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SUMMARY 

 Oropharyngeal and oral squamous cell carcinoma (OSCC) is diagnosed in 

approximately 270,000 patients worldwide per year, leading to 100,000 to 200,000 

deaths in a typical year (Jemal, Bray et al. 2011).  OSCC is linked to environmental 

carcinogens such as polycyclic aromatic hydrocarbons (PAH).  Activities that can 

increase the risk of OSCC include the use of tobacco, alcohol, or betel nuts, and 

exposure to certain types of human papillomavirus (HPV). 

 Histopathologic diagnosis relies upon recognition of a change of pattern in tissue 

architecture.  Pathologists may disagree on these diagnoses, which can have important 

consequences for patient treatment and prognosis (Saxen, Franssila et al. 1978, 

Presant, Russell et al. 1986).  Diagnostic methods are needed to improve and enhance 

accuracy, especially to help distinguish between degrees of premalignant change, 

squamous carcinoma and aggressive subtypes of squamous cell carcinoma.  One such 

method could be the use of conventional pathology-based criteria in combination with 

software that objectively measures specific changes in tissue patterns within biopsy 

specimens, reflecting changes in the biologic activity of epithelial cells as they interact 

with underlying mesenchymal tissues (Mani, Guo et al. 2008).  We suggest that the use 

of pattern recognition algorithms found in publicly available software could improve 

histopathologic diagnostic accuracy.  This approach will provide an objective, decision-

oriented capability not currently available to pathologists for routine diagnosis. Our long-

term goal is to improve prognosis and treatment outcomes for patients with head and 

neck squamous cell carcinomas (HNSCC).   



 x 

In this study we develop a pattern recognition image approach based upon fractal 

dimension (FD) analysis in order to bolster histopathologic assessment and to better 

discriminate stages of dysplasia from OSCC.  Compared to previous published studies, 

this project seeks to test the capability for FD analysis to assist with histopathologic 

diagnosis by evaluation of tissues from a controlled oral carcinogenesis model. Using a 

mathematical cluster approach, we validate the combination of enhanced FD 

determination, together with additional mathematical validation and histopathologic 

criteria that have already demonstrated prognostic capability for human tissues. Taken 

together, this is unique in the field of histopathology diagnostic tool development.  
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1. INTRODUCTION 

1.1 Background of OSCC 

 The development of OSCC in humans involves hundreds of changes in normal 

epithelial cells as they transform toward a malignant state.  Current and previous studies 

have generally addressed OSCC development using genetic, chemical and molecular 

biologic approaches. These studies characterize cellular growth among epithelial cell 

populations by exploring a variety of cell pathways, providing further insight into normal 

physiology and cell-to-cell interactions.  These factors must be sufficiently identified and 

understood in order to improve treatment options and survivability prognosis for patients 

(Brandwein 2005).  However, there is still not enough progress in terms of improving 

prognosis.  Alternate paths of study that have not been as well explored include 

mathematical models to describe cell growth and potentially aid diagnosis. 

 

1.1.1 Definition 

Oral squamous cell carcinoma is defined as the uncontrolled growth of malignant 

epithelial cells in the epithelial layer of the oral cavity as well as the oropharynx, which 

includes the base of the tongue, tonsils, soft palate, and pharynx walls (Neville, Damm 

et al. 2009).  Other oral cancers do occur, including adenocarcinomas, sarcomas and 

lymphomas, but OSCC accounts for 90% of all oral cancers (Park 2009). 
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1.1.2 Epidemiology and risk factors 

As with most other cancers, the risk of OSCC is affected by a wide variety of 

factors, both intrinsic and extrinsic.  In the vast majority of OSCC cases, several of 

these factors combine to produce a malignancy.  One of the key extrinsic factors is 

exposure to tobacco smoke, as approximately 80% of U.S. patients with oral carcinoma 

are tobacco smokers, versus just 21% of the general U.S. population (Neville, Damm et 

al. 2009).  This includes the use of cigarettes, cigars, or pipes.  Related to this factor is 

the use of smokeless tobacco, including products such as snuff, snus, and chewing 

tobacco, which are placed in the mouth during use.  Approximately 50% of oral cancers 

in smokeless tobacco users occur at the site in the mouth where the tobacco is placed 

(Neville, Damm et al. 2009). 

In addition, excessive alcohol consumption can also contribute to the 

development of OSCC, in particular when combined with the use of tobacco, which can 

increase the risk of oral cancer in a patient by a factor of 15.  Cirrhosis of the liver, a 

symptom of heavy alcohol consumption, can be found in 20% of male oral cancer 

patients, a rate twice that of the general population (Neville, Damm et al. 2009). 

The presence of the human papillomavirus (HPV) is also a significant risk factor 

in the development of OSCC.  This specifically includes HPV subtypes 16, 18, 31, and 

33.  HPV includes proteins such as E6 and E7, which actively degrade tumor 

suppressors including p53 and pRb (retinoblastoma protein).  Genetic factors also play 

a key role in OSCC development.  These include the deactivation or mutation of tumor 
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suppressor genes, including p53 and pRb as mentioned above, and genes such as p16 

and E-cadherin (Neville, Damm et al. 2009) 

 

1.1.3 Pathogenesis 

The development of OSCC occurs over several stages.  Cellular changes 

corresponding to the clinical findings can be categorized as premalignant to invasive.  

Premalignant changes range from very mild cellular atypia, through mild, moderate, and 

severe dysplasia, to carcinoma in situ.  These categories of diagnosis are based upon 

the observation of progressively severe changes in cellular morphology, as well as the 

overall structure of the epithelium. 

In dysplasia, changes are seen in the overall epithelial architecture and also in 

the morphology of individual cells.  These changes include anaplasia; accumulation of 

keratin in basal or supra basal cells; an increase in nuclear and chromatin content 

resulting in an increase in the size of nuclei relative to the amount of cytoplasm; bizarre 

mitotic figures; and inappropriate chromosome segregation. Changes in overall 

epithelial architecture include loss of intercellular attachments; hyperkeratosis; 

hyperplasia, an increased number of keratinocytes per millimeter squared; expansion of 

rete pegs; and downward growth of epithelium without invasion.  

As the disease progresses from dysplasia to outright malignancy, the epithelium 

begins to invade the underlying connective tissue. At this point, there is disintegration of 

the basement membrane that separates epithelium from the underlying tissues. Thus, 

diagnosis of squamous cell carcinoma is based on the presence, extension and 
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amplification of the above criteria, with breakdown of the basement membrane and a 

downward growth of transformed, proliferative basal cells that are increasingly variable 

in microscopic appearance. There is also an increasing infiltration of selective 

populations of immune effector suppressors, 

 

1.1.4 Clinical features 

OSCC develops slowly out of precursor dysplastic lesions.  These are often red, 

white or a mixture of colors, and may have a rough or velvety surface.  As the disease 

progresses, the lesion may become ulcerated and fixed to surrounding structures, and 

pain may develop. 

 

1.1.4.1 Premalignant diseases 

Early dysplasia often appears white (leukoplakia), red (erythroplakia) or mixed 

(erythroleukoplakia).  Leukoplakia, erythroplakia and erythroleukoplakia are not always 

premalignant; some are reactive or may be other diseases.  However, the proportion of 

cases that are dysplastic increases with lesions that are predominantly red.   

Early stage thin leukoplakia appears as gray-white plaque, which is typically soft 

and flat.  This may develop into thick or nodular leukoplakia, which develops increased 

irregularities and appears leathery in nature.  Erythroplakia is more likely to signal 

dysplasia.  More than half of all dysplastic lesions occur on the lateral and ventral 

tongue; about a quarter occur on the floor of the mouth (Neville, Damm et al. 2009). 
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Betel nut users may develop an unusual precancerous condition known as oral 

submucous fibrosis.  This is characterized by mucosal rigidity and hyperplasia.  The 

condition often develops dysplasia and invasive OSCC, in addition to a burning 

sensation and stiffness in the subepithelial tissues (Neville, Damm et al. 2009). 

 

1.1.4.2 OSCC 

The early growth phase of OSCC involves minimal pain to the patient, as the 

epithelial layer does not contain blood vessels or nerves.  As OSCC develops, the 

lesion becomes exophytic with an irregular texture and an ulcerated surface (Neville, 

Damm et al. 2009).  The tumor invades the connective tissue, where it may cause pain 

by invading nerve sheaths.  It may also invade blood vessels and lymphatic channels, 

allowing it to metastasize to other sites. 

 

1.1.5 Prognosis and treatment 

Treatment of OSCC depends on the location and stage of the disease.  Methods 

can include surgical excision, radiation therapy, or a combination of the two.  

Oropharyngeal lesions are often treated with radiation, and may involve chemotherapy 

treatment with platinum-containing compounds, monoclonal antibodies, or small 

molecule inhibitors (Neville, Damm et al. 2009).  

For intraoral carcinomas, especially ones which are deeply invasive or have 

metastasized in the lymph nodes, neck dissection may be performed, involving the 

removal of significant portions of fibrofatty tissues in the neck (Yuen, Wei et al. 1997). 
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Five-year survival rates for oral cancer depend heavily on tumor stage.  The rates 

vary from 53% to 68% for intraoral carcinomas found and treated at Stage I or II, but fall 

significantly to just 27% for Stage IV tumors.  A proper diagnosis is crucial to making 

sure the appropriate treatment is administered, and is one of the key goals of this 

project (Neville, Damm et al. 2009). 

 

1.1.6 Diagnosis 

Arriving at a histopathologic diagnosis for dysplasia or OSCC involves obtaining 

a tissue sample from the patient for biopsy.  Ideally, these tissues should be taken from 

the most severely affected portions of the region.  The biopsy is then evaluated by a 

pathologist using light microscopy.  Samples of the affected tissue are taken, inserted 

into slides, and stained for viewing.  A pathologist using light microscopy then evaluates 

the biopsy (Neville, Damm et al. 2009). 

 

1.1.6.1 Issues with histopathologic diagnosis 

A key issue with oral histopathologic diagnosis is inter-observer variability.  

Several studies have shown that a significant disagreement often exists between 

multiple pathologists diagnosing the same tissue sample.  Using a more analytical 

method of diagnosis would provide a more objective result and could reduce the effects 

of clinician error (Abbey, Kaugars et al. 1995, Kujan, Khattab et al. 2007).  Criterion-

referenced classification schemes have been developed for a number of human 

neoplasms, and these partially overcome this problem by reducing, although not 
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eliminating inter-observer and even intra-observer variability.  Such a histologic risk 

assessment for oral epithelial neoplasia was published by Brandwein-Gensler et al 

(Brandwein 2005) and is based on the lesion’s worst pattern of invasion, the presence 

or absence of perineural invasion, and the degree of inflammatory response to the 

lesion. 

The process of taking the tissue sample for biopsy is destructive to the 

surrounding tissue and is also subject to selection bias.  If the surgeon does not sample 

the most aggressive portion of the lesion, or the biopsy is inadequate, under-diagnosis 

may occur. 

 

1.2 Fractal analysis background 

 1.2.1 Fractal history 

By the early 20th century, mathematicians had realized that irregular or 

fragmented shapes could not be properly understood through the use of existing 

measures of standard, known as Euclidean dimensions.  Mathematicians of the period 

such as Cantor and Hausdorff realized that the dimension of an element need not be an 

integer.  Instead, log functions could be used to determine a dimension D, which is 

separate from the Euclidean, topographic dimension denoted by DT. 

In 1967, Benoît Mandelbrot published his paper, “How Long Is the Coast of 

Britain? Statistical Self-Similarity and Fractional Dimension”, which discussed a series 

of curves with a dimension between 1 and 2 (Mandelbrot 1967).  In the paper, 

Mandelbrot discusses the paradox in which the measured length of a coastline depends 
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upon the scale of measurement.  That is, a stretch of coastline measured with a 

yardstick would result in a shorter measured length than if a foot long ruler was used.  

The evidence showed that the length increases without limit as the measurement scale 

decreases towards zero.  In this paper, the following law from Lewis Fry Richardson is 

used: 

𝐿(𝐺) = 𝑀𝐺!!! 

Equation 1 

where M is a positive constant, D is a constant, the dimension, and L(G) is the length of 

the shape’s border (Mandelbrot 1967).  This led Mandelbrot to prefer a method of 

measurement other than length, and to focus on fractals, a term he coined in 1975 to 

describe any set in which D > DT (Mandelbrot , Mandelbrot 1983). 

 A fractal has characteristics including: being a fine structure at small scales; 

having an irregularity that prevents it from being defined by Euclidean geometry; and 

especially that of being self-similar—that is, being composed in such a way that that the 

shape can be split into parts, each of which is approximately a reduced-size copy of the 

whole (Mandelbrot 1983).  Fractal patterns can be found in fields as varied as music, 

miniature antennas, signal compression, weather, and economics (Hsü and Hsü 1990, 

Williams 1995, Gianvittorio and Rahmat-Samii 2002, Viswanath 2004). 

 Because fractal shapes tend to appear often in nature, a fractal-based analysis 

can be used to describe the geometry of natural features including astronomy, bacterial 

cultures, and plants.  Fractal analysis has previously been used to analyze radiographic 
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and ultrasonic images of potentially cancerous tissue (Esgiar and Chakravorty , Kikuchi, 

Kozuma et al. 2002, Chang, Chen et al. 2004, Goutzanis, Papadogeorgakis et al. 2008).  

 

 1.2.2 Fractal uses for pathology 

The use of fractal analysis specifically for histopathologic classification was first 

described in the late 1980s and early 1990s, and has allowed for new ways of observing 

and diagnosing tissue samples (Landini 1991, Cross and Cotton 1992, Sanders and 

Crocker 1993).  This includes fractal dimension (FD) analysis of histology as a 

prognostic factor for cancer (DELIDES, PANAYIOTIDES et al. 2005). However, these 

studies have typically involved human tissue, which is subject to far more environmental 

factors and has a more complex carcinogenesis process than that of hamster tissue.  In 

addition, images from sources such as ultrasound do not provide the cell-level of detail 

needed to study the process of carcinogenesis through various stages of dysplasia.  

The model and methods used in this study will allow for a more controlled environment 

of both test subjects and carcinogens.  

 

1.2.3 New technologies for fractal analysis 

Recent advances in computing technology have allowed previously defined FD 

calculation algorithms to now be performed much more quickly, and the availability of 

commercially available software such as ImageJ and SPSS allow for quicker data 

collection and more precise analysis.  This novel combination of test model and fractal 
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assessment should result in more cohesive data and a better method of diagnosing 

subject prognosis.     

 

1.3 Infiltrate analysis background 

In addition to fractal analysis, a count of the inflammatory infiltrate cells that 

populate regions just inside of the epithelial layer can be an indicator of tumor 

development (Thomas, Matthews et al. 1995, Balkwill and Mantovani 2001).  The shift 

in inflammatory infiltrate from low (associated with dysplasia) to high (more typical of 

OSCC) is related to a loss in function of various immune cell populations during oral 

carcinogenesis, induced by a PAH.  Inflammatory cells that appear in the tumor 

environment and contribute to cancer growth include dendritic cells, lymphocytes and 

macrophages, which produce growth factors that harm the extracellular matrix, 

increasing tumor production, invasion, and metastasis.  Additionally, inflammatory 

cytokines can significantly increase DNA damage and the negative regulation of tumor-

suppressing protein p53 (Balkwill and Mantovani 2001).    

 

 

1.4 Clustering background 

 In order to perform classification of tissue samples, relevant features must be 

extracted from photographs of each sample.  These features are obtained through the 

aforementioned processes, fractal analysis and inflammatory infiltrate analysis.  By 

using the guide to pattern of tumor invasion (POI), the images can first be classified 
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based on standard pathologic methods.  These images are called training samples, and 

correlating the POI classifications with the fractal analysis and inflammatory analysis 

classifications will allow the data to be plotted in a feature space where different 

classifications are separated by decision boundaries.  On a plot, these classifications 

are often known as clusters (Duda, Hart et al. 2001). 

 Duda and Hart’s classic analogy explains this nicely.  If a fish-packing plant that 

wants to automate the process of sorting fish according to species, such as sea bass 

and salmon, it might use pattern classification.  The plant might set up a camera to allow 

an observer to note physical differences between the two types of fish, using features 

such as length, width, lightness, and fin shape.  Each species would have a separate 

model, or form that could be described mathematically.  As the camera extracts more 

features, a classifier can be generated to make a decision on whether a particular 

incoming fish belongs to the category of sea bass or salmon.  The data used to create 

this classifier is known as training data, and should generally become more accurate as 

more data points (fish, in this case) are analyzed.  The goal of the training data is to 

have enough data to create a classifier that will correctly classify the fish often enough 

to surpass some predetermined threshold (Duda, Hart et al. 2001). 
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2. HYPOTHESIS 

The purpose of this study is to examine the effectiveness of combining various 

methods of fractal dimension analysis and inflammatory infiltrate analysis in order to 

accurately discriminate between normal epithelium, multiple stages of epithelial 

dysplasia, and OSCC when applied to a controlled carcinogenesis model in Syrian 

hamsters. We believe this process can significantly reduce inter-observer variability, 

allowing for more accurate diagnosis and the application of appropriate treatment 

methods to improve long-term prognosis. 

Specifically, it will measure the applicability of different methods of fractal 

analysis (box counting, full tissue scans, and tissue subscans) and of infiltrate analysis 

(infiltrate count, total infiltrate area, average cell size, and area fraction).  It will correlate 

the results of this mathematical analysis with those obtained by an experienced 

pathologist through the application of a conventional histopathological classification 

system for such lesions, based on established criteria for assessment of the pattern of 

tumor invasion. 
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3. METHODS 

3.1 Hamster oral carcinogenesis studies 

As a precursor to this experiment, a study was conducted at the Institute for 

Cancer Prevention (part of the National Cancer Institute) by Dr. Joel Schwartz, which 

observed the effects of carcinogen application on Syrian hamsters (Mesocricetus 

auratus).  The study separated the animals into three treatment groups: acetone vehicle 

control, benzo[a]pyrene (B[a]P), and dibenz[a,l]pyrene (DBP).  Each animal was treated 

three times a week for 40 weeks through application of the carcinogen to the lateral 

border of the tongue (right side) and floor of the mouth.  Histopathologic assessment as 

well as an assessment of DNA damage and repair were conducted, and ultimately this 

study demonstrated that an uninhibited application of 0.02 nM application of DBP to 

hamsters would lead to tumor development in nearly all animals (Schwartz, Baker et al. 

2004).  

This observation led to a study conducted at UIC by Dr. Schwartz in 2005, from 

which the tissue samples for this project were taken.  This study included a control 

group, a 1.0 nM B[a]P group, and three groups with DBP applied in varying 

concentrations of 0.025 nM, 0.0025 nM, and 0.00025 nM.  These groups included 25 

animals each and were investigated for cancer induction of oral squamous cell 

carcinomas after 15 weeks and 25 weeks of application.  Animals were euthanized after 

the development of tumors, and samples of epithelial tissue were taken from the floor of 

the mouth, the lateral border of the tongue, and the buccal pouch of each animal.  

 



 13 

Groups Number of 
Mild Cases 

Number of Moderate-Severe 
Cases 

Acetone Control 0/15 0/15 

BP 6/15 4/15 

DBP 8/15 8/15 

 

Table 1. Histopathology for dysplasia following exposure to BP, DBP (tongue) 

 

Groups (25 
animals/group) 

Week 25 Mean Tumor 
Volume (mm3) 

Week 35 Mean Tumor 
Volume (mm3) 

Acetone 0.0 0.0 

B[a]P (1.0 nmol/app) 95.6 127.5 

DBP (0.025 nmol/app) 1018.8 17e3 

DBP (0.0025 nmol/app) 510.2 642.8 

DBP (0.00025 nmol/app) 104.8 140.3 

Table 2. Incidence of tumor formation by treatment 

 

 

 

The tissue samples were fixed using 10% neutral buffered formalin before being 

dehydrated and cleared.  The samples were then embedded in paraffin and sectioned 

into slices 5-6 microns wide, prior to being stained with a combination of hematoxylin 

and eosin (H and E staining) and placed in coverslips. 
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       16-20 weeks    20-30 weeks    30-40 weeks 

    

    Figure 1. Change in oral mucosa with application of dibenz[a,l]pyrene 

A = normal oral mucosa 
a = normal histology 
B = leukoplakia 
b = hyperplasia 
C = early oral mass 
c = early invasive cancer 
D = tumor mass 
d = deeply invasive 

 

 

3.2 Slide analysis 

3.2.1 Slide conversion to digital format 

In order to analyze the fractal dimension of the epithelial layer of each tissue 

sample, the slides needed to be converted to a digital format.  This was accomplished 

using a Leica light photomicroscope equipped with a SPOT camera system. This 

microscope is equipped with objectives with magnifications of 10X, 20X, and 40X. 

 

 

A B D 

c 

C 

a b d 
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3.2.2 Fractal analysis procedure 

After converting to a digital format, the images were modified so that the 

epithelial layer would be the focus of the image.  In order to do this, the RGB images 

needed to be converted using ImageJ, first to a grayscale format, and then to a binary 

image to reveal the edges of the epithelial layer (Rasband 2009).  This process is 

shown visually in Figure 2. 

Converting from grayscale to binary required the user to properly threshold each 

image in such a way that the boundary epithelial layer would not be lost, while at the 

same time removing as much unnecessary information from the image as possible.  

With the thresholding process completed, ImageJ could find the edges in the binary 

image, allowing the user to select the epithelial layer boundary as the region of interest 

(ROI) for the fractal calculation. 

 

   
Figure 2. Conversion process of digital slides through steps: 1, original image; 2, 
greyscale; 3, thresholded to emphasize epithelial layer, POI circled in red 

 

The basic algorithm for finding the FD of an image uses the following formula: 
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𝑁 ∝ 𝜀!!!  

Equation 2 

 

In an irregularly-shaped line whose FD is being calculated, N represents the number of 

pieces which the line can be broken into when using pieces of scale ε.  This leaves DF 

as the fractal dimension.  Solving for DF leaves the equation: 

𝐷! = log𝑁 log 𝜀 

Equation 3 

 

The FracLac plugin was used to perform the fractal dimension calculations for 

this project.  FracLac, a free add-on for ImageJ, allows for the calculation of fractal 

values using a number of existing algorithms and the ability to change multiple 

calculation settings (Karperien 2007).   

 

 3.2.2.1 Simple box count 

One common algorithm used to obtain fractal dimension is the simple box count, 

which takes the slope of the above equation, determining how number of parts N 

changes with scale ε (calculated in this case as [box size/image size]) thus giving: 

𝐷! = 𝑡ℎ𝑒  𝑠𝑙𝑜𝑝𝑒  𝑜𝑓(ln𝑁 ln 𝜀) 

Equation 4 
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where DB is the box-counting dimension.  FracLac allows for the calculation of DB based 

on parameter settings that determine how many different values of N and ε will be used 

(Karperien 2007).  From a more visual standpoint, the algorithm lays a series of grids of 

decreasing box size over the image, and counts the number of boxes that contain 

portions of the image for each box size. 

 Box count, in addition to FD, also gives each image a value of lacunarity, which is 

a measure of texture in a feature.  An image that is closer to being homogenous and to 

having a translationally and rotationally invariant pattern will have a lower value of 

lacunarity, given as λ.  Patterns with similar fractal dimensions can often be 

distinguished by their lacunarity, which is determined by the following, more complex 

formula: 

𝜆!,! = 𝐶𝑉!,!! = (
𝜎!,!

𝜇!,!)
! 

Equation 5 

 

where λ represents the lacunarity for each grid of caliber ε (as above) calculated from 

the standard deviation σ and mean μ of pixels per box for each grid orientation g (grid 

orientation is the variable location of the box grid laid over the ROI). 

 A total of 55 images at 1600 x 1200 pixels were captured at 20X and analyzed 

using the simple box count.  The FracLac settings for box counting used boxes that 

ranged from a minimum of two pixels in size to a maximum size of 45% of the ROI. 
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3.2.2.2 Subscans 

 Another algorithm FracLac uses in order to determine FD is the process of 

conducting subscans, calculating local box count dimensions within a single image.  

Through this method, a scan returns not just a single value for FD and lacunarity, but 

tens or hundreds of values, depending on user options which determine how many 

separate scans are done within the specified ROI of each image. 

 The most efficient way to perform a subscan is to use the same process of 

converting the image into a binary, and then to use edge detection, as was done for a 

box count.  Within the scan type option for subscans in FracLac, the best choice in 

terms of both computation time and accuracy is a rectangular scan, which uses an array 

of squares, computing FD and lacunarity of each. 

 Three other key settings were varied for the subscans as well, these being the 

number of box sizes used per scan, the sample size (given as the length of a side of a 

square in pixels), and the size of the largest box as a percentage of the total ROI size.   

Using a high number of boxes per scan gave a much higher computation time 

per image, whereas using too small a number would result in wildly inconsistent values 

for FD and lacunarity.  For the purposes of this test, five box sizes per scan gave the 

most reasonable values in a relatively short period of time (on the order of a few 

minutes per image, rather than ~1 hour). 

Similarly, a subscan consisting of squares that were 300 x 300 pixels would not 

accurately provide enough data for a ROI of just a few hundred pixels in width and 

length.  A subscan of 50 x 50 squares was better in terms of coverage, but the tradeoff 
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in terms of accuracy did not improve enough to offset the extra computation time over 

using 100 x 100 squares. 

Setting the maximum box size was also an important consideration when 

performing subscans.  It is important not to set the maximum box size above 50% of the 

total ROI, because of the greater chance of errors (Rasband 2009).  Using an upper 

limit of the default setting of 45% of ROI down to a lower limit of 10% of ROI, various 

tests were performed.  The lower settings resulted in noisier data, most likely because 

the required slope of (ln N / ln ε) did not cover a wide enough range of grid calibers.  A 

midpoint value of 25% was chosen, as it yielded the most meaningful results and would 

ensure that were was an adequate range of grid sizes chosen. 

Subscans were performed on 42 of the sample images, with resulting values 

stored in a spreadsheet for each image.  In order to perform a correlation, the sets of 

values for the FD and lacunarity had to be averaged, using an arithmetic mean as well 

as a weighted mean.  For the weighted mean, because early correlations had shown 

that higher FD values corresponded to a higher POI value, it was decided to weight the 

higher FD values and perform an average that way.  The top ten FD values were taken, 

averaged, and used as the weighted value of the FD for the subscan.  A similar process 

was performed to obtain a weighted value of the lacunarity.    

 

3.2.2.3 Full tissue scans 

A third method of performing scans involved lowering the magnification from 20X 

to 10X in order to capture an entire segment of tissue, rather than just a portion of the 
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epithelial layer.  Due to limitations in the image capture size, most tissues required 

anywhere from two to eight separate images in order to capture the entire sample.   

Each section of the tissue had its fractal dimension and lacunarity calculated from 

the box counting algorithm, using the same procedure for converting the image to binary 

and emphasizing the epithelial layer as outlined in the box count method above.  A new 

set of 20 tissue samples was analyzed this way, resulting in 70 images.  These tissues 

were taken from a variety of sites including the lip, salivary glands, floor of the mouth, 

and tongue.   

 

3.2.3 Inflammatory infiltrate analysis 

 In addition to fractal analysis, correlation with the density of inflammatory infiltrate 

cells that populate regions just inside of the epithelial layer was also useful to examine.  

Though not strictly a fractal-based analysis, inflammatory infiltrate cell count is useful in 

pathologic diagnosis of neoplasia, and could potentially prove useful in this analysis.  

The inflammatory infiltrate consisted of lymphocytes, histiocytes (tissue type), and 

granulocytes (eosinophils, basophiles, mast cells, and polymorphonuclear cells). 

In order to perform this procedure, the RGB image of the slide was converted to 

grayscale as before, but this time the image was thresholded to emphasize the 

inflammatory cells.  These cells represented the portion of the image that would be the 

ROI for the cell count.  From this point, the Analyze Particles feature in ImageJ was 

used to count the cells and their sizes.  This procedure was performed on a subset of 

the original group of images, yielding information including infiltrate cell count, infiltrate 
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area (in pixels2), average infiltrate cell size (pixels2), and area fraction (%) of the image 

covered by infiltrate cells. 

 

 3.2.4 Classifying by pattern of tumor invasion 

 Histopathologic classification by an experienced pathologist depends on a 

number of factors when any tissue sample is examined.  As an aid, a guide to 

classifying histopathology based on pattern of tumor invasion (POI) was used 

(Brandwein-Gensler, Teixeira et al. 2005).  Although the guide was originally intended 

for use with human tissue, its categories translate well to analyzing oral hamster tissues 

given the controlled nature of the experiment, using genetically-similar hamsters that 

were injected with controlled doses of DBP and are genetically similar.  As pictured in 

Figure 3, our modified POI guide identified five categories of neoplasia in the hamster 

group.   
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Figure 3.  Patterns of tumor invasion based on epithelial structure, 1a (normal tissue), 
1b (mild dysplasia/hyperplasia), 1c (moderate/severe dysplasia), 2 (carcinoma in situ, 
early OSCC), 3 (invasive OSCC). (Based on a presentation from Brandwein-Gensler, 
2011.) 

 

 POI 1 represents a broad, invasive front of cell growth.  This may be mostly 

normal cell growth, or may represent mild forms of atypia and/or hyperplasia.  Within 

this category, three separate subcategories were created to distinguish normal tissue 

from tissue that shows some signs of irregular growth, leading to names 1a, 1b, and 1c.  

1a represents a normal epithelial layer showing virtually no signs of irregular growth.  1b 

shows hyperplasia or mild dysplasia isolated to a single region of several cells, whereas 

1c shows moderate to severe dysplasia in multiple regions, often along a significant 

portion of the epithelial layer.   

1b 1c 1a 

2 3 
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 POI 2 represents a finger-like pushing front, with a stellate appearance.  It tends 

to show early signs of OSCC. 

 POI 3 represents tumors that develop into islands (greater than 15 cells each) 

after breaking away from the original epithelial region.  This is considered to represent 

invasive OSCC and is among the most severe categorizations for the hamster tissue. 

 In addition, there exist POI 4 and POI 5 (not pictured), which are considerably 

more severe.  Due to the euthanization of hamsters upon development of cancer in 

order to reduce pain, as per the animal care committee requirements, these categories 

are not observed in these particular samples. 

 In order to classify the tissue samples to a specific POI, the Brandwein-Gensler 

guide was used to examine the epithelial layer and categorize the tissues accordingly.  

These categories were used accordingly in order to determine correlation when 

compared to the FD values. 

 

 

3.2.5 Statistical data analysis 

 IBM SPSS Statistics was used to process data for the two image sets.  Each 

image had its POI listed based on the guide to pattern of tumor invasion (Brandwein-

Gensler, Teixeira et al. 2005).  This POI ranging from 1a to 3 was converted to a 

numerical value between 1 and 5 for more logical processing.  The box count FD and 

box count lacunarity were listed, as well as two sets of subscan FD and lacunarity: the 

average FD and lacunarity taken as the arithmetic mean of all values calculated in the 
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subscan, as well as a weighted value which took the top ten values of FD and lacunarity 

and calculated the arithmetic mean of those values.  In addition, inflammatory infiltrate 

values were added, specifically the total cell (whole particle) count for the ROI, the total 

area covered as part of the ROI, average cell size within the ROI, and the area fraction, 

determined as the percentage of pixels counted as infiltrate within the ROI (Rasband 

2009). 

 In order to determine which variables were most closely correlated with each 

other, it was determined that a Spearman correlation would be performed.  The 

Spearman rank correlation coefficient, given as ρ (and often referred to as Spearman’s 

rho), is a non-parametric measure of statistical dependence for two variables, with a 

range from -1 to +1.  A value of +1 indicates a perfect, monotonic positive correlation, 

whereas a value of -1 indicates a perfect, monotonic, negative correlation.  A value of 0 

indicates no correlation at all.  Determining the most correlated variables will allow a 

hierarchical cluster process to be performed, making it possible to accurately determine 

POI of a tissue image based on multiple variables (Sarstedt and Mooi 2010). 

 

3.2.6 Advanced statistical data analysis 

Advanced statistical analysis methods can help better demonstrate the strength 

of evidence provided by FD and lacunarity that allow classification into the various POI 

categories. 

 

3.2.6.1 Two-step cluster analysis and ANOVA 
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More advanced forms of cluster analysis can take the existing variables that are 

calculated for each data point (FD and lacunarity, to begin with) and attempt to combine 

them into groups based solely on a mathematical algorithm, independently of any 

outside observations.  The analysis can then evaluate how those newly created groups 

form any natural patterns with respect to observed POI. 

In order to mathematically separate the data points into discrete clusters, an 

algorithm known as two-step clustering (TSC) can be used.  TSC is considered the best 

method of cluster analysis for data that includes a combination of categorical and 

continuous variables (IBM SPSS Statistics 2013).   

The TSC process starts by scanning the data points and determining, based on a 

distance calculation, whether each point should be part of a new cluster or should 

merge with an existing cluster.  These pre-clusters are then recursively merged by 

determining their distance from one another and combining those that are closest 

together.  This proceeds until either the pre-determined number of total clusters is 

reached, or until the software determines the optimal number of clusters based on 

maximization of distances between all clusters (IBM SPSS Statistics 2013).  In this 

case, the number of clusters is preset to five in order to mirror the POI categories.   

The one-way analysis of variance, or ANOVA, is used in this situation to 

determine the statistical significance by calculating the p-value of the POI between the 

clusters.  In other words, it will determine whether there is a difference between the 

values and means of the data points in each of the clusters that cannot simply be 

explained by sampling error (Urdan 2010). 
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3.2.6.2 Receiver operating characteristic 

 The receiver operating characteristic (ROC) curve is used to determine the rate 

of false positives (Type I error) and false negatives (Type II error).  ROC calculates both 

the sensitivity and specificity of a method of pattern classification.  The principle was 

initially used during World War II as a method of determining whether objects detected 

via radar were enemy targets, friendly, or simply noise in the signal detection process.  

ROC analysis since the 1970s has widely been used in medicine and radiology, as well 

as in fields including data mining research (Liu and Bandos 2012). 

The output known as the area under the curve (AUC) is a measure of diagnostic 

accuracy, ranging in value from 0.5, which represents the same accuracy as a random 

guess, to 1.0, which is perfect accuracy (Liu and Bandos 2012).  The ROC curve is 

typically used to illustrate the performance of a purely binary classifier system, such as 

a medical diagnosis outcome of either positive or negative.  Because of this limitation, 

the best method for determining AUC in this case was to perform a separate ROC 

calculation on each of the five POI categories.  All data points had to be re-categorized 

separately for each POI, given a value of “1” if that was the observed POI, or “0” if it was 

not.  In addition, the ROC procedure had to be run twice for each of the five POI 

categories—once with FD as the test variable, and once with lacunarity as the test 

variable. 
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4. RESULTS 

4.1. Hamster carcinogenesis results 

The hamster study at UIC was conducted to determine presence of 

histopathologic change before the 25-week treatment time point.  After 10, 15, or 25 

weeks animals were euthanized for gross and histopathologic examination to determine 

whether dysplasia or OSCC had developed.  Hamsters that received 10 weeks of 

treatment, regardless of the application using B[a]P or DBP, showed no gross tumor 

masses.  

Following DBP application, twenty animals developed premalignant or malignant 

changes, which were situated in the floor of the mouth and less frequently in the buccal 

pouch.  Fifteen weeks after the start of treatment, 5/7 randomly selected animals had 

squamous carcinoma.  Ten weeks afterwards, a repeat of this process produced 7/7 

animals with squamous carcinoma in the floor of the mouth extending towards the lip. 

 

 

4.2 Fractal dimension and lacunarity results 

 Running a Spearman correlation allowed us to determine how closely values 

such as fractal dimension and lacunarity were related to the diagnosed POI.  The 

Spearman rank of the box count FD versus the POI was 0.791 (p < .001), and the rank 

of the lacunarity versus the POI was -0.694 (p < .001).  (The general rule is that for the 

result to be statistically significant, the p-value, or probability that the null hypothesis of 

there being no correlation between the data is correct, should be less than .05 (Stigler 
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2008, Caldwell 2009)).  This meant that the FD had a strong, positive correlation to the 

POI, whereas the lacunarity had a strong, negative correlation to the POI.  The boxplot 

in Figure 4 demonstrates the range in box count FD for POI categories 1a through 3.  

Figure 5 shows the same range for box count lacunarity. 

 

 

 

 

 

 

Table 3. Box count fractal dimension and lacunarity classified by pattern of tumor 
invasion 

 

Figure 4. Simple box count FD grouped by POI 

POI	
   Count	
   Mean	
  FD	
   Std	
  Dev	
  FD	
   Min	
  FD	
   Max	
  FD	
   Mean	
  Lac	
   Std	
  Dev	
  Lac	
   Min	
  Lac	
   Max	
  Lac	
  

1a	
   3	
   1.582	
   0.08	
   1.493	
   1.646	
   0.555	
   0.082	
   0.479	
   0.641	
  

1b	
   13	
   1.664	
   0.063	
   1.547	
   1.774	
   0.587	
   0.154	
   0.336	
   0.798	
  

1c	
   14	
   1.695	
   0.094	
   1.426	
   1.785	
   0.535	
   0.179	
   0.298	
   0.961	
  

2	
   12	
   1.793	
   0.057	
   1.723	
   1.922	
   0.389	
   0.091	
   0.224	
   0.558	
  

3	
   13	
   1.81	
   0.026	
   1.77	
   1.853	
   0.322	
   0.087	
   0.199	
   0.448	
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Figure 5. Simple box count lacunarity grouped by POI 
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The 1a POI category consisted of three samples with a mean box count FD of 

1.582.  The highest value was 1.646 while the lowest value was 1.493.  The box count 

lacunarity had a mean of 0.555 and a total range from 0.479 to 0.641. 

Category 1b had 13 samples with a mean FD of 1.664 with a range from 1.547 to 

1.774.  The lacunarity had a mean of 0.587, ranging from 0.336 to 0.798. 

Category 1c was composed of 14 samples and had a mean FD of 1.695, with a 

minimum value of 1.426 and a maximum of 1.785.  The lacunarity had a mean value of 

0.535 with a minimum of 0.298 and a maximum of 0.961. 

Category 2 consisted of 12 samples and had a mean FD of 1.793 over a range 

between 1.723 and 1.921.  The mean lacunarity was 0.389 and had a minimum of 0.224 

and a maximum of 0.558. 

Category 3 included 13 samples with a mean FD of 1.810 and a range of 1.770 

to 1.853.  The lacunarity had a mean of 0.322 with a range of 0.198 to 0.448. 

Combining the data to show both box count FD and lacunarity on the same plot 

with POI represented by different colors allows the data to be clustered in two 

dimensions, and gives a better idea of the relationship between the two values.  This 

plot is shown in Figure 6. 
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Figure 6. Box count fractal dimension and lacunarity scatter plot grouped by POI 

 

A Spearman correlation was also performed to determine whether the subscan 

method would be useful in determining POI.  Due to the time required to perform a 

single subscan, a random selection of 42 images was used to perform the initial 

Spearman correlation, with a view to using the entire set of images if this subset yielded 

a substantial improvement over the simple box count method.  Using the mean method, 

Spearman rank for the FD versus the POI was 0.653, and rank for the lacunarity versus 
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the POI was -0.660.  Using the weighted subscan method resulted in FD versus POI 

Spearman rank of 0.678, and -0.393 for lacunarity versus POI. 

Since the subscan methods actually yielded weaker Spearman ranks than the 

simple box count method, and considering the extra time it took to perform a subscan 

(20-60 minutes, depending on scan settings, versus < 5 minutes for a standard box 

count), this method of FD analysis did not produce significant results.  

The full scans were performed on a sample of 90 images that were taken from 20 

tissue slides.  For each slide, FD and lacunarity were calculated for each section and 

then averaged to get a total FD and lacunarity value for each slide.  The Spearman 

ranks for FD and lacunarity versus POI were 0.253 and -0.004, respectively.  Again, due 

to poor correlation results, it did not make sense to proceed with this method.   

 

4.3 Inflammatory infiltrate results 

For the inflammatory infiltrate analysis, not every image had easily identifiable 

infiltrate, thus there are fewer samples that were included.  A total of 33 images were 

categorized using inflammatory infiltrate analysis.   

POI category 1a consisted of three samples with a mean infiltrate count of 90, a 

mean total infiltrate area of 4269.33, mean average cell size of 62.35 and a mean area 

fraction of 8.58. 

Category 1b included six samples with a mean infiltrate count of 153.67, a mean 

total infiltrate area of 5298.33, mean average cell size of 38.05 and a mean area fraction 

of 3.40. 
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Category 1c included six samples with a mean infiltrate count of 27.50, a mean 

total infiltrate area of 1157.17, mean average cell size of 44.61 and a mean area fraction 

of 4.64. 

 

Table 4. Inflammatory infiltrate statistics classified by pattern of tumor invasion 

 

 

Category 2 included nine samples with a mean infiltrate count of 658.56, a mean 

total infiltrate area of 48631.22, mean average cell size of 71.19 and a mean area 

fraction of 15.67. 

Category 3 included nine samples with a mean infiltrate count of 1014.56, a 

mean total infiltrate area of 65832.00, mean average cell size of 66.86 and a mean area 

fraction of 17.51. 

POI	
   Count	
   Mean	
  Inf	
  
Count	
  

Std	
  Dev	
  Inf	
  
Count	
  

Mean	
  Inf	
  
Area	
  

Std	
  Dev	
  
Inf	
  Area	
  

Mean	
  Avg	
  
Cell	
  Size	
  

Std	
  Dev	
  Avg	
  
Cell	
  Size	
  

Mean	
  Area	
  
Frac	
  

Std	
  Dev	
  
Area	
  Frac	
  

1a	
   3	
   90.00	
   100.9	
   4269.3	
   812.7	
   62.35	
   35.43	
   8.58	
   5.34	
  

1b	
   6	
   153.67	
   136.8	
   5298.3	
   3712.4	
   38.05	
   19.75	
   3.40	
   2.04	
  

1c	
   6	
   27.50	
   15.80	
   1157.2	
   772.5	
   44.61	
   18.19	
   4.64	
   3.63	
  

2	
   9	
   658.56	
   1015.5	
   48631.2	
   72935.6	
   71.19	
   21.90	
   15.67	
   6.35	
  

3	
   9	
   1014.56	
   586.9	
   65832.2	
   38459.9	
   66.86	
   8.98	
   17.51	
   5.36	
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      Figure 7.  Inflammatory infiltrate total area grouped by POI 

 

 

 

      Figure 8.  Inflammatory infiltrate area fraction grouped by POI 

 



 35 

 

A Spearman correlation can also be performed with inflammatory infiltrate 

information, with varying results.  Spearman rank for the total infiltrate count, a measure 

of the total number of infiltrate cells in a given image, versus POI was 0.606.  Similar 

Spearman ranks calculated for total infiltrate area (area covered by infiltrate cells), 

average size of infiltrate cells, and infiltrate area fraction (total percentage of image 

covered by infiltrate cells) were, respectively, 0.676, 0.402, and 0.674.  Therefore total 

infiltrate area and infiltrate area fraction provided the best overall correlation to POI. 

As was shown before, taking multiple values into consideration at once allows for 

clustering to be performed.  Using the statistics that yield the strongest Spearman 

correlation gives cluster data as seen in Figure 9. 
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Figure 9. Inflammatory infiltrate total area and area fraction scatter plot grouped 
by POI 

 

 

 

4.4 Advanced analysis results 

 Performing a two-step cluster analysis while setting the required number of 

clusters to five yielded a group of clusters with distinct differences, as well as some 

similarities.  Comparing the mean values of the input variables for each cluster’s data 

points allows this to be seen.   
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 For the purposes of this cluster analysis, POI categories 1a, 1b, 1c, 2, and 3 

have been translated to numbers 1 through 5, in ascending order.  This allows for easier 

calculations of the average POI for each cluster. 

 The first cluster created by the two-step procedure has a FD of 1.57, a lacunarity 

of 0.77, and it corresponds to data points that have an average observed POI of 2.25.  

Of a very similar nature is the second cluster, with a FD of 1.66, a lacunarity of 0.55, 

and data points with an observed POI of 2.00.  Both of these clusters share the 

characteristic of a lower FD, medium to high lacunarity, and correlate with having low 

values of observed POI.   

 The third cluster has medium values of FD and lacunarity, at 1.74 and 0.46, 

respectively.  The observed POI of its points is also at a medium level of 3.21. 

 The fourth cluster has a FD of 1.79 and lacunarity of 0.37.  Its data points 

correspond to an observed POI of 4.27.  Very similarly, the fifth cluster has a FD of 1.84, 

lacunarity of 0.25, and a high observed POI of 4.62.  Both of these clusters have a 

higher FD, lower lacunarity, and correlate to a higher average observed POI.   

 The result of a one-way ANOVA using observed POI as the dependent variable 

and cluster classification as the factor yields a significance of p < .001.  Thus, the 

cluster-based results can be considered quite statistically significant.   

 Receiver operating characteristic curve results are as shown in the tables below, 

with results showing a statistically significant level of p < .05, except as noted.  Although 

several of these were only slightly higher than .05, that is the value that is typically 

considered as the appropriate cutoff (Stigler 2008). 
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POI Area Under the Curve 95% Confidence Interval 

1a 0.923 0.835 – 1.000 

1b 0.815 0.702 – 0.928 

1c 0.670* 0.529 – 0.811 

2 0.753 0.611 – 0.895 

3 0.875 0.785 – 0.966 

Table 5. Fractal Dimension ROC Curve Results 

 

 

POI Area Under the Curve 95% Confidence Interval 

1a 0.744* 0.602 – 0.885 

1b 0.784 0.648 – 0.920 

1c 0.666* 0.509 – 0.822 

2 0.680* 0.534 – 0.827 

3 0.857 0.755 – 0.960 

Table 6. Lacunarity ROC Curve Results 

*p > .05; not considered statistically significant 
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For reference, AUC above 0.9 is considered excellent accuracy of a diagnostic 

test, with 0.8 to 0.89 considered good, and 0.7 to 0.79 considered fair.  The confidence 

interval represents where the AUC for the total population lies, with 95% confidence. 
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5. DISCUSSION 

5.1 Hamster model and fractal-based analysis 

The novel nature of this study is due to the use of a controlled oral 

carcinogenesis standard tumor model with a combination of several unique factors. 

These include as previously stated FD, lacunarity, POI, inflammatory infiltrate, and 

cluster analysis. Although a number of previous studies have investigated FD among 

tissue sections from OSCC for the purpose of improved diagnosis, these studies did not 

use our general approach to evaluate under controlled conditions the value of FD under 

controlled conditions analysis to enhance histopathology. 

A controlled environment was created to give syngeneic hamsters regular doses 

of both B[a]P and DBP.  Existing studies involving FD for cancer analysis use human 

tissue, which as stated in the background section, poses its own set of issues in that 

carcinogenesis and subsequent tumorigenesis is more complex. Humans are exposed 

to many different carcinogens, rather than a controlled amount, and tumor biopsy 

material selection will vary because of clinical and surgical needs. Furthermore, 

processing of tissue sections will alter FD because of numbers of sections prepared and 

a variety of origins from tumor surfaces.   

Changes were reflected in the histopathology of both groups. The decision was 

to evaluate FD and associated histopathologic criteria in DBP treatment group tissues 

because we had recorded the highest level of tumor burden, and OBC analysis 

disclosed marked changes in cells compared to the B[a]P carcinogen treatments. 
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  To validate these OBC results we used specific criteria developed by 

Brandwein-Gensler et al to classify histopathologic diagnoses.  The criteria created a 

simple method for classifying histopathologic changes using photographs of the 

hamster tissue samples.  No existing studies have looked at using fractal analysis from 

a standpoint of dysplastic change as related to Brandwein-Gensler’s POI guide, or 

categorized existing cancer into stages from I to IV (Kikuchi, Kozuma et al. 2002, 

Goutzanis, Papadogeorgakis et al. 2008).  Tissue sections have been examined for 

fractal analysis to differentiate between benign and malignant masses in previous 

studies (Esgiar and Chakravorty , Chang, Chen et al. 2004).  Some cancer studies have 

used radiographic images from methods such as ultrasound, which do not provide 

sufficient detail to detect dysplastic changes.  Other studies rely exclusively on fractal 

dimension, and do not factor in lacunarity or analyze characteristics such as 

inflammatory infiltrate (Kikuchi, Kozuma et al. 2002, Chang, Chen et al. 2004, 

Goutzanis, Papadogeorgakis et al. 2008). Furthermore, there is no discrimination of 

cellular biologic and molecular activities that would validate FD analysis as we showed 

using OBC sampling. 

Procedures were tested to vary the simple box count FD, but this long-standing 

approach proved to be most useful in distinguishing normal tissue (POI 1a) from more 

dysplastic and hyperplastic tissues (POI 1b and 1c), as well as distinguishing those 

tissues from early stages of cancer and OSCC which are seen in POI 2 and 3.  There is 

a significant overlap in these criteria for categories 1b and 1c, and significant, though 
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less, overlap between those categories and 1a.  Categories 2 and 3 show little FD 

overlap overall with POI 1a, 1b, and 1c, and thus can be diagnosed more easily. 

Box count lacunarity was not an effective means to distinguish between POI 1a, 

1b, and 1c, or to discriminate between POI 2 and 3.  However, lacunarity was able to 

distinguish POI 1 categories with normal or slightly hyperplastic or dysplastic tissue from 

POI categories 2 and 3, which show more signs of early cancer. 

Taking the values of box count FD and lacunarity together allows us to form 

clusters to more accurately diagnose tissue samples.  The cluster of POI 1a is 

categorized by a combination of medium lacunarity and low fractal dimension.  Clusters 

for 1b and 1c are similarly shown to have a combination of low to medium FD and a 

mean lacunarity that is medium, although it has a significant standard deviation.  

Clusters for POIs 2 and 3 are categorized almost exclusively by FD at the upper bound 

as well as a much lower lacunarity.  As expected, there is significant overlap of the two 

clusters of data, although POI 3 tends towards higher FD and lower lacunarity. 

The clustering process was also performed with inflammatory infiltrate data, to 

combine information onto a single plot.  Observing the values with the best Spearman 

correlation shows that POI 1a, 1b, and 1c display almost identical characteristics of low 

infiltrate area and low infiltrate area fraction, while both values increase significantly for 

POIs 2 and 3, with POI 3 having a higher total infiltrate area.    

One of the goals of this study was to dissociate various stages of dysplasia and 

severe dysplasia from OSCC. This analysis indicates an increase in FD that correlates 

with the progression from mild to moderate to severe dysplasia.  A combination of FD 



 43 

and lacunarity can aid in dissociating normal tissue, mild to moderate dysplasia, and 

early OSCC from one another.  In addition, the study of inflammatory infiltrate can help 

differentiate mild or moderate dysplasia from OSCC. 

Although histopathologic characteristics such as the degree of inflammatory 

infiltrate appear at first to add confusion, this assessment in fact contributes to our 

understanding of quantitative changes occurring in the Syrian hamster during oral 

carcinogenesis.  By using a combination of FD, additional mathematical validation, and 

established histopathologic criteria, we observed the improvement of histopathologic 

assessment of neoplasia. 

 

5.2 Uses of advanced statistics 

 Through the use of two-step clustering (TSC), we defined five distinct clusters 

based solely on the measured variables of FD and lacunarity.  These defined clusters 

corresponded extremely well to the observed patterns of invasion defined by 

Brandwein-Gensler’s criteria.  This provides strong evidence that fractal dimension 

criteria can be used to emulate and improve upon the analysis of a trained pathologist 

when it comes to histopathologic diagnoses.  The advantage of this method is that it 

allows the clusters to be used for classification of future dysplastic tissue datasets, since 

it mathematically calculates the mean FD and lacunarity of each cluster.  Any new data 

points obtained in the future can now be classified based on a distance calculation for 

both of these variables.  Alternatively, new data points could be used to further refine 
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the existing two-step clusters by being added to the original set and performing a TSC 

algorithm on the newly-expanded set. 

 There is some deviation from the expected correlation between FD and lacunarity 

compared to POI at the lower end of the POI scale.  For the first two clusters, 

corresponding to POI 1a and 1b, the FD for 1b is slightly lower, while the lacunarity is 

slightly higher.  This may be attributed to relatively few values in the lower categories of 

observed POI.   

 The use of the receiver operating characteristic (ROC) curve resulted in mixed, 

though not altogether unexpected results.  Running an ROC analysis on each POI 

separately for all the data points serves the purpose of determining the likelihood that a 

specific point will be incorrectly classified.  Although there appears to be a high degree 

of certainty that FD alone can be used to classify slides that either tend towards POI 1a 

and 1b or POI 2 and 3, there is far less certainty that the same can be done for slides 

that fall into category 1c, whose statistical significance falls outside the required criteria 

of p < .05.  In addition, lacunarity alone is shown to have weak specificity and sensitivity 

for most POI classifications.  While those AUC tests that fall just outside the p < .05 

threshold can be held up as evidence of a possible trend, they cannot be appropriately 

considered to be significant enough on their own to be used in diagnoses.  This leads to 

the conclusion that while neither FD nor lacunarity alone should be used to classify 

neoplastic tissue slides, both are able to contribute as components of a successful 

diagnostic model. 
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5.3 Future aims 

 In future research it may be useful to repeat the two-step clustering process 

using a higher number of data points.  Ideally, all POI categories should have a similar 

number of members, at least ten each, and better ability to resemble the real world 

population as the total number of samples becomes larger. 

 Other possibilities for future research to build on this study include performing 

this procedure on human tissue, using a controlled set of biopsy samples for analysis 

with considerations to correct previously discussed errors.  Ideally, there could be a 

more targeted analysis of cell clones that show signs of dysplasia. 

 Changes that could be made in analytic techniques include greater automation of 

the process with image conversion and selection of ROIs by using advanced imaging 

filters.  In addition, more advanced pattern classification methods could be applied, 

including linear discriminant analysis and multinomial logistic regression. 
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6. CONCLUSIONS 

A number of slides showing various stages of carcinogenesis in Syrian hamsters 

were classified by severity based on an established pattern of invasion criteria 

developed by an experienced pathologist.  Based upon those categories, a 

mathematical analysis of these slides using fractal box count and inflammatory infiltrate 

demonstrated that there are indeed distinct mathematical differences between normal 

tissue or tissue displaying mild hyperplasia when compared to tissue displaying more 

severe dysplasia or stages of OSCC.   

The statistical significance of these differences in fractal dimension was verified 

through the use of advanced methods including two-step cluster analysis and the 

receiver operating characteristic.  Thus, fractal dimension analysis has the potential to 

resolve differences in histopathology that result from inter-observer variability, showing 

potential to improve the overall accuracy of diagnosis. 
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