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SUMMARY

This dissertation included two fields in the application of Statistical Inference, specialized

in Meta Analysis and Estimation Theory viz. : ‘Estimation of Common Mean’ and ‘function

Estimation’.

Part A Estimation of Common Mean.

In Chapter 2, we extended Graybill-Deal Estimator (GDE) to the higher dimension:

common parameter estimation in linear regression models. We found the same result

continues to hold in situations wherein the p (p ≥ 2) linear regression models involve k

(k > 1) common estimable parameter(s) in the mean models. In this context, we used

the criterion of ‘Loewner Order Domination’ of information or dispersion matrices.

Then Chapter 3, we studied GDE’s properties under Pitman closeness criterion. Specif-

ically, we compared a p-source based Graybill-Deal estimator against its q-sub-source

based competitors for q (< p)-dimensional subsets of p-dimensional data.

Part B Function Estimation.

In Chapter 4, we presented a negative report about the estimation of reliability function

by using a single observation from a mixture of two exponential distributions. We showed

that there exists proper estimator on if we require negative weight on the distributions.

All the references cited in this thesis would be presented at the end.

xi



CHAPTER 1

INTRODUCTION
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1.1 Estimation of Common Mean of Normal Populations

The common mean estimation problem was first introduced by Cochran (14), while he was

considering combining a series of similar experiments. The general setting for this kind of

problem was: we had p independent groups of normal variables with sample size ni, for the ith

group, having the sample mean x̄i ∼ N(µ,
σ2
i
ni

), where i = 1, 2, . . . , p. The setup presupposed

that there was a common unknown mean µ for the p populations and unknown but possible

likely unequal variances. The problem considered was that of efficient unbiased estimation of

µ based on the data from the p groups.

Yates (49; 50) initiated that this was related to balanced incomplete block design (BIBD)

with fixed treatment effects and uncorrelated random block effects. In this set up, one had

to combine inter-block and intra-block information to better estimate the treatment effects.

Under this usual assumpation of indepence and normality, these two estimators are independent,

following the same setting of common mean of normal populations. Nair (32) and Rao (38; 39)

extended Yates’ (49; 50) work, and hence attracted a lot of attention. Specially Bhattacharya

(3; 4; 2; 5; 6) considered this within design problems in many details.

For p = 2, Cochran (14) suggested the unbiased estimator

µ̂C =

(
x̄1

n1

σ2
1

+ x̄2
n2

σ2
2

)
n1

σ2
1

+ n2

σ2
2

. (1.1)

This estimator is the best linear unbiased estimator (BLUE) for µ, assuming that the two

variances are known [in fact, this is also the uniformly minmum variance unbiased estimator
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(UMVUE)]. Motivated by Cochran’s (14) work, Graybill and Deal (19) introduced their esti-

mator µ̂GD|2, known as Graybill-Deal Estimator (GDE), by replacing the true variances with

their corresponding unbiased estimators:

µ̂GD|2 =

(
x̄1

n1

s21
+ x̄2

n2

s22

)
n1

s21
+ n2

s22

, (1.2)

where s2
i = 1

ni−1

∑ni
j=1(xij − x̄i)

2 for i = 1, 2. In view of distributional independence of x̄i

and s2
i , µ̂GD|2 is an unbiased estimator for µ. Furthermore, Graybill and Deal established that

µ̂GD|2 is uniformly superior to any single unbiased estimator of µ if and only if the following

condition holds:

Either both n1 and n2 > 10 or n1 = 10 (n2 = 10) and n2 > 18 (respectively n1 > 18) .

Norwood and Hinkelmann (33) extended Graybill and Deal’s (19) results to general p groups,

and they established that µ̂GD|p is a uniformly better estimator of µ than each x̄i if and only if

either ni > 10 for i = 1, 2, . . . , p or ni = 10 for some i, and nj > 18 (i, j = 1, 2, . . . , p for each

j 6= i), where

µ̂GD|p =

p∑
i=1

x̄i
ni
s2i∑p

j=1
nj
s2j

. (1.3)

Shinozaki (44) extended µGD|p to a general form:

µ̂S =

p∑
i=1

x̄i
ci
s2∗i∑p

j=1
cj
s2∗j

, (1.4)
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where s2∗
i =

s2i
ni

. By a careful choice of (c1, c2, . . . , cp), Shinozaki (44) presented a proof of

the claim that µ̂S,p is an uniformly better estimator of µ than any µ̂S,q of combining q (< p)

components, if and only if
cj
ci
≤ 2

(ni−1)(nj−5)
(ni+1)(nj−1) for any 1 ≤ i 6= j ≤ p and for all 1 ≤ q < p. It is

readily verified that when our choice of (c1, c2, . . . , cp) corresponds to (c1 = c2 = · · · = cp), the

condition above simplifies to what is stated earlier involving the sample sizes only.

The research of such estimators (the GDE or similar types) have been widely studied in the

literature. Pal and Sinha (1996) gave a very comprehensive and detailed review on GDE. They

mentioned that generally there were two parts in GDE research:

1. comparison the GDE with other estimators;

2. properties of the GDE.

In particular we would like to emphasize the work of Zacks (51; 52), Khatri and Shah (23),

Brown and Cohen (8), and Cohen and Sackrowitz (16). They all tried to improve the GDE

by their own estimators, but most of them had little practical usage. On the other side, Meier

(1953) first established an approximate estimatior of V ar(µ̂GD|p), Sinha (1985) also provided

another first order approximate of V ar(µ̂GD|p) which is comparable to Meier (31). Although

the admissibility of the GDE under usual square error loss function is still up in the air,

Zacks (51; 52), Kubokawa (26), Sinha and Mouqadem (47) and Sinha (46) studied this area.

Particularly, Sinha and Mouqadem (47) considered a special case with p = 2 and sample size

n1 = n2 = n, and they defined four classes as follows:

C = {µ̂ : µ̂ = x̄1 +Dφ1, 0 ≤ φ1(s2
1, s

2
2, D

2) ≤ 1};
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C0 = {µ̂ : µ̂ = x̄1 +Dφ2, 0 ≤ φ2(s2
1/s

2
2) ≤ 1};

C1 = {µ̂ : µ̂ = x̄1 +Dφ3, 0 ≤ φ3(s2
1, s

2
2) ≤ 1};

C2 = {µ̂ : µ̂ = x̄1 +Dφ4, 0 ≤ φ4(s2
1/D

2, s2
2/D

2) ≤ 1};

where D = x̄2 − x̄1. It is obvious that C ⊃ C1 ⊃ C0 and C ⊃ C2 ⊃ C0. C1; and C

are equivariant under location transformation while C0 and C2 are equivariant under affine

transformation (such as (x̄1, x̄2, s
2
1, s

2
2)→ (ax̄1 + b, ax̄2 + b, a2s2

1, a
2s2

2), a > 0, b ∈ R). Sinha and

Mouqadem (47) showed that the GDE is admissible in C0 and C2, and it is extended admissbile

in C. They also provided an estimator which is admissible in C1. Sinha (46) found that if there

is prior knowledge of the variances (the order of σ2
i ’s), the GDE could be improved.

In all of these studies, the populations were assumed to be normally distributed with iden-

tical means but heterogeneous variability. Because in practice, populations came into exam-

ination were usually from the same or homogeneous sources, but different populations were

exposed to different environmental conditions. For example, a soil laboratory theorized that

samples collecting from several different locations had the same mean since these soils were

formed from the same geological phenomenon but have different variances due to the fact that

they were exposed to different meteorological and microbiological environments. For another

example, a set of chemical products were divided into several pools and sent to different labora-

tories for analysis of the ingredients. The means should be the same as these chemical products

were produced in the same batch. But the variances might differ from one to the other due the

method, instrument and/or human bias.
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So far in the literature related to GDE, the standard set-up of estimation of normal com-

mon mean has been investigated. Chiou and Cohen (12), Loh (29), Kubokawa (24), Tsukuma

and Konno (48) investigated the multivariate normal counterpart in this problem. Chiou and

Cohen (12) reported some negative results of GDE in higher dimension. In Chapter 2, we were

primarily interested in a linear regression set-up with common parameter. We followed the gen-

eral approach of formation of Graybill-Deal-type estimators in such set-ups and then examined

conditions for their superiority over corresponding estimators based on partial exposure to the

entire body of data. There were exceptions such as in Kubokawa (24). However, linear regres-

sion set-up has not been studied yet. In a view of practical application, often when different

researchers analyzed different samples with the same linear model, the estimators generated

from each sample portion may include more than one parameter (intercept and/or slopes). We

would then face a challenge of combining these estimators efficiently.

In Chapter 3, we compared GDE under Pitman closeness criterion, which was introduced by

Pitman (36): We say estimator µ̂1 is better (closer) than µ̂2 for the estimation of the parameter

µ if and only if P{|µ̂1 − µ| ≤ |µ̂2 − µ|} ≥ 1/2. Kubokawa (25) and Sarkar (43) established that

for p = 2, necessary and sufficient condition for

P{|µ̂GD|2 − µ| ≤ |x̄i − µ|} ≥ 1/2, (1.5)
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to hold uniformly in (µ, σ2
1, σ

2
2) is that mi = ni − 1 ≥ 4 for each i = 1, 2. Sarkar (43) also

revealed that

P{|µ̂GD|p − µ| ≤ |x̄i − µ|} ≥ 1/2, (1.6)

for all i = 1, 2, . . . , p and uniformly in (µ, σ2
x̄1
, σ2

x̄2
, . . . , σ2

x̄p), if and only if

2E

(

p∑
j=1,j 6=i

σ−2
x̄j Y

2
j )−1/2(

p∑
j=1,j 6=i

σ−2
x̄j Yj)

 ≤ E
(

p∑
j=1,j 6=i

σ−2
x̄j Y

2
j )1/2

 , (1.7)

holds for all i = 1, 2, . . . , p and uniformly in (σ2
x̄1
, σ2

x̄2
, . . . , σ2

x̄p), where Yj ’s are independently

distributed as
mj

χ2(mj)
and mj = nj−1, for j = 1, 2, . . . , p. Sarkar (43) showed that Equation 1.7

holds for any i in {1, 2, . . . , p}, if

1− 8m−1
k + 4(

p∑
j=1,j 6=i

mj)
−1 ≥ 0, (1.8)

for all k in {i = 1, 2, . . . , i− 1, i+ 1, . . . , p}.

Base on the results of Kubokawa (25) and Sarkar (43), we examined µ̂GD|p with µ̂GD|q, the

GDE of any q (< p) subgroups, in the sense of Pitman closeness criterion. Several sufficient or

necessary conditions were provided.

1.2 Unbiased Estimation of Reliability Function From Mixture of Two Exponential

Distributions

In the study of life testing and reliability analysis, an important approach is to find suitable

estimate of an underlying ‘life’ distribution. For a practical reason, it is relevant to get an
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unbiased estimate of reliability function (survival function) R(t) = e−t/λ when the real ‘life’

distribution follows exponenital distribution as 1
λe
−t/λ. Pugh (37) and Basu (1) found the

UMVUE of reliability function, R̂umvue(t), under the following assumptions:

Let X1, ...,Xn be n identical independent observations on X, which is following an expo-

nential distribution with unknown mean λ (> 0).

A simple unbiased estimator of R(t), called R̂1(t), is:

R̂1(t) =
1

n

n∑
i=1

I(Xi > t), (1.9)

where I(.) is the indicator function.

The variance of R̂1(t) is :

V ar(R̂1(t)) =
R(t)(1−R(t))

n
. (1.10)

The UMVUE given by Pugh (37) and Basu (1) is that:

R̂umvue(t) =


(1− t

W )n−1 W > t

0 otherwise

(1.11)

where W =
∑n

i=1Xi. The variance of R̂umvue(t) is:

V ar(R̂umvue(t)) = R(t)(φ(t)−R(t)), (1.12)
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where φ(t) = 1
Γ(n)

∫∞
0 e−µ µ2n−2

(µ+ t
λ

)n−1dµ.

Due to the well known facts that the difference of two adjacent order statistics of exponential

distributions also follows a exponential distribution, Basu (1) additionally provided the UMVUE

of R(t) from first r (r < n)order statistics:

R̂os(t) =


(1− t

W ∗ )
r−1 W ∗ > t

0 otherwise

(1.13)

where W ∗ =
∑r

i=1X(i) + (n− r)X(r), and X(i) is the ith order statistics, i = 1, 2, ..., n.

Sinha, Sengupta and Mukhuti (45) extended to more general cases for order statistics sit-

uation. They mentioned that “in many practical issues, instead of a complete random sample

of size n, only r (1 ≤ r < n) selected order statistics from it, such as X(i1), X(i2), ..., X(ir),

1 ≤ i1 < i2 < ... < ir ≤ n.” The key idea of solving it was how to unbiased estimate R(t) when

there was only a single order statistics. Sinha, Sengupta and Mukhuti (45) proved that the

unique unbiased estimator of R(t) based on a single ith order statistic Xi (1 ≤ i ≤ n), denoted

by hi(Z(i)) and Z(i) = (n− i+ 1)X(i), is given by:

hi(Z(i)) =

∞∑
y1=0

∞∑
y2=0

. . .

∞∑
yi−1=0

dy1y2...yi−1I(Zi > αy1
1 α

y2
2 . . . α

yi−1

i−1 t), (1.14)
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where αj = n−i+j
n−i , j = 1, 2, . . . , i, dy1y2...yi−1 =

(−1)
∑
j yj(

n
i

) (y1+y2+···+yi−1)!
y1!y2!...yi−1!

(i−1
1 )

y1

αy1
(i−1

2 )
y2

αy2 . . .
(i−1
i−1)

yi−1

αyi−1 ,∑
j means sum of all even suffixes of y and all yj are integers, j = 1, 2, . . . , i− 1. For example,

when i = 2, we reduced our expression as:

h2(Z(2)) =
∞∑
y1=0

1

nαy1
I(Z(2) > αy1t), (1.15)

where α = n
n−1 .

Sinha, Sengupta and Mukhuti (45) also revealed that this unbiased estimator based on a

point of single order statistics could achieve a smaller variance than UMVUE from a complete

random size of n by applying ranked set sampling method, which was due to McIntyre (30).

According to his procedure, one selected n independent random sets with size n for each set,

then observed only the ith order statistics ( ith smallest) at set i. Chiuv and Sinha (13) and

Chen Bai and Sinha (11) gave a good detailed review on this procedure.

In Chapter 4, inspired by Sinha, Sengupta and Mukhuti (45), we tried to apply similar

method to find the unbiased estimator of reliability function based on a single observation

from a mixture exponential distributions. We reported some negative results: the unbiased

estimator of R(t) is a proper estimator (between 0 and 1) if only if the mixture probability

is negative. Jevremovic (22) provided some example on mixed exponential distributions with

negative weights.



CHAPTER 2

ON A GENERAL PATTERN OF DOMINATION USING THE

GRAYBILL–DEAL ESTIMATOR

1 In environmental pollution studies, in order to understand the environmental factors

affecting the mean ‘contamination/pollution level’ of air/water/land, representative samples

are sent to different laboratories for statistical analysis. This corresponds to what is technically

addressed as ‘Meta Analysis’ problem. All studies in different laboratories have a common

goal viz., estimation and assessment of global contamination level in the experimental region.

At times, linear or quadratic or higher degree regression models are adequate with/without

common intercept term and/or common slope. Of course, the laboratories are likely to have

instruments with different precision levels. In such situations, we call for natural application of

Graybill-Deal Type estimators. Our purpose in this section is to examine the effectiveness of

such estimators.

In this chapter we were primarily interested in a linear regression set-up with common

parameter. We found that the same requirement of sample sizes repeated to hold in situations

wherein the p (≥ 2) linear regression models involve k (> 1) common estimable parameter(s)

1Part of this chapter is coming from a working paper “On a General Pattern of Domination Using
the Graybill–Deal Estimator” from Nie, Sinha and Hedayat.

11
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in the mean models. In this context, we used the criterion of ‘ Loewner Order Domination’ of

information or dispersion matrices.

2.1 Introduction

Let Xi ∼ N(µ, σ2
i ), i = 1, 2, . . . , p be p independent normal distributions sharing common

mean µ and unknown but possibly unequal variances σ2
i . Let n1, n2, . . ., np be the corresponding

sample size for each population. We have the following notations for sample means and sample

variances respectively:

x̄i =
1

ni

ni∑
j=1

xij ,

s2
i =

∑ni
j=1(xij − x̄i)2

ni − 1
. (2.1)

Here xij represent the independent observations from ith normal population. We notice that

x̄i’s and s2
i ’s are mutually independent with

x̄i ∼ N(µ,
σ2
i

ni
) and

(ni − 1)s2
i

σ2
i

∼ χ2(ni − 1), i = 1, 2, . . . , p.

Furthermore, the sample means and sample variances are minimal sufficient statistics.

For p = 2 and assuming that the two true variances are known, the sufficient statistics of

x̄1
n1

σ2
1

+ x̄2
n2

σ2
2

is also complete for µ. Cochran (14) suggested the unbiased estimator

µ̂C =

(
x̄1

n1

σ2
1

+ x̄2
n2

σ2
2

)
n1

σ2
1

+ n2

σ2
2

. (2.2)
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This estimator is the BLUE for µ, which is also the UMVUE.

When σ2
1 and σ2

2 are unknown, but the ratio ζ =
σ2

1

σ2
2

is known. We shall still have that

n1x̄1 + n2ζx̄2 is the complete sufficient statistics. Hence we still have the UMVUE as follows:

µ̂UMV UE =
n1x̄1 + n2ζx̄2

n1 + n2ζ
. (2.3)

It is trivial to note that µ̂UMV UE can be directly derived from µ̂C .

If ζ =
σ2

1

σ2
2

is unknown, we only have (x̄1, x̄2, s
2
1, s

2
2) being the minimal sufficient statistics.

But they are not complete, since E(x̄1 − x̄2) = 0. The following Theorem [Lehmann (27)]

showed that UMVUE of µ does not exist when ζ is unknown.

Theorem 1. The UMVUE of µ does not exist when ζ is unknown.

Proof.

We prove this by contradiction. Suppose the UMVUE of µ exists, denote as U = φx̄1 +

(1 − φ)x̄2. Clearly φ is in the range [0, 1]. For any ζ0 belong to [0,∞), µ̂ζ0 = n1x̄1+n2ζ0x̄2

n1+n2ζ0
is

the UMVUE of µ when ζ = ζ0. Since the UMVUE is unique, there must exist a ζ0, such that

U = µ̂ζ0 for any value of ζ. But this contradicts the assumption that ζ is unknown.

When ζ is unknown, Graybill and Deal (19) introduced their plug-in estimator, also known

as the GDE in literature, µ̂GD|2 for p = 2 groups,

µ̂GD|2 =

(
x̄1

n1

s21
+ x̄2

n2

s22

)
n1

s21
+ n2

s22

, (2.4)
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and showed that µ̂GD|2 was preferable than both sample means in the criteria of mean square

error, if and only if sample sizes n1 and n2 were moderately enough (≥ 11), which was corrected

by Khatri and Shah (23) as (n1 ≥ 11, n2 ≥ 11), (n1 = 10, n2 ≥ 19) or (n1 ≥ 19, n2 = 10). Later

Graybill and Deal’s (19) results were generalized to p populations by Norwood and Hinkelmann

(33). Furthermore, Shinozaki (44) gave a proof showing that p-source based GDE dominates

its any q-sub-source based competitors, again if and only if the same conditions continue to

hold. Specifically, we have the following theorem.

Theorem 2. 1. The estimator µ̂GD|p =
∑p

i=1

x̄i
ni
s2
i∑p

j=1

nj

s2
j

is unbiased for µ.

2. V ar(µ̂GD|p) <
σ2
i
ni

for all values of σ2
i (i = 1, 2, . . . , p) if and only if

(a) ni > 10, i = 1, 2, . . . , p or

(b) ni = 10 for some i, and nj > 18 for i, j ∈ {1, 2, . . . , p} and each j 6= i.

3. Furthermore, V ar(µ̂GD|p) < V ar(µ̂GD|q) for all q-sub populations and all values of σ2
i

(i = 1, 2, . . . , p) if and only if the same conditions hold.

Proof.

See Shinozaki (44).

Chiou and Cohen (12) tried to extend the above results to multivariate normal case, but

they reported some negative type results. To be more specific, “Let Xi, i = 1, 2, . . . , n be a

random sample of size n, from a k dimensional multivariate normal distribution with mean

vector µ and covariance matrix ΣX. Let Yi, i = 1, 2, . . . , n be a random sample of size n from a
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k dimensional multivariate normal distribution N(µ,ΣY). Assume the X-sample and Y-sample

are independent.” We had the following notations:

X̄ =

∑n
i=1Xi
n

,

Ȳ =

∑n
i=1Yi
n

,

SX =

∑n
i=1(Xi − X̄)(Xi − X̄)

′

(n− 1)
,

SY =

∑n
i=1(Yi − Ȳ)(Yi − Ȳ)

′

(n− 1)
,

ΣX̄ =
ΣX
n
,

ΣȲ =
ΣY
n
,

SX̄ =
SX
n
,

SȲ =
SY
n
. (2.5)

Considering the problem of estimating the common mean vector µ while ΣX and ΣY are un-

known, Chiou and Cohen (12) suggested a Graybill-Deal-type estimator:

T = SȲ(SX̄ + SȲ)−1X̄+ SX̄(SX̄ + SȲ)−1Ȳ. (2.6)

Surprisingly Chiou and Cohen (12) found that neither ΣX̄ − ΣT nor ΣȲ − ΣT was positive

semi-definite for all (ΣX, ΣY) for any n, where ΣT was the covariance matrix.

Theorem 3. The differences ΣX̄ − ΣT � 0 and ΣȲ − ΣT � 0 for all (ΣX, ΣY).

Proof.
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See Chiou and Cohen (12).

In the next section, we were trying to solve the similar question: estimating the common

mean vector from multivariate normal population with a known covariance matrix up to a

constant. Specially we considered the situation of regular linear regression models with common

parameter estimation. However we had some positive type results to be reported.

2.2 Common Parameter Estimation in Regular linear regression models with Independent

Normal Errors

Consider p independent linear regression models in matrix form, with sample size ni, i =

1, 2, . . . , p. At the ith population, we have:

Y i = Xiθ +Ziτ i + εi.
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Where Y i = (yi1, yi2, . . . , yini)
′ is the response variable for ith population. Xi and Zi are

corresponding design matrices with size ni × k and ni × ti respectively.

Xi =



xi11 xi21 . . . xik1

xi12 xi22 . . . xik2

. . . . . . . . . . . .

xi1ni xi2ni . . . xikni


,

Zi =



zi11 zi21 . . . ziti1

zi12 zi22 . . . ziti2

. . . . . . . . . . . .

zi1ni zi2ni . . . zitini


.

The ith linear model error term is εi = (εi1, εi2, . . . , εini). Each εij is identical and follows

N(0, σ2
i ) for all j = 1, 2, . . . , ni. We can also denote as:

εi ∼ N
(
0(ni×1), σ

2
i I(ni×ni)

)
,

where I(ni×ni) is the identity matrix with size ni × ni.

We assume that these p independent linear regression models share a k-dimensional (k-dim)

common estimable parameter vector θ = (θ1, θ2, . . . , θk)
′
, and an extra ti-dimensional estimable
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parameter vector τ i = (τi1, τi2, . . . , τiti)
′

at ith model, i = 1, 2, . . . , p. All of them are fixed.

From the normal equations, the OLS unbiased estimator,

(θ̂1, θ̂2, . . . , θ̂k, τ̂i1, τ̂i2, . . . , τ̂iti)
′

=((
Xi

... Zi

)T (
Xi

... Zi

))−1(
Xi

... Zi

)T
Y i,

of


θ

. . .

τ i

 based on the data arising out of the ith model. 1

Hence θ̂i = (θ̂1, θ̂2, . . . , θ̂k)
′ has the following distribution

θ̂i ∼ N
(
θ, σ2

iW i(k×k)

)
,

whereW i(k×k) is the k×k upper submatrix of

((
Xi

... Zi

)T (
Xi

... Zi

))−1

, andW i(k×k)’s

are nonsingular matrices.

An unbiased estimator for σ2
i is the mean square residuals s2

ri, which is the sum of square

residuals divided by the degrees of freedom νi = ni − k − ti:

s2
ri =

∑ni
j=1(yij − ŷij)2

ni − k − ti
=

∑ni
j=1 e

2
ij

ni − k − ti
, (2.7)

1If A is a matrix of order p×q and B is another matrix of order p×r, then (A
...B) represents a matrix

of order p× (q + r), wherein the columns of A are preceded by the columns of B without any change of
their relative positions.
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for all i = 1, 2, . . . , p, where eij = yij − ŷij is the residual for jth observation at ith model and

ŷij is the predicted value respectively. Further, it is known that
νis

2
ri

σ2
i
∼ χ2(νi).

1

In the sequel, we shall deal with the estimation of the common θ = (θ1, θ2, . . . , θk)
′

under

three different scenarios: in Section 2.3, we shall study the case k = 1 for p ≥ 2 groups; in

Section 2.4, we shall study the case k ≥ 2 for p = 2 groups; and in Section 2.5, we shall study

the case k ≥ 2 for p > 2 groups.

2.3 Single Common Parameter Involving p Groups

Suppose there is only one single common parameter α among these p independent linear

regression models. As mentioned above, under certain conditions, the GDE will be efficient.

Here we use a simple example to express our ideas by assuming that common α is the intercept

in two linear regression models.

Example 1. Consider two simple independent linear regression models involving unequal un-

known variances. We have

Y1 = α11(n1×1) + β1X(n1×1) + ε1

Y2 = α21(n2×1) + γ1Z(n2×1) + ε2

ε1 ∼ N(0(n1×1), σ
2
1I(n1×n1))

ε2 ∼ N(0(n2×1), σ
2
2I(n2×n2)),

1It is tacitly assumed that all nuisance parameters (τi’s ) are estimable.
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1 where

Y1 = (y11, y12, . . . , y1n1)
′
,

Y2 = (y21, y22, . . . , y2n2)
′
,

1(n1×1) =
′

(1, 1, . . . , 1)︸ ︷︷ ︸
n1

,

1(n2×1) = (1, 1, . . . , 1)︸ ︷︷ ︸
n2

,

X(n1×1) = (x1, x2, . . . , xn1)
′
,

Z(n2×1) = (z1, z2, . . . , zn2)
′
.

The OLS estimators (α̂1, β̂1) and (α̂2, γ̂1), respectively for (α1, β1) and (α2, γ1), can be expressed

as:

(
α̂1

β̂1

)
=
(

n1
∑n1
i=1 xi∑n1

i=1 xi
∑n1
i=1 x

2
i

)−1

 1 1 . . . 1

x1 x2 . . . xn1





y11

y12

. . .

y1n1


,

1Here X(n1×1) and Z(n2×1) are different from previous section.
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(
α̂2

γ̂1

)
=
(

n2
∑n2
i=1 zi∑n2

i=1 zi
∑n2
i=1 z

2
i

)−1

 1 1 . . . 1

z1 z2 . . . zn2





y21

y22

. . .

y2n2


;

and have the following variance-covariance matrices:

Var

(
α̂1

β̂1

)
= σ2

1

(
n1

∑n1
i=1 xi∑n1

i=1 xi
∑n1
i=1 x

2
i

)−1

and

Var

(
α̂2

γ̂1

)
= σ2

2

(
n2

∑n2
i=1 zi∑n2

i=1 zi
∑n2
i=1 z

2
i

)−1

.

Suppose α1 = α2 = α, then it follows :

E(α̂1) = E(α̂2) = α,

V ar(α̂1) = σ2
1(

1

n1
+

x̄2

SSx
),

V ar(α̂2) = σ2
2(

1

n2
+

z̄2

SSz
)

where

SSx =

n1∑
i=1

(xi − x̄)2,

SSz =

n2∑
i=1

(zi − z̄)2,
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x̄ =
1

n1

n1∑
i=1

xi,

z̄ =
1

n2

n2∑
i=1

zi

Denote 1
n1

+ x̄2

SSx
by w−1

1 , and 1
n2

+ z̄2

SSz
by w−1

2 .

The GDE of α combing these two estimates is

αGD|2 =

α̂1

s2r1w
−1
1

+ α̂2

s2r2w
−1
2

1
s2r1w

−1
1

+ 1
s2r2w

−1
2

.

It is noticed that α̂GD|2 defined here is little different from Graybill-Deal (19)’s definition.

We replaced n1 and n2 by w1 and w2 respectively. Later we will show that this change does

not affect the Graybill-Deal (19)’s claim. We can easily extend the formula for α̂GD|2 to

αGD|p =

p∑
i=1

α̂i
wi
s2ri

p∑
i=1

wi
s2ri

in case there are p such models to be combined. It is to be noted that w1, w2, . . . , wp have similar

algebraic expressions. At this stage, we will state and prove a general result on the property

of α̂GD|p. By a simple application of the results, from Norwood and Hinkelmann (33), and

Shinozaki (44), we have the following Theorem 4 for p independent linear regression models

sharing one single common intercept parameter α. We may note in passing that νi defined

above in the beginning of Section 2 assumes the form νi = ni − 2 for the model in Example 1

being studied.
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Theorem 4. If p independent linear regression models share one single common intercept

parameter α, i = 1, 2, . . . , p, then we have the following results:

1. α̂GD|p is an unbiased estimator for α.

2. A necessary and sufficient condition for α̂GD|p to have a smaller variance than each α̂i,

for all values of σ2
i , wi > 0 (i = 1, . . . , p) is either

(a) νi > 9, i = 1, 2, . . . , p or

(b) νi = 9 for some i, and νj > 17 for i, j ∈ {1, 2, . . . , p} and each j 6= i.

Moreover, if either Condition (2a) or (2b) is satisfied, then α̂GD|p=

φp(α̂1, . . . , α̂p; s
2
1, . . . , s

2
p) has a smaller variance than α̂GD|q = φq(α̂1, . . . , α̂q; s

2
1, . . . , s

2
q) of any

q (< p) subgroups .

Proof.

Set

σ2
i
?

=
σ2
i

wi
,

s2
ri
?

=
s2
ri

wi

for i = 1, 2, . . . , p. Then we have

α̂i ∼ N(α, σ2
i
?
)

and

νis
2
ri
?

σ2
i
? =

νis
2
ri

σ2
i

∼ χ2(νi)



24

for i = 1, 2, . . . , p.

Then the GDE

α̂GD|p =

p∑
i=1

α̂i
wi
s2ri∑p

i=1
wi
s2ri

=

p∑
i=1

α̂i
s2ri

?∑p
i=1

1
s2ri

?

.

This is the same setting as in Norwood and Hinkelmann (33). It is easy to show that α̂GD|p

is an unbiased estimator for α, and

V ar(α̂GD|p) < σ2
i
?

=
σ2
i

wi
∀i

if and only if either Condition (2a) or (2b) holds.

Furthermore, we notice that our α̂GD|p is a special case of α̂S at ci = 1 for i = 1, . . . , p.

From Shinozaki (44)’s results, we know that

V ar(α̂GD|p) < V ar(α̂GD|q), q < p

if and only if

2
νi(νj − 4)

(νi + 2)νj
≥ cj
ci

= 1

for any i 6= j. This is equivalent to condition (2a) or (2b) as stated above.

Remark 1. The statistical independence of the α̂i and s2
ri guarantees α̂GD|p to be an unbiased

estimator of α.
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Remark 2. The necessary and sufficient condition in (2a) or (2b) only concerns the degrees

of freedom νi in group i, which is related to the sample size ni. Theorem 4 indicates us that if

the sample size is reasonable enough (subject to condition in (2a) or (2b)), then the GDE of

a single common parameter utilizing p independent linear regression models always provides a

more efficient unbiased estimator than any single group or any q(< p) subgroups.

2.4 k-dim Common Parameter Involving Two Groups

In this section, we consider p = 2 independent linear regression models. The k-dim GDE of

the common estimable parameter vector θ(k×1) in matrix forms is:

θ̂GD|2 =
(
(s2
r1W1)−1 + (s2

r2W2)−1
)−1

(
(s2
r1W1)−1θ̂1 + (s2

r2W2)−1θ̂2

)
.

It is easily determined that this k-dim GDE is an unbiased estimator of θ. Since

E(θ̂GD|2)

= E
(
E(θ̂GD|2|s2

r1, s
2
r2)
)

= E
((

(s2
r1W1)−1 + (s2

r2W2)−1
)−1

(
(s2
r1W1)−1E(θ̂1|s2

r1, s
2
r2) + (s2

r2W2)−1E(θ̂2|s2
r1, s

2
r2)
))

= E
((

(s2
r1W1)−1 + (s2

r2W2)−1
)−1 (

(s2
r1W1)−1θ + (s2

r2W2)−1θ
))

= θ.



26

The dispersion matrix of θ̂GD|2 is:

D(θ̂GD|2) (2.8)

= E
(
D
(
θ̂GD|2|s2

r1, s
2
r2

))
+D

(
E
(
θ̂GD|2|s2

r1, s
2
r2

))
(2.9)

= E
(
D
(
θ̂GD|2|s2

r1, s
2
r2

))
+D (θ) (2.10)

= E
(
D
(
θ̂GD|2|s2

r1, s
2
r2

))
+ 0 (2.11)

= E

((
s−2
r1 W1

−1 + s−2
r2 W2

−1
)−1

(
σ2

1

s4
r1

W1
−1 +

σ2
2

s4
r2

W2
−1

)(
s−2
r1 W1

−1 + s−2
r2 W2

−1
)−1
)
.

In the above, we conditionally fixed s2
r1 and s2

r2. So at the end, we only need to compute

expectation with respect to these variance estimates.

By way of notation, if a dispersion matrix A is non-negative definite (n.n.d.) we write

A ≥ 0, if it is positive definite (p.d.) we write A > 0. The Loewner order domination of a

dispersion matrix A over B (A > B) means A − B > 0, the Loewner order of A below B

(A < B) means A−B < 0.

Lemma 5. If W1 and W2 are diagonal matrices, then D(θ̂GD|2) < min(σ2
1W 1, σ

2
2W 2) if and

only if either

1. νi > 9, i = 1, 2 or

2. νi = 9 for some i, and νj > 17 for the other j 6= i.

Proof.
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Let

W1 = Diag(w−1
1g ) =



w−1
1g 0 . . . 0

0 w−1
12 . . . 0

. . . . . . . . . . . .

0 0 . . . w−1
1k


and

W2 = Diag(w−1
2g ) =



w−1
2g 0 . . . 0

0 w−1
22 . . . 0

. . . . . . . . . . . .

0 0 . . . w−1
2k


,

where w−1
1g and w−1

2g are the g-th diagonal entries of matrices W1 and W2 respectively, g =

1, . . . , k. To prove this Lemma, it is enough to show the g-th diagonal entry of the dispersion

matrix

D(θ̂GD|2)gg = V ar

 θ̂1g
s2r1w

−1
1g

+
θ̂2g

s2r2w
−1
2g

1
s2r1w

−1
1g

+ 1
s2r2w

−1
2g

 ≤ min(
σ2

1

w1g
,
σ2

2

w2g
),

for all g = 1, 2, . . . , k, and for all values of σ2
1, σ2

2.

From Theorem 4, it is known that:

V ar

 θ̂1g
s2r1w

−1
1g

+
θ̂2g

s2r2w
−1
2g

1
s2r1w

−1
1g

+ 1
s2r2w

−1
2g

 < min

(
σ2

1

w1g
,
σ2

2

w2g

)
.

if and only if condition stated in (1) or (2) of Lemma 5 holds.
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Remark 3. When W1 and W2 are k-dim diagonal matrices, we can decompose the k-dim GDE

into k simple single GDEs.

It is pertinent to observe that the above result holds even without the two matrices being

diagonal matrices. This is established below.

Theorem 6. In two independent linear regression models, the Loewner order of D(θ̂GD|2) is

below min(σ2
1W 1, σ

2
2W 2), for all values of σ2

1, σ2
2, if and only if condition stated in (1) or (2)

of Lemma 5 holds:

1. νi > 9, i = 1, 2 or

2. νi = 9 for some i, and νj > 17 for the other j 6= i.

Proof.

Notice that W1
−1 and W2

−1 are positive definite matrices. We need to show:

E

((
s−2
r1 W1

−1 + s−2
r2 W2

−1
)−1

(
σ2

1

s4
r1

W1
−1 +

σ2
2

s4
r2

W2
−1

)
(
s−2
r1 W1

−1 + s−2
r2 W2

−1
)−1
)
< σ2

1W 1,

(2.12)

and

E

((
s−2
r1 W1

−1 + s−2
r2 W2

−1
)−1

(
σ2

1

s4
r1

W1
−1 +

σ2
2

s4
r2

W2
−1

)
(2.13)

(
s−2
r1 W1

−1 + s−2
r2 W2

−1
)−1
)
< σ2

2W 2. (2.14)

For Equation 2.12, we can obtain



29

E

(
W1

−1/2
(
s−2
r1 W1

−1 + s−2
r2 W2

−1
)−1

W1
−1/2W1

1/2

(
σ2

1

s4
r1

W1
−1 +

σ2
2

s4
r2

W2
−1

)
(2.15)

(
W1

1/2W1
−1/2

(
s−2
r1 W1

−1 + s−2
r2 W2

−1
)−1

W1
−1/2

))
< σ2

1W1
−1/2W 1W1

−1/2. (2.16)

Denote W1
−1/2W 2W1

−1/2 by A. Then Equation 2.15 can be rewritten as:

E

((
s−2
r1 I

−1 + s−2
r2 A

−1
)−1

(
σ2

1

s4
r1

I−1 +
σ2

2

s4
r2

A−1

)(
s−2
r1 I

−1 + s−2
r2 A

−1
)−1
)
< σ2

1I.

Due to the fact that A is symmetric, there exists an orthogonal matrix P , while P TP =

PP T = I, such that P TAP = C, where C is a diagonal matrix.

Then we have:

E

(
P T

(
s−2
r1 I

−1 + s−2
r2 A

−1
)−1

PP T

(
σ2

1

s4
r1

I−1 +
σ2

2

s4
r2

A−1

)
PP T

(
s−2
r1 I

−1 + s−2
r2 A

−1
)−1

P

)
(2.17)

< σ2
1P

T IP .

Upon simplification:

E

((
s−2
r1 I

−1 + s−2
r2 C

−1
)−1

(
σ2

1

s4
r1

I−1 +
σ2

2

s4
r2

C−1

)
(2.18)

(
s−2
r1 I

−1 + s−2
r2 C

−1
)−1
)
< σ2

1I. (2.19)
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Similarly, from Equation 2.13 we obtain:

E

((
s−2
r1 I

−1 + s−2
r2 C

−1
)−1

(
σ2

1

s4
r1

I−1 +
σ2

2

s4
r2

C−1

)
(2.20)

(
s−2
r1 I

−1 + s−2
r2 C

−1
)−1
)
< σ2

2C. (2.21)

By combining Equation 2.18 and Equation 2.20, we have:

E

((
s−2
r1 I

−1 + s−2
r2 C

−1
)−1

(
σ2

1

s4
r1

I−1 +
σ2

2

s4
r2

C−1

)
(2.22)

(
s−2
r1 I

−1 + s−2
r2 C

−1
)−1
)
< min

(
σ2

1I, σ
2
2C
)
. (2.23)

Note that Equation 2.22 exhibits a pattern of the comparison of the GDE against individual

estimators based on two diagonal matrices viz., identity matrix and the C matrix. This is

exactly the same formulation as in Lemma 5 above. Hence the result follows by an application

of Lemma 5.

2.5 General k-dim Common Parameter Involving p Independent Groups

Next we consider the general case of p (> 2) independent groups of linear regression models

sharing a k-dim common estimable parameter vector θ. The k-dim GDE of p groups is:

θ̂GD|p =

(
p∑
i=1

s−2
ri Wi

−1

)−1( p∑
i=1

s−2
ri Wi

−1θ̂i

)
.
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Again, it is easy to show θ̂GD|p is an unbiased estimator of θ, as:

E(θ̂GD|p) (2.24)

= E
(
E
(
θ̂GD|p|s2

r1, s
2
r2, . . . , s

2
rp

))
(2.25)

= E

E
( p∑

i=1

s−2
ri Wi

−1

)−1( p∑
i=1

s−2
ri Wi

−1θ̂i

)
|s2
r1, s

2
r2, . . . , s

2
rp

 (2.26)

= E

( p∑
i=1

s−2
ri Wi

−1

)−1( p∑
i=1

s−2
ri Wi

−1E(θ̂i|s2
r1, s

2
r2, . . . , s

2
rp)

) (2.27)

= E

( p∑
i=1

s−2
ri Wi

−1

)−1( p∑
i=1

s−2
ri Wi

−1θ

) (2.28)

= θ.

It has the following dispersion matrix:

D(θ̂GD|p) = E
(
D
(
θ̂GD|p|s2

r1, s
2
r2, . . . , s

2
rp

))
+D

(
E
(
θ̂GD|p|s2

r1, s
2
r2, . . . , s

2
rp

))
(2.29)

= E
(
D
(
θ̂GD|p|s2

r1, s
2
r2, . . . , s

2
rp

))
(2.30)

= E

( p∑
i=1

s−2
ri Wi

−1

)−1( p∑
i=1

σ2
i

s4
ri

Wi
−1

)(
p∑
i=1

s−2
ri Wi

−1

)−1
 .

Lemma 7. If Wi’s are diagonal matrices i = 1, 2, . . . , p, then D(θ̂GD|p) < mini∈{1,...,p}
(
σ2
iWi

)
,

for all values of σ2
i , if and only if condition in (2a) or (2b) of Theorem 4 holds:

1. νi > 9, i = 1, 2, . . . , p or
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2. νi = 9 for some i, and νj > 17 for i, j ∈ {1, 2, . . . , p} and each j 6= i.

Moreover, if condition in (2a) or (2b) of Theorem 4 is satisfied, the Loewner order of

dispersion matrix, D(θ̂GD|p) is below D(θ̂GD|q) of any q(< p) subgroups.

Proof.

This is the extension of Lemma 5. In case that Wi (i=1,2,. . . ,p)’s are diagonal matrices,

that can be decomposed into k single GDE of p groups. Our claim follows from an application

of Theorem 4.

If not all Wi’s are diagonal matrices, i ∈ {1, 2, . . . , p}, we have the following Theorem.

Theorem 8. Suppose there exists a nonsingular matrix P , such that W−1
i = PCi

−1P T , where

Ci’s are diagonal matrices for all i = 1, 2, . . . , p. Then the Loewner order of D(θ̂GD|p) is below

D(θGD|q) of any q(< p) subgroups, for all values of σ2
i , if and only if condition in (2a) or (2b)

of Theorem 4 holds:

1. νi > 9, i = 1, 2, . . . , p or

2. νi = 9 for some i, and νj > 17 for i, j ∈ {1, 2, . . . , p} and each j 6= i.

Proof.

We need to examine the validity of

D(θ̂GD|p) <D(θ̂GD|q), q < p.
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Equivalently,

E

( p∑
i=1

s−2
ri Wi

−1

)−1( p∑
i=1

σ2
i

s4
ri

Wi
−1

)(
p∑
i=1

s−2
ri Wi

−1

)−1


< E

( q∑
i=1

s−2
ri Wi

−1

)−1( q∑
i=1

σ2
i

s4
ri

Wi
−1

)(
q∑
i=1

s−2
ri Wi

−1

)−1
 .

Since W−1
i = PC−1

i P T ,then

E

( p∑
i=1

s−2
ri PCi

−1P T

)−1( p∑
i=1

σ2
i

s4
ri

PCi
−1P T

)(
p∑
i=1

s−2
ri PCi

−1P T

)−1


< E

( q∑
i=1

s−2
ri PCi

−1P T

)−1( q∑
i=1

σ2
i

s4
ri

PCi
−1P T

)(
q∑
i=1

s−2
ri PCi

−1P T

)−1
 .

Upon simplification:

E

P T−1

(
p∑
i=1

s−2
ri Ci

−1

)−1

P−1P

(
p∑
i=1

σ2
i

s4
ri

Ci
−1

)
P TP T−1

(
p∑
i=1

s−2
ri Ci

−1

)−1

P−1

 < E

P T−1

(
q∑
i=1

s−2
ri Ci

−1

)−1

P−1P

(
q∑
i=1

σ2
i

s4
ri

Ci
−1

)
P TP T−1

(
q∑
i=1

s−2
ri Ci

−1

)−1

P−1

 .

This reduces to:

E

P−1T

(
p∑
i=1

s−2
ri Ci

−1

)−1( p∑
i=1

σ2
i

s4
ri

Ci
−1

)(
p∑
i=1

s−2
ri Ci

−1

)−1

P−1


< E

P−1T

(
q∑
i=1

s−2
ri Ci

−1

)−1( q∑
i=1

σ2
i

s4
ri

Ci
−1

)(
q∑
i=1

s−2
ri Ci

−1

)−1

P−1

 ,
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which requires

E

( p∑
i=1

s−2
ri Ci

−1

)−1( p∑
i=1

σ2
i

s4
ri

Ci
−1

)(
p∑
i=1

s−2
ri Ci

−1

)−1


< E

( q∑
i=1

s−2
ri Ci

−1

)−1( q∑
i=1

σ2
i

s4
ri

Ci
−1

)(
q∑
i=1

s−2
ri Ci

−1

)−1
 .

Since Ci
′s are diagonal matrices, the results follows by an application of Lemma 7.

Remark 4. Generally, the existence of such a nonsingular matrix P that diagonalizes all Wi

simultaneously is not guaranteed. However, Corollary 9 below provides a special case.

Suppose in the most general representation of the linear regression model described in the

beginning of Section 2, Zi(ni×ti) does not exist, which indicates that all these p independent

groups of linear regression models are following the same linear regression model. In such a

case, W i(k×k) = (XT
i Xi)

−1.

Corollary 9. Suppose Zi(ni×ti)’s do not exist. For p independent groups of linear regression

models sharing a 2-dim common estimable parameter θ =
(
θ1
θ2

)
, if

(
∑ni
j=1 xi1jxi2j)

(
∑ni
j=1 x

2
i1j)

=constant,

i = 1, 2, . . . , p, then a necessary and sufficient condition for the Loewner order of D(θ̂GD|p) to

be below D(θ̂GD|q) for any q(< p) subgroups, for all values of σ2
i , is that the condition in (2a)

or (2b) of Theorem 4 holds.

Proof.
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From the linear regression theory, we know:

Wi
−1 =


∑ni

j=1 x
2
i1j

∑ni
j=1 xi1jxi2j∑ni

j=1 xi1jxi2j
∑ni

j=1 x
2
i2j



=

 1 0

(
∑ni
j=1 xi1jxi2j)

(
∑ni
j=1 x

2
i1j)

1



∑ni

j=1 x
2
i1j 0

0
∑ni

j=1 x
2
i2j −

(
∑ni
j=1 xi1jxi2j)

2

(
∑ni
j=1 x

2
i1j)


1

(
∑ni
j=1 xi1jxi2j)

(
∑ni
j=1 x

2
i1j)

0 1

 .

If
(
∑ni
j=1 xi1jxi2j)

(
∑ni
j=1 x

2
i1j)

= b, a constant, then let

P =

 1 0

(
∑ni
j=1 xi1jxi2j)

(
∑ni
j=1 x

2
i1j)

1

 =

1 0

b 1

 .

Hence from Theorem 8, the result follows.

Remark 5. When this 2-dim common estimable parameter of interest θ =
(
θ1
θ2

)
contains in-

tercept, viz. θ1 , then it asks
∑ni

j=1 xi1jxi2j/
∑ni

j=1 x
2
i1j = x̄i2·, which is the sample mean, to be

constant.

Remark 6. The ratio
(∑ni

j=1 xi1jxi2j

)
/
(∑ni

j=1 x
2
i1j

)
= ‖~xi2· cos θ‖

‖~xi1·‖ , where θ is the angle between

two covariate variable vectors ~xi1· and ~xi2·. This suggests that, typically in non-intercept linear

models, if we can pre-select our ~xi1· and ~xi2· to make this ratio constant, then we can obtain a
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more efficient estimator of this common parameter of interest by utilizing all p models, as long

as we can collect enough observations for each linear model.

2.6 Conclusion and Discussion

We investigated the properties of GDE in higher dimension. We established that GDE is still

an unbiased estimator for the vector parameter of interest. We also found that the condition

(2a) or (2b) in Theorem 4 (condition (1) or (2) in Lemma 5 for groups of two) continued to

hold when estimating a k-dim common parameter vector for p independent groups of linear

regression models. Consequently the GDE of k-dim common parameters by combining these p

groups provides a better and more efficient estimator.

In the linear regression model that we have studied here, we tacitly assumed that the

regression parameters are fixed and unknown. In the literature there are studies on what are

called ’random coefficient regression models’, such as Carter and Yang (9) and Liski, Luoma

and Sinha (28). We may postulate a model with fixed unknown α parameter (the intercept)

but the coefficients are random. The problem of estimation of the common mean α in such

scenarios is a rather routine exercise. We propose to examine the domination results in such

scenarios in a subsequent communication.



CHAPTER 3

PERFORMANCE OF THE GRAYBILLDEAL ESTIMATOR VIA

PITMAN CLOSENESS CRITERION

1 Pitman closeness criterion is a coverage probability-based criterion to examine the relative

performance of estimators. Commonly, the performance of the standard Graybill-Deal estimator

of the common mean has been examined with respect to the mean squared error (variance).

In this chapter we examined its performance with respect to the Pitman closeness criterion.

Specifically, we compared a p-source based Graybill-Deal estimator against its q-source based

competitors for q (< p)-dimensional subsets of p-dimensional data.

3.1 Introduction

In chapter 3, we still considered the problem of estimation of the common mean shared

by several independent normal populations with unknown and most likely unequal variances.

Generally, we had p independent sources with distributions N(µ, σ2
i ), i = 1, 2, . . . , p. Also, let

x̄i and s2
i be sample mean and sample variance, respectively; and s2

x̄i = s2
i /ni, σ

2
x̄i = σ2

i /ni,

where ni was the sample size available from the ith group, i = 1, 2, . . . , p. We have showed in

chapter 2 that, µ̂GD|p was preferable to µ̂GD|q in the criteria of mean square error, if and only

if

1Part of this chapter is coming from a working paper “Performance of the GraybillDeal Estimator
via Pitman Closeness Criterion” from Nie, Sinha and Hedayat.

37
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1. either ni > 10 for i = 1, 2, . . . , p,

2. or ni = 10 for some i, and nj > 18 (i, j = 1, 2, . . . , p for each j 6= i).

Here we intended to compare µ̂GD|p with µ̂GD|q by employing Pitman closeness criterion,

which was introduced by Pitman (36):

We say estimator µ̂1 is better (closer) than µ̂2 for the estimation of the parameter µ if and only

if P{|µ̂1 − µ| ≤ |µ̂2 − µ|} ≥ 1/2.

Although Robert, Hwang and Strawderman (42) pointed some drawbacks of Pitman closeness,

especially its lack of transitivity. In other words, there exist three estimates t1, t2 and t3

of µ, such that t1 is Pitman closer than t2 and t2 is Pitman closer than t3, but t1 is not

Pitman closer than t3. Other views, supporting it or against it, were presented by Blyth (7),

Casella and Wells (10), Ghosh, Keating and Sen (18), Peddada (35) and Rao (40). But as Rao

(40) wrote: “There are indeed situations where any given method of estimation can produce

counter intuitive conclusions”, and he believed ”that the performance of an estimator should

be examined under different criteria to under stand the nature of the estimator and possibly to

provide information to the decision maker.”

Kubokawa (25) and Sarkar (43) established that :

Theorem 10. The necessary and sufficient condition for P{|µ̂GD|2 − µ| ≤ |x̄i − µ|} ≥ 1/2 to

hold uniformly in (µ, σ2
x̄1
, σ2

x̄2
) is that mi = ni − 1 ≥ 4 for each i = 1, 2.

Proof.

See Kubokawa (25) and Sarkar (43).
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Sarkar (43) further established that:

Theorem 11. P{|µ̂GD|p − µ| ≤ |x̄i − µ|} ≥ 1/2 for all i = 1, 2, . . . , p and uniformly in

(µ, σ2
x̄1
, σ2

x̄2
, . . . , σ2

x̄p), if and only if

2E

(

p∑
j=1,j 6=i

σ−2
x̄j Y

2
j )−1/2(

p∑
j=1,j 6=i

σ−2
x̄j Yj)

 ≤ E
(

p∑
j=1,j 6=i

σ−2
x̄j Y

2
j )1/2

 , (3.1)

holds for any i = 1, 2, . . . , p and uniformly in (σ2
x̄1
, σ2

x̄2
, . . . , σ2

x̄p) for all p− 1 subgroups, where

Yj’s are independently distributed as
mj

χ2(mj)
and mj = nj − 1, for j = 1, 2, . . . , p.

Proof.

See Sarkar (43).

Sarkar (43) also discussed the sample size ni = mi + 1 requirement for Equation 3.1, and

showed that:

Theorem 12. Let Y1, . . . , Ys be independent random variables such that Yk ∼ mk
χ2(mk)

, for

k = 1, 2, . . . , s, then for any θk > 0 (k = 1, 2, . . . , s)

2E

(

s∑
j=1

θjY
2
j )−1/2(

s∑
j=1

θjYj)

 ≤ E
(

s∑
j=1

θjY
2
j )1/2

 , (3.2)

if

1− 8m−1
k + 4(

s∑
j=1

mj)
−1 ≥ 0, (3.3)
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for all k in {1, 2, . . . , s}.

Proof.

See Sarkar (43).

In addition, Sarkar (43) observed the following

1. For s = 1, m1 ≥ 4 is also the necessary condition.

2. When s = 2, Condition (Equation 3.3) is true if either mk = 6 for all k, or mk = 7 for

some k and 7 ≤ mj ≤ 21 for j 6= k, or mk ≥ 8 for all k in {1, 2}.

3. When s = 3, Condition (Equation 3.3) is true if either mk = 7 for some k and 14 ≤∑3
j=1,j 6=kmj ≤ 21 for j 6= k, or mk ≥ 8 for all k in {1, 2, s = 3}.

4. When s = 4, Condition (Equation 3.3) requiresmk = 7, or≥ 8 for all k in {1, 2, . . . , s = 4}.

5. When s ≥ 5, Condition (Equation 3.3) demands mk ≥ 8 for all k in {1, 2, . . . , s}.

In the following sections we intended to show that µ̂GD|p is a closer estimator than µ̂GD|q,

the GDE of any q (< p) subgroups, in the sense of Pitman closeness criterion. Without loss

of generality, our results were based on comparing with the initial q subgroups, and for any

other q subgroups, we would obtain similar results. Several sufficient conditions [including the

Equation 3.1 (suitably modified) which was to hold uniformly in (σ2
x̄1
, σ2

x̄2
, . . . , σ2

x̄p) for all q

subgroups] were provided. A necessary condition was also provided.

3.2 Problem Settings and Lemmas

Before introducing our main results, we first introduce the following notations and lemmas.
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We borrow the definition from Sarkar (43):

Let

Yi = σ2
x̄is
−2
x̄i ∼

mi

χ2(mi)
, for i = 1, 2, . . . , p,

where Yi’s are independently distributed and mi = ni − 1 is the degrees of freedom (i =

1, 2, . . . , p). Obviously we have E(Y −1
i ) = 1.

Let p = q + r and define:

Uq = (

q∑
i=1

σ2
x̄is
−4
x̄i )−1/2(

q∑
i=1

s−2
x̄i ) = (

q∑
i=1

σ−2
x̄i Y

2
i )−1/2(

q∑
i=1

σ−2
x̄i Yi), (3.4)

Ur = (

q+r∑
i=q+1

σ2
x̄is
−4
x̄i )−1/2(

q+r∑
i=q+1

s−2
x̄i ) = (

q+r∑
i=q+1

σ−2
x̄i Y

2
i )−1/2(

q+r∑
i=q+1

σ−2
x̄i Yi), (3.5)

Vq = (

q∑
i=1

σ2
x̄is
−4
x̄i )−1/2 = (

q∑
i=1

σ−2
x̄i Y

2
i )−1/2, (3.6)

Vr = (

q+r∑
i=q+1

σ2
x̄is
−4
x̄i )−1/2 = (

q+r∑
i=q+1

σ−2
x̄i Y

2
i )−1/2. (3.7)

(Uq, Vq) and (Ur, Vr) are mutually independent. As we mentioned before, Uq and Vq represented

the initial q subgroups, and hence Ur and Vr represented the remaining subgroups.

Lemma 13.
s∑
i=1

σ−2
x̄i ≥ U

2
s ≥ min

i=1,2,...,s
{σ−2

x̄i }

holds uniformly in (σ2
x̄1
, σ2

x̄2
, . . . , σ2

x̄s).
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Proof. Due to Cauchy-Schwarz inequality, we have:

U2
s = (

s∑
i=1

σ−2
x̄i Y

2
i )−1(

s∑
i=1

σ−2
x̄i Yi)

2

≤
s∑
i=1

σ−2
x̄i .

On the other side,

U2
s = (

s∑
i=1

σ−2
x̄i Y

2
i )−1(

s∑
i=1

σ−2
x̄i Yi)

2

≥ (
s∑
i=1

σ−2
x̄i Y

2
i )−1(

s∑
i=1

σ−4
x̄i Y

2
i )

=

s∑
j=1

σ−2
x̄j Y

2
j∑s

i=1 σ
−2
x̄i Y

2
i

σ−2
x̄i

≥ min
i=1,2,...,s

{σ−2
x̄i }.

Lemma 14. The inequality E{U−1
s } ≥ (

∑s
i=1 σ

−2
x̄i )−1/2 ≥ E{Vs} holds uniformly in (σ2

x̄1
, σ2

x̄2
, . . . , σ2

x̄s).

Proof. Due to the fact:

E{U−1
s } = E{(

s∑
i=1

σ−2
x̄i Y

2
i )1/2(

s∑
i=1

σ−2
x̄i Yi)

−1} (3.8)

≥ (

s∑
i=1

σ−2
x̄i )−1/2 (3.9)

= (
s∑
i=1

σ−2
x̄i )−1/2E{

s∑
j=1

σ−2
x̄j∑s

i=1 σ
−2
x̄i

Y −1
j } (3.10)
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= (
s∑
i=1

σ−2
x̄i )−1/2E{

s∑
j=1

σ−2
x̄j∑s

i=1 σ
−2
x̄i

(Y 2
j )−1/2} (3.11)

≥ (

s∑
i=1

σ−2
x̄i )−1/2E{

s∑
j=1

σ−2
x̄j∑s

i=1 σ
−2
x̄i

Y 2
j }−1/2 (3.12)

= E{
s∑
j=1

σ−2
x̄j Y

2
j }−1/2 (3.13)

= E{Vs}. (3.14)

The Equation 3.9 is based on Lemma 13, and Equation 3.12 is due to Jensen’s inequality.

Lemma 15. The inequality (
∑s

i=1 σ
−2
x̄i )E(U−1

s ) ≤ E(V −1
s ) holds uniformly in (σ2

x̄1
, σ2

x̄2
, . . . , σ2

x̄s)

Proof.

See Sarkar (43).

Lemma 16. The probability P{|µ̂GD|p − µ| ≤ |µ̂GD|q − µ|} is

1/π
(
E{arctan(UrU

−1
q )}+ E{arctan(UrU

−1
q + 2VrV

−1
q )}

)
.

Proof.

Without loss of generality, it is clear µ can be assumed to be µ = 0.

We need to compute the probability:

P{|µ̂GD|p| ≤ |µ̂GD|q|}. (3.15)
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By applying the fact that:

µ̂GD|p =
(
∑q

i=1 s
−2
x̄i )µ̂GD|q + (

∑q+r
i=q+1 s

−2
x̄i )µ̂GD|r∑q+r

i=1 s
−2
x̄i

, (3.16)

the probability in Equation 3.15 can be written as:

P{|µ̂GD|p| ≤ |µ̂GD|q|}

= P{(µ̂GD|p)2 ≤ (µ̂GD|q)
2} (3.17)

= P{(
(
∑q

i=1 s
−2
x̄i )µ̂GD|q + (

∑q+r
i=q+1 s

−2
x̄i )µ̂GD|r∑q+r

i=1 s
−2
x̄i

)2 ≤ (µ̂GD|q)
2} (3.18)

= P{((
q∑
i=1

s−2
x̄i )µ̂GD|q + (

q+r∑
i=q+1

s−2
x̄i )µ̂GD|r)

2 ≤ ((

q+r∑
i=1

s−2
x̄i )µ̂GD|q)

2} (3.19)

= 2P{µ̂GD|q(1 + 2

∑q
i=1 s

−2
x̄i∑q+r

i=q+1 s
−2
x̄i

) ≤ µ̂GD|r ≤ µ̂GD|q, µ̂GD|q > 0} (3.20)

= P

{
−

(
(
∑q

i=1 σ
2
x̄is
−4
x̄i )1/2(

∑q
i=1 s

−2
x̄i )−1

(
∑q+r

i=q+1 σ
2
x̄is
−4
x̄i )1/2(

∑q+r
i=q+1 s

−2
x̄i )−1

+ 2
(
∑q

i=1 σ
2
x̄is
−4
x̄i )1/2

(
∑q+r

i=q+1 σ
2
x̄is
−4
x̄i )1/2

)

≤

((
µ̂GD|r

(
∑q+r

i=q+1 σ
2
x̄is
−4
x̄i )1/2(

∑q+r
i=q+1 s

−2
x̄i )−1

)
/

(
µ̂GD|q

(
∑q

i=1 σ
2
x̄is
−4
x̄i )1/2(

∑q
i=1 s

−2
x̄i )−1

))

≤
(
∑q

i=1 σ
2
x̄is
−4
x̄i )1/2(

∑q
i=1 s

−2
x̄i )−1

(
∑q+r

i=q+1 σ
2
x̄is
−4
x̄i )1/2(

∑q+r
i=q+1 s

−2
x̄i )−1

}
(3.21)

= P

−(UrU
−1
q + 2VrV

−1
q ) ≤

µ̂GD|r

(
∑q+r
i=q+1 σ

2
x̄i
s−4
x̄i

)
1/2

(
∑q+r
i=q+1 s

−2
x̄i

)
−1

µ̂GD|q

(
∑q
i=1 σ

2
x̄i
s−4
x̄i

)
1/2

(
∑q
i=1 s

−2
x̄i

)
−1

≤ UrU−1
q

 . (3.22)
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Since conditionally given s−2
x̄i for i = 1, . . . , p,

µ̂GD|r

(
∑q+r
i=q+1 σ

2
x̄i
s−4
x̄i

)
1/2

(
∑q+r
i=q+1 s

−2
x̄i

)
−1

µ̂GD|q

(
∑q
i=1 σ

2
x̄i
s−4
x̄i

)
1/2

(
∑q
i=1 s

−2
x̄i

)
−1

follows a Cauchy distribution. The probability in Equation 3.22, can be denoted as

γ = γ(σ2
x̄1
, σ2

x̄2
, . . . , σ2

x̄p) (3.23)

= 1/π
(
E{arctan(UrU

−1
q )} − E{arctan(−UrU−1

q − 2VrV
−1
q )}

)
(3.24)

= 1/π
(
E{arctan(UrU

−1
q )}+ E{arctan(UrU

−1
q + 2VrV

−1
q )}

)
. (3.25)

3.3 Preferable of Combining: A Necessary Condition

Theorem 17.

P{|µ̂GD|p − µ| ≤ |µ̂GD|q − µ|} ≥ 1/2 (3.26)

holds uniformly in (µ, σ2
x̄1
, σ2

x̄2
, . . . , σ2

x̄p), only if

2E

(

p∑
i=q+1

σ−2
x̄i Y

2
i )−1/2(

p∑
i=q+1

σ−2
x̄i Yi)

E

{
(

q∑
i=1

σ−2
x̄i Y

2
i )1/2(

q∑
i=1

σ−2
x̄i Yi)

−1

}
≤

E

(

p∑
i=q+1

σ−2
x̄i Y

2
i )1/2

E

{
(

q∑
i=1

σ−2
x̄i Y

2
i )−1/2

}
, (3.27)
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which is equivalent to stating:

2E{Ur}E{U−1
q } ≥ E{Vq}E{V −1

r }, (3.28)

holds uniformly in (σ2
x̄1
, σ2

x̄2
, . . . , σ2

x̄p).

Proof. According to Lemma 16, the probability P{|µ̂GD|p − µ| ≤ |µ̂GD|q − µ|} can be denoted

as:

γ = γ(σ2
x̄1
, σ2

x̄2
, . . . , σ2

x̄p)

= 1/π
(
E{arctan(UrU

−1
q )}+ E{arctan(UrU

−1
q + 2VrV

−1
q )}

)
. (3.29)

The expectations are taken with respect to the independent random variables Yi’s.

Let σ−2
x̄i = σ−2

x̄1
τi, for i = 1, 2, . . . , q; and σ−2

x̄i = σ2
x̄1
τi, for i = q + 1, q + 2, . . . , q + r. Here

τi’s are in the range of [0,∞), except τ1 = 1.1

So Uq = σ−1
x̄1
U∗q , Vq = σx̄1V

∗
q , Ur = σx̄1U

∗
r , and Vr = σ−1

x̄1
V ∗r , where

U∗q = (

q∑
i=1

τiY
2
i )−1/2(

q∑
i=1

τiYi),

U∗r = (

q+r∑
i=q+1

τiY
2
i )−1/2(

q+r∑
i=q+1

τiYi),

V ∗q = (

q∑
i=1

τiY
2
i )−1/2,

V ∗r = (

q+r∑
i=q+1

τiY
2
i )−1/2.

(3.30)

1Since in the inequality we are going to prove, 2E{Ur}E{U−1
q } ≥ E{Vq}E{V −1

r }, U?’s and V −1
? ’s

are proportional to σ−2
? .
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The probability in Equation 3.29 will be

γ =γ(σ2
x̄1
, τ1, τ2, . . . , τp)

=1/π
(
E{arctan(σ2

x̄1
U∗r (U∗q )−1)}

+E{arctan(σ2
x̄1
U∗r (U∗q )−1 + 2σ−2

x̄1
V ∗r (V ∗q )−1)}

)
. (3.31)

Obviously, the dominated convergence theorem implies that:

γ(σ2
x̄1

)→ 1/π(E{arctan 0}+ E{arctan∞}) = 1/2 as σ2
x̄1
→ 0.

Next, we are going to show that γ ≥ 1/2 uniformly in (σ2
x̄1
, σ2

x̄2
, . . . , σ2

x̄p), only if

2E{Ur}E{U−1
q } ≥ E{Vq}E{V −1

r } (3.32)

holds uniformly in (σ2
x̄1
, σ2

x̄2
, . . . , σ2

x̄p).

The derivative of γ with respect to σ2
x̄1

, is given by

∂

∂σ2
x̄1

πγ

= E

{
U∗r (U∗q )−1 − 2σ−4

x̄1
V ∗r (V ∗q )−1

1 +
(
σ2
x̄1
U∗r (U∗q )−1 + 2σ−2

x̄1
V ∗r (V ∗q )−1

)2
}

+ E

{
U∗r (U∗q )−1

1 + σ4
x̄1
U∗2r (U∗q )−2

}
(3.33)

= E

{
U∗r (U∗q )−1σ4

x̄1
− 2V ∗r (V ∗q )−1

σ4
x̄1

(
1 + σ4

x̄1
U∗2r (U∗q )−2

)
+ 4V ∗r (V ∗q )−1

(
σ4
x̄1
U∗r (U∗q )−1 + V ∗r (V ∗q )−1

)}

+ E

{
U∗r (U∗q )−1

1 + σ4
x̄1
U∗2r (U∗q )−2

}
. (3.34)
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To check whether the inequality:

E

{
−1

2
V ∗q (V ∗r )−1 + U∗r (U∗q )−1)

}
≥ 0 (3.35)

is a necessary condition, we assume that Equation 3.35 is not true for some (τ2, . . . , τp). Then

we notice that

∂

∂σ2
x̄1

γ|σ2
x̄1

=0 = 1/πE

{
−1

2
V ∗q (V ∗r )−1 + U∗r (U∗q )−1)

}
< 0,

which leads to γ being non-decreasing and contradicts that γ ≥ 1/2 for σ2
x̄1

in a small region

near 0.

It is easy to verify that Equation 3.35 is equivalent to Equation 3.32. Hence we prove the

theorem.

3.4 Preferable of Combining: Sufficient Conditions

Theorem 18. If

E

{
−2−1

σ4
x̄1
U∗r (U∗q )−1 + V ∗r (V ∗q )−1

}
+ E

{
U∗r (U∗q )−1

1 + σ4
x̄1
U∗2r (U∗q )−2

}
≥ 0, (3.36)

then P{|µ̂GD|p − µ| ≤ |µ̂GD|q − µ|} ≥ 1/2 holds uniformly in (µ, σ2
x̄1
, σ2

x̄2
, . . . , σ2

x̄p).

Proof.

Continue from Equation 3.34, we get the following:

∂

∂σ2
x̄1

πγ



49

= E

{
U∗r (U∗q )−1σ4

x̄1
− 2V ∗r (V ∗q )−1

σ4
x̄1

(
1 + σ4

x̄1
U∗2r (U∗q )−2

)
+ 4V ∗r (V ∗q )−1

(
σ4
x̄1
U∗r (U∗q )−1 + V ∗r (V ∗q )−1

)}

+ E

{
U∗r (U∗q )−1

1 + σ4
x̄1
U∗2r (U∗q )−2

}

≥ E

{
−2V ∗r (V ∗q )−1

σ4
x̄1

(
1 + σ4

x̄1
U∗2r (U∗q )−2

)
+ 4V ∗r (V ∗q )−1

(
σ4
x̄1
U∗r (U∗q )−1 + V ∗r (V ∗q )−1

)}

+ E

{
U∗r (U∗q )−1

1 + σ4
x̄1
U∗2r (U∗q )−2

}
(3.37)

≥ E

{
−2V ∗r (V ∗q )−1

4V ∗r (V ∗q )−1
(
σ4
x̄1
U∗r (U∗q )−1 + V ∗r (V ∗q )−1

)}+ E

{
U∗r (U∗q )−1

1 + σ4
x̄1
U∗2r (U∗q )−2

}

= E

{
−2−1

σ4
x̄1
U∗r (U∗q )−1 + V ∗r (V ∗q )−1

}
+ E

{
U∗r (U∗q )−1

1 + σ4
x̄1
U∗2r (U∗q )−2

}
.

Hence if

E

{
−2−1

σ4
x̄1
U∗r (U∗q )−1 + V ∗r (V ∗q )−1

}
+ E

{
U∗r (U∗q )−1

1 + σ4
x̄1
U∗2r (U∗q )−2

}
≥ 0,

then ∂
∂σ2
x̄1

πγ ≥ 0, which leads to γ(σ2
x̄1
, τ2, . . . , τp) is non-decreasing in σ2

x̄1
for any of (τ2, . . . , τp).

The dominated convergence theorem implies that γ(σ2
x̄1

)→ 1/π(E{arctan 0}+E{arctan∞}) =

1/2 as σ2
x̄1
→ 0. For any other finite (τ2, . . . , τp) and σ2

x̄1
, we have γ(σ2

x̄1
, τ2, . . . , τp) ≥

γ(0, τ2, . . . , τp) = 1/2. At the boundary where one or some τi’s go to∞ or 0, γ(σ2
x̄1
, τ2, . . . , τp) =

1 or 1/2 ≥ 1/2. Hence γ ≥ 1/2 holds uniformly in (σ2
x̄1
, σ2

x̄2
, . . . , σ2

x̄p).

Based on Theorem 18, we derive several sufficient conditions in the sequel for P{|µ̂GD|p−µ| ≤

|µ̂GD|q − µ|} ≥ 1/2 to hold uniformly in (µ, σ2
x̄1
, σ2

x̄2
, . . . , σ2

x̄p).
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Corollary 19.

2E(Ur)E(U−1
q ) ≥ E (Uq)

mini=1,...,q(σ
−2
x̄i )

E(V −1
r )

is a sufficient condition for P{|µ̂GD|p−µ| ≤ |µ̂GD|q−µ|} ≥ 1/2 to hold uniformly in (µ, σ2
x̄1
, σ2

x̄2
, . . . , σ2

x̄p).

Proof.

It is easy to state that

2E(Ur)E(U−1
q ) ≥ E (Uq)

mini=1,...,q(σ
−2
x̄i )

E(V −1
r )

is equivalent to

2E(U∗r )E(U∗−1
q ) ≥

E
(
U∗q
)

mini=1,...,q(τi)
E(V ∗−1

r ).

From Theorem 18, we only need to show the validity of Equation 3.36.

At the left side of Equation 3.36, we have the following inequality for the second term:

E

{
U∗r (U∗q )−1)

1 + σ4
x̄1
U∗2r (U∗q )−2

}
≥ E

{
U∗r (U∗q )−1)

1 + σ4
x̄1

(
∑q+r

i=q+1 τi)(mini=1,...,q(τi))−1

}
. (3.38)

This is because of U∗2r ≤
∑q+r

i=q+1 τi and (U∗q )−2 ≤ (mini=1,...,q(τi))
−1 following by Lemma 13.

We also have:

1 + σ4
x̄1

(

q+r∑
i=q+1

τi)( min
i=1,...,q

(τi))
−1

E
{
{σ4

x̄1
U∗r (U∗q )−1 + V ∗r (V ∗q )−1}−1

}
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≤

(
1 +

σ4
x̄1

(
∑q+r

i=q+1 τi)

mini=1,...,q(τi)

)−1

E

{
σ4
x̄1

(
∑q+r

i=q+1 τi)
2

(mini=1,...,q(τi))2
(U∗r )−1(U∗q ) + V ∗q (V ∗r )−1

}
(3.39)

≤max

 E
(
U∗q
)

mini=1,...,q(τi)
(

q+r∑
i=q+1

τi)E(U∗−1
r ), E(V ∗q )E(V ∗−1

r )

 . (3.40)

The Equation 3.39 is from Jensen’s inequality:

(1 + a)E(aA+B)−1 ≤ (1 + a)−1E(aA−1 +B−1),

where a =
σ4
x̄1

(
∑q+r
i=q+1 τi)

mini=1,...,q(τi)
, A =

mini=1,...,q(τi)

(
∑q+r
i=q+1 τi)

U∗r (U∗q )−1, and B = V ∗r (V ∗q )−1.

From Lemma 15, we know

(

q+r∑
i=q+1

τi)E(U∗−1
r ) ≤ E(V ∗−1

r ). (3.41)

From Lemma 14 and the fact that
U∗q

mini=1,...,q(τi)
≥ U∗−1

q , we note

E
(
U∗q
)

mini=1,...,q(τi)
≥ E(U∗−1

q ) ≥ E(V ∗q ). (3.42)

So we have the following :

max

 E
(
U∗q
)

mini=1,...,q(τi)
(

q+r∑
i=q+1

τi)E(U∗−1
r ), E(V ∗q )E(V ∗−1

r )


≤

E
(
U∗q
)

mini=1,...,q(τi)
E(V ∗−1

r ).
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Then on the left side of Equation 3.36, we have the following inequality for the first term:

E
{
{σ4

x̄1
U∗r (U∗q )−1 + V ∗r (V ∗q )−1}−1

}
≤

(
1 +

σ4
x̄1

(
∑q+r

i=q+1 τi)

mini=1,...,q(τi)

)−1

max

 E
(
U∗q
)

mini=1,...,q(τi)
(

q+r∑
i=q+1

τi)E(U∗−1
r ), E(V ∗q )E(V ∗−1

r )


≤

(
1 +

σ4
x̄1

(
∑q+r

i=q+1 τi)

mini=1,...,q(τi)

)−1
E
(
U∗q
)

mini=1,...,q(τi)
E(V ∗−1

r )

Combining the above and Equation 3.38, we have

∂

∂σ2
x̄1

πγ ≥ E

{
−2−1

σ4
x̄1
U∗r (U∗q )−1 + V ∗r (V ∗q )−1

}
+ E

{
U∗r (U∗q )−1)

1 + σ4
x̄1
U∗2r (U∗q )−2

}

≥

{
−2−1

E
(
U∗q
)

mini=1,...,q(τi)
E(V ∗−1

r ) + E
{
U∗r (U∗q )−1

}}(
1 +

σ4
x̄1

(
∑q+r

i=q+1 τi)

mini=1,...,q(τi)

)−1

. (3.43)

If

−2−1
E
(
U∗q
)

mini=1,...,q(τi)
E(V ∗−1

r ) + E
{
U∗r (U∗q )−1

}
≥ 0,

then

∂

∂σ2
x̄1

πγ ≥ 0.

Therefore a sufficient condition for P{|µ̂GD|p − µ| ≤ |µ̂GD|q − µ|} ≥ 1/2 to hold uniformly in

(µ, σ2
x̄1
, σ2

x̄2
, . . . , σ2

x̄p) is:

2E(Ur)E(U−1
q ) ≥ E (Uq)

mini=1,...,q(σ
−2
x̄i )

E(V −1
r ). (3.44)
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Another corollary is given in the following:

Corollary 20.

2E(Ur)E(Uq) ≥

√√√√ q∑
i=1

σ−2
x̄i E(V −1

r ),

or

2E(Ur)E(Uq) ≥ E(V −1
q )E(V −1

r ).

is a sufficient condition for P{|µ̂GD|p−µ| ≤ |µ̂GD|q−µ|} ≥ 1/2 to hold uniformly in (µ, σ2
x̄1
, σ2

x̄2
, . . . , σ2

x̄p).

Proof.

We need to validate Equation 3.36. On the left side of Equation 3.36, we have the following

inequality for the second term:

E

{
U∗r (U∗q )−1)

1 + σ4
x̄1
U∗2r (U∗q )−2

}
≥ E

{
U∗rU

∗
q∑q

i=1 τi + σ4
x̄1

(
∑q+r

i=q+1 τi)

}
. (3.45)

it is because of U∗2r ≤
∑q+r

i=q+1 τi and U∗2q ≤
∑q

i=1 τi following from Lemma 13.
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We also have:

(

q∑
i=1

τi + σ4
x̄1

(

q+r∑
i=q+1

τi))E
{
{σ4

x̄1
U∗r (U∗q )−1 + V ∗r (V ∗q )−1}−1

}
≤(

q∑
i=1

τi + σ4
x̄1

(

q+r∑
i=q+1

τi))
−1E

σ4
x̄1

(

q+r∑
i=q+1

τi)
2(U∗r )−1(U∗q ) + (

q∑
i=1

τi)
2V ∗q (V ∗r )−1

 (3.46)

≤max

(

q+r∑
i=q+1

τi)E(U∗r )−1E(U∗q ), (

q∑
i=1

τi)E(V ∗q )E(V ∗r )−1

 . (3.47)

The Equation 3.46 is due to Jensen’s inequality.

So on the left side of Equation 3.36, we have the following inequality for the first term:

E
{
{σ4

x̄1
U∗r (U∗q )−1 + V ∗r (V ∗q )−1}−1

}
≤

(

q∑
i=1

τi + σ4
x̄1

(

q+r∑
i=q+1

τi))
−1max

(

q+r∑
i=q+1

τi)E(U∗r )−1E(U∗q ), (

q∑
i=1

τi)E(V ∗q )E(V ∗r )−1

 . (3.48)

From Lemma 15 we have:

(

q+r∑
i=q+1

τi)E(U∗−1
r ) ≤ E(V ∗−1

r ). (3.49)

The upper bound of E(U∗q ) and (
∑q

i=1 τi)E(V ∗q ) is
√∑q

i=1 τi. This is due to Lemma 13 and

Lemma 14, respectively.
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Another upper bound of (
∑q

i=1 τi)E(V ∗q ) is E(V ∗−1
q ). Since

(

q∑
i=1

τi)E(V ∗q ) =
(
∑q

i=1 τi)E(U∗−1
q )E(V ∗q )

E(U∗−1
q )

≤
E(V ∗−1

q )E(V ∗q )

E(U∗−1
q )

≤ E(V ∗−1
q ), (3.50)

then we have

max

(

q+r∑
i=q+1

τi)E(U∗r )−1E(U∗q ), (

q∑
i=1

τi)E(V ∗q )E(V ∗r )−1

 ≤√√√√ q∑
i=1

τiE(V ∗−1
r ), (3.51)

or

max

(

q+r∑
i=q+1

τi)E(U∗r )−1E(U∗q ), (

q∑
i=1

τi)E(V ∗q )E(V ∗r )−1

 ≤
max

{
E(V ∗−1

q ), E(U∗q )
}
E(V ∗−1

r ) = E(V ∗−1
q )E(V ∗−1

r ). (3.52)

Combining Equation 3.45, Equation 3.48 and the above, we have the following:

∂

∂σ2
x̄1

πγ ≥ E

{
−2−1

σ4
x̄1
U∗r (U∗q )−1 + V ∗r (V ∗q )−1

}
+ E

{
U∗r (U∗q )−1)

1 + σ4
x̄1
U∗2r (U∗q )−2

}

≥

−2−1

√√√√ q∑
i=1

τiE(V ∗−1
r ) + E

(
U∗r )E(U∗q

) (

q∑
i=1

τi + σ4
x̄1

(

q+r∑
i=q+1

τi))
−1, (3.53)
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or

∂

∂σ2
x̄1

πγ ≥ E

{
−2−1

σ4
x̄1
U∗r (U∗q )−1 + V ∗r (V ∗q )−1

}
+ E

{
U∗r (U∗q )−1)

1 + σ4
x̄1
U∗2r (U∗q )−2

}

≥
{
−2−1E(V ∗−1

q )E(V ∗−1
r ) + E

(
U∗r )E(U∗q

)}
(

q∑
i=1

τi + σ4
x̄1

(

q+r∑
i=q+1

τi))
−1. (3.54)

So if

−2−1

√√√√ q∑
i=1

τiE(V ∗−1
r ) + E

(
U∗r )E(U∗q

)
≥ 0,

or

−2−1E(V ∗−1
q )E(V ∗−1

r ) + E
(
U∗r )E(U∗q

)
≥ 0,

then

∂

∂σ2
x̄1

πγ ≥ 0

Hence it is equivalent saying that a sufficient condition for P{|µ̂GD|p−µ| ≤ |µ̂GD|q −µ|} ≥ 1/2

to hold uniformly in (µ, σ2
x̄1
, σ2

x̄2
, . . . , σ2

x̄p) is:

2E(Ur)E(Uq) ≥

√√√√ q∑
i=1

σ−2
x̄i E(V −1

r ), (3.55)

or

2E(Ur)E(Uq) ≥ E(V −1
q )E(V −1

r ). (3.56)
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3.5 Sample Size Discussion

In this section we will discuss the sample size requirement based on the condition provided

in Corollary 20:

2E(Ur)E(Uq) ≥ E(V −1
q )E(V −1

r ),

Which is the same as:

2E

{
(

q∑
i=1

θiYi)(

q∑
i=1

θiY
2
i )−

1
2

}
E

(

q+r∑
i=q+1

θiYi)(

q+r∑
i=q+1

θiY
2
i )−

1
2


≥ E

(
q∑
i=1

θiY
2
i

) 1
2

E

 q+r∑
i=q+1

θiY
2
i

 1
2

,

θi = σ−2
x̄i , i = 1, 2, . . . , p. We have the following theorem:

Theorem 21. Let Y1, . . . , Yp be independent random variables such that Yi ∼ mi
χ2(mi)

, for i =

1, 2, . . . , p,and let p = q + r. Then for any θi > 0 (i = 1, 2, . . . , p),

2E

{
(

q∑
i=1

θiYi)(

q∑
i=1

θiY
2
i )−

1
2

}
E

(

q+r∑
i=q+1

θiYi)(

q+r∑
i=q+1

θiY
2
i )−

1
2


≥ E

(
q∑
i=1

θiY
2
i

) 1
2

E

 q+r∑
i=q+1

θiY
2
i

 1
2

(3.57)
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if there exists 1 < b < 2, such that

m−1
i (mi − 4) + 2(

q∑
j=1

mj)
−1 ≥ 1

b
(3.58)

for all i = 1, 2, . . . , q, and

m−1
i (mi − 4) + 2(

q+r∑
j=q+1

mj)
−1 ≥ b

2
(3.59)

for all i = q + 1, q + 2, . . . , q + r = p.

Proof.

Define:

g1(Yi) = E

Yi(
q∑
j=1

θjY
2
j )−

1
2 |Yi

 , (3.60)

for i = 1, 2, . . . , q; and define:

g2(Yi) = E

Yi(
q+r∑
j=q+1

θjY
2
j )−

1
2 |Yi

 , (3.61)

for i = q + 1, q + 2, . . . , q + r = p.

From Sarkar (43) and Haff (20), we know the following for i = 1, 2, . . . , q:

miE(g1(Yi)) = (mi − 2)E(Yig1(Yi))− 2E(Y 2
i g
′
1(Yi)), (3.62)
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and similarly for i = q + 1, q + 2, . . . , q + r = p, we have:

miE(g2(Yi)) = (mi − 2)E(Yig2(Yi))− 2E(Y 2
i g
′
2(Yi)). (3.63)

Then,

g′1(Yi) = E

(

q∑
j=1

θjY
2
j )−

1
2 |Yi

− θiE
Y 2

i (

q∑
j=1

θjY
2
j )−

3
2 |Yi

 , (3.64)

and

g′2(Yi) = E

(

q+r∑
j=q+1

θjY
2
j )−

1
2 |Yi

− θiE
Y 2

i (

q+r∑
j=q+1

θjY
2
j )−

3
2 |Yi

 . (3.65)

For g1(Yi), we have that:

miE

Yi(
q∑
j=1

θjY
2
j )−

1
2


=miE(g1(Yi))

=(mi − 2)E(Yig1(Yi))− 2E(Y 2
i g
′
1(Yi))

=(mi − 4)E

Y 2
i (

q∑
j=1

θjY
2
j )−

1
2

+ 2θiE

Y 4
i (

q∑
j=1

θjY
2
j )−

3
2

 . (3.66)

Based on the above,we see the following

E

{
(

q∑
i=1

θiYi)(

q∑
i=1

θiY
2
i )−

1
2

}
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=

q∑
i=1

θiE

Yi(
q∑
j=1

θjY
2
j )−

1
2


=E

{
(

q∑
i=1

m−1
i (mi − 4)θiY

2
i )(

q∑
i=1

θiY
2
i )−

1
2

}
+

2E

{
(

q∑
i=1

m−1
i θ2

i Y
4
i )(

q∑
i=1

θiY
2
i )−

3
2

}
. (3.67)

From Cauchy-Schwarz inequality, we can prove:

q∑
i=1

m−1
i θ2

i Y
4
i ≥ (

q∑
i=1

mi)
−1(

q∑
i=1

θiY
2
i )2. (3.68)

Applying Equation 3.68 into Equation 3.67, we have the following:

E

{
(

q∑
i=1

θiYi)(

q∑
i=1

θiY
2
i )−

1
2

}

≥E


 q∑
i=1

m−1
i (mi − 4) + 2(

q∑
j=1

mj)
−1

 θiY
2
i

 (

q∑
i=1

θiY
2
i )−

1
2

 . (3.69)

Similarly for g2(Yi), we obtain:

E

(

q+r∑
i=q+1

θiYi)(

q+r∑
q+i=1

θiY
2
i )−

1
2


≥E


 q+r∑
i=q+1

m−1
i (mi − 4) + 2(

q+r∑
j=q+1

mj)
−1

 θiY
2
i

 (

q+r∑
i=q+1

θiY
2
i )−

1
2

 . (3.70)
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Thus, Equation 3.57 is true if there exists 1 < b < 2, such that

m−1
i (mi − 4) + 2(

q∑
j=1

mj)
−1 ≥ 1

b

for all i = 1, 2, . . . , q, and

m−1
i (mi − 4) + 2(

q+r∑
j=q+1

mj)
−1 ≥ b

2

for all i = q + 1, q + 2, . . . , q + r = p.

Remark 7. Observe that Equation 3.58 and Equation 3.59 are respectively equivalent to:

(1− 1

b
)

mmin

mmin −
2

1− 1
b

+ (

q∑
j=1,j 6=min

mj)

(
mmin −

4

1− 1
b

) ≥ 0 (3.71)

and

(1− b

2
)

mmin

(
mmin −

2

1− b
2

)
+ (

q+r∑
j=q+1,j 6=min

mj)

(
mmin −

4

1− b
2

) ≥ 0. (3.72)

In order to have solutions for Equation 3.71 and Equation 3.72, we need 1 < b < 2.

Remark 8. One possible choice is to let b =
√

2. Check the Condition (Equation 3.71),

1. When q = 1, Condition (Equation 3.71) is true if m1 ≥
4

2−
√

2
≈ 7.

2. When q = 2, Condition (Equation 3.71) is true if either
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(a) mmin = 11, and the other 11 ≤ mj,j 6=min ≤ 17.

(b) mmin = 12, and the other 12 ≤ mj,j 6=min ≤ 37.

(c) mmin = 13, and the other 13 ≤ mj,j 6=min ≤ 122.

(d) mi ≥ 14 for i = 1, 2.

3. When q = 3, Condition (Equation 3.71) is true if either

(a) mmin = 12, and
∑3

j=1mj,j 6=min ≤ 37. So either all equal to 12 or some mi = 13 and

the other two equal to 12.

(b) mmin = 13, and
∑3

j=1mj,j 6=min ≤ 122.

(c) mi ≥ 14 for all i = 1, 2, 3.

4. When q = 4, Condition (Equation 3.71) is true if either

(a) mmin = 13, and
∑4

j=1mj,j 6=min ≤ 122.

(b) mi ≥ 14 for all i = 1, 2, 3, 4.

5. When q = 5, Condition (Equation 3.71) is true if either

(a) mmin = 13, and
∑5

j=1mj,j 6=min ≤ 122.

(b) mi ≥ 14 for all i = 1, 2, 3, 4, 5.

6. When q = 6, Condition (Equation 3.71) is true if either

(a) mmin = 13, and
∑6

j=1mj,j 6=min ≤ 122.

(b) mi ≥ 14 for all i = 1, 2, 3, 4, 5, 6.
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7. When q = 7, Condition (Equation 3.71) is true if either

(a) mmin = 13, and
∑7

j=1mj,j 6=min ≤ 122.

(b) mi ≥ 14 for all i = 1, 2, 3, 4, 5, 6, 7.

8. When q = 8, Condition (Equation 3.71) is true if either

(a) mmin = 13, and
∑8

j=1mj,j 6=min ≤ 122.

(b) mi ≥ 14 for all i = 1, 2, 3, 4, 5, 6, 7, 8.

9. When q = 9, Condition (Equation 3.71) is true if either

(a) mmin = 13, and
∑9

j=1mj,j 6=min ≤ 122.

(b) mi ≥ 14 for all i = 1, 2, 3, 4, 5, 6, 7, 8, 9.

10. When q ≥ 10, Condition (Equation 3.71) is true if mi ≥ 14 for all i = 1, 2, . . . , q.

Similar discussion can be applied for condition (Equation 3.72).

3.6 Conclusion

In this chapter we compared the p-source based GDE with its q-sub-source based competitors

under Pitman closeness criterion. We established a necessary condition and several sufficient

conditions for the p-source based GDE to be Pitman closer than its q-sub-source based GDE.

We further discussed the sample size requirement corresponding to each source, and we found

that,one sufficient condition isni ≥ 15 for i = 1, 2, . . . , p.

This sample size requirement is relatively close to the requirement based on mean square

errors. Hence in our point of view, the p-source-based GDE dominates any other q-sub-source
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based GDE not only in terms of mean square error loss function but also in the sense of Pitman

closeness criterion of probability coverage, when the sample size of each source is moderately

large enough.



CHAPTER 4

UNBIASED ESTIMATION OF RELIABILITY FUNCTION FROM

MIXTURE EXPONENTIAL DISTRIBUTIONS

1 In this chapter we investigated an unbiased estimation of the reliability function, based

on a single observation from a mixture of two exponential distributions with known mixing

proportions. We tried to do so by closely extrapolating a similar method of Sinha et al (2006).

We introduced several equivalent versions of an unbiased estimators, ans find that they gave

‘proper’ estimates only if negative weights on component mixture distributions were allowed.

4.1 Introduction

In this section, we briefly reviewed the results on reliability estimation based on exponential

distribution. Let X1, ..., Xn be n independent observation on X, which follows an exponential

distribution with unknown parameter (mean) λ (> 0), written henceforth as exp(λ). The

problem is to unbiasedly estimate the reliability function (survival function) R(t) = e−t/λ for a

specified t > 0. The following result is immediate.

Theorem 22.

R̂1(t) =
1

n

n∑
i=1

I(Xi > t),

1Part of this chapter is coming from a working paper “Unbiased Estimation of Reliability Function
from Mixture Exponential Distributions” from Nie, Sinha and Hedayat.

65
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where I(.̇) is the indicator function, is a simple unbiased estimator of R(t). The variance of

R̂1(t) is :

V ar(R̂1(t)) =
R(t)(1−R(t))

n
. (4.1)

Proof.

As for any i = 1, . . . , n, it is easy to show that:

E(I(Xi > t)) = exp(−t/λ) = R(t).

So

E(R̂1(t)) =
1

n

n∑
i=1

E(I(Xi > t)) =
1

n

n∑
i=1

R(t) = R(t).

We also note that:

E(R̂2
1(t)) =

1

n2

 n∑
i=1

E(I(Xi > t)) +

n∑
i=1

n∑
j=1,j 6=i

E(I(Xi > t)I(Xj > t))


=

1

n2

 n∑
i=1

R(t) +

n∑
i=1

n∑
j=1,j 6=i

R2(t)


=

1

n
R(t) +

n− 1

n
R2(t).

So the variance of R̂1(t) is:

V (R̂1(t)) = E(R̂2
1(t))− E2(R̂1(t))

=
1

n
R(t) +

n− 1

n
R2(t)−R2(t)
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=
1

n
R(t)(1−R(t)).

Pugh (37) and Basu (1) provided the UMVUE of R(t) in the following:

Theorem 23. The UMVUE of R(t) based on X1, . . . , Xn is

R̂umvue(t) =


(1− t

W )n−1 W > t

0 otherwise

(4.2)

where W =
∑n

i=1Xi. The variance of R̂umvue(t) is:

V ar(R̂umvue(t)) = R(t)(φ(t)−R(t)), (4.3)

where φ(t) = 1
Γ(n)

∫∞
0 e−µ µ2n−2

(µ+ t
λ

)n−1dµ.

Proof.

See Pugh (37) and Basu (1).

Due to the general fact that the difference of two successive spacings involving order statistics

of exponential distributions is again related to the same exponential distribution, Basu (1) also

provided the UMVUE of R(t) based on first r (1 < r < n) order statistics:
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Theorem 24. The UMVUE of R(t) from first r (r < n) order statistics is

R̂os(t) =


(1− t

W ∗ )
r−1 W ∗ > t

0 otherwise

(4.4)

where W ∗ =
∑r

i=1X(i) + (n− r)X(r), and X(i) is the ith order statistic, i = 1, 2, ..., n.

Proof.

See Basu (1).

Sinha et al.(45) derived an explicit form of the unique unbiased estimator of R(t) based on

a single ith order statistic Xi (1 ≤ i ≤ n) . The result is reproduced below.

Theorem 25. The unique unbiased estimator of R(t) based on a single ith order statistic Xi

(1 ≤ i ≤ n), denoted as hi(Z(i)) where Z(i) = (n− i+ 1)X(i), is given by:

hi(Z(i)) =
∞∑
y1=0

∞∑
y2=0

. . .
∞∑

yi−1=0

dy1y2...yi−1I(Zi > αy1
1 α

y2
2 . . . α

yi−1

i−1 t), (4.5)

where αj = n−i+j
n−i , j = 1, 2, . . . , i,

dy1y2...yi−1 =
(−1)

∑
j yj(

n
i

) (y1+y2+···+yi−1)!
y1!y2!...yi−1!

(i−1
1 )

y1

αy1
(i−1

2 )
y2

αy2 . . .
(i−1
i−1)

yi−1

αyi−1 ,∑
j means sum of all even suffixes of y and all yj are integers, j = 1, 2, . . . , i− 1.

Proof.

See Sinha et al. (45).
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For example, when i = 2, we can simplify the above expression as:

h2(Z(2)) =
∞∑
y1=0

1

nαy1
I(Z(2) > αy1t), (4.6)

where α = n
n−1 .

Based on the results above, we efficiently obtain the unbiased estimate of R(t) where only

k selected order statistics are available (1 ≤ k < n). However, in practice we know that X

most likely follows a mixture distribution. In section 2 we shall establish that any unbiased

estimator of R(t) based on a random observation from a mixture of two exponential distributions

remains a proper estimator (between 0 and 1) if and only if one of the two weights of the

mixture distributions is negative. In section 4.3, we proceed to provide unbiased estimates for

the variance, when a proper estimator is available. We should mention that Jevremovic (22)

provided some example on mixed exponential distributions with negative weights, using an

auto-regressive process.

Example 2. Define:

Yt =



αξt w.p. p0,

βξt + Yt−1 w.p. p1,

Yt−1 w.p. q1,

(4.7)

where α, β, p0, p1, q1 are between 0 and 1 , and p0 + p1 + q1 = 1. The sequence ξt is an i.i.d

sequence with exponential density function: 1
λ exp(− y

λ), and we assume also the independence

of ξt and Ys for s < t.
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Then Jevremovic (22) showed that Yt follows a mixture exponential distributions :

fY (y) = a1
1

γ1
exp(− x

γ1
) + a2

1

γ2
exp(− y

γ2
),

with

a1 = p0(β − α)/((1− q1)β − p0α),

a2 = 1− a1,

γ1 = αλ,

γ1 =
βλ(1− q1)

p0
.

It is easy to show that :

1. p0(β − α) + p1β < 0 implies a1 > 1,

2. β < α and p0(β − α) + p1β > 0 implies a1 < 0,

3. in the other cases, 0 < a1 < 1.

4.2 Negative Result: Improper Unbiased Estimates Based On A Single Observation

Consider a random variable X following a mixture of two exponential distributions with

means λ and θλ (θ, λ > 0), say X ∼ p exp(λ) + q exp(θλ), where p + q = 1, p, θ were known

and λ was unknown. The problem is to unbiased estimate the function R(t) = e−t/λ for a given
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t > 0, based on a single observation x. It is clear that R(t) defined above can be identified as

the reliability at t for a distribution following exp(λ).

Inspired by Sinha et al (45), we have the following theorem:

Theorem 26. An unbiased estimator of R(t), say h(x; t) should satisfy I(x > t) = ph(x; t) +

qh(θx; t), where I(x > t) is an indicator function.

Proof.

1

λ

∫ ∞
0

I(x > t)e−
x
λdx = R(t) = E (h(x; t))

=
1

λ

∫ ∞
0

h(x; t)(pe−
x
λ +

q

θ
e−

x
θλ )dx

=
1

λ

(∫ ∞
0

ph(x; t)e−
x
λ +

∫ ∞
0

qh(θx; t)e−
x
λ

)
dx

(4.8)

So I(x > t) = ph(x; t) + qh(θx; t) follows from the completeness property of the exponential

distribution.

There could be more than one unbiased estimator for R(t). Here we offer two of them:

h1(x; t) =

∞∑
k=0

1

p
(−q
p

)kI(X > θ−kt), (4.9)

or

h2(x; t) =
∞∑
k=0

1

q
(−p
q

)kI(X > θk+1t). (4.10)

Theorem 27. E(h1(x; t)) = E(h2(x; t)) = R(t).
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Proof.

Based on Theorem 26, it follows that:

E(I(X > t)) = pR(t) + qR(θ−1t). (4.11)

Hence:

R(t) = E

(
1

p
I(X > t)

)
− q

p
R(θ−1t) = E

(
1

p
I(X > t)

)
− E

(
1

p

q

p
I(X > θ−1t)

)
+ (

q

p
)2R(θ−2t)

= ...... = E

( ∞∑
k=0

1

p
(−q
p

)kI(X > θ−kt)

)
= E (h1(x; t)) .

(4.12)

Similarly, since

E(I(X > θt)) = pR(θt) + qR(t), (4.13)

we have:

R(t) = E

(
1

q
I(X > θt)

)
− p

q
R(θt) = E

(
1

q
I(X > θt)

)
− E

(
1

q
∗ p
q
I(X > θ2t)

)
+ (

p

q
)2R(θ3t)

= ...... = E

( ∞∑
k=0

1

q
(−p
q

)kI(X > θk+1t)

)
= E (h2(x; t)) .

(4.14)

Notice that both h1(x; t) and h2(x; t) are infinite sums. We have to show their convergence

based on | qp | and θ in Table I.

By carefully choosing p and q, we then can decide when h1(x; t) or h2(x; t) or both are avail-

able to unbiased estimate the reliability function R(t). We have the following three situations:
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TABLE I

CONVERGENCE OF H1(X;T ) AND H2(X;T )
θ < 1 θ > 1

| qp | < 1 h1(x; t) h1(x; t),h2(x; t)

| qp | > 1 h1(x; t),h2(x; t) h2(x; t)

| qp | = 1 h1(x; t) h2(x; t)

1. For p > 1, hence q < 0. We require the density function p
λe
− x
λ+ q

θλe
− x
θλ to be non-negative,

which means θ < 1. This is because when θ > 1:

p

λ
e−

x
λ +

q

θλ
e−

x
θλ = e−

x
λ

(p
λ

+
q

θλ
e
x
λ

(1− 1
θ

)
)

x→∞−−−→ −∞ (4.15)

Based on Table I, we have h1(x; t) as our only unbiased estimator. Since the common

ratio 0 < − q
p < 1, this geometric sum h1(x; t) is in the range [0, 1], which implies it is a

proper estimator. We give an example in Table II (θ = 1/3,t = 1,p = 1.5,q = −0.5).

2. For q > 1, we have p < 0 and θ > 1. Similarly to the previous case, we have h2(x; t) as

our proper estimator.

3. For p, q > 0, no proper unbiased estimator exists. As the common ratio − q
p in h1(x; t) and

−p
q in h2(x; t) are negative. Further we proved that the linear combination φh1(x; t) +

(1−φ)h2(x; t) is not a proper unbiased estimator either. We have an example at Table III
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TABLE II

θ = 1/3,T = 1,P = 1.5,Q = −0.5
Range of x h1(x; t) h2(x; t)

... ... ...

(3)−3 < x < (3)−2 0 NA

(3)−2 < x < (3)−1 0 NA

(3)−1 < x < 1 0 NA

1 < x < 3 2
3 NA

3 < x < 32 2
3 + 2

3 ∗
1
3 = 8

9 NA

32 < x < 33 2
3 + 2

3 ∗
1
3 + 2

3 ∗ (1
3)2 = 26

27 NA

... ... ...

for θ = 1.5−1,t = 1,p = 1
3 ,q = 2

3 .

Theorem 28. When p, q > 0, there does not exist φ,such that φh1(x; t) + (1 − φ)h2(x; t) is a

proper unbiased estimator ([0, 1]) for R(t).

Proof.

It is easy to verify that h1(x; t) and h2(x; t) are improper estimators by themselves, due to

the fact that the common ratios are negative.

Consider the case q
p > 1 and θ > 1. When x > 1, then we have the following:

h1(x; t) =

1
p

1 + q
p

= 1 (4.16)
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TABLE III

θ = 1.5−1,T = 1,P = 1
3 ,Q = 2

3

Range of x h1(x; t) h2(x; t)

... ... ...

(1.5)−3 < x < (1.5)−2 0 (pq )2 = 0.25

(1.5)−2 < x < (1.5)−1 0 −p
q = −0.5

(1.5)−1 < x < 1 0 1

1 < x < 1.5 1
p = 3 1

1.5 < x < 1.52 1
p −

1
p ∗

q
p = 3− 3 ∗ 2 = −3 1

1.52 < x < 1.53 3− 3 ∗ 2 + 3 ∗ 22 = 9 1

... ... ...

and

h2(x; t) =

1
q

1 + q
p

(
1− (−q

p
)k
)

= 1− (−q
p

)k when θk+2 > x > θk+1. (4.17)

For any given k, we note that:

φh1(x; t) + (1− φ)h2(x; t) = φ+ (1− φ)

(
1− (−q

p
)k
)

(4.18)

= 1− (1− φ)(−q
p

)k. (4.19)

Since q
p > 1, Equation 4.19 lies in the range [0, 1] if and only if φ = 1. But h1(x; t) is not a

proper estimator either.

We will have similar discussion in the case | qp | < 1 and θ < 1. Hence there is no φ such that

φh1(x; t) + (1− φ)h2(x; t) is a proper estimator when p, q > 0.
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In short, the cases that estimator of R(t) is a proper estimator only happens at p > 1, q < 0

or p < 0, q > 1. Which implies a negative weight on mixture exponential distributions.

4.3 Unbiased Estimators of the Variances of h1(x; t) and h2(x; t)

In this section, we provided unbiased estimators of the variances of h1(x; t) and h2(x; t).

Based on Section 4.2, we only consider proper unbiased estimators. Thus we distinguished

between two situations:

1. θ < 1, and p > 1.

2. θ > 1, and q > 1.

Theorem 29. When θ < 1, an unbiased estimator of the variance of h1(x; t) is

V̂ (h1(x; t)) = h2
1(x; t)− h1(x/2; t)

=
1

p2

∑∞

k=1

(
2p(−q

p
)k + (1− 2p)(

q

p
)2k

)
I(X > θ−kt)−

∞∑
k=0

1

p
(−q
p

)kI(X > 2θ−kt). (4.20)

Proof.

It is straightforward to show the unbiasedness as:

V ar(h1(x)) = E
(
h2

1(x)
)
− E2 (h1(x))

= E
(
h2

1(x)
)
−R(2t)

= E
(
h2

1(x)
)
− E (h1(x/2))

= E
(
h2

1(x)− h1(x/2)
)
.
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We also note that:

h2
1(x; t) =

1

p2

{ ∞∑
k=0

(
q

p
)2kI(X > θ−kt) + 2

∑∑∞

k>l=0
(−q
p

)l+kI(X > θ−kt)

}

=
1

p2

{ ∞∑
k=0

(
q

p
)2kI(X > θ−kt) + 2

∑∞

k=1
(−q
p

)k
1− (− q

p)k

1 + q
p

I(X > θ−kt)

}

=
1

p2

{ ∞∑
k=0

(
q

p
)2kI(X > θ−kt) + 2

∑∞

k=0
(−q
p

)k
1− (− q

p)k

1 + q
p

I(X > θ−kt)

}

=
1

p2

{ ∞∑
k=0

(
q

p
)2kI(X > θ−kt) + 2p

∑∞

k=0
((−q

p
)k − (

q

p
)2k)I(X > θ−kt)

}

=
1

p2

{∑∞

k=0

(
2p(−q

p
)k + (1− 2p)(

q

p
)2k

)
I(X > θ−kt)

}
. (4.21)

So

V̂ (h1(x; t)) = h2
1(x; t)− h1(x/2; t)

=
1

p2

∑∞

k=0

(
2p(−q

p
)k + (1− 2p)(

q

p
)2k

)
I(X > θ−kt)−

∞∑
k=0

1

p
(−q
p

)kI(X > 2θ−kt). (4.22)

Theorem 30. When θ > 1, an unbiased estimator of the variance of h2(x; t) is

V̂ (h2(x; t)) = h2
2(x; t)− h2(x/2; t)

=
1

q2

∞∑
k=0

(
2q(−p

q
)k + (1− 2q)(

p

q
)2k

)
I(X > θk+1t)−

∑∞

k=0

1

q
(−p
q

)kI(X > 2θk+1t). (4.23)

Proof.
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This proof can be achieved by switch the role of p and q from the previous proof.

We notice that V̂ (h1(x; t)) and V̂ (h2(x; t)) can be negative. There exist some special cases

like θ = 0.5 (or 2), we can check the sign of the proposed unbiased variance estimators. We

have the following:

Corollary 31. When θ = 0.5 and p > 1, an unbiased estimator of the variance of h1(x; t) is

V̂ (h1(x; t)) =
1

p2
I(X > t)+

1

p2

∑∞

k=1

(
−(1 + q)(−q

p
)k−1 + (1− 2p)(

q

p
)2k

)
I(X > 2kt), (4.24)

which is uniformly non-negative if and only if p < 2.

Proof.

Plug θ = 0.5 in Theorem 29, then:

V̂ (h1(x; t)) =
1

p2

∑∞

k=0

(
2p(−q

p
)k + (1− 2p)(

q

p
)2k

)
I(X > 2kt)−

∞∑
k=0

1

p
(−q
p

)kI(X > 2k+1t)

1

p2

{
I(X > t) +

∑∞

k=1

(
2p(−q

p
)k + (1− 2p)(

q

p
)2k

)
I(X > 2kt)

}
−

∞∑
k=0

1

p
(−q
p

)kI(X > 2k+1t)

=
1

p2
I(X > t) +

∑∞

k=1

{
1

p2

(
2p(−q

p
)k + (1− 2p)(

q

p
)2k

)
− 1

p
(−q
p

)k−1

}
I(X > 2kt)

=
1

p2
I(X > t) +

1

p2

∑∞

k=1

(
−(p+ 2q)(−q

p
)k−1 + (1− 2p)(

q

p
)2k

)
I(X > 2kt)

=
1

p2
I(X > t) +

1

p2

∑∞

k=1

(
−(1 + q)(−q

p
)k−1 + (1− 2p)(

q

p
)2k

)
I(X > 2kt). (4.25)
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When 2k+1t > X > 2kt, k = 0, 1, 2, . . . ,∞ we will have:

V̂ (h1(x; t)) =
1

p2

{
1− (1 + q)

1− (− q
p)k

1 + q
p

+ (1− 2p)(
q

p
)2

1− (− q
p)2k

1− ( qp)2

}

=
1

p2

{
1− p(1 + q)

(
1− (−q

p
)k
)

+ (1− 2p)q2
1− (− q

p)2k

p2 − q2

}
. (4.26)

As p+ q = 1, so it is easy to see that:

p(1 + q) = (1− q)(1 + q) = 1− q2

p2 − q2 = (p+ q)(p− q) = p− q = 2p− 1.

Then Equation 4.26 can be rewritten as:

V̂ (h1(x; t)) =
1

p2

{
1− (1− q2)

(
1− (−q

p
)k
)
− q2

(
1− (−q

p
)2k

)}
=

1

p2

{
(1− q2)(−q

p
)k + q2(−q

p
)2k

}
=

1

p2
(−q
p

)k
{

(1− q2) + q2(−q
p

)k
}
. (4.27)

When 1 < p < 2, then −1 < q < 0 and 0 < − q
p < 1. Hence 1 − q2 > 0. It is then easy

to show that V̂ (h1(x; t)) ≥ 0. To check that it is also the necessary condition, note that

Equation 4.27 ≥ 0 for any k = 0, 1, . . . ,∞.
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When k →∞, we have that:

V̂ (h1(x; t))
k→∞−−−→ 1

p2

(
−q
p

)k
(1− q2) ≥ 0.

For it to remain non-negative, we need to have:

(1− q2) ≥ 0

Since p > 1, we will need −1 < q < 0.

Similarly by switch the role of p and q, we will have the following corollary.

Corollary 32. When θ = 2 and p < 0, an unbiased estimator of the variance of h2(x; t) is

V̂ (h2(x; t)) =
1

q2
I(X > 2t) +

1

q2

∑∞

k=1

(
−(1 + p)(−p

q
)k−1 + (1− 2q)(

p

q
)2k

)
I(X > 2k+1t),

(4.28)

which is uniformly non-negative if and only if 1 < q < 2.

4.4 Conclusion

In this chapter, we provided two unbiased estimators h1(x; t) and h2(x; t) of the reliability

function R(t) = e−t/λ based on a single observation x from a mixture of two exponential

distributions. Further we showed that there is no proper estimator with linear combination

of h1(x; t) and h2(x; t), when the weights of the distributions p and q are non-negative. This

negative result is due to the nature of mixing properties of the two exponential distributions.
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There exist proper unbiased estimators when we accept negative weights on one of the two

component distributions. We also investigated the form of unbiased estimators of the variances,

and verified that under certain situations, unbiased variance estimators may turn out to be non-

negative.

Based on our results, it might be interesting to further investigate the unbiased estimator

of R(t) based on a observation from a general mixture exponential distributions. The authors

would also suggest to check the situation when an order statistic observation is available.
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