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SUMMARY

The present work studies the arithmetic of sequences associated to dynamical systems, with

the goal of understanding the number-theoretic properties of forward orbits of dynamical sys-

tems over a number field K. Given a morphism φ : P1(K)→ P1(K) and a point z ∈ P1(K), our

main object of interest will be the Zsigmondy set associated to the forward orbit of z: roughly

speaking, the set of those n ∈ N such that φn(0) fails to have a prime divisor which does not

appear as a divisor of any previous element of the orbit.

Bang (1) and Zsigmondy (2) proved the finiteness and provided an explicit computation for

the Zsigmondy set of an−1, a ∈ Z a nonzero nonunit. It is known that many other dynamically

defined sequences, such as Lucas sequences (3), elliptic divisibility sequences (4), and forward

orbits under certain rational maps (5), have finite Zsigmondy set. Under the hypothesis of the

abc-conjecture, Gratton, Nguyen, and Tucker (6) have shown the finiteness of the Zsigmondy

set associated to forward orbits under a general rational map φ : P1(K)→ P1(K). These results

on Zsigmondy sets have been used to prove a dynamical Brauer-Manin criterion for P1(K) (7),

as well as non-Archimedean convergence of Newton’s method (8).

We consider the Zsigmondy set associated to critical orbits of polynomials, deducing both

finiteness (independent of abc) and effective bounds of such orbits. We focus in particular on

the critical orbit of zd + c for c ∈ Q; in this case, the elements of the Zsigmondy set are closely
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SUMMARY (Continued)

connected to the location of c in the generalized Mandelbrot set, and the question of hyperbol-

icity of zd + c. The study of these sets is also closely related to the Diophantine approximation

of certain algebraic numbers, and the famous theorems of Mahler, Roth, Thue, and Siegel can

be used, with refinement, to great effect in the study of Zsigmondy sets.

We turn to a summary of the content of the chapters of this thesis. The beginning of each

chapter contains more detailed background for the explicit problems involved therein, so this

should be treated as a preliminary introduction.

After a brief description of the main arithmetic and number theoretic objects involved, given

in the first chapter, we begin in Chapter 2 by considering the primitive divisors of a critical orbit

of a polynomial f(z) defined over a number field K, and give an arithmetic criterion for the

failure of an iterate fn(z) to have a primitive prime divisor. We use a dynamical Diophantine

approximation theorem of Silverman (9) to deduce that the Zsigmondy set associated to the

orbit is finite.

In Chapter 3, we consider the more detailed problem of an effective computation of the size

of the Zsigmondy set associated to the critical orbit of zd + c, focusing our attention on c ∈ Q.

We connect the Zsigmondy question to a question in Diophantine approximation, and use a

result of Mahler (10) to bound the size of the Zsigmondy set independent of choice of d and

c. Chapter 4 improves this bound by improving the Diophantine approximation result, and

vi



SUMMARY (Continued)

also provides a bound on the largest element of the Zsigmondy set via an effective Diophantine

approximation using linear forms in logarithms due to Bennett and Bugeaud (11).

In Chapter 5, we consider the Zsigmondy question from a complex-dynamical point of view,

and produce a bound on the recurrence of the critical orbit for zd + c in terms of the proximity

of c in the generalized Mandelbrot set to any center of a hyperbolic component. This bound is

then utilized to effectively compute the Zsigmondy set of the critical orbit of zd + c for a large

class of c ∈ Q.

As a final remark to the reader, we note that the content of Chapters 3, as well as an outline

of Chapter 5 in the case d = 2, appears in (12). The related question of S-units in forward

orbits is considered by the author in joint work with Levin, Scherr, and Tucker (13).

vii



CHAPTER 1

INTRODUCTION

In this chapter, we review the basic definitions and fundamental results concerning the arith-

metic of rational maps of P1. We recall the canonical height associated to a dynamical system

over a number field, and discuss the Zsigmondy set associated to a sequence. Chapter 3 of Sil-

verman (14) is an excellent reference for the material of Section 1.1, and we follow this notation.

1.1 Arithmetic of dynamical systems

Given a number field K, write MK for the set of places of K, with M∞ denoting the

infinite places. Given v ∈ MK , we write nv = [Kv : Qv] for the local degree of v. Given

P = [x0 : x1] ∈ P1(K) we define the height of P by

H(P ) :=

 ∏
v∈MK

max{|x0|v, |x1|v}nv
 1

[K:Q]

.

The height is independent of choice of coordinates of P (and the choice of number field con-

taining P ), and invariant under the action of Gal(K̄/K). We define the logarithmic height

of P to be

h(P ) := logH(P ).

1



2

Given a rational map φ ∈ K(z) of degree d, we consider φ as a degree d morphism P1(K)→

P1(K). We define the canonical height function (associated to φ):

ĥφ(P ) := lim
n→∞

1

dn
h(φn(P )).

Theorem 1.1.1 (Call and Silverman (15)). Suppose φ : P1(Q̄)→ P1(Q̄) has degree d ≥ 2. Then

the canonical height ĥφ(P ) exists for all P ∈ P1(Q̄), and is the unique function ĥφ : P1(Q̄)→ R

satisfying

(1) ĥφ(P ) = h(P ) +O(1); and

(2) ĥφ(φ(P )) = dĥφ(P ).

We will occasionally abuse notation, and write h(α) or ĥφ(α) for α ∈ K by taking the

restriction with the usual point at infinity of P1(K). The canonical height decomposes as a

sum of local height functions; in the case of polynomials φ(z) ∈ K[z], the decomposition can

be explicitly written for all P 6=∞ as

ĥφ(P ) =
∑
v∈MK

nvĥφ,v(P ),

where

ĥφ,v(P ) = lim
n→∞

1

dn
log max{|φn(P )|v, 1}.

For n ∈ N, we denote by φn the nth iterate under composition of φ with itself, and write

φ0 for the identity map by convention. We define the forward orbit of P to be the (ordered)
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sequence Oφ(P ) = {φn(P )}n≥1. P ∈ P1(K) is periodic if φn(P ) = P for some n ≥ 1, and

preperiodic some element of the forward orbit is periodic (and so the values of the forward

orbit are a finite set). The canonical height provides an arithmetic criterion for preperiodicity:

Proposition 1.1.2. With φ and P as above, we have P preperiodic if and only if ĥφ(P ) = 0.

Note that when φ is the power map, the canonical height is the usual Weil height, and

so this is the well-known theorem of Kronecker that points of zero height are roots of unity.

Additionally, this tells us that for any non-preperiodic point P , the height of the elements of the

forward orbit will eventually grow like dn, an important idea which will be made more precise

for our use in Chapters 2 and 3.

1.2 Primitive prime divisors and Zsigmondy sets

Given a number field K, we write OK for the ring of integers of K, and recall that any

fractional ideal o of K can be written uniquely in the form

o = ab−1,

where a and b are coprime ideals of OK , each with a unique factorization into prime ideals.

Given a sequence {an} of ideals of OK , we say that a prime ideal p is a primitive prime
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divisor of an element an if p | an, and p - ak for all k < n. We define the Zsigmondy set of

the sequence to be

Z({an}) = {n ∈ N : an fails to have a primitive prime divisor}.

In the case when OK is a principal ideal domain (in particular, for K = Q), we will often

refer to the Zsigmondy set of a sequence of integral elements, referring to prime divisors in the

obvious sense.

A final remark: in our case, we will be concerned with the Zsigmondy set of the sequence

of ideals

anb
−1
n = (fn(α)− α)OK

associated to iteration of some polynomial map f ∈ K[z]. In this setting, a primitive prime

divisor can be understood in the following geometric sense: a prime p is a primitive prime

divisor of an if and only if p is a prime of good reduction for f such that the reduced map f̃

has the reduced point α̃ as a point of exact period n. This geometric interpretation leads to

interesting questions generalizing this work of this thesis to settings other than P1, but will not

be expanded upon here.



CHAPTER 2

INEFFECTIVE RESULTS

2.1 Introduction

In this chapter, we consider the question of primitive prime divisors of critical orbits of

polynomial maps over a number field K. We relate the existence of these primitive prime

divisors to an arithmetic inequality, and utilize results on dynamical height functions, dependent

on Roth’s theorem, to prove that the Zsigmondy set of a critical orbit of a polynomial is finite.

In particular, we show:

Theorem 2.1.1. Let K be a number field, f ∈ K[z], and α ∈ K with f ′(α) = 0 and infinite

forward orbit. Write

(fn(α)− α) = anb
−1
n

with an and bn coprime ideals. Then Z(an) is a finite set.

We first note that without loss of generality, we can by conjugation take the critical point

to be 0:

Lemma 2.1.2. Let f ∈ K[z], α ∈ K such that f ′(α) = 0, and α has infinite forward orbit.

Then for all n ≥ 1,

fn(α)− α = gn(0),

where g(z) = f(z + α)− α, and 0 is a critical point of g with infinite forward g-orbit.

5
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Therefore throughout we will assume the critical point is 0, and so we consider the sequence

fn(0) = anb
−1
n ;

and we will denote the associated Zsigmondy set by Z(f).

The idea of the proof is the following: firstly, as we know by 1.1.1, the arithmetic complexity

(height) of the iterates fn(0) grows quickly. Secondly, once a prime divides some ak with

positive order ordp(ak), then ordp(an) ≤ ordp(ak) for all n (in particular, the sequence has rigid

divisibility). Therefore, to account for the growing arithmetic complexity, new prime divisors

must appear. We make the notion of rigid divisibility clear and use it to find an arithmetic

description of n ∈ Z(f) in Section 2.2, and make precise the growth of the arithmetic complexity

to prove Theorem 2.1.1 in Section 2.3.

2.2 An arithmetic criterion

Let {an}n∈N be a sequence of integral ideals of OK , and S a finite set of places, including all

archimedean ones. We say that the sequence is an S-rigid divisibility sequence if it satisfies

the following conditions:

(1) ∀p /∈ S and all m,n ∈ N, p | gcd(an, am)⇒ p | agcd(m,n).

(2) ∀p /∈ S and all m ∈ N with ordp(am) > 0, we have ordp(akm) = ordp(am) for all k ≥ 1.
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Since f(z) ∈ K[z] is a polynomial, the prime divisors of the sequence bn lie in a finite set;

let S be the collection of these finite primes, along with the archimedean places.

Lemma 2.2.1. Let f(z) ∈ K[z] such that f ′(0) = 0, and 0 has infinite forward orbit. Define

S as above. Then an is an S-rigid divisibility sequence.

Proof. By choice of S, note that for all p /∈ S, ordp(an) = ordp(f
n(0)). Suppose then that p /∈ S,

and p appears as a divisor of some an. Write k = k(p) for the minimal k such that p | ak.

For m ≥ 1, let gm(z) be the polynomial defined by fm(z) = zgm(z) + fm(0), noting that

gm(0) = (fm)′(0) = 0 for all m.

For all q ≥ 1, we have

f qk(0) = f (q−1)k(0)gk(f
k(q−1)(0)) + fk(0),

so by induction, we have ordp(aqk) = ordp(ak), and the second condition is satisfied. Similarly,

for all q ≥ 1 and 0 < r < k, we have

f qk+r(0) = f qk(0)gr(f
qk(0)) + f r(0),

so p - aqk+r. Therefore, if p /∈ S and p | gcd(an, am), we have k(p) | m and k(p) | n, so

k(p) | gcd(m,n), and so p | agcd(m,n).
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As in (5), we define the prime-to-S norm of an ideal a to be

NS(a) =
∏
p/∈S

pordp(a).

The S-rigid divisibility of the sequence {an} yields a nice characterization of n ∈ Z(f) in terms

of the prime-to-S norms of the sequence:

Corollary 2.2.2. Suppose n ∈ N such that an has no primitive prime divisor; i.e. n ∈ Z(f).

Then

NS(an) ≤
∏
q|n

NS(an
q
), (2.1)

where the product is taken over all distinct primes q dividing n.

Proof. Suppose p /∈ S is a prime dividing an. Choose k minimal such that p | ak. Since p is not

a primitive prime divisor, k < n, and so by S-rigid divisibility, k divides n
q for some prime q

dividing n. Furthermore, S-rigid divisibility guarantees that ordp(an) = ordp(ak) = ordp(an
q
).

Taking the product over all primes p /∈ S yields the corollary.

2.3 Finiteness of critical Zsigmondy sets

In order to prove Theorem 2.1.1 via inequality (2.1), we must find both lower and upper

bounds for NS(an). This is done in (5), though we mention a few details of the proof, since

they are the fundamentals that will be expanded upon in Chapters 3 and 4.
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Proposition 2.3.1. [Ingram-Silverman, (5)] Let K, f , an, and S be defined as above. Then

there exists a constant C such that

1

[K : Q]
logNS(an) ≤ dnĥf (0) + C.

Additionally, given ε > 0, there exists n0 ∈ N such that for all n ≥ n0,

1

[K : Q]
logNS(an) ≥ (1− ε)dnĥf (0).

Sketch of the proof. Note that by definition, we have

h(fn(0)) = h(fn(0)−1) =
1

[K : Q]
logNS(an) +

∑
v∈S

[Kv : Qv]

[K : Q]
log max{1, |fn(0)|−1v }.

The first bound is then immediate by Theorem 1.1.1. For the second bound, we must show

that log |fn(0)|v is not very small in comparison to d−n; in other words, fn−1(0) is not a very

good approximate in the v-adic topology of any root of f . This is essentially the statement of

Roth’s theorem (and related theorems in Diophantine approximation), and is shown precisely by

Silverman in (9), Theorem E, noting that for our choice of f , 0 is not a dynamically exceptional

point for f (here a point is dynamically exceptional for a rational map if it is periodic and

totally ramified for f2.)

Together with rigid divisibility, the result of Ingram and Silverman is sufficient to prove

Theorem 2.1.1:
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proof of Theorem 2.1.1. Taking logs and dividing by [K : Q], by inequality (2.1), we must show

that

1

[K : Q]
logNS(an) ≤

∑
q|n

1

[K : Q]
logNS(an

q
)

holds for only finitely many n ∈ N, where the product is over distinct primes q dividing n. Sup-

pose towards contradiction that this inequality holds for infinitely many n. Applying Proposi-

tion 2.3.1 with ε = d−1
d , there exists n0 ∈ N such that for all n ≥ n0, we have

dn−1ĥf (0) ≤ 1

[K : Q]
logNS(an).

Therefore by the first part of Proposition 2.3.1, we have infinitely many values of n such that

dn−1ĥf (0) ≤ 1

[K : Q]
logNS(an) ≤

∑
q|n

1

[K : Q]
logNS(an

q
) ≤

∑
q|n

d
n
q ĥf (0) + C.

Since q ≥ 2, coarsely bounding the number of prime divisors of n by n yields

dn−1ĥf (0) ≤ nd
n
2 ĥf (0) + nC. (2.2)

Recall that since 0 has infinite order, ĥf (0) > 0. Therefore inequality (2.2) is false for large

values of n, yielding the desired contradiction.



CHAPTER 3

EFFECTIVE RESULTS IN THE CASE K = Q

3.1 Introduction

As a particular case of the results of Chapter 2, the Zsigmondy set of the critical orbit of

fc(z) = zd + c is finite for any c in a number field K and any d ≥ 2 for any infinite critical

orbit. In this important family of unicritical polynomials, one might ask for more:

Question 3.1.1. Fix number field K and d ≥ 2, and write fc(z) = zd + c. Does there exist a

constant C such that

#Z(fc) ≤ C

for all c ∈ K with ĥfc(0) 6= 0?

Here we might ask C to depend on K, or perhaps only on the degree [K : Q]. It is clear that

C must depend at least on the degree of the extension; for example, if we let p be a prime, b > 1

an integer, and c = x
b , then fpc (0) will fail to have a primitive prime divisor if bd

p−1 · fpc (0) = x.

After cancellation, this is a monic integral polynomial in x, and therefore has a solution x ∈ OK

for some number field K of degree at most dp−1.

In this chapter we prove a stronger uniformity result for K = Q; in particular, C is shown

to be independent of both d and c (Theorem 3.3.2). We do this by constructing effective

bounds on the size of the Zsigmondy set, utilizing the canonical height function and Diophantine

11
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approximation. In the case c = a
b ∈ Q in lowest terms, the ideals an and b are principal, and

by induction, we can write

fnc (0) =
an

bdn−1 ,

where an and bd
n−1

are coprime integers. In particular, if b > 1, the critical orbit is infinite.

The case b = 1 has been considered by Doerksen and Haensch:

Theorem 3.1.2. (16) Suppose c ∈ Z with infinite critical orbit. Then n ∈ Z(fc)⇒ n ≤ 2.

Thus for the remainder of this chapter, we will assume b ≥ 2. In the case of c ∈ Q, inequality

(2.1) applied to this case says that if an fails to have a primitive prime divisor, then

log |fnc (0)|+ dn−1 log b ≤
∑
q

(log |f
n
q
c (0)|+ d

n
q
−1

log b). (3.1)

where the sum is taken (without multiplicity) over the primes q which divide n.

We will also show that for any c ∈ Q, there exists an effectively computable constant M(c)

such that n ≥ M(c) ⇒ n 6∈ Z(fc). We will be slightly loose with notation and write M(c) for

any such bound, since it is not always possible to compute the minimal such.

We distinguish in the following between those fc(z) = zd + c for which the critical orbit

is recurrent or non-recurrent. For our purposes, this difference is explicit; c is recurrent if

and only if d is even and c ∈ (−2
1
d−1 ,−1). However, the dynamical interpretation is that the

critical orbit is recurrent if there is no obvious obstruction in the d-Mandelbrot set to |fnc (0)|
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being small (see Chapter 5). The non-recurrent case is straightforward, and uses a similar idea

to that of Chapter 2, while the recurrent case requires a more delicate analysis.

3.2 The non-recurrent case

In this section we demonstrate that often M(c) is quite small; in fact, if the critical orbit is

non-recurrent, we have M(c) = 2:

Theorem 3.2.1. Let fc(z) = zd + c with d ≥ 2 and c = a
b ∈ Q in lowest terms. If d is odd, or

d is even and c /∈ (−2
1
d−1 ,−1), then we can take M(c) = 2.

Remark 3.2.2. Note that 2 ∈ Z(fc)⇔ ad−1 + b = ±1. In particular, 2 ∈ Z(fc)⇒ |c| < 2
1
d−1 .

Recall our assumption that c /∈ Z. In order to utilize inequality (3.1) we connect the

elements of the sequence {an} to the corresponding Weil heights h(fnc (0)), or find bounds on

the modulus of the critical orbit, respectively. In the case when |c| > 2
d
d−1 , we can successfully

use the former approach.

Lemma 3.2.3. Suppose that c satisfies |c| > 2
d
d−1 . Then |fnc (0)| > |c| > 1 for all n ≥ 2.

Proof. Since

|fnc (0)| = |fn−1c (0)d + c| = |c| · |f
n−1
c (0)

c
· fn−1c (0)d−1 + 1|,

the lemma is immediate by induction.

Denote by h the standard logarithmic Weil height h(P ) on P1(Q). We will abuse notation

and use h as a height on Q as well; by the lemma above, when |c| > 2
d
d−1 , the inequality (2.1)

becomes the following:
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h(an) ≤
∑
q

h(an
q
). (3.2)

Recall that there exists a constant C such that for all α ∈ Q,

|h(α)− ĥfc(α)| < C. (3.3)

We make the constant C explicit in the following lemma:

Lemma 3.2.4. Let fc(z) = zd + c be as above. Then we can take the constant C of inequality

(3.3) to be h(c) + log(2).

Proof. We use the methods of Theorems 3.11 and 3.20 of (14). Consider fc as a morphism

[φz : φw] on P1 given by [z : w] 7→ [zd + cwd : wd]. Let h denote the logarithmic Weil height as

above, and for each place v of Q, hv the local height at v. Since

|zd + c|v ≤ δv max{|z|dv, |c|v},

where δv = 1 for v non-archimedean and δv = 2 for the archimedean place, we have

hv(φ(P )) ≤ log δv + dhv(P ) + hv(c).

Similarly, we have

|zd|v ≤ |zd + c− c|v ≤ δv max{|zd + c|v, |c|v},
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so

dhv(P ) ≤ log δv + hv(φ(P )) + hv(c).

Combining these estimates and taking the sum over all places of Q, we see that

− log 2− h(c) + h(φ(P )) ≤ dh(P ) ≤ log 2 + h(φ(P )) + h(c),

and so

|h(φ(P ))− dh(P )| ≤ h(c) + log(2).

Taking a telescoping sum, we see that

|ĥfc(P )− h(P )| ≤ h(c) + log(2)

d− 1
≤ h(c) + log(2),

as desired.

We can now prove an effective Zsigmondy result:

Proposition 3.2.5. Suppose |c| > 2
d
d−1 . Then Z(fc) = ∅.

Remark. The case of this proposition is (nearly) also a corollary of the methods in Chapter

4. However, for convenience in that chapter, we assumed c was recurrent, and so we provide

the following proof.
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Proof. First note that by Remark 3.2.2 and the assumption |c| > 2
d
d−1 > 2, it suffices to prove

that n /∈ Z(fc) for all n ≥ 3.

Suppose n ≥ 3 and n ∈ Z(fc). By inequality (3.2) and Lemma 3.2.4, we have

dn − sd(n)

ω(n) + 1
≤
hfc(c) + log 2

ĥfc(0)
,

noting that ĥfc(0) is non-zero.

We now use a remark following Lemma 6 of (17) to get a lower bound for ĥfc(0):

Lemma 3.2.6 (Ingram (17)). Suppose |c| > 2
d
d−1 , and fc(z) = zd + c. Then

ĥfc(c) ≥
1

d
h(c).

Consequently, we have

ĥfc(0) ≥ 1

d2
h(c).

Thus if an has no primitive prime divisor, n must satisfy

dn − sd(n)

ω(n) + 1
≤ d2h(c) + log 2

h(c)
= d2(1 +

log 2

h(c)
) < 1.5d2,

where the right-hand inequality holds because b ≥ 2 and |c| > 2
d
d−1 > 2 together imply that

h(c) = log |a| ≥ log 4.
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Since dn− sd(n) grows very quickly with n, this gives a strong restriction on n; in fact, one

can use the bounds sd(n) ≤ d
n
2 log2(n) and ω(n) ≤ log2(n) to see that

dn − sd(n)

(ω(n) + 1)
> 1.8d2

if d ≥ 4, n ≥ 3, or d ≥ 3, n ≥ 4, or d ≥ 2, n ≥ 5.

Thus the only cases that remain are d = 3 and n = 3, or d = 2 and n = 3, 4, which we check

by hand.

If d = 3 and n = 3, we compute

f3c (0) =
a

b9
(a2(a2 + b2)3 + b8).

Since a and b are coprime, the term (a2(a2 + b2)3 + b26) can have no common divisors with a;

but since it is a sum of positive integers and b ≥ 2, (a2(a2 + b2)3 + b26) ≥ 2 and so is divisible

by some prime.

Therefore a3 has a primitive prime divisor for d = 2 or 3.

Finally we turn to the case when d = 2 and n = 4. If d = 2 and 4 ∈ Z(f, 0), then we have
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16− 4

4
≤ (1 +

log 2

h(c)
)(ω(4) + 1),

and so

1

2
≤ log 2

h(c)
,

and so a ≤ 9. But by assumption, we have a
b > 2

2
1 = 4, so the only possibility is a = ±9 and

b = 2. One can check by hand that for these values of c, a3 has a primitive prime divisor, and

the proposition is proved.

In the remainder of this section, we cannot necessarily utilize height functions, but non-

recurrence of the critical orbit will provide upper and lower bounds on |fnc (0)| for all n, which

can be used in conjuction with inequality (3.1).

We have straightforward bounds when c is positive; the proof of the following lemma is an

easy induction:

Lemma 3.2.7. Suppose c > 0. Write C(n) = max{c, cdn−1}. Then for all n ≥ 1, we have

C(n) ≤ fnc (0) ≤ 2
dn−1−1
d−1 C(n).

Proposition 3.2.8. Suppose c > 0, or c < 0 and d is odd. Then Z(fc) = ∅.
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Proof. First note that it is sufficient to prove the proposition for c > 0, since if c < 0 and d

is odd, we may replace c with −c and the forward orbit of 0 will be unchanged, modulo sign.

Therefore we assume that c > 0 (and thus the forward orbit consists of positive numbers). In

light of the remark following Remark 3.2.2, we must prove that n /∈ Z(fc) for all n ≥ 3 and all

d ≥ 2.

We recall that if n ∈ Z(fc), then we have

log fnc (0) + dn−1 log b ≤
∑
q

(log f
n
q
c (0) + d

n
q
−1

log b),

with the sum over distinct primes q dividing n. Multiplying by d and applying the preceding

lemma, we have:

d logC(n) + dn log b ≤
∑
q

[
d
n
q − d
d− 1

log 2 + d logC(
n

q
) + d

n
q log b

]
;

rearranging, we have

d

[
logC(n)−

∑
q

logC(
n

q
)

]
+ [dn − sd(n)] log b ≤ 1

d− 1
sd(n) log 2.

Checking by cases, we see that the left-most term is always non-negative, and therefore we

have the inequality
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[dn − sd(n)] log b ≤ 1

d− 1
sd(n) log 2.

By assumption, c is non-integral and so b ≥ 2, and therefore

[dn − sd(n)] log 2 ≤ 1

d− 1
sd(n) log 2,

and so

dn − d

d− 1
sd(n) ≤ 0,

which is impossible for any d ≥ 2, n ≥ 3.

Next we consider the situation when −1 < c < 0 and d is even:

Proposition 3.2.9. Suppose −1 < c < 0 and d is even. Then Z(fc) = ∅, unless d = 2 and

a+ b = 1, in which case Z(fc) = {2}.

Proof. By Remark 3.2.2, we must prove n /∈ Z(fc) for all n ≥ 3. We utilize the following

bounds, which by assumption on c and d hold for all n ≥ 0:

|c|(1− |c|d−1) ≤ |fnc (c)| ≤ |c|.

Together inequality (3.1) and these bounds imply that we have n ∈ Z(fc) only if
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log(|c|(1− |c|d−1)) + dn−1 log b ≤ ω(n) log |c|+ log b
∑
q

d
n
q
−1
.

Multiplying by d and rearranging, we have

(dn − sd(n)) log b ≤ d(ω(n)− 1) log |c| − d log(1− |c|d−1)

≤ −d log(1− |c|d−1)

= d(d− 1) log b− d log(bd−1 − |a|d−1)

≤ d(d− 1) log b.

We conclude that

dn − sd(n)− d2 + d ≤ 0,

which is impossible for all d ≥ 2, n ≥ 3. Thus the proposition is proved.

The final non-recurrent case tightens the bound on |c|:

Proposition 3.2.10. Suppose 2
1
d−1 < |c| < 2

d
d−1 Then Z(fc) = ∅, unless d = 2 and a+b = −1,

in which case Z(fc) = {2}.
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Proof. If d is odd this follows from Proposition 3.2.8, so we assume d is even. Again it is easy

to bound the critical orbit by induction; since 2
1
d−1 < |c| < 2

d
d−1 , we have

log |c| ≤ log |fnc (0)| ≤ (3dn−1 − 1) log 2

for all n ∈ N.

Suppose n ∈ Z(fc). Then combining the above bounds with inequality (3.1), we have

d log |c|+ dn log b ≤
∑
q

((3d
n
q − d) log 2 + d

n
q log b),

and so

(dn − sd(n)) log b ≤ 3sd(n) log 2− ω(n)d log 2,

which is impossible for b ≥ 2, d ≥ 2 and n ≥ 3.

Proof of Theorem 3.2.1. The Theorem follows immediately from Propositions 3.2.5, 3.2.8, 3.2.9

and 3.2.10.

3.3 Mahler and the size of the Zsigmondy set

The case when the critical orbit possibly recurs requires more sophisticated techniques.

In general, the idea is that by inequality (3.1), n ∈ Z(fc) only if |fnc (0)| is extremely small,

or rather that fn−1c (0) is a very good rational approximate of the real dth root of −c. The
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famous Diophantine approximation theorem of Roth tells us that real algebraic numbers can

have only finitely many good rational approximations (see e.g. (18) for statement and a nice

proof exposition):

Theorem 3.3.1 (Roth for Q). Let α be a real algebraic number of degree d ≥ 3. Let ε > 0.

Then only finitely many rational numbers p
q , q ≥ 1, satisfy

|p
q
− α| ≤ 1

q2+ε
.

Since we are seeking a uniform (and effective) bound on the number of elements of Z(fc),

Roth’s theorem is not quite the right tool for our task. We will see that the exponent of 2 + ε

is much stronger than what we require for a Zsigmondy result, and we will instead utilize a

precursor of Roth’s theorem which can be more easily be made effective in our setting. In this

section, we use an approximation theorem of Mahler to show:

Theorem 3.3.2. Let fc(z) = zd + c and c ∈ Q such that the critical orbit is infinite. Then

#Z(fc) ≤ 23.

By the previous section, we can and will assume that d is even, and c ∈ (−2
1
d−1 ,−1)

throughout this section. We then have the following easy upper bound:

Lemma 3.3.3. Suppose d is even and −2
1
d−1 < c < −1. Then we have

|fnc (0)| ≤ |c|



24

for all n ≥ 1.

Thus supposing that n ∈ Z(fc), inequality (3.1) implies

log |fnc (0)|+ dn−1 log b ≤ ω(n) log |c|+
∑
q

d
n
q
−1

log b, (3.4)

where we define ω(n) to be the number of distinct prime factors of n. To use this inequality to

bound n, we require a lower bound on |fn(0)| that is reasonably better than b−d
n−1

. In order

to use Mahler’s approximation theorem, we treat separately the cases of xd + c irreducible or

reducible.

3.3.1 xd + c irreducible over Q

Throughout this subsection, we assume that d is even, c ∈ Q ∩ (−2
1
d−1 ,−1), and for all

m | d, m > 1, c is not an mth power of a rational number.

Under this assumption, we achieve the following bound on the recurrence of the critical

point:

Theorem 3.3.1.1. For each even d ≥ 2, there exist positive integers 1 ≤ Nd ≤ 6 and 1 ≤ md ≤

6 such that there are at most Nd values of n ∈ N satisfying both

n ≥ 2md + 6

and

|fnc (0)| ≤ (bd
n−2

)−d(1−d
−md ).
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Further, for d ≥ 6, the result holds with md = 1 and Nd = 2, and for d = 4, the result holds

with md = 2 and Nd = 3.

For those c satisfying the assumptions, Theorem 3.3.2 is an immediate consequence of

Theorem 3.3.1.1:

Proof of Theorem 3.3.2. If n ∈ Z(fc), inequality (3.4) says

log |fnc (0)|+ dn−1 log b ≤ 1

d
sd(n) log b+ ω(n) log |c|,

where (as above)

sd(n) :=
∑
q

d
n
q

is a sum over primes q dividing n, and ω(n) is the number of distinct primes dividing n.

Thus applying Theorem 3.3.1.1, for all but at most Nd values of n with n ≥ 2md + 6, we

have

dn−md−1 − 1

d
sd(n) ≤ ω(n) log |c|

log b
.

Since a
b = c ∈ (−2,−1), we have |c| < b; also we have 1

dsd(n) < d
n
2 . Thus

dn−md−1 − d
n
2 ≤ ω(n).
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By assumption, n−md − 1 ≥ n
2 + 2, and so

d
n
2 ≤ ω(n);

since ω(n) ≤ log2(n), this is false for all d ≥ 2, n ≥ 2.

Therefore the size of the Zsigmondy set satisfies

#Z(fc) ≤ 2md + 6− 1 +Nd ≤ 23

for all values of d ≥ 2, with improved bound for d = 4 of

#Z(fc) ≤ 2md + 6− 1 +Nd = 12,

and for d ≥ 6 we have

#Z(fc) ≤ 2md + 6− 1 +Nd = 9.

The remainder of this section will be devoted to the proof of Theorem 3.3.1.1, which re-

lies on the proof of Mahler’s quantitative result (10) on restricted rational approximation of

real algebraic numbers. Examining the proof of Theorem 3 of (10), we extract the following

quantitative statement bounding the good rational approximates of real algebraic numbers:
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Theorem 3.3.1.2. [Mahler] Let S be a finite set of primes, ζ a real algebraic number of degree

d ≥ 2, and µ >
√
d. Let R be the maximal absolute value of the coefficients of the minimal

integral polynomial of ζ. Suppose ε > 0 is sufficiently small so that

κ :=

(√
1− 2ε

d
− 2
√
ε

)
µ− (1 + ε)2 > 0.

Then there do not exist rational S-integers p1
q1
, p2q2 satisfying

∣∣∣∣piqi − ζ
∣∣∣∣ < q−µi , (3.5)

which also satisfy

• qκ1 ≥ (16R)
4
ε ,

• q2 ≥ q
5d2

2ε
1 .

To apply this theorem to our setting, let ζ be the positive dth root of |c|, and µ = d(1−d−m),

with m to be chosen later. Since ζ > 1, we have

| |an−1|
bdn−2 − ζ| < |fn−1c (0)d − |c|| = |fnc (0)|,

so if

|fnc (0)| ≤ (bd
n−2

)−d(1−d
−m),
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then |fn−1c (0)| is a good approximate of ζ in the sense of inequality (3.5).

So we will apply Mahler’s theorem to the iterates fn−1(0); to do so, we rewrite the last

three conditions of Theorem 3.3.1.2 in our setting. Suppose that |fn1−1
c (0)| and |fn2−1

c (0)| are

both good approximates to ζ; i.e., satisfy inequality (3.5). Since the denominator of |fni−1c (0)|

is qi = bd
ni−2

, we have

qκ1 ≥ (16R)
4
ε ⇔ dn1−2 log b ≥ 4

κε
log 16R.

Since |c| ∈ (1, 2), we have R = |a| < 2b; also we have b ≥ 2, so

n1 ≥ logd(
24

κε
) + 2⇒ (bd

n1−2
)κ ≥ (b6)

4
ε ⇒ dn1−2 ≥ 24

κε
⇒ qκ1 ≥ (16R)

4
ε .

Similarly, we have

n2 ≥ n1 + logd(
5d2

2ε
)⇒ q2 ≥ q

5d2

2ε
1 .

Therefore we have shown that Theorem 3.3.1.2 implies the following:

Proposition 3.3.1.3. Suppose that |fn1−1
c (0)| and |fn2−1

c (0)| satisfy inequality (3.5), with n1 ≥

logd(
24
κε ) + 2. Then we have

n2 < n1 + logd(
5d2

2ε
).
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Proof of Theorem 3.3.1.1. According to Proposition 3.3.1.3, in order to prove Theorem 3.3.1.1,

we must show that we can choose ε and µ = d(1− d−md) such that κ > 0, and

• 1 ≤ md ≤ 6,

• 2md + 6 ≥ logd(
24
κε ) + 2, and

• logd(
5d2

2ε ) ≤ 6.

Remark 3.3.1.4. In fact, we can weaken this last inequality; since |fnc (0)| < 1
2 ⇒ |f

n+1
c (0)| >

1
2 , we cannot have consecutive good approximates, and so we have Nd ≤ 1

2 logd(
5d2

2ε ).

Suppose d ≥ 6. Let md = 1 and ε = 1
d3

(note µ = d − 1). Then one can compute that

κ > 24
d3
> 0, and therefore

logd(
24

κε
) < 6.

Therefore

2md + 6 = 8 ≥ logd(
24

κε
) + 2.

By choice of ε, we have

logd(
5d2

2ε
) = 5 + logd(

5

2
) < 6,

and by Remark 3.3.1.4, we conclude that Nd ≤ 1
2 logd(

5d2

2ε ) < 3.
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For d = 2, we simply note that the smallest m2 and N2 that can be achieved are found

when ε = .004 and m2 = 6. In this case we have

2m2 + 6 = 18 ≥ log2(
24

κε
) + 2,

and

log2(
5d2

2ε
) = log2(15000) < 14,

so we can take N2 = 6.

Similarly for d = 4, we achieve optimal values at m4 = 2 and ε = 1
128 . In this case we have

2m4 + 6 = 10 ≥ log4(
24

κε
) + 2,

and

log2(
5d2

2ε
) =

11

2
+ log4(

5

2
) < 7,

so we can take N4 = 3.

3.3.2 xd + c reducible over Q

In the case when c is a power dividing d over Q we have a stronger result:
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Proposition 3.3.2.1. Suppose that d is even, and c = a
b ∈ (−2

1
d−1 ,−1) such that there exists

m | d, m 6= 1, and positive integers k, l with a = −km, b = lm. Then Z(fc) = ∅.

In order to prove the proposition, we find a lower bound for |fnc (0)|:

Lemma 3.3.2.2. Suppose d and c are as above. Then we have

|fnc (0)| ≥ 1

db
1
2
dn−1

for all n ≥ 2.

Proof. By assumption, we have

|fnc (0)| = |fn−1c (0)d −
(
k

l

)m
|

= ||fn−1c (0)|
d
m − k

l
| · |
(
|fn−1c (0)|

d
m

)m−1
+
(
|fn−1c (0)|

d
m

)m−2
·
(
k

l

)
+ · · ·+

(
k

l

)m−1
|

≥ ||fn−1c (0)|
d
m − k

l
|,

since the right-hand factor is a sum of positive numbers, one of which is
(
k
l

)m−1
, which is > 1

by assumption.

Write β for the positive d
mth root of k

l - for notational convenience we will set r = d
m , so

that βr = k
l . From the above, we have
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|fnc (0)| ≥ ||fn−1c (0)|
d
m − k

l
|

= ||fn−1c (0)| − β| · ||fn−1c (0)|
d
m
−1 + |fn−1c (0)|

d
m
−2 · β + · · ·+ β

d
m
−1|

> ||fn−1c (0)| − β|,

since β > 1. But we know that |fn−1c (0)| is a rational number whose denominator is bd
n−2

and

therefore a power of l. Therefore we have

1

br·dn−2 ≤ |( |an−1|
bdn−2 )r − k

l
|

= ||fn−1c (0)− β| · ||fn−1c (0)|r−1 + ...+ βr−1|

≤ ||fn−1c (0)| − β| · rmax{|fn−1c (0)|, β},

noting that the first inequality is valid because the right-hand term divides fnc (0) and thus

cannot be 0, since 0 is not periodic. By Lemma 3.3.3, we then have

1

br·dn−2 ≤ ||fn−1c (0)| − β| · d
2
· |c|

≤ ||fn−1c (0)| − β| · d;

Since r = d
m ≤

d
2 , we conclude that
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|fnc (0)| > ||fn−1c (0)| − β| ≥ 1

d · br·dn−2 ≥
1

d · b
1
2
dn−1

,

as desired.

Having achieved a lower bound for |fnc (0)|, we can now prove the proposition.

Proof. Suppose n ≥ 3 with n ∈ Z(fc), so that

log |fnc (0)|+ dn−1 log b ≤ ω(n) log |c|+
∑
q

d
n
q
−1

log b.

By the lemma, we then have

d log

(
1

d · b
1
2
dn−1

)
+ dn log b < dω(n) log |c|+ sd(n) log b,

and so

−d log d+
1

2
dn log b < dω(n) log |c|+ sd(n) log b.

Since |c| < 2,

1

2
dn − sd(n) <

dω(n) log 2 + d log d

log b
.

Since c is an mth power of a rational number, m > 1, we have b ≥ 9, so
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1

2
dn − sd(n) <

d

3
ω(n) +

1

2
d log d,

and so

1

2
dn−1 − 1

2
log d− 1

d
sd(n) ≤ 1

3
ω(n).

Utilizing the bounds sd(n) ≤ d
n
2 log2(n) and ω(n) ≤ log2(n), we see that this is false for all

d ≥ 2 and all n ≥ 3.

Since from Remark 3.2.2 we know that 2 ∈ Z(fc) only if d = 2 and a = −(b ± 1), our

assumption that c is an mth power guarantees that 2 /∈ Z(fc), and the proposition is proved.

Remark 3.3.2.3. These methods could be easily generalized for any polynomial maps for which

the proximity of the roots of f to the rational numbers can be nicely bounded; for example,

Mahler’s results would apply with minimal modification to any f with all real roots.



CHAPTER 4

IMPROVING THE BOUND

4.1 Introduction

It is clear that the bound #Z(fc) ≤ 23 of Theorem 3.3.2 above is an artifact of the proof,

and not sharp. In light of the results of Chapter 5, one might speculate that the sharp bound is

2 or 3, depending whether d > 2. We cannot with these methods achieve quite this sharpness;

however, we can do better for d > 2 by refining the Mahler/Thue method.

Theorem 4.1.1. Let fc(z) = zd + c with d ≥ 3 and c ∈ Q. Then for n ≥ 8, there is at most

one n such that an fails to have a primitive prime divisor.

Remark 4.1.2. Though this theorem would be more satisfying if the small (3 ≤ n ≤ 7) values

of n were ruled out, this is quite difficult; for example, f7c (0) has a primitive prime divisor

for all c ∈ Q if and only if two particular auxiliary affine Thue curves of degree d7 − 1 have

no integral solutions. Note also that for d = 2, n = 3 actually does appear as an element of

Z(f−7/4); in this case, a corresponding auxiliary curve is a3 + 2a2b + ab2 + b3 = 1, which is

nonsingular of genus 1. After a change of variables, the integral solutions of this Thue equation

are due to Nagell (19), and we see that c = −7
4 is the only non-critically-finite parameter for

d = 2 with 3 ∈ Z(fc).

The heart of this result is a refinement of Thue’s precursor to Roth’s theorem on the ap-

proximation of dth roots of integers. Utilizing the rapid growth of the denominator of fnc (0),

35
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two sufficiently large elements of the Zsigmondy set would give rise to a pair of which rationals

contradict the refinement of Thue’s theorem.

In this chapter we prove Theorem 4.1.1, which is applicable to any value c ∈ Q. Since the

result of Theorem 4.1.1 is superseded by that of Theorem 3.2.1 if applicable, we will assume

throughout this section that c is recurrent, i.e. d is even and c ∈ (−2
1
d−1 ,−1). Additionally we

must assume d ≥ 3 as in the statement of Theorem 4.1.1. Our goal is to achieve a bound on

the size of the Zsigmondy set, though we do not necessarily have nice bounds on the critical

orbit, or the tool of height functions. We do have a upper bound on the critical orbit, whose

proof is a straightfoward induction:

Lemma 4.1.3. Suppose d is even and −2
1
d−1 < c < −1. Then we have

|fnc (0)| ≤ |c|

for all n ≥ 1.

Thus supposing that n ∈ Z(fc), we have by inequality (3.1):

log |fnc (0)|+ dn−1 log b ≤ ω(n) log |c|+
∑
q

d
n
q
−1

log b; (4.1)

to utilize this towards contradiction, we require a lower bound on |fn(0)| reasonably better

than b−d
n−1

. By definition and assumption on c,
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|fnc (0)| = |fn−1c (0)d − |c||,

so this is easily accomplished when |c|
1
d is poorly approximated by rationals, as seen in Sub-

section 3.3.2. In general, we cannot with these methods achieve such an explicit expression

of the Zsigmondy set. However, we can still use the idea of |c|
1
d being poorly approximated

by rationals to draw the conclusion of Theorem 4.1.1. As this is a diophantine approximation

argument, we require the additional assumption that for all m | d, we do not have a, b ∈ Zm;

i.e., c is not an mth power of a rational number, which case was dealt with in Subsection 3.3.2.

Our goal now is to use a modification of Thue’s Diophantine approximation theorem to

prove the ‘nearly’ effective statement of Theorem 4.1.1. The proof relies on finding a lower

bound for |fn(0)| in terms of its denominator; in particular, Theorem 4.1.1 is a corollary of the

following theorem:

Theorem 4.1.4 (Approximation Theorem). For all but possibly one n ≥ 8, we have

|fnc (0)| ≥ 1

b
15
16
dn−1+ 1

16
d
.

To see why this implies Theorem 4.1.1, recall inequality (4.1) above that if an fails to have

a primitive prime divisor, then
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log |fnc (0)|+ dn−1 log b ≤
∑
q|n

(log |f
n
q
c (0)|+ d

n
q
−1

log b),

where the sum is taken over distinct primes q dividing n.

We combine the Approximation Theorem with this bound and inequality to deduce Theorem

4.1.1:

Proof of Theorem 4.1.1. Suppose n ≥ 8, and n ∈ Z(fc). By the above inequality and Lemma

4.1.3, we have

log |fnc (0)|+ dn−1 log b ≤ 1

d
sd(n) log b+ ω(n) log |c|,

where

sd(n) =
∑
q

d
n
q

is a sum over primes q dividing n, and ω(n) is the number of distinct primes dividing n.

Thus applying the Approximation Theorem, for all but at most one such n, we have

1

16
dn−1 − 1

16
d− 1

d
sd(n) ≤ ω(n) log |c|

log b
.
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Since a
b = c ∈ (−2,−1), we have |c| < b. In addition, d ≥ 4 and the left-hand side is increasing

in d for n ≥ 8, so we conclude that

4n−3 − 1

4
− 1

4
s4(n) ≤ ω(n) · log |c|

log b
< ω(n),

which is false for all n ≥ 8.

The remainder of this chapter will be devoted to the proof of the Approximation Theorem.

For the proof, we will modify Thue’s classical result on Diophantine approximation, which

provides an improvement on Liouville’s theorem on the exponent τ(d) such that for any C > 0,

|p
q
− β| < C

qτ(d)

has only finitely many rational solutions for a given algebraic integer β of degree d.

In Thue’s (and subsequent related) arguments, the crucial assumption which leads to inef-

fectivity is the necessity of producing two good approximates p1
q1
, p2q2 with q1 large, and q2 large

compared to q1. This can be exploited for elements of forward orbit of 0 under zd + c precisely

because the denominators of the iterates grow very rapidly in n. We will thus modify Thue’s

argument so that it is enough to assume towards contradiction that q2 ≥ q161 , which for d ≥ 4
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is sufficient to prove the ’at most one’ statement of the Approximation Theorem.

Once the proper values to consider to achieve this are found, the argument is a straightfor-

ward modification of the original proof. For clarity, we will mimic the notation and terminology

of Chapter V of (20), which presents the necessary theorems and result for Thue’s general argu-

ment in the case d = 3. All of their expositions and theorems must be generalized and tightened

for our purposes to achieve the necessary constants.

4.2 Preliminary Theorems

Throughout we fix d ≥ 4 and a positive integer B which is not an mth root for any m | d,

and define

α =
d− 2

2
+

1

2d
.

In order to simplify notation, for a polynomial F (x, y) = P (x) +Q(x)y ∈ Z[x, y], we define

F (k)(x, y) :=
1

k!

∂k

∂xk
F (x, y)

to be the coefficients of the Taylor expansion at (x, y), noting that F (k)(x, y) will then have

integer coefficients as well.

Theorem 4.2.1 (Auxiliary Polynomial Theorem). Let B be an integer, let β = B
1
d be the

positive dth root of B, and let m,n ≥ 3 be integers satisfying
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m+ 1 > αn ≥ m.

Then there is a non-zero polynomial with integer coefficients of degree at most m+ n in x,

F (x, y) = P (x) +Q(x)y,

such that for all 0 ≤ k < n, we have

F (k)(β, β) = 0,

and the coefficients of F are bounded above in absolute value by

2(8dB)d(m+n).

Note that α was chosen precisely to be the minimal value so that this theorem is an immedi-

ate consequence of Siegel’s lemma applied to a system of M = dn equations in N = 2(m+n+1)

variables, along with an estimate of the coefficients of the system that is sufficient to deduce

the Approximation Theorem.

Proof. The proof follows (20), modified here to achieve the desired constant. We write F (x, y) =

P (x) +Q(x)y as:
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F (x, y) =
m+n∑
i=0

uix
i +

m+n∑
i=0

vix
iy.

Since by assumption on B, 1, β, ..., βd−1 are linearly independent over Q, the restriction

F (β, β) = F (1)(β, β) = ... = F (n−1)(β, β) = 0

imposes exactly dn conditions on the coefficients of F . Since F is determined by two polynomials

of degree at most m+ n, finding an F which satisfies this requirement is equivalent to solving

M = dn equations in N = 2(m+ n+ 1) variables. By hypothesis, we have

m ≤ nα < m+ 1,

with

α =
d− 2

2
+

1

2d
.

Therefore
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N −M = 2(m+ n+ 1)− dn

= n(2(
m+ 1

n
) + 2− d)

> n(2(
d− 2

2
+

1

2d
) + 2− d)

=
n

d
> 0,

so the system has solutions.

Siegel’s lemma then guarantees that we have an nonzero integer solution for the ui and vj ,

with

max
i,j
{|ui|, |vj |} < 2(4Nµ)

M
N−M ,

where µ is the maximum absolute value of coefficients in the system. Thus we must estimate

µ; i.e., the coefficients of the equations F (k)(β, β) = 0. We have

F (k)(β, β) =
m+n−k+1∑

i=0

{
(
i+ k

k

)
βiui+k +

(
i+ k − 1

k

)
βivi+k−1};

writing i = dj + l,
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F (k)(β, β) =
d−1∑
l=0

{
∑
j

(
dj + l + k

k

)
Bjudj+l+k +

(
dj + l + k − 1

k

)
Bjvdj+l+k−1}βl.

Therefore

µ ≤ max
0≤dj+l≤m+n,0≤k<n

(
dj + l + k

k

)
Bj

≤ max
0≤i≤m+n,0≤k<n

(
i+ k

k

)
B

i
d

≤ max
0≤i≤m+n,0≤k<n

2i+kB
i
d

= 2m+2n−1B
m+n
d

< (4dB)
m+n
d

Therefore, recalling that N−M ≥ n
d and m,n ≥ 3, we have an integer solution for the ui, vj

such that

max
i,j
{|ui|, |vj |} < 2(4Nµ)

M
N−M

< 2(8(m+ n+ 1)(4dB)
m+n
d )d

2

≤ 2(8dB)d(m+n),

as desired.
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We have the following modification of the Smallness Theorem:

Theorem 4.2.2 (Smallness Theorem). Let F (x, y) be an auxiliary polynomial as described in

the previous theorem. Then there is a constant c1 > 0, depending only on B, so that for any

real numbers x, y such that |x− β| ≤ 1 and any integer 0 ≤ t < n, we have

|F (t)(x, y)| ≤ cn1 (|x− β|n−t + |y − β|).

Further, we can take the constant c1 to be

c1 = (24d
2+2Bd+ 1

d )1+α

Proof. Again we follow [Si-Ta], with the necessary modifications. We use the Taylor expansion

of F (x, y) about (β, β); since the first n derivatives vanish, we have

F (x, y) =
m+n∑
k=n

F (k)(β, β)(x− β)k +
m+n∑
k=0

Q(k)(β)(x− β)k(y − β).

Since we want to estimate F (t)(x, y), we differentiate the above t times with respect to x and

divide by t!:
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F (t)(x, y) = {
m+n∑
k=n

F (k)(β, β)

(
k

t

)
(x− β)k−n}(x− β)n−t + {

m+n∑
k=0

Q(k)(β)

(
k

t

)
(x− β)k−t}(y − β).

Since |x− β| < 1 and |y − β| < 1, the triangle inequality implies

|F (t)(x, y)| ≤
m+n∑
k=n

|F (k)(β, β)|
(
k

t

)
|x− β|n−t +

m+n∑
k=0

|Q(k)(β)|
(
k

t

)
|y − β|.

For the binomial coefficient, we will use the easy bound

(
k

t

)
≤ 2m+n.

For the rest, we have, by differentiating and applying the Auxiliary Polynomial Theorem:

|F (k)(β, β)| = |
m+n∑
i=k

(
i

k

)
(uiβ

i−k + viβ
i−k−1)|

≤ (m+ n+ 1)2m+n+1 max
i,j
{|ui|, |vj |}βm+n

≤ 22m+2n+2(8dB)d(m+n)B
m+n
d

≤ (16d
2
Bd+ 1

d )m+n.

Therefore
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m+n∑
k=n

|F (k)(β, β)|
(
k

t

)
≤ (m+ 1)(16d

2
Bd+ 1

d )m+n2m+n

≤ 2m+n(16d
2
Bd+ 1

d )m+n2m+n

≤ (4 · 16d
2
Bd+ 1

d )m+n

≤ {(4 · 16d
2
Bd+ 1

d )1+α}n.

For the other sum, we have

|Q(k)(β)| = |
m+n∑
i=k

(
i

k

)
viβ

i−k|

≤ (m+ n+ 1)2m+n max
i,j
{|ui|, |vj |}βm+n

≤ (16d
2
Bd+ 1

d )m+n,

by comparison with the previous estimate. Therefore,

m+n∑
k=0

|Q(k)(β)|
(
k

t

)
≤ (m+ n+ 1)(16d

2
Bd+ 1

d )m+n2m+n

≤ 2m+n(16d
2
Bd+ 1

d )m+n2m+n

≤ {(4 · 16d
2
Bd+ 1

d )1+α}n,
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again by comparing to the first estimate.

Therefore for

c1 = (24d
2+2Bd+ 1

d )1+α,

we have the desired result.

Finally, we modify the Non-Vanishing Theorem:

Theorem 4.2.3 (Non-Vanishing Theorem). Let F (x, y) be an auxiliary polynomial as described

in the theorem above. Let p1/q1 and p2/q2 be rational numbers in lowest terms. Then there is

a constant c2, depending only on B, and an integer

0 ≤ t ≤ 1 +
c2n

log q1
,

so that

F (t)(
p1
q1
,
p2
q2

) 6= 0.

Further, we can take the constant c2 to be c2 = log c3, where
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c3 = (26d
2+3B2d)1+α.

Proof. Let W (x) = P (x)Q′(x)−Q(x)P ′(x), and let T be the largest integer such that

F (t)(
p1
q1
,
p2
q2

) = 0

for all 0 ≤ t < T .

One can show (see (20)) that the definition of T guarantees the existence of a polynomial

V (x) ∈ Z[x] such that

W (x) = (q1x− p1)T−1V (x).

Since V (x) is an integral polynomial, W (x) is either identically zero, or has a coefficient of

absolute value at least as large as qT−11 . Assume for the moment that W (x) is not identically

zero. Then we can utilize this, along with an upper bound on the coefficients of W , to find an

upper bound for T . Since

W (x) =
∑
i,j

j(uivj − viuj)xi+j−1,

the largest coefficient of W (x) is bounded above by
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max
i,j≤m+n

|j(uivj − viuj)| ≤ 2(m+ n)( max
i≤m+n

{|ui|, |vi|})2

≤ 2(m+ n)4(8dB)2d(m+n)

≤ (8d+
1
2dB)2d(m+n)

≤ (26d
2+3B2d)(1+α)n.

Therefore if we let c3 = (26d
2+3B2d)1+α, and c2 = log c3, we have

qT−11 ≤ cn3 ,

and so

T ≤ 1 +
c2n

log q1
.

So by our definition of T , there exists an integer 0 ≤ t ≤ 1 + c2n
log q1

such that

F (t)(
p1
q1
,
p2
q2

) 6= 0.

It remains to prove our assumption that W (x) is not identically 0. Suppose otherwise; since

W (x) is the numerator of the derivative of P (x)/Q(x), there exists a constant A such that

P (x) = AQ(x),
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and so

F (x, y) = (A+ y)Q(x).

Note that since P (x), Q(x) ∈ Z[x], A ∈ Q. By the Auxiliary Polynomial Theorem, we have for

all 0 ≤ k < n,

0 = F (k)(β, β) = (A+ β)Q(k)(β);

since A is rational and β irrational, A+ β 6= 0, so we have Q(k)(β) = 0 for all 0 ≤ k < n. Thus

the minimal polynomial xd−B of β divides Q(x) with multiplicity at least n. Hence the degree

of Q(x) is at least dn; but we have specified that the degree of Q(x) is at most

m+ n ≤ (1 + α)n = (1 +
d− 2

2
+

1

2d
)n = (

d

2
+

1

2d
)n.

Since d is a positive integer, we have

d

2
+

1

2d
< d,

yielding a contradiction. Therefore W (x) cannot be identically 0.

4.3 Proof of the Approximation Theorem.

As a corollary of the preceding results, we have the modification of Thue’s theorem that we

will need to prove the Approximation Theorem:
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Theorem 4.3.1. With c1, c2, c3 as above, there do not exist two rational numbers p1
q1

and p2
q2

which satisfy all of the following:

q1 > c93,

q1 > (2
1
17 c1)

22,

q2 ≥ q161 ,

and

|pi
qi
− β| ≤ 1

q
15
16
d

i

.

Proof. Suppose to the contrary that we have such a pair p1
q1
, p2q2 . Let n be the positive integer

satisfying

q
8
9
n

1 ≤ q2 < q
8
9
(n+1)

1 .

Note that by hypothesis, we then have
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n >
9 log q2
8 log q1

− 1 ≥ 17.

Using this value of n, and the corresponding choice of m so that

m ≤ αn < m+ 1,

apply the Auxiliary Polynomial Theorem and Non-Vanishing Theorem to find a polynomial

F (x, y) = P (x) +Q(x)y ∈ Z[x, y]

of degree at most m+ n in x, and integer t, such that

0 ≤ t ≤ 1 +
c2n

log q1
,

and

F (t)(
p1
q1
,
p2
q2

) 6= 0.

Note that since log q1 > 9 log c3 = 9c2, we have

n− t ≥ n− (1 +
c2n

log q1
) ≥ 8

9
n− 1.
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Now we work towards the desired contradiction by finding upper and lower bounds for

|F (t)(p1q1 ,
p2
q2

)|.

Since F (t)(x, y) is nonzero, has integer coefficients, and is degree at most m+n in x, degree

1 in y, we have

|F (t)(
p1
q1
,
p2
q2

)| ≥ 1

qm+n
1 q2

.

Since m ≤ αn and q2 < q
8
9
(n+1)

1 , we have

|F (t)(
p1
q1
,
p2
q2

)| >
1

q
(1+α)n
1 q

8
9
(n+1)

1

=
1

q
( d
2
+ 1

2d
+ 8

9
)n+ 8

9
1

On the other hand, by the Smallness Theorem and our hypotheses,
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|F (t)(
p1
q1
,
p2
q2

)| ≤ cn1 (|p1
q1
− β|n−t + |p2

q2
− β|)

≤ cn1{(
1

q
15
16
d

1

)n−t + (
1

q
15
16
d

2

)}

≤ cn1{
1

q
15
16
d( 8

9
n−1)

1

+
1

q
15
16
d( 8

9
n)

1

}

≤ 2cn1

q
15
16
d( 8

9
n−1)

1

.

Since n ≥ 17 and q1 > (2
1
17 c1)

22, we have

2cn1 ≤ (2
1
17 c1)

n ≤ q
n
22
1 ,

and so

|F (t)(
p1
q1
,
p2
q2

)| ≤ 1

q
15
16
d( 8

9
n−1)− n

22
1

=
1

q
( 5
6
d− 1

22
)n− 15

16
d

1

.

Combining these upper and lower bounds, we see that

1

q
( d
2
+ 1

2d
+ 8

9
)n+ 8

9
1

<
1

q
( 5
6
d− 1

22
)n− 15

16
d

1

.

Since q1 > 1, we must then have
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(
d

2
+

1

2d
+

8

9
)n+

8

9
> (

5

6
d− 1

22
)n− 15

16
d,

and so

15

16
d+

8

9
> (

1

3
d− 1

22
− 8

9
− 1

2d
)n.

Since d ≥ 4, the quantity in the parenthesis is positive, and so we can conclude that

n <
15
16d+ 8

9
1
3d−

1
22 −

8
9 −

1
2d

.

But the right-hand side of this inequality is less than 17 for all d ≥ 4, and n > 17 as noted

above, providing our contradiction.

Now we return to the setting of the Approximation theorem. We require two lemmas to

connect our dynamical sequence to the Diophantine Approximation just proved. We write

B = |a|bd−1, recalling that a and b are coprime, so because of our assumption that a
b is not an

mth power for any m | d, neither is B.

Lemma 4.3.2. Suppose that n ∈ N satisfies

|fnc (0)| < 1

b
15
16
dn−1+ 1

16
d
.

Then p
q := |fn−1c (0)b| = |an−1|

bdn−2−1
is a fraction in lowest terms which satisfies
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|p
q
− β| < 1

q
15
16
d
.

Proof. Note that

|fnc (0)| = |
adn−1
bdn−1 −

a

b
| = 1

bd
|( |an−1|
bdn−2−1 )d −B| ≥ 1

bd
| |an−1|
bdn−2−1 − β|;

the second equality holds because d is even, and the inequality holds because β > 1 and so for

all x > 0, we have

|xd −B| = |x− β| · |xd−1 + xd−2β + ...+ xβd−2 + βd−1| ≥ |x− β| · |βd−1| > |x− β|.

So if n ∈ N satisfies

|fnc (0)| < 1

b
15
16
dn−1+ 1

16
d
,

then we have

|p
q
− β| = | |an−1|

bdn−2−1 − β| < bd|fnc (0)| ≤ 1

b
15
16
dn−1− 15

16
d

=
1

(bdn−2−1)
15
16
d

=
1

q
15
16
d
.

Lemma 4.3.3. Suppose that q1 ≥ bd
6−1. Then for all d ≥ 4, q1 satisfies the bounds
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q1 > c93,

q1 > (2
1
17 c1)

22,

where these constants are determined with B = |a|bd−1.

Proof. Recall that we chose

c1 = (24d
2+2Bd+ 1

d )1+α

and

c3 = (26d
2+3B2d)1+α.

Since c3 < c21, we need only show that q1 satisfies the second bound. Since |c| = |a|
b < 2, we

have B = |a|bd−1 < 2bd. Therefore we have

c1 ≤ (24d
2+22d+

1
d bd

2+1)
d
2
+ 1

2d

= 22d
3+ 1

2
d2+3d+1+ 1

d
+ 1

2d2 b
1
2
d3+d+ 1

2d ,

and so
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(2
1
17 c1)

22 ≤ 244d
3+11d2+66d+22+ 22

17
+ 22
d
+ 11
d2 b11d

3+22d+ 11
d .

Since b ≥ 2, it suffices to show that

q1 ≥ b55d
3+11d2+88d+23+ 33

d
+ 11
d2 .

But by assumption, q1 ≥ bd
6−1, and

d6 − 1 ≥ 55d3 + 11d2 + 88d+ 23 +
33

d
+

11

d2

for all d ≥ 4, so the lemma is proved.

Finally, we note that if n < m is such that

|fnc (0)| < 1

b
15
16
dn−1+ 1

16
d
.

and

|fmc (0)| < 1

b
15
16
dm−1+ 1

16
d
.

then we cannot have m = n+ 1, since for all ε < 1/2,
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fc(ε) = εd + c > |c| − 1

2
>

1

2
.

Therefore if q1 = bd
n−2−1 and q2 = bd

m−2−1, we have

log q2
log q1

≥ dn+2 − 1

dn − 1
≥ d2 ≥ 16.

We can now see the proof of the Approximation Theorem:

Proof of the Approximation Theorem. Suppose towards contradiction that we have n2 > n1 ≥ 8

such that

|fnic (0)| < 1

b
15
16
dni−1+ 1

16
d
.

By the above, we have n2 > n1 + 1. So for i = 1, 2, we let

pi
qi

:=
|ani−1|
bd
ni−2−1 ;

so that by Lemma 4, piqi satisfy the first three inequalities of Theorem 4.3.1. Therefore Theorem

4.3.1 implies that for at least one of i = 1, 2 we have

|pi
qi
− β| > 1

q
15
16
d

i

.

But by lemma 3, we also have
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|pi
qi
− β| < 1

q
15
16
d

i

,

which is a contradiction.

4.4 Bounding the maximal element of the Zsigmondy set

Theorem 3.2.1 guarantees a maximal element of 2 in the Zsigmondy set except in the possibly

recurrent case of d even and c ∈ (−2
1
d−1 ,−1). However, it is possible regardless of choice of c to

use effective Diophantine approximation to bound the maximal element of the Zsigmondy set.

In this section, we prove:

Theorem 4.4.1. Let fc(z) = zd + c with d ≥ 2 and c ∈ Q so that the critical orbit is infinite.

Then there exists an effectively computable bound M(c) such that n ∈ Z(fc)⇒ n ≤M(c).

Theorem 4.4.1 follows from an improvement of Schinzel’s result (21) on approximation of

quadratic irrationals due to Bennett and Bugeaud (11):

Theorem 4.4.2. [Theorem 1.2 of (11)] Let ||x|| denote the distance from x to the nearest

integer. For every integer b ≥ 2 and every quadratic real number ξ, there exist positive effectively

computable constants ε(ξ, b) and τ(ξ, b) such that for all n ≥ 1,

||bnξ|| > ε(ξ, b)

b−(1−τ(ξ,b))n
.
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Proof of Theorem 4.4.1. We may by Theorem 3.2.1 simplify our argument by assuming c =

a
b ∈ (−2

1
d−1 ,−1) and d even, so write c = −ξ2, choosing positive square root ξ. For notational

convenience, we denote the constants of Theorem 4.4.2 by ε and τ respectively, so that for all

n ≥ 1, we have

||bnξ|| > ε

b−(1−τ))n
.

Then for any n ≥ 1, we have the following lower bound for |fnc (0)|:

|fnc (0)| >

∣∣∣∣∣
(
|an−1|
bdn−2

) d
2

− ξ

∣∣∣∣∣
= b−

1
2
dn−1

∣∣∣|an−1| − ξb− 1
2
dn−1

∣∣∣
≥ b−

1
2
dn−1 ||ξb

1
2
dn−1 ||

≥ b−
1
2
dn−1 ε

b
1
2
(1−τ)dn−1

=
ε

bd
n−1− τ

2
dn−1

Suppose now that n /∈ Z(fc), so that by inequality (2.1) and Lemma 3.3.3, we have

d log |fnc (0)|+ dn log b ≤ sd(n) log b+ dω(n) log |c|,

where as before sd(n) :=
∑

q d
n
q and ω(n) :=

∑
q 1 are sums over the distinct prime factors

q of n. Our lower bound on |fnc (0)| then implies
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log ε+
τ

2
dn−1 log b ≤ 1

d
sd(n) log b+ ω(n) log |c|,

so

(
τ

2
dn−1 − 1

d
sd(n)) log b ≤ log

1

ε
+ ω(n) log |c|.

Since τ is a constant, the left-hand side growth will be exponential in n for n sufficiently large,

while the right-hand side is O(log n). Thus for n ≥ M(c) for some sufficiently large M(c), we

have a contradiction. Further, since τ and ε are effectively computable, M(c) is as well.

Remark 4.4.3. The existence of the constant τ is a consequence of an effective linear forms in

logarithms bound and is not computed in (11), but has a complicated dependence on ξ. Working

through the proof of Bennett and Bugeaud’s theorem, τ can be seen to be generally too small for

a useful effective bound on the maximal element of the Zsigmondy set; in fact, it is on the order

of the reciprocal of the logarithm of the fundamental unit of Q(
√
c), so M(c) is comparable to

the logarithm of the regulator of Q(
√
c) plus a constant which is large for dynamical purposes.

For example, for f− 3
2
(z) = z2 − 3

2 (the minimal height recurrent example) the process gives a

value of M(c) close to 80, and computationally checking primitive divisors for 80 iterates is an

infeasible task.



CHAPTER 5

CRITICAL RECURRENCE AND THE GENERALIZED MANDELBROT

SET

5.1 Introduction

In Chapter 3 we showed that if c 6∈ (−2
1
d−1 ,−1), then there is a norm-based obstruction

to critical orbit recurrence, and so M(c) is quite small. This is a coarse statement of a more

subtle dynamical phenomenon: namely, if c is a parameter which is not close (as a complex

number) to any parameter cn with a period n critical orbit, then fnc (0) cannot be close to 0. In

this chapter, we provide a bound on critical recurrence of zd + c, which we use to bound M(c)

for those c ∈ Q which are not too close to centers of hyperbolic components of the Mandelbrot

set.

The Mandelbrot setM is the set of parameters c such that the critical orbit of fc(z) =

z2 + c remains bounded under iteration. We generalize this definition for any d ≥ 2, and

define the d-Mandelbrot setMd to be the set of complex parameters c such that the critical

orbit of fc(z) = zd + c remains bounded under iteration. By induction, if |c| > 2
1
d−1 , then

|fnc (0)| ≥ |c|(|c|d−1 − 1)n →∞, and so

Lemma 5.1.1. Suppose |c| > 2
1
d−1 . Then c 6∈ Md.
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We note the following facts on the multibrot set, which can be found in (22) and (23). If a

point z has exact period n, we say the multiplier of the periodic cycle is (fnc )′(z), and that the

cycle is attracting if the multiplier has modulus less than 1. Since any attracting basin must

contain a critical point, if c is a parameter so that fc(z) = zd + c has an attracting cycle, then

c ∈Md. A parameter c is hyperbolic if fc(z) = zd + c has an attracting cycle. The connected

components of the set of hyperbolic parameters are known to be open connected components

of the interior of the d-Mandelbrot set, and each of these hyperbolic components has a

unique period n and center cn so that fc(z) = zd + cn has critical orbit of exact period n.

Given a hyperbolic component H of period n, we define the multiplier map ρ : H → D which

sends a parameter c to the multiplier of the unique attracting cycle. The multiplier map is a

proper, holomorphic map of degree d − 1 from H to the unit disk, and so by the maximum-

modulus principle, for any hyperbolic component H and any r < 1, {c ∈ H : |ρ(c)| < r} is

simply connected. Therefore, the maximum-modulus principle yields the following preliminary

proposition:

Proposition 5.1.2. Fix a degree d ≥ 2, a period n, and r < 1. Let Dn,r := {c ∈ C : fc(z) =

zd + c has an attracting cycle of exact period n and multiplier |ρ(c)| < r}. Then C \Dn,r is a

domain.

In this chapter, our goal is to achieve a Zsigmondy result for values of c that are not close

to hyperbolic centers of the d-Mandelbrot set, by bounding the recurrence of the critical orbit.
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5.2 Bounds on critical recurrence

Our goal in this section is to understand critical recurrence in terms of the d-Mandelbrot

set. In particular, we find a lower bound for |fnc (0)| in terms of the distance from c to a center

of a hyperbolic component of period k | n that depends on the multiplier r = ρ(c).

Theorem 5.2.1. Fix d ≥ 2 and n ≥ 1 and 0 < r < 1
4d−1 , and define Dn,r as above. Then for

all c ∈ C \ (
⋃
k|nDk,r), we have

|fnc (0)| ≥ r · 1

d2n+2
.

Proof. Throughout we write fc(z) = zd + c. Choose a radius R sufficiently large so that

|fnc (0)| � 1 for all |c| ≥ R, and consider the set

D(n) = D(0, R) ∩ (C \
⋃
k|n

Dk,r).

By Proposition 5.1.2, since each Dk,r is disjoint, this is a domain in C which contains no c with

fnc (0) = 0, and so we can apply the maximum-modulus principle to the reciprocal of fnc (0)

as a function of c on this domain, and we see that the minimum value of |fnc (0)| must be ob-

tained on the boundary of D(n). By our choice of R, this minimum is in fact obtained on the

boundary of some Dk,r; i.e. |fnc (0)| as a function of c is bounded below on D(n) by the value

of |fnc (0)| when c is chosen such that 0 lies in an attracting basin of a point a with period k di-

viding n, with multiplier of modulus r. Thus it suffices to provide a bound for these boundary c.
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Suppose c is a parameter such that 0 is in the basin of attraction of a point a of exact

period n and multiplier r, and denote the immediate basin of attraction of a by V . Since fc(z)

is a polynomial, the basin V is simply connected, so by uniformization we have a conformal

isomorphism φ : D→ V . Choose coordinates so that φ(0) = 0, and so that the fixed point s of

g(z) := φ−1 ◦ fnc ◦ φ is a positive real number. Note that fnc (z) is a proper map on V and has

well-defined degree. By the chain rule, 0 is the only critical point of fnc (z) which lies inside of V ,

and it has ramification index d. Therefore, since V is simply connected, the Riemann-Hurwitz

formula implies that fnc is a degree d self-map of V . So g(z) is a proper, holomorphic, degree d

map of the unit disk to itself. Therefore g is a Blaschke product. In fact, g can be made more

explicit:

Lemma 5.2.2. Let s be the unique fixed point of g, and write β := s−sd
1−sd+1 and h(z) := β+zd

1+βzd
.

Then there exists |θ| = 1 such that

g = αs ◦Rθ ◦ αs ◦ h

on D, where Rθ is the rotation z 7→ eiθz, and αs := z−s
sz−1 .

Proof. By (24), since g and h are Blaschke products with the same critical set with multiplicity,

there exists some disk automorphism τ with g = τ ◦ h. Since both g and h fix the point s (the
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latter by definition of β), τ fixes s as well, and so α−1s ◦ τ ◦ αs is a disk automorphism fixing 0;

i.e., a rotation by some |θ| = 1. Since α−1s = αs by definition, we have

τ = αs ◦Rθ ◦ αs,

as desired.

We will prove Theorem 5.2.1 by bounding the recurrence of the Blaschke product g - which

we know is quite explicit - then utilizing a double application of de Branges’ famous theorem,

which controls the distorting effects of the uniformization map φ. In order to use de Branges’

theorem, we normalize φ, by defining ψ : D→ C to be

ψ(z) =
φ(z)

φ′(0)
.

We will bound the following quantity:

|a|
|fnc (0)|

· |g(0)|
|s|

=
|φ(s)|
|s|

· |g(0)|
|φ(g(0))|

=
|ψ(s)|
|s|

· |g(0)|
|ψ(g(0))|

(5.1)

with the deep theorem of de Branges (see (25) or the excellent expository article (26)):
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Theorem 5.2.3. [de Branges] Suppose ψ(w) : D → C is one-to-one, with ψ(0) = 0 and

ψ′(0) = 1. Then the coefficients of the power series expansion

ψ(w) = z + a2z
2 + a3z

3 + ...

satisfy |an| ≤ n for all n ≥ 2.

As a consequence of de Branges’ theorem, we have:

Corollary 5.2.4.

|ψ(s)|
|s|

· |g(0)|
|ψ(g(0))|

≤ (1− |g(0)|)2

(1− s)2
.

Proof. Considering the power series expansion of ψ, we have

|ψ(g(0))|
|g(0)|

≥ 1−
∑
n≥2
|an||g(0)|n−1 ≥ 1−

∑
n≥2

n|g(0)|n−1 =
1

(1− |g(0)|)2
.

On the other hand,

|ψ(s)|
|s|

≤
∑
n≥1
|an|sn−1 ≤

∑
n≥1

nsn−1 =
1

(1− s)2
,

and combining the two inequalities completes the proof of the corollary.

By the chain rule, we have

r = |(fnc )′(a)| = dn
∏

0≤k<n
|fkc (a)|.



70

Since 0 is in the basin of attraction of a, c lies in the d-Mandelbrot set and thus has modulus at

most 2
1
d−1 . Consequently, |z| > 2

1
d−1 ⇒ |fc(z)| = |z| · |zd−1 + c

z | > |z|, and so since a is periodic,

each iterate of a has modulus bounded above by 2
1
d−1 . So we conclude that

|a| ≥ r · 1

dn2
n−1
d−1

≥ r

d2n−1
.

Combining this bound with the inequality (5.1) and Corollary 5.2.4 yields

|fnc (0)| ≥ r

d2n−1
· (1− s)2

(1− |g(0)|)2
· |g(0)|

s
. (5.2)

To complete the proof, we must bound the right hand term below, done in the following lemma:

Lemma 5.2.5. Suppose r < 1
4d−1 . Then

(1− s)2

(1− |g(0)|)2
· |g(0)|

s
≥ 1

8

Proof. A straightforward derivative computation yields

r =
dsd−1(1− s2)

1− s2d
> sd−1,

so our assumption r < 1
4d−1 yields s < 1

4 . Similarly, we can compute

g(0) = αs(e
iθs2 · s

d + sd−1 − s2 − 1

sd + s2 − s− 1
).
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For any y ∈ D with s2y ∈ D, we have

|αs(s2y)| = |s
2y − s|
|s3y − 1|

≥ s · 1− |sy|
1 + |s3y|

.

Since d ≥ 2 and s < 1
4 , we have | sd+sd−1−s2−1

sd+s2−s−1 | < 2, and so letting

y = eiθ
sd + sd−1 − s2 − 1

sd + s2 − s− 1
,

we have

|g(0)|
s
≥ 1− s|y|

1 + s3|y|
≥ 1− 2s

1 + 2s3
≥ 1

4
,

where the last inequality holds because s > 1
4 .

As a consequence, we also have

(1− s)2

(1− |g(0)|)2
≥ (1− s)2

(1− s
4)2
≥ 1

2
,

and the proof of the lemma is complete.

The Lemma together with estimate 5.2 complete the proof of Theorem 5.2.1.

5.3 Critical recurrence and Zsigmondy results

Having bounded the critical recurrence for those c away from centers of hyperbolic compo-

nents, we achieve a tight Zsigmondy bound for these c:
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Theorem 5.3.1. Define D(n, rn) as above with rn = min{ 1
4d−1 ,

1

2d
n−2 }. Write

D := C−
⋃
n∈N

D(n, rn).

Then for all c = a
b ∈ D, we can take M(c) = 3.

We note that the choice of rn = 1

2dn−2 in the theorem is on the order of the minimal value

to achieve the tightest possible Zsigmondy result.

Proof of Theorem 5.3.1. Define D(n) as above for each n with ρn = 1

2dn−2 , and write

S := C−
⋃
n∈N

D(n).

Theorem 5.3.1 is shown for non-recurrent c in Chapter 3, so suppose that c = a
b ∈ S ∩

(−2
1
d−1 ,−1). Then if an fails to have a primitive prime divisor for n ≥ 3, we have (as shown in

preceding sections)

d log |fnc (0)|+ dn log b ≤ dω(n) log 2 +
∑
q|n

d
n
q log b,

where the sum is taken over distinct primes q dividing n, and ω(n) is the number of distinct

primes dividing n. Write sd(n) =
∑

q|n d
n
q . Then |c| < 2 and the lower bound for |fnc (0)|

obtained above yields

(dn − sd(n)) log b < (dω(n) log 2 + d(2n+ 2) log d+ dn−1 log 2.



73

Since b ≥ 2, this is false for all n ≥ 4 if d ≥ 4. If d = 2, this fails for all n ≥ 7, and if b ≥ 6,

for all n ≥ 4. It remains to check a finite number of cases to complete the proof, which is done

in Appendix A.

5.4 Search for elements of Zsigmondy sets

We conclude this chapter with a remark that the proof of Theorem 5.3.1 makes it clear

where to look for possible values of c ∈ Q with elements of their Zsigmondy set greater than 3.

In particular, these c must be very good rational approximations of the centers of hyperbolic

components; more precisely, they must be convergents to some hyperbolic center. This explains

why, for example, we have 3 ∈ Z(f− 7
4
) for d = 2; the hyperbolic center is the non-zero real root

of

f3c (0) = (c2 + c)2 + c = 0.

This value of c is approximately -1.7549, and has −7
4 as a convergent of small height.

It is generally unclear whether another sufficiently good convergent of a hyperbolic center

exists, and computation is difficult, since the heights of the elements in the forward orbit grow

exponentially. However, some computation is possible for small values of n and d. Mathematica

and SAGE were used to check that for the n and d in the table below, the first 50 convergents

of the centers of hyperbolic components do not provide parameters c with n ∈ Z(fc), and so

3 is still the largest known element of any Zsigmondy set for zd + c with c ∈ Q (recall from

Remark 4.1.2 that we need not check d = 2, n = 3, since c = −7
4 is known to be the only
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convergent with 3 ∈ Z(fc) in this case).

d n number of real hyperbolic centers

2 4 2

2 5 3

2 6 5

2 7 9

4 3 1

4 4 2

6 3 1

6 4 2

8 3 1

10 3 1
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Appendix A

APPENDIX A

In this Appendix, we list the necessary computations to finish the proof of Theorem 5.3.1.

Recall that n ∈ Z(fc) implies

(dn − sd(n)) log b < (dω(n) log 2 + d(2n+ 2) log d+ dn−1 log 2,

which is false for d ≥ 4 and n ≥ 4. In the d = 2 case, we rearrange the above inequality and

take exp:

b < 2
2ω(n)+4n+4+2n−1

2n−s2(n) .

As noted above, if n ≥ 7, this fails for all b ≥ 2; for n = 5, 6 it fails for b ≥ 3, and for n = 4,

fails for b ≥ 6. Therefore it remains to show that fnc (0) has a primitive prime divisor for n = 4

for c with denominator at most 5, and the same for n = 5, 6 for c = −3
2 . We do this in Table I

below; the primitive prime divisors are marked in bold font.
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Appendix A (Continued)

TABLE I

c a1 a2 a3 a4 a5 a6

−3/2 3 3 3·5 3· 53 3 · 101 · 241 3 · 5 · 74006161

c a1 a2 a3 a4

−4/3 22 22 22 · 23 22 · 71
−5/3 5 2 · 5 5 · 7 2 · 5 · 971
−5/4 5 5 5 · 59 5 · 1021
−7/4 7 3 · 7 7 3 · 7 · 53 · 103
−6/5 2 · 3 2 · 3 2 · 3 · 7 · 17 2 · 3 · 6841
−7/5 7 2 · 7 7 · 97 2 · 7 · 6131
−8/5 23 23 · 3 23 · 53 23 · 3 · 13 · 1427
−9/5 32 22 · 32 32 · 19 22 · 32 · 18719
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