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SUMMERY 

 

Rotating machines are widely used in various industrial applications.  Implementation of 

condition based maintenance for rotating machines is becoming necessary in order to 

prevent failure, increase availability, and decrease maintenance cost.  Rotating machine 

fault detection and diagnostics is a critical component of condition based maintenance.  

In order for condition based maintenance to work for rotating machines, especially for 

new designs and materials, effective and advanced rotational machine fault detection and 

diagnostic methods and tools need to be developed.  In developing rotating machine fault 

detection and diagnostics algorithms, one critical issue is signal processing based fault 

feature extraction or quantification.  Currently, vibration signal based techniques are the 

most widely used techniques in rotating machinery fault detection and diagnosis.  

However, the current vibration signal processing methods for rotating machine fault 

detection and diagnostics have their own limitations.  In practice, the faulty vibration 

signals are often buried into the vibration signals generated by the healthy components 

and mechanical background noises.  Investigating and developing new advanced signal 

processing methods based vibration signal fault feature extraction methods and fault 

detection methods and tools is necessary.  To do so, two advanced signal processing 

methods, empirical mode decomposition and interference cancellation algorithm has been 

investigated and developed in this dissertation.   

 

Recently, acoustic emission signal based methods are attracting researchers’ interests 

because acoustic emission signals have some advantages over the vibration signals.   
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SUMMERY (continued) 

Unlike vibration signals, advanced signal processing techniques for extracting fault 

features from acoustic emission signals have not been well developed for rotating 

machine fault detection and diagnostics.  Development of acoustic emission signal 

quantification methods and diagnostic methods and tools are in a great need.  In this 

dissertation, acoustic emission signal quantification methodologies using Laplace wavelet 

and empirical mode decomposition have been developed.       

 

Plastic bearings are widely used in medical applications, food processing industries, 

semi-conductor industries, and aircraft components.  Unlike their steel counterparts, 

effective fault diagnosis methods for plastic bearings have not been developed.  In 

reviewing steel bearing fault diagnostic approaches reported in the literature, a common 

practice of using vibration fault features to diagnose all bearing faults in one step has 

been observed.  The vibration fault features are not equally sensitive to all bearing faults.  

Moreover, the fault impulses generated by the plastic bearings are more random and 

weaker than those of the steel bearings.  Therefore, developing effective bearing fault 

diagnostic method using different fault features at different steps becomes more attractive.  

In this dissertation, a two-step data mining based approach for plastic bearing fault 

diagnostics using vibration based condition indicators (CIs) have been developed. 

 

To validate the effectiveness of the developed diagnostic methods and tools, seeded fault 

test data are needed.  To obtain seeded fault test data, a split-torque type gearbox test rig 

has been designed and developed.  The seeded fault experiments have been designed and  
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SUMMERY (continued) 

conducted on both the split-torque gearbox test rig and the bearing run-to-failure test rig.  

The developed fault detection and diagnostic methods and tools have been validated 

using the seeded fault test data collected. 

 

Specifically, the contributions of the dissertation are summarized as follows: 

(1) An empirical mode decomposition based vibration feature and condition 

indicator extraction methodology for rotating machinery fault detection and 

diagnosis has been developed.  

(2) A two-step vibration signal based bearing fault diagnostics methodology for 

plastic bearings has been developed.   

(3) A vibration signal based gear fault detection system based on interference 

cancellation has been developed.   

(4) A Laplace wavelet based acoustic emission signal quantification methodology 

for rotating machinery fault detection and diagnostics has been developed.   

(5) An empirical mode decomposition based acoustic emission quantification 

methodology has been developed.   

(6) A notional split-torque gearbox test rig has been designed and developed.   

(7) Experiments have been designed and implemented on the custom designed 

notional split-torque gearbox test rig and bearing run-to-failure test rig.  Both 

vibration and acoustic emission signals have been collected during the 

experiments.  The effectiveness of the developed methodologies has been 

validated by the bearing and gear seeded fault test data. 
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1 INTRODUCTION 

 

1.1 Research Motivation 

 

Condition based maintenance (CBM) is a maintenance strategy, which guides the 

maintenance actions based on the measured current and predicted future machine states.  

The implementation of CBM could prevent machine failure, increase reliability of the 

whole system, and decrease maintenance cost.  Thus CBM is becoming widely utilized in 

many real industrial applications such as helicopter transmission system, wind turbine 

systems, and etc.  In general, the implementation of CMB could be divided into three 

main steps [1]:  

(1) Relevant signals are measured by the corresponding sensors such as 

accelerometers, hall sensors, torque sensors, and so on.  

(2) Collected signals are pre-processed by using signal processing methods and 

different condition indicators (CIs) are extracted to present the states of the 

monitored rotating components such as gears, bearings, shaft, and so on. And 

then fault detection, diagnostics and prognostics algorithms will be applied to 

analyze the CIs.  

(3) Decide the maintenance policies based on the diagnostic results.  

 

To design an efficient CBM strategy, effective rotational machine fault detection and 

diagnostic methods and tools need to be developed.  Especially, when new designs, new 

materials, and new sensor technologies are used, the effectiveness of the current fault 
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detection and diagnostic algorithms needs to be improved and advanced fault detection 

and diagnostic methodologies need to be developed.  

 

In developing rotating machine fault detection and diagnostics methods and tools, one 

critical issue is the development of effective signal processing based fault feature 

extraction or quantification.  In general, the major techniques used in rotating machinery 

fault detection and diagnostics include: vibration signal based methods, temperature 

analysis, current signature analysis, oil debris analysis, and acoustic emission signal 

based techniques.  Among these techniques, vibration signal based techniques are the 

most widely used techniques in rotating machine fault detection and diagnosis.  However, 

the current vibration signal processing methods for rotating machine fault detection and 

diagnostics have their own limitations.  In practice, the faulty vibration signals are often 

buried into the vibration signals generated by the healthy components and mechanical 

background noises.  Investigating and developing new and advanced signal processing 

methods based vibration signal fault feature extraction methods and fault diagnostic 

methods and tools are necessary.   

 

Recently, acoustic emission (AE) sensors are introduced to rotating machine fault 

detection and diagnostics.  As reported in [2], in comparison with vibration signals, 

acoustic emission signals have the following advantages: (1) insensitive to structural 

resonance and unaffected by typical mechanical background noises, (2) more sensitive to 

activities of faults, (3) provide good trending parameters, (4) localization of 

measurements to the machine being monitored, i.e., AE signals are sensitive to the 
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location of the faults.  Currently, most commonly used AE signal quantification methods 

are the statistical methods used in the non-destructive testing (NDT) and the AE based 

fault features are root mean square (rms), peak value, rise time, rise time slope, and 

duration.  Few advanced signal processing methods have been investigated and 

developed for AE signal quantification and diagnostics.  Thus developing acoustic 

emission signal quantification methods and diagnostic algorithms are in a great need. 

 

Plastic bearings are widely used in medical applications, food processing industries, 

semi-conductor industries, and aircraft components[3-5].  In comparison with traditional 

steel bearings, plastic bearings have following advantages: (1) corrosion resistance; (2) 

light weight; (3) non-metallic and non-magnetic; (4) lubrication free; (5) consistent 

coefficient of friction.  Unlike their steel counterparts, effective fault diagnosis methods 

for plastic bearings have not been developed.  In reviewing steel bearing fault diagnostic 

approaches reported in the literature, a common practice of using vibration fault features 

to diagnose all bearing faults in one step has been observed.  The vibration fault features 

are not equally sensitive to all bearing faults.  Moreover, in comparison with steel 

bearings, plastic bearings are more loosely assembled and easier to be deformed.  These 

inherent properties of plastic bearings add more degrees of randomness into the behavior 

of the fault impulses and weaken the fault impulse signals than those of the steel bearing.  

Therefore, developing effective bearing fault diagnostic method using different fault 

features at different steps becomes attractive.   
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1.2 Goal and Objectives 

 

The goal of this dissertation is to develop effective rotating machine fault diagnostic 

methods and tools using vibration and acoustic emission sensors and validate the methods 

and tools using seeded fault test data collected from both vibration and acoustic emission 

sensors.  In particular, the following objectives have been achieved:  

(1) Development of vibration signal based fault feature extraction methods and 

tools utilizing advanced signal processing methods.  

(2) Development of acoustic emission signal quantification methods using 

advanced signal processing methods. 

(3) Development of data mining based rotating machine fault diagnostics using 

both vibration and acoustic emission signals. 

(4) Design and development of split torque gearbox test rig and real seeded fault 

experiments for validating the developed methodologies.  

(5) Validation of the developed fault detection and diagnostic methods and tools 

using seeded fault test data. 

 

1.3 Contributions of the Dissertation 

 

The contributions of this research are summarized as follows: 

(1) An empirical mode decomposition (EMD) based vibration feature and CI 

extraction methodology for rotating machinery fault detection and diagnosis 

has been developed.  The methodology utilizes the EMD technique to 
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decompose the vibration signals into intrinsic mode function (IMF) 

components.  And then a two-dimensional fault features are extracted based on 

the decomposed vibration signals.  Two case studies, gear fault diagnosis on 

the developed STG type gearbox and full ceramic bearing fault diagnosis on a 

bearing run-to-failure test rig are used in this dissertation to demonstrate the 

effectiveness of the developed methodology.   

(2)  A two-step vibration signal based bearing fault diagnostics algorithm has been 

developed.  This approach is developed by integrating the statistical method, 

pattern recognition, and signal processing techniques. The two-step approach 

utilizes envelope analysis and empirical mode decomposition to pre-process 

vibration signals and extract frequency domain and time domain fault features 

as condition indicators for plastic bearing fault diagnosis.  In the first step, the 

frequency domain condition indicators are used by a statistical classification 

model to identify bearing outer race faults.  In particular, new bearing fault CIs 

extracted using EMD method are developed for classification of bearing non-

outer race faults at the second step.  Seeded fault tests on plastic bearing outer 

race, inner race, balls, and cage are conducted on a bearing diagnostic test rig 

and vibration signals are collected.  The effectiveness of the two-step approach 

is validated using real plastic bearing seeded fault testing data.   

(3) A vibration signal based gear fault detection system based on interference 

cancellation has been developed.  The narrowband interference cancellation is 

used to remove the narrowband interference signals, which are the periodic 

components of the vibration signals.  And then a threshold based de-noising 
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technique is applied to remove the wideband interference signals, which are the 

random background noise.  The simulated signal and the real seeded gear fault 

on the developed STG type gearbox are used to demonstrate the developed 

methods under a dynamic operation conditions.  Both the simulation results 

and the experimental results have shown the effectiveness of the proposed 

methodology. 

(4) A Laplace wavelet based AE signal quantification methodology for rotating 

machinery fault detection and diagnostics has been developed.  The 

effectiveness of the extracted AE features for gear fault detection has been 

validated by using gear seeded fault signals with three damage mode of the 

designed STG gearbox.  The correlation between the AE based fault features 

and the gear damage levels has been also investigated.  In total, four gear 

damage levels are investigated: 0% tooth loss (healthy gear), 20% tooth loss, 

50% and 100% tooth loss.  The energy ratio value of the Laplace wavelet 

processed signal shows a consistent correlation between the AE feature values 

and damage levels under different loading conditions. 

(5) An EMD based AE quantification methodology and a data mining based 

bearing fault diagnostic tool have been developed.  The methodology 

incorporates a threshold based de-noising technique into EMD to increase the 

signal-to-noise ratio.  Multiple features are extracted from the de-noised signals 

and then fused into a single compressed AE feature.  The compressed AE 

features are then used for fault detection based on a statistical method.  The 

statistical method does not require AE data for damaged state.  A threshold for 
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separating the damaged states and the healthy states is determined by using 

only the compressed AE feature of the healthy states.  A gear fault detection 

case study has been conducted on a notional split-torque gearbox and real gear 

fault AE data have been collected to demonstrate the effectiveness of the 

methodology.  The case study results have shown that the developed method is 

effective in extracting the AE based fault features for gear fault detection.   

(6) A split-torque gearbox test rig has been designed and developed.  

(7) Experiments have been designed and conducted on the custom designed 

notional split-torque gearbox test rig and bearing run-to-failure test rig. 

 

1.4 The Outline 

 

The reminder of the dissertation is outlined next. 

 

Chapter 2 provides the literature review on rotating machinery fault detection and 

diagnosis.  The techniques used in rotating machinery fault detection and diagnostics and 

the general information on gear failure modes and bearing failure modes are also 

provided in this chapter.  

 

Chapter 3 gives the detailed description of the developed notional split torque gearbox 

test rig.  The test rig contains three main parts: notional STG type gear transmission 

system, sensors and data acquisition systems, and motor drive and loading systems.  The 
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development and the implementation of different components of the STG test rig are 

presented.    

 

Chapter 4 first presents literature review on the vibration based techniques on rotating 

machinery fault detection and diagnostics.  The theoretical basis used in this chapter is 

provided.  And then the developed vibration based methodologies and the real seeded 

fault test are explained. 

 

In Chapter 5, theoretical basis used in developing AE signal based fault detection and 

diagnostics is provided.  It is then followed by a comprehensive review on the AE signal 

based methodology on rotating machinery fault detection, and diagnostics.  The 

developed AE based methodologies and the real seeded fault tests are explained in this 

chapter. 

 

Chapter 6 concludes the dissertation and gives the future research. 
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2 LITERATURE REVIEW 
 

2.1 Rotating Machine Fault Detection and Diagnostics 

 

Fault detection detects the status of the machine, while diagnosis identifies what types of 

fault and which components of the machine being monitored have the fault. In general, 

there are two popular types of techniques for machinery fault detection and diagnostics.   

 

One rotating machine diagnostic technique is physical model based method.  These 

techniques establish mathematical model of the machine to be monitored and then by 

monitoring the change of the model parameters or the residual signal between the model 

and the collected signal the machine fault can be classified.  Successful physical model 

based rotating machine fault detection and diagnostics applications have been reported in 

[6-15]. As stated in [1], model-based approaches can be more effective and accurate than 

other model-free approaches if a precise model can be established.  However, in real 

applications, to establish a precise model for the monitored rotating machine is 

computational expensive.  Moreover, for complex systems it is infeasible to obtain an 

accurate model.  Therefore, the performances of the model-based techniques are 

degraded in many real applications.  Another drawback of the model-based techniques is 

that different models are needed to be established for different applications.  Thus it is 

hard to apply the model-based techniques to different industrial applications.   

 



 

10 

 

Another rotating machine diagnostic is data mining or data driven based method.  Data 

mining based methods use signal processing methods to extract the fault features from 

the collected sensor data.  And then by analyzing the signature of the fault features, 

machine faults are detected and diagnosed.  Data mining based methodologies are widely 

applied in machinery fault detection and diagnosis.  Data mining based methods discover 

rotating machine faults from the historic data and does not necessarily need to understand 

the physics of the monitored applications.  Thus the complexity of designing the 

diagnostic methodology is greatly reduced, especially for the new and complex systems.  

Data mining based methods can be easily applied to brand new and complex systems and 

adapted to applications with different system parameters. Successful data mining based 

machinery fault detection and diagnostics applications have been reported by [16-29].  

Unlike the model-based methods, data mining based methods do not necessarily need to 

understand the physical model of the monitored applications.  Thus the complexity of 

design the methodology is greatly reduced, especially for the complex systems.  Data 

mining based approaches are more easily applied in complex systems and adapt to 

applications with different system parameters.   

 

2.2 Rotating Machinery Fault Detection and Diagnostic Techniques 

 

Currently, five types of sensor technique are widely used in rotating machinery fault 

detection and diagnostics.  They are temperature analysis, lubrication based analysis, 

motor current signature analysis, vibration signal based analysis, and AE signal based 

analysis.    
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Temperature based analysis is a simple fault detection technique and provides limited 

information about the monitored machinery.  When the transmission system works under 

abnormal situation, the temperature will increase dramatically.  By monitoring the sharp 

increasing temperature, the faulty states of the rotating machinery can be determined.  

However, by using only the temperature monitoring technique it cannot provide 

information in rotating machinery fault diagnostics.  Therefore, usually temperature 

analysis is used along only for rotating machinery fault detection.   

 

Lubricant based analysis method analyzes the physical wear particles or chemical 

contaminants by using sensors such as, chip detectors, spectrographic equipments, and so 

on.  Lubricant based analysis is applied to both the gear  and bearing fault detection, 

diagnostics, and prognostics both online monitoring and off-line monitoring[30].  By 

measuring the size and the shape of the debris, the oil debris based technique can not only 

the fault detection, but also the fault types and the wear levels[31].  Successful 

applications of lubricant analysis based techniques on rotating machine fault detection 

and diagnostics are reported in [32-34] .  According to a research reported by [35], oil 

debris monitoring techniques usually provide more reliable detection on the early pitting 

failure detection than the vibration signal based techniques.  However, one of the 

disadvantages of the oil debris monitoring is that data collected from the oil debris 

sensors do not contain the rotating information.  So it is impossible to use the lubricant 

analysis based techniques to locate the fault in a complex mechanical system. 
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Motor current signature analysis is widely applied for detecting and diagnosing both 

electrical machine electrical faults, such as broken rotor bars, airgap eccentricities and so 

on, and mechanical faults, such as misalignment, bearing faults and so on.  The 

effectiveness of current signature analysis based methods for motor electrical faults has 

been investigated in [36-40].  Also, successful applications on mechanical fault diagnosis 

in the electric machines using current signals have been reported in [41-49].  More recent 

comprehensive investigation paper on the diagnostic techniques including motor current 

analysis were given by [50, 51].  Mechanical faults could be identified by the current 

analysis techniques as the defects could cause torque change.  The torque change could 

affect the motor current.  Thus the fault signature could be reflected by the current 

signature.  One advantage in using current signature analysis for rotating machine fault 

detection and diagnostics is that it does not need additional sensors comparing with the 

other four techniques.  However, one difficulty in using current signature analysis for 

mechanical fault diagnosis is the sensitivity of the current signals collected from the 

motor.  When the mechanical components are not on the motor, the torque change caused 

by the mechanical defects may have little impact on motor current, especially, if a 

flexible coupling is used to connect the motor drive and the mechanical transmission 

system. 

 

Vibration signal based techniques are the most widely applied to rotating machinery fault 

detection and diagnostics.  When there is fault developing inside rotational machinery, 

the signature of the collected vibration signal is changing [52].  According to [52], 

vibration signals contain almost all the mechanical signature information.  By properly 
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selecting signal processing methods to process the vibration signal and designing pattern 

classification methodology and predicting algorithms, the fault in the rotating machinery 

can be detected, diagnosed and predicted. Comprehensive reviews on vibration based 

techniques for rotating machine fault detection and diagnostics can be found in [53, 54].  

A more detailed literature review of vibration signal based techniques can be found in 

Section 4.1 of Chapter 4.  

 

Recently, AE signal based techniques have gained some popularity in machine fault 

diagnosis and prognosis.  According to [55], AE is defined as the range of phenomena 

that results in generation of structure-borne and fluid-borne (liquid, gas) propagating 

waves due to the rapid release of energy from localized sources within and /or on the 

surface of a material.  By properly selecting signal processing methods to process the AE 

signal and designing pattern classification methodology and predicting algorithms, the 

fault in the rotating machinery can be detected and diagnosed.  The application of AE 

technique can be found in many successful applications, such as, engine fault detection 

[56], monitoring the precession manufacturing [57], and wear monitoring and control 

[58]. Recently AE signal is beginning to attract the researchers’ attention on the machine 

healthy monitoring [59-65]. Typical sources of AE waveforms generated in the rotational 

machinery include [60, 66]: (1) Plastic deformation, (2) Micro-fracture, (3) Wear, (4) 

Bubble, (5) Friction, and (6) Impacts.  In comparison with vibration signal, acoustic 

emission signal has the advantages as listed below[2]: 

(1) Insensitive to structural resonances and unaffected by typical mechanical 

background noise, 
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(2)More sensitive to activity from faults,  

(3) Provides good trending parameters, 

(4) Localization of measurements to the machine being monitored. 

 

These advantages make the acoustic emission based fault diagnostics technique 

potentially more competitive than the vibration based fault diagnostics technique for the 

rotating machine fault detection and diagnostics.  A more detailed literature review of 

vibration signal based techniques can be found in Section 5.1 of Chapter 5.  
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3 DESIGN AND DEVELOPMENT OF NOTIONAL SPLIT TORQUE 

GEARBOX TEST RIG 

 

According to [67], the most common gear transmission system in a helicopter is an 

epicyclical gear transmission system, or planetary gear transmission system, which 

features an output shaft driven by several planets.  For example, UH-60A Black Hawk 

helicopter uses this type of gear transmission system.  In a planetary gear transmission 

system, a central sun gear is surrounded by two or more rotating planets in the planetary 

gear system.  The torque is transmitted from the central sun gear through the planets 

gears to the planet carrier and from the planet carrier to the main rotor shaft.   

 

The requirement of a high energy density transmissions (lower weight) in helicopters has 

lead to the development of the split torque gearbox (STG) to replace the traditionally 

planetary gearbox by the drive drain designer [68].  In a split torque gear train design, 

multiple pinions connected by a parallel shaft arrangement mesh simultaneously with the 

central gear transmit the torque.  In comparison with traditionally planetary gearbox, STG 

potentially offers the following benefits [68]: (1) High ratio of speed reduction at final 

stage, (2) Reduced number of speed reduction stages, (3) Lower energy losses, (4) 

Increased reliability of the separate drive paths, (5) Fewer gears and bearings, (6) Lower 

noise.   

 

Due to the advantages on the STG type gear transmission over the traditional planetary 

gear transmission system the helicopter OEMs will develop their new products using the 

STG type gear transmission system.  For example, the Comanche helicopter was 
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designed with a STG, and the new Sikorsky CH-53K will incorporate the STG design to 

transmit over 18,000 hps to the rotor blades. It is likely that STG will be incorporated into 

more designs in the future [69]. 

 

According to [70], because of the limited experience in building helicopter with STG, 

there is no condition based monitoring data on this type of gear box.  In order to 

investigate the current gear fault detection, diagnostic algorithms and develop new gear 

fault detection methodology, a notional STG type gearbox test rig was designed and 

developed.  The main purpose of developing the notional split torque gearbox was to 

simulate the simultaneously meshing behavior of the split torque gear transmission train. 

The whole system is shown in Figure 1.  As shown in the following Figure, the test rig 

contains three main parts: notional STG type gear transmission system, sensors and data 

acquisition systems, and drive and loading systems. 
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Figure 1. The notional STG type gearbox 

 

 

 

3.1 Notional STG Type Gearbox 

 

According to [71], in a STG type gear transmission train, there are several pairs of gears 

meshing simultaneously with the output shaft driving gear.  Generally speaking, there are 
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several gear types.  They are spur gear, internal ring gear, helical gear, double helical 

gear, face gear, worm gear, hypoid gear, straight bevel gear, spiral bevel gear, and screw 

gear.  Since the primary design considerations in this paper were to simulate the 

simultaneously gear meshing behavior in a helicopter STG type gear transmission system, 

three gear types, spur gear, helical gear, and double helical gear, could be used in the 

notional STG type gearbox design.  To design and development of the notional STG type 

gearbox, two main factors were considered.  The one is the manufacturability and the 

other is how easy the gear system is assembled.  The first factor determines the costs of 

the whole system while the second factor affects the difficulty and feasibility of the 

experimental design under academic laboratory conditions.  Among the three gear types, 

spur gear is the simplest gear to design and manufacture and the easiest to assemble over 

the other two gear types.  In this research, spur gears were chosen and for both the input 

side and output side of the gearbox, parallel shaft layout is used.  The materials used to 

produce the spur gears are the common Carbon steel.  The schematic drawing of the 

notional STG type gearbox is shown in Figure 2.    
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Figure 2. Schematic drawing of the notional STG type gearbox 
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On the input side, the input driving gear is a 40 teeth spur gear which drives three input 

driving gear that are 72 teeth spur gears.  On the output side, three output driving gears 

are 48 teeth spur gears which drive a 64 teeth spur gear.  Major gear parameters are listed 

in Table I. 

 

 

 

Table I. Major Parameters of the gears 

 

 40 Tooth 72 Tooth 48 Tooth 64 Tooth 

Diametric Pitch (dp) 16.000 16.000 16.000 16.000 

Pressure Angle (degree) 20.000 20.000 20.000 20.000 

Pitch Diameter (inch) 2.500 4.500 3.000 4.00 

Face Width (inch) 0.75 0.75 0.75 0.75 

Circular Thickness (inch) 0.098 0.098 0.098 0.098 

Circular Pitch (inch) 0.1963 0.1963 0.1963 0.1963 

Addendum (inch) 0.0625 0.0625 0.0625 0.0625 

Dedendum (inch) 0.0781 0.0781 0.0781 0.0781 

 

 

 

The contact ratio of the gear pairs is also an important parameter.  It is defined as the 

average number of teeth in contact during the period in which a tooth comes and goes out 

Parameters 
Gear 
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of contact with the mating gear.  The contact ratio of the spur gear pairs can be calculated 

by using the following equation, 

   2 2 2 2

1 1 2 2 sin

cos

a b a b

c

r r r r C
ContactRatio

P





   
                                     (1) 

where,   is the pressure angle, 1 2,a ar r  are the addendum radius of gear 1 and gear 2, 

respectively, which equal to the pitch radius pluses addendum, 1 2,b br r  are the circle radius 

of gear 1 and gear 2, respectively, which equal to the pitch radius multiples cos , C is 

the center distance and Pc is the circular pitch. 

 

For the 40-72 teeth pair, 1

2.5
0.0625 1.3125

2ar     inches, 2

4.5
0.0625 2.3125

2ar     

inches, 1

2.5
cos20 1.1746

2br    inches, 2

4.5
cos20 2.1143

2br    inches, 3.543C   

inches, 0.1963cP   inches.  The contact ratio is 1.68. 

 

For the 48-64 teeth pair, 1

3
0.0625 1.5625

2ar     inches, 2

4
0.0625 2.0625

2ar     inches, 

1

3
cos20 1.4095

2br    inches, 2

4
cos20 1.8794

2br    inches, 3.625C   inches, 

0.1963cP   inches.  The contact ratio is 1.54.  

 

The velocity ratio is calculated by using the following equation, 

1 2

2 1

N
VelocityRatio

N




                                                        (2) 

where, 1  is the rotational speed of gear 1 and 2  is the rotational speed of gear 2.  N1 is 

the number of the tooth of gear 1 and N2 is the number of the tooth of gear 2.  For the 40-
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72 teeth pair, the velocity ratio is 1.800.  For the 48-64 teeth pair, the velocity ratio is 

1.333.  The velocity ratio from the input driving gear to the output driven gear is 2.4.  

That means, if the input speed is set to be 60 Hz then the output speed of the gearbox is 

25 Hz.  

 

3.2 Sensors and Data Acquisition Systems 

 

The schematic of the data acquisition system is shown in Figure 3.   

 

 

 

 

Figure 3. Schematic of the experimental setup 

 

 

 

7 Channels 

AC Motor 

NI 

PCI-4472B  

Filters 

PC 

Motor 

Controller 

Tachometer 

Torque 

Sensor 

Nominal STG 

Type Gearbox 
Magnetic 

Loading 

 

Current 

Amplifier 

Accelerometers AE Sensors 

PA 

PCI-2 

 

Amplifier 
2 Channels 



 

23 

 

For gear fault detection and diagnostics, high precision speed information is not 

necessarily needed.  Commonly once per revolutionary signal is enough.  To simplify the 

whole system design, a photo tachometer, which generates 1 pulse per revolution of the 

shaft, rather than high resolution encoder, which generates N pulses per revolution of the 

shaft, was installed to measure the rotational speed of the motor.   

 

For vibration signal collection, basically there are three types of transducer could be used.  

They are proximity probes, velocity transducers, and accelerometers.  Proximity probes 

measure the relative displacement between the shaft and casing.  Velocity transducers 

output a signal, which is proportional to absolute velocity.  Accelerometers produce a 

signal, which is proportional to absolute acceleration.  According to [72], the proximity 

probe has the following problems: 

(1)  It is sometimes impossible to fit this type of probe if the machine has not been 

prepared for it during the initial design. 

(2) Probe bracket resonances can be a problem with high speed machines and 

should be avoided if meaningful results are to be obtained 

(3) The target surface, if a rotor journal, should not have an eccentricity or surface 

roughness greater than 6 um pp. 

(4) In addition to mechanical run-out, it is possible that the shaft exhibits magnetic 

run-out effects. This is not normally a problem, but where it is, the effect is 

best removed by de-gaussing the rotor. 

(5) The sensitivity is dependent on the material of the target surgace and each 

application requires a separate calibration. 
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(6)  A regulated power supply should be available to feed the electronics, otherwise 

the sensitivity will not be constant, i.e. a simple battery supply will not be 

adequate. 

(7) Care should be taken to ensure that the probe will operate over its linear range. 

 

The velocity sensors usually have very low noise levels and often utilized for machine 

balancing.  Their frequency range is usually limited to 10 to 1000Hz.  The accelerometers 

are small and easy to be installed and most importantly they have the highest dynamic 

range.  Based on the consideration above, accelerometer was chosen to measure the 

vibration in the gearbox test rig.  The 603C01 wide range accelerometer produced by 

PCB Piezotronics Inc. is used.  A picture of the sensor is shown in Figure 4.  The major 

parameters of this type of sensor are listed in Table II.  More detail information on this 

type of sensor can be found in [73]. 
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Table II. Parameters of the 603C01 accelerometer  

 

Parameters Value 

Sensitivity (±10%) 10.2 mV/(m/s
2
) 

Measurement Range ±490 m/s
2
 

Resonant Frequency 25 kHz 

Broadband Resolution (1 to 10,000 Hz) 3,434 μm/s
2
 

Non-Linearity ±1% 

Overload Limit (Shock) 49,050 m/s
2
 

Settling Time (within 1% of bias) ≤2.0 s 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. The model 603c01 accelerometer 

603c01 type accelerometer 
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The frequency range for the 603C01 accelerometer is 0.5 Hz to 10 kHz, which is wide 

enough to cover the resonance frequency of the mechanical system.  Usually, the 

resonance frequency for the mechanical system is below 3 kHz.  According to the user 

manual of the model 603C01 user manual, there are six ways of mounting the sensors 

[73].  They are stud mounting, adhesive mounting, mounting pad, flat magnetic mounting, 

dual rail magnetic mounting and hand-held probe.  The effects on high frequency range 

of different mounting configurations are listed in [73].  Among these mounting methods, 

the stud mount configuration has the highest frequency response range which is up to 

nearly 10 kHz.  Based on this consideration, we choose the stud mounting method.   In 

the experimental setup, totally seven accelerometers, placed on different locations on the 

surface of the framework of the gearbox were used to collect the vibration signal of the 

designed notional STG type gearbox. 

 

For AE signals, a WD type AE sensor produced by Physical Acoustics Co. was used.  A 

picture of the sensor is shown in Figure 5.  The major parameters of this type of sensor 

are listed in Table III.  More detail information can be found in [74].  The operation 

frequency range for this type of sensor is 100 kHz to 900 kHz.  It covers the AE source 

frequency range.   
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Figure 5. The WD type acoustic emission sensor 

 

 

 

 

 

Table III.  Parameters of the WD type acoustic emission sensor 

 

Parameters Value 

Peak Sensitivity (Ref v/(m/s)) 96 dB 

Operating Frequency Range 100-900 kHz 

Shock Limit 500 g 

Temperature Range -35 to 75 
o
C 

 

 

WD type AE sensor 
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For the designed notional STG type gearbox test rig, there are seven channels 

accelerometers, one channel tachometer, and two AE sensors were used.  To select a 

suitable data acquisition card, the highest sampling frequency of the card is the most 

important thing to be considered.  Based on Shannon theory, the sampling frequency 

should be at least twice of the bandwidth of the signal.  The highest frequency of the 

tachometer is 60 Hz while that of the accelerometers and the AE sensors is 10 kHz and 

900 kHz, respectively.  For collecting accelerometer and tachometer signals, the data 

acquisition card PCI-4472B produced by National Instrument Co. is used.  PCI-4472B is 

an eight channel dynamic signal acquisition card with 24-bit resolution, ±10 v input range 

and the maximum sampling frequency is 102.4 kHz, which is ten times of the highest 

response frequency of 10 kHz of the accelerometer.  For the AE sensors, the data 

acquisition card PCI-2 produced by Physical Acoustics Co. is selected.  The PCI-2 is a 

two channel data acquisition card with 18-bit resolution and the maximum sampling 

frequency is 40 MHz, which is forty times of the highest response frequency of the AE 

sensors.  Totally seven accelerometers and two AE sensors are mounted on the frame of 

the gearbox.  The locations of the sensors are shown in Figure 6.  
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Figure 6. The locations of the sensors 

 

 

 

3.3 Drive and Loading Systems 

 

Basically speaking, there are two types of motor, DC motor and AC motor.  Compared 

with DC motor, AC motors are more cost effective and mechanically robust.  Since the 

major purpose in this test rig design is for gear transmission system fault detection, 

diagnostics and the operation under high precision speed is not the major concern.  A 3 

HP three phase induction AC motor with a maximum speed of 3600 rpm is used to drive 

the notional gearbox and VFD S1 type converter produced by Delta Cop. is used to drive 
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the motor.  To accommodate for shaft misalignment and reduce the vibration 

transmission, a disc type coupling is utilized to transmit the torque from the motor to the 

driving shaft.  A magnetic loading system is controlled by a power supply and the load 

can be adjusted by changing the output current of the amplifier.   
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4 VIBRATION SIGNAL BASED ROTATING MACHINERY FAULT 

DETECTION AND DIAGNOSIS 

 

4.1 Introduction 

 

For rotating machinery fault detection and diagnostic, vibration signal based techniques 

are the most widely applied technique comparing to the other sensor signal based 

techniques, such as oil debris, temperature, motor current and acoustic emission and so 

on.  Generally speaking, rotating machine faults such as gear faults, bearing faults and so 

on, can be classified as distributed faults, such as wear, and localized faults, such as root 

crack, chipping, and tooth loss and so on.  The distributed faults increase the transmission 

errors, while the localized faults not only affect the transmission accuracy but also cause 

catastrophic failure of the transmission system.  In this dissertation, the research was 

conducted on only the rotating machinery localized faults.  Throughout the dissertation, 

the gear faults and bearing faults refer to gear localized faults and bearing localized faults.  

 

In general, there are three categories of vibration signal processing techniques for rotating 

machinery fault detection and diagnostics.  They are frequency domain methods, time 

domain methods, and time-frequency methods.  The early researches on vibration signal 

based gear fault detection and diagnostics were focused on frequency domain analysis.  

Spectral analysis was applied for rotational machinery fault detection and diagnostics.  

The development of the Fast Fourier Transform (FFT) algorithm [75] and the 

computational capability of the digital processor made the real-time spectral analyze 

possible.  And thus the frequency domain methods were widely applied to the rotational 
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machinery fault detection and diagnostics.  Successful applications could be found in [76, 

77].  The spectral analysis assumes that the signal is stationary.  However, in [78], the 

author presented that localized machine faults introduce non-stationary property into the 

vibration signal.  For time domain methods, simple statistical parameters, such as root 

mean square value, peak value, kurtosis value of the measured time domain raw vibration 

signal could be easily utilized to capture the fault symptoms for rotational machinery 

fault detection.  The calculation of these values is simple and direct.  However, in real 

applications, the fault symptoms are buried into the background noises and the vibration 

signals generated by the other healthy components, such as the gearbox, shaft and 

bearings.  Therefore techniques were developed to increase the fault symptom signal-to-

noise ratio (SNR).  One group of methods of increasing the fault SNR is to use time 

synchronous average (TSA) [79-81].  TSA increases the SNR by separating the vibration 

signal of the component being interested from other components and suppressing the 

background noise.  TSA is a powerful tool in preprocessing the vibration signal and is the 

most popular technique in gear fault detection [80-86].  The drawbacks of the TSA 

include that it requires an additional synchronous signal, the tachometer signal and it 

usually needs several cycles of the vibration signals in order to achieve the required SNR.  

Thus a relatively long sampling period is needed.  Another way to increase the signal-to-

noise ratio is to use model based methods to remove the periodic signals or the 

background noise from the raw vibration signals.  These methods include auto-regressive 

(AR) model based methods[87], adaptive noise cancellation [88], narrowband 

interference cancellation [70] etc.  One shortcoming for these methods is that all these 

techniques need to determine the structure of the model.  More recently, a new technique 
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called joint time-frequency analysis methods are developed for rotational machinery fault 

detection and diagnostics.  The time-frequency analysis methods are found to be very 

useful in analyzing the vibration signal generated by the rotational machinery.  The 

fundamental idea of joint time-frequency analysis techniques is to find a way to represent 

the energy density of a signal in time and frequency domain simultaneously.  In rotating 

machinery diagnostics, simultaneous time and frequency information of a non-stationary 

signal can provide important diagnostic information on a monitored machine [89].  Most 

popular time-frequency analysis techniques applied to process the rotating machine 

vibration signals include: short-time Fourier transform (STFT) [90-92], Wigner-Ville 

distribution (WVD) [89, 93-96],continuous wavelet analysis (CWT) [27, 49, 97-103], and 

Hilbert-Huang transform (HHT) analysis [104-109].  By using STFT to analyze signal, 

the discrete signal is divided into several consecutive blocks in time.  Each blocks of the 

signal is then analyzed by using FFT.  Major advantage by using STFT is the ability of 

representing time-frequency content of signals free of cross terms and implementing 

easily [110].  However, by using STFT, it provides constant frequency resolution.  The 

tradeoff between time and frequency resolution limits the effectiveness of the STFT.  

WVD combines FFT and auto-correlation calculation.  By using WVD to analyze a 

signal, the time-frequency energy density is obtained by correlating the signal with a time 

and frequency translation of itself.  Unlike STFT, it provides a high-resolution in both 

time and frequency domain.  However, the energy distribution obtained by traditional 

WVD contains severe cross-terms between components in different time-frequency 

regions.  This effect makes the energy distribution difficult to interpret and leads to 

further misinterpretation and confusion.  To analyze vibration signal using CWT, the 
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signal analysis is performed by using a single function called mother wavelet.  Through 

dilation and translation, the CWT can be applied to multi-scale analysis of a signal with 

non-stationary property.  In contrast to STFT, CWT uses narrow time windows at high 

frequencies and wide window at low frequencies [111], therefore, CWT analysis can 

provide good frequency resolution and low time resolution for low-frequency 

components and low frequency resolution and good time resolution for high-frequency 

components.  However, the CWT method has its own limitations.  As pointed out in 

several papers [112, 113], when applying wavelet transform to analyze the signals, the 

basic wavelet function (mother wavelet) need to be determined first.  That means, the 

type of the basic wavelet function affects the effectiveness of the wavelet methods greatly.  

Until now, there is no systemic way on choosing the mother wavelet in vibration signal 

analysis.  According to [99, 114, 115], Morlet wavelet was used in vibration analyzing as 

it is simple and similar to the impulse vibration generated by the faulty components.  In 

[103, 116], Gabor function was adopted as mother wavelet in vibration feature extraction,  

because it provides the smaller area of the time–frequency window than any other 

functions.  In [117], Gaussian-envelope oscillating wavelet was utilized in gearbox fault 

detection.  As suggested by the authors in [117], by changing the scaling factor in its 

corresponding wavelet family, the Gaussian-envelope oscillating function could become 

similar to all sizes of oscillating transients in a gear vibration signal.  A recent developed 

method is called Hilbert-Huang Transform (HHT), first proposed by Huang [112].  By 

using HHT to analyze vibration signal, the empirical method decomposition (EMD) is 

applied to decompose the signal into intrinsic mode function (IMF) and then the Hilbert 

transform is applied to the IMF components to obtain the instantaneous amplitude and 
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frequency of the analyzed signal.  HHT is an adaptive method.  It has been proven to be 

effective in various applications, such as rotational machine fault detection and 

diagnosis[104, 118-121], structure health monitoring[122], bio-tech signals 

processing[123], audio signal processing [124], and so on.   

 

In this chapter, the effectiveness of the HHT on gear fault detection is investigated.  The 

vibration features extraction methodology based on EMD technique has been developed.  

The gear and full ceramic bearing seeded fault test data were used to demonstrate the 

effectiveness of the developed method.  A two-step vibration signal based plastic bearing 

fault diagnostic methodology has been developed.  Seeded plastic bearing fault tests were 

used to demonstrate the effectiveness of the developed method.  An interference 

cancellation based methodology on gear fault detection has been developed.  Vibration 

signals collected from a notional gearbox test rig were used to demonstrate the 

effectiveness of the developed methodology.   

 

The remainder of the chapter is organized as follows.  Section 4.2 provides the theoretical 

basis.  Section 4.3 presents the experimental setup and data collection.  The EMD based 

vibration signal fault feature extraction method is shown in Section 4.4.  A two-step 

plastic bearing fault diagnostic methodology is described in Section 4.5.  Section 4.6 

presents interference cancellation based gear fault detection methodology.    

 



 

36 

 

4.2 Theoretical Basis 

4.2.1 Hilbert-Huang Transform 

 

HHT was developed by Huang [112].  Recently HHT has been applied to rotational 

machinery fault detection [104, 118].  HHT has been proven to be an effective method in 

analyzing the vibration signals for rotational machinery fault detection.  When HHT is 

applied to analyze the signals, the signals are first decomposed into several IMF 

components by EMD and then Hilbert transform is applied to calculate the instant 

amplitudes and instant frequency of the IMFs to form the Hilbert spectrum.  

 

The steps of obtaining Hilbert-Huang spectrum of the signal is described as following, 

Step 1. Decompose the signal by using EMD technique to get the IMF components, 

Step 2. Calculate the Hilbert transform of each IMF component to form analytical 

signal, 

Step 3. Calculate instantaneous amplitude and frequency from the analytical signals, 

Step4. Form Hilbert spectrum with time and frequency information using time and 

instantaneous amplitude and frequency information. 
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4.2.1.1 Empirical Mode Decomposition 

 

EMD was a main part of the HHT [112].  Define a collected signal by ( )Sig t , the steps of 

the EMD procedure are provided as follows[112]: 

Step 1. Find the local maxima and local minima of the signals. 

Step 2. Construct the lower and upper envelopes of the signals by the cubic spline 

respectively based on the local maxima and local minima. 

Step 3.Calculate the mean values ( )m t by averaging the lower envelope and the 

upper envelope. 

Step 4. Subtract the mean values from the original signals to produce the IMF 

candidate component 1( ) ( ) ( )h t sig t m t  .  If it is the true intrinsic mode 

function, go to the next step.  And the IMF component )()( thtC mi  is 

saved.  If it is not the intrinsic mode function, repeat Step 1 to Step 4.  The 

stop condition for the iteration is given by Eq. (3): 

2

1

2

10

[ ( ) ( )]

( )
m m

m

T

t

h t h t
SD

h t





                                                       (3) 

where )(
1

thm
 and )(thm  denote the IMF candidates of the m-1 and m 

iterations, respectively and usually SD  is set between 0.2 and 0.3.  

Step 5. Calculate the residual component by subtracting IMF component obtainedin 

Step 4 from the original signals ( ) ( ) ( )i ires t sig t C t  .  This residual 

component is treated as new data and is subjected to the same processes 

described above to calculate the next IMF component. 
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Step 6. Repeat the Steps 1 to 5 until the final residual component becomes a 

monotonic function and no more IMF component can be extracted or the 

envelopes becomes smaller than a pre-determined value. 

 

Through Steps 1 to 6, the original signals ( )Sig t can be decomposed into N empirical 

modes ( NCC 1 ). 

 

According to Huang et .al [112], a function ( )f t is defined to be an IMF, if it satisfies two 

characteristic properties: 

(1)  In the whole data set, the number of extrema and the number of zero crossings 

must either equal or differ at most by one;  

(2) At any point, the mean value of the envelope defined by the local maxima and 

the envelope defined by the local minima is zero. 

 

4.2.1.2 Hilbert Spectrum 

 

Assuming a signal, ( )sig t was decomposed by EMD into N  IMF 

components,  1 2( ), ( ),..., ( )NC t C t C t , then the Hilbert transform of one of the IMF 

components can be defined as, 

 
( )1

( ) i
i

C
H C t d

t




 






                                                                (4) 

where ( )iC t  is the thi  IMF components and i  is the integer number between 1 and N . 
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The analytic signal ( )iz t can be defined as, 

  ( )
( ) ( ) (t) ( ) ij t

i i i iz t C t jH C E t e


                                                      (5) 

where    2 2( ) ( ) ( ) ( ) ( )i i i i iE t C t H C t C t H C t     and 
 1

( )
( ) tan

( )

i

i

i

H C t
t

C t
  .  

 

From the above definition, the ‘instantaneous frequency’ ( )i t  could be calculated as the 

following equation, 

( ) ( )i i

d
t t

dt
                                                                                    (6) 

 

 

According to Eq. (5) , the original signal, ( )sig t , could be expressed as the real part in 

the following equation: 

( )

1

( ) ( )
i

N
j d

i

i

sig t real E t e
  



   
 
                                                       (7) 

where  real   denotes the real part of the complex number.  

 

As described in [112], the time-frequency domain Hilbert spectrum ( , )H t  could be 

obtained by the following equation: 

( )

1

( , ) ( )
i

N
j d

i

i

H t real C t e
  




   
 
                                                    (8) 

 

From equation (8), one can see that the Hilbert spectrum contains both time and 

frequency domain information. 
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The marginal spectrum ( )h  can then be defined as,  

0

0
( ) ( , )

T

h H t dt                                                                   (9) 

where 0T  is the total signal length.  

 

The frequency domain energy ( )FE t is obtained by  

2
2

1
( ) ( , )FE t H t dt




                                                           (10) 

 

As shown in[125], the EMD acts essentially as a dyadic filter bank, which resembling 

those involved in wavelet decompositions. This property makes EMD capable of 

adaptively decompose the vibration signal or AE signals into sub-band signals with 

different frequency contents.  Thus the information contains in the different frequency 

band could be analyzed.  A simulation example is used here to demonstrate this property 

of the EMD technique.  A Gaussian random noise signal was used here.  The sampling 

frequency was set to be 102.4 kHz and totally 16384 points samples were used in the 

calculation.  The simulated Gaussian random noise and its Fourier spectrum are shown in 

Figure 7 and Figure 8, respectively.  From Figure 8, one can see that the spectrum is flat 

in the whole spectrum.   
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Figure 7. The simulated Gaussian noise signal 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. The Fourier spectrum of the simulated Gaussian noise signal 
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The signal shown in Figure 7 was decomposed by EMD to obtain the IMF components.  

To investigate the frequency contents of each IMF component, frequency spectrum of 

each IMF component was calculated and the frequency spectrums of the first 8 IMF 

components are shown in Figure 9. 
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Figure 9. The Fourier spectrum of the IMF components of the simulated signal 
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A gear seeded fault study was conducted to demonstrate the effectiveness of HHT on 

rotational machinery fault detection.  In this seeded fault study, an ordinary gearbox with 

4 spur gears was used.  The gear test rig is shown in Figure 10 and the simplified 

structure of the gearbox is shown in Figure 11. 

 

 

 

 

Figure 10. The gear test rig 
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Figure 11. The simplified structure of the gearbox 

 

 

 

During the experiment, the speed of the motor was set to 1000 rpm, which is approximate 

16.67 Hz.  At this speed the characteristic frequencies of the gearbox can be calculated 

based on the transmission path shown in Figure 11.  Based on the structure of the gearbox, 

the rotating frequencies of shaft 1, shaft 2 and shaft 3 were 16.667 Hz, 6.667 Hz and 5 Hz 

respectively.  The meshing frequency of gear pairs a  to b  was 400 Hz and that of gear 

pairs c  to d  was 240 Hz.  The gear a was damaged with one of the tooth removed to 

simulate the tooth loss fault in the gearbox.  The damaged gear is shown in Figure 12.  

Both the vibration data of the healthy gearbox and the damaged gearbox were collected 

using the two accelerometers.  The sampling interval was  0.039 ms corresponding to the 

sampling frequency of 25.6 kHz.  For each data set, 0.8 seconds long data was collected.  

 

a: driving gear with 24 teeth 

b:driven gear with 60 teeth 

c: driving gear with 36 teeth 

d: driven gear with 48 teeth 
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Figure 12. The damaged gear with tooth loss 

 

 

 

Figure 13 and Figure 14 show the sample vibration signals from the healthy gearbox and 

damaged gearbox, respectively.   
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Figure 13. The sample vibration signal of the healthy gearbox 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14. The sample vibration signal of the damaged gearbox with tooth loss 
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The EMD technique was used to decompose the vibration signals into thirteen IMF 

components.  Only the first eight IMF components 1 8C C  were shown in Figure 15 and 

Figure 16 because the energy in the rest IMF components 8 13C C  was very low.   

 

 

 

 
Figure 15.The first eight IMF components of the damaged gearbox 
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Figure 16. The first eight IMF components of the healthy gearbox 

 

 

 

The Hilbert spectrum of the healthy gearbox and the damaged gearbox is shown in Figure 

17 and Figure 18, respectively. 
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Figure 17. The Hilbert spectrum of the healthy gearbox 

 

 

 

 

 

 

 

 

 

 

 

Figure 18. The Hilbert spectrum of the damaged gearbox with tooth loss 
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Comparing Figure 17 with Figure 18, one can see clearly that there were dark patches in 

Figure 18, which were circled by the red circles.  And the time space between the 

neighboring black patches was approximately in 0.06 s which was corresponding to the 

shaft of frequency of 16.667 Hz with the damaged gear a .  This clearly indicates that one 

of the teeth of the gear pairs connected to the shaft 1 had been damaged.   

 

4.2.2 Statistical Threshold for Machine Fault Detection 

 

In rotating machine fault detection and diagnostics, finding an effective way to obtain the 

threshold value, which provides boundary of different machine states, is very important.  

Since the vibration signal generated by the rotational machinery is with non-stationary 

property and the CIs extracted from the vibration signal will not be a static value for a 

specific machine state, combining statistical method in threshold calculation will help 

enhance the robust of the fault detection and decrease the false alarm rate.  In the real 

industrial applications, the distribution of the CIs cannot guarantee to follow a specific 

distribution, such as normal distribution, exponential distribution and so on, the known 

distribution cannot be used to set the threshold value.  Chebyshev’s inequality can be 

used for any unknown distribution.  Chebyshev’s inequality specifies the upper bond of 

the probability that the CI of a healthy bearing is k standard deviations away from its 

mean value as: 

2

1
Pr( )CF k

k
   

                                                    
(11) 
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In Eq. (11),   and 2 are mean and variance of the CI context of fault detection, the 

probability upper bond 21/ k specified by Eq. (11) is actually the false alarm rate for a 

single CI.  For a group of CI 21/ k  is the tolerance rate.  This means that if the CIs are 

computed from a healthy state, then statistically there should be no more than 21/ k % of 

the CIs that are greater than k  .  Based on uncorrelated CIs, here one can set 

k  as the fault detection threshold.  Therefore, if one wishes to detect the fault with a 

desired false alarm rate of 21/ k , one should conclude that the compressed features are 

from a damaged state when there are more than 21/ k % of compressed features that are 

greater than the fault detection threshold: k  .  Let ( )CF i  be the thi  data point of the 

CI.  Then, for any k , the fault detection threshold can be computed as: 

_

2

1 1 1

1 1 1
( ) ( ) ( )

1
fault detection

N N N

i i i
CF i k CF i CF i

N N N
    

  

  
     

                         (12) 

 

For example, if we set the desired false alarm rate as 0.05, then 21/ 0.05k  .  Then the 

fault detection threshold can be computed as: 

_

2

1 1 1

1 1 1
( ) 4.4721 ( ) ( )

1fault detection

N N N

i i i
CF i CF i CF i

N N N


  
   
   

   
  




                          (13) 

 

4.2.3 Adaptive Narrowband Interference Cancellation 

 

According to [126], the major vibration of a healthy geared transmission system contains 

periodic signals at the tooth-meshing rate caused by the deviations from the ideal tooth 

profile with amplitude modulation effects caused by the variations of the loadings and 
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frequency modulation effects caused by the fluctuations of the rotational speed or the 

tooth spacing errors.  When there are gear localized fault, addictive impulses generated 

by the meshing of the damaged teeth will be added to the gear vibration signals.  This 

effect will add the sideband components around the related gear meshing frequencies and 

their harmonics [52].  Based on the results shown in [87, 126], for one healthy gear, the 

vibration signal can be described by using the following equation, 

   g

0

V (t)= 1 ( ) cos 2 ( )
M

m m m m m

m

A a t f t t  


                                           (14) 

where, (0,1,..., )m M is the meshing harmonic number, mA  is the amplitude at the thm  

harmonic frequency mf , ( )ma t is the amplitude modulation function, m  is the initial 

phase, and ( )m t is the phase modulation function at the thm  harmonic.  The harmonic 

frequency mf  can be expressed as the following equation, 

m sf m N f                                                                                      (15) 

where N is the tooth number and sf  is the shaft rotational frequency.  The shaft is the 

one which is connected to the gear.  The localized gear addictive vibration can be 

expressed as the following equation, 

( )cos(2 )d r rV d t f t                                                                          (16) 

where ( )d t  is the envelope function of the resonant vibration, rf is the resonance 

frequency and r  is the initial phase.  Combining Eq. (14) and Eq. (16), and considering 

the background noise, the vibration signal generated by gears with localized fault is 

expressed as the following equation, 

   
0

( ) 1 ( ) cos 2 ( ) ( )cos(2 ) ( )
M

dg m m m m m r r noise

m

V t A a t f t t d t f t d t    


       (17)   
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where ( )noised t  is the background noise.  The Eq. (17) could be further simplified as the 

following equations [127],  

( ) ( ) ( ) ( )impulse periodic noisez n S n S n d n                                                     (18) 

 

In Eq. (18), ( )z n  is the whole vibration signal, ( )impulseS n ) the impulse signal, ( )periodicS n  

the periodic signal, and n  the sampling point index.   

 

From a signal processing point of view, as the impulse signal is generated by the meshing 

behavior of the damaged gear tooth, it should be separated from the periodic signal to 

increase the fault symptom SNR.   

 

According to Eq.(18), the periodic signal ( )y n  should be estimated and then removed 

from the whole vibration signal as described in the following equation:   

ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
i mpulse noise i mpulse noise

e n Z n y n S n y n S n y n S n S n                  (19) 

In Eq. (19), ˆ( )y n  is the estimated signal of ( )y n .   

 

The periodic signal ( )y n  is a deterministic signal and it is uncorrelated to the random 

parts, the background noise and the impulse signal of the vibration signal.  Since based 

on the system identification theory [128], the deterministic signal could be perfectly 

predicted by using the infinite past values, the delayed version of the original vibration 

signal is utilized as the input signal to the train the prediction model and the parameters 

of the prediction model are trained by the error signal.  Successful application of 
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narrowband interference cancellation based gear fault detection has been reported in [70].  

The process of the adaptive narrowband interference cancellation is shown in Figure 19.   

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 19. The process of the adaptive narrowband interference cancellation 

 

 

 

The way for searching the optimal parameters of the prediction model is to minimize the 

mean squared error between the original signal and the predicted signal.  Expressed in the 

discrete format, the error signal could be expressed in Eq. (19).      
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To adaptively adjust the coefficient of the prediction model, the least mean squared 

algorithm is applied to update the coefficients online.  The update equations are shown in 

Eq. (20) and Eq. (21)[129, 130]: 

1

0

ˆ( ) ( ) ( )
L

k

k

y n A n z n k




  
                                                                (20) 

)()()()1(  knznenAnA kk 
                                                 (21) 

where, ( )z n  is the input vibration signal, ˆ( )y n  is the estimated output signal, ( )e n is the 

error between ( )z n and ˆ( )y n , ( )kA n  is the thk parameters of the algorithm,   is the delay 

time, n  is the sampling points and   is the learning step size.   

 

The adaptive algorithm is summarized in the following steps: 

Step 1. Obtain  delayed version of the signal ( )z n ); 

Step 2. Calculate the estimated signal using Eq. (20); 

Step 3. Calculate the error ( )e n by Eq. (19); 

Step 4. Update the confidents 
kA by using Eq.(21); 

Step 5. Go back to Step 1. 

 

For demonstrating purpose, assume the coefficients of the prediction model of the 

( 1)thn  step are updated by using Eq. (21) with the coefficients and the error signal of 

the nth step.  The error signal of the nth step is computed by using Eq. (19) with the 

predicted signal calculated by using Eq. (20) and real signal of the nth step.  Through the 

adaptive process, the system will capture the dynamics of the changing signals.   
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4.2.4 Threshold Based De-noising 

 

The threshold-based de-noising method was firstly proposed by Donoho [131].  It is an 

effective method for removing the noise from the original signals.  To apply threshold-

based de-noising approach using wavelet analysis, first we need to calculate the wavelet 

coefficients of the signal and then a hard or soft threshold [131] is applied to wavelet 

coefficients and finally the de-noised signal is reconstructed. 

 

Assume a signal ( )e n  contains impulse signal  ( )impulseS n  and background noises 

( )noised n .  In vector format, we could represent e , ( )impulseS n , and ( )noised n as the 

following equations: 

 (1), (2),..., ( ),..., ( ) ,

[ (1), (2),..., ( ),..., ( )] ,

[ (1), (2),..., ( ),..., ( )] .

i mpulse impulse impulse impulse

noise noise noise noise

T

T

impulse

T

noise

e e e e n e N

S S S S n S N

d d d d n d N






   

(22)  

 

In Eq. (22), N  is the total number of the sample points.  According to [132], a periodic 

discrete wavelet transform (DWT) is a linear orthonormal transform and therefore there 

exists  a N N  orthonormal matrix W .  This matrix transforms the vector e  into  

w e W       (23) 

 

And signal e could be reconstructed as following:  

noise impulse

T T T

d Se w w w  W W W                         (24) 
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In Eq. (24), 
noisedw and 

impulseSw are the wavelet coefficient vectors of the noise signal 

noised and the impulse signal impulseS , respectively.  The above transformation can be 

implemented by a pyramidal process [132].  In practical computation, Mallat [133] 

proposed a fast wavelet decomposition and reconstruction algorithm.  In that algorithm, a 

pair of quadrature mirror filters (QMF) is used to obtain the approximation and the detail 

signals.  At the level 1 decomposition, the signal e is decomposed into two sets of 

coefficients: the approximation coefficients vector 1A  and detail coefficients vector 1w .  

This is called the level-1 decomposition.  And then at the level-2 decomposition, the 

approximation coefficient vector 1A  is split into two sets of coefficients: the 

approximation coefficients 2A  and detail coefficients 2w , and so on.  The general steps of 

the decomposition at level j  are shown in Figure 20.   

 

 

 

 

 

 

 

 

 

Figure 20. The general steps of the fast wavelet decomposition 
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In [131], two thresholding calculation methods, the soft-thresholding and hard-

thresholding were proposed.  The soft-thresholding can be expressed in the following 

formula[131]: 

,

0

,

j j

jde j

j j

 



 

  


 


  

w w

w w

w w

                                               (25) 

 

The hard threshold can be expressed in the following formula[131]: 

,

0,

j j

jde

j





 
 



w w
w

w
                                                         (26) 

where ˆ 2log N  , ̂  is the estimation of the standard deviation of the signal, N  the 

length of signal, jW is the wavelet coefficient of the thj  level decomposition and j deW  is 

the thresholding modified coefficient of jW .  In our research, the soft-threshold rule is 

employed because it has the advantages of obtaining near optimal minimax rate, smaller 

risk, and visual improvement and it modifies a signal without leaving discontinuous 

points[131].   

 

4.2.5 The K-Nearest Neighbor (KNN) Based Fault Classifier [134] 

 

KNN [135, 136] is a ‘lazy learning’ algorithm.  KNN assumes all observations 

correspond to points in the p-dimensional space.  The nearest neighbors of an observation 

are defined in terms of the standard Euclidean distance.  An observation is classified by a 
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majority vote of its neighbors, with the observation being assigned the class most 

common amongst its K nearest neighbors.  Suppose we have a database consisting of a 

total of n observations (
ix ;

iy ), for 1,  2,...,  i n , where 
ix  could be any point in a p-

dimensional Euclidean space, p , denoted as  1 2, ,...,i i i ipx x xx  and iy  is an outcome 

from m class  1 2, ,..., m    .  The database is called the training set for the KNN 

algorithm.  Given any two observations, ix  and jx , let  ,i js x x  be a measure of their 

similarity based on the p varieties, it can be derived as:  

 

   
2

1

,
p

i j ik jk

k

s x x


 x x

     

                         (27)   

 

To classify the response for a new observation ux  with the KNN algorithm, we first 

identify k observations in the training set that are most similar to ux .  They form the set 

of k-nearest neighbors of ux , denoted by  ,uN kx .  These similarities can be ordered.  

Denote the ordered similarities with )(is
, i.e., (1) (2) ( )... ns s s   .  In other words, if 

 j k
s s , it means jx  is the kth most similar observation in the training set to ux .  The 

set of the k-nearest neighbors of ux ,  ,uN kx , can then be defined as all observations 

whose similarities to ux  are at least ( )ks , i.e.,     , :u i i k
N k x s s x .  The KNN 

algorithm then estimates the probability that u iy   by the average responses of these k-
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nearest neighbors and classifies the response to be i  if the estimated probability 

exceeds a certain threshold c: 

 

 
,ˆ
,

i u

i

x N K

u

y

P
N K





x

x
    (28) 

where  ,uN kx  is the number of items contained in the set  ,uN kx .  This is usually 

equal to k exactly, but may exceed k depending on how ties are treated.  The response is 

then predicted to be i  if P̂ c , where c  is a pre-specified threshold parameter. 

 
4.3 Experimental Setup and Data Acquisition 

 

Vibration signals collected from both the designed notional STG gearbox test rig and a 

bearing test rig were used in this chapter.   

 

4.3.1 Gear Test Experimental Setup and Data Acquisition 

 

To simulate gear faults developed on the gear tooth, two types of seeded gear fault were 

created on the output side driving gear of the notional STG gearbox test rig.  One was 

gear with tooth loss; the other was gear with root tooth crack.  For the gear with tooth 

loss fault, 50% of one gear tooth on the output side driving gear was chipped.  The 

healthy driving gear on the output side is shown in Figure 21.   
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Figure 21. The healthy driving gear on the output side 

 

 

 

The damaged gear with 50% tooth loss is shown in Figure 22. 
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Figure 22. The damaged gear with 50% tooth loss 

 

 

 

The damaged gear with 50% root tooth crack is shown in Figure 23.  The gear was 

damaged by cutting the root of a gear tooth with a depth equal to half width of the gear 

tooth by EDM with a wire of 0.5 mm diameter to simulate the root crack damage in real 

applications. 
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Figure 23.  The gear with a tooth root crack 

 

 

 

4.3.2 Bearing Test Experimental Setup and Data Acquisition 

 

To simulate bearing faults, four types of seeded bearing faults were created on the rolling 

element bearing mounted inside the designed bearing house of the bearing test rig.  The 

bearing test rig is shown in Figure 24.  A 3-HP AC induction motor with a maximal 

rotational speed of 3600 rpm, was used to drive the test rig. 

 

 

 

 

 

Tooth with Root Crack 
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Figure 24. The bearing test rig 

 

 

 

During the experiments, two types of bearing were used.  The first is plastic bearing and 

the other is full ceramic bearing.  Rolling element bearings are widely applied in 

rotational machinery in modern industries.  Recently, full ceramic rolling element 

bearings have been replacing the conventional steel bearings in some applications in 

harsh environments [137] as they have higher resistance to both corrosion and rolling 

contact fatigue than the traditional steel bearings [138].  Additionally, they are thirty 

percent harder and forty percent lighter than the conventional steel bearings [139].  As 

the full-ceramic bearings are relatively new to the industrial applications, there is only 

limited research on the full-ceramic bearing fault detection and diagnostics.  Plastic 



 

66 

 

bearings are widely used in medical applications, food processing industries, semi-

conductor industries, aircraft components, and so on [3-5].  In comparison with 

traditional steel bearings, plastic bearings have following advantages: (1) corrosion 

resistance; (2) light weight; (3) non-metallic and non-magnetic; (4) lubrication free; (5) 

consistent coefficient of friction.  Up to today, no research has been conducted on plastic 

bearing fault diagnosis.  Unlike their steel counterparts, effective fault diagnosis methods 

for plastic bearing have not been developed.  According to [140, 141], a more detail 

description of the plastic bearings and ceramic bearings are listed in Table IV. 
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Table IV. Materials comparison among plastic bearings, steel bearings and ceramic 

bearings 

 

Item Units 
Polyphenylene 

Sulfide (Plastic) 

M250 

(Plastic) 

Si3N4 

(Ceramic) 

Bearing 

Steel 

Density g/cm
3
 1.35 1.14 3.23 7.85 

Water Absorption % 0.01 0.0014 0 0 

Coefficient of Linear 

Thermal Expansion 
10

-6
/k 9.6 10 3.2 12.5 

Modulus of Elasticity  GPa 3.45 0.8377 300 208 

Hardness  MPa 95 47 1500 700 

Flexural Strength MPa 145 150 720 520 

Compressive Strength MPa 148 150 2300 / 

Thermal Conductivity W/m*k 0.288 0.24 25 40 

 

 

 

To create the localized faults on a bearing, four different types of ceramic bearing and 

plastic bearing faults were generated: inner and outer race contact surface fault, rolling 

element fault, and cage fault (Figure 25 and Figure 26).  The damages of the contact 

surface on the full ceramic bearing inner race, outer race and ball were generated by 

grinding the race surface using an electric drill with a diamond tip.  The diameter of the 

damaged surface area was about one third of the ball diameter.  The broken cage was 

created by cutting the Teflon retainer using a pair of sharp scissors.  The damages of the 
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contact surface on the plastic bearing inner race and outer race were generated by 

scratching the race surface using an electric solder iron with a heated tip.  The diameter 

of the damaged surface area was about one third of the ball diameter.  The rolling 

element damage was created by scratching one of bearing balls with a grinding wheel. 

Roughly 40% of the ball volume was ground off.  The broken cage was created by 

cutting the Teflon retainer using a pair of sharp scissors. 
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Figure 25. The four types of full ceramic bearing seeded faults 
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Figure 26. The four types of plastic bearing seeded faults 

 
 
 

The 6205-2RS type bearing was used in the experiments.  The races of the bearing are 

made of plastic materials.  The bearing ball is made of glass.  The seals of the bearing are 

made of Teflon.  The drawing of this type of bearing is shown in Figure 27.  The 

parameters of the bearing are listed in Table V.   
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Figure 27. The drawing of the 6025 2RS bearing 

 

 

 

Table V. Parameters of the 6025 2RS bearing 

 

Parameters Inside Diameter 
Outside 

Diameter 
Thickness 

Size (mm) 

 
25 52 15 

Parameters Ball Diameter Pitch Diameter Number of the balls 

Size (mm) 

 
8 39 9 

 

 

 

For vibration data acquisition, two 603C01 wide range accelerometer and a data 

acquisition card NI PCI-4472B were used for collecting the vibration signal of both full 
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ceramic bearing and plastic bearing.  The accelerometer was mounted on the surface of 

the bearing house.  The locations of the vibration sensors are shown in Figure 28. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 28.  The locations of the AE sensors 

 

 

 

During the testing, vibration signals were collected with a sampling rate of 102.4 kHz. 

The input rotating speed was set to be 10 Hz for full ceramic bearing and four different 

rotating speeds, 10 Hz, 20 Hz, 40 Hz, and 60 Hz were applied during the plastic bearing 

test.  

Accelerometers 
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4.4 EMD Based Vibration Feature Extraction and CI Development 

 

The process of the EMD based vibration feature extraction method is shown in Figure 29. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 29. The process of the EMD based vibration feature extraction 

 

 

 

As shown in Figure 29, the steps of the time domain feature extraction procedure are 

provided as follows:  

Step 1. Given the N  IMF components: 
1,..., ,...i NC C C  obtained by the EMD, the 

energy and the energy ratio of the IMF components are calculated.  They 

are expressed in Eq. (29) and (30), as shown below: 
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where, 
iE  is the energy of thi  IMF component, 

1N  is the number of the 

sampling points of one IMF component, Ei
P  is the energy ratio of the thi  

IMF components, N  is the number of the IMF components.   

Step 2. The energy ratio vector is formed: 

1 2 1
E , ,...,

NE E EP P P 
 

P
     

(31) 

Step 3. The entropy of the energy vector is defined by the following equation: 

1

log
i i

N

Entropy E E

i

E P P


                   (32) 

The entropy value calculated in Eq. (32) is treated as rotating machinery 

fault feature.  

Step 4. The Euclidean distance is defined by the following equation: 

1
Eunknown Ehealthi i

N

i
D P P


 

    
(33) 

 

In Eq. (33), 
Eunknowni

P  is the energy ratio of the thi  IMF component of the rotating 

machine with unknown states 
Ehealthyi

P  is the energy ratio of the thi IMF component of 

healthy bearing, and N  is the total number of the IMF components.  The distance value 

calculated in Eq. (33) is treated as bearing fault feature.  
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By using the steps shown above, a two-dimensional fault features are obtained.  To 

demonstrate the effectiveness of the extracted fault features, the KNN classification 

algorithm was applied to the extracted feature.  The two dimensional features with 

unknown states are used as the input to the trained KNN algorithm to obtain the fault 

classification results. 

 

Two case studies, gear fault diagnosis and full ceramic bearing fault diagnosis, were used 

in this dissertation to demonstrate the effectiveness of the proposed methodology.   

 

4.4.1 Case Study I: Split Torque Gear Fault Diagnostics 

 

A total of twenty seven group of vibration signals were collected and sample vibration 

signals of the healthy gearbox, damaged gearbox with 50% tooth loss and damaged 

gearbox with 50% root crack are shown in Figures from Figure 30 to Figure 32. 
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Figure 30. Sample vibration signal of healthy gearbox and its first three IMF components 
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Figure 31. Sample vibration signal of damaged gearbox with 50% tooth loss and its first 

three IMF components 
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Figure 32. Sample vibration signal of damaged gearbox with 50% root crack and its first 

three IMF components 
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After the EMD technique was applied to the vibration signals, the entropy value and the 

distance value of the energy ratio were calculated as the fault features.  The feature 

vectors are shown in Figure 33. 

 

 

 

 

 

 

Figure 33. The feature vectors of healthy gearbox, damaged gearbox with 50% tooth loss, 

and damaged gearbox with 50% root crack 
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All the vibration CI data generated were split into two groups: 60% of the data were used 

for training purpose to build the fault classifier and 40% of the data were used for 

validation to test the performance of the fault classifier.  The classification confusion 

matrix using KNN are provided in Table VI and the classification results are shown in 

Table VII.  Note that in Table VI, the values of k  are the best k  values with the 

minimum % error determined by the KNN algorithm.  The % error is defined as the 

percentage of data points of a fault type that were misclassified.  On the contrary, the % 

accuracy is defined as the percentage of data points of a fault type that were correctly 

classified. 

 

 

 

 

Table VI.  The classification confusion matrix using the two dimensional CIs of the STG 

gearbox 

 

CIs: distance + entropy (k = 1) 

 Predicted Class 

Actual Class Healthy 50% Tooth loss 50% Root crack 

Healthy 13 0 0 

50% Tooth loss 0 8 0 

50% Root crack 1 0 10 
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Table VII. The KNN fault diagnosis results using the two dimensional CIs of the STG 

gearbox 

 

Class Error (%) Accuracy (%) 

Healthy Gearbox 0.00 100.00 

Damaged Gearbox with 50% 

Tooth Loss 
0.00 100.00 

Damaged Gearbox with 50% 

Root Crack 
9.00 91.00 

Total 3.13 96.87 

 

 

 

From the results shown in Table VI and Table VII, one can see that high classification 

accuracy (96.87%) is achieved by using the two dimensional fault features.  From the 

observations of the features shown in Figure 33, one can see that there are large 

overlapping area of distance value between the healthy gearbox and the damaged gearbox 

with 50% tooth loss.  Also, there are large overlapping area of the entropy value between 

the healthy gearbox and the damaged gearbox with 50% root crack.  That means by using 

only one dimensional fault feature, the classification error will be high.  
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4.4.2 Case Study II: Full Ceramic Bearing Fault Diagnostics 

 

A total of fourteen groups of vibration signals were recorded with a length of 0.2 seconds 

for five full ceramic bearings: healthy bearing, bearing with inner race fault, bearing with 

outer race fault, bearing with ball fault, and bearing with cage fault were collected. 

Sample vibration signals of the five different fault types and their first three IMF 

components are shown in Figures from Figure 34 to Figure 38.   
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Figure 34.  Sample vibration signal of the healthy bearing and its first three IMF 

components 
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Figure 35. Sample vibration signal of the bearing with outer race fault and its first three 

IMF components 
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Figure 36. Sample vibration signal of the bearing with inner race fault and its first three 

IMF components 
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Figure 37. Sample vibration signal of the bearing with ball fault and its first three IMF 

components 
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Figure 38. Sample vibration signal of the bearing with cage fault and its first three IMF 

components 
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After the IMF components of the vibration signals were obtained by the EMD, the 

entropy value and the distance value of the energy ratio were calculated as the fault 

features.  The extracted features are shown in Figure 39 and Figure 40.  

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 39. The distance value of the full ceramic bearing with different states 
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Figure 40. The entropy value of the full ceramic bearing with different states 

 

 

 

All the two dimensional vibration CI data generated were split into two groups: 60% of 

the data were used for training purpose to build the fault classifier and 40% of the data 

were used for validation to test the performance of the fault classifier.  The classification 

confusion matrix using KNN are provided in Table VIII and the classification results are 

shown in Table IX.  Note that in Table VIII, the values of k  are the best k  values with 

the minimum % error determined by the KNN algorithm.  The % error is defined as the 

percentage of data points of a fault type that were misclassified.  The % accuracy is 

defined as the percentage of data points of a fault type that were correctly classified. 
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Table VIII.  The classification confusion matrix using the two dimensional CIs 

 

CIs: distance + entropy (k = 1) 

 Predicted Class 

Actual Class Healthy Outer race Inner race Ball Cage 

Healthy 9 0 0 0 0 

Outer race 0 7 0 0 0 

Inner race 0 0 8 0 0 

Ball 0 0 0 11 0 

Cage 0 0 0 0 9 
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Table IX. The KNN fault diagnosis results using the two dimensional CIs 

 

Fault Type Error (%) Accuracy (%) 

Healthy 0.00 100.00 

Outer race 0.00 100.00 

Inner race 0.00 100.00 

Ball 0.00 100.00 

Cage 0.00 100.00 

Overall 0.00 100.00 

 

 

 

From the results shown in Table VIII and Table IX, one could see that for full ceramic 

bearing case study, 100% classification rate was achieved by using the EMD based fault 

features.  From the results shown in Figure 39 one can see that there are overlaps between 

the value of the distance of bearing with ball fault and bearing with cage fault.  And also, 

in Figure 40, there are overlaps between the value of the entropy of the bearing with inner 

race fault and bearing with outer race fault.  That means, the bearing faults cannot be 

classified with 100% accuracy using the one dimensional fault feature alone.   
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4.5 A Two-Step Vibration Signal Based Plastic Bearing Fault Diagnostics 

 

In this dissertation, the bearing applications where the inner race of the bearing is 

mounted on the shaft and rotates with the shaft while the outer race of the bearing is fixed 

on the bearing house are considered.  In the bearing health monitoring of this type of 

applications, the accelerometers are normally placed on the bearing house.  Therefore, the 

vibration transmission path between the sensors and the bearing outer race is fixed.  This 

type of health monitoring setup makes the vibration of the bearing outer race free of the 

influence due to the variation of the transmission path and the loading zone.  Thus, in 

comparison with other bearing faults, the outer race fault could be easily detected by the 

envelope analysis.  As mentioned in [142], the most commonly reported results in the 

literature concerns bearing outer race defects as the outer race defects can be easily seen 

in the laboratory and often produce the most salient fault features.  The basic idea of the 

two-step approach is that one could use the frequency features obtained by the envelope 

analysis to separate the outer race fault from other faults and use the time features to 

separate other faults in the second step.   

 

The process of the two-step approach is shown in Figure 41.  As shown in Figure 41, two 

types of fault features: frequency domain features and time domain features, are extracted 

as CIs and these CIs are used to train a two-step classification algorithm.  After the 

training, the two-step classification algorithm can be used to classify the bearing fault.  

The statistical method is first applied to separate the outer race fault from other types of 

faults based on the fault features extracted by using envelope analysis.  After the outer 
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race fault is separated, the time domain features are used as inputs to a KNN classifier to 

identify the bearing states.   The time domain feature extraction method is described in 

Section 4.4 of Chapter 4.  The frequency domain feature extraction procedure is 

described in the following section. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 41. Process of the two-step fault diagnosis approach for plastic bearing 
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4.5.1 Frequency Features of Plastic Bearings 

 

Theoretically, when a bearing is running at a constant speed, the vibrations are with 

periodical property.  In general, for a ball bearing, there are five fundamental frequencies 

which can be used to describe the motion of the bearing.  These five fundamental 

frequencies are the shaft rotational frequency 
sF , the ball rotational frequency 

bF , the 

ball pass outer race frequency bpoF , the ball pass inner race frequency bpiF , and the cage 

frequency cF [52].  The shaft frequency sF represents the input rotational speed of the 

shaft and all other fundamental frequencies are related to the value of sF .  According 

to[52], the ball rotational frequency bF , the ball pass outer race frequency bpoF , the ball 

pass inner race frequency bpiF , and the cage frequency cF , can be expressed as 

following equations: 
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where iF  and 
oF  are rotational frequency of the inner race and outer race, respectively. 

bD  is the diameter of the bearing rolling element, 
cD  is the mean diameter of the bearing 

(pitch diameter), and   is the contact angle of the rolling element. 

 

In this dissertation, the outer race of the plastic bearing is fixed on the bearing house 

while the inner race of the bearing is attached on the shaft and rotates with the shaft.  

Therefore, i sF F  and 0oF  .  Eq. (34) to Eq. (37) could be recalculated as follows. 
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If a defect is on bearing inner race and outer race, each time the rolling balls hit the 

damaged point an impulse signal will be generated.  Theoretically, the frequency of the 

impulse will be the bpoF and bpiF , respectively.  If the defect is on the ball of the bearing, 

then each time the ball hits the outer race or the inner race, an impulse signal will be 

generated.  Theoretically, the frequency of the impulse will be twice the bF .   
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Based on the bearing parameters listed in Table V, the theoretical bearing fundamental 

frequency rate can be calculated and are listed in Table X.  When the bearing is running 

under a constant input rotational speed, a fundamental frequency is the product of the rate 

multiplied by the rotational speed in Hz.   

 

Table X. Fundamental frequency rate 

Fault types 
Inner race 

fault 

Outer race 

fault 

Cage  

fault 

Ball  

Fault 

Fundamental frequency rate 5.415 3.585 0.398 4.714 

 

 

 

Traditional vibration signal processing techniques such fast FFT is less effective in 

extracting the bearing fundamental frequencies due to the fact that the wide spectrum of 

the fault impulse signals is usually buried in the spectrum generated by other rotating 

components and the mechanical background noises.  The fault impulses normally excite a 

resonance in the mechanical system at higher frequency than the vibration signals of 

other rotating components and mechanical background noise.  As indicated by [143], it is 

reasonable to consider the resonance as being amplitude modulated at the characteristic 

defect frequencies.  Randall and Antoni [53] provided some examples to explain the 

ineffectiveness of the traditional vibration signal processing techniques to reveal bearing 

fault frequencies in comparison with envelope analysis.  To separate and demodulate the 

bearing fault characteristic frequencies, envelope analysis [143] has been used in rolling 
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element bearing fault detection and diagnosis.  Successful applications on bearing fault 

detection using envelope analysis have been reported in [144-146].  When the envelope 

technique is used to analyze the bearing vibration signals, the raw vibration signals are 

first band-pass filtered to reject the low-frequency contents typically associated with shaft 

imbalance and misalignment  and vibration responses of other rotating components in 

order to increase the fault signal-to-noise ratio.  The Hilbert transform is then applied to 

the band-passed signals to obtain the envelope of the band-passed signals.  Finally, 

frequency spectrum of the envelopes of the band-passed signals is calculated.  

 

Based on the analysis above, frequency domain features from the vibration signals can be 

extracted by the following steps: 

Step 1.  Filter the vibration signal with a band-pass filter. 

Step 2. Calculate the envelope signal of the band-passed signal. 

Step 3. Calculate the Fourier spectrum of the envelope signal. 

Step 4. Calculate the summation value SEnvelope of the Fourier spectrum around the 

outer race characteristic frequency.  

 

The SEnvelope is then utilized as the input to the statistical classification algorithm. As 

shown in Figure 41, two types of bearing fault feature, the frequency domain feature and 

time domain feature are used.  The frequency domain feature is utilized to separate the 

outer race fault of the plastic bearing.   
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For most vibration based bearing health monitoring applications, since the relative 

distance between the outer race fault of a bearing and the sensor is fixed, one can simply 

use traditional frequency domain vibration signal processing methods such as envelope 

analysis to extract the bearing fundamental frequencies in order to identify the outer race 

fault.  However, the relative distance between the fault on the rotating components of the 

bearing and the sensor changes as the bearing rotates, thus adding some degree of 

randomness to the repeatability of the fault impulses.  The randomness of the fault 

impulses will affect the effectiveness of the traditional envelope analysis and frequency 

domain methodology on bearing fault detection.  As shown in Table IV [140, 141], in 

comparison with steel bearings or ceramic bearings, the plastic bearings are more loosely 

assembled and easier to be deformed.  These inherent properties of plastic bearings add 

more degrees of randomness into the behavior of the fault impulses and weaken the fault 

impulse signals.  Therefore, using the traditional bearing fundamental frequencies as 

bearing fault features will not be effective for identifying plastic bearing fault on inner 

race, balls, and cages.  To demonstrate the effects of the randomness of the impulse 

signals on the traditional envelope analysis, two sets of impulses were generated.  The 

first set of impulses was generated with a fixed time interval between the impulses.  The 

second set of impulses was generated with random time intervals between the impulses.  

During the simulation, one natural frequency mode was considered.  The natural 

frequency was set to 3 kHz.  The occurrence frequency of the simulated impulses was 80 

Hz.  Figure 42 shows the simulated impulses with a fixed time interval and its envelope 

frequency spectrum.  From Figure 42, one can see clearly the occurrence frequency of 80 

Hz.   
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Figure 42. The simulated impulse signal with fixed time intervals and its frequency 

spectrum 
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Figure 43. The simulated impulse signal with random time intervals and its frequency 

spectrum 

 

 

 

Figure 43 shows the simulated impulse with random time intervals and its frequency 

spectrum.  From the frequency spectrum shown in Figure 43, one can see that the 

occurrence frequency of the impulse signals could not be clearly identified due to the 

randomness introduced into the impulse signals.  To enhance the performance of the 

classification algorithm, time domain features are utilized to separate other bearing states. 
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4.5.2 Case Study: Plastic Bearing Fault Diagnostics 

 

During the testing, vibration signals were collected with a sampling rate of 102.4 kHz. 

Totally, four input speeds, 10 Hz, 20 Hz, 40 Hz, and 60 Hz were investigated in this 

dissertation.  Sample vibration signals of healthy bearing and bearings with different 

types of faults collected with 10 Hz input speed are shown from Figure 44 to Figure 48. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 44. The sample vibration signal of the healthy plastic bearing 
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Figure 45. The sample vibration signal of the plastic bearing with outer race fault 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 46. The sample vibration signal of the plastic bearing with inner fault 
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Figure 47. The sample vibration signal of the plastic bearing with ball fault 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 48. The sample vibration signals of the plastic bearing with cage fault 

 

 

 

 

(d) Ball fault 
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The vibration signals were processed following the two-step procedure shown in Figure 

41.  The frequency domain fault features of the healthy bearing, bearing with inner race 

fault, bearing with ball fault, bearing with cage fault, and the bearing with outer race fault 

under 10 Hz, 20 Hz, 40 Hz, and 60 Hz input rotating frequency are shown from Figure 49, 

Figure 50, Figure 51, and Figure 52, respectively.  The time domain fault features of the 

bearings except for the bearing with outer race fault under 10 Hz, 20 Hz, 40 Hz, and 60 

Hz input rotating frequency are shown from Figure 53, Figure 54, Figure 55, and Figure 

56, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 49. The frequency domain features of the healthy and the bearing with different 

types of fault with 10 Hz input speed 
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Figure 50. The frequency domain features of the healthy and the bearing with different 

types of fault with 20 Hz input speed 
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Figure 51. The frequency domain features of the healthy and the bearing with different 

types of fault with 40 Hz input speed 
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Figure 52. The frequency domain features of the healthy and the bearing with different 

types of fault with 60 Hz input speed 

 

 

 

The red solid lines in the Figures from Figure 49 to Figure 52 represent the threshold 

value calculated by the frequency domain CIs of the bearing without the outer race fault.  

As discussed in Section 4.2, the threshold value is calculated by using the Eq. (12).  It can 

be seen from the results shown from the Figures from Figure 49 to Figure 52 that for all 

the input shaft speeds, the CIs of the bearing with outer race fault and the bearing with 

other states can be separated by the threshold with 100% accuracy.   

 

Threshold 



 

108 

 

For comparison purpose, the KNN algorithm based fault classifier was applied to the 

same data sets in order to classify bearing faults.  The frequency domain CIs were split 

into two groups: 60% and 40%.  The 60% of the CIs were used as the training data to 

training the KNN algorithm based fault classifier while the other 40% of the CIs were 

used as validation data to valid the performance of the CIs.  The classification results of 

the KNN algorithm based fault classifier are provided in Table XI.  Note that in Table XI, 

the values of k are the best k values with the minimum % error determined by the KNN 

algorithm at the validation stage.  The % error is defined as the percentage of data points 

of a fault type that were misclassified.    

 

 

 

 

Table XI. The classification results of the KNN algorithm using frequency domain CIs 

 

Type of Fault 

% of Error for Validation 

10Hz 

(k=1) 

20Hz 

(k=8) 

40Hz 

(k=5) 

60Hz 

(k=1) 

Healthy 80.00 80.00 60.00 50.00 

Inner race 0.00 0.00 11.11 33.33 

Ball 66.67 8.33 16.67 33.33 

Cage 62.50 0.00 0.00 0.00 

Outer 6.67 0.00 0.00 0.00 

Overall 40.74 16.67 16.67 22.22 
 

 

 

From Table XI, one can see that if the frequency domain CIs is used to classify the 

bearing faults, high misclassification rates are obtained.  The results in Table XI have 



 

109 

 

further indicated that using frequency domain CIs alone cannot effectively diagnose other 

types of plastic bearing faults. 

 

After the outer race fault is separated from other states by using the frequency domain 

CIs, the time domain CIs are used to diagnose the bearing faults.  The time domain CIs 

are calculated by following the steps described in Section 4.4.  The calculated time 

domain CIs are shown in the Figures from Figure 53 to Figure 56.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 53. The time domain feature vectors of the plastic bearing running under 10 Hz 

input frequency 
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Figure 54. The time domain feature vectors of the plastic bearing running under 20 Hz 

input frequency 
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Figure 55. The time domain feature vectors of the plastic bearing running under 40 Hz 

input frequency 
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Figure 56. The time domain feature vectors of the plastic bearing running under 60 Hz 

input frequency 
  

 

 

 

From the results shown in Figures from Figure 53 to Figure 56, one can see a distinct 

distance between the inner race fault bearings and other bearings and a clear separation of 

the inner race fault bearings from other bearings.  One can also see clear clusters of 

different bearings although small portions of the clusters are overlapped.  It is interesting 

to see that as the rotational speed decreases, the cluster of the cage fault bearings is 

getting closer to the cluster of the ball fault bearings.  One possible explanation is that the 



 

113 

 

elastic properties and the stiffness of the plastic bearing discussed in Section 4.5 may 

weaken the energy of the fault impulse generated by the damaged ball and the cage as 

rotational speed decreases.  Another interesting thing one can observe in the Figures from 

Figure 53 to Figure 56 is that as the rotational speed increases, the energy level of the ball 

fault bearings is getting closer to that of the healthy bearings.  Again, it could be caused 

by the increasing deformation of the plastic bearing races as the speed increases.     

 

The time domain CIs, shown in Figures from Figure 53 to Figure 56 were split into two 

groups: 60% and 40%.  The 60% of the CIs were used as the training data to training the 

KNN algorithm based fault classifier while the other 40% of the CIs were used as 

validation data to test the performance of the CIs.  The classification results of the KNN 

algorithm based fault classifier are provided in Table XII.  Note that in Table XII, the 

values of k are the best k values with the minimum % error determined by the KNN 

algorithm at the validation stage.  The % error is defined as the percentage of data points 

of a fault type that were misclassified. 
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Table XII. The classification results of the KNN algorithm using time domain CIs at the 

second step of the two-step approach 

 

Type of Fault 

% of Error for Validation 

10Hz 

(k=3) 

20Hz 

(k=7) 

40Hz 

(k=2) 

60Hz 

(k=2) 

Healthy 9.09 9.09 36.36 9.09 

Inner race 0.00 0.00 16.67 0.00 

Ball 33.33 16.67 0.00 8.33 

Cage 25.00 0.00 0.00 0.00 

Overall 16.28 6.98 13.95 4.65 
 

 

 

 

Let 1x
 
be the total data points of the faults at the first step and 2x  be the total data points 

of the faults at the second step.  Define 1

cx  and 2

cx  as the number of data points correctly 

identified at the first and the second step, respectively.  Then the fault classification 

accuracy of the two-step approach can be computed as: 
1 2

1 2
100%c cx x

x x





.  For the input 

speed of 10 Hz, in the first step: 1 27x  , 1 27cx  ; in the second step: 2 43x  , 

2 8 6 10 12 36cx      .  Therefore, the total fault classification accuracy can be 

computed as: 
36 27

100% 90%
43 27


 


.  In the same fashion, the classification accuracies 

for other conditions are computed and provided in Table XIII.  From Table XIII, one can 

see that a high classification rate was achieved under different bearing operation 

conditions. 
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Table XIII. The Two-Step classification results 

 

Speed Classification Accuracy 

10 Hz 90% 

20 Hz 95.7% 

40 Hz 91.4% 

60 Hz 97.1% 
 

 

 

In order to make a comparison with results of the two-step approach shown in Table XIII, 

a one step approach using time domain CIs and combination of frequency and time 

domain CIs was used to diagnose all the bearing faults by the KNN based fault classifier.  

Again, the time domain CIs of all the bearings were split into two groups: 60% and 40%.  

The 60% of the CIs were used as the training data to training the KNN algorithm based 

fault classifier while the other 40% of the CIs were used as validation data to test the 

performance of the CIs.  The one step classification results using the time domain CIs are 

provided in Table XIV.      
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Table XIV. The one step classification results using only time domain CIs 
 

Type of Fault 

% of Error for Validation 

10Hz (k=4) 20Hz (k=9) 40Hz (k=4) 60Hz (k=2) 

Healthy 10.00 10.00 30.00 10.00 

Inner race 0.00 0.00 11.11 0.00 

Ball 33.33 16.67 8.33 8.33 

Cage 12.50 0.00 0.00 0.00 

Outer race 0.00 0.00 40.00 46,67 

Overall 11.11 5.56 20.37 16.67 
 

 

 

 

From Table XIV, one can see that if the time domain CIs are used to classify the bearing 

faults in one step by the KNN based fault classifier, the overall fault classification 

accuracy rate are 88.89%, 94.44%, 79.63%, and 83.33% for 10 Hz, 20 Hz, 40 Hz, and 60 

Hz speed conditions, respectively.  In comparison with the overall classification accuracy 

rate achieved by using the one step approach, the two-step approach presented in this 

paper provides a better bearing fault classification performance.    
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Table XV. The one step classification results using combination of frequency domain and 

time domain CIs 

 

Type of Fault 

% of Error for Validation 

10Hz 

(k=5) 

20Hz 

(k=7) 

40Hz 

(k=2) 

60Hz 

(k=2) 

Healthy 10.00 10.00 30.00 10.00 

Inner race 0.00 0.00 11.11 0.00 

Ball 25.00 16.67 0.00 0.00 

Cage 25.00 0.00 0.00 0.00 

Outer race 0.00 0.00 0.00 6.67 

Overall 11.11 5.56 7.41 3.70 
 

 

 

 

From Table XV, one can see that if both the frequency and time domain CIs are used to 

classify the bearing faults in one step by the KNN based fault classifier, the overall fault 

classification accuracy rate are 88.89%, 94.44%, 92.59%, and 96.30% for 10 Hz, 20 Hz, 

40 Hz, and 60 Hz speed conditions, respectively.  In comparison with the overall 

classification accuracy rate achieved by using the one step approach with both the 

frequency and time domain CIs, the two-step approach presented in this paper provides a 

better bearing fault classification performance. 

 

4.6 Interference Cancellation Based Gear Fault Detection 

 

As described in Section 4.2.3, the vibration signal generated by the fault gear 

transmission system contains fault impulses, periodic components, and background noise.  

The periodic components can be treated as the narrowband interference to the fault 
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impulses while the background noise can be treated as the wideband interference to the 

fault impulses.  To increase the SNR of the gear fault symptom, an interference 

cancellation based methodology is developed and the process of the methodology is 

shown in Figure 57.  The main idea of the methodology is to remove the periodic signal 

and background noise from the raw vibration signal and to reveal the gear fault symptoms 

in a dynamic environment.   

 

 

 

 

 

 

 

Figure 57. The process of the interference cancellation based gear fault detection 

methodology 

 

 

 

To demonstrate the effectiveness of the developed methodology, a simulation example is 

shown below.  The simulated periodic signal, the impulse signal, the noise signal are 

shown in Figure 58.  The simulated signal changes its frequency at data point 800.  For 

the adaptive algorithm, the  was set to be 0.98, was set to be 200 and k was set to be 

35.  The D4 wavelet from the Daubechies family of wavelets was utilized to analyze the 
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periodic components removed signal.  The results obtained by the developed method are 

shown in Figure 59 and Figure 60.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 58. The simulated signal 
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Figure 59. The processed result with the cancellation of the periodic signal  

 

 

 

 

 

 

 

 

 

 

 

Figure 60. The processed result with the cancellation of both the periodic signal and the 

background noise 

 

 

 

Two accelerometers were mounted vertically and horizontally, respectively on the frame 

of the gearbox to collect the vibration signals, simultaneously.  Both the signals were 

collected at the sampling rate of 102.4 kHz.  The signal collected from the vertically 

Fault impulse Fault impulse 

Fault impulse Fault impulse 
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mounted sensor vertically.  One sample vibration signal of the damaged gear is shown in 

Figure 61 and the frequency spectrum is shown in Figure 62.   

 

 

 

 

 

 

 

 

 

 

Figure 61.  The sample vibration signal of the damaged gearbox 
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Figure 62. The frequency spectrum of the sample vibration signal of the damaged 

gearbox 

 

 

 

From the raw vibration signal in Figure 61, we can barely see the impulse signal 

generated by the damaged tooth.  The rotational speed for the input shaft was set to be 

2160 rpm, corresponding to 36 Hz.  According to the structure of the gearbox, under such 

rotational frequency, the fault characteristic frequency of the gearbox should be 20 Hz.  

From the frequency spectrum in Figure 62, we see clearly the high peak values at the 

shaft rotational frequency and its harmonics.  However, we could not see any high peak 

values at the gear fault frequencies.  The developed algorithm was applied to process the 

vibration signal of the damaged gearbox.  The parameters of the algorithm was set as 

follows: the was set to be 0.98, was set to be 200, k was set to be 80, and the D4 

wavelet from the Daubechies family of wavelets was utilized to in noise removing 

algorithm.  The processed results are shown in Figure 63.  From Figure 63, we can see 

Input shaft rotational frequency of 36Hz 
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clearly that the occurring frequency of the impulse signal is 20 Hz, which indicates 

damage in the gearbox.  Also, the frequency spectrum of the processed signal was 

calculated and shown in Figure 64 and the high peak value at the gear fault frequency is a 

clear indication of the gear fault.   

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 63. The processed results of the gearbox running under 36 Hz using the 

interference cancellation algorithm 
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Figure 64.  The Fourier spectrum of the processed signal 

 

 

 

To show the effectiveness of the presented method under the situation of varying input 

rotational speed, rotational speed of the input shaft was changed from 36Hz to 24 Hz.  An 

sample vibration signal collected under the 24 Hz operational frequency is shown in 

Figure 65.    The results are shown in Figure 66.  From Figure 66, we can see clearly that 

the occurring frequency of the impulse signal is 13 Hz, which indicates damage in the 

gearbox.   

 

 

 

 

 

Gear Fault Characteristic frequency of 20 Hz 
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Figure 65.  Sample vibration signal collected under input rotational frequency of 24 Hz 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 66.  The processed results of the gearbox running under 24 Hz using the 

interference cancellation algorithm 
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From the results above, one can see that the developed methodology is effective in 

detecting gear fault under dynamic operating conditions.  

 

 



 

127 

 

5 AE BASED ROTATING MACHINERY FAULTDETECTION AND 

DIAGNOSIS 

 

5.1 Introduction 

 

Acoustic emission can be defined as a transient elastic wave generated by the rapid 

release of energy within a material, for example, the formation of a crack inside the 

material[147] .  AE techniques have been extensively used in the field of NDT for 

detecting and locating the flaws in structures in many industrial applications, such as 

pipelines [148], aircraft [149], wind mill [150], and structure health monitoring [151, 

152].Recently, AE based techniques are beginning to attract researchers’ attention to 

machine health monitoring and fault diagnostics [54, 59, 63, 65, 153-157].  As reported 

in [2], in comparison with the most widely used vibration signals, AE signals have the 

following advantages: 

(1) Insensitive to structural resonance and unaffected by typical mechanical 

background noises, 

(2) More sensitive to activities of faults, 

(3) Provide good trending parameters, 

(4) Localization of measurements to the machine being monitored, i.e., AE signals 

are sensitive to the location of the faults. 

 

These advantages make the AE based techniques potentially more competitive than the 

vibration based techniques for rotational machinery health monitoring and fault detection.  

Performance comparison between the AE based technique and the vibration based 
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methods was conducted by several research papers.  Paper [60] presented a comparative 

study between vibration based bearing defect identification and defect size estimation and 

acoustic emission based methods.  The authors in that paper concluded that AE signals 

offer earlier fault detection and improved identification capabilities than the vibration 

signals.  In [158],  the diagnostic and prognostic capabilities of AE signal, vibration 

signal and spectrometric oil analysis were conducted for spur gears pitting type fault 

diagnosis and prognosis.  Simple rms value was calculated as both AE and vibration 

based fault features and Fe concentration was used as the spectrometric oil analysis 

indicator.  The major conclusion of that paper was that AE technique was more sensitive 

in detecting pitting fault than either the vibration or spectrometric oil analysis techniques 

and offers good potential for prognostic capabilities.  Li et al. [159] reported a 

performance comparison between the vibration and AE based techniques on gear fault 

detection.  In their paper, the traditional AE analysis features such as ring-down count, 

rise time, rise time slope, and RMS were used as the AE fault features and EMD based 

technique was used to extract fault features from vibration signals.  These features were 

used as the inputs to a KNN based classification algorithm to identify the damaged gears.  

They showed that the AE based techniques had higher classification accuracy than the 

vibration based techniques on gear fault detection.   

 

Unlike the vibration signal based rotating machinery fault detection and diagnosis, until 

now, only limited research has been conducted on AE based rotating machinery fault 

diagnosis and prognosis.  In [160], the time interval of the acoustic emission signal was 

measured and related to the bearing fault characteristic frequencies.  By obtaining the 
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time interval information, the fault types of the bearing system were determined.  In [161], 

the effectiveness of the traditional AE parameters, amplitude, RMS, energy and AE 

counts were investigated on the bearing fault detection with different operating 

conditions. The results in the two paper show that the RMS and AE counts are effective 

in detecting different types of bearing faults with varying operating conditions.  In [162], 

three traditional AE parameters, event duration, peak amplitude and energy were used to 

form a three dimensional fault feature vectors and the feature vectors were used as the 

input to a classifier based on fuzzy c-mean technique for bearing fault diagnosis.  Tandon 

and Nakra [163] used AE counts and peak amplitudes of continuous AE signals as the 

fault features on bearing outer race fault diagnostics.  In [164], the duration of the AE 

bursts were used to estimate the defect size of the roller bearing outer race.  In [165], the 

transmission path effects were investigated and then the growing cracks on gear tooth 

were monitored successfully by using the AE signals.  The authors in [166] investigated 

the capability of AE signal based techniques in detecting gear tooth pitting fault with 

deferent defect sizes.  The ring-down counts, peak amplitude, energy, and the distribution 

of the events of the AE signals were calculated as fault features for gear pitting fault.  

Successful detection was reported.  In [167], the authors place the AE sensors on the 

bearing house and the crack in gear tooth was detected by using AE signal based 

techniques.  The results shown in [167] have demonstrated the capabilities of AE for 

detecting fatigue cracks in gear teeth.  One critical issue in applying AE signal based 

techniques for rotating machinery health monitoring, fault detection, diagnosis, and 

prognosis is how to quantify the AE signal.  Several difficulties in quantifying AE signals 

for rotating machinery health monitoring, fault detection, diagnostics include [2]:  
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(1) AE signals generated on the rotating machines are normally characterized with 

certain non-stationary behavior.  

(2) The attenuation of the AE signals. 

(3) Higher sampling frequency is needed to collect AE signals.  

 

To analyze signals with non-stationary properties, traditional frequency analysis 

techniques such as Fourier analysis is ineffective.  Time-frequency methods, such as 

wavelet analysis, HHT, and so on, are proven to be an most effective methods[104].  Li et 

al. [168] conducted research on gear fault location detection using AE signals and 

presented a wavelet analysis based AE feature quantification methodology.  The 

effectiveness of their methodology was validated using real gear seeded fault test data.  

One challenge in using wavelet analysis based methodology for AE feature quantification 

is that the basic wavelet function (mother wavelet) needs to be determined before the 

transformation can be performed.  The choice of wavelet function will directly affect the 

effectiveness of identifying the fault features hidden within the dynamic signals [118].  

Unfortunately, until now, there is no systemic way on choosing the mother wavelet in 

rotational machinery vibration signal analysis.  Recently, a newly developed adaptive 

signal processing method called HHT is developed by Huang et al. [112] are proven to be 

effective in analyzing signal with non-stationary property [118].  EMD is not constrained 

by the difficulties in function and parameter selection since EMD itself is an adaptive 

signal processing method.  Up to today, very limited research has been reported in the 

literature on an EMD based AE feature extraction for mechanical fault diagnosis.  In both 

[169, 170], the continuous AE signals were processed with EMD to obtain the AE 
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features defined as energy ratios for fault diagnosis.  However, two different fault 

diagnostic approaches were used in these papers.  In [169], the energy ratios were used as 

inputs to a neural network based fault diagnostic method.  In [170], the energy ratio of the 

intrinsic mode function (IMF) components was treated as the input vectors to the support 

vector machine (SVM) to identify the tool wear.  In both papers, no de-nosing was 

applied to the IMF components and features extracted from the AE signals contain both 

the fault contents and noises.  Both the SVM and neural network techniques used for fault 

detection in these two papers are supervised learning based approaches.  A limitation of 

supervised learning based approaches in fault detection is that they require known fault 

data for training purpose.  In real application, these fault data are rarely available.  

According to [171], one difficulty in applying AE based technique for rotational 

machinery health monitoring and diagnostics is the attenuation of the AE signals.  In the 

experimental setup described in [157, 172], the AE sensors were attached directly onto 

the surface of the spur gears.  In fact, in most rotational machinery health monitoring 

applications, placing sensors in such a close distance to the rotational components is 

impractical.  Usually, the sensors will be attached or mounted on the outer surface of the 

machines rather than directly be on the surface of the rotational parts.  In such case, there 

will be a significant attenuation before the AE signals are picked up by the AE sensors.  

As a result, the signal-to-noise ratios of the collected AE signals are usually lower than 

those generated at the source.  To extract the features from the AE signals for fault 

detection, noises should be removed to increase the signal-to-noise ratio of the AE signals.   
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In this Chapter, the effectiveness of the traditional AE features is investigated.  Then two 

quantification methodologies, Laplace wavelet based methodology and EMD based 

methodology on AE burst type signal for gear fault detection and prognostics are 

presented.  The effectiveness of the proposed methodologies is demonstrated by using the 

real gear seeded fault data collected on the STG notional gearbox test rig.   

 

The remainder of the chapter is organized as follows.  Section 5.2 provides the theoretical 

basis.  Section 5.3 presents the experimental setup and data collection.  The effectiveness 

of the traditional AE features in gear fault detection is shown in Section 5.4.  Laplace 

wavelet based AE quantification methodology and experimental analysis results are 

shown in Section 5.5.  Section 5.6 presents EMD based AE quantification technique and 

its experimental evaluation.  A data mining based bearing fault diagnosis system by using 

AE signal and a full ceramic bearing case study are presented in Section 5.7.   

 

5.2 Theoretical Basis 

5.2.1 Laplace Wavelet 

 

The Laplace wavelet[173] is defined by 
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where 1j , the parameters vector   ,,f  determines the wavelet properties.  

These parameters    ,,f  are denoted frequency Rf , viscous damping 
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ratio    R1,0 , and time index R .  The coefficient A is an arbitrary scaling factor, 

used to scale each wavelet to unity norm.  The range Ws ensures the wavelet is 

completely supported and has nonzero finite length but the parameter Ws is generally not 

explicitly expressed.   

 

An inner product operation measures the correlation between signals.  Correlation of the 

signal with a Laplace wavelet measures similarity between frequency and damping 

properties of the wavelet, )(t , and the system which generated the signal )(tx .  A 

correlation coefficient R)(  is defined to quantify the correlation degree between a 

Laplace wavelet )(t  and a time signal )(tx  

22
)()(

)(),(
2)(

txt

txt









       (43) 

)(   is a multivariate function of the variables   ,,f .  This correlation 

coefficient considers the angle between the vectors with the maximum correlation 

occurring for vectors whose angle is 0.  

 

A useful correlation coefficient )(  is defined for modal analysis to correlate frequency 

and damping at each time value.  Peaks of )( for a given   relate to the wavelets with 

the strongest correlation to the signal.  Define )(  as the peak value of )(   at each   

and define f  and  as the parameters of the Laplace wavelet associated with the peak 

correlation.  Therefore, )( can be defined as,  


,,max)(
,
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ZFf
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The Eq. above searches for a maximum value across f and  .  This search can use 

subsets of F and Z to find local maximum and compute a )(  vector at each time index. 

 

A test signal with known properties is used to demonstrate this method.  Consider a test 

signal f(t). 
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In Eq. (44), the 0,20,04.0 000  tand .  The sampling rate is set to be 200 Hz.  

One of the Laplace wavelet is plotted in Figure 67. 

 

 

Figure 67.  Laplace wavelet 
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A correlation coefficient R)(  is defined to quantify the correlation degree between 

a Laplace wavelet )(t  and a time signal )(tx  

22
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)(t  is a multivariate function of the variables   ,,f .   
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Figure 68.  The simulated results 

 

 

 

From the results in Figure 68, we can see the effective of the Laplace wavelet in 

identifying the damping ratio and the frequency for the simulated signal.   

04.0  
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5.3 Experiment Setup and Data Acquisition 

 

As mentioned by Everson and Cheraghi [174], the AE signals could be separated into two 

different types: burst type and continuous type.  Burst type signals contain pulses over a 

period of time above background signals and can be separated with limited overlap.  

Continuous type signals do not have any significant resolutions between individual pulses.  

The AE signals generated by a rotational machine with localized faults such as cracks 

belong to the burst type signals [175].  One major advantage of using burst type AE 

signals for fault detection is that shorter sampling period will be needed.  Therefore fewer 

storage spaces and less computational burden will be added to the real monitoring 

systems.  As the developed methodologies and tools in this research are used for rotating 

machine localized fault detection and diagnostics, the burst type AE signals are collected 

and used in the dissertation.    

 

AE signals collected from both the notional STG gearbox test rig and a bearing test rig 

were used in this chapter.   

 

5.3.1 Pencil Break Test for Sampling Rate Selection 

 

Since a too high sampling rate may create a huge burden to both the data acquisition 

system and signal processing system, choosing a suitable sampling rate is very important.  

Although the frequency range of the AE source in a rotational machine is typically 

between 100 kHz and 1 MHz [64], the mechanical transmission path between the AE 
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sources and the location of the AE sensors acts as a low pass filter.  Because of the effect 

of this low pass filter, it is necessary to conduct an experiment to determine the frequency 

contents of the signal picked by the AE sensors in order to choose the right sampling rate.  

In the experiments, a pencil lead break test was utilized to determine the sampling rate.  

Pencil break tests are widely used in the area of NDT and a pencil lead break test is a 

simple test that can generate a broadband AE signals.   

 

The pencil lead break test was conducted on the surface connected the damaged output 

driving gear and the output driven gear.  The sampling frequency was first chosen to be 2 

MHz.  The collected signal and its Fourier spectrum are shown in Figure 69. 
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Figure 69.  The pencil lead break test and its Fourier spectrum 

 

 

 

From the results above, we can see that the frequency range of the AE burst is between 

100 kHz to 250 kHz.  A number of experiments were conducted using different sampling 

rates.  Five different sampling rates were used: 50 kHz, 200 kHz, 500 kHz, 1 MHz and 2 

MHz.  The RMS value and the peak signal-to-noise ratio of the AE bursts under these 

sampling rates are provided in Table XVI. 
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Table XVI.  The RMS and SNR of the AE bursts under different sampling rates 

 

Sampling Rate 2 MHz 1 MHz 500 kHz 200 kHz 50 kHz 

RMS 0.0398 0.0363 0.0318 0.0075 0.0052 

Peak SNR 12.58 19.21 22.46   

 

 

 

 

From Table XVI, we can see that when the sampling rate is below 500 kHz, the energy 

level of the AE burst measured by RMS is reduced by one order.  Therefore, it is not 

meaningful to compute the SNR when the sampling rate is less than 500 kHz.  This result 

indicates that some contents in the AE bursts were lost when the sampling rate was set 

too low.  However, as the sampling rate increased, more noisy contents were sampled and 

the SNR decreased as a result.  Based on the result in Table XVI, a sampling rate of 500 

kHz was selected.  Throughout investigation, the AE signals were collected under a 

sampling rate of 500 kHz.  

 

5.3.2 Gear Seeded Fault Test 

 

To simulate gear faults developed on the gear tooth, two types of seeded gear fault were 

created on the output side driving gear of the notional STG gearbox test rig.  One was 

gear with tooth loss; the other was gear with root tooth crack.  For the gear with tooth 

loss fault, three different damage levels were investigated.  They are 20% of one gear 
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tooth loss, 50% of one gear tooth loss and 100% of one gear tooth loss on the output side 

driving gear was chipped.  The healthy driving gear on the output side is shown in Figure 

21 in the Chapter 4.   

 

The damaged gear with 20% tooth loss, 50% tooth loss, and 100% tooth loss are shown 

in Figure 70, Figure 71, and Figure 72, respectively. 

 

 

 

 

 

 

 

 

Figure 70. The damaged gear with 20% tooth loss 
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Figure 71. The damaged gear with 50% tooth loss 

 

 

 

 

 

 

 

 

 

 

 

Figure 72. The damaged gear with 100% tooth loss 
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The damaged gear with 50% root tooth crack is shown in Figure 22 in Chapter 4.  The 

gear was damaged by cutting the root of a gear tooth with a depth equal to half width of 

the gear tooth by EDM with a wire of 0.5 mm diameter to simulate the root crack damage 

in real applications. 

 

5.3.3 Full Ceramic Bearing Fault Test 

 

For the bearing experiments, the bearing test rig shown in Figure 24 in Chapter 4 is used.  

Four types of bearing seeded faults, bearing outer race fault, bearing inner race fault, 

rolling element fault and bearing cage fault, were investigated in this dissertation.  The 

different types of faulty bearings are shown in Figure 25 in Chapter 4.  The location of 

the sensor is shown in Figure 73.  
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Figure 73. The location of the AE sensors 

 

 

 

5.4 Traditional AE Feature Based Gear Fault Detection 

 

The effectiveness of the traditional AE features in gear fault detection is investigated.  

The performance of the AE based technique is compared with that of the vibration 

analysis.  The process for the fault detection on STG based on both vibration signal and 

AE signal is shown in Figure 74.   
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Figure 74. The process for fault diagnostics on STG 

 

 

 

As shown in Figure 74, AE signals and vibration signals are pre-processed to obtain the 

fault feature vectors and these feature vectors are used as the input to a KNN based fault 

classifier.  The accuracy rate of the KNN classifier is used to evaluate the performance of 

the two techniques.  The higher the accuracy rate, the better the technique is. 
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For calculating AE based fault feature vector, the traditional AE parameters are utilized.  

In NDT area, seven AE features are used.  The seven AE features include: (1) ring-down 

count, (2) duration, (3) peak amplitude, (4) rise time, (5) rise time slope, (6) RMS, (7) 

Kurtosis.  The ring-down count is defined as the number of threshold crossing made by 

an acoustic emission event.  The duration is defined as the time between the initial rise of 

acoustic emission energy above the threshold and the time at which the acoustic emission 

energy decays below the threshold.  The peak value is the absolute value of the highest 

voltage attained by a single acoustic emission event.  The rise time is defined as the time 

between the initial crossing of the threshold and the time at which the peak amplitude 

occurs.  The rise time slope is defined as the peak amplitude minus the threshold voltage 

divided by the rise time.  RMS is defined by equation (46) and Kurtosis is defined by 

equation (47) as follows: 
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where ix  is the signal and x  is the mean value of the signal.   

 

For calculating vibration based fault feature vectors, the EMD was applied to the 

vibration signals and the IMF components which contain the gear mesh frequency 

components are selected.  The RMS, peak value, kurtosis, and the amplitude of the shaft 

frequency of the damaged gear in the Fourier spectrum of the selected IMF components 

were calculated as the features.   
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Sample AE waveform of both the healthy gearbox and the damaged gearbox are shown in 

Figure 75 and Figure 76, respectively.   

 

 

 

 

 

 

 

 

 

 

Figure 75. The sample acoustic emission signals of the healthy gearbox  
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Figure 76. The sample acoustic emission signals of the damaged gearbox 

 

 

 

The features were extracted for every dataset for both the healthy gearbox and the 

damaged gearbox to generate 300 feature vectors.  From the generated feature vectors, 

150 of the healthy gearbox and 150 of the damaged gearbox were used as the training 

features to train the KNN classifier.  Then the rest of the feature vectors were used for 

classification.  The classification results are shown in Table XVII.   
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Table XVII. The confusion matrix for fault detection using AE signals  

 

 Predicted Classes 

Actual Classes Healthy Gearbox Damaged Gearbox 

Healthy Gearbox 50 0 

Damaged Gearbox 0 50 

  

 

 

From Table XVII, we can see that an accuracy of 100% to classify healthy or damaged 

state of the gearbox using AE signals was achieved.   

 

Sample vibration signal of the healthy gearbox data is shown in Figure 77 and that of the 

damaged gearbox is shown in Figure 78. 
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Figure 77.  The vibration signal of the healthy gearbox 

 

 

 

 

 

 

 

 

 

 

 

Figure 78.  The vibration signal of the damaged gearbox 

 

 

 

The EMD was applied to the vibration signals.  For this case, the 3rd IMF component 

was chosen because of this IMF component was associated with the gear meshing 
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frequency of 1600 Hz.  The RMS, peak value, kurtosis, and the amplitude of the shaft 

frequency of the damaged gear in the Fourier spectrum of the 3rd IMF component were 

calculated as the features.   

 

The features were extracted for every dataset for both the healthy gearbox and the 

damaged gearbox to generate 300 feature vectors.  From the generated feature vectors, 

150 of the healthy gearbox and 150 of the damaged gearbox were used as the training 

features to train the KNN classifier.  Then the rest of the feature vectors were used for 

classification.  The classification results are shown in Table XVIII.  From Table XVIII, 

we can see that the classification accuracy is 95%. 

 

 

 

Table XVIII. The confusion matrix for fault detection using vibration 

 

  Predicted Classes 

Actual Classes Healthy Gearbox Damaged Gearbox 

Healthy Gearbox 45 5 

Damaged Gearbox 0 50 
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By comparing the results of AE and vibration, we can see that AE signals are sensitive to 

the gear fault in the split torque gearbox test rig case study. 

 

5.5 Laplace Wavelet Based AE Signal Quantification Methodology 

 

Develop an effective quantification methodology is critical important in applying AE 

signal based techniques for rotating machinery health monitoring, fault detection, 

diagnosis, and prognosis.  In this research, a Laplace wavelet based AE signal 

quantification methodology has been developed.  The coefficients of the Laplace wavelet 

are optimized by using the exhausted search technique.  The maximum of the kurtosis 

value of the wavelet coefficient is used as the objective function for the optimization 

problem.  The Process of the Laplace wavelet based AE signal quantification 

methodology is shown in Figure 79. 
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Figure 79. The process of Laplace wavelet based AE signal quantification methodology 

 

 

 

As shown in Figure 79, the AE features are calculated by using Laplace wavelet 

processed AE bursts.  The parameters of the Laplace wavelet are optimized by 

maximizing the kurtosis value of the wavelet coefficient.  The AE features include 

features extracted from Laplace wavelet processed AE bursts: the  Energy Ratio , the peak 

value ( _LPW Peak ), the kurtosis value ( _LPW Kurtosis ), the rms  value 

( _LPW RMS ), and entropy value ( _LPW Entropy ).  Here, the Laplace wavelet is used 

as a correlation filter to process the AE bursts. 
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The Energy Ratio is defined as,     

2
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For a discrete signal, Eq.(49) is used: 
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(49) 

 

If we can represent a discrete AE burst by  xxxxx ni ,...,,...,, 21 , then the rms value and 

the kurtosis value can be calculated by the following equations: 
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The entropy of signal x is defined by the following equation: 

1

log
n
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Entropy x x
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                        (52) 

 

The Laplace wavelet coefficient may be calculated as a fault features.  As known to the 

research community, the shape of the mother wavelets is important in wavelet 

decomposition.  For Laplace wavelet, the shape parameters include, damping ratio   

which controls the decay rate of the exponential envelope in the time domain and in the 
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frequency domain it regulates the resolution of the wavelet and damping frequency   

which controls the number of significant oscillations of the wavelet in the time domain 

and determine the center frequency in the frequency domain.  In order to optimize the 

wavelet shape parameters, we need to develop a suitable objective function.  For our case, 

the AE bursts generated by the damaged gears are impulse like signals and the kurtosis 

value is an indicator that reflects the peak of a signal.  A higher kurtosis value indicates 

high-impulsive content of the signal.  Therefore, the kurtosis of a wavelet transform 

output may be treated as the objective function in finding the optimal value of   and c.   
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where, s(t) is a signal, WT is the inner product of s(t) with the mother wavelet )(, t .  

By maximizing ),(  , we can get the optimal   and  .   

 

In practice, the Laplace wavelet shape coefficients ,f   are first identified by using a 

typical known AE bursts, generated by the damaged gearbox.  In this dissertation, the 

,f   are identified by using an exhausted search to find the maximum value of the 

correlation coefficients between the AE bursts and the Laplace wavelet.  For 

demonstration purpose, a typical sample AE burst is used to demonstrate the process.  

The sample AE burst is shown in Figure 80.  The signal was processed using the Laplace 

wavelet and the Laplace wavelet coefficients with different wavelet parameters are 
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shown in Figure 81.  By searching the space shown in Figure 81, we could find that at the 

maximum correlation coefficient, f =105000, and  =0.08.  In Eq. (7),   is the time step 

parameter used in computing the wavelet coefficients and it determines the time 

resolution of the Laplace wavelet coefficients in our research, the value of   was 

computed approximately as f/1  to be 0.00001 s.         

 

 

 

 

 

 

 

 

Figure 80. A sample AE burst generated by the damaged gearbox 
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Figure 81.  The correlation coefficient between the AE burst and the Laplace wavelet 

 

 

 

After f and   are determined, the correlation coefficients between the AE burst and the 

Laplace wavelet for the rest of the AE bursts could be calculated.  The effective AE burst 

( _E AEburst ) in Eq. (49) is defined as the signal between the time when the first 

maximum correlation coefficient occurs plus and minus   and the time when the second 

maximum correlation coefficient occurs plus and minus  .  And the background noise in 

Eq. (49) is defined as, the signal between the time when the first minimum correlation 

coefficient occurs plus and minus   and the time when the second minimum correlation 

coefficient occurs plus and minus  .  
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After the location of the AE burst signal and the background signal are located, the time 

window length needed to be determined.  Too small window length cannot capture the 

whole characteristics of the AE burst waveform and makes the extracted fault features 

easier to be contaminated by the noise.  While too large wind length makes the signal 

contains more uncorrelated signals and thus makes the extracted fault features less 

sensitive to the fault.  

 

Laplace wavelet coefficients represent a possible way to determine the window length of 

the AE burst since the AE burst signal provides a larger correlation coefficient with the 

Laplace wavelet.  The window length can be determined by using the following equation.  

22
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The flowchart of finding the window length is shown in Figure 82.   
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Figure 82.  The flowchart of finding window length 

 

 

 

The simulated signal in Eq. (20) is re-used here to demonstrate the concept.  The Laplace 

wavelet is applied to the simulated signal and the results are shown in Figure 83.  In this 

simulated example, when threshold value is set as 0.95, the burst signal window length 
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for the simulated signal is 0.98 seconds.  The noise window length is the same as the 

burst window length and it is 0.98 seconds.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 83.  The simulated results 

 

 

 

A real AE waveform from the damaged gearbox is used here to illustrate the 

effectiveness of the proposed method.  The AE waveform and the correlation coefficients 

are shown in Figure 84.   
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Figure 84.  The real AE waveform generated by the damaged gearbox and its correlation 

coefficients 

 

 

 

From the results for both the simulated signal and the real AE waveform, we can see that 

the threshold based method is capable of determining the window length for detecting the 

AE burst.  
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5.5.1 Case Study: STG Gear Test Rig Experiment 

 

To quantify the correlation between the AE based condition indicators and the gear 

damage levels, three gear damage levels were investigated in this research: 0% tooth loss 

(healthy gear), 20% tooth loss, and 100% tooth loss.  For each damage level, three 

different loadings were applied: 0% loading, 50% loading, and 100% loading.  The AE 

sampling rate was set at 500 kHz and 500 AE bursts were collected for each damage level 

and loading condition.  The processed results are shown in the following tables.  

 

 

 

 

 

Table XIX.  The AE features of the gearbox with 0% damage level 

 

AE Features 
Loading 

0% 50% 100% 

Kurtosis 6.210 3.675 3.440 

RMS 0.090 0.135 0.129 

Peak 0.541 0.616 0.543 

Energy Ratio 37.248 17.017 15.36 

LPW_kurtosis 12.076 7.665 6.950 

LPW_peak 0.300 0.318 0.288 

LPW_Entropy 46.076 61.446 59.874 

LPW_RMS 0.060 0.079 0.075 
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Table XX.  The feature of the gearbox with 20% damage 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 AE Features 

Loading 

0% 50% 100% 

Kurtosis 11.832 10.158 8.851 

RMS 0.051 0.047 0.047 

Peak 0.459 0.410 0.384 

Energy Ratio 39.791 27.891 25.084 

LPW_kurtosis 18.255 16.530 16.514 

LPW_peak 0.165 0.137 0.134 

LPW_Entropy 28.769 26.965 26.847 

LPW_RMS 0.029 0.025 0.025 
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Table XXI.  The features of the gearbox with 50% damage 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 AE Features 

Loading 

0% 50% 100% 

Kurtosis 12.699 14.495 12.651 

RMS 0.037 0.035 0.035 

Peak 0.314 0.321 0.312 

Energy Ratio 42.431 39.664 31.142 

LPW_kurtosis 11.331 12.055 10.739 

LPW_peak 0.093 0.088 0.081 

LPW_Entropy 22.843 21.475 21.486 

LPW_RMS 0.020 0.018 0.018 
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Table XXII.  The features of the gearbox with 100% damage 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The correlation between the AE features and the damage levels under three different 

loading conditions are shown in Figure from Figure 85 to Figure 90.  In these Figures, the 

maximum value of each feature is normalized to be 1.  For the 0% loading condition, the 

correlation between the raw AE features and the damage levels is shown in Figure 85 and 

the correlation between Laplace wavelet processed AE features and the damage levels in 

Figure 86. 

AE Features 

Loading 

0% 50% 100% 

Kurtosis 15.111 12.423 13.368 

RMS 0.048 0.047 0.043 

Peak 0.455 0.406 0.386 

Energy Ratio 56.099 41.924 44.220 

LPW_kurtosis 15.474 13.274 13.335 

LPW_peak 0.150 0.137 0.124 

LPW_Entropy 27.958 27.737 25.885 

LPW_RMS 0.028 0.027 0.025 
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Figure 85.  The features extracted from the raw AE bursts of the gearbox with 0% 

loadings 
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Figure 86.  The features extracted from the processed AE signals of the gearbox with 0% 

loadings 

 

 

 

From Figure 85 and Figure 86, we can see that the kurtosis value of the raw AE bursts 

and the energy ratio value of the Laplace wavelet processed signal show a consistent 

correlation between the AE feature values and damage levels, i.e., the AE feature values 

increase as the damage level increases.   

 

For the 50% loading condition, the correlation between the raw AE features and the 

damage levels is shown in Figure 87 and the correlation between Laplace wavelet 

processed AE features and the damage levels in Figure 88. 
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Figure 87.  The features extracted from the raw AE signals of the gearbox with 50% 

loadings 
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Figure 88.  The features extracted from the processed AE signals of the gearbox with 

50% loadings 

 

 

 

From Figure 87 and Figure 88, we can see we can see that only the energy ratio value of 

the Laplace wavelet processed signal show a consistent correlation between the AE 

feature values and damage levels, i.e., the AE feature values increase as the damage level 

increases. 
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For the 100% loading conditions, the correlation between the raw AE features and the 

damage levels is shown in Figure 89 and the correlation between Laplace wavelet 

processed AE features and the damage levels in Figure 90. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 89.  The features extracted from the raw AE signals of the gearbox with 100% 

loadings 
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Figure 90.  The features extracted from the processed AE signals of the gearbox with 

100% loadings 

 

 

 

From Figure 89 and Figure 90, we could see we can see that the kurtosis value of the raw 

AE bursts and the energy ratio value of the Laplace wavelet processed signal show a 

consistent correlation between the AE feature values and damage levels, i.e., the AE 

feature values increase as the damage level increases. 
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From the results shown above, one can see that only energy ratio value of the Laplace 

wavelet processed signal shows a consistent correlation between the AE feature values 

and damage levels under different loading conditions. 

 

5.6 EMD Based AE Quantification Methodology 

 

The framework of the methodology for rotating machinery health monitoring and fault 

detection using EMD based AE feature quantification is provided in Figure 91.  The 

developed EMD based AE quantification methodology incorporates a threshold based de-

noising technique into EMD to increase the signal-to-noise ratio.  A single compressed 

AE feature is calculated by fusing the features extracted from the de-noised signals.  The 

compressed AE features are then used for fault detection based on a statistical method.   
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Figure 91.  The framework of the EMD based AE quantification methodology for 

rotating machine fault detection methodology 

 

 

 

As shown in Figure 91, the AE based fault detection methodology consists of two major 

parts: EMD based AE feature quantification and statistical analysis based fault detection.  

These two major components of the methodology are explained in the next sections. 
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5.6.1 The EMD Based AE Feature Quantification 

 

As shown in Figure 91, AE bursts from both healthy and faulty systems are collected and 

then decomposed into the IMF components by the EMD method.  A threshold based 

technique similar to wavelet de-noising method reported in [131] is applied to every IMF 

components.  In general, a de-nosing threshold can be setup using four methods:  

(1) the universal threshold,  

(2) adaptive threshold selection based on principle of Stein's unbiased risk estimate,  

(3) heuristic threshold selection,  

(4) mini maxi threshold.   

 

According to [131], universal threshold can achieve a noise-free reconstruction.  In real 

time applications, one more advantage of using the universal threshold is that the 

threshold only needs to be calculated once for each AE signal.  For computing the 

threshold of a group of AE burst type signals, using a universal threshold can save a huge 

amount of time and is more efficient in real time applications.  Therefore a universal 

threshold is applied in this dissertation.  The universal threshold is computed by using the 

first IMF component, which is the finest component among all the IMF components.  The 

soft-thresholding based de-noising rule as described in [131] is used in the developed 

methodology as Eq. (55): 
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(55) 

 

where: ys
represents a de-noised IMF component, y the IMF component before de-

noising, Nt log2̂  the de-noising threshold, ̂ the estimation of the standard 

deviation (STD) of the noise, N  the length of y.  In this research, the de-nosing threshold 

t in Eq. (55) is computed using the first IMF component.   

 

According to [176], the standard deviation of the noise can be estimated by using the 

robust median estimator.  In analyzing the burst type AE signals, one can observe that the 

AE bursts are symmetric around 0 and there are no extreme values.  In this case, the 

mean value will be close to the median value.  In practical applications, the calculation of 

mean is easier than that of median, since the calculation of median involves additional 

sorting.  To reduce the computational complexity, one can use mean deviation instead of 

median absolute deviation to estimate the standard deviation of the noise.  The standard 

deviation of the noise can be expressed as Eq. (56): 

1 1
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                                                     (56) 

where: y1
is the first IMF component with N sampling points and y1

is the mean of y1
.  

Since for burst type AE signals, the mean of the sampled signals is very close to 0, Eq. 

(56) can be expressed as Eq. (57): 
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After the threshold-based de-noising, the de-noised IMF components are reconstructed to 

form a new signal by simply adding these de-noised IMF components together.  Six AE 

parameters are extracted from the reconstructed signals as the fault features: (1) ring-

down count (2) duration (3) peak amplitude (4) rise time (5) RMS (6) crestfactor.  The 

definition of these features can be found in section 5.4 of Chapter 5.  

 

After the 6 features are extracted, they are compressed into a single feature by calculating 

the Mahalanobis distance between the calculated AE features and the AE features of the 

healthy state.  The compressed AE feature CF is defined as: 

 

)()( 1    xSxCF T

     
 (58) 

where, x is a multivariate vector T

Nxxxxx ),...,,,( 321  from a group of values with mean 

),...,,,( 321 N 
T
and S is the covariance matrix.  The compressed feature could be 

used for fault detection.   

 

5.6.2 The Statistical Analysis Based Fault Detection 

 

To detect the fault, detection criteria should be developed based on the compressed 

feature.  As the compressed feature measures the Mahalanobis distance from AE features 

of the healthy state, a damaged state will have a larger compressed feature value than that 

of the healthy state.  Therefore, we can choose a detection criterion such that if a certain 

percentage of the data whose compressed features are greater than a fault detection 
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threshold then we can say there is a fault.  In fact, this detection criterion can be 

established based on statistical analysis as following.   

 

Since the distribution of the compressed feature cannot guarantee to be a normal 

distribution, Chebyshev’s inequality can be used for any unknown distribution.  

Theoretical parts on how to use the Chebyshev’s inequality to establish a fault detection 

threshold value is discussed in the Chapter 4 and will not discuss in this section again.  

Here the desired false alarm rate is set as 0.05, then the fault detection threshold can be 

computed as: 

_
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                          (59) 

 

5.6.3 Gear Seeded Fault Case Study Results 

 

AE burst type signals were collected from both the healthy gearbox and damaged 

gearbox under 3 different loading conditions: 0% loading, 50% loading and 100% 

loading, and were processed by using EMD.  Even though the AE signals were collected 

from two AE sensors during the tests, only the AE signals from the nearest AE sensor to 

the faulty gear were used for analysis purpose.  For demonstration, the first four IMF 

components of the decomposition of the healthy gearbox and the damaged gearbox under 

0% loading condition are shown in Figure 92 and Figure 93, respectively. 
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Note that in both Figure 92 and Figure 93, the red lines are the universal de-nosing 

threshold computed based on the first IMF component. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 92. The first four IMF components of the healthy gearbox under 0% loading 

condition 
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Figure 93. The first four IMF components of the damaged gearbox under 0% loading 

condition 

 

 

 

After the decomposition, the soft-threshold based de-noising technique was applied and 

the de-noised signal was obtained as shown in Figure 94 and Figure 95, respectively.  
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Figure 94. The de-noised signal of the healthy gearbox by using Hilbert-Huang transform 

under 0% loading condition 
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Figure 95.The de-noised signal of the damaged gearbox by using Hilbert-Huang 

transform under 0% loading condition 

 

 

 

During the experiments, the rotational speed of the input shaft was controlled to be 

constant at 60Hz.  Totally, one thousand AE signals collected from the healthy gearbox 
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and damaged gearbox under three different loading conditions were processed and after 

the reconstruction, six AE traditional features were calculated as shown in Table XXIII.   

 

 

 

Table XXIII.  The AE features of both healthy gearbox and damaged gearbox 

 

Loading 

Condition 

Gearbox 

State 
 RMS 

Crest 

Factor 

Peak 

Value 
Count Duration 

Rise 

Time 

0% 

Loading 

Condition 

Healthy 

Mean 0.0028 37.82 0.19 0.19 0.0000003 0.001 

Std 0.0022 6.92 0.08 0.55 0.000002 0.012 

Damaged 

Mean 0.019 37.42 0.68 3.44 0.0007 0.31 

Std 0.015 6.18 0.57 2.87 0.0009 0.68 

50% 

Loading 

Condition 

Healthy 

Mean 0.0053 35.36 0.18 0.81 0.00002 0.004 

Std 0.004 6.34 0.14 1.46 0.00001 0.014 

Damaged 

Mean 0.027 33.10 0.90 6.10 0.012 0.36 

Std 0.014 4.99 0.49 3.02 0.001 0.73 

100% 

Loading 

Condition 

Healthy 

Mean 0.004 35.34 0.14 0.38 0.00002 0.0024 

Std 0.0031 6.54 0.10 0.85 0.0002 0.014 

Damaged 

Mean 0.04 28.55 1.05 12.36 0.0002 0.025 

Std 0.023 4.69 0.78 6.95 0.0002 0.039 
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The compressed features of both healthy and damaged gearboxes under 0% loading, 50% 

loading, and 100% loading are shown in Figure 96, Figure 97, and Figure 98, respectively.  

The thresholds for gear fault detection under 0% loading condition, 50% loading 

condition and 100% loading condition were calculated as: 17.92, 23.70, and 27.01, 

respectively.  We can see that for 0% loading condition, only 0.3% of the feature points 

of the healthy gearbox are greater than the threshold, while 87.64% of the feature points 

of the damaged gearbox are greater than the threshold.  For 50% loading condition, only 

0.6% of the feature points of the healthy gearbox are greater than the threshold, while 

92.48% of the feature points of the damaged gearbox are greater than the threshold.  For 

100% loading condition, only 0.3% of the feature points of the healthy gearbox are 

greater than the threshold, while 94.36% of the feature points of the damaged gearbox are 

greater than the threshold.  These results clearly indicate that the developed methodology 

is effective in detecting the gear fault. 
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Figure 96. The compressed AE features for healthy and damaged gearbox under 0% 

loading condition  

 

 

 

 
 
 

 

 

 

 

 

Figure 97. The compressed AE features for healthy and damaged gearbox under 50% 

loading condition  

 

 



 

185 

 

 

 

 

 

 

 
 

 

 

 

Figure 98. The compressed AE features for healthy and damaged gearbox under 100% 

loading condition 

 

 

 

In order to compare the gear fault detection performance comparison of the compressed 

AE features with the existing EMD based AE features reported in the literature, the 

energy ratios of the IMF components as computed in [169, 170], were extracted.  

According to [169, 170], the energy of a signal s(t) of size L is defined as:  
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The AE bursts were first processed to obtain the IMF components and the energy ratios 

were computed using the first four IMF components for further calculation.  The energy 

ratios for other IMF components were not calculated because the signals were too weak. 

Totally, 1000 AE bursts collected from both the healthy gearbox and the damaged 

gearbox under 3 different loading conditions were processed and the energy ratio means 

and the standard deviations of the first four IMF components are shown in Table XXIV. 

. 
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Table XXIV.  The energy ratio means and the standard deviations of the first four IMF 

components of both healthy gearbox and damaged gearbox 

 

Loading 

Condition 
Gearbox State  IMF1 IMF2 IMF3 IMF4 

0% 

Loading 

Condition 

Healthy 

Mean 0.95 0.01 0.017 0.009 

Std 0.024 0.016 0.003 0.0025 

Damaged 

Mean 0.99 0.12 0.02 0.01 

Std 0.04 0.04 0.009 0.006 

50% 

Loading 

Condition 

Healthy 

Mean 0.95 0.097 0.02 0.008 

Std 0.025 0.017 0.003 0.002 

Damaged 

Mean 0.94 0.14 0.02 0.001 

Std 0.03 0.02 0.005 0.003 

100% 

Loading 

Condition 

Healthy 

Mean 0.94 0.10 0.017 0.0085 

Std 0.024 0.017 0.0031 0.002 

Damaged 

Mean 0.95 0.12 0.02 0.009 

Std 0.04 0.03 0.0055 0.008 

 

 

 

The energy ratios of the IMF components of gearbox running under 0% loading, 50% 

loading, and 100% loading were used as the feature vectors to compute the compressed 

feature as shown in Figure 99, Figure 100, and Figure 101.  We can see that for 0% 

loading condition, only 0.5% of the feature points of the healthy gearbox are greater than 
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the threshold, while 62.67% of the feature points of the damaged gearbox are greater than 

the threshold.  For 50% loading condition, only 0.2% of the feature points of the healthy 

gearbox are greater than the threshold, while 69.82% of the feature points of the damaged 

gearbox are greater than the threshold.  For 100% loading condition, only 0.4% of the 

feature points of the healthy gearbox are greater than the threshold, while 66.83% of the 

feature points of the damaged gearbox are greater than the threshold.  These results 

indicate that the compressed features computed using existing EMD based approaches 

are effective in detecting the gear fault.  However, by examining the percentage of the 

compressed features of the damaged gearbox that were greater than the threshold as 

shown in Table XXV , we can see that the AE features extracted using the method 

presented in this paper gave more weights towards making the correct fault detection 

decision than the feature vectors extracted using the methods presented in [169, 170].  

The results show that the AE features extracted using the proposed method are more 

sensitive to the gear fault than those by the existing EMD based AE feature extraction 

methods. 
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Table XXV.  Comparison of % compressed fault features that are greater than the fault 

detection threshold 

 

 Loading Condition 0% 50% 100% 

% Compressed fault 

featuresthat are greater than 

the fault detection threshold 

Compressed AE features 

in this paper 
87.34 91.88 94.06 

Compressed AE features 

presented in [169, 170] 
62.16 69.62 66.43 

 

 

 

 

 

 

 

 

 

 

Figure 99. The compressed AE features calculated by using the energy ratio of the IMF 

components for healthy and damaged gearbox under 0% loading condition  
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Figure 100. The compressed AE features calculated by using the energy ratio of the IMF 

components for healthy and damaged gearbox under 50% loading condition  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 101. The compressed AE features calculated by using the energy ratio of the IMF 

components for healthy and damaged gearbox under 100% loading condition 
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6 CONCLUSIONS 

 

This dissertation has provided a literature review on rotating machinery fault detection 

and diagnostics.  The design and development of a notional split torque gearbox type 

gearbox test rig was presented.  The theoretic basis and the development of both vibration 

signal and acoustic emission signal based methodologies for rotating machinery fault 

detection and diagnostics have been presented.  The effectiveness of the developed 

methodologies was validated by using the gear seeded faults on the developed STG type 

gearbox test rig and the real bearing seeded faults on a bearing run-to-failure test rig.  

 

The contributions of this research are summarized as follows: 

(1) An EMD based vibration feature and condition indicator extraction 

methodology for rotating machinery fault detection and diagnosis has been 

developed.  

(2) A two-step vibration signal based bearing fault diagnostics methodology for 

plastic bearings has been developed.   

(3) A vibration signal based gear fault detection system based on interference 

cancellation has been proposed.   

(4) A Laplace wavelet based acoustic emission signal quantification methodology 

for rotating machinery fault detection and diagnostics has been developed.   

(5) An EMD based acoustic emission quantification methodology has been 

developed.   

(6) A notional split-torque gearbox test rig has been designed and developed.   
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(7) Experiments have been designed and implemented on the custom designed 

notional STG test rig and bearing run-to-failure test rig.  Both vibration and 

acoustic emission signals have been collected during the experiments.  The 

effectiveness of the developed methodologies has been validated by the 

bearing and gear seeded fault test data. 

 

Future research includes: 

 

(1) Further work should be conducted on investigation of the effectiveness of the 

developed methodologies by using the real data from the real life applications. 

(2) In this research, only constant operation condition was applied.  In real 

applications the operation conditions, such as, speeds, loading, and so on, are 

fluctuating.  Therefore, further research should be conducted on the developed 

methodology under dynamic operation conditions. 
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