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SUMMARY

The focus of this work is to approach the question of the classification of semi-simple al-

gebraic groups over perfect fields from the perspective of I. Satake’s published lecture notes

on the subject. This work will not cover every aspect of the classification, but will focus on

groups with split tori. We will work through detailed examples of K/k-forms and the corre-

spondence between the A2 Dynkin diagram and the algebraic group SL(3,Q). If not specified,

all definitions are from (1).

v



CHAPTER 1

INTRODUCTION

1.0.1 Notation

k denotes a field.

k0 will denote the prime field of k, that is the subfield of k generated by the multiplicative

identity 1. For example Q0 = Q.

K/k denotes a field extension K over k.

⌦ denotes a universal domain, that is a “su�ciently large” algebraically closed field with

k ✓ K ✓ ⌦, for some given base field k and an extension K/k.

char k denotes the characteristic of a field k.

ksep denotes the separable closure of k.

kinsep denotes the inseparable closure of k.

A

n

k

denotes a�ne n-space over k, as a set An

k

= {(x1, · · · , xn)|xi 2 k for 1  i  n}

The Galois group of K/k is denoted Gal(K/k).

k[x1, · · · , xn] will denote the polynomial ring in n variables with coe�cients in k.

k(x1, · · · , xn) denotes the field of fractions of k[x1, · · · , xn].

The characteristic exponent of a field k is defined to be 1 if char k = 0 and p if char k = p > 0.

If G is a group and H is a subgroup then N
G

(H) denotes the normalizer of H in G, i.e.,

N
G

(H) = {g 2 G | gH = Hg}.

1
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If G is a group and H is a subgroup then Z
G

(H) denotes the centralizer of H in G, i.e.,

Z
G

(H) = {g 2 G | gh = hg, 8h 2 H}.

The group of non-singular linear transformations of a vector space V will be denoted by

GL(V ), this will be referred to as the general linear group of V .

The group of n by n invertable matrices with coe�cients in k will be denoted by GL(n, k).

TR(n) will denote the group of upper triangular matrices.

1.1 Algebraic Geometry/Groups

1.1.1 First Definitions

Definition 1. A ✓ A

n

k

is called a closed algebraic set if there is a subset I ✓ k[x1, · · · , xn] so

that

A = V (I) = {x 2 A

n

k

|f(x) = 0, 8f 2 I} .

This is also called the vanishing set of I, and we denote this as above by V (I). If A is an closed

algebraic set then we denote the ideal generated by polynomials vanishing on A as

I (A) = {f 2 k[x1, · · · , xn]|f(x) = 0, 8x 2 A} .

Hilbert’s Basis Theorem implies that every ideal of R[x] is finitely generated and hence the

vanishing set of an infinite collection of polynomials can be defined instead by a finite collection

of polynomials. More precisely,

Theorem 2. (Hilbert’s Basis Theorem)(2)

If R is a commutative Noetherian ring, then the polynomial ring R[x] is also Noetherian.
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1.1.2 Topology

Definition 3. An algebraic set A ✓ A

n

⌦ is k�closed if A is the set of zeros of some collection

of polynomials with coe�cients in k, i.e, A = V ({f1, · · · , f
k

}) such that f
i

2 k[x1, · · · , xn] for

1  i  k.

An algebraic set A is defined over k if I (A) has a basis of polynomials with coe�cients in

k, that is I(A) = (f1, · · · , f
k

) with f
i

2 k[x1, · · · , xn] for 1  i  k. If A is defined over k, then

we call k a field of definition for A.

Example 4. Consider Q � A = {�1, 0, 1}. We have that A = V (x(x+ 1)(x� 1)) and

I (A) = (x, x+ 1, x� 1). Thus, A is Q�closed and defined over Q.

Let A ⇢ A

n

k

. Note that if I (A) = (f1, · · · , f
k

) then A ✓ V (f1f2 · · · f
k

). However each

f
i

2 k[x1, · · · , xn] so the product is as well. This shows that if A is defined over k then A is

k�closed. The converse is not true in general.

Example 5. Consider the field F2(t), that is, the fraction field of the finite field with two

elements adjoin a single transcendental element t. Note that A :=
�

t1/2
 

= V

�

x2 � t
�

and is

thus F2(t)�closed, however I (A) = (x� t1/2) which is not defined over F2(t).

Proposition 6. The k�closed algebraic sets induce a topology on A

n

⌦.

Proof. Clearly, V (0) = A

n

⌦ and V (1) = ?. Now, given k�closed algebraic sets A,B ✓ A

n

⌦ so

that

A = V ({f1, · · · , fm}) and B = V ({g1, · · · , g
l

})
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we have that

A [B = V ({f
i

g
j

|1  i  n, 1  j  l}) ,

and

A \B = V ({f
i

|1  i  n} [ {g
j

|1  j  l}) .

We may easily construct am infinite union of closed sets which is not closed as follows.

Let i 2 N, A
i

= {i} ✓ C. Then

N =
[

N

A
i

= V

 

Y

N

(x� i)

!

But
Q

N

(x� i) does not have finite degree and is thus not a polynomial.

We call this topology the Zariski k-topology. In the case where k = ⌦ we will simply refer to

it as the Zariski topology. Often we will call the open and closed sets in this topology as k-open

and k�closed. Of particular importance are the k-closed algebraic sets which are irreducible.

Definition 7. Let A/k be a closed algebraic set. The set A is irreducible if A = A1 [ A2 for

non-empty algebraic sets A1, A2 implies that A = A1 or A = A2. We call A an algebraic variety.

We may also show that is A is irreducible if and only if I (A) is prime.

Remark. It is a general fact of point-set topology that an irreducible set is also connected.

It should be noted that these topologies are not Hausdor↵. As an example, consider C with

the Zariski topology. Every polynomial has a finite number of roots in C, and in particular we
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note that the closed sets in this case are ?,C, or finite sets in C. In particular this is exactly

the co-finite topology on C which is not Hausdor↵.

The following example is a useful summary of the concepts discussed so far.

Example 8. Consider Q ⇢ Q[
p
2] ⇢ Q. Let i =

p
�1, A = {1} , B =

�

1,
p
2
 

, and C =

�

1,
p
2, i
 

.

• Let A = V (x� 1), then A is Q�closed, Q[
p
2]�closed, and trivially Q�closed. Since Q

is perfect, A is defined over each of these fields as well. Furthermore, A is a closed set in

each of the associated topologies.

• Let B = V

�

(x�
p
2)(x� 1)

�

. However, (x �
p
2)(x � 1) = x2 � (1 +

p
2)x +

p
2 62 Q[x]

and thus B is not Q�closed. However, B is clearly closed over Q[
p
2] and Q.

• Let C = V

�

(x� 1)(x�
p
2)(x� i)

�

. (x � 1)(x �
p
2)(x � i) 62 Q[x] or Q[

p
2][x] so C is

not closed in either of the associated topologies.

1.1.3 Maps

Definition 9. Let A be an algebraic set in A

n

⌦. A polynomial function on A defined over ⌦ is

a polynomial in ⌦[x] restricted to A. A rational function on A defined over ⌦ is the restriction

to A of a function defined by a rational quotient f/g in ⌦(x) with g not identically 0 on each

irreducible component of A. Furthermore, we may define a polynomial/rational function on

A defined over for any k ⇢ ⌦ in a similar manner, but with the extra condition that the

polynomials have coe�cients in k.
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Definition 10. Let A ✓ A

n

⌦ be algebraic. For any subfield k ✓ ⌦ we denote the ring of

polynomial functions on A defined over k by k[A], and denote the ring of rational functions on

A defined over k by k(A) . In the case where k = ⌦ we will simply drop “defined over k.” In

particular we have a canonical identification of ⌦[A] ⇠= ⌦[X]/I (A) we call this the coordinate

ring of A.

As noted earlier, if A is irreducible then I (A) is prime so ⌦[A] is an integral domain. In

this case ⌦(A) is the field of fractions of ⌦[A].

Definition 11. Let A,B be closed sets in A

n

⌦ and A

m

⌦ , respectively. A polynomial map � :

A ! B is a mapping defined by � = (�1, · · · ,�m), �
i

2 ⌦[A] 1  i  m. We say that � is

defined over k if �
i

2 k[A] for 1  i  m and we denote this by �/k. Analogously, let A,B be

closed sets in A

n

⌦ and A

m

⌦ , respectively. A rational map � : A ! B is a mapping defined by

� = (�1, · · · ,�m), �
i

2 ⌦(A) 1  i  m. If each �
i

is represented by f
i

/g
i

2 ⌦(A) and x 2 A

satisfies g
i

(x) 6= 0 for 1  i  m then we say that � is defined at x, and

�(x) = (�1(x), · · · ,�m(x)) =

✓

f
i

(x)

g
i

(x)
, · · · , fm(x)

g
m

(x)

◆

2 B

We say that � is defined over k if �
i

2 k(A) for 1  i  m and we denote this by �/k.

Definition 12. Let A ✓ A

n

⌦ be an algebraic set. Define A
k

= A \ A

n

k

, which we call the

k-rational points of A.

1.1.4 A�ne algebraic groups

Definition 13. G is called an a�ne algebraic group if
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• G supports a group structure.

• G is an algebraic set in A

n

⌦.

• The mapping � : G⇥G ! G defined by (x, y) 7! x�1y is a polynomial map.

Remark. The previous bullet is equivalent to asking that the map which defines the

group operation and the map g 7! g�1 for g 2 G are both polynomial maps.

We say G is defined over k if G is defined over k as an algebraic set and �/k. This will be

denoted as as G/k.

Example 14. We will work through a more involved example momentarily, but for now we

consider

1) G

a

, by which we denote the additive group of a field k. Note that G
a

= V (0) .

2) G

m

; by which we denote the multiplicative group of a field k. The algebraic set structure

is given by V (xy � 1) which identifies G
m

as an algebraic set in A

2
k

.

1.1.5 Maps and subgroups

We now may define the algebraic group analogue of rational maps for algebraic sets. Un-

surprisingly;

Definition 15. Let G,G0 be algebraic groups. A map � : G ! G0 is called a rational homo-

morphism defined over k if � is both a group homomorphism and a rational map defined over

k. We may also use the term k�homomorphism. If � is a bijective rational k�homomorphism
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with a rational k�homomorphism as an inverse, then we call � a k�rational isomorphism, and

� an automorphism if G = G0.

If G,G0 are connected then a rational homomorphism � : G ! G0 which has a finite kernel

is called an isogeny.

Note that since a rational homomorphism � : G ! G0 must be defined on all of G it is

actually a polynomial map.

Proposition 16. Assume that N is a normal subgroup of G/k, and N is a closed algebraic

subset also defined over k. Then there exists an algebraic group G defined over k, and a

surjective k�homomorphism ⇡ : G ! G

• ker⇡ = N

• If � : G ! G0 is a k�rational homomorphism with N ⇢ ker�, then there exists a unique

k�homomorphism � : G ! G0 so that the following diagram commutes.

G
�

//

⇡

��

G0

G

�

??

We denote G by G/N and call it the quotient group of G by N .

The upshot is that we are justified in our use of “the quotient group” G/N since this group

is unique up to k�isomorphism. Additionally, one can show that k(G/N) is the subfield of

k(G) consisting of all N�invariant functions. That is to say, the subfield of functions  2 k(G)
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so that  (ax) =  (x) for all a 2 N and x 2 G. Furthermore, G/N is entirely characterized by

this property.

1.1.6 Linear algebraic groups

Assume that V is a vector space of dimension n defined over k. If we take a basis {e1, · · · , en}

of V , then there is an isomorphism ⇢ : GL(V ) ! GL(n, k), with respect to the basis, given by

⇢(T ) =

2

6

6

6

6

6

6

4

...
�

�

...
�

�

...

T (e1)
�

� · · ·
�

� T (e
n

)

...
�

�

...
�

�

...

3

7

7

7

7

7

7

5

.

Namely, we apply T to each basis element {e1, · · · , en} ⇢ V and write the images as column

vectors. The resulting matrix ⇢(T ) then gives us an identification of T with an element of

GL(n, k). Since we may take a di↵erent basis for V we note that this identification is only

unique up to an inner automorphism given by the change of basis matrix.

Definition 17. A subgroup G ✓ GL(V ) is a linear algebraic group defined over k if, under the

isomorphism described above, we have that ⇢(G) is an a�ne algebraic group defined over k.

To clarify, this definition says if we have a subgroup G ✓ GL(V ) which, after a choice of

a basis for V , is isomorphic to an a�ne algebraic group in A

n

k

, then G is a linear algebraic

group. That is, for some n 2 N and some field k we can find some embedding for every linear

algebraic group into GL(n, k). The next theorem grants us that the two notions of a�ne and

linear algebraic groups are essentially equivalent.
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Theorem 18. Any a�ne algebraic group may be realized as an algebraic subgroup of of some

GL(V ), and as such it is a linear algebraic group.

1.1.7 A Little Representation Theory

Definition 19. Let G be a group and V be a vector space. A representation of G in V is a

map � taking

G 3 g 7! �(g) : V ! V,

That is, � : G ! GL(V ) so that �(g1g2) = �(g1)�(g2).

Alternatively, given a group G and a vector space V defined over k we may consider a

representation of G to be a map ⇢ : G⇥ V ! V so that:

• for all g 2 G the map ⇢(g) : V ! V defined by v 7! ⇢(g, v) is linear over k;

• ⇢(id
G

, v) = v for all v 2 V ; and,

• if g1, g2 2 G then for any v 2 V we have ⇢(g1, ⇢(g2, v)) = ⇢(g1g2, v)

Definition 20. M be a commutative group and G be a group. Then M is a left G�module if

there is a left group action ⇢ : G⇥M ! M so that if a, b 2 M, g 2 G then

g · (a+ b) = ⇢(g, a+ b) = ⇢(g, a) + ⇢(g, b) = g · a+ g · b

using the notational convention ⇢(g, x) = g · x.
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Caution: The previous nomenclature unfortunately clashes with that of R�modules where

R is a ring. In this paper, the only “modules” we are concerned with are 1) Z modules as ring-

modules and 2) ��modules as defined above, where � is some Galois group.

1.1.8 Tori

Definition 21. An algebraic groupG is called a torus if, for some n, there exists an isomorphism

� : G ! (G
m

)n. We call G either k�trivial or split over k if G is defined over k and � is defined

over k.

Definition 22. Let T be a torus defined over k. A character of T is a homomorphism � : T !

G

m

. Note that the set of characters forms a commutative group under pointwise multiplication.

Henceforth, T will denote a torus and X(T ) will be the group of characters of T if we wish

to specify the torus. In practice we will abbreviate X(T ) to X if the context allows. In following

with tradition we will use additive notation for the character group i.e. (�1+�2)(t) = �1(t)�2(t)

for �1,�2 2 X(T ), t 2 T . This makes it clear that X(T ) is a Z-module, since X(T ) is a

commutative group under this operation.



12

Example 23. The group of diagonal matrices D(n) ✓ GL(n, k) is a torus isomorphic to G

n

m

in

⌦n+1 with D(n) an algebraic set defined by V ((x1x2 · · ·xny � 1)). Thus D(n) is defined over

k0 as an algebraic group and the isomorphism � : D(n) ! (G
m

)n which is given by

�

0

B

B

B

B

B

B

B

B

B

B

@

a1 0 · · · 0

0 a2 · · ·
...

...
. . .

...
...

0 0 · · · a
n

1

C

C

C

C

C

C

C

C

C

C

A

= (a1, a2, · · · , an)

If we consider D(n) as a subset of An

2

k

then the map � is is also defined over k0. Therefore,

by definition D(n) splits over the prime field k0.

Now assume that T ⇠= (G
m

)n. We have n canonical characters �
i

of T defined as “pro-

jections”, that is if x = (x1, · · ·xn) 2 T then �
i

(x) = x
i

. Let I = (x1, · · · , xn, y). Under the

identification ⌦[T ] = ⌦[x1, · · · , xn, y]/I, the character �
i

is identified with x
i

(mod I), and the

function (
Q

n

i=1 �i

)�1 is identified with y (mod I). These identifications give us the following

three facts:

1) ⌦[T ] = ⌦[�±1
1 , · · · ,�±1

n

]

2) ⌦(T ) = ⌦(�1, · · · ,�n

) is a purely transcendental extension of ⌦.

3) X is the subset of monomials �m1
1 · · ·�mn

n

in ⌦[T ] with m
i

2 Z.

This last fact shows that as Z-module, X ⇠= Z

n.

From this proposition we see that if � = Gal(⌦/k), then we have an action of � on X by

applying � 2 � to the coe�cients of the elements of X. Since each � 2 � is in particular
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an isomorphism of ⌦ we have that (a + b)� = (a)� + (b)�. Therefore, X is a ��module by

definition.

Example 24. Let

M =

8

>

>

<

>

>

:

0

B

B

@

a b

�b a

1

C

C

A

|a, b 2 R, a2 + b2 6= 0

9

>

>

=

>

>

;

.

It can easily be shown that M is a torus defined over R and there exist two maps f
i

: M !

C

⇤, i 2 {1, 2} defined by f1(m) = a+ bi, f2(m) = a� bi for m 2 M . Clearly f1, f2 are elements

of X(T ). Now let � = GalC/R. We know that � ⇠= Z/2Z and the only non-trivial action is

complex conjugation. Over C complex conjugation is not given by a polynomial, but over R we

can realize it as a polynomial defined by �(a, b,�b, a) = (a,�b, ba). As such, � takes a+ bi to

a� bi.

Now assume that X is a ��module and the group of characters of T . Analogous to the

correspondence between sets of points in a�ne space and ideal of polynomials vanishing on

these sets there is a type of duality between certain submodules of X which are torsion-free

and algebraic subgroups of T . Toward establishing this correspondence let T1 ✓ T be a closed

subgroup and define a submodule T?
1 ✓ X as

T?
1 = {� 2 X|�(t) = 1, 8t 2 T1}
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For a submodule X1 ✓ X define a closed subgroup X?
1 ✓ T as

X?
1 = {t 2 T |�(t) = 1, 8� 2 X1}

We then have the following proposition.

Proposition 25. • The maps T1 ! T?
1 and X1 ! X?

1 define reciprocal bijections between

the closed subgroups of T and the set of submodules of X satisfying the condition that

X/X1 has no p-torsion, where p is the characteristic of the prime field. However, if p = 0

there there is no condition on torsion.

• Let T1 ✓ T be a closed subgroup. Then T1 is connected if and only if X/X1 has no torsion,

where X1 = T?
1 . Furthermore, T1 is a torus if and only if it is connected.

• X(T1) = X/X1, X(T/T1) = X1 where X1 = T?
1 and T1 = x?1 .

One may notice at this point that given tori T and T 0 with character modules X,X 0, �0 2 X 0

and a homomorphism � : T ! T 0 we have the diagram

T
�

//

t
�(�0)

  

T 0

�

0
}}

G

m

where we define t� : X 0 ! X by t�(�0) = �0 � �. Note that for any �0
1,�

0
2 2 X 0 we have that

t�((�0
1 + �0

2)) = (�0
1 + �0

2) � � = �0
1 � (�) + �0

2 � (�) = t�(�0
1) +

t�(�0
2)
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Thus, t� is a ��module homomorphism

Conversely, if  : X 0 ! X is a ��module homomorphism, then there exists a rational

homomorphism � : T ! T 0 so that  = t�. Let T = (G
m

)n and T 0 = (G
m

)k. Thus X has a

basis {�1, · · · ,�n

} and X 0 has a basis {�1, · · · ,�
k

}, so there corresponds to  a matrix with

integer coe�cients m
ij

where

 (�0
i

) =
n

X

j=1

m
ij

�
j

, where 1  i  k

� is then defined as the mapping sending (x1, · · · , xn) to the element of in T 0 whose ith coordi-

nate is
Q

n

j=1 x
mij

j

. So � : T ! T 0 is a rational homomorphism and  = t�. We can see now that

this gives us a one-to-one correspondence between homomorphisms of tori and homomorphisms

of their character modules. What remains to be seen is whether or not this correspondence

respects the field of definition of a homomorphism of tori.

Furthermore, one can show:

Proposition 26. Let � : T ! T 0 be a homomorphism, and p the characteristic of the prime

field. Then

• (im�)? = ker(t�) so � is surjective if and only if t� is injective.

• ker� = (im(t�))?, so � is injective if and only if [X : t�(X 0)] is a power of p.

In particular, if dimT = dimT 0 then

The following are equivalent .

• � is an isogeny.
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• � is surjective.

• t� is injective.

• | ker�| < 1.

• | coker t�| < 1.

Furthermore, if � is an isogeny then deg � = [X : t�(X 0)] so that � is an isomorphism if and

only if t� is an isomorphism.

Example 27. As an example let T be a torus defined over F
q

, and � be the Frobenius endo-

morphism, � : F
q

! F

q

given by �(x) = xq. New let � 2 X. We use �� to denote the character

we get by taking qth powers of the coe�cients of �. So then (�(t))(q) = �(t(q)) for t 2 T . Now

�(t) is a scalar so then

(�(t))(q) = (�(t))q = q�(t)

Thus t�(�(q)) = q�. So if � is defined over F
q

then it follows that t�(�) = q�.

Proposition 28. Let k ✓ K. If T is a torus defined over k, then T splits over ksep.

Let k ✓ ⌦, and let ksep be the separable closure of k in ⌦. Let � = Gal(ksep/k), and T be a

torus defined over k. Since there is an isomorphism (defined over ksep)) � : T ! (G
m

)n, t� gives

an isomorphism t� : X((G
m

)n) ! X(T ) = X. Since the canonical characters �
i

are defined

over the prime field, the characters t�(�
i

) are defined over ksep. Thus, X has the structure of

a � module given by letting � 2 � act on � 2 X by operating on the coe�cients. A similar

argument gives the following.
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Proposition 29. Let T be a torus defined over k. The following are equivalent..

• T is k�trivial.

• Every � 2 X is defined over k.

• � operates trivially on X.

Furthermore T will split over any finite Galois extension k ✓ K, and we can replace � =

Gal
k

(ksep) by Gal
k

(K) and the result still holds.

This result and the previously established correspondence between homomorphisms of tori

and homomorphisms of their character modules can be repackaged nicely into the following

proposition.

Proposition 30. • Let T be defined over k. If T1 ✓ T so that T1 corresponds to X1 ✓ X,

then T1 is defined over k if and only if X1 is a �-submodule of X.

• Let T, T 0 be tori defined over k, and � : T ! T 0 be a homomorphism. Then � is defined

over k if and only if t� is a �-homomorphism; in particular, � is a k�isomorphism if and

only if t� is a �-isomorphism.

At this point we have made significant progress to a major theorem, namely;

Theorem 31. There is a one-to-one correspondence between the category of tori defined over

k and the category of finitely generated torsion-free ��modules.

It remains to show that to each ��module X there corresponds a torus T which is unique up

to k�isomorphism and has a character module X(T ) which is isomorphic to X as a �-module.



18

1.1.9 K/k-forms

It is helpful to keep in mind the goal of proving the previous theorem. Otherwise the

concept of K/k-forms seems rather abrupt. In that sense, entirety of this section is essentially

the remainder of the aforementioned proof.

Definition 32. Let k and K be subfields of ⌦. and G1 and algebraic group defined over K. A

pair (G, f) is called a K/k form of G1 if G is an algebraic group defined over k and f : G ! G1

is an isomorphism defined over K. A pair (G, f) is called a k-form of G1 if (G, f) is a K/k-form

of G1 for some extension k ✓ K. We often use the latter terminology in order to suppress the

notation and omit reference to the particular extension K/k.

From now on, we will only consider the case where k is perfect, and k ✓ K is a finite

extension. In this case we note that ksep = k. Also, define � = Gal
k

(k). We begin by

investigating how the elements of � act on K/k-forms. To this end let (G, f) be a K/k-form

of G1, which will be an algebraic group defined over K. So given � 2 �, we have an action

of � on the coe�cients of the polynomial mapping f , we denote this map by f�. Since G is

defined over k and � is an element of Gal
k

(k), � fixes G. Furthermore, f� : G ! G�

1 is a

�(K)�isomorphism. Therefore, � takes a K/k-form (G, f) of G1 to the �(K)/k-form (G, f�)

of G�

1 . Now define �
�

: G1 ! G�

1 by �
�

= f� � f�1. Diagrammatically

G

f

�
  

f

// G1

��

✏✏

G�

1
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Definition 33. We will call the set of maps �
�

generated as � varies in � a system of isomor-

phisms and denote it (�
�

)
�2�.

Note that from the definition we have that

1)

�⌧
�

� �
⌧

= (f� � f�1)⌧ � f ⌧ � f�1 = f�⌧ � f�⌧ � f ⌧ � f�1 = f�⌧ � f�1 = �
�⌧

for �, ⌧ 2 �.

Additionally, f is defined over K, so even though � is infinite,

2) each �
�

depends only on the restriction of � to K.

Since there is a finite such number of such restrictions, we may consider (�
�

)
�2� in a similar

spirit as a finite system.

Conversely, the following result gives that for any system satisfying 1) and 2) there exists a

K/k-form associated to it. We will notate this correspondence by dropping the subscript and

calling (�
�

) the system corresponding to a K/k form (G, f).

Theorem 34. Let G1 be an algebraic group defined over K and {�
�

}
�2� be a system of isomor-

phisms satisfying 1) and 2). There there exists a K/k-form (G, f) of G1 so that �
�

= f� � f�1

for all � 2 �.

we will give a proof of Theorem 34 shortly. In the meantime we continue to investigate

K/k-forms towards the goal of proving Theorem 31.
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Definition 35. Let (G, f) and (G0, f 0) be k-forms of G1. We call (G, f) and (G0, f 0) isomorphic

if there exists an isomorphism ⇢ : G ! G0 which is defined over k.

Note that we have the diagram

G

⇢

✏✏

f

// G1

 

✏✏

G0 f

0
// G1

Since all the maps are isomorphisms which are at worst defined over K we may define an

isomorphism  : G1 ! G1 as  = f 0 �⇢�f�1 which is defined over K. Now let (�
�

) and (�0
�

) be

the systems respectively associated to (G, f) and (G0, f 0). Then letting � act on the previous

equation defining  and some small manipulations we have that

 � = f 0� � ⇢ � f�� = f 0� � f 0�1 � f 0 � ⇢ � f�1 � f � f�� = �0
�

� f 0 � ⇢ � f�1 � ��1
�

= �0
�

�  � ��1
�

Which implies that

3)

�0
�

=  � � �
�

�  �1

This is to say that  /K : G1 ! G1 is such that the inner square of the diagram
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G

⇢

))f

//

f

�

��

G1

�

�

◆◆

 

// G1

�

0�

↵↵

G0f

0
oo

f

0�

~~

G�

1
 

�
// G�

1

is commutative. Thus we define

Definition 36. Let G1/K. Two systems of isomorphisms (�
�

) and (�0
�

) which satisfy con-

dition 1) and 2) as above, are said to be K�equivalent (resp. equivalent) if there exists a

K�automorphism (resp automorphism)  of G1 satisfying condition 3) as described above.

Proposition 37. Let G1/K with K/k-forms (resp k-forms) (G, f) and (G0, f 0). (G, f) and

(G0, f 0) are isomorphic if and only if their corresponding systems are K�equivalent. (resp

equivalent)

Proof. The preceding paragraph proves isomorphic impliesK�equivalence direction. So assume

we have two such K�equivalent systems (�
�

) and (�0
�

) which are equivalent under some  2

Aut
K

(G1). Theorem 34 gives that there must exist K/k-forms (G, f) and (G0, f 0) corresponding

to these systems. Define ⇢ = f 0�1 � � f . Then ⇢� = f 0�� � � � f�. We then have the diagram
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G

⇢

�

HH

⇢

))f

//

f

�

��

G1

�

�

◆◆

 

// G1

�

0�

↵↵

G0f

0
oo

f

0�

~~

G�

1
 

�
// G�

1

which we use to note that

⇢� = f 0�� �  � � f� = f 0�1 � �0�1
�

� �0
�

�  � ��1
�

� �
�

� f = f 0�1 �  � f = ⇢

We conclude that ⇢/k. Thus G ⇠= G0 via a k�isomorphism.

The succinct statement of this result is the following.

Corollary 38. The k�isomorphism classes of K/k-forms of G1/K are in a one to one corre-

spondence with the K�equivalence classes of systems (�
�

) satisfying 1) and 2).

Now for the remainder of the proof of Theorem 31.

Proof. Let G1 = (G
m

)n be a torus defined over the prime field, and let (G, f) be a K/k-form

of G1. By definition G is isomorphic to G1 by f/K and we have that G1 = (G
m

)n so we have

the G is a torus defined over k but split over K. Now let  2 (�
�

) be the system corresponding

to (G, f). By definition  /K. Furthermore, we have that G1/k and thus G�1 = G1. Therefore,

 2 Aut
K

(G1), i.e.,  is an isomorphism of the torus G1. So let X1 = X(G1). So by the duality
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of Theorem 31 we have that t : X1 ! X1 is a ��isomorphism. So all elements t�
�

are in

Aut
K

(X1). Now G1 splits over the prime field, and so all elements of X1 are also defined over

the prime field. Thus � fixes X1. Recall condition 1), that is, �⌧
�

� �
⌧

= �
�⌧

. Via this fact and

the duality of Theorem 31 we have that

t�
�⌧

= t(�⌧
�

� �
⌧

)

= �⌧
�

� �
⌧

� f

= f�⌧ � f�⌧ � f ⌧ � f�1 � f

= f�⌧

= f ⌧ � f�

= f ⌧f�1 � f � f� � f�1 � f

= �
⌧

� f � �
�

� f

= t�
⌧

� t�
�

Since the mapping ↵ : � ! Aut
K

(X1) ⇠= GL(n,Z) defined by ↵(�) = (t�
�

)�1 gives a

representation of � in GL(n,Z) we have that X1 a ��module.

Now given any integral representation of � in GL(n,Z), one may show that there exists

a K/k-form of G1 which corresponds to this representation in the manner given above. This

follows from the one-to-one correspondence between the automorphisms of X1 and the auto-

morphisms of G1 (which is a torus) and Theorem 34.



24

We thus have a one-to-one correspondence between the category of tori defined over k of

dimension n and the category of free �-modules of rank n, as claimed.
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1.2 Proof details and some extras

1.2.1 Properties of R
K/k

(G1)

Let G1 be an algebraic group defined over K, with dimG1 = n and the degree of K/k equal

to d. It is a natural question to ask if we can find some algebraic group defined over k which

somehow corresponds to this information. We will prove the following shortly.

Proposition 39. For any G1 as described above, there exists an algebraic group R
K/k

(G1)

defined over k of dimension nd such that R
K/k

⇠= (G1).

First we make the following observations.

Assume that {�1,�2, · · · ,�
d

} is a maximal set of elements of � which have distinct restric-

tions to K, in particular assume �1 is the identity. Now define

fG1 = G�1
1 ⇥G�2

1 ⇥ · · ·⇥G�d
1

fG1 is defined over the field generated by [d

i=1K
�i , which is the smallest Galois extension of k

containing K and that if �1 := Gal(k/K) then � = [d

i=1�1�i.

Now if � 2 � then right multiplication of � permutes the elements in set of cosets {�1�1, · · · ,�1�
d

}.

For notational purposes we will denote the permutation of � on �1�i by i�. As a quick example:

�1�i� = �1�j () i� = j. We may now define an isomorphism

�
�

: fG1 ! fG1
�

=
d

Y

i=1

fG1
�i�
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defined by

�
�

(g1, · · · , g
d

) = (g1� , · · · , g
d

�)

it can be shown that the system {�
�

} satisfies the conditions of Theorem 34 and so there must

exist a k-form ( eG, ef) of fG1 corresponding to this system. Furthermore eG is an algebraic group

defined over k of dimension nd. Now let ⇡
i

: fG1 ! gG�i
1 be the standard projection to the ith

factor. We note that ⇡�
i

� �
�

= ⇡
i

� .

Define p : eG ! G1 by p = ⇡1 � ef . Since we chose �1 as the identity, every � 2 � fixes ⇡1,

and furthermore ⇡1 � �� = ⇡1. This implies that p� = p, so p is defined over K. Finally noting

that ⇡
i

� ef = p�i we get that

ef = p�1 ⇥ · · · p�d

since ef is determined by p. We now write the k-form ( eG, ef) as ( eG, p) and define R
K/k

(G1) :=

( eG, p). Via the definition, we see that R
K/k

(G1) is a k-form of G1. Furthermore, R
K/k

(G1) is

unique up to k�isomorphism.

R
K/k

(G1) can be generalized to an algebraic set A1/K as follows.

Definition 40. Let A1 be an algebraic set defined over K. Then R
K/k

(A1) is defined to be

any pair ( eA, p) where eA is an algebraic set defined over k, p : eA ! A1 is defined over K and is

a polynomial so that there is a k�isomorphism

ef = p�1 ⇥ · · · p�d
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from eA to fA1 := A�11 ⇥ · · ·A�d1 .

1.2.2 Proof of Theorem 34

Proof. This proof requires several steps. Step 1 is an explicit construction of R
K/k

(A1) for a

few special cases of algebraic groups which then give the result for any algebraic group. Step

2 explores the universal properties of R
K/k

(A1), which are used in Step 3 to show that there

exists a K/k-form of A1. Step 4 is then the “actual” proof of the theorem.

Let K be a finite Galois extension of k with K ✓ k. Let d = degK/k and {�1, · · · ,�
d

} be

the maximal set of elements in Gal(k/k) with distinct restrictions to K with �1 as the identity.

Step 1) The existence of R
K/k

(A1), for any algebraic set A1 defined over K.

Case 1) Let A1 = ⌦, eA = ⌦d, and {w1, · · · , w
d

} be a vector space basis for K over k. Now define

f : eA ! A1 by

f(u1, · · · , u
d

) =
d

X

i=1

u
i

w
i

Clearly f is a polynomial defined over k. Additionally, we see that f�j =
P

d

i=1 uiw
�j

i

.

Now define f̃ : ⌦d ! ⌦d by

f̃ = f�1 ⇥ · · ·⇥ f�d
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This map may then be realized as multiplication by the matrix

F =

0

B

B

B

B

B

B

B

B

B

B

@

w�11 w�21 · · · w�d1

w�12
...

...
. . .

w�1
d

· · · w�d
d

1

C

C

C

C

C

C

C

C

C

C

A

Thus, f̃ is also a polynomial. Furthermore det(F ) 6= 0 since K/k is separable, so f̃ is a

k�isomorphism of algebraic sets. By the previous definition ( eA, f̃) = R
k/k

(A1).

Case 2) Let A1, B1 be algebraic sets defined over K and assume that R
K/k

(A1) = ( eA, f1) and

R
K/k

(B1) = ( eB, f2) exist. We run an argument similar to above to show that R
K/k

(A1⇥

B1) = ( eA⇥ eB, f1 ⇥ f2). Thus R
K/k

(A1 ⇥B1) exists.

Case 3) Let A1, B1 be algebraic sets defined over K so that B1 ✓ A1. Suppose that R
K/k

(A1) =

( eA, f̃) exists. Since

f̃ : eA ! fA1 = A�11 ⇥ · · ·A�d1

is a k-isomorphism and

fB1 := B�1
1 ⇥ · · ·B�d

1 ✓ A�11 ⇥ · · ·A�d1



29

is algebraic subset we also have that eB := f̃�1(fB1) is an algebraic subset of eA. Note

that fB1 is defined over the field generated by [d

i=1K
�i and ef�1/k so eB is defined over k.

However, for � 2 � we have that

eB� = ef��(fB1
�

) = ef�1 � ��1
�

(fB1
�

) = ef�1
fB1 = eB

so in fact eB is defined over k. By definition R
K/k

(B1) = ( eB, ef | e
B

).

Now in particular, these three cases actually give the existence of R
K/k

(A1) for any

algebraic set A1/K since every algebraic set may be viewed as a subset of ⌦n for some n.

Step 2) Universal property of R
K/k

(A1). We noted already the uniqueness of R
K/k

(A1) and we

have the following universal property.

Let R
K/k

(A1) = ( eA, ef), and p = p1 � ef where p1 is defined above as a projection. Now if

eB/k is an algebraic set and � : eB ! A1 is a polynomial defined over K, then there exists

a polynomial map defined over k  : eB ! eA so that the following diagram commutes:

eA
p

// A1

eB

 

OO

�

??

Furthermore, if B1 is an algebraic set defined over K with ( eB, eg) = R
K/k

(B1), and

q = p1 � g then there exists a unique polynomial map e defined over k so that the

following diagram commutes:
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eA

e
 /k

✏✏

p/K

// A1/K

 /K

✏✏

eB/k
q/K

// B1/K

Step 3) For G1 an algebraic group, we have R
K/k

(G1) is a group. Assume that A1 = G1 is an

algebraic group defined over K. We want to show that R
K/k

(G1) is a group, and p is a

group homomorphism. Assume R
K/k

(G1) = ( eG, p), then R
K/k

(G1⇥G1) = ( eG⇥ eG, p⇥p).

Now let

� : G1 ⇥G1 ! G1

be the map defining multiplication in G1. By the previous step, there exists e� defined

over k so that the following diagram commutes:

eG⇥ eG
p⇥p

//

e
 

✏✏

G1 ⇥G1

 

✏✏

eG
p

// G1

In particular we have that e defines multiplication in eG. Similarly, if  0 : G1 ! G1 defines

the inverse operation in G1, we have the existence of e 0 making the following diagram

commute:

eG
p

//

f
 

0
✏✏

G1

 

0

✏✏

eG
p

// G1
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which defines the inverse operation in eG. Since these diagrams commute we have that p

must also be a group homomorphism.

Step 4) The proof of Theorem 34 for any algebraic set A1 defined over K. Recall that for A1/K

we have a system of rational isomorphisms (�
�

) which map from A1 to A�1 which satisfy

1)

�⌧
�

� �
⌧

= (f� � f�1)⌧ � f ⌧ � f�1 = f�⌧ � f�⌧ � f ⌧ � f�1 = f�⌧ � f�1 = �
�⌧

for �, ⌧ 2 �;

2) each �
�

depends only on the restriction of � to K.

Now keeping the notation from Step 1) and Step 2) let R
K/k

= ( eA, ef) and define

A =
n

x 2 eA | p�(x) = �
�

� p(x), 8� 2 �
o

2) implies that x 2 A if and only if P �i(x) = �
�i � p(x) for 1  i  d so the map

p|
A

: A ! A1 is an injection. Now if y 2 A1 and we set

x = ef�1(�
�1(y), · · · ,��d(y)

then x 2 A and y = p(x) so p|
A

is surjective and thus an isomorphism. By definition we

have that A is an algebraic subset of eA defined over k. However, 1) implies that A� = A

for all � 2 � so A is in fact defined over k. So let f = p|
A

, then (A, f) is a K/k-form of
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A1 with system (�
�

). Furthermore, if A1 = G1 is a group, then one may verify that it is

a subgroup of R
K/k

(G1) and by step 3) f is an isomorphism of algebraic groups.

1.2.3 A side note on Galois cohomology

The results of corollary 38 require a few comments. First we give the definition of the first

cohomology group of Galois cohomology.

Definition 41. (3) Let G be a group and A be an Abelian group. We will use additive notation

for A. Assume that G acts on A by a homomorphism � : G ! Aut(A).

A 1-cocycle of G in A is a family of elements {↵
�

}
�2G with ↵

�

2 A satisfying

↵
�

+ �↵
⌧

= ↵
�⌧

for all �, ⌧ 2 G. Note that the sum of 1�cocycles must also be a cocycle. We denote the group

of 1�cocycles by Z1(G,A). A 1�coboundary of G in A is a family {↵
�

}
�2G so that there exists

an element � 2 A which satisfies

↵
�

= �� � �

Certainly any 1�coboundary is a 1�cocycle and we denote the group of coboundaries by

B1(G,A). The first cohomology group of G in A is now defined as the factor group

H1(G,A) := Z1(G,A)/B1(G,A)
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Using Galois cohomology corollary 38 may be restated as

Corollary 42. The k�isomorphism classes of K/k forms of G1/k are in one to one correspon-

dence with the elements of H1(Gal(K/k),Aut
K

(G1)).

In fact, we have the same correspondence for k-forms.

Corollary 43. The k�isomorphism classes of k-forms of G1/k are in one to one correspondence

with the elements ofH1(k,Aut
K

(G1)), which is defined to be the direct limit [
K

H1(Gal(K/k),Aut
K

(G1)).

1.2.4 The structure of algebraic groups

We have proved some powerful and general results in the last few sections. In order to go

further in the same spirit we will first need to dedicate time to certain substructures of algebraic

groups. We will also see our first reduction of the classification of algebraic groups.

Definition 44. An element M 2GL(V ) is called semi-simple if M is similar to a diagonal

matrix D, that is, P�1MP = D for some non-singular P .

Definition 45. An element M 2 GL(V ) is called unipotent there exists an n 2 N so that

(M � I)n = 0.

Example 46. All matrices of the following form are semi-simple.

0

B

B

B

B

B

B

@

a 0 0

0 1/a 0

0 0 1

1

C

C

C

C

C

C

A

2 SL(3,Q) with Q 3 a 6= 0
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All matrices of the following form are unipotent.

0

B

B

B

B

B

B

@

1 a b

0 1 c

0 0 1

1

C

C

C

C

C

C

A

2 SL(3,Q), a, b, c 2 Q

Additionally, one may show that

Proposition 47. Let G be an algebraic group. Then

• Every element in g 2 G is decomposable as g = g
u

· g
s

where g
s

is semi-simple and g
u

is

unipotent. This is known as the Jordan-Chevalley decomposition.

• If g 2 G then g
u

, g
s

2 G g
s

· g
u

= g
u

· g
s

and g
s

, g
u

are independent of the representation

in some GL(V ).

• If � : G ! G0 is a rational homomorphism from G to some other algebraic group G0 then

�(g
s

) = �(g)
s

and �(g
u

) = �(g)
u

for all g 2 G.

This proposition gives us license to write G
u

= {g 2 G|g = g
u

} and G
s

= {g 2 G|g = g
s

}

without the usual ambiguity associated with bases.

Definition 48. If G is an algebraic group so that G = G
u

we call G a unipotent group.

Before proceeding we note a few more examples.

Example 49. Given any torus T ⇠= D(n), we note that T is semi-simple via the identity I
n

since any element in T is already diagonal. Furthermore, one may show that if G = G
s

and G

is connected we have that G is a torus.
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Example 50. Let G = G

a

. First define the � : G ! GL(2) by

↵ 7!

0

B

B

@

1 ↵

0 1

1

C

C

A

Note that this is an isomorphism on its image. Also, note that the identity matrix is both

semi-simple and unipotent. This is a triviality, but is important for this example.

Take any g 2 G, then by definition

�(g) =

0

B

B

@

1 g

0 1

1

C

C

A

However it is clear that �(g) = �(g)
u

since �(g) is unipotent. Proposition 47 gives that both

that �(g)
u

= �(g
u

) (which implies that g
u

= g) and that the representation of G into GL(2) is

immaterial when considering the decomposition of g. Therefore, every g 2 G is in G
u

so G is

unipotent. The conclusion is that G is unipotent.

This last example provides a intuitive foothold into the example of SL(3,Q) (Proposition

67) worked out in the next section.

Proposition 51. If G is a connected unipotent algebraic group then there exists a finite de-

scending series of closed and connected normal subgroups of G

G = G0 � G1 � · · · � G
k

= {e}



36

and the commutator subgroup [G : G
i

] ✓ G
i+1. Furthermore, we may take this series so that

G
i

/G
i+1 is rationally isomorphic to G

a

for all i in the index.

We now make the definition

Definition 52. An algebraic group G is called solvable if it is solvable with respect to its group

structure.

In general, given an algebraic group G with two closed subgroups H1, H2 we have that the

commutator subgroup [H1, H2] is closed. So in our case we may take the composition series

involved with the definition of solvability of an algebraic group to be closed. The following

proposition collects a few significant results.

Proposition 53. Let G be a connected solvable algebraic group defined over k. Then

1) There exists an isomorphism from G to the group of upper triangular matrices of degree

n.

2) G
u

is a k�closed connected normal subgroup of G.

3) The exists a maximal torus T/k of G so that G = G
u

o T . This semidirect product is

takes as a semidirect product of algebraic groups; that is a semidirect product of groups

and a direct product of algebraic sets.

4) All such maximal tori are conjugate by inner automorphisms of G.

Definition 54. Let G be a connected algebraic group. The radical of G, which we denote as

R, we define as a maximal element in the set of connected solvable normal subgroups of G.

The unipotent radical of G is defines as the unipotent part of R and is denoted R
u

.
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Definition 55. An algebraic group G is called semi-simple if R = {1}, and reductive if R
u

=

{1}.

We now come to our first major reduction in the problem of classifying semi-simple or

reductive algebraic groups–the result is due to Chevalley.

Theorem 56. Let G be a connected algebraic group.

• If G is semi-simple then G is isogeneous to a direct product of simple groups.

• If G is reductive then G is isogeneous to a direct product of a semi-simple group and a

torus

Example 57. Let G = {(g1, g2) 2 GL(2,R)⇥GL(2,R)| det(g1) = det(g2)}. We see that G has

a subgroup H = {(tI2, tI2) | t 2 G

m

}. Then G/H is isogeneous to SL(2,R) ⇥ SL(2,R), but

not isomorphic. Furthermore, the property of being reductive or semi-simple is invariant under

isogeny, so even though these groups are not isomorphic, it may be shown that have the same

classification as semi-simple a�ne algebraic groups.

Definition 58. A Borel subgroup is a maximal closed connected solvable subgroup of G. Any

subgroup H ✓ G which contains a Borel subgroup is called parabolic.

It may be shown that

Proposition 59. 1) All Borel subgroups are conjugate by inner automorphisms of G.

2) If B ✓ G is Borel, then the coset space G/B is a projective variety.
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2)’ In fact, if H ✓ G is closed and connected then G/H is a complete variety if and only if

H is a parabolic subgroup of G.

3) Every Borel subgroup is its own normalizer in G. In particular this implies a parabolic

subgroup is its own normalizer in G and is thus connected.

4) If B ✓ G is Borel then G =
S

g2G gBg�1.

We must now momentarily define these objects with respect to fields of definition.

Proposition 60. The following are equivalent.

1) G is solvable, defined over k, and all rational characters of G are defined over k.

• There exists an isomorphism � : G !Tr(n) which is defined over k.

• G is a semidirect product over k of a k�trivial torus and a unipotent subgroup of G which

is defined over k.

Definition 61. Any algebraic group satisfying one of the conditions of Proposition 60 is called

k�solvable.

Definition 62. A k�Borel subgroup of G is a maximal connected k�solvable subgroup.

Proposition 63. If G/k then all k�Borel subgroups of G are conjugate by inner automorphisms

defined over k. As a corollary, all maximal k�trivial tori of G are conjugate with respect to

k�rational inner automorphisms of G.

Definition 64. The k�rank of an algebraic group G is the dimension of any maximal k�split

torus. The rank of G is the ⌦�rank of G.
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Definition 65. An algebraic group G/k is called k-compact if it has no non-trivial k�Borel

subgroups.

As one might expect we do not have a perfect correspondence of results when we relativize

the results for k, in particular item 2) from Proposition 59 fails. We have as an analogue that

if G/k and H ⇢ G is k�Borel then there exists a complete variety V defined over k on which

G operates and an injective polynomial f : G/H ! V which preserves multiplication by G in

a way such that G
k

acts transitively on V
k

. In particular this gives us that

Corollary 66. Let G/k be an algebraic group and k a local field. G is k-compact if and only

if G
k

is compact.

We now discuss some examples.
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1.3 Examples

1.3.1 SL(3,Q)

Let Q ✓ ⌦. As an example, we will consider SL(3,Q) = {M 2 GL(3,Q)| det(M) = 1}. First

we will show the following.

Claim 67. SL(3,Q) is an a�ne algebraic group defined over Q.

Proof. Let
0

B

B

B

B

B

B

@

a11 a12 a13

a21 a22 a13

a31 a32 a33

1

C

C

C

C

C

C

A

= A, and

0

B

B

B

B

B

B

@

b11 b12 b13

b21 b22 b13

b31 b32 b33

1

C

C

C

C

C

C

A

= B

with both A,B 2 SL(3,Q). First, we wish to show this is an abstract group. Matrix multipli-

cation acts as an associative binary operation on SL(3,Q),

I3 =

0

B

B

B

B

B

B

@

1 0 0

0 1 0

0 0 1

1

C

C

C

C

C

C

A

is the identity. Inverses are given by

A�1 =

0

B

B

B

B

B

B

@

M1,1 �M2,1 M3,1

�M1,2 M2,2 �M3,2

M1,3 �M2,3 M3,3

1

C

C

C

C

C

C

A

=

0

B

B

B

B

B

B

@

a22a33 � a32a23 a13a32 � a33a12 a12a23 � a22a13

a23a31 � a33a21 a11a33 � a31a13 a13a21 � a23a11

a21a32 � a31a22 a12a31 � a32a11 a11a22 � a21a12

1

C

C

C

C

C

C

A

,
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that is, the usual matrix inverses—these are contained in SL(3,Q) since their determinant is

equal to 1 and we can see that each entry is an element of Q. Finally, closure under the binary

operation is given by noting that det(A ·B) = det(A) · det(B). Thus, SL(3,Q) is a group.

Continuing on, note that SL(3,Q) ✓ A

9
Q

✓ A

9
⌦ and can be defined as an algebraic set by

V

0

B

B

B

B

B

B

@

det

0

B

B

B

B

B

B

@

x1 x2 x3

x4 x5 x6

x7 x8 x9

1

C

C

C

C

C

C

A

� 1

1

C

C

C

C

C

C

A

= V (x1x5x9 + x2x6x7 + x3x4x8 � x7x5x3 � x8x6x1 � x9x4x2 � 1)

Explicitly, define f 2 Q[x1, · · · , x9] by

f(x1, · · · , x9) := x1x5x9 + x2x6x7 + x3x4x8 � x7x5x3 � x8x6x1 � x9x4x2 � 1

Thus, SL(3,Q) is Q�closed as an algebraic set, and therefore defined over Q as an algebraic

set since Q is perfect.

Let M
i,j

be the minor in the i�th row and j�th column of A. Note that

A�1B =

0

B

B

B

B

B

B

@

P3
i=1(�1)i�1M

i,1bi,1
P3

i=1(�1)i�1M
i,1bi,2

P3
i=1(�1)i�1M

i,1bi,3

P3
i=1(�1)iM

i,2bi,1
P3

i=1(�1)iM
i,2bi,2

P3
i=1(�1)iM

i,2bi,3

P3
i=1(�1)i�1M

i,3bi,1
P3

i=1(�1)i�1M
i,3bi,2

P3
i=1(�1)i�1M

i,3bi,3

1

C

C

C

C

C

C

A

Let � : SL(3,Q) ⇥ SL(3,Q) ! SL(3,Q) taking (A,B) 7! A�1B. Recall that M
i,j

is a

polynomial and note that we are considering SL(3,Q) as a subset of a�ne space, so we may
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reinterpret this matrix multiplication as giving us the data of a map � : A9
Q

⇥A

9
Q

! A

9
Q

. Then

� can be seen as a polynomial map by definition, since in each coordinate � is a polynomial

function, and in particular is a polynomial with coe�cients in Q; � is therefore defined over Q.

Thus, by definition SL(3,Q) is an a�ne algebraic group. Furthermore, since SL(3,Q) is

defined over Q as an algebraic set and the map � is also defined over Q, SL(3,Q) is defined

over Q as an algebraic group.

At this point we also find an example of a torus in SL(3,Q)

Proposition 68. The set of matrices T ⇢ SL(3,Q) of the form

0

B

B

B

B

B

B

@

a 0 0

0 b 0

0 0 1
ab

1

C

C

C

C

C

C

A

is a torus in SL(3,Q)

Proof. First we show that T is an algebraic subgroup of SL(3,Q).

• Let
0

B

B

B

B

B

B

@

a1 0 0

0 a2 0

0 0 1
a1a2

1

C

C

C

C

C

C

A

= A, and

0

B

B

B

B

B

B

@

b1 0 0

0 b2 0

0 0 1
b1b2

1

C

C

C

C

C

C

A

= B 2 T
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. By definition

AB =

0

B

B

B

B

B

B

@

a1b1 0 0

0 a2b2 0

0 0 1
a1b1a2b2

1

C

C

C

C

C

C

A

So T is closed under the binary operation. Also, note that T is Abelian.

• I3 2 T

•

A�1 =

0

B

B

B

B

B

B

@

1
a

0 0

0 1
b

0

0 0 ab

1

C

C

C

C

C

C

A

So T is a subgroup of G.

Additionally, T ⇠= V (x1x5x9 � 1, x2, x3, x4, x6, x7, x8) (using the indexing from proposition

67) T is an algebraic subgroup of SL(3,Q). It is also easy to see that T/Q. Now define � : T !

A

2
Q

⇥ ⇢ A

2
C

⇥ by �(A) = (a1, a2). Clearly, for all A,B 2 T we have that �(AB) = (a1b1, a2b2),

which is a polynomial in the coordinates. Furthermore, � is a group isomorphism. So T ⇠= A

2
Q

⇥

is a torus in SL(3,Q) defined over Q.
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Note that any permutation of the diagonal entries would also define a torus. As such we

will consider T as the subgroup of matrices T ⇢ SL(3,Q) of the form

0

B

B

B

B

B

B

@

a 0 0

0 b 0

0 0 c

1

C

C

C

C

C

C

A

so that abc = 1

For the sake of clarity we note that we may consider this T as an algebraic group in A

3
⌦ defined

by V (x1x2y � 1). In particular, we may consider T as only having two coordinates, since the

third will depend on the first two.

Proposition 69. The torus T as defined above is maximal with respect to inclusion in SL(3,Q).

Proof. We will argue by contradiction. Assume there is some larger torus T 0 containing T . By

definition T 0 is a direct product of (G
m

)n for some 1 < n  8, therefore T 0 must be Abelian

(Alternatively, we will soon see that Z
G

(T 0) = T 0). Now take the matrix

M :=

0

B

B

B

B

B

B

@

x1 x2 x3

x4 x5 x6

x7 x8 x9

1

C

C

C

C

C

C

A

2 T 0 \ T,
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i.e., at least one of {x2, x3, x4, x6, x7, x8} is not equal to zero. Since T ⇢ T 0 we must have that

0

B

B

B

B

B

B

@

1 0 0

0 2 0

0 0 1/2

1

C

C

C

C

C

C

A

2 T 0

However,

0

B

B

B

B

B

B

@

1 0 0

0 2 0

0 0 1/2

1

C

C

C

C

C

C

A

�1

·

0

B

B

B

B

B

B

@

x1 x2 x3

x4 x5 x6

x7 x8 x9

1

C

C

C

C

C

C

A

·

0

B

B

B

B

B

B

@

1 0 0

0 2 0

0 0 1/2

1

C

C

C

C

C

C

A

=

0

B

B

B

B

B

B

@

x1 2x2 x3/2

x4/2 x5 x6/4

2x7 4x8 x9

1

C

C

C

C

C

C

A

Since T 0 is Abelian it must be the case that M is equal to the matrix on the right. However,

this cannot occur unless each of {x2, x3, x4, x6, x7, x8} is equal to zero. This is a contradiction.

Thus, T is maximal.
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1.3.2 Example: Q[
p
2]/Q-form

Consider the sets G1 ⇢ GL(2,Q), G2 ⇢ GL(2,Q[
p
2]) given by

G1 =

8

>

>

<

>

>

:

0

B

B

@

a b

2b a

1

C

C

A

9

>

>

=

>

>

;

, G2 =

8

>

>

<

>

>

:

0

B

B

@

a+
p
2b 0

0 a�
p
2b

1

C

C

A

9

>

>

=

>

>

;

a, b 2 Q

After a routine definition check we find that both sets are in fact groups under matrix multi-

plication. The algebraic set structures are given by

V

�

(x21 � 2x22)x5 � 1, x1 � x4, 2x2 � x3
�

= G1 and V (x1x4x5 � 1, x2, x3) = G2

Where x
i

denotes the standard coordinates in a�ne space. All that remains is to check that

the maps G1 ⇥G1 ! G1 and G2 ⇥G2 ! G2 sending (x, y) 7! x�1y are polynomial maps, and

to see what field they are defined over. We note that for i 2 {1, 2} the map G
i

⇥ G
i

7! G
i

defined by (x, y) 7! x�1y is given as

0

B

B

@

a b

2b a

1

C

C

A

0

B

B

@

c d

2d c

1

C

C

A

7!

0

B

B

@

a b

2b a

1

C

C

A

�10

B

B

@

c d

2d c

1

C

C

A

=

0

B

B

@

ac�2bd
a

2�2b2
ad�bc

a

2�2b2

2ad�2bc
a

2�2b2
ac�2bd)d
a

2�2b2

1

C

C

A

and in G2
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0

B

B

@

a+ b
p
2 0

0 a� b
p
2

1

C

C

A

0

B

B

@

c+ d
p
2 0

0 c� d
p
2

1

C

C

A

7!

0

B

B

@

a+ b
p
2 0

0 a� b
p
2

1

C

C

A

�10

B

B

@

c+ d
p
2 0

0 c� d
p
2

1

C

C

A

=

0

B

B

@

(a�b

p
2)(c+d

p
2)

a

2�2b2 0

0 (a+b

p
2)(c�d

p
2)

a

2�2b2

1

C

C

A

At first glance the maps defined by these matrices seem to look like rational functions rather

than polynomial functions. However, we are considering polynomials in the coordinate ring,

which is a quotient of Q[x1, · · · , xn]. For example, in the case of G2 we have the relation

x1x4x5 � 1 = 0 () x5 = x�1
1 x�1

4 . The previous map associated to G2 is actually defined by

� ((x1, 0, 0, x4)⇥ (x01, 0, 0, x
0
4)) = (x4x01x5, 0, 0, x1x

0
4x5), which is a polynomial. The argument

for G1 is similar.

Now consider the polynomial map � : G1 ! G2 defined by

0

B

B

@

a b

2b a

1

C

C

A

7!

0

B

B

@

1 1p
2

1 �1p
2

1

C

C

A

0

B

B

@

a b

2b a

1

C

C

A

0

B

B

@

1 1p
2

1 �1p
2

1

C

C

A

�1

= �
p
2

0

B

B

@

1 1p
2

1 �1p
2

1

C

C

A

0

B

B

@

a b

2b a

1

C

C

A

0

B

B

@

�1p
2

�1p
2

�1 1

1

C

C

A

=

0

B

B

@

a+ b
p
2 0

0 a� b
p
2

1

C

C

A
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To justify the claim that this is a polynomial map, we may write this in a as

�(a, b, 2b, a) = (a+
p
2b, 0, 0, a�

p
2b)

or perhaps even more clearly as �(x1, x2, x3, x4) = (x1 +
p
2x2, 0, 0, x1 �

p
2x2)

Thus, � is defined over Q[
p
2], is bijective, and is a group homomorphism. The map ��1 is

given as

��1(x1, x2, x3, x4) =

✓

1

2
(x1 + x4),

1

2
p
2
(x1 � x4),

1p
2
(x1 � x4),

1

2
(x1 + x4)

◆

Decoding this map in terms of matrices in G1 and G2 makes is clear that this is also a group

homomorphism. So we see that �/Q[
p
2] is an isomorphism.

By definition we see that (G1,�) is a Q[
p
2]/Q-form of G2, which makes it a Q-form of G2.

1.3.3 Computations with a torus

Let k ✓ K be a Galois extension and T be a torus defined over k and split over K. Let

� = Gal
k

(K). Our goal is to show that there exists subtori A, T0 ✓ T so that:

• A is the largest k�trivial subtorus of T .

• T0 is the largest k-compact subtorus of T .

• T is a semi-direct product of A and T0.

• T0 \A is a finite set, and thus T is isogeneous to A⇥ T0.
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Let X be the character module of T and consider the following submodule of X:

X� = {� 2 X|�� = �, 8� 2 �}

that is, X� is the submodule of characters fixed by �. This is easy to see by recalling that

(�1 + �2)(t) := �1(t)�2(t) and X is a �-module so

(�1 + �2)(t)) = (��1 + ��2 )(t) = (�1 + �2)
�(t)

thus X� inherits all of its �-module structure from X and is closed under the + operation. We

also see the set

X0 =

(

� 2 X
�

�

X

�2�
�� = 0

)

is a submodule of X by noting that

X

�2�
��1 +

X

�2�
��2 =

 

X

�2�
��1 +

X

�2�
��2

!

(t) =

 

X

�2�
��1

!

(t)

 

X

�2�
��2

!

(t) = 0

so it is closed under the + operation. Additionally, we note that each submodule X0 and X� are

�-invariant since every element of X� is fixed by � and every element of � fixes 0. Moreover, as

discussed earlier, both submodules are cotorsion free. Now let T0 = (X�)?, A = (X0)?. Then

both A and T0 are subtori of T and defined over k. Now if T 0 ✓ T is a subtorus defined over

k and X1 = (T 0)?, then T 0 is k�trivial if and only if � operates trivially on X(T 0) = X/X1.

However, this happens if and only if X0 ✓ X1 if and only if T 0 ✓ A. Thus, A is the maximal
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subtorus of T which is k�trivial. It now follows that T is k-compact if and only if A = {1},

which is equivalent to X0 = X. We may apply this idea T 0 ✓ T , and we will find that t0 is

k-compact if and only if X(T 0)0 = (X(T 0), but this is equivalent to X� ✓ X1 which is equivalent

to T 0 ✓ T0. So T0 is the largest k-compact subtorus of T . It follows that

X
Q

= (X0)Q � (X�)
Q

and so [X : (X0)� (X�)] is finite, X0 \X� = {0}. Thus A \ T0 is finite and T is a semi-direct

product of A and T0, and thus isogeneous to A⇥ T0.
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1.4 Representation theory/Geometry

1.4.1 Root systems,Weyl groups, fundamental systems, Weyl Chambers

Definition 70. Let G be an algebraic group and T  G be a torus which is maximal with

respect to inclusion. A character X(T ) 3 � : T ! G

a

is a root if there exists an isomorphism

f : G
a

! P
a

, where P
↵

is some closed subgroup of G, so that

t · f(↵) · t�1 = f(�(t) · ↵)

for all t 2 T and ↵ 2 G

m

.

The set of all roots of T will be denoted by
p

and will be called the root system of G relative

to T .

Furthermore:

Proposition 71. • The subgroup P
↵

✓ G is uniquely determined by ↵.

• The isomorphism �
↵

: G
a

! P
↵

is unique up to scalar multiplication in G

a

.

•
p

is a finite set.

• Z
G

(T ) = T

• N
G

(T )/T is a finite group.

Definition 72. The finite group W = N
G

(T )/T is called the Weyl group of G relative to T .
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The Weyl group may be naturally interpreted as an automorphism group of T , X, or X̂ :=

Hom(X,Z). To see this, for each s 2 N
G

(T ) we may associate an automorphism w
s

: T ! T

given by

w
s

(t) = sts�1

for t 2 T .

similarly, denote the automorphism w
s

: X ! X given by

w
s

(�)(w
s

(t)) = �(t) that is

for t 2 T and � 2 X. The last isomorphism is the horrifically named contragredient of w
s

when

considered as an automorphism of X.

Proposition 73. The triple (X,
p
,W ) has the following list of properties.

• X is a free Z�module of rank l = dimT

•
p

is a finite subset of X.

• W is a finite automorphism group of X

Additionally, we have that:

i) 0 62
p
. If ↵ 2

p
then �↵ 2

p

i)* if ↵ 2
p

and c↵ 2
p

for c 2 Q then c = ±1.

ii) To each ↵ 2
p

there corresponds an element w
↵

2 W so that w
↵

(�) = � � ↵⇤(�)↵ for

� 2 X and where ↵⇤ 2 X̂. Furthermore, w
↵

(
p
) =

p
.
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iii) X
Q

:= X ⌦
Z

Q is generated by
p

as a linear space over Q.

iv) W is generated by {w
↵

|↵ 2
p
}

Definition 74. We call
p

an abstract root system if
p

satisfies i), i)⇤, ii) and iii) and is a

subset of any finite rank free module X. The group W generated by the set {w
↵

|↵ 2
p
} is

finite and is uniquely determined by the pair (X,
p
). This group W is called the Weyl group

of
p
.

Example 75. Given a root system
p

in X the set
p⇤ := {↵⇤|↵ 2

p
} is a root system in X̂.

Since W is finite, there must exist some positive definite symmetric bilinear form which

is W�invariant. Take any symmetric bilinear form <,> on the vector space X
Q

and define

< �,�0 >0=
P

w2W < w�, w�0 >. Since W is finite this is a finite sum and since W is

closed under the group operation(composition) we have that acting by an element of W simply

permutes the terms of this sum. So <,>0 is W�invariant.

The relations < w
↵

(�), w
↵

(�) >=< �,� > and w
↵

(�) = �� ↵⇤(�)↵ implies that

↵⇤(�) =
2 < ↵,� >

< ↵,↵ >

And so ↵⇤ is identified with 2↵
<↵,↵>

. It then follows that w2
↵

= 1. In line with geometric

intuition, since w
↵

(↵) = �↵ and the hyperplane {�| < ↵,� >= 0} ⇢ X
R

is fixed by w
↵

we call

w
↵

a reflection or symmetry with respect to ↵.

Definition 76. The numbers c
↵,�

:= 2<↵,�>
↵,↵

are called Cartan integers. Property ii) implies

that c
↵,�

2 Z. This is called the integrality condition on a root system.
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Assume
p

is a root system of a free module X of rank l and W is the Weyl group of
p
. We

fix a linear order compatible with addition in X and denote the set of positive roots by
p

+. In

practice this looks like taking a hyperplane containing none of the roots and declaring the set

of roots contained in one of the connected components hyperplane to be positive. This depends

on the fact that in a�ne space a hyperplane cuts the space into two connected components.

Definition 77. A positive root ↵ is said to be simple if it cannot be expressed in the form

� + � for �, � 2
p

+. Denote the set of simple roots of
p

by �; we call this a fundamental

system of
p
.

We then have the following.

Proposition 78. 1) The fundamental system � consists of l linearly independent roots

↵1, · · · ,↵
l

. That is, every root ↵ 2
p

can be expressed uniquely as a linear combina-

tion ↵ = ±
P

l

i=1mi

↵
i

where m
i

2 N [ {0}.

2) Every root ↵ 2
p

can be written in the form ↵ = w
↵ir

· · ·w
↵i1
↵
i0 for some ↵

i0 2 � also

with ↵
i1 , · · · ,↵ir 2 �.

3) W is generated by {w
↵i |↵i

2 �}.

4) W acts simply transitively on the set of all fundamental systems of
p
.

An essential concept in the proof of this proposition is the concept of a Weyl chamber. This

concept will be necessary for us later, so we introduce it here.
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Given X, a root system
p

of X, and a set of simple roots �, we define

H
↵

= {� 2 X
R

:= X �
Z

R |< ↵,� >= 0}

Clearly, this is vector subspace of X
R

of codimension 1 which is cut out by a single polynomial

equation. In other words, H
↵

is a hyperplane in X
R

.

Definition 79. The connected components of

X
R

\
[

↵2
p
H
↵

are called Weyl chambers.

Assume � = {↵1, · · · ,↵j

}. We define

⇤� := {� 2 X
R

| h↵
i

,�i > 0, 1  i  j} .

This is a Weyl chamber. Note that

X
R

\
[

↵2
p
H
↵

=
[

�|� is a
fundamental

system

⇤�

Since we have a W�invariant metric <,>, we get that W fixes the set of hyperplanes H
↵

,

and permutes the chambers by w(⇤�) = ⇤
w(�) for w 2 W .
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Example 80. Weyl chambers are inherently geometric objects. As such, here is a pictorial

representation of a Weyl chamber in R

2. The following systems has 6 Weyl chambers, the roots

are denoted by the vectors in black, the hyperplanes by the grey lines, and one of the 6 Weyl

chambers is colored in blue.

Definition 81. A subset
p

1 ✓
p

is closed if
p

1 = ({
p

1}
Z

\
p
. A subset

p
1 ✓

p
is Q�closed

if
p

1 = ({
p

1}
Q

\
p
.
p

is reducible if
p

=
p

1 [
p

2 where
p

1,
p

2 are nonempty subsystems of

p
and < ↵,� >= 0 for all ↵ 2

p
1,� 2

p
2 i.e. these subsystems are orthogonal.

p
is called

irreducible otherwise.

If
p

is reducible, then we can decompose X
Q

= {
p

1}
Q

+{
p

2}
Q

where the decomposition is

comprised of orthogonal subsets with both
p

1 and
p

2 being Q-closed. Since every root system
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can be decomposed into a disjoint union of mutually orthogonal subsystems
p

=
p

1t · · ·t
p

s

,

this induces a decomposition on the fundamental system � of
p

as � = �1 t · · · t�
s

.

Definition 82. We call � irreducible if
p

is irreducible.

So if � = {↵1, · · · ,↵
l

} is an irreducible fundamental system then

• ↵1, · · · ,↵
l

are linearly independent.

• 2<↵i,↵j>

<↵i,↵i>
is non-positive if i 6= j.

• � is not decomposable as two mutually orthogonal subsets.

1.4.2 Dynkin Diagrams

Consider � = {↵1, · · · ,↵
l

} as a set of vectors in Euclidean space satisfying properties i),

ii), and iii). We may classify such a set using the Dynkin diagram of � which we define as

follows:

1) To each vector ↵
i

associate a vertex;

2) Connect the two vertices associates with ↵
i

and ↵
j

with an edge if and only if < ↵
i

,↵
j

> 6=

0;

3) The Schwarz inequality implies that

0  2 < ↵
i

,↵
j

>

< ↵
i

,↵
i

>

2 < ↵
i

,↵
j

>

< ↵
j

,↵
j

>
 4

we have that

c
↵i,↵j :=

2 < ↵
i

,↵
j

>

< ↵
i

,↵
i

>
2 {0,�1,�2,�3}
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so connect vertices with single, double, or triple lines according to whether c
↵i,↵j = 1, 2, or 3;

4) Direct these edges with an arrow pointing from a longer vector to a shorter vector if the

lengths are di↵erent.

Following this process, we classify all such � and, as we will find out shortly, the following

Dynkin diagrams give the classification of simple algebraic groups defined over an algebraically

closed field.

Classification Diagram Group

A
n

: � � · · · � � SL(n+ 1)

B
n

: � � · · · � +3 � SO(2n+ 1)

C
n

: � � · · · � ks � S
p

(n) char(k) 6= 2

�
D

n

: � � · · · � SO(2n)

�
E6 : � � � � � �

�
E7 : � � � � � � �

�
E8 : � � � � � � � �

�
F4 : � � +3 � �
G2 : � *4 �
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1.5 Example: SL(3,Q): reprise

Recall that given a torus T defined over k, we defined the character group as the group of

maps � : T ! (G
m

)n under the operation

(�+ �0)(t) = �(t) · �0(t)

It’s imperative to note the additive notation used in this definition. Also recall the canonical

characters �
i

: T ! G

m

given as “projections”, i.e., if t = (t1, · · · tn) then �i

(t) = t
i

.

Define E
i,j

as a matrix which is 1 at the i-th row and j-th column and 0 elsewhere. We may

note that we have a family of embeddings of G
a

into SL(3,Q) given by ↵ 7! I + ↵ · E
i,j

for

1  i, j  3, j 6= i. This leads us to the following proposition.

Claim 83. The set of matrices of the form

0

B

B

B

B

B

B

@

1 m 0

0 1 0

0 0 1

1

C

C

C

C

C

C

A

form a closed subgroup of SL(3,Q), which we will call P1,2.

Proof. •
0

B

B

B

B

B

B

@

1 a 0

0 1 0

0 0 1

1

C

C

C

C

C

C

A

·

0

B

B

B

B

B

B

@

1 b 0

0 1 0

0 0 1

1

C

C

C

C

C

C

A

=

0

B

B

B

B

B

B

@

1 a+ b 0

0 1 0

0 0 1

1

C

C

C

C

C

C

A
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• I3 2 P1,2

• Inverses are given by
0

B

B

B

B

B

B

@

1 �a 0

0 1 0

0 0 1

1

C

C

C

C

C

C

A

Thus, P1,2 is a subgroup of SL(3,Q) obtained by additionally setting x3 = x4 = x6 = x7 =

x8 = 0.

Define f : G
a

! SL(3,Q) by ↵ 7! I + ↵ · E1,2. We will show f is a root. Let T be the

maximal torus of SL(3,Q) defined previously. Let

0

B

B

B

B

B

B

@

a 0 0

0 b 0

0 0 c

1

C

C

C

C

C

C

A

= t 2 T
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Then,

t · f(↵) · t�1 =

0

B

B

B

B

B

B

@

a 0 0

0 b 0

0 0 c

1

C

C

C

C

C

C

A

·

0

B

B

B

B

B

B

@

1 ↵ 0

0 1 0

0 0 1

1

C

C

C

C

C

C

A

·

0

B

B

B

B

B

B

@

1/a 0 0

0 1/b 0

0 0 1/c

1

C

C

C

C

C

C

A

=

0

B

B

B

B

B

B

@

1 a

b

↵ 0

0 1 0

0 0 1

1

C

C

C

C

C

C

A

= f
⇣a

b
· ↵
⌘

= f

✓

�1

�2
(t) · ↵

◆

= f((�1 � �2)(t) · ↵)

Furthermore, we see that f(↵) defines an isomorphism onto P1,2. Note that we may let f :

G

a

! SL(3,Q) be given by f(↵) = I + ↵E2,3 and run a similar argument to show (�2 � �3)(t)

has a similar property. We may then choose there two roots to be positive. Now, there is a

redundancy for (�1 � �3)(t), since (�1 � �3)(t) = ((�1 � �2) + (�2 � �3))(t). This root is also

positive. Furthermore, we also will have similar results for (�3 � �1)(t) = (�(�1 � �3))(t),

(�2��1)(t) = (�(�1��2))(t), and (�3��2)(t) = (�(�2��3))(t), however, these roots are not

positive. We can see that the only positive roots we need to generate other roots are �1 � �2

and �2��3. Assuming that these are the only roots in
p
, we will have that �1��2 and �2��3

are the simple roots of SL(3,Q).
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Claim 84. SL(3,Q) is of type A2. i.e. the Dynkin diagram of SL(3,Q) is � �

Proof. We must first prove that

{�1 � �2,�(�1 � �2),�2 � �3,�(�2 � �3),�1 � �3,�(�1 � �3)} =
p

and

{�1 � �2,�2 � �3} = �

Then we must compute the value of the Cartan integers.

Observe that T is obviously normalized in G not only by itself, but also by matrices per-

muting the entries in the diagonal. One may show via some very tedious matrix computations

that these are the only matrices normalizing T in G, so by definition W = N

G

(T )/T ⇠= S3. The

order of S3 is 6, this implies that there are 6 Weyl chambers. Note the following lemma:

Lemma 85. Given an n-dimensional a�ne k-space A

n

k

with char k = 0, a non-zero element

v 2 A

n

k

, and a hyperplane �, we have that v is orthogonal to � if and only if cv is orthogonal to

� for every c 2 k \ {0}.

In particular, this lemma implies that the hyperplane H
ei = H�ei for 1  i  3. Further-

more, each of these hyperplanes must be distinct. Now since the dimension of T is 2, we know

that X is a rank 2 Z�module by proposition 73. By definition we are considering the Weyl

chambers (and hence the roots as well) as vectors in the space X
R

:= X ⌦
Z

R. Since X is a
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finitely generated rank 2 torsion free Z-module and tensor commutes with direct products we

have that

X
R

:= X ⌦
Z

R

⇠= (Z⇥ Z)⌦
Z

R

⇠= Z�
Z

R⇥ Z�
Z

R

⇠= R⇥ R

In this particular case we can see that a hyperplane is just a linear subspace of R2, that is,

a line. If we were to have an additional non-trivial element e4 2
p
, then we would have an

additional distinct hyperplane H
e4 which would inevitably give us 8 Weyl chambers, rather

than 6. So it must be the case that the roots are given as above and thus our choice of � is

legitimate.

Since the Weyl group acts transitively by reflection on each Weyl chamber, each Weyl

chamber must be symmetric with all the others, that is the angle between each hyperplane

(line) is equal. Now, in order to satisfy that < e1, e2 >=< e2, e1 > 0 we must have that the
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angle between the vectors e1 and e2 is greater that ⇡/2. So up to some rotation we have this

figure,

Since the angle between e1 and e2 is 2⇡/3 we have that

c
e1,e2 =

2 < e1, e2 >

< e1, e1 >
=

2|e1||e2|�1
2

|e1|2
=

�|e2|
|e1|

and also that

c
e2,e1 =

2 < e2, e1 >

< e2, e2 >
=

2|e2||e1|�1
2

|e2|2
=

�|e1|
|e2|

Note that c
e2,e1 = c

e1,e2 are negative integers, and |v| � 0 for any v 2 R

2. Thus

�|e1|
|e2|

=
�|e2|
|e1|

() |e1|2 = |e22| () |e1| = |e2|
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This implies that c
e2,e1 = c

e1,e2 = �1. Following our algorithm for generating the Dynkin

diagram, we have that SL(3,Q) is described by an A2 diagram.
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1.6 Classification of Semi-simple groups

If G is an algebraic group and R its radical, then G/R is semi-simple. So to complete the

classification of algebraic groups we need the following:

1. Classify all semi-simple groups.;

2. Classify all R, i.e., all solvable groups;

3. Determine how to “glue” a semi-simple group G and a solvable group R to construct all

algebraic groups.

The first step is the classification of semi-simple groups—which is the focus of this section. We

have introduced many if the ideas needed to consider the two other steps, but the details are

beyond the scope of this work.

Unless indicated otherwise G and G0 will be semi-simple algebraic groups with maximal tori

T and T 0, character modules X and X 0 with root systems (with respect to T and T 0)
p

and

p0 and fundamental systems � and �0. We begin the reduced classification problem by noting

the following.

If � : G ! G0 is an isogeny, then � induces a one-to-correspondence between the sets of

closed and connected subgroups of G and G0 given by

H 7! �(H), and H 0 7! (��1(H))0

where (��1(H))0 denotes the connected component of the identity in ��1(H). In particular

this induces a one-to-one correspondence between the sets of maximal tori in G and G0. So
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let T be a maximal torus in G. The restriction of � to T must then be an isogeny of T to

T 0, and by Proposition 26 this induces an injection t�|
T

: X 0 ! X which has finite cokernal.

Denote t�|
T

as t�. For each ↵ 2
p
,↵0 2

p0 let x
↵

and x
↵

0 denote the isomorphisms of G
a

to

the subgroups P
↵

and P
↵

0 defined in the definition of a root. Then

tx
↵

(⌘)t�1 = x
↵

(↵(t)⌘) ) �(t)(� � x
↵

)(⌘)�(t�1) = (� � x
↵

)(↵(t)⌘)

for t 2 T, ⌘ 2 G

a

. In particular �(P
↵

) is a one dimensional unipotent subgroup of G0 which is

invariant under T 0, so for some ↵0 2
p0 we have that �(P

↵

) = P 0
↵

0 . Furthermore, after observing

the diagram

G

a

x↵
//

 

✏✏

P
↵

�

✏✏

G

a

x

0
↵0
// P 0
↵

0

where  is the map making this diagram commute, we can see that  is an isogeny. It

follows for any ⌘ 2 G1 that  (⌘) = �⌘q↵ where � 2 ⌦ and q
↵

is a power of the characteristic

exponent. Via a diagram chase we can then prove that

x0
↵

0(↵0(t0)�⌘q↵) = x0
↵

0(�↵(t)q↵⌘q↵

for all t 2 T, ⌘ 2 G

a

. We know that

↵0(t0) = (t�(↵0))(t)
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and so in additive notation

t�(↵0) = q
↵

↵

We may encode this data into the following definition

Definition 86. And injective homomorphism ⇢ : X 0
Q

! X
Q

is called special if

• ⇢(X 0) ✓ X

• There exists a bijection f :
p

!
p0 so that (⇢ � f)(↵) = q

↵

(↵) for every ↵ 2
p

with q
↵

denoting a power of the characteristic exponent.

To summarize, we have proven that the injective homomorphism t� : X 0 ! X which is

induced by an isogeny � : G ! G0 is special. In particular we note that � is an isomorphism if

and only if t� is surjective. The converse of this result is known as the fundamental theorem of

Chevalley, which is true over an algebraically closed field.

Theorem 87. (The Fundamental Theorem of Chevalley)

Let G,G0 be connected semi-simple algebraic groups with maximal tori T, T 0 and X,X 0

character modules of T, T 0. If there exists a special injective homomorphism ⇢ : X 0 ! X then

there exists an isogeny �/G ! G0 so that �/k and t� = ⇢. Furthermore, � is unique up to

inner automorphism given by T 2 T

Theorem 88. (Existence Theorem of Chevalley)

Let k0 be any prime field. If X is a free module of finite rank, and
p

a root system in X,

then there exists a connected semi-simple algebraic group G, defined over k0 having (X,
p
) as
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its root system with respect to some maximal torus T of G. Furthermore, we may take T to be

k0 trivial.

Definition 89. An algebraic group satifying the Existence Theorem of Chevalley is called a

Chevalley group

In particular, Theorem 87 gives that any Chevalley group G is uniquely determined by only

its character module X and its root system
p
. Thus we denote a Chevalley group by G(X,

p
).

Chevalley’s theorems can also be used to further reduce our classification problem to the

case where we only consider irreducible root systems in the following manner.

If we assume that
p

=
p

1 [
p

2 [ · · · [
p

n

is a decomposition into mutually orthogonal

irreducible subsets then the injection (�X
i

,[
p

i

) 7! (X,
p
) is special and thus G(X,

p
) is

isogeneous to
Q

G(X
i

,
p

i

). Now if
p

l

✓
p

is a closed subsystem, then denote by G(
p

l

) the

closed subgroup of G(X,
p
) generated by {P

↵

|↵ 2
p

l

}. It follows that G(
p

l

) is a connected

semi-simple algebraic subgroup, and restricting the previous isogeny to toG(
p

l

) gives an isogeny

from G(
p

l

) to G(X
l

,
p

l

). Therefore, the classification reduces to the case where
p

is irreducible.

Thus we give the following definitions:

Definition 90. An algebraic group G is called k�simple if G is defined over k, is semi-simple,

and every connected normal subgroup is either trivial or the whole of G. Furthermore, G is

called absolutely simple if G has an irreducible root system.

Concerning the field of definition, the following proposition modifies Theorem 88.
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Proposition 91. Let G(X,
p
) and G(X 0,

p0) be Chevalley groups defined over the prime field

k0 with maximal tori T, T 0 which are split over k0. If there exists a special injection ⇢ : X 0 ! X

then there exists an isogeny � : G(X,
p
) ! G(X 0,

p0) so that t� = ⇢. Furthermore � can be

taken to be defined over k0.

We now can see an outline of how the classification of connected semi-simple algebraic

groups over a perfect ground field k reduces to the problem of classifying absolutely simple

algebraic groups defined over a finite extension K/k.

Assume G
k

is a connected semi-simple algebraic group. Chevalleys theorems give that

G is isomorphic to a Chevalley group G(X,
p
) by a isomorphism defined over k. We may

reduce to the case where G is simply connected. So assume that G is k�isomorphic to the

product
Q

G(
p

i

) which are all connected, simple, and defined over k. Note that taking �i =

{� 2 �|G(
p

i

)� = G
i

} defines an extension K
i

/k which is the fixed field of �i. Since G(
p

l

) are

defined over a finite extension of k we have that K
i

/k is finite. Now set d = [K
l

: k] and let

{�1, · · · ,�
d

} be the set of coset representatives of �
�l be chosen with �1 as the identity. The set

{G�1
1 , · · · , G�n

1 } is the set of �-conjugates of G1, and each of these groups must be a factor of

G1 since � permutes direct factors of G1. Thus we have that G must be isomorphic over k to

Q

d

i=1G
�i
1 ⇥G0. Additionally the factor

Q

d

i=1G
�1
1 is invariant under � so it must be defined over

k. In fact, G is k�isomorphic to R
K1/k

(G1)⇥G0. Repeating this argument with G0 replacing G

we will have that G is isomorphic to R
K1/k

(G1)⇥R
K1/k

(G0
1)⇥ · · · . This implies the following.

Proposition 92. G is k�simple if and only if G ⇠= R
K1/k

(G1) where G1/K1 and G1 is ab-

solutely simple. Therefore, the classification of a connected algebraic groups G reduces to the



71

classification of k�simple groups, but this reduces to the classification of absolutely simple groups

defined over K, with K/k a finite extension. In other words—we have completed step 1. of our

classification of algebraic groups and would need to look toward steps 2. and 3. to complete the

classification of algebraic groups.
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