do
5 newUpdated = {};
6 for each a ∈ updatedQueues do
7 invoke Algorithm 9;
8 if Qa is not empty then
9 x = head of Qa;

10 for b = 0 . . . l(b 6= a) do
11 if Qb is not empty then
12 y = head of Qb;
13 if x 6w y then
14 add b to newUpdated ;

15 if y 6w x then
16 add a to newUpdated ;

17 Delete heads of all Qc where c ∈ newUpdated and the corresponding entries in Arriv;
18 updatedQueues = newUpdated ;
19 if all queues are non-empty ∧ updatedQueues = ∅ then
20 if Pi has parent in the spanning tree then
21 report t(heads of all queues) to parent;

22 else
23 report predicate detected;

24 invoke Algorithm 8;
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use the following parameters to study the detection algorithm’s asymptotic time and storage

complexity:

• n: the number of nodes in the network

• p: the maximum number of intervals per process

• d: the maximum number of children any process in the spanning tree can have

It is already shown in (31) that O(pn) aggregated intervals and O(pn) non-aggregated

intervals are generated and stored across all nodes in the network. Additionally, each non-leaf

process also needs to maintain the arrival queue Arriv. Since whenever an interval is removed

from the corresponding interval queue, it is also removed from Arriv, each process only needs

to maintain the most recent received intervals and the corresponding interval start markers

for its O(d) children. Thus the arrival queue contains O(d) entries in total, each of size O(1)

(only meta-data of the interval is stored in Arriv). The storage cost of maintaining these

arrival queues is dominated by the cost of storing intervals. So, the total storage cost across all

processes is O(pn2).

Since the total number of intervals is O(pn), and each interval will be compared with

O(d) other intervals with each comparison taking O(n) time, Lines (1)-(22) in the hierarchical

detection algorithm will incur an O(dn2p) time complexity distributed across all the nodes in

the network. Since Line (23) will be executed each time an aggregated interval is generated, it

will be invoked O(pn) times, each time taking only O(1) time. Thus, the total time complexity

across all processes is O(dn2p).
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6.3 Evaluation

To evaluate our detection algorithm, we perform a quantitative study of the algorithm’s

detection accuracy. A parameterized synthetic benchmark is designed and implemented, and

some inferences are drawn based on the results of simulation.

6.3.1 Simulator Design

The architecture of the simulator is shown in Figure 22. The entire simulator is composed

of 6 components.

• The simulation framework is responsible for simulating the processes in the network.

It initializes the processes as well as the other components in the simulator using the

simulation parameters.

• The topology creator is responsible for randomly allocating the processes within a specified

area. It creates a random geometric graph using the processes initialized by the simulation

framework as nodes in the graph. The graph is guaranteed to be connected. The generated

graph represents the topology of the network consisting of all the simulated processes.

• The overlay creator is responsible for creating an overlay on top of the topology created by

the topology creator. In our simulation, we create a spanning tree overlay. This constructs

the hierarchy used by our repeated hierarchical detection algorithm.

• The events generator is responsible for generating the events that occur during the simula-

tion. In our simulation, we do not simulate each process as an independent process/thread,

as this will involve inter-process/thread communication and its delays are not easy to con-
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Figure 22. Architecture of the simulator.

trol. In stead, we adopt a global linearization approach, where events are generated before

the simulation starts. This approach will be described in detail later. The events genera-

tor component also has a subsystem, the predicate generator. It is responsible for adding

events to the events sequence to randomly generate intervals on all processes. These inter-

vals will be processed by the hierarchical detection algorithms to detect predicate within

the network.

• Each events generated by the events generator will be processed by the events handlers.

Both the logical clock and the predicate detector are events handlers. The logical clock

is responsible for ticking the vector clocks at each process when a relevant events is

processed. The predicate detector, on the other hand, handles events related to intervals

and detects predicate within the network.

One important feature of our simulator is that it is capable of simulating the system execu-

tions at the granularity of each individual events. This is crucial because detecting predicates is
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a very time sensitive task. To simulate it, the events needs to be processed when it occurs so the

detection procedure does not get delayed. In our simulation, the events generator component

maintains a global clock which is different from the vector clocks at each process. When the

events are being generated, each of them will be given a timestamp from this global clock. The

events generator also maintains a priority queue of all the simulated events, which sorts all the

events by their timestamp. We define 5 types of events as shown below:

1. Internal events represent events happening locally at a process. Each internal event

is associated with a source process indicating the process on which the internal event

occurs. Internal events will tick vector clock at source processes.

2. Msg send events represent the send events of communication messages in the network.

Each msg send event is associated with a source process and a destination process. Msg

send events will tick vector clock at source processes. They are also piggybacked with the

vector clocks of the source processes after the tick.

3. Msg recv events represent the receive events of communication messages in the network.

They are similar to Msg send events except they tick the vector clocks at destination

processes.

4. Int start events represent the receive events of interval start markers in the network.

Each such event is associated with a source process indicating the process on which the

interval occurs, and a destination process indicating the receiver of the marker which is

also the source process’s parent in the spanning tree. Int start events do not tick vector

clocks.
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5. Int recv events represent the receive events of intervals in the network. They are

associated with the same information as int start events, and they do not tick vector

clocks. Note that this type of events represents the receiving events of both unaggregated

and aggregated intervals.

Without running the hierarchical detection algorithm, there is no way to generate the int start

events and int recv events before the simulation starts. However, we can generate these two

types of events on the fly and insert them into the events priority queue in the events generator

when an interval starts or an interval (aggregated or not) is generated. Because the int start

events or the int recv events will always happen later than the start or generation time of their

corresponding intervals, we guarantee that these two types of events can still be processed at

the time they occur.

6.3.2 Simulation Parameters

• Number of processes (n): To fully evaluate our detection algorithm, it is necessary

to simulate a wide range of the number of processes to test the accuracy of our approach

against scalability.

• Simulation time (t): This parameter controls the simulated duration of the system

execution. With a large t, we can generate more events at each process.

• Mean inter-event time (MIET): The mean inter-event time is the average period of

time between two consecutive events happening in the network. It determines the events

generation frequency. The inter-event time is modeled as an exponential distribution

about this parameter.
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• Lower bound of interval duration (LID): This parameter indicates the lower bound

of the time duration of any interval occurring at any process.

• Upper bound of interval duration (UID): Together with LID, those two parameters

specify the range of the time duration of any intervals occurring during the simulation.

The actual interval duration is modeled as a uniform distribution within this range. This

ensures that the intervals generated during the simulation are of varying lengths. This

matches the real scenario.

• Mean inter-interval time (MIIT): The mean inter-interval time is the average period

of time between two consecutive intervals at any process. This parameter controls the

frequency at which intervals occur at each process. The actual inter-interval time is

modeled as a normal distribution of the mean.

• Mean transmission time (MTT): This parameter indicates the average transmission

time of a message over 1 hop in the simulated network. By changing this value, we can

simulate networks with a wide range of transmission speed. The actual transmission time

is modeled as a normal distribution of the average. A message transmitted over a hops will

incur a transmission delay equal to the sum of a samples from this random distribution.

6.3.3 Simulation Result

The intervals in our simulation are generated in a random way on every process. By sampling

the interval durations and the inter-interval time based on the simulation parameters, intervals

of various lengths are generated at every process with a changing frequency. Since our simulator
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can simulate both the physical time and the logical time, the starting and ending events of

every interval are timestamped with both physical time and the logical vector clock. Thus, our

simulator can precisely tell how many times intervals from all n processes overlap. By gathering

the vector clock timestamps of the ending events of these overlapping intervals, we can uniquely

identify such a set of n intervals by generating an aggregated vector clock using Equation 6.5. We

can then analyse the accuracy of our detection algorithm by comparing the detected predicate

satisfactions against the overlapping sets of intervals checked using physical timestamps. Notice

that, the physical timestamps are never used in the detection of the predicate satisfactions.

Being an approximation approach, our algorithm may generate both false positives and false

negatives as described in Section 6.2.4 and 6.2.3. Thus, we use F-score as a measurement of

our algorithm’s accuracy. The F-score of the detection results is expressed in terms of both

the precision and the recall of the detection results. The precision and recall of the detection

results is defined as

precision =
# true positives

# true positives + # false positives
,

recall =
# true positives

# true positives + # false negatives
.

While measuring the F-score, we weight recall higher than precision to emphasize more on

detecting all occurred predicate satisfactions. We use F2 measure defined as below:

F2 = 5 ∗ precision ∗ recall
4 ∗ precision+ recall
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Figure 23. Showing accuracy of the detection method with (a) increasing message
transmission time(here n = 100, t = 1200s,miet = 10ms), (b) increasing mean inter-event

time(here n = 100, t = 1200s,mtt = 20ms, lid = 20s, hid = 30s).

We first evaluate the impact of the message transmission time and the interval duration

on the detection accuracy. Ideally, with an increasing message transmission time, the accuracy

of our detection method should decrease. Also, with the same message transmission time, the

longer the interval duration is, the less likely the message transmission delays will impact the

detection accuracy. This hypothesis is validated by our simulation as shown in Figure 23(a).

A total of 100 processes are simulated. 3 sets of simulations are carried out with interval

durations in the range of 10s - 20s, 20s - 30s, and 30s - 40s, respectively. In each set of

simulations, the mean transmission time increases from 20ms to more than 6s, and MIIT is

chosen to be close to the interval durations. Notice that, in order to show the trend of the

detection accuracy, we choose the upper bound of the single hop mean transmission time to

be 6s. In practice, it is almost impossible to reach such a high value. Each data point in

Figure 23 is retrieved by running the simulation with 5 different random seeds and taking the
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average value. From Figure 23(a) we can see that, when the mean transmission time is less

than ∼15% of the interval duration, the detection accuracy keeps at a high percentage. When

the transmission time increases beyond 15%, the detection accuracy starts to drop. With a

practical value of MTT, our detection algorithm maintains a high detection accuracy (90%+).

Simulations are also carried out to evaluate the effectiveness of the detection pruning tech-

nique introduced in Section 6.2.4. The parameter MIET determines the event generation

frequency. With a higher frequency, more communication messages are likely to be generated,

thus introducing more causal relationships between events and intervals. This can reduce the

number of excessive detections described in Section 6.2.4. On the other hand, if the events gen-

eration frequency is low, more events and intervals are likely to be incomparable using causal

relationships. We run another set of simulations evaluating the impact of the parameter MIET

on the detection accuracy. The result is shown in Figure 23(b). It shows that the detection

accuracy is not much affected by the increase of MIET . Thus, it shows the effectiveness of the

detection pruning technique.

As a conclusion, these simulations show that our detection method can achieve a very

high (90%+) accuracy when the single hop transmission delay is less than 15% of the interval

duration. The simulations also show that the detection pruning technique introduced in Section

6.2.4 can effectively reduce false positives.



CHAPTER 7

CONCLUSION AND FUTURE WORK

In this work, we gave the motivations for detecting predicates in large-scale locality-driven

networks. We proposed the concept of a locality-aware predicate. This type of a predicate

models a predicate in an area of interest. In a large-scale locality-driven network, such as

modular robotics or WSNs, the following factors:

1. The interactions being local and driven by neighborhood proximity,

2. The high cost of doing a global predicate detection, and

3. The state of a local region better captures local interactions,

make locality-aware predicate detection a relevant and an interesting problem. We showed how

to model the area of interest as a circular region (BFST rooted at Pr), and then proposed

Algorithm 1 to efficiently construct the overlay network. This is the first distributed algorithm

to construct a BFST within a local region in a graph. We also designed Algorithm 2 to efficiently

take a snapshot within the area of interest in a non-FIFO network. This is the first algorithm

to construct a consistent sub-cut defined by a region in a larger graph. We then defined two

classes of locality-aware predicates: 1) conjunctive LAP, and 2) relational LAP. Finally, we gave

an algorithm Stable LAP Detection for detecting both classes of LAPs, based on the recorded

snapshot. The complexity analysis of all these algorithms showed their performance is scale-
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free. Hence, these algorithms have great potential for observing local regions within large-scale

distributed systems such as modular robotics and WSNs.

Furthermore, we extended the problem of LAP detection to include unstable conjunctive

predicates. Focusing on detecting unstable conjunctive LAP, we developed a scale-free solution

in which a regional vector clock in the detection region is built on-the-fly and the predicate

is detected by an interval-based algorithm (1). More importantly, we developed the encoded

vector clock (EVC) technique that optimizes the detection algorithm by reducing the storage

cost at every process in the whole network. EVC makes detecting unstable conjunctive LAP

more practical in large-scale systems.

For detecting unstable predicates within large-scale locality-driven networks, we also pro-

posed the first decentralized hierarchical algorithm that repeatedly detects all occurrences of

Definitely(Φ) for a conjunctive predicate Φ. Such an algorithm is essential for large-scale sys-

tems, particularly when the system is subject to node crashes. Our algorithm detects the

predicate at each level in the hierarchy, and thus is able to detect a partial predicate of the

global predicate. This enables our algorithm to easily resume the detection after a node crashes

or moves. Compared with the only other algorithm capable of doing repeated detection (5),

our algorithm distributes a lower time cost, and the same space cost, across all processes in the

network, and reduces the number of control messages significantly.

In addition, we proposed an algorithm that is capable of detecting predicates in the In-

stantaneously modality even when synchronized physically clocks are not available. With a

hierarchical detection approach and two approximation techniques, our algorithm reaches a
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very high detection accuracy when the single hop transmission delay is much less than the

duration of the intervals. In addition, our detection algorithm incurs only a small cost on every

process, since the hierarchical detection procedure is decentralized onto all processes in the

network. This makes our detection algorithm a natural choice for performing event detections

in resource-constraint systems where physically synchronized clocks are not available.

These algorithms we designed in this work provide a suite of tools for predicate detection in

large-scale locality-driven networks. As for the future work, this work can be further explored

in the following directions.

• Extend the Instantaneous detection algorithm so that it has the similar fault-tolerance

feature as the hierarchical repeated detection.

• Perform physical world experiments on the hierarchical repeated detection and the In-

stantaneous detection algorithms to test their performances in more depth.

• Extend the hierarchical repeated detection methodology and the Instantaneous detection

algorithm to also detect unstable relational predicates.
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