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SUMMARY

Estimation of the total effect of a set of selected variables in high-dimensional linear model

under sparsity assumption is complex due to the selection bias. This task is even more chal-

lenging when the sparsity assumption is violated and individual variable effects are weak, which

is common in genomic studies. Without variable selection, Yang et al have proposed an effec-

tive approach to estimating the total effects of single-nucleotide polymorphisms (SNPs) on a

quantitative trait when effects of SNPs are numerous and weak. In the thesis, we extended

Yang et al’s approach to estimating the total effect of a set of selected variables in a linear

model. The extension allows us to effectively reduce the scope of search for the causal SNPs

for a quantitative trait in presence of numerous weak effects. We also modify our proposed

approach to make it suitable for correlated SNPs. We perform extensive simulation studies

to demonstrate the effectiveness of the proposed approach in comparison to alternative ap-

proaches to this problem. The method is applied to detecting the expression quantitative trait

locus (eQTL) in gene-expression study of human brain tissues.

xi



CHAPTER 1

INTRODUCTION

1.1 The Problem of Identifying Causal Genetic Variants of a Trait

The rapid technology advancement has enabled researchers in biological sciences and other

fields to collect massive amount of data both in volume and in dimensionality in a relatively

short time period. For example, in a genome-wide association study (GWAS), genetic variants

in single-nucleotide polymorphism (SNP) in hundreds of thousands of loci are collected in each

subject. One major goal of the data collection is to identify causal genetic variants such as

SNPs that are responsible for complex disorders. Traditional statistical methods may not be

appropriate for handling such data because the data have more variables than observations. To

make use of the massive high-dimensional data to answer important questions, it is critical to

develop statistical methods for the analyses of such data. In the past two decades, a number

of novel statistical approaches have been proposed for variable selection, outcome prediction,

and statistical inferences for high-dimensional data (Tibshirani (1996), Sun and Zhang (2012),

Yang et al. (2010), Guo et al. (2016), Zhang and Zhang (2014)).

One simple and frequently used method for identifying important SNPs that are associated

with a complex disorder is to perform statistical tests of the association of the complex disorder

with the SNPs one-at-a-time. A cutoff value that adjusts for the multiple testing by controlling

the family-wise error rate (FWER) (Dunn, 1959) or false discovery rate (FDR) (Benjamini and

1
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Hochberg, 1995) may be used for screening the SNPs. FWER is the probability of incorrectly

rejecting at least one true null hypothesis among all the tests. A classical approach to control

FWER is Bonferroni adjustment (Dunn, 1959) which controls the FWER strictly by increasing

the significant level in individual tests according to the total number of hypotheses tested. No

additional assumptions are required for this approach to work. In other words, the overall error

is always under control as long as the significance of individual tests is adequately adjusted

irrespective to the number of tests conducted or whether the tests are independent. Using

FWER adjustment for multiple testing is too conservative. When the data include a large

number of SNPs, Bonferroni procedure sets a very stringent cutoff value which makes it difficult

for a causal SNP to be detected. A less conservative approach is to control the false discovery

rate (FDR), which measures the expected proportion of the falsely rejected null hypotheses

among all the rejections. The original FDR method, called BH-FDR, is introduced by Simes

(1986) and further developed by Benjamini and Hochberg (1995). The basic procedure is to

rank the tests according to the p-value and compare each individual p-value with certain critical

values. Compared with Bonferroni procedure, the FDR gains more power when more non-nulls

are present. These methods can detect a SNP with a big effect relative to the noise level. For

SNPs with weak effects, a relaxed criterion needs to be applied to detecting them. However,

the false negative rate is increased with a relaxed criterion.

Many improvements on the BH-FDR method have been proposed. Benjamini and Hochberg

(2000) improved the BH-FDR by incorporating the estimated number of true null hypotheses.

The new approach is called adaptive BH-FDR. Besides the adjustment procedures in indepen-
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dent or weak positive dependent tests, a procedure called BY-FDR is also introduced to account

for the FDR in correlated tests (Benjamini and Yekutieli, 2001). Storey (2002) extended the

FDR method to control for pFDR, the expected false discover rate given the positive discovery

event occurs. Generally, pFDR is more powerful compared with BH-FDR. Benjamini et al.

(2006) introduced another method by considering the distribution of p-value, and the testing

power is further improved through the process. Efron (2008) introduced “fdr” to estimate

the local FDR for each case. Compared with traditional FDR, fdr method is more readily

interpretable as it is the empirical Bayesian posterior probability of the false positive event con-

ditional on the observed test events. In general, the FDR methods are more powerful than the

Bonferroni procedure, they have the best performance when the tests are independent. When

the number of tests are large and most signals are weak, FDR method can be computationally

costly and it may increase the false positive rate unless the sample size is sufficiently large. In

addition, SNPs detected by the individual tests are less likely to be causal SNPs than those

detected by model-based approaches because fewer confounding effect adjustments are included

in individual tests.

A more sophisticated approach to the causal SNP detection is the model-based methods that

model the effects of SNPs on the disorder and apply one of the variable selection approaches

to the SNPs. One popular approach is to use the l1 penalty of the regression parameters to

automatically select the variables. With l1 penalty, the small coefficients are shrunken to zero

while large coefficients, though also shrunken, remain nonzero. Therefore, the Lasso approach

(Tibshirani, 1996) can select variables by adjusting the penalty levels. Many extension and im-
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provement of the Lasso approach have been proposed for dealing with high-dimensional data.

Zou and Hastie (2005) added an l2 penalty to the Lasso estimation function, termed “elastic

net”, to ensure unique solutions when covariates are highly correlated. Yuan and Lin (2006)

proposed “group Lasso” to allow for a pre-assigned groups of covariates to be selected into

the model together. In addition to assigning penalty on the sum of the squared coefficients,

Tibshirani et al. (2005) introduced the Fused Lasso to extend the penalty to the differences

between the coefficients. As a result, in the Fused Lasso, not only the coefficients are sparse,

their differences are also sparse. Usually, the cross-validation approach is used to find the op-

timal penalty level, which is associated with the true noise level. To avoid such search, Belloni

et al. (2011) proposed a method called square-root Lasso, using the square-root of the error

variance estimate as the estimation function. It has been shown that the square-root Lasso can

give an equivalent result as Lasso without using information of noise level. Furthermore, the

computation is more efficient by formulating the solution as a conic programming. Stadler et

al. (2010) maximized a joint log-likelihood of coefficients and noise level with l1 penalty. Al-

though the estimation function is non-convex, which means no global optimum is guaranteed,

this approach still gives a better solution compared with the non-penalized maximization likeli-

hood. Sun and Zhang (2012) improved Stadler et al.’s approach by using an iterative strategy.

Their approach, termed the scaled Lasso, guarantees the convergence through transforming

the function into a joint convex loss (Antoniadis, 2010). In addition, the noise level estimator

in the scaled Lasso is shown to be consistent and asymptotic normal under certain regularity

conditions. Sun and Zhang (2012) also suggested to re-estimate the coefficients and noise level
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using the ordinary least square after the Lasso selection, which can further reduce the bias of

estimators. Since the optimal model selected by the scaled Lasso usually have a smaller number

of coefficients than the sample size, some statistical inference can be conducted. The statistical

inference based on the scaled Lasso limits to the non-zero coefficients, an improved approach

is proposed to expand the inferences to all coefficients (Zhang and Zhang (2014), Geer et al.

(2014)). This method is called “Low Dimensional Projection Estimator (LDPE)” in Zhang

and Zhang (2014). By approximating the inverse of covariance-variance matrix for covariates

using Lasso approach, LDPE can estimate the single coefficient with much smaller bias. This

method also gives an estimation of standard errors of the estimated coefficient, which makes

statistical inference possible for high-dimensional data. Simulation studies show that the confi-

dence intervals constructed by the proposed methods have a good overall coverage for the true

coefficients.

In addition to the Lasso approach and its extensions, lp penalty has also been used in high-

dimensional data. When p = 2, it is ridge regression and it shrinks the estimators proportionally

without reducing the model size in a high dimensional model. Another extension is the bridge

regression which does not take the pth root of the penalty in comparison to the lp penalty.

When p = 1 or p = 2, bridge regression reduces to the Lasso regression or Ridge regression,

respectively. When p > 2, bridge regression tends to shrink small estimators with smaller

rate and large estimators with large rate (Fu, 1998). Therefore, for p > 2 with large signals,

bridge regression cannot capture the large signals as well as Lasso. Fan and Li (2001) proposed a

quadratic spline function with knots at penalty level to further reduce the bias of the estimators,
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and they call it “smoothly clipped absolute deviation (SCAD)” penalty. By imposing different

penalties on coefficients in different scales, this approach sets small coefficients to zero, shrinks

not-so-small coefficients towards zero, and does not shrink large coefficients. As a result, SCAD

produces a sparse and approximately unbiased coefficients for large coefficients. One of the

problems with the SCAD approach is that the penalty function is concave, which makes the

computation of the estimator very challenging because fast computational approaches such as

the convex programming, cannot be directly applied to computing the estimator. In contrast,

Lasso type of approaches can usually be solved by the convex programming approach or even

linear programming approach, which is very important for handling high-dimensional data.

Adaptive Lasso assigns different weights to different coefficients. It helps correct the bias in

Lasso, but requires a set of pre-estimated weights which may not be obtainable in the high-

dimensional problem (Efron et al. (2004), Friedman et al. (2007), Friedman et al. (2010), Zuo

and Hastie (2005)). The Lasso regression has also been extended beyond the simple linear

regression model to the generalized linear models and other regression models. Many variations

have been proposed for different situations (Breiman (1995), Geer (2008), Tibshirani (1997),

Goeman (2010)).

1.2 The Challenge of Detecting Numerous Weak Signals

The Lasso approaches have good properties in prediction and variable selection. Under some

regularity conditions, the Lasso approach can achieve the optimal prediction error rivaling

knowing the true model a priori (Bickel et al., 2009). The Lasso approach can also achieve

selection consistency (Zhao and Yu, 2006) under reasonable conditions. Parameter estimation
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and inferences have been well studied by Zhang and Zhang (2014) and Geer et al. (2014).

One important requirement for those results to hold is the sparsity assumption on variables

in the model. For the GWAS data, this means that, conditional on a small set of SNPs, the

disorder is uncorrelated with or independent of the rest of SNPs, and the effects of the set of

associated SNPs are reasonably strong. In genomic study of a complex disorder or trait, this

requirement often fails to hold. In other words, the set of SNPs that are jointly correlated with

the complex disorder or trait is not small and the effects of the SNPs are weak. As a result,

Lasso-type of approaches can detect only a small number of SNPs associated with the disorder

and, collectively, they can only explain a small proportion of the variation of the complex

disorder or trait attributable to the SNPs.

To tackle the problem of having many causal SNPs with weak effects in the genomic studies,

Yang et al. (2010) proposed a working linear mixed effects model (LMM) to estimating the

total effects of the causal SNPs tagged by the typed SNPs in a GWAS. This method has been

successfully applied to many GWASs in estimating the total variation of a complex disorder

or trait explained by typed SNPs, a.k.a., the narrow-sense heritability. This quantity ties to

the traditional heritability also termed “broad-sense” heritability. As a fundamental concept in

genetics, heritability summarizes how much variation of a quantitative trait can be explained

by genetic, or genetic-environmental effects (Naomi and Visscher (2008) Griffiths et al. (2000)).

A quantitative trait is a manifested numeric characteristic having genetic determinants. In

statistical model, gene and environment factors are considered two major factors that impact

the quantitative trait. Families studies have been the primary method of estimating heritability.
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Since the variance of environmental and genetic factors cannot be measured directly, heritability

needs to be estimated through carefully varying the levels of genetic variability among studying

subjects. Therefore, members within families are often used for such analyses as they share some

common genetic factors and differ in others. Twin studies, relying on the fact that identical

twins share the 100% genes while fraternal twins share 50% genes on average and both set

share 100% environment in theory, can disentangle the genetic and environmental effects to

certain degree so that the heritability can be estimated (Render et al. (1990), Poderman et al.

(2015)). More generally, family studies with sample of siblings, parents, and offsprings are more

available (Jang (2005), Alexander et al. (2014), Chen et al. (2007)). Analysis of studies usually

use regression models or analysis of variances (ANOVA). Although family studies can reveal the

risk of passing down a certain diseases within the whole family, the genetic and environmental

factors are not easy to be separated within the family. Therefore, the inflated heritability is

often reported when effect of shared environment is ignored (Alexander et al., 2014). One

solution to remove the effect of shared environment effect is to conduct a corresponding twin

study. Studies conducted within family have been able to reveal variances explained by genes

in many phenotype (e.g. heights, hair color, etc). Nevertheless, for some common, complex

diseases, family studies have been proved to be hard to reproduce the results (Strachan and

Read, 2010). On the other hand, the rapid development of GWAS has provided an alternative

solution to estimating heritability estimation in complex disorders. Compared with twin and

family studies, GWASs are conducted among distant-related subjects, therefore less confounding

of environmental and genetic factors. As the model only considers additive genetic effects, the
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heritability computed by GWAS often refers as “narrow-sense heritability”. Jiang et al. (2016)

showed that the working linear mixed model approach yields a consistent estimator of the

narrow-sense heritability even if the linear mixed model holds only on a subset of a large pool

of SNPs. Their numeric comparison also clearly demonstrated the better performance of Yang

et al’s approach in comparison with the Lasso-type of approaches in cases with numerous weak

signals. Additional simulation comparisons can be found in (Vattikuti et al. (2012), Lee et al.

(2012), Listgarten et al. (2012)).

Although the LMM approach can be applied to estimating the total variations explained by

the typed SNPs in a GWAS, no information is gained on identifying SNPs that are responsible

for the effects in using this approach. It is important in practice to identify the specific SNPs

responsible for the effects on the complex disorder or trait, and when this is not possible, to

narrow down the scope of search for the set of SNPs responsible for the trait among tens or

hundreds of thousands of SNPs included in a GWAS. To accomplish the latter task, we may ap-

ply the individual testing strategy with relaxed cutoff values or a Lasso-type variable selection

approach with relative small penalty parameter values to select a subset of SNPs. Conditional

on selection of covariates, the estimated coefficient is no longer unbiased. The sampling distri-

bution of the estimated coefficient is a truncated normal distribution (Garner (2007), Zhong

and Prentice (2008)). The bias depends on the true coefficient value, the corresponding stan-

dard error, and the significance level. For variables with weak signals, the chance of their being

selected is low and the bias can be large if selected. Such phenomenon is called “winner’s curse”

(Capen et al., 1971). If the linear mixed model is applied to the selected variables, the estimated
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variation explained by the selected covariates from the linear mixed model is in general subject

to upward bias. A frequently used approach in practice is to split the data into two halves.

One half is used for model selection and the other half is used for estimation. The resulting

estimator for the variation explained is subject to large variation. In addition, it yields a biased

estimator for the variation explained by the selected SNPs from the whole sample.

Lasso and its extensions can also be used for signal estimation. The scaled Lasso (Sun

and Zhang, 2012) can in principle be used to obtain the total variation explained by selected

covariates through subtracting the noise from the total variation of the outcome. Since LDPE

(Zhang and Zhang, 2014) corrects the bias in the coefficient estimation of Lasso, the estimators

may be used to estimate the total variation. However, small individual bias can accumulate if

many nonzero effects are involved. Guo et al. (2016) proposed an approach to adjust for the total

bias in the estimation of the overall variation explained by a set of covariates. The method

is termed “Functional De-biased Estimator (FDE)”. By assuming the negligible error term,

FDE adjusts the overall bias in the sum of squared scaled Lasso coefficients by estimating the

interaction term between estimated coefficient and corresponding error term. The estimation

is shown to achieve the optimal rate of convergence. In addition, the simulation studies show

it consistently outperforms other Lasso approaches in estimating the total variation.

Certain assumptions are needed for both Yang et al.’s approach and Lasso-related ap-

proaches. For Yang et al.’s approach, the coefficients are assumed to be random, while Lasso

approaches usually make assumptions on the sparsity of the regression coefficients and the

knowledge of noise level. Janson et al. (2017) proposed an approach called EigenPrism to esti-
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mate the variation in high-dimensional data without assuming anything on the coefficients, in-

stead, they assume the covariates are normally distributed (See also Dicker (2014)). EigenPrism

provides estimated standard errors of the signal estimators under the normality assumption on

the covariates. Thereby, the EigenPrism approach allows direct inference on the total variation.

To estimate the variation explained by a set of selected variables, one may first correct the

bias in the estimators for the selected variables, and then sum over the squared estimators.

Zhong and Prentice (2008) derived the conditional expectation of estimated coefficient, and

adjusted the estimator through subtracting the estimated bias. A similar approach proposed by

Ghosh et al. (2008) used a conditional maximum likelihood to correct the bias in the estimated

coefficients. Such approach, though can reduce the bias of coefficient estimators, it is not

unbiased and bias may also be introduced when the estimator is squared to obtain a total

variation estimator. This is because bias in the total variation estimator can be large due

to the cumulative effect even though bias in individual estimator of the coefficients can be

negligible after correction. Chen (2016) proposed an approach to directly adjust the bias in the

squared coefficient estimators. Under weak conditions, his method is shown to be consistent.

When the selection criterion is less stringent, more covariates can be included in the subset, and

correcting individual estimator may not be an efficient approach and more bias can be included

when we sum over the corrected estimators.

1.3 The Proposed Work

In this thesis, we conduct a series of studies focusing on the estimation of total variation

explained by a subset of selected covariates based on the whole sample. We first examine
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performance of current approaches through an extensive simulation study. Next, we propose a

subsampling approach to estimating the variation explained by a set of SNPs selected from the

individual testing approach based on the whole sample. The subsampling approach was studied

as an extension to jackknife approach for variance estimation in Shao (1989) and Shao and Wu

(1989), and as an alternative to the bootstrapping approach to constructing confidence interval

by Politis and Romano (1994). For variable selection, the subsampling approach was proposed

in Meinshausen and Buhlmann (2010). Recently, Bin et al. (2006) performed an empirical

study of the subsampling approach to variable selection and found it more appealing than the

bootstrapping approach. The problem we consider in this paper is estimation after selection

with non-sparse weak signals whereby the subsampling approach is particularly attractive. The

method allows us to reduce the scope in hunting for the causal SNPs in a GWAS. We also

extend the proposed method to selections by Lasso-type approaches for correlated covariates.

As a byproduct, the subsampling approach also provides variance estimates for the proposed

estimators, which makes inference possible. We also compare the variance estimates by the

proposed approach and EigenPrism.

The remainder of this thesis is organized as follows. In Chapter 2, we formulate the problem

in a linear mixed model and demonstrate why the conventional sample splitting approach does

not work well. A simulation study is conducted to compare the major approaches to solving

this problem. In Chapter 3, we propose a subsampling approach with adjustment to cutoff

values in selection for estimating and for making inference on the variation explained by a set

of selected SNPs. Comprehensive simulation studies are performed to evaluate the proposed
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approach in comparison to alternative approaches and applies the proposed approach to ana-

lyzing the expression quantitative trait loci (eQTL) in human brain tissues. Chapter 4 extends

the proposed approach to correlated covariates. Chapter 5 discusses potential improvement and

possible additional theoretical justification for the proposed approach.



CHAPTER 2

THE WEAK SIGNAL PROBLEM AND POSSIBLE SOLUTIONS

2.1 Problem Formulation

Let y be the outcome, usually the measurement of a complex disorder or trait. Let

x1, · · · , xm be covariates denoting the typed SNP values. The SNP effects on the complex

disorder or on a quantitative trait is modeled by a linear model as,

y = β0 + β1x1 + · · ·+ βmxm + ε, (2.1)

where β1, β2, . . . , βp are independently distributed as N(0, σ2g/p) and βp+1, . . . , βm are zeros, and

ε is the random error distributed as N(0, σ2ε ). Note that β0 could be a function of other non-

SNP confounders to be adjusted. For notation simplicity, we suppress them in the discussion.

Let Y = (y1, · · · , yn)t be the observed outcomes and Xn×m be the observed covariate matrix.

The vector form of the linear model appears as

Y = β01 +Xβ + ε,

where 1 = (1, · · · , 1)t, β = (β1, · · · , βm)t, and ε = (ε1, · · · , εn)t. The variance matrix of Y is

var(Y ) =
1

p
E(XpX

t
p)σ

2
g + Inσ

2
ε , (2.2)

14
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where Xp is the submatrix of X retaining the columns with indices corresponding to the nonzero

indices of β. Note that σ2g = E||β||22. The total variation of a subject’s trait explained by the

covariate x = (x1, · · · , xm)t is 1
pE
(∑p

j=1 x
2
j

)
σ2g , which is σ2g when E(x2j ) = 1 for j = 1, · · · , p.

In this case, the proportion of variation explained by all the typed SNPs is

h2 =
σ2g

σ2g + σ2ε
,

which is termed the narrow-sense heritability in genetic literature.

Under Equation 2.1, we may intuitively estimate individual βj by the least-square approach

based on the following linear model,

y = β0j + βjxj + ej , (2.3)

for j = 1, · · · ,m, where var(βj) = σ2ej . Since we do not know p, nor which covariates have

nonzero effects, one might use
∑m

j=1 β̂
2
j to estimate σ2g . With large m, this estimator per-

forms very poorly. Yang et al. (2010) proposed a restricted maximum likelihood approach to

estimating σ2g which is amount to using the approximation

1

p
XpX

t
p ≈

1

m
XXt.

Numeric studies (Goeman, 2010; Yang et al., 2011; Deloukas et al., 2012; Lee et al., 2012)

demonstrated that Yang et al’s approach to estimating σ2g , and thus the narrow-sense heritability
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h2, has very good performance in presence of numerous weak effects. Jiang et al. (2016) showed

that, when p/m → c and n/m → d where c ≤ 1 and d > 0, Yang et al’s approach yields a

consistent estimator of σ2g .

Yang et al.’s approach can handle problems with varying levels of effect sparsity. We con-

duct a simple simulation study to demonstrate the robustness of the approach. The data are

simulated using steps 1-3 of the algorithm in the simulation section in Chapter 3 with parame-

ters (n,m, σ2g , σ
2
e) = (200, 4000, 6, 4), and p varies from 20 to 4000. Figure 1 shows the box plots

of the simulation results. Although LMM method assumes all the βs are normally distributed

with mean zero, the estimation of σ2g is unbiased even when the coefficients are sparse. For

p = 20, Yang et al.’s approach performs similarly to that when p = 4000. This means Yang et

al’s approach is very robust to a wide range of the effect sparsity.

20 50 100 200 500 1000 2000 4000

0
2

4
6

8
1
0

1
2

1
4

sparsity parameter

e
s
ti
m

a
te

d
 σ

2

Figure 1: Box plot with varied sparsity using LMM method with n = 200, m =4000,
p = (20, 50, 100, . . . , 4000), σ2g = 6, σ2e = 4, the red line is the truth
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2.2 Variable Selection

Yang et al’s approach does not yield a specific set of SNPs that are responsible for the

explained variation. To further investigate this problem, we propose to select a subset of SNPs

that are more plausible to account for the explained variation. Let Sλ be the set of indices of X

selected with the tuning parameter value λ. Since the individual effect estimators are subject to

large variation, we would like to estimate the variation explained by the selected SNPs instead,

i.e., to estimate

σ2λ = E

∑
j∈Sλ

β2j

 . (2.4)

Many variable selection approaches may be used. One simple selection approach is thresholding

by individual tests based on the coefficient estimates from Equation 2.1. Let β̂j and σ̂βj denote

respectively the estimator of βj and the standard error estimate of β̂j . For a given significance

level α, Xj is selected if

| β̂j
σ̂βj
| ≥ z1−α/2, (2.5)

where z1−α/2 denotes the normal cutoff point for a given α, i.e., Φ(z1−α/2) = 1− α where Φ is

the normal distribution function. A simple selection using thresholding is to run the univariate

regression of Y on a single Xj . This method is attractive when the covariates are independent.
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Although the simple thresholding method can also be applied to the case with correlated co-

variates, which is more frequently occurred in practice, variable selection by the Lasso approach

is more attractive when covariates are correlated. The Lasso approach minimizes

||y − β0 −Xβ||22 + λ||β||1,

where ||a||22 =
∑p

k=1 a
2
k and ||a||1 =

∑p
k=1 |ak| for any a = (a1, · · · , ap). Lasso and its exten-

sions (Tibshirani (1996), Sun and Zhang (2012), Guo et al. (2016), Zhang and Zhang (2014))

have been shown to be very useful in the analyses of high-dimensional data. Given a penalty

parameter λ, Lasso estimator of β is defined as

β̂L = arg min

{
N∑
i=1

(yi − β0 −Xiβ)2 + λ||β||1

}
. (2.6)

Since the elliptical contour of
∑N

i=1(yi − β0 −Xiβ)2 is easy to hit corners, at which the corre-

sponding regression coefficient is zero. The Lasso estimators are sparse, setting small βs to zero

and shrinking the large βs towards 0. Lasso approach can perform automatic variable selection

and estimation.

2.3 Estimation of Total Variation Explained by Selected Covariates

Upon variable selection, the total variation explained by the selected covariates can be esti-

mated using different approaches. The approaches can be divided into two categories: one is to

assemble individual estimators for the selected covariates. This approach usually involves cor-

recting the bias in the individual estimators first, and then directly adding adjusted estimators
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together with possibly additional corrections. The other approach uses the group of selected

covariates to re-estimate σ2α = E
(∑

j∈Sα β
2
j

)
as a single target.

2.3.1 Methods by assembly of individual estimators

The simplest approach is the plug-in estimator. Let β̂j be the estimator for βj . The plug-in

estimator estimates σ2S by

σ̂2S1 =
∑
j∈S

β̂2j , (2.7)

where S represents the selected set of covariates. When β̂j is an unbiased estimator of βj con-

ditional on jth variable being selected, this estimator overestimates the attributable variation

to the selected covariates. This is because

E
(
β̂2j | j ∈ S

)
= β2j + V ar(β̂j | j ∈ S).

If we have a unbiased estimator of the variance of the βj estimator, that is,

E(σ̂2βj | j ∈ S) = V ar(β̂j | j ∈ S),

a natural unbiased estimator that corrects the upward bias in σ̂2S1 is

σ̂2S2 =
∑
j∈S

(β̂2j − σ̂2βj) (2.8)
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where σ̂2βj is the estimated variance of β̂j .

In many practical applications, we only have an unbiased estimator of βj and usually a

(nearly) unbiased estimator of the variance of βj without conditional on the variable being

selected. That is,

E(β̂j) = βj and E(σ̂2j ) = V ar(β̂j).

Conditional on the variable being selected, β̂j is no longer unbiased for βj . That is,

E(β̂j | j ∈ S) 6= βj .

In this case, a correction of the selection bias is needed before the use of σ̂2S2.

To correct the selection bias (also known as “winner’s curse” in Galton (1886)), let β̂j

and σ̂2j be respectively the unbiased estimators (without conditional on being selected) for βj

and var(β̂j) respectively. Given a cutoff value c, the sampling distribution of β̂j (Zhong and

Prentice, 2008) conditional on the jth variable being selected,

f
β̂j ||

β̂j
σ̂j
|≥c

(x, βj) =

1
σj
φ(

x−βj
σj

)

Φ(
βj√
σj
− c) + Φ(− βj√

σj
− c)

1(| x
σj
| ≥ c) (2.9)
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Given that variable j is selected, the expectation of β̂j can be written as

E

(
β̂j

∣∣∣∣| β̂jσ̂j | ≥ c
)

=

∫
|x|≥cσj

xf
β̂j ||

β̂j
σ̂j
|≥c

(x, βj)dx

= βj +
φ(

βj√
σj
− c)− φ(− βj√

σj
− c)

Φ(
βj√
σj
− c) + Φ(− βj√

σj
− c)

(2.10)

By solving the Equation 2.10, we can obtain the adjusted βj after variable selection. Denote

the winner’s curse adjusted estimator by β̂wj . A plug-in estimator for the variation explained

by the selected covariates is

σ̂2S3 =
∑
j∈S

β̂2wj , (2.11)

If we have also a variance estimate σ̂wj for the β̂wj , an estimator with further correction is

σ̂2S4 =
∑
j∈S

(β̂2wj − σ̂2wj), (2.12)

which is called a double correction approach.

Another approach proposed by Chen (2016) is based on an approximately unbiased estimator

of β̂2j conditional on being selected. The estimator appears as

β̂2cj = σ̂βj

{
(
β̂2j
σ̂βj
− 1)1j∈S − 2

β̂j√
σ̂βj

√
1 + ξ2√

2π

[
exp(−

ξ2â2j
2

)− exp(−
ξ2b̂2j

2
)
]

+
(ξ2 − 1)

√
1 + ξ2

2π

[
âj exp(−

ξ2â2j
2

)− b̂j exp(−
ξ2b̂2j

2
)
]}

(2.13)
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where âj = z1−α
2
− β̂j√

σ̂βj
, b̂j = zα

2
− β̂j√

σ̂βj
, and ξ is a constant which may be set between 4 and

10. An estimator of the variation explained by the selected covariates is

σ̂2S5 =
∑
j∈S

β̂2cj . (2.14)

All of the above approaches aim at adjusting individual βj estimates and then add all the

adjusted estimates together. Although many of the adjusted β estimators have been shown to

be asymptotically unbiased for estimating individual βj , the additive effect of a large number

of small errors in individual βj estimates can accumulate to lead to a large bias.

The individual unbiased estimators for each βj may be obtained by the marginal regression

based on Equation 2.3. This works well when the covariates are independent. When covariates

are dependent, Lasso approach may be used to select and estimate the regression coefficients.

However, the Lasso estimator of the regression parameters are biased and the distributions of

of the Lasso estimators are difficult to characterize. Zhang and Zhang (2014) and Geer et al.

(2014) proposed an approach called low-dimensional projection estimator (LDPE) which can

reduce the bias in the Lasso estimators and provide a variance estimate for the debiased Lasso

estimators.

The LDPE estimator can be expressed as,

β̂j = β̂0j +
zTj {y −Xβ̂0}

zTj xj
(2.15)

where β̂0 is the estimators from scaled Lasso, and zj is the relaxed projection.
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Given y = Xβ + ε, ε ∼ N(0, σ2I), we have the estimated error of Equation 2.15 is

β̂j − βj =
zTj ε

zTj xj
+

1

zTj xj

∑
k 6=j

zTj xk(βk − β̂0k) (2.16)

The first term in the Equation 2.16 is defined as the noise term and the second term is the

approximation error term controlled by the maxk 6=j |zTj xk|/||zj ||2. To control both the noise

and approximation error, we need to find a proper λj for the estimation of zj .

The relaxed projection matrix for the sparseXj to the orthogonal complement of the column

space of X−j

zj = xj −X−jγ̂j , γ̂j = arg min
γj

{
||xj −X−jγj ||22

2n
+ λj ||γj ||1

}
(2.17)

λj is chosen based on the error and variance in the final estimation of β. By following the

iterative strategy in Zhang and Zhang (2014), we can find a reasonable λj with relatively large

but acceptable bias and small variance. Finally, the estimation of σej =
||zj ||2
|zTj xj |

σ based on

Equation 2.16 where
zTj ε

||zj ||2 ∼ N(0, σ2) and error term is bounded with suitable zj .

A theoretical justification of LDPE is provided in Zhang and Zhang (2014). If the data

is satisfied with the regularity condition, β̂j − βj approximates normality with mean 0 and

variance σ̂2
||zTj ||22
|zTj xj |2

. Since the variance estimator of β̂j is σ̂2 times the noises of the estimator,

the estimator is quite dominated by the noise estimator in the scaled Lasso regression, which

in turn, depends on the sparsity assumption of the data. Furthermore, the iterative approach

of searching for proper λj in the Z matrix estimation through loosing the noise τj may widen
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confidence interval of βj . With β̂j and the corresponding σ̂ej from LDPE, we can apply the

same individual tests in Equation 2.5 to select X.

Since no code is available for LDPE approach, before applying this approach in our sim-

ulation, we wrote our own R codes to implement LDPE approach, and validate our coded by

repeating the simulation results published in Zhang and Zhang (2014). See Appendix A for

more details.

2.3.2 Direct estimating the explained variation as a parameter

Adjusting bias in individual coefficient estimates and adding the adjusted estimates together

are easy. However, the approach may not be efficient. Furthermore, the cumulative effect may

result in a large bias in the final estimator even through the biases are small in individual

coefficient estimators. To resolve the problems, we consider direct estimation approaches in

this section.

The scaled Lasso (Sun and Zhang, 2012) can in principle be used to estimate the total

effects as follows. Following the solution path of iteratively estimating noise level σ, β, and λ,

the scaled Lasso algorithm converges to a set of β̂L and σ̂ such that

β̂L, σ̂ = arg min
β,σ

{∑N
i=1(yi − β0 −Xiβ)2

2σn
+
σ

2
+ λ||β||1

}
(2.18)

The initial penalty level of the scaled Lasso is set to
√

(2/n) logm. The estimation of β and

σ2 are bounded as long as λ = A
√

(2/n) log(m/ε) given some A > 1 and ε ∈ (0, 1]. Since σ̂

in the scaled Lasso is consistent and asymptotically normally distributed when the non-zero
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coefficients are sparse and reasonably strong (Sun and Zhang, 2012), we can estimate σ2g by

subtracting the σ̂2 from the total variance. The following variance equality

σ2g = V ar(Y )− σ2 (2.19)

immediately implies a plug-in estimator.

Recently, Guo et al. (2016) proposed a new estimator for
∑m

j=1 β
2
j under the high-dimensional

linear model framework. Their approach uses the scaled Lasso estimation at the initial step, ad-

justs the
∑m

j=1 β
2
j estimate by estimating the < β̂, β̂−β >, where β̂ is the coefficient estimator

from the scaled Lasso. From

m∑
j=1

(
β̂2j − β2j

)
= 2 < β̂, β̂ − β > −

m∑
j=1

(β̂ − β)2, (2.20)

since the second term on the right hand side in Equation 2.20 is negligible, to correct the bias

in
∑m

j=1 β̂
2, we need to estimate the quantity < β̂, β − β̂ >. To estimate the < β̂, β − β̂ >, a

projection vector u is identified to control the following difference,

1

n
utXt(Y −Xβ̂)− < β̂, β − β̂ >= (utΣ̂− β̂)(β − β̂) +

1

n
utXtε (2.21)

where Σ̂ = XtX
n . The u can be solved through the following constraint optimization.

arg min
u

{
utΣ̂u : ||Σ̂u− β̂||∞ ≤ ||β̂||2

λ1√
n/2

}
(2.22)
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Equation 2.22 can be solved through its equivalent Lagrange dual problem. The idea of Equa-

tion 2.22 is to control the upper bound of (utΣ̂ − β̂)(β − β̂) and the variance of 1
nu

tXtε in

Equation 2.21. After obtaining û, < β̂, β − β̂ > is then estimated by 1
nu

tXt(Y − Xβ̂) as the

right hand side is canceled out. They called the estimator thus obtained the functional de-biased

estimator (FDE).

This method appears promising, as it treats
∑m

j=1 β
2 as a single parameter, and directly

adjust the total bias in the scaled Lasso estimator. On the other hand, the sparsity requirement

may limit its performance when the requirement is satisfied. In addition, since the error bound

of FDE is positively associated with ||β||2, the bias of the quadratic form estimation increases

as the scale of the signal strength increases.

In our simulation, we implemented FDE using R code we wrote. To verify the correctness

of the codes and to demonstrate the possible limitations discussed above, simulations are con-

ducted with similar set-up in the (Guo et al., 2016) and additional cases. See Appendix B for

details.

Another approach to estimating the total variation explained by the selected covariates is to

apply Yang et al’s approach directly to the selected covariates. We call this approach the naive

application of Yang et al.’s approach. This is because, the approach is no longer asymptotically

unbiased for estimating the explained variation once the covariates are selected non-randomly.

To correct this bias, we also consider an alternative approach based on Yang et al., which split

the sample into two halves. One half is used to select the covariates. The other half is used to

estimate the variation explained by the selected covariates.
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2.4 Simulation Designs and Results

In this section, I conduct extensive simulation study to compare the methods discussed

earlier. In generating the simulation data, I consider two different scenarios. Simulated cases

in the first scenario are consistent with the assumption of Yang et al.’s approach. Non-zero

βjs are random and follows a normal distribution, and all the covariates are independent. The

set-up is as follows.

1. X : Generate m random numbers following U(0.05, 0.5) distribution, representing as p;

generate n×m matrix with each column following Binomial(2,pi);

2. β: for βi ∈ p, it follows N(0, σ2g/p), and βj = 0 otherwise;

3. ε: follows N(0, σ2e)

4. Y : Y = Xβ + ε

The parameter (m,n, p, σ2g , σ
2
e) are varied to account for different situations. m is fixed at 4000

and p is fixed at 40 here. n is varied in 400 and 1000 to see if any approaches might be influenced

by the sample size. Furthermore, I vary the size of
σ2
g

σ2
g+σ

2
e

from 0.4 to 0.6 to see that how these

approaches will differ with different signal ratios. The total variation σ2g +σ2e is chosen between

10 and 50 to account for the random noises in penalized regression.

In the second scenario of data generation, SNPs are correlated and and their effects are

fixed. The specific set-up is as follows,

1. X : Generate Xj following N(0,Σx), where the ij entry of Σx, Σx(i, j) = ρ|i−j| for a given

ρ > 0
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2. β: for βj = τ/2 ∗ (1 + j/p) for j = 1, · · · , p and βj = 0 otherwise;

3. ε: follows N(0, σ2e)

4. Y : Y = Xβ + ε

The analysis of the simulated data includes two steps. The first step selects variables based

on certain criteria. The second step applies the methods to estimate variation explained by the

selected covariates. For the variable selection, two approaches are used here, one is the simple

linear marginal estimation; and the other is the LDPE approach. For the explained variation

estimation, the following approaches are used: simple adjustment, error adjustment, winner’s

curse adjustment, doubly adjustment, Chen’s approach, LMM-based approach, scaled Lasso

estimation, LMM-based approach with data split (1:1), and FDE approach. The thresholding

levels are set to − logα = 0, · · · , 9, where α is the test significance level. Simulation results are

based on 100 replicates.

2.4.1 Experiment 1

For the first scenario, Table I-VII display the mean square error of various estimators at

different selection criteria. The mean of estimates of different approaches at various α level

are plotted in figures (see Figure 2-16. The boxplots (Figure 3-17) of the estimates from each

approaches are plotted alongside of the truth for easy comparison. Similarly, Table IX-X,

Figure 18-21 are result displays for the second simulation scenario.

For the first set with n = 400, m =4000, p = 40, σ2g = 3, σ2e = 7, Table I shows that

scaled Lasso gives the smallest MSE value when − log(α) is small. As the selection criterion

becomes stricter, LMM approach consistently outperforms the other approaches. Since MSE is a
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measurement combining the estimator means and variances, we also plot the mean of estimators

across simulations to see how the approaches performs respect to the means. Figure 2 shows

that both Chen’s approach and LMM with split follow the true trend quite well. Specifically,

Chen’s approach consistently outperforms the others when − log(α) is greater than 10. On

the other side, as the − log(α) becomes larger, the LMM split estimator differs more. For the

LMM, scaled Lasso, and FDE approaches, the estimators do not follow the trend quite well,

suggesting that they might have a relatively large bias and small variances. Figure 3 displays

the mean variance trade-off with more details. It shows that Chen’s approach consistently cover

the truth with larger variances when − log(α) ≤ 5. For the other approaches (i.e. LMM, LMM

split, scaled Lasso and FDE) which give smaller variances, the mean of estimators are too off

compared with truth.
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Figure 2: Mean estimation with varied α for part approaches in Experiment 1
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TABLE I: RESULTS IN EXPERIMENT 1 FOR CURRENT METHODS a

− log(α) simple error winner’s curse doubly adjustment Chen LMM LMM-split scaled Lasso FDE
0 10420.84 6.66 10420.84 6.66 6.66 5.42 9.89 3.41 7.06
1 7552.04 2409.19 182.44 598.9 82.2 9.9 6.02 1.28 4.6
2 2976.88 1633.01 2.87 165.61 45.27 4.61 3.03 0.62 2.06
3 863.86 577.65 0.9 35.98 26.19 2.83 1.85 7.5 0.34
4 220.12 162.27 1.28 9.38 6.87 2.74 1.23 11.69 0.77
5 55.34 43.05 1.15 3.48 4.74 2.58 0.9 7.49 1.55
6 14.64 11.76 0.91 1.71 1.94 1.8 0.69 3.42 1.56
7 4.42 3.61 0.78 1.12 1.01 0.96 0.61 1.36 1.01
8 1.71 1.41 0.67 0.85 0.71 0.54 0.53 0.59 0.68
9 0.78 0.65 0.56 0.67 0.39 0.32 0.45 0.45 0.46
10 0.42 0.35 0.42 0.48 0.24 0.22 0.4 0.38 0.37
11 0.31 0.27 0.39 0.44 0.25 0.19 0.35 0.37 0.31
12 0.23 0.2 0.31 0.35 0.2 0.15 0.29 0.31 0.25
13 0.17 0.15 0.24 0.27 0.16 0.11 0.23 0.27 0.23
14 0.14 0.12 0.21 0.23 0.17 0.09 0.19 0.41 0.21

a n = 400, m =4000, p = 40, σ2
g = 3, σ2

e = 7, the marginal βj and σj are estimated through univariate linear model.
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Figure 3: Box plot with varied α for part approaches in Experiment 1
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2.4.2 Experiment 2

Table II, Figure 4-5 present the results when σ2g = 4 and σ2e = 6. It can be seen that LMM

gives a similar MSE with the scaled Lasso when − log(α) = 0. Although Chen’s approach

give a very large MSE at the beginning, it quickly drops down after − log(α) ≥ 4. The mean

estimation figure gives the similar results as previous. The boxplot in Figure 5 shows that the

LMM with split effectively reduces the bias in the LMM upon selection.
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Figure 4: Mean estimation with varied α for part approaches in Experiment 2
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TABLE II: RESULTS IN EXPERIMENT 2 FOR CURRENT METHODS a

− log(α) simple error winner’s curse doubly adjustment Chen LMM LMM-split scaled Lasso FDE
0 9956.11 5.7 9956.11 5.7 5.7 4.92 11.28 4.91 11.47
1 7199.57 2300.13 167.32 581.34 129.58 4.15 8.28 1.97 8.15
2 2852.18 1561.66 2.21 163.6 63.35 1.45 3.38 0.4 4.24
3 844.05 561.1 1.37 39.33 34.58 0.78 1.88 4.78 1.21
4 212.56 155.44 2.14 11.9 8.65 0.83 1.64 7.73 0.31
5 52.76 40.6 1.87 4.81 4.94 0.95 1.41 5.12 0.46
6 14.95 11.8 1.83 3.04 2.68 0.89 1.34 2.66 0.69
7 4.54 3.63 1.53 2.09 1.27 0.58 1.18 1.16 0.62
8 1.87 1.51 1.26 1.55 0.7 0.37 1 0.6 0.55
9 1.11 0.91 1.13 1.33 0.53 0.3 0.94 0.44 0.53
10 0.67 0.56 1.04 1.19 0.44 0.25 0.8 0.46 0.47
11 0.42 0.36 0.78 0.87 0.37 0.19 0.71 0.58 0.38
12 0.32 0.27 0.73 0.81 0.38 0.18 0.7 0.54 0.35
13 0.25 0.22 0.65 0.71 0.41 0.16 0.55 0.5 0.32
14 0.21 0.18 0.5 0.55 0.26 0.13 0.48 0.44 0.29

a n = 400, m =4000, p = 40, σ2
g = 4, σ2

e = 6, the marginal βj and σj are estimated through univariate linear model.
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Figure 5: Box plot with varied α for part approaches in Experiment 2
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2.4.3 Experiment 3

In addition to the marginal linear estimations, for the set of σ2g = 4, σ2e = 6, we also

did the LDPE for the variable selection. For those developed to adjust bias in single linear

estimation, the MSE increases dramatically especially when − log(α) is small. On the other

hand, the marginal estimator from LDPE seem serve better in the variable selection for those

directly-estimation approach.
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Figure 6: Mean estimation with varied α for part approaches in Experiment 3
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TABLE III: RESULTS IN EXPERIMENT 3 FOR CURRENT METHODS a

− log(α) simple error winner’s curse doubly adjustment Chen LMM LMM-split scaled Lasso FDE
0 14983.89 66.22 14983.89 66.22 66.22 4.92 11.28 4.91 11.47
1 10573.57 3175.12 265.92 923.43 251.92 5.7 8.26 1.63 7.43
2 3865.94 2082.58 2.22 241.54 103.4 4.59 3.33 0.59 2.95
3 1035.78 684.22 1.61 49.06 43.91 3.13 1.55 4.16 0.5
4 237.06 172.86 2.02 12.38 12.09 2.73 1.11 5.43 0.5
5 52.24 40.13 1.77 4.51 6.14 1.8 0.87 3.24 0.93
6 12.85 10.14 1.52 2.49 3.18 0.94 0.71 1.43 0.83
7 3.63 2.92 1.4 1.85 1.49 0.49 0.56 0.62 0.6
8 1.32 1.07 1.1 1.34 0.91 0.26 0.43 0.36 0.48
9 0.7 0.58 0.92 1.07 0.45 0.19 0.4 0.46 0.38
10 0.41 0.35 0.73 0.83 0.53 0.16 0.36 0.43 0.35
11 0.32 0.27 0.57 0.64 0.38 0.13 0.32 0.45 0.3
12 0.25 0.21 0.46 0.52 0.33 0.11 0.28 0.52 0.27
13 0.16 0.14 0.36 0.4 0.24 0.08 0.21 0.29 0.21
14 0.14 0.12 0.34 0.38 0.2 0.07 0.26 0.34 0.19

an = 400, m =4000, p = 40, σ2
g = 4, σ2

e = 6, the marginal βj and σj are estimated through LDPE approach.
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Figure 7: Box plot with varied α for part approaches in Experiment 3
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2.4.4 Experiment 4

To check the effects of sample size, we also increase the sample size from 400 to 1000. In

Table IV, it can be seen that all the estimators’ MSE are reduced when sample size is large.

Specifically, scaled Lasso gives a very precise estimation in this case due to the satisfactory of

sparsity condition. LMM also outperforms the others with smaller MSE. In Figure 8, Chen’s

approach is very unstable at the beginning of the selection, and it represents the truth very

well after − log(α) = 4. Figure 9 shows the estimators in the simulation can cover the truth

better compared with that when n = 400.

0 2 4 6 8 10 12 14

1
2

3
4

5
6

−log(α)

∑ i∈
s

β
i2

true

LMM

chen

LMM_split

scaled Lasso

FDE

Figure 8: Mean estimation with varied α for part approaches in Experiment 4
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TABLE IV: RESULTS IN EXPERIMENT 4 FOR CURRENT METHODS a

− log(α) simple error winner’s curse doubly adjustment Chen LMM LMM-split scaled Lasso FDE
0 1665.74 1.19 1665.74 1.19 1.19 1.07 4.5 1.96 7.03
1 1205.23 382.04 12.34 138.65 16.49 4.07 1.96 0.89 4.66
2 472.33 258.11 0.37 30.14 8.9 0.43 0.7 0.19 2.52
3 141.39 93.37 0.54 7.59 4.21 0.24 0.54 0.55 1.67
4 38.23 27.54 0.81 3 1.3 0.17 0.67 1.11 0.42
5 10.72 8 1.03 2.01 0.68 0.14 0.78 0.82 0.11
6 3.65 2.74 1.38 1.99 0.59 0.15 0.96 0.48 0.12
7 1.56 1.18 1.53 1.95 0.37 0.15 1.27 0.32 0.14
8 0.93 0.72 1.75 2.09 0.26 0.16 1.4 0.24 0.17
9 0.6 0.47 1.64 1.9 0.32 0.17 1.5 0.23 0.24
10 0.46 0.36 1.57 1.79 0.21 0.15 1.6 0.2 0.26
11 0.37 0.3 1.57 1.75 0.31 0.14 1.74 0.19 0.26
12 0.34 0.28 1.47 1.62 0.22 0.14 1.61 0.18 0.26
13 0.31 0.26 1.51 1.65 0.2 0.12 1.6 0.17 0.27
14 0.25 0.21 1.56 1.69 0.2 0.11 1.61 0.16 0.26

an = 1000, m =4000, p = 40, σ2
g = 4, σ2

e = 6, the marginal βj and σj are estimated through the univariate linear model.
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Figure 9: Box plot with varied α for part approaches in Experiment 4
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2.4.5 Experiment 5

Since all the previous σ2gs are not very large, we would like to see if the good performances

of scaled Lasso is due to its preference in reducing small βs to zero. σ2g and σ2e are increased to

20 and 30, respectively. So the heritability does not change. It can be seen in Table V that the

scaled Lasso no longer work as well as LMM when − log(α) = 0. When the selection criterion

become stricter, LMM is still the most favorable approach. In Figure 10, Chen’s approach still

gives the most similar trend with truth while its estimators are not quite stable.
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Figure 10: Mean estimation with varied α for part approaches in Experiment 5
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TABLE V: RESULTS IN EXPERIMENT 5 FOR CURRENT METHODS a

− log(α) simple error winner’s curse doubly adjustment Chen LMM LMM-split scaled Lasso FDE
0 250674.33 128.84 250674.33 128.84 128.84 99.64 288.85 109.1 273.33
1 181449.79 57997.18 16960.32 3175.88 2389.59 112.83 158.11 42.64 186.65
2 71715.98 39373.23 952.2 1602.78 1182.3 38.51 70.9 16.15 89.2
3 21113 14109.94 59.82 463.64 521.67 20.06 42.13 139.94 22.34
4 5575.84 4097.83 25.73 191.07 260.74 24.59 35.76 214.57 8.28
5 1431.67 1106.31 30.2 86.37 145.89 28.78 32.51 142.24 17.97
6 410.23 326.45 29.11 51.4 55.62 27.01 31.06 73.28 28.24
7 141.81 114.76 29.8 41.37 39.47 19.85 33.41 33.44 26.09
8 61.68 50.68 26.78 33.35 21.04 15.81 27.13 18.53 24.92
9 30.45 25.38 23.51 27.52 19.44 11.95 22.52 14.55 21.88
10 20.53 17.43 20.3 23.26 11.99 10.56 17.77 14.55 19.7
11 15.45 13.24 19.29 21.71 11.75 8.8 18.94 17.86 17.89
12 12.3 10.7 13.34 14.84 7.45 7.95 13.39 17.03 17.62
13 8.67 7.62 12.82 14.03 8.53 6.04 13.26 18.04 14.57
14 6.68 5.93 11.57 12.47 5.5 5.25 12.35 15.25 11.46

an = 1000, m =4000, p = 40, σ2
g = 20, σ2

e = 30, the marginal βj and σj are estimated through the univariate linear model.
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Figure 11: Box plot with varied α for part approaches in Experiment 5
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2.4.6 Experiment 6

The following are the results using LDPE as the marginal estimators. As the effects become

more varied, LDPE approach does not perform as well as the linear regression when lots of

small signals are involved. Furthermore, Chen’s approach collapses if LDPE is used in the

adjustment. Figure 12 shows that LMM with split work the best under this situation.
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Figure 12: Mean estimation with varied α for part approaches in Experiment 6
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TABLE VI: RESULTS IN EXPERIMENT 6 FOR CURRENT METHODS a

− log(α) simple error winner’s curse doubly adjustment Chen LMM LMM-split scaled Lasso FDE
0 367055.84 1514.41 367055.84 1514.41 1514.41 99.64 288.85 109.1 273.33
1 258548.27 78378.7 25179.43 5085.17 3872.65 152.05 158.04 35.97 171.81
2 95508.49 51422.54 1328.31 2247.95 2090.46 118.08 67.14 22.69 66.36
3 25424.31 16817.91 58.9 603.21 768.11 85.19 36.32 122.86 10.61
4 5902.37 4314.87 19.83 197.76 315.39 76.85 24.3 160.68 19.86
5 1426.98 1098.72 28.51 85.98 196.98 58.46 19.93 105.23 35.92
6 367.31 291.12 25.1 45.9 69.04 35.84 15.71 50.07 33.55
7 108.33 87.52 23.48 32.89 37.07 21.25 17.53 22.15 29.36
8 38.54 31.59 17.83 22.23 28.14 12.14 12.39 12.36 23.13
9 16.28 13.52 14.51 17.05 15.9 7.95 9.77 12.38 17.88
10 11.34 9.55 12.25 13.97 7.94 6.48 7.55 17.24 14.11
11 7.75 6.6 11.12 12.42 10.47 5.29 9 16.56 12.8
12 5.95 5.11 8.41 9.29 7.32 4.63 7.1 17.46 12.38
13 4.91 4.25 7.12 7.89 5.21 4.14 6.85 16.78 10.15
14 3.55 3.09 5.29 5.82 4 2.84 5.29 16.22 9.32

an = 1000, m =4000, p = 40, σ2
g = 20, σ2

e = 30, the marginal βj and σj are estimated through LDPE approaches.
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Figure 13: Box plot with varied α for part approaches in Experiment 6
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2.4.7 Experiment 7

The following are the results when σ2g = 6, σ2e = 4, n = 400, m =4000, and p = 40.

Compared with the previous set-up with smaller signals, scaled Lasso and FDE give larger

MSE while Chen’s approach, LMM, and LMM with split do not change much. In Figure 14,

Chen’s approach performs well when − log(α) is large while LMM with split can give a good

estimator with small − log(α)s. Both FDE and scaled Lasso approach performs well when

− log(α) is large.
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Figure 14: Mean estimation with varied α for part approaches in Experiment 7
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TABLE VII: RESULTS IN EXPERIMENT 7 FOR CURRENT METHODS a

− log(α) simple error winner’s curse doubly adjustment Chen LMM LMM-split scaled Lasso FDE
0 10164.99 6.72 10164.99 6.72 6.72 5.33 10.19 7.32 21.76
1 7356.33 2352.21 188.96 565.92 113.79 0.62 6.21 3.16 15.32
2 2918.43 1597.8 3.77 163.53 54.78 1.69 4.52 0.66 9.36
3 867.3 576.04 2.71 43.1 24.95 2.5 2.95 1.97 4.41
4 230.57 167.77 3.86 15.33 9.96 1.42 2.92 3.29 2.49
5 62.35 47.43 4.58 9.1 5.94 0.46 3.03 2.54 0.63
6 17.89 13.84 4.5 6.65 3.15 0.21 3.36 1.49 0.25
7 6.9 5.38 4.19 5.46 1.74 0.17 3.53 0.93 0.26
8 3.59 2.84 3.6 4.4 1.48 0.23 3.25 0.71 0.45
9 2.1 1.68 3.09 3.66 1.04 0.24 2.91 0.55 0.61
10 1.52 1.24 3.21 3.66 0.89 0.23 2.78 0.77 0.63
11 1.19 0.98 3.2 3.59 0.8 0.23 2.55 0.83 0.72
12 0.88 0.73 2.96 3.26 0.85 0.23 2.55 0.92 0.79
13 0.75 0.63 2.36 2.59 0.63 0.22 2.16 1.11 0.97
14 0.62 0.52 2 2.19 0.57 0.19 2.04 1.14 0.95

an = 400, m =4000, p = 40, σ2
g = 6, σ2

e = 4, the marginal βj and σj are estimated through the univariate linear model.
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Figure 15: Box plot with varied α for part approaches in Experiment 7
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2.4.8 Experiment 8

If we use the LDPE approach to estimate the marginal means when σ2g = 6 and σ2e = 4,

the influence on the estimation is not as much as that in small signal situations. For those

approaches (i.e. LMM, LMM-split, scaled Lasso, and FDE) are independent of the marginal

estimators, selection using LDPE gives the similar performance as the linear selection. For

those approaches are dependent, LDPE gives larger MSE especially when selection criterion is

loose.
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Figure 16: Mean estimation with varied α for part approaches in Experiment 8
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TABLE VIII: RESULTS IN EXPERIMENT 8 FOR CURRENT METHODS a

− log(α) simple error winner’s curse doubly adjustment Chen LMM LMM-split scaled Lasso FDE
0 11077.43 94.29 11077.43 94.29 94.29 5.33 10.19 7.32 21.76
1 7707.39 2258.18 156.79 781.68 160.04 0.59 6.25 2.85 14.44
2 2742.52 1453.76 1.67 197.83 60.77 0.58 4.42 0.57 7.26
3 700.13 455.16 3.96 47.17 21 0.6 2.6 1.98 2.99
4 159.02 113.08 5.32 17.27 14.58 0.38 2.17 2.68 0.66
5 37.74 28.02 4.9 9.04 5.93 0.37 1.83 2.05 0.23
6 10.19 7.64 4.55 6.44 3.28 0.4 1.85 1.19 0.38
7 3.5 2.65 4.32 5.37 1.84 0.39 2.01 0.8 0.57
8 1.53 1.17 4.05 4.73 1.18 0.31 1.96 0.62 0.6
9 0.98 0.75 3.41 3.91 0.9 0.27 1.82 0.53 0.7
10 0.65 0.51 3.01 3.37 0.81 0.25 1.69 0.51 0.75
11 0.56 0.45 2.27 2.53 0.56 0.22 1.26 0.48 0.87
12 0.48 0.39 1.95 2.16 0.61 0.22 1.34 0.45 0.87
13 0.4 0.34 1.59 1.74 0.49 0.18 1.11 0.48 0.8
14 0.34 0.28 1.41 1.54 0.72 0.16 1.14 0.95 0.86

an = 400, m =4000, p = 40, σ2
g = 6, σ2

e = 4, the marginal βj and σj are estimated through LDPE approach.
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Figure 17: Box plot with varied α for part approaches in Experiment 8
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2.4.9 Experiment 9

The first set-up in the second scenario is n = 400, m =600, p = 30, σ2e = 1, τ = 1.5. ρ = 0

in order to compare with the dependence cases later. It can be seen in Table IX that LMM and

FDE approaches give the least MSE upon selection. However, in Figure 18, Chen’s approach

outperforms all the others in the mean estimation. To note that, compared with previous set-

ups, FDE and scaled Lasso can follow the selection trend in this scenario. And they are quite

similar in the mean figure. Figure 19 shows that Chen’s approach covers the truth very well,

while the scaled Lasso does not give a very good performance after − log(α) ≥ 5.
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Figure 18: Mean estimation with varied α for part approaches in Experiment 9
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TABLE IX: RESULTS IN EXPERIMENT 9 FOR CURRENT METHODS a

− log(α) simple error winner’s curse doubly adjustment Chen LMM LMM-split scaled Lasso FDE
0 3989.73 45.09 3989.73 45.09 45.09 8.06 31.37 12.18 23.77
1 2964.71 899.55 315.08 117.13 282.78 18.7 25.75 10.77 10.58
2 1308.26 649.83 51.75 113.31 160.72 16.64 35.24 10.43 16.42
3 518.5 298.21 62.12 133.63 115.29 15.75 76.3 9.94 18.07
4 244.77 151.02 139.61 221.11 57.02 17.56 122.17 9.42 21.18
5 151.55 97.15 199.14 274.31 56.2 13.49 168.87 8.44 17.22
6 120.72 81.49 249.68 317.86 57.34 9.47 218.97 8.99 12.52
7 106.92 74.75 262.11 321.89 34.56 5.94 239.51 9.4 7.98
8 99.04 72.18 255.43 305.3 35.54 3.39 221.12 12.01 4.35
9 90.91 68.83 223.74 262.9 29.12 3.07 218.86 15.38 3.14
10 82.6 64.81 185.39 214.8 23.99 3.39 187.89 17.23 3.04
11 73.27 59.23 151.88 174.07 26.1 4.97 148.4 19.35 4.46
12 62.23 51.42 123.64 140.14 23.18 6.68 118.68 20.21 6.27
13 48.5 41.11 77.66 87.56 17.77 8.37 77.76 19.91 8.2
14 37 31.93 52.38 58.66 12.75 8.92 52.64 17.98 9.01

an = 400, m =600, p = 30, σ2
e = 1, τ = 1.5. ρ = 0, the marginal βj and σj are estimated through the univariate linear model.
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Figure 19: Box plot with varied α for part approaches in Experiment 9
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2.4.10 Experiment 10

If the ρ changes from 0 to 0.2, Chen’s approach no longer work as the underlying requirement

for this approach is independence in X. In fact, LMM, LMM-split, and scaled Lasso are effected

by the correlations among X to different degrees. Specifically, scaled Lasso remains high MSE

across selections in this case. Although LMM and LMM with split do not performance as bad

as others, the MSE suggests their limitation in heritability estimation in correlated data.
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Figure 20: Mean estimation with varied α for part approaches in Experiment 10
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TABLE X: RESULTS IN EXPERIMENT 10 FOR CURRENT METHODS a

− log(α) simple error winner’s curse doubly adjustment Chen LMM LMM-split scaled Lasso FDE
0 19801.73 2519.43 19801.73 2519.43 2519.43 74.51 181.9 369.15 5.98
1 16243.3 8321.62 5872.13 1674.69 3082.07 2.17 46.34 376.62 2.35
2 9949.6 7008.42 3219.77 1684.54 2724.83 1.9 5.47 381.04 2.19
3 6148.33 4890.74 2397.58 1653.74 2568.96 1.38 5.33 384.05 1.74
4 4373.14 3660.48 1779.32 1349.77 2345.95 1 8 385.22 1.39
5 3559.12 3048.2 1294.08 1010.21 2267.16 0.71 14.66 384.68 0.97
6 3188 2763.99 912.28 710.74 2046.86 1.09 25.22 383.99 1.17
7 2923.08 2556.23 531.42 406.12 1863.39 1.67 49.76 379.71 1.42
8 2707.87 2387.3 304.86 238.84 1740.78 3.18 72.53 372.26 2.45
9 2525.37 2241.06 183.59 158.41 1452.95 6.76 101.8 370.83 5.29
10 2292.07 2048.95 135.49 134.12 1243.04 12.47 134.42 363.39 10.05
11 2054.3 1849.17 123.62 138.65 1107.17 20.97 128.11 358.51 17.71
12 1816.86 1645.65 126.32 150.44 977.79 31.17 151.2 347.76 27.4
13 1588.97 1447 129.88 156.01 789.89 43.42 167.87 337.89 39.43
14 1354.97 1239.85 135.44 162.9 620 52.93 166.92 316.45 49.3

an = 400, m =600, p = 30, σ2
e = 1, τ = 1.5. ρ = 0.2, the marginal βj and σj are estimated through the univariate linear model.
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Figure 21: Box plot with varied α for part approaches in Experiment 10
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2.5 Summary and Comments

In this chapter, a number of possible solutions to the statistical problem of estimating numer-

ous weak effects are considered and extensive simulation studies are conducted to demonstrate

the performance of those approaches under different circumstance. The simple linear marginal

regression and the LDPE approach are used for the variable selection in the simulation stud-

ies. When there are many weak signals in the data, the LDPE is more biased than the linear

regression estimator. As a result, for those approaches that adjust the bias of the individual

estimators based on the LDPE, both the bias and the MSE in the total variation estimator are

in general larger. For the direct-estimation approaches, the bias in the LDPE appears to not

have as much negative influence on the estimator. The explained variation estimator based on

the LDPE in the latter case can sometimes have a slightly smaller MSE than the selection based

on the marginal regression. When the covariates are correlated, the marginal linear regression

induces more bias in the variation estimator.

Most individual-bias-adjustment approaches do not perform well, especially when − log(α)

is small. This is due to the cumulation of errors when the number of selected coefficients are

large. Among these methods, Chen’s approach gives the best estimator in respect to the bias.

One issue with Chen’s estimator is the high variability of the estimator in comparison with the

direct-estimation approaches.

As discussed in the previous chapter, performance of Lasso-related approach is restricted by

the sparsity assumption and the uniform strength assumption. Namely, to achieve the optimal

prediction error in Lasso-related approaches, p logm �
√
n and all the non-zero βs should
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be greater than Cσe
√

2/nlogm, where C is some constant greater than 1
2 (Zhang and Zhang,

2014). Since our simulation set-ups violate the sparsity assumption and the non-zero βs do not

satisfy the uniform strength assumption, the scaled Lasso and the FDE approaches are more

biased than the LMM approach when the selection criterion is loose. Such discrepancy appears

when the selection criterion becomes stricter. However, if we check the MSE of the estimators,

the scaled Lasso and FDE approach seem to perform well. This is due to the fact that these

two estimators are subject to smaller variation compared with the LMM-related approaches.

We also notice that when the covariates are correlated, the FDE approach has a relatively small

MSE and the smallest bias among all the approaches.

The LMM approach has the smallest MSE in most simulation set-ups. However, due to the

Winner’s Curse, the estimator is subject to large bias when the selection criterion is less strict.

The LMM approach with sample split can reduce the bias. However, due to the reduction

in sample size in both variable selection and variation estimation procedures, the estimator is

subject to higher variation when compared with the LMM approach without sampling split.

Furthermore, when the selection criterion is strict, LMM approach with split samples seem to

under-estimate the true signal strength compared with the LMM approach.

In summary, for researchers planning to estimate the partial heritability, different approaches

should be used in different situations. For the marginal estimators, as long as the sparsity

assumption holds, the LDPE can provide a good reference for selecting the covariates. On

the other hand, if the partial variation estimating approaches involve combining the marginal

estimators, the simple linear regression is more appropriate. For a loose selection criterion (e.g.
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− log(α) is small),when the sample size is large, we should use the LMM approach with sample

split if the loss of power is not of a major concern. If the sparsity assumption is reasonable, the

bias of the scaled Lasso approach is small. When the covariates are correlated, we should use

the FDE approach as other approaches no longer work well under this situation. If the variable

selection criterion is strict, the LMM approach, Chen’s approach, the scaled Lasso, and the

FDE approach all can yield good estimates with small MSEs.



CHAPTER 3

ESTIMATING TOTAL EFFECT OF SELECTED VARIABLES: THE

CASE OF INDEPENDENT COVARIATES

3.1 The LMM with Sample Split

The simulation results in the previous chapter do not suggest a single approach that outper-

forms other approaches in all the simulated cases. However, the LMM of Yang et al. provides

a robust choice among the approaches. This approach is further studied in this chapter.
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Figure 22: Demonstration of Yang et al.’s approach under variable selection
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A simulation study is conducted to compare the naive approach, the sample split approach,

and the truth. The data are simulated using steps 1-3 of the algorithm in the simulation section

of this chapter with parameters (n,m, p, σ2g , σ
2
e) = (400, 4000, 40, 4, 6). The simulation results

with α values varying from exp(0) to exp(−9) are shown in Figure 22.

It can be seen from the graph that, the naive approach yields an estimator with a large

upward bias when α < 1. The bias reduces as α becomes very small. In contrast, the split

sample approach has a relatively small downward bias and a large variation. The simulation

result suggests that the naive approach can be unsatisfactory and the sample split approach is

better. We propose improvements in the following to reduce the bias and the variation of the

sample split approach.

3.2 The Proposed Subsampling Approach

Suppose that we have a variable selection approach with tuning parameter λ in place for

selecting significant variables to be included in the linear model building. Whether variable

xj is selected depends not only on the underlying signal strength βj , but also on the tuning

parameter values and the sample size. When a subsample is used for selection, the sample size

is reduced. As a result, a smaller number of variables are selected if the same selection criterion

is applied. To correct the bias due to the sample size reduction, we artificially decrease the

tuning parameter value so that the total signal selected remains at the level of the full sample
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size. Specifically, for the selection through individual tests, the rejection rule for a given α level

is modified to

| β̂js
σ̂ejs
| ≥ z1−α/2

√
q, (3.1)

where β̂js is the parameter estimator for βj under the subsample, σ̂ejs is the variance estimate

for β̂js, and q ∈ (0, 1) is the fraction of the full sample used for variable selection. The rationale

for the adjustment is that both nqσ̂2js and nσ̂2j estimate the same quantity.

To reduce the variability of the split sample estimator, we propose to randomly take sub-

samples of size [nq] from the observed data for variable selection and use the remaining samples

of size [(1 − q)n] to estimate the variation captured by the selected covariates using Yang et

al’s approach. The sample split corresponds to q = 0.5. Let σ̂21(q, α), · · · , σ̂2T (q, α) denote re-

spectively the estimators of the variations captured by the selected covariates for the T random

samples drawn from the observed data, where q and α are respectively the proportion of sam-

ple used for selection and the test significance level for the selection using the decision rule in

Equation 3.1. Let

σ̃2(q, α) =
1

T

T∑
t=1

σ̂2t (q, α). (3.2)
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For each q ∈ (0, 1), σ̃2(q, α) is an estimator of σ2λ in Equation 3.3, where λ = α.

σ2λ = E

∑
j∈Sλ

β2j

 . (3.3)

To estimate the variance of σ̃2(q, α), note that subsamples are not independent of each

other. The dependence of two subsamples depends on the overlapped individuals. Suppose

that the statistic for estimating σ̂2(q, α) can be asymptotically expressed linearly in data from

individuals, i.e.,

σ̂2(q, α) =

[n(1−q)]∑
j=1

h(Yj , Xj),

where (Yj , Xj) is the data from subject j. For another subsample of the same size,

σ̂2i (q, α) =

[n(1−q)]∑
j=1

h(Yij , Xij ).

The expected correlation between the statistic from the two subsamples is

ρ =

∑[n(1−q)]
l=max(0,n−2k) l

C(n−k,l)C(k,n−k−l)
C(n,k) σ2

[n(1− q)]σ2
(3.4)

where k = nq, C(n, k) denotes the combinatory number of taking k from n, and σ2 =

var{h(Yi, Xi)}, and l denote the number of overlapped subjects between two random samples.
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In Equation 3.4, the numerator can be written as

(n− k)σ2

C(n, k)

[n(1−q)]∑
l=max(0,n−2k)

C(n− k − 1, l − 1)C(k, n− k − l)

=
C(n− 1, n− k − 1)(n− k)σ2

C(n, k)

=
(n− k)2

n
σ2

by binomial theorem. We have

ρ =
(n−nq)2

n σ2

n(1− q)σ2
= 1− q

It can be seen that the variance for σ̃2(q, α) is approximately

Var{σ̃2(q, α)} =
1

T
{1 + (T − 1)(1− q)}σ2.

Following the derivation, we propose to estimate the variance of σ̃2(q, α) by

vσ(p, α) =
1 + (T − 1)(1− q)

T (T − 1)

T∑
t=1

{
σ̂2t (q, α)− σ̃2(q, α)

}2
.

While the methods with different subsampling ratio are all expected to yield estimators

with small bias for the variation explained by the selected covariates with the full sample, the

variances of the estimators are expected to depend on the sample splitting ratio q. In practice,

we need to choose an appropriate q such that the variance of σ̃2(q, α) is as small as possible.

For a fixed set of covariates, a larger sample size for the estimation of the explained variation
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using Yang et al’s approach yields an estimator with smaller variance. This means we want

to have q as small as possible. On the other hand, a smaller sample size used in the variable

selection increases the variability of σ̃2(q, α) because of the uncertainty in the set of selected

covariates. We concentrate on four q values: q = 0.2, q = 0.5, q = 1 − 1/e, and q = 0.8. The

third one, termed bootstrap subsampling, corresponds to the average sample size of a bootstrap

sample of size n with repetitions removed. The following algorithm is used to implement the

bootstrap subsampling approach:

1. Select n subjects with replacement from the original data, remove repetitions in the

sample and denote the resulting sample by A. Let B denote the sample with subjects not

selected.

2. For a given α, perform individual tests using sample A by decision rule (Equation 3.1).

Denote the selected covariates xS = (xj , j ∈ S).

3. Fit a linear mixed model to sample B with only xS in the model. Estimate σ̂2t (α)

4. Repeat the steps for t = 1, · · · , T .

The algorithm can be easily adapted to the subsampling approach with a fixed sampling rate.

For the problem of estimating the total variation explained by all the covariates, Jiang et al.

(2016) showed that Yang et al’s approach yields a consistent estimator under some reasonable

assumptions. We adapt their results here for the estimation of the variation explained by a set

of selected variables. The following assumptions are made in studying the asymptotic behavior

of σ̃2(q, α) using the hard-thresholding based on the individual tests.
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1. X is a random matrix whose entries are independent with mean 0 and variance 1.

(β1, · · · , βp) are independent N(0, σ2g/p) and βj = 0, j = p + 1, · · · ,m. β0 is a fixed

number and ε ∼ N(0, σ2ε In) and independent of X.

2. As n→∞, p/m→ c, n/m→ d, where c, d ∈ (0, 1].

3. For given α ∈ (0, 1) and q ∈ (0, 1), a random samples of size [nq] from the observed data

is drawn and used in selecting variables by the method (Equation 3.1) and the remaining

data are used for estimating the variance σ2α. Let the estimators be σ̂2t (q, α), t = 1, · · · , T .

Proposition 1. Under assumptions 1-3, σ̂2t (q, α) − σ∗2(q, α) → 0 in probability as n → ∞

for fixed q ∈ (0, 1) and α ∈ (0, 1) and t = 1, · · · , T where

σ∗2(q, α) =

p∑
j=1

E
[
β2j 1{|

√
[nq]βj/σej+Z|>

√
qz1−α/2}

]
,

and Z is a standard normal random variable independent of βj . As a result,

σ̃2(q, α)− σ∗2(q, α)→ 0,

in probability as n→∞.

Proof: Let S be a given subset of indices {1, · · · ,m}. Then

y = β0 +
∑
j∈S

βjxj + η, (3.5)

η =
∑
j∈Sc

βjxj + ε, (3.6)
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where Sc = {1, · · · ,m} − S, and η ∼ N(0, σ2E) with σ2E = σ2e +
∑

j∈Sc∩{1,··· ,p} σ
2
g/p. It can be

seen that model (Equation 3.5) satisfies all the conditions required in Jiang et al. (2016) for

estimating

σ2S = E

∑
j∈S

β2j

 .

The estimator is thus consistent in probability. When S is the set of variables selected from the

sample with size [nq], all the arguments hold conditional on the variables being selected. That

is,

P
{
|σ̂2t (q, α)− σ∗∗2α | > ε | S(q,α)

}
→ 0,

where σ∗∗2α = E
(∑

j∈S(q,α) β
2
j

)
and

S(q, α) =

j
∣∣∣∣ |βj

∑[nq]
i=1 x

2
ij +

∑[nq]
i=1 xijei|√∑[nq]

i=1(ei − 1
[nq]

∑[nq]
i=1 xijei)

2
>
√
qz1−α/2


Since the two subsets of data are independent, the conditional probability is the same as the

unconditional probability. Since

1

[nq]

[nq]∑
i=1

ei − 1

[nq]

[nq]∑
i=1

xijei

2

P−→ σ2ej ,

∑[nq]
i=1 xijei√∑[nq]

i=1(ei − 1
[nq]

∑[nq]
i=1 xijei)

2

W−→ Z,

uniformly over j, it follows that σ∗∗2(q, α)− σ∗2(q, α)→ 0, for any fixed q, α ∈ (0, 1).
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If the full sample is used to select the variables, the variation of the outcome explained by

the selected covariates is

σ2α = E

∑
j∈Sα

β2j

 =

p∑
j=1

E

β2j 1{ |βj
∑n
i=1

x2
ij

+
∑n
i=1

xijei|√∑n
i=1

(ei−
1
n

∑n
i=1

xijei)
2
>z1−α/2

}
 ,

which is asymptotically equivalent to

p∑
j=1

E
[
β2j 1{|

√
nβj/σej+Z|>z1−α/2}

]
.

The bias of the subsampling estimator is therefore

p∑
j=1

E
[
β2j

(
1{|
√

[nq]βj/σej+Z|>
√
qz1−α/2}

− 1{|
√
nβj/σej+Z|>z1−α/2}

)]
,

which can approximately be rewritten as

p∑
j=1

E

[
β2j

{
Φ{√q(−

√
nβj/σej − z1−α/2)}+ Φ{√q(

√
nβj/σej − z1−α/2)}

−Φ(−
√
nβj/σej − z1−α/2)− Φ(

√
nβj/σej − z1−α/2)

}]
.

From the bias expression, it can be seen that when the signal-to-noise ratio is small, the

cutoff value should be less adjusted. On the other hand, if the signal-to-noise ratio is large,

more adjustment my be considered. Based on this observation, we also proposed a weighted

estimator. When the signal is small, more weight will be put on the unadjusted estimator, and
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vice versa. Since we do not know the truth signal strength in practice, we use an empirical

weight based on the ratio between variation estimation without variable selection and with

variable selection at α = 0.01. The weighted estimator is as follows,

σ2w(α, q) = σ2a(α, q) +
(
σ2u(α, q)− σ2a(α, q)

)
e−cδ (3.7)

where c = 10, and δ = σ̂2u(0.01, q)/σ̂2u(1, q)

3.3 Simulation Study and Method Comparison

In this section, we perform simulation studies to compare the proposed estimators for σ2λ

with estimators that have good performance without variable selection. Those estimators in-

clude the naive approach, subsampling approaches with different sampling ratios, the bootstrap

subsampling estimator, and the EigenPrism estimators with and without subsampling. The

EigenPrism is an approach to estimating the total variation attributable to all covariates, re-

cently proposed by Janson et al. (2017). Compared with Yang et al.’s approach, EigenPrism

does not impose restrictions on the coefficients. Instead, it assumes a normally distributed

covariates as in Dicker (2014). Like the LMM, this method does not require sparsity or the

information on the noise level in estimating the total variation explained by all the covariates.

EigenPrism also provides a variance estimate so that inference can be performed on the total

variation explained, often in terms of confidence intervals. We compare this method with other

methdos in the simulation to see how well it performs in comparison to Yang et al.’s approach

to estimating the variation explained by a set of non-randomly selected covariates.
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The basic idea of the EigenPrism approach is as follows. Note that, by the singular value

decomposition, we have X = UDV ′ where U is a n × n orthonormal matrix, D is a n × n

diagonal with non-increasing and non-negative entries in diagonal, and V is m×n orthonormal

matrix. Let z = U ′y, then z becomes a n×1 vector. For the simple linear model in Equation 2.1

under the assumption that X ∼ N(0, I) and ε ∼ N(0, σ2e), it can be seen that

E(z2i |d) = d2iσ
2
g/m+ σ2e (3.8)

where zi is the ith element in z, and di is the ith diagonal element in D. Let w ∈ Rn be a

n×1 vector of non-negative weights, conditional on the matrix D, the expectation of ∼ni=1 wiz
2
i

conditional on D can be written as

E(
n∑
i=1

wiz
2
i |D) = σ2g

n∑
i=1

wid
2
i /m+ σ2e

n∑
i=1

wi (3.9)

Therefore, by finding the set of w satisfying
∑n

i=1wi = 0 and
∑n

i=1wid
2
i /m = 1 will make∑n

i=1wiz
2
i an unbiased estimator of σ2g . Since the upper bound of var(

∑n
i=1wiz

2
i |D) is 2(σ2g +

σ2e)
2 max(

∑n
i=1wi,

∑n
i=1w

2
i (d

2
i /m)2), it can be formed as convex optimization to minimize the

upper bound of the var(
∑n

i=1wiz
2
i |D) subject to the

∑n
i=1wi = 0 and

∑n
i=1wid

2
i /m = 1.

Therefore, with unbiased estimator of σ2g , EigenPrism can also yield an estimator of σ̂2g variance.

This method can be easily adapted to cases with selected covariates or subsampling approach.

However, when variables are non-randomly selected, bias can be introduced into the variation
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estimator. It is of interest to see how well the EigenPrism performs in comparison to the Yang

et al’s approach with non-randomly selected covariates.

The simulated data are generated in the following way. The covariates are the bi-allelic

genetic markers taking values 0, 1, 2. The simulated outcome is a quantitative trait. Specifically,

1. X: Generate a random number π following Uniform(0.05, 0.5) distribution. Generate n

independent random numbers, each follows Binomial(2, π) distribution. Standardized to

have mean 0 and variance 1. Repeat m times to generate the covariate matrix.

2. β: Generate βj , j = 1, · · · , p iid∼ N(0, σ2g/p), and set βj = 0, j = p+ 1, · · · ,m.

3. Y : Generate ε following N(0, σ2eI) and set Y = Xβ + ε.

4. For q ∈ {0.2, 0.5, 0.8} randomly sample from the observed data [nq] subjects without

replacement. Denote the select sample as A and the rest of sample as B. Select variables

using sample A with − logα ∈ {1, · · · , 9} by (Equation 3.1).

5. For selected variables in the previous step, using sample B to estimate the attributable

variation of Y explained by the selected covariates by Yang et al’s approach.

6. Repeat the previous two steps 100 times to obtain the mean and variance of the estimator.

We replicate the algorithm N times and compute the mean squared error (MSE) to measure

the performance of the estimator,

MSE =
1

N

N∑
l=1

(σ̂2lα − σ2α)2. (3.10)
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In the following simulation studies, N is set to 100. We specify parameters (n,m, p, σ2g , σ
2
e) for

each setting taking the sparsity of the non-zero SNP effects into consideration.

3.3.1 Experiment 1

The parameters were set as follow: n = 400,m = 4000, p = 40, σ2g = 4, σ2e = 6. The

simulation results are shown in Table XI-XII and Figure 23. From Figure 23, the subsampling

approaches have small bias while the naive approach is subject to large bias. From Table XI, all

the subsampling approaches outperform the naive approach with respect to the MSE for most α

values. The bootstrap subsampling approach and the subsampling with q = 0.5, 0.8 give slightly

smaller MSE compared with subsampling with q = 0.2. Weighted approach yields the smallest

MSE compared with other subsampling approaches. EigenPrism approach works well when no

selection is conducted. With variable selection, EigenPrism yields higher MSE compared with

compared with Yang et al.’s approach. If we incorporate the EigenPrism with subsampling

approach, the MSE is reduced compared with using EigenPrism directly. In Table XII, the 90%

confidence intervals were computed through normal approximation using the proposed variance

estimate for our subsampling approach. In comparison, I also obtain the 90% confidence inter-

vals for the EigenPrism approach with and without subsampling using the approach proposed

in Janson et al. (2017). The confidence intervals and their length were obtained. It can be seen

that the confidence interval of EigenPrism does not cover the truth well when variables are

selected. With subsampling approach, Yang et al.’s approach yields confidence intervals with

better coverage and shorter length. EigenPrism approach with subsampling seems to cover
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the truth well, however, the confidence intervals are much wider compared with Yang et al.’s

approach using subsampling.
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Figure 23: Box plot of subsampling approach with varied α in Experiment 1
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TABLE XI: MSE IN EXPERIMENT 1 FOR SUBSAMPLING APPROACH a

Yang et al.’s approach EigenPrism

− log(α) Naive q = 0.2 q = 0.5, adjusted q = 0.5, unadjusted q = 0.5, weighted bootstrap q = 0.8 Naive q = 0.5

0 4.92 4.5 3.1 3.06 3.09 2.33 1.66 4.86 5.1

1 4.15 2.35 2.05 1.75 2.02 2.24 2.41 148.67 2.58

2 1.45 1.62 1.56 1.24 1.53 1.67 1.81 7.42 1.79

3 0.78 1.06 0.97 1.15 0.95 0.97 1.06 2.55 0.92

4 0.83 0.8 0.67 1.19 0.65 0.6 0.67 1.21 0.56

5 0.95 0.58 0.44 1.1 0.43 0.43 0.39 1.22 0.41

6 0.89 0.52 0.36 1.08 0.35 0.34 0.31 1.14 0.33

7 0.58 0.38 0.26 1.02 0.25 0.23 0.23 0.71 0.60

8 0.37 0.32 0.17 0.91 0.17 0.16 0.16 0.52 0.61

9 0.3 0.27 0.16 0.8 0.15 0.14 0.13 0.47 0.65

a The Experiment 1 is set up as n = 400, m =4000, p = 40, σ2
g = 4, σ2

e = 6
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TABLE XII: 90% CONFIDENCE INTERVAL BY SUBSAMPLING APPROACH IN EXPERIMENT 1

− log(α) EigenPrism Subsampling Approach using LMM Subsampling Approach using EigenPrism

coverage a 90% CI b length c coverage 90% CI length coverage 90% CI length

0 0.93 (0.57, 7.99) 7.42 0.91 (0.84, 7.83) 6.99 1 (0, 11.54) 11.54

1 0 (13.29, 18.23) 4.94 0.94 (0.89, 6.68) 5.79 1 (0, 9.26) 9.26

2 0.09 (4.10, 7.76) 3.66 0.92 (0.99, 5.54) 4.55 1 (0, 7.61) 7.61

3 0.60 (2.79, 6.13) 3.34 0.92 (1.05, 4.63) 3.58 1 (0, 6.38) 6.38

4 0.99 (1.11, 6.06) 4.95 0.91 (1.09, 3.94) 2.85 1 (0, 5.45) 5.45

5 1 (0, 7.10) 7.10 0.90 (1.08, 3.39) 2.31 1 (0, 4.77) 4.77

6 1 (0, 8.44) 8.44 0.89 (1.04, 2.94) 1.91 1 (0, 7.88) 7.88

7 1 (0, 10.42) 10.42 0.90 (0.96, 2.56) 1.59 1 (0, 10.39) 10.39

8 1 (0, 12.07) 12.07 0.91 (0.87, 2.24) 1.36 1 (0, 12.09) 12.09

9 1 (0, 13.04) 13.04 0.90 (0.78, 1.99) 1.22 1 (0, 10.07) 10.07

a Coverage: the percentage of confidence interval covers the truth based on simulation.

b CI: Confidence interval.

c Length: the length of each confidence interval
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3.3.2 Experiment 2

We increase the number of non-zero βs to p = 400 which means the signals are far from

sparse. All other parameters remain the same. Therefore, the individual signal strength is

weaker compared with Experiment 1. The simulation results are shown in Figure 24 and on

the Table XIII-XIV. Figure 24 shows that the naive approach and EigenPrism approach is

subject to very large upward bias while the bias of the subsampling approaches are smaller in

comparison. However, the bias of the subsampling approaches is larger than those observed in

Experiment 1. On the other side, the bias of the subsampling approach without adjustment

yields smaller bias compared with the results in Experiment 1. This is consistent with what

we expect before. From Table XIII, we see that the subsampling approaches have substantially

smaller MSE in comparison to the Yang et al.’s approach and EigenPrism approach. The

bootstrap subsampling approach and the subsampling with q = 0.5, 0.8 are slightly better

than the subsampling with q = 0.2. For q = 0.5, the estimator from unadjusted selection

criterion performs better that that from adjusted approach in respect to MSE. According, the

weighted approach yields an estimator closer to the unadjusted estimator. In Table XIV, the

90% confidence interval obtained by sampling approach using Yang et al.’s approach cover the

truth quite well for different αs. EigenPrism gives a good coverage when α = 1. With variable

selection, this approach no longer works well. The subsampling approach using EigenPrism

consistently give a wider confidence interval compared with the subsampling approach using

Yang et al.’s method.
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Figure 24: Box plot of subsampling approach with varied α in Experiment 2
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TABLE XIII: MSE IN EXPERIMENT 2 FOR SUBSAMPLING APPROACH a

Yang et al.’s approach EigenPrism

− log(α) Naive q = 0.2 q = 0.5, adjusted q = 0.5, unadjusted q = 0.5, weighted bootstrap q = 0.8 Naive q = 0.5

0 5.42 4.79 3.16 3.13 3.1 2.12 1.33 5 4.96

1 11.58 2.75 1.93 1.09 1.3 2.28 3.69 190.3 2.66

2 9.76 2.03 1.35 0.52 0.7 1.54 2.66 22.83 1.85

3 8.62 1.93 0.99 0.19 0.36 1.02 1.94 14.82 1.35

4 8.51 1.67 0.65 0.07 0.19 0.68 1.12 10.02 0.84

5 6.87 1.33 0.47 0.02 0.11 0.44 0.53 7.7 0.56

6 3.89 1.08 0.29 0.01 0.06 0.23 0.26 4.57 0.36

7 1.66 0.81 0.17 0.01 0.04 0.13 0.13 2.01 0.06

8 0.58 0.63 0.11 0 0.02 0.08 0.07 0.97 0.01

9 0.25 0.47 0.07 0 0.01 0.04 0.03 0.26 0

a The Experiment 2 is set up as n = 400, m =4000, p = 400, σ2
g = 4, σ2

e = 6
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TABLE XIV: 90% CONFIDENCE INTERVAL BY SUBSAMPLING APPROACH IN EXPERIMENT 2

− log(α) EigenPrism Subsampling Approach using LMM Subsampling Approach using EigenPrism

coverage a 90% CI b length c coverage 90% CI length coverage 90% CI length

0 0.9 (0.48, 7.95) 7.47 0.91 (0.75, 7.67) 6.93 1 (0, 11.57) 11.57

1 0 (13.54, 18.55) 5.01 0.96 (0.18, 5.68) 5.49 1 (0, 8.35) 8.35

2 0 (4.24, 7.94) 3.70 0.94 (0, 3.99) 3.99 1 (0, 6.26) 6.26

3 0 (2.9, 6.26) 3.36 0.93 (0, 2.90) 2.90 1 (0, 4.85) 4.85

4 0.01 (1.09, 6.05) 4.96 0.92 (0, 2.09) 2.09 1 (0, 3.80) 3.80

5 0.99 (0, 6.95) 6.95 0.90 (0, 1.63) 1.63 1 (0, 3.17) 3.17

6 1 (0, 8.54) 8.54 0.90 (0, 1.21) 1.21 1 (0, 7.39) 7.39

7 1 (0, 11.01) 11.01 0.92 (0, 0.92) 1.92 1 (0, 10.58) 10.58

8 1 (0, 10.56) 10.56 0.91 (0, 0.70) 0.70 1 (0, 9.52) 9.52

9 1 (0, 2.69) 2.69 0.92 (0, 0.54) 0.54 0.99 (0, 3.12) 3.12

a Coverage: the percentage of confidence interval covers the truth based on simulation.

b CI: Confidence interval.

c Length: the length of each confidence interval
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3.3.3 Experiment 3

We increase the magnitude of variances to σ2g = 20, σ2e = 30 while keeping other parameters

the same as in Experiment 1. The simulation results are shown in Figure 25, Table XV-XVI.

From Figure 25, we see the EigenPrism estimator is much more biased than other approaches

when the α level is relatively large. For the subsampling approach, q = 0.5 and q = 1 − 1/e

yield similar results in respect to the bias and variation of the estimators. Since the signal

strength is relatively large, we see that the adjusted estimator is less biased compared with

unadjusted estimator. And weighted approach is closer to the adjusted approach here. Although

subsampling approach can reduce the large upward bias in the EigenPrism approach, the bias

from the EigenPrism using subsampling approach is more biased compared with subsampling

approach using Yang et al.’s method.

From Table XV, we see that the relative merits of the approaches with respect to their

MSEs are similar to that observed in Experiment 1. Still, EigenPrism approach yields a larger

MSE compared with Yang et al.’s approach. The estimators from q = 0.5 and bootstrap give

a smaller MSE compared with q = 0.2 or q = 0.8.

Table XVI shows that the confidence interval by Yang et al.’s approach under subsampling

perform much better in terms of coverage and length of the confidence interval compared with

EigenPrism approach with or without subsampling.
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Figure 25: Box plot of subsampling approach with varied α in Experiment 3
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TABLE XV: MSE IN EXPERIMENT 3 FOR SUBSAMPLING APPROACH a

Yang et al.’s approach EigenPrism

− log(α) Naive q = 0.2 q = 0.5, adjusted q = 0.5, unadjusted q = 0.5, weighted bootstrap q = 0.8 Naive q = 0.5

0 109.55 100.29 70.35 69.46 70.19 56.96 36.66 117.02 126.03

1 115.24 55.86 50.14 44.98 49.82 55.52 54.92 3773 81.65

2 38.92 37.48 35.7 28.7 35.11 38.99 44.42 200.75 64

3 20.21 25.86 23.29 26.54 22.83 26.29 24.54 74.32 57.41

4 22.34 16.19 13.72 25.1 13.44 13.5 15.72 48.81 47.68

5 24.03 13.33 9.22 28.33 9.11 8.92 9.86 50.19 44.64

6 20.06 10.27 7.08 30.5 7.01 6.99 7.1 50.65 31.98

7 15.54 8.18 5.9 26.86 5.78 5.19 6.21 46.01 33.58

8 11.86 8.32 4.99 27.28 4.91 4.99 5.86 36.11 36.73

9 9.37 8.49 4.22 20.41 4.01 4.27 5.06 42.36 33.73

a The Experiment 3 is set up as n = 400, m =4000, p = 40, σ2
g = 20, σ2

e = 30
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TABLE XVI: 90% CONFIDENCE INTERVAL BY SUBSAMPLING APPROACH IN EXPERIMENT 3

− log(α) EigenPrism Subsampling Approach using LMM Subsampling Approach using EigenPrism

coverage a 90% CI b length c coverage 90% CI length coverage 90% CI length

0 0.93 (2.58, 39.67) 37.09 0.92 (3.21, 37.81) 34.6 1 (0, 57.92) 57.92

1 0 (66.4, 91.16) 24.76 0.93 (3.66, 32.82) 29.16 1 (0, 46.33) 46.33

2 0.20 (20.5, 38.8) 18.30 0.90 (4.82, 27.79) 22.97 1 (0, 38.34) 38.34

3 0.60 (13.82, 30.56) 16.74 0.91 (5.58, 23.63) 18.05 0.97 (0, 32.43) 32.43

4 0.95 (5.77, 30.4) 24.63 0.95 (5.72, 19.98) 14.27 0.94 (0, 28.03) 28.03

5 1 (0, 35.66) 35.66 0.94 (5.60, 17.22) 11.62 0.94 (0, 24.64) 24.64

6 1 (0, 42.01) 42.01 0.92 (5.50, 15.04) 9.54 1 (0, 39.55) 39.55

7 1 (0, 51.76) 51.76 0.91 (4.99, 13.11) 8.12 1 (0, 52.06) 52.06

8 0.99 (0, 58.39) 58.39 0.90 (4.58, 11.56) 6.98 1 (0, 61.27) 61.27

9 0.96 (0, 64.24) 64.24 0.90 (4.07, 10.17) 6.10 0.98 (0, 50.09) 50.09

a Coverage: the percentage of confidence interval covers the truth based on simulation.

b CI: Confidence interval.

c Length: the length of each confidence interval
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3.3.4 Experiment 4

We increase the number of variables in the experiment and keep the ratio between m and p

the same as in the previous experiment. The parameters are n = 400,m = 10000, p = 100, σ2g =

20, σ2e = 30. The simulation results are shown in Table XVII-XVIII, and Figure 26.

From Figure 26, we see that the subsampling approaches have smaller bias compared with

the naive approach. EigenPrism approach yields higher bias when variable selection is existed

compared with previous experiments. Although the naive approach gives an estimator with

small bias in some α values, the relative bias of the estimator in general increases as α decreases.

Under this setting-up, the adjusted approach yields smaller bias compared with unadjusted

approach.

The MSE in Table XVII shows that the naive approach has large MSEs compared with the

subsampling approaches. The EigenPrism approach can give similar MSE as naive approach

when no selection is conducted. Otherwise, EigenPrism approach is consistently yield larger

MSE than the naive approach and its corresponding subsampling approach also perform less

well compared with subsampling approach with Yang et al.’s method in respect to MSE.

From Table XVIII, we also observe that confidence intervals from the subsampling approach

using Yang et al.’s approach performs well. And the subsampling approach using EigenPrism

consistently yields a coverage probability around 1, meaning that the confidence interval is too

wide for the true signal estimators.
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Figure 26: Box plot of subsampling approach with varied α in Experiment 4
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TABLE XVII: MSE IN EXPERIMENT 4 FOR SUBSAMPLING APPROACH a

Yang et al.’s approach EigenPrism

− log(α) Naive q = 0.2 q = 0.5, adjusted q = 0.5, unadjusted q = 0.5, weighted bootstrap q = 0.8 Naive q = 0.5

0 224.43 177.32 95.61 99.87 95.57 66.68 38.62 255.14 218.27

1 61.75 100.26 82.35 70.11 77.05 91.67 100.1 32930.03 144.85

2 26.18 63.74 70.62 39.51 56.84 82.66 89.37 2795.17 98.56

3 53.9 49.22 43.28 25.32 31.49 44.02 67.53 189.11 65.45

4 73.5 38.93 31.44 21.05 22.04 32.05 42.32 137.72 41.53

5 105.08 35.29 18.46 13.29 12.04 17.81 20.98 117.07 24.8

6 103.3 31.24 14.11 9.7 8.96 11.76 11.91 113.72 17.35

7 74.12 26.64 7.65 6.21 4.3 5.92 5.87 84.95 14.31

8 38.6 22.52 5.5 3.8 2.88 4.15 3.86 40.98 1.37

9 16.91 20.95 4.17 2.31 2.07 2.82 2.55 25.77 1.27

a The Experiment 4 is set up as n = 400, m =10000, p = 100, σ2
g = 20, σ2

e = 30
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TABLE XVIII: 90% CONFIDENCE INTERVAL BY SUBSAMPLING APPROACH IN EXPERIMENT 4

− log(α) EigenPrism Subsampling Approach using LMM Subsampling Approach using EigenPrism

coverage a 90% CI b length c coverage 90% CI length coverage 90% CI length

l0 0.96 (0, 49.86) 49.86 0.93 (3.16, 36.56) 33.40 1 (0, 76.25) 76.25

1 0 (179.11, 215.24) 36.13 0.94 (2.74, 32.70) 29.96 0.99 (0, 59.39) 59.39

2 0 (53.54, 77.94) 24.4 0.90 (2.66, 27.37) 24.71 1 (0, 46.93) 46.93

3 0.02 (14.71, 32.98) 18.27 0.90 (2.14, 22.55) 20.42 1 (0, 37.06) 37.06

4 0.12 (10.92, 28.02) 17.10 0.90 (1.77, 17.90) 16.13 1 (0, 29.33) 29.33

5 0.88 (3.53, 29.65) 26.12 0.88 (1.64, 14.37) 12.73 1 (0, 23.71) 23.71

6 1 (0, 35.73) 35.73 0.89 (1.47, 11.63) 10.16 1 (0, 19.72) 19.72

7 1 (0, 43.53) 43.53 0.92 (1.27, 9.48) 8.21 1 (0, 18.48) 18.48

8 1 (0, 57.99) 57.99 0.90 (1.08, 7.66) 6.58 1 (0, 53.74) 53.74

9 1 (0, 62.64) 62.64 0.88 (0.93, 6.33) 5.40 1 (0, 51.05) 51.05

a Coverage: the percentage of confidence interval covers the truth based on simulation.

b CI: Confidence interval.

c Length: the length of each confidence interval
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3.4 Application to Real Data

In this section, we apply the proposed approaches to detecting the expression quantitative

trait locus (eQTL) in a gene-expression study of human brain tissues. In this study, a total of

155 postmortem cerebellum samples were collected from the Stanley Medical Research Institute

(SMRI), with 99 males and 56 females. All of them were of European ancestry. The Affymetrix

Genome-wide Human SNP 5.0 Array was used for SNP genotyping. The outcome we use here is

the gene expression of a probe that hybridizes to a specific genomic region in the chromosome.

Correspondingly, the covariates we use are all the SNPs located in that chromosome. For

illustrative purpose, we use a probe located at Chromosome 21 which has the smallest number

of SNPs among all chromosomes except sex chromosomes. The probe with ID 8069448 was

randomly chosen for the analysis. A more comprehensive analysis will be presented elsewhere.

Before analyzing the data, a standard quality checking (QC) procedure was performed.

SNPs with MAFs < 0.01 and HWE P < 0.001 were excluded. Because Yang et al’s approach

does not work when with missing data, subjects were removed if there is any missing value in

the SNPs. After the QC process, 130 samples are remained, and the number of SNPs used is

23,862.

The σ2α estimates by the naive approach, the subsampling approach with different sampling

ratios, and the bootstrap subsampling approach are shown in Table XIX. We also include 90%

confidence interval obtained by using proposed variance of the estimators. Without variable

selection, the bootstrap subsampling approach and subsampling approach with q = 0.5 yield

estimators with variances lower than the naive approach. On the other hand, the subsampling
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approach with q = 0.2 yields similar estimates of σ2α to those of the naive approach. The naive

approach consistently yields higher estimates compared with the other methods with variable

selection. The results are compatible with those observed in simulation studies.

The results suggest that the selection effectively reduces the scope in searching for the causal

SNPs. For example, when α = exp(−4), the tests select 566 SNPs which account for 2.4% of

the total SNPs. However, they explain about 50% of the total variation in the 23, 862 SNPs.

TABLE XIX: RESULTS OF THE ANALYSIS OF BRAIN TISSUE eQTL DATA

Naive q = 0.2 q = 0.5 bootstrap q = 0.8
− log(α) SNPs σ̂2S σ̂2S 90% CI σ̂2S 90% CI σ̂2S 90% CI σ̂2S 90% CI

0 23862 0.55 0.5 (0.06,0.94) 0.43 (0,0.89) 0.45 (0,0.92) 0.48 (0.11,0.85)
1 8970 0.54 0.47 (0.03,0.91) 0.42 (0,0.89) 0.41 (0.01,0.81) 0.51 (0.14,0.88)
2 3524 0.42 0.34 (0,0.74) 0.27 (0,0.64) 0.34 (0,0.71) 0.31 (0,0.64)
3 1328 0.46 0.3 (0,0.70) 0.27 (0,0.60) 0.28 (0,0.56) 0.39 (0.06,0.72)
4 566 0.43 0.26 (0, 0.59) 0.17 (0,0.45) 0.26 (0,0.54) 0.29 (0.01,0.57)
5 220 0.48 0.23 (0, 0.51) 0.15 (0,0.38) 0.16 (0,0.39) 0.23 (0,0.46)
6 95 0.45 0.19 (0,0.47) 0.08 (0,0.24) 0.1 (0,0.26) 0.15 (0,0.38)
7 40 0.47 0.21 (0,0.49) 0.12 (0,0.28) 0.09 (0,0.25) 0.07 (0,0.23)
8 12 0.3 0.17 (0,0.4) 0.06 (0.06,0.06) 0.08 (0,0.24) 0.05 (0,0.17)
9 4 0.08 0.12 (0,0.35) 0.05 (0.05,0.05) 0.05 (0,0.21) 0.03 (0,0.10)



CHAPTER 4

ESTIMATING TOTAL EFFECT OF SELECTED VARIABLES: THE

CASE OF CORRELATED COVARIATES

4.1 Modified Subsampling Approach for Correlated Covariates

In the previous chapter, we have concentrated on studying the subsampling approach under

the assumption that the covariates having effects on the outcome are independent. For GWASs,

if the causal SNPs are typed and in loci fairly apart, this assumption may be reasonable.

However, if the causal SNPs are clustered or some of the causal SNPs are not typed and the

tagged SNPs are correlated with other causal SNPs or tagged SNPs, this requirement fails

to hold. In this chapter, we extend the proposed subsampling approach to the case where

covariates with non-zero effects are correlated. Since we do not know the set of covariates that

have effects, we consider correlated covariates in respect to whether they have an effect or not.

More specifically, let y be the outcome which is a quantitative trait in GWAS, let x1, · · · , xm

be covariates denoting the typed SNP values in GWAS. Under the linear model

Y = β0 +Xβ + ε, (4.1)

with correlated covariates, i.e., var(X) = Σ, the variance of the outcome Y is

var(Y ) = βtΣβ + σ2ε , (4.2)

93
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It is known that Yang et al.’s approach may not work well in estimating the total variation of

the outcome attributable to the covariates when Σ 6= I. We first need to resolve this issue before

applying it to estimating the variation explained by a set of non-randomly selected covariates.

Our proposed approach is a transformation to disentangle the correlation among covariates.

Let the inverse of Σ be T . Let the new set of covariates Z be

Z = XT
1
2

After the transformation, var(Z) = var(XT
1
2 ) = I and the linear model becomes

Y = γ0 + Zγ + ε, (4.3)

where γ = (T )−
1
2β. The total variation explained by the new covariate Z is

var(Zγ) = γtγ = βtT−
1
2T−

1
2β (4.4)

= βtΣβ = var(Xβ). (4.5)

This means the variation explained by the covariates are invariant under transformation. In fact,

this property holds under any invertible linear transformation. In general, for any invertible

matrix compatible with X. Let W = XU and δ = U−1β, it follows that

Xβ = XUU−1β = Wδ.
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As a result, var(Wδ) = var(Xβ). The benefit of transforming X into Z is that Yang et al’s

approach is now appropriate for calculating the variation explained by Z.

To carry out the transformation, we need to calculate the inverse of Σ, which can be chal-

lenging in high dimensional setting. Friedman et al. (2007) proposed an algorithm called graphic

Lasso to calculate the inverse covariance matrix. Graphic Lasso, or glasso, uses the l1 penalty

in the estimating equations for the inverse of Σ to increase its sparsity. By extending the block-

wise coordinate descent algorithm in Banerjee et al. (2007) and applying coordinate descent

algorithms to solve individual penalty problems, glasso is able to compute the Σ−1 in remark-

ably faster speed compared with other competing methods. Later in 2015, Friedman and his

colleagues have also developed a package called “glasso” to implement the glasso algorithm in

R. The computing time of glasso is approximately O(m3), when Σ is an m×m matrix. It can

be seen that the length of computing Σ−1 is mainly depended on the number of covariates. If

the m is greater than 1000, which is quite normal in GWAS, the computing burden can be very

intensive for a single calculation of the inverse of Σ. For the subsampling approach, we need to

compute the Σ−1 multiple times. From the computation complexity point of view, using glasso

in subsampling approach may not be efficient.

We propose an alternative approach based on the consecutive regressions. Start from vari-

able x1, let z1 = x1; next regress x2 on x1, let the residual be z2; regress x3 on x1 and x2, let the

residual be z3; for i ≥ 4, regress xi on xi−1, · · · , x1, let the residual be zi. When the number of

variables is close to the sample size, the regression analysis becomes impractical. In those cases,

a penalized regression analysis may be considered to obtain the residual as the transformation.
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Alternatively, a parametric regression may be applied. For example, an autoregression model

with a fixed order may be considered. In the simulation study, we consider an order of 3 in the

obtaining the residuals.

To estimate the variation of the outcome explained by a set of randomly selected covariates,

let S denote the set selected. The linear model links the outcome to the set of selected covariates

is

Y = β0 +XSβ
∗
S + ε∗, (4.6)

where XS is the selected set of covariates and β∗S is the set of regression coefficients and E(ε∗) =

0. Note that in general β∗S 6= βS = (βj , j ∈ S) because of the correlation among covariates. The

variation of Y explained by the set S can be written as

σ2S(λ) = β∗tS var(XS)β∗S = βtcov(X,XS)var−1(XS)cov(XS , X)β (4.7)

where X is the full set of covariates, and β is the true coefficients associated with X. In

practice, as the true signal β is unknown, the second part of Equation 4.7 cannot be used

directly for estimation. We may use the first part of Equation 4.7 to estimate σ2S(λ) as we

did when all the covariates are involved. However, our regression models for disentangle the

correlation need to be applied to the set of covariates XS instead. When the set of covariates

are non-randomly selected, we use the subsampling approach again to circumvent the selection

bias. The application of the approach remains the same as in the previous chapter once the
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correlation is removed. For the simulation, we can use the Equation 4.7 to calculate the true

signal captured by variable selection.

The following algorithm is used to implement the bootstrap subsampling approach for cor-

related cases,

1. For q = 1− 1/e randomly sample from the observed data [n] subjects with replacement,

then remove the repeat subject. Denote the select sample as A and the rest of sample as

B.

2. Use sample A to select variables with varying tuning parameter values. Denote the

selected covariate indices by S.

3. Use sample B to obtain the zj for j = 1, . . . , s ∈ S. This is done by regressing xj on xj−1,

xj−2, and xj−3 if j ≥ 3. For j < 3, regression xj on all the available xk with k < j.

4. Fit a linear mixed model to zj , j ∈ S. Estimate σ̂2t (λ).

5. Repeat the 1 - 4 steps for t = 1, · · · , T .

4.2 Simulation Designs and Data Generation

Note that if we generate β as random vector whose components are either 0 or normally

distributed with mean 0 as assumed in Yang et al’s LMM approach, it follows that,

E(β′Σβ) =
m∑
j=1

E(β2j ) +
m∑
j=1

∑
k 6=j

E(βj)E(βk)ρjk.
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Since E(βj) = 0, we can eliminate the second item on the right hand side of the equation and

obtain

E(β′Σβ) =

m∑
j=1

E(β2j ).

This suggests that correlations among covariates do not affect the LMM estimator. We expect

using X or Z in the LMM approach yield similar results. In practice, however, the normality

of the β with mean 0 is questionable. When β is not symmetrically distributed around 0,

correlation among covariates may induce bias in the LMM estimator. Using X or Z in Yang

et al’s approach leads to different results and using Z is better. In the simulation, non-zero β

components are simulated either following a normal distribution with mean 0 or appropriately

fixed.

We consider two types of variable selection approaches. One continues to use the individual

tests with varying significance levels by running a marginal regression. The other applies Lasso

variable selection with varying tuning parameter values. The Lasso minimizes

||y − β0 −Xβ||2 + λ||β||1 (4.8)

The domain of β is restricted by the inequality ||β||1 ≤ t, where t is a consistent associated

with the choice of λ ∈ [0, C]. In the simulation studies, we choose λ ∈ [0, 3.2].

To compare the proposed estimator for σ2λ with other frequently used approaches in practice,

we also implement the subsampling approach without transforming X. The procedure is similar

to the above algorithm. The only difference is in step 3. Instead of calculating Z matrix, for
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selected variables in the previous step, we directly use the subset of sample B to estimate

the attributable variation of Y explained by the selected covariates by Yang et al’s approach.

In addition to subsampling approach, we also include the naive approach using X and Z for

estimation in the simulation. To compare the efficiency between Lasso approach and individual

tests in selecting variables, we include the individual tests for variable selection as we did for the

independent cases in the previous chapter. Since the EigenPrism approach does not perform

nearly as well as the LMM approach for non-randomly selected covariates when covariates are

independent, we expect it does not perform well either in the case of correlated covariates.

This is because the proposed de-correlation approaches relies on the corresponding estimation

approaches for independent covariates. For this reason, we do not include this approach in our

simulation study for comparison here.

The simulated covariates are the bi-allelic genetic markers taking values 0, 1, 2. The sim-

ulated outcome is a quantitative trait. The covariance matrix of covariates follows the au-

toregression model: the diagonal elements Σjj = 1and the off-diagonal elements Σjk = ρ|j−k|.

Specifically,

1. X: Generate a random number π following Uniform(0.05, 0.5) distribution. Generate n

independent random numbers, each follows Binomial(2, π) distribution. Repeat m times

to generate the initial covariant matrix. Let the new X1 = X1, for i = 2, . . . ,m, generate

a random number r ∼ U(0, 1), if r < ρ then the new Xi = Xi−1 otherwise the new

Xi = Xi. Standardized Xi to have mean 0 and variance 1. This makes the new X has
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an auto-regressive covariance-variance structure with each element equaling ρ|i−j|, where

i and j are the index of two columns of X.

2. β: In order to verify when Yang’s approach collapses in practice, we generate β in two

ways. In the first way, non-zero βs will be random, e.g., βj , j = 1, · · · , p iid∼ N(0, σ2g/p). In

another way, non-zero βs will be fixed, e.g., β2j = σ2g/p for j = 1, · · · , p. Set βj = 0, j =

p+ 1, · · · ,m.

3. Y : Generate ε following N(0, σ2eI) and set Y = Xβ + ε.

4. In each iteration, to calculate the truth , first apply the Lasso approach with λ ∈ [0, 3.2]

on the full data, then use the formula Equation 4.7 to calculate the truth.

We replicate the algorithm N times and compute the mean squared error (MSE) to measure

the performance of the estimator,

MSE =
1

N

N∑
l=1

(σ̂2lλ − σ2λ)2. (4.9)

4.3 Simulation Results

In the following experiments, we specify parameters (n,m, p, σ2g , σ
2
e , ρ) for each setting taking

the sparsity of the non-zero SNP effects into consideration. Bootstrap subsampling with q =

1− 1/e is used here as it gives the smallest MSE in different experiment in the last chapter for

independent covariates. Four approaches are compared here, the naive approach using X, the

naive approach using Z, the subsampling approach using X, and the subsampling approach

using Z.
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4.3.1 Experiment 1

The parameters were set as follow: n = 1000,m = 4000, p = 80, σ2g = 20, σ2e = 30, ρ = 0.5,

and we generate the βs by following the random normal distribution. Individual tests with

adjustment and Lasso approach are used for variable selection.

Table XX and Figure 27 present the results for using Lasso for variable selection, where we

chose to vary the λ in order to select varied size of X in the data. Figure 27 is the box plot

with varied λs. It can be seen that overall subsampling approach win over the naive approach

with smaller bias and acceptable variance. Although the estimator from subsampling approach

using X is slightly downward biased compared with subsampling approach using Z, both of

them work fine as the boxes of them are highly overlapped with the truth box across different

λs. In other words, the results using Z and X are very similar.
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Figure 27: Box plot with varied λ in Experiment 1
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Table XX gives the MSE results obtained through simulation. It shows that subsampling

approach using Z as the covariants yields the smallest MSE of the estimators among four

methods. Naive approach starts with much larger MSE compared with subsampling approach,

and follows with closer MSE with subsampling approach as λ level becomes larger, meaning

that the selection criterion is stricter.

TABLE XX: MSE IN EXPERIMENT 1 BY LASSO a,b

λ c naive with Z naive with X subsampling with Z subsampling with X
0 16.1 14.84 17.81 15.74

0.1 376.94 278.43 6.69 4.36
0.2 185.12 118.6 6.61 4.18
0.3 93.93 50.26 5.58 4.15
0.4 45.96 19.67 4.77 5.06
0.5 21.45 7.59 4.47 7.07
0.6 9.35 4.7 3.63 7.83
0.7 5.4 5.59 3.04 7.56
0.8 3.94 4.78 2.61 6.45
0.9 3.53 3.6 2.29 5.15
1 3.42 2.65 1.79 3.57

1.2 2.46 1.99 1.62 2.41
1.4 1.54 1.13 1.24 1.53
1.6 1.11 0.81 1.17 1.18
1.8 0.75 0.56 0.97 0.9
2 0.43 0.38 0.5 0.47

2.4 0.09 0.09 0.05 0.04
2.8 0 0 0.01 0.01
3.2 0 0 0 0

a n = 1000, m = 4000, p = 80, σ2
g = 20, σ2

e = 30, ρ = 0.5.
b βs is generated by following the random normal distribution.
c λ stands for tuning parameters in Lasso regression.
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Table XXI and Figure 28 present the same statistics using individual tests for variable

selection. It gives similar results in respect to the performance of subsampling approach and

naive approach. In Figure 28, when − log(α) becomes larger, the total variation explained by

selected variables decreases slower compared with that using Lasso regression. Table XXI also

shows that subsampling with matrix Z can yield the smallest MSE compared with using X in

subsampling approach.
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Figure 28: Box plot with varied α in Experiment 1
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TABLE XXI: MSE IN EXPERIMENT 1 BY INDIVIDUAL TESTS a,b

− log(α) c naive with Z naive with X subsampling with Z subsampling with X
0 16.1 14.84 14.91 15.13
1 155.91 76.07 9.61 19.99
2 31.03 11.99 6.56 15.38
3 11.07 7.71 4.92 6.76
4 7.05 8.5 4.18 3.09
5 5.08 9.51 3.3 3.62
6 4.13 10.07 2.52 5.05
7 3.13 10.51 2.49 6.66
8 2.84 9.86 2.1 6.94
9 2.63 9.19 2.45 7.51
10 2.67 7.88 1.87 6.73
11 2.74 6.48 1.79 6.48
12 2.65 5.3 1.91 5.01
13 2.71 4.72 1.89 4.83
14 2.69 3.9 2.14 4.23
15 2.6 3.64 1.83 3.85
16 2.41 3.34 1.65 3.31
17 2.16 3.2 1.63 2.99
18 1.97 2.71 1.75 3.04

a n = 1000, m = 4000, p = 80, σ2
g = 20, σ2

e = 30, ρ = 0.5.
b βs is generated by following the random normal distribution.
c α stands for tuning parameters in individual tests.

Table XXII shows the efficiency of using lasso approach and individual tests for variable

selection. We list the selected sample size at each selection level, the total variation explained

by the selected covariants, and the average signal strength for each coefficient under certain

selection level. It can be seen that Lasso approach can yield a smaller subset with similar total

signal strength than individual test, indicating more efficient than individual test.
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TABLE XXII: EFFICIENCY COMPARISON IN EXPERIMENT 1

α selected size σ̂2g
σ̂2
g

n λ selected size σ̂2g
σ̂2
g

n

0 4000 19.7 0 0 4000 19.63 0
1 1919.98 18.02 0.01 0.1 485.68 15.84 0.03
2 972.92 16.9 0.02 0.2 346.44 15.5 0.04
3 510.29 16.1 0.03 0.3 236.94 15.19 0.06
4 275.56 15.24 0.06 0.4 153.64 14.68 0.1
5 154.61 14.36 0.09 0.5 94.04 13.97 0.15
6 91.15 13.69 0.15 0.6 54.96 13.14 0.24
7 56.86 12.89 0.23 0.7 31.52 12.17 0.39
8 37.7 12.18 0.32 0.8 18.82 11.05 0.59
9 26.73 11.53 0.43 0.9 12.23 9.86 0.81
10 20.16 10.83 0.54 1 8.55 8.65 1.01
11 15.94 10.14 0.64 1.2 4.64 6.23 1.34
12 13.08 9.52 0.73 1.4 2.45 4.12 1.68
13 11.03 8.92 0.81 1.6 1.22 2.55 2.09
14 9.43 8.37 0.89 1.8 0.56 1.42 2.55
15 8.19 7.79 0.95 2 0.23 0.7 3.08
16 7.14 7.31 1.02 2.4 0.04 0.17 4.62
17 6.25 6.76 1.08 2.8 0 0.02 4.01
18 5.52 6.32 1.14 3.2 0 0 NA

4.3.2 Experiment 2

In this experiment, we keep all the parameter settings the same, but non-zero βs are sim-

ulated by assuming that all of them are fixed at the level
√
σ2g/p. We also compare Lasso

regression and individual tests for the variable selection. For Lasso approach, as the signal is

reduced to 0 when λ > 1.6, we do not include the results of λ > 1.6 here. Instead, we add

more λs between 0 and 0.1, as the upward bias are more severe when λ within this range.

Table XXIII and Figure 29 present the results for Lasso selection.
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Table XXIII shows that subsampling approach can reduce the MSE of estimator when

variables are selected. Additionally, subsampling approach using Z seems to have much less

MSE compared with that using X when λ level is relatively large. This is also consistent with

what we expect before simulation. Figure 29 shows that subsampling approach with Z performs

best with small bias and relatively small variance. Although the naive approach using matrix

Z can work fine when λ level is relatively large, it collapses by yielding a large upward bias for

small λs.

TABLE XXIII: MSE IN EXPERIMENT 2 BY LASSO a,b

λ c naive with Z naive with X subsampling with Z subsampling with X
0 72.64 295.74 66.07 634.8

0.02 282.02 95.07 22.97 14.03
0.04 249.18 107.92 22.42 7.72
0.06 214.96 130.55 21.36 11.3
0.08 179.8 159.86 21.32 18.03
0.1 149.73 192.28 19.28 26.89
0.2 45.1 393.98 17.38 110.82
0.3 16.7 578.91 16 229.83
0.4 11.73 740.29 13.92 348.43
0.5 10.95 843.6 13.52 438.57
0.6 11.05 871.19 12.26 483.27
0.7 11.89 832.05 11.58 483.01
0.8 13.64 743.52 11.96 448.31
0.9 14.48 637.04 12.97 397.64
1 13.36 520.76 11.6 333.75

1.2 17.59 286.21 13.05 207.35
1.4 32.64 96.46 10.4 93.45
1.6 60.45 9.29 9.58 19.91

a n = 1000, m = 4000, p = 80, σ2
g = 20, σ2

e = 30, ρ = 0.5.

b Non-zero βs is assumed to be fixed at the level
√
σ2
g/p.

c λ stands for tuning parameters in Lasso regression.
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Table XXIV and Figure 30 display the results when using individual tests for variable

selection. The overall trend is similar with that using Lasso regression for variable selection.

In Table XXIV, we can see that subsampling approach using Z consistently wins over other

approaches by giving the smallest MSE across different levels of α.

TABLE XXIV: MSE IN EXPERIMENT 2 BY INDIVIDUAL TESTS a,b

− log(α) c naive with Z naive with X subsampling with Z subsampling with X
0 72.64 295.74 72.06 634.83
1 8.95 197.53 50.76 482.25
2 193.37 761.09 30.28 90.77
3 200.03 1054.46 19.54 30.08
4 88.06 1138.65 15.38 211.73
5 30.79 1138.69 12.61 410.53
6 13.26 1115.15 11.56 540.65
7 9.75 1076.97 11.24 601.27
8 9.38 1017.8 11.5 603.27
9 9.72 951.51 11.33 575.36
10 10.11 858.8 11.15 523.56
11 9.25 752.2 10.98 457.82
12 9.11 640.68 10.62 390.6
13 9.3 505.81 9.43 303.35
14 10.39 386.52 8.99 230.83
15 13 270.93 8.3 156.52
16 19.3 175.58 12.01 101.09
17 27.67 102.65 15.86 60.81

a n = 1000, m = 4000, p = 80, σ2
g = 20, σ2

e = 30, ρ = 0.5.

b Non-zero βs is assumed to be fixed at the level
√
σ2
g/p.

c α stands for tuning parameters in individual tests.

We also compare the efficiency of both selection methods in Table XXV. It gives similar

results as Experiment 1.
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TABLE XXV: EFFICIENCY COMPARISON OF TWO SELECTION METHODS IN
EXPERIMENT 2

α selected size σ̂2g
σ̂2
g

n λ selected size σ̂2g
σ̂2
g

n
0 4000 58.68 0.01 0 4000 58.4 0.01
1 1938.77 59.88 0.03 0.02 692.83 57.59 0.08
2 1002.25 59.66 0.06 0.04 613.98 57.38 0.09
3 546.65 59.66 0.11 0.06 565.98 57.46 0.1
4 317.89 59.59 0.19 0.08 527.9 57.48 0.11
5 200.74 59.25 0.3 0.1 494.3 57.59 0.12
6 139.26 58.74 0.42 0.2 359.44 57.55 0.16
7 105.87 58.05 0.55 0.3 256.84 57.48 0.22
8 86.76 57.1 0.66 0.4 180.62 57.33 0.32
9 74.71 55.91 0.75 0.5 127.83 56.86 0.44
10 66.4 54.43 0.82 0.6 93.9 56.13 0.6
11 59.53 52.59 0.88 0.7 73.35 55.23 0.75
12 53.66 50.5 0.94 0.8 60.73 54.08 0.89
13 48.22 48.09 1 0.9 52.22 52.39 1
14 43.29 45.31 1.05 1 45.81 50.51 1.1
15 38.4 42.39 1.1 1.2 35.18 45.06 1.28
16 33.8 39.29 1.16 1.4 25.7 37.57 1.46
17 29.53 35.93 1.22 1.60 17.29 28.40 1.64

4.3.3 Experiment 3

In this experiment, we increase the p from 80 to 800, therefore, the data becomes less

sparse, and many weak signals are associated in the data. β are generated by following normal

distribution in this experiment.

Table XXVI and Figure 31 show results using Lasso approach for variable selection. From

Table XXVI, we see that when the individual signal strength is weak, using Lasso regression

with λge1.4 will cannot select any X from the data, therefore, the MSE becomes to be zero

as there is no covariates included in the analyses when λ is relatively large. In other words, it
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can be seen compared with Experiment 1, the strength of signal reduces faster. Additionally,

it shows that the subsampling approach can give smaller MSE compared with naive approach.

TABLE XXVI: MSE IN EXPERIMENT 3 BY LASSO a,b

λ c naive with Z naive with X subsampling with Z subsampling with X
0 28.76 18.81 30.03 21.95

0.1 691.94 589.76 10.88 9.2
0.2 449.96 368.26 8.95 7.72
0.3 315.52 255.92 6.07 5.27
0.4 226.25 183.71 4.15 3.82
0.5 156.01 126.97 2.41 2.3
0.6 90.52 74 1.47 1.5
0.7 39.43 32.68 1.04 1.09
0.8 13.11 11.11 0.81 0.84
0.9 3.67 3.25 0.51 0.52
1 1.09 1 0.27 0.27

1.2 0.11 0.11 0.04 0.04
1.4 0 0 0 0
1.6 0 0 0 0
1.8 0 0 0 0
2 0 0 0 0

2.4 0 0 0 0
2.8 0 0 0 0
3.2 0 0 0 0

a n = 1000, m = 4000, p = 800, σ2
g = 20, σ2

e = 30, ρ = 0.5.
b βs is generated by following the random normal distribution.
c λ stands for tuning parameters in Lasso regression.

Figure 31 shows that subsampling approach yields less biased estimator compared with

naive approach, although the estimator gives larger downward bias compared with that in

Experiment 1. For subsampling approach using Z and X, there is not much difference between

the two results.
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Table XXVII and Figure 32 give the results when the individual tests are used for variable

selection. It also shows the superiority of subsampling approach when the data is correlated.

Table XXVIII shows that when the data is not sparse and the signals are weak, the efficiency

of lasso approach and individual tests are similar.

TABLE XXVII: MSE IN EXPERIMENT 3 BY INDIVIDUAL TESTS a,b

− log(α) c naive with Z naive with X subsampling with Z subsampling with X
0 28.76 18.81 28.3 19.75
1 288.39 169.15 17.43 22.85
2 160.55 97.12 11.74 16.7
3 123.91 82.96 7.6 11.36
4 106.26 74.55 5.58 7.55
5 82.33 59.07 3.56 4.56
6 51.72 37.46 2.55 3.02
7 26.4 19.31 1.84 2.06
8 13.49 10.36 1.29 1.36
9 6.49 5.2 0.88 0.9
10 3.13 2.66 0.64 0.64
11 1.65 1.48 0.42 0.41
12 1.05 0.94 0.27 0.26
13 0.56 0.51 0.17 0.17
14 0.38 0.33 0.1 0.09
15 0.23 0.2 0.06 0.06
16 0.15 0.14 0.04 0.04
17 0.05 0.05 0.03 0.03
18 0.05 0.05 0.01 0.01

a n = 1000, m = 4000, p = 800, σ2
g = 20, σ2

e = 30, ρ = 0.5.
b βs is generated by following the random normal distribution.
c α stands for tuning parameters in individual tests.



113

TABLE XXVIII: EFFICIENCY COMPARISON OF TWO SELECTION METHODS IN
EXPERIMENT 3

α selected size σ̂2g
σ̂2
g

n λ selected size σ̂2g
σ̂2
g

n
0 4000 20.51 0.01 0 4000 20.81 0.01
1 1969.6 15.25 0.01 0.1 500.44 7.65 0.02
2 1025 11.44 0.01 0.2 371.8 6.75 0.02
3 548.93 8.59 0.02 0.3 268.51 5.9 0.02
4 300.35 6.44 0.02 0.4 186.16 5 0.03
5 167.5 4.74 0.03 0.5 122.09 3.97 0.03
6 94.41 3.45 0.04 0.6 74.8 3.1 0.04
7 54.29 2.54 0.05 0.7 41.84 2.23 0.05
8 31.57 1.86 0.06 0.8 20.97 1.51 0.07
9 18.68 1.35 0.07 0.9 9.42 0.93 0.1
10 11.13 1 0.09 1 3.83 0.53 0.14
11 6.71 0.73 0.11 1.2 0.5 0.12 0.23
12 4.1 0.53 0.13 1.4 0.05 0.01 0.26
13 2.54 0.39 0.15 1.6 0 0 0.29
14 1.59 0.28 0.18 1.8 0 0 0
15 0.99 0.19 0.2 2 0 0 NA
16 0.63 0.14 0.23 2.4 0 0 NA
17 0.41 0.1 0.24 2.8 0 0 NA
18 0.26 0.06 0.24 3.2 0 0 NA

4.3.4 Experiment 4

In this experiment, β are generated in the fixed way, and all the parameters are set the

same as Experiment 3. It can been seen from the Table XXIX that subsampling approach still

works much better compared with naive approach. However, using Z or X make no difference

in the MSE of estimators. This might due to the fact that the fixed effect of β is very small.

Figure 33 also shows that the subsampling approach using X or Z work well compared with

naive approach.
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TABLE XXIX: MSE IN EXPERIMENT 4 BY LASSO a,b

λ c naive with Z naive with X subsampling with Z subsampling with X
0 73.06 272.1 79.69 607.5

0.02 429.46 59.5 110.83 38.54
0.04 441.09 73.13 122.14 47.82
0.06 436.77 74.85 126.28 52.32
0.08 425.4 72.24 123.52 52.97
0.1 396.69 65.36 126.73 57.92
0.2 309.72 51.69 111.2 59.51
0.3 287.48 62.2 87.29 52.2
0.4 297.5 89.61 64.07 42.35
0.5 344.39 142.73 39.7 27.99
0.6 394.01 205.94 22.35 17.22
0.7 426.37 262.77 11.86 10.32
0.8 412.62 283.71 8.36 8.6
0.9 346.32 255.9 7.6 8.31
1 236.91 184.41 8.41 9.08

1.2 52.72 43.84 5.45 5.65
1.4 5.37 4.8 1.48 1.52
1.6 0.53 0.53 0.27 0.27

a n = 1000, m = 4000, p = 800, σ2
g = 20, σ2

e = 30, ρ = 0.5.

b Non-zero βs is assumed to be fixed at the level
√
σ2
g/p.

c λ stands for tuning parameters in Lasso regression.

We also include the results by using individual tests for variable selection in Table XXX

and Figure 34. From Figure 34, we can see that subsampling approach using Z can still reduce

the bias a lot compared with other approaches especially when the α level is relatively large.

However, such superiority disappears when α becomes small and all the approaches do not

perform well compared with the truth.
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From Table XXX, it can be seen that subsampling approach with matrix Z works the best

in respect to the MSE. Table XXXI shows that under the existence of weak signals, individual

tests and Lasso approach performs the similar in respect of the selection efficiency.

TABLE XXX: MSE IN EXPERIMENT 4 BY INDIVIDUAL TESTS a,b

− log(α) c naive with Z naive with X subsampling with Z subsampling with X
0 73.06 272.1 81.89 599.83
1 111.84 25.85 72.83 454.18
2 21.19 62.17 50.65 193.56
3 42.94 8.82 44.63 109.38
4 136.94 24.74 42.37 81.46
5 237.55 100.28 42.9 65.65
6 284.61 161.33 39.94 51.84
7 243.85 158.36 33.73 39.44
8 168.75 117.35 22.56 24.99
9 92.25 68.72 15.06 16.03
10 44.82 34.81 9.28 9.61
11 19.92 15.92 5.26 5.34
12 9.62 7.94 2.98 3
13 4.94 4.22 1.69 1.68
14 2.61 2.47 0.98 0.97
15 1.52 1.45 0.58 0.56
16 0.58 0.52 0.36 0.35
17 0.39 0.33 0.21 0.2

a n = 1000, m = 4000, p = 800, σ2
g = 20, σ2

e = 30, ρ = 0.5.

b Non-zero βs is assumed to be fixed at the level
√
σ2
g/p.

c α stands for tuning parameters in individual tests.
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TABLE XXXI: EFFICIENCY COMPARISON OF TWO SELECTION METHODS IN
EXPERIMENT 4

α selected size σ̂2g
σ̂2
g

n λ selected size σ̂2g
σ̂2
g

n
0 4000 59.63 0.01 0 4000 59.89 0.01
1 2104.73 53.54 0.03 0.02 710.89 36.21 0.05
2 1185.09 45.16 0.04 0.04 634.67 34.31 0.05
3 691.52 36.81 0.05 0.06 592.52 33.35 0.06
4 413.94 28.78 0.07 0.08 560.48 32.78 0.06
5 251.49 21.7 0.09 0.1 533.35 32.17 0.06
6 154.7 15.72 0.1 0.2 426.12 29.41 0.07
7 96.02 11.24 0.12 0.3 342.37 26.71 0.08
8 59.9 7.77 0.13 0.4 273.02 23.74 0.09
9 37.44 5.36 0.14 0.5 214.95 20.76 0.1
10 23.45 3.72 0.16 0.6 166.52 17.75 0.11
11 14.7 2.53 0.17 0.7 126.18 14.67 0.12
12 9.22 1.75 0.19 0.8 93.15 11.74 0.13
13 5.78 1.2 0.21 0.9 66.28 9.07 0.14
14 3.67 0.85 0.23 1 45.3 6.69 0.15
15 2.29 0.59 0.26 1.2 17.89 3.09 0.17
16 1.44 0.4 0.28 1.4 5.3 1.15 0.22
17 0.92 0.28 0.3 1.6 1.2 0.35 0.29

Based on the experiment results, we can see that our proposed subsampling approach with

“de-correlated” strategy can effectively reduce the bias in the estimation of total variation of

selected variables. Furthermore, by comparing the average strength of signal explained by

the subset of variables, it indicates that Lasso can select a smaller subset of variables with

comparable signal strength than the individual test does. Besides the efficiency in terms of

variable selection, Lasso approach also wins over individual tests in terms of computational

time. On average, the procedure using Lasso approach is 2 times faster than the same procedure

using individual tests for variable selection.
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We also calculated the 90% CI using the proposed variance estimate in Chapter 3. Results

are shown in Table XXXII for all the experiment. Results on other subsampling approaches

demonstrate similar patterns and therefore suppressed to save space. From the table, when the

βs are random, the coverage is much less than the expected. This is due to the underestimation

of the true variance. But for fixed βs, the coverage is relatively small. Possible reasons for the

coverage not performing as good as that in independent cases could be the problem with the

asymptotic linear approximation for the estimator and/or the boundary effect, i.e., variation

estimators are kept positive.

4.4 Application to Real Data

For demonstration purposes, we apply the adaptive subsampling approach to the same

eQTL data we used in Chapter 3. In this study, a total of 155 postmortem cerebellum samples

were collected from the Stanley Medical Research Institute (SMRI), with 99 males and 56

females. All of them were of European ancestry. The Affymetrix Genome-wide Human SNP

5.0 Array was used for SNP genotyping. The outcome we use here is the gene expression of

a probe that hybridizes to a specific genomic region in the chromosome. Correspondingly, the

covariates we use are all the SNPs located in that chromosome. For illustrative purpose, we

use a probe located at Chromosome 21 which has the smallest number of SNPs among all

chromosomes except sex chromosomes. The same probe with ID 8069448 was randomly chosen

for the analysis.
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TABLE XXXII: 90% CONFIDENCE INTERVAL BY SUBSAMPLING APPROACH IN CORRELATED CASES

Experiment 1 Experiment 2 Experiment 3 Experiment 4

coverage 90% CI length coverage 90% CI length coverage 90% CI length coverage 90% CI length

1 (8.58,30.67) 22.09 0.97 (38.99,77.82) 38.83 0.96 (9.76,31.87) 22.11 0.95 (40.28,79.49) 39.21

0.89 (11.55,20.13) 8.58 0.93 (48.7,66.47) 17.77 0.67 (3.59,11.71) 8.12 0.56 (26.84,45.57) 18.73

0.9 (11.76,19.23) 7.48 0.91 (48.99,65.77) 16.78 0.69 (3.21,10.28) 7.07 0.47 (25.38,43.25) 17.87

0.84 (11.98,18.4) 6.42 0.94 (49.3,65.63) 16.33 0.74 (2.88,8.92) 6.04 0.41 (24.68,42.03) 17.35

0.8 (11.87,17.48) 5.61 0.9 (49.64,65.32) 15.68 0.76 (2.48,7.52) 5.04 0.4 (24.39,41.17) 16.78

0.71 (11.56,16.38) 4.82 0.91 (49.9,65.28) 15.38 0.78 (1.91,6.03) 4.12 0.36 (24.07,40.28) 16.21

0.75 (10.93,15.36) 4.43 0.84 (50.92,64.18) 13.26 0.81 (1.51,4.69) 3.18 0.34 (22.15,36.67) 14.52

0.78 (10.19,14.16) 3.97 0.84 (51.64,63.33) 11.69 0.81 (1.01,3.45) 2.44 0.38 (20.11,33.3) 13.19

0.72 (9.24,12.85) 3.61 0.86 (51.98,62.67) 10.69 0.85 (0.61,2.4) 1.79 0.45 (17.81,29.66) 11.85

0.71 (8.18,11.54) 3.37 0.84 (51.96,61.76) 9.8 0.79 (0.3,1.55) 1.25 0.53 (15.46,26.06) 10.6

0.78 (7.04,10.27) 3.22 0.83 (51.52,60.74) 9.22 0.84 (0.12,0.94) 0.82 0.7 (12.95,22.56) 9.61

0.7 (4.77,7.68) 2.91 0.86 (50.78,59.69) 8.91 0.99 (0,0.27) 0.27 0.81 (10.44,18.89) 8.45

0.78 (2.85,5.39) 2.54 0.81 (49.75,58.41) 8.66 1 (0,0.04) 0.04 0.76 (8.09,15.39) 7.3

0.82 (1.51,3.6) 2.09 0.76 (48.2,56.59) 8.39 1 (0,0.01) 0.01 0.74 (5.96,12.18) 6.22

0.9 (0.63,2.22) 1.59 0.77 (46.33,54.69) 8.36 1 (0,0) 0 0.61 (4.09,9.29) 5.2

0.92 (0.19,1.2) 1.01 0.79 (40.91,49.22) 8.31 1 (0,0) 0 0.44 (1.45,4.73) 3.28

1 (0.02,0.33) 0.31 0.81 (33.4,41.75) 8.35 1 (0,0) 0 0.61 (0.29,2.01) 1.72

1 (-0.03,0.06) 0.06 0.82 (24.2,32.6) 8.4 1 (0,0) 0 0.89 (0,0.76) 0.76
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Before analyzing the data, a standard quality checking (QC) procedure was performed.

SNPs with MAFs < 0.01 and HWE P < 0.001 were excluded. Because Yang et al’s approach

does not work when with missing data, subjects were removed if there is any missing value in

the SNPs. After the QC process, 130 samples are remained, and the number of SNPs used is

23,862.

We first checked the correlation matrix of all the covariants in the data. It shows that the

maximum absolute correlation between two columns is greater than 0.9. Therefore, using the

de-correlated Z matrix should be more suitable here. We use the Lasso approach to select

the variables, the tuning parameter λ is varied between 0 and 0.1. Table XXXIII displays the

results based on our proposed approach. From the table, we can see that when all the SNPs are

used for variance estimation, directly using X as the covariates will yield an estimator larger

than using Z as the covariates. With variable selection, the estimator from Z is consistently

lower than that from X. Furthermore, we can also see that by using Lasso approach for variable

selection, the number of X is rapidly decreased.

TABLE XXXIII: SUMMARY OF ANALYSES RESULTS IN eQTL DATA

Naive subsampling using X subsampling using Z
λ SNPs σ̂2SusingX σ̂2SusingZ σ̂2S 90% CI σ̂2S 90% CI
0 23862 0.55 0.16 0.48 (0.11,0.85) 0.15 (0,0.38)

0.02 125 0.35 0.17 0.28 (0.05,0.51) 0.13 (0,0.29)
0.04 80 0.34 0.17 0.26 (0.10,0.42) 0.11 (0,0.27)
0.06 50 0.37 0.12 0.16 (0,0.32) 0.02 (0,0.18)
0.08 18 0.26 0.12 0.14 (0,0.30) 0.01 (0,0.17)
0.1 12 0.26 0.15 0.03 (0,0.09) 0.01 (0,0.17)



CHAPTER 5

CONCLUSION AND DISCUSSION

Estimating total variation explained by a subset of non-randomly selected covariates in

high-dimension regression is an important problem. This problem is more challenging when

many weak signals are involved. Yang et al.’s approach, widely used in the estimation of total

variation, does not work well when covariates are non-randomly selected. In this thesis, we

examined many existing approaches that may provide a possible solution to this problem. The

comprehensive simulation studies performed in this research demonstrate that, for those Lasso-

related approaches, their performance is mostly constrained by the sparsity and uniform signal

strength assumption. In other words, when many non-zero coefficients exist or the coefficient is

not strong enough, Lasso-related approaches do not provide a reasonably good estimate of the

total variation explained by the select covariates. For approaches that are based on adjusting

the bias in individual estimates, their performance is not satisfactory because the accumulative

errors and/or the variance of the final estimator can be very large when individual adjusted

estimators and combined.

To tackle this problem, we propose subsampling approaches with adjustment to cutoff val-

ues for estimating the variation explained by a set of non-randomly selected covariates. We

start from the cases with the independent covariates. Simulation results demonstrate that the

proposed approach can effectively reduce the bias and the mean squared error over the naive

approach. The proposed approach is computationally simple to implement and can be easily
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adapted to different selection methods. As a byproduct, the subsampling approach also pro-

vides variance estimates for the proposed estimators, which can give a 90% confidence interval

with satisfying coverage rate. We also compare the variance estimates from proposed approach

with those from EigenPrism approach (Janson et al., 2017). The variance estimates from our

proposed approach outperforms EigenPrism approach in yielding an estimate of variance closer

to the empirical variance based on simulation. The probable reason for EigenPrism not working

well is that this method is mainly reserved for high dimensional setting. Upon variable selection,

m ¡ n, and the upper bound of variance estimator will no longer hold for this approach.

The proposed approach is also extended to deal with correlated covariates. The covariate

matrix is transformed to remove the correlations among covariates before the total variation

is estimated by Yang et al.’s approach. Other variable selection approaches, e.g., l1-penalized

approaches such as Lasso, are also incorporated into the procedure. Simulation study shows

that the modified proposed approach can also reduce the bias of the estimators compared with

the naive approach. Our simulation study also indicates that Lasso approach is more efficient

in selecting covariates than the individual tests when the covariates are correlated.

The research is subject to a number of limitations. First, although we had conducted a

simple theoretical analysis of the proposed approach, our conclusions are mainly drawn based on

the simulation results. A comprehensive theoretical analysis of the proposed approach is lacking.

The limiting spectral distribution theory of a random matrix used by Jiang et al. (2016) for

proving the consistency of Yang et al’s approach should be useful for further theoretical analysis,

which may shed light on whether an optimal subsample ratio exists to achieve the smallest mean
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squared error and on further extensions. Second, the proposed approaches substantially reduce

the bias of the naive estimator. However, the estimators themselves are still subject to some

bias, how to further reduce the bias is of interest. Third, the proposed approach is applied to

the real data. But the estimated variations explained by the selected covariates is very small.

A better demonstration of the usefulness of the proposed approach may be to data such as

the human’s height data in Yang et al. (2010). Such an analysis can generate more useful

information on causal SNPs responsible for the trait. We have dealt with the quantitative trait

in genomic studies. Extension of the proposed approaches to binary traits are of particular

interest in practice.
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Appendix A

VALIDATION OF LOW-DIMENSIONAL PROJECTION ESTIMATOR

We check the performance of LDPE under various simulation scenarios. The experiment

uses the setting of (Zhang and Zhang, 2014) and includes some extensions based upon that.

In (Zhang and Zhang, 2014), n = 200, m = 3000. X follows N(0,Σ) with Σ = ρ
|i−j|
m×m; for

j = 1500, 1800, . . . , 3000, βj = 3λ1, all the other βj = 3λ1/j
α λ1 =

√
2/n logm. Besides

α = c(1, 2) and ρ = c(0.2, 0.8) to evaluate the performance in different strength of the β and

dependent levels of X in the original paper, we try smaller α = (0.5, 0.1) to see if LDPE can

perform well when lots of small βs present.

TABLE XXXIV: SUMMARY STATISTICS FOR LDPE

(α, ρ)
(2, 1/5) (1, 1/5) (2, 4/5) (1, 4/5) (0.5, 1/5) (0.1, 1/5)

bias 0.0354 -0.057 0.0211 -0.0384 -0.114 -0.275
sd 0.142 0.109 0.192 0.239 0.288 2.130
median abs error 0.0964 0.109 0.143 0.157 0.227 1.569
all βj coverage 0.96 0.96 0.97 0.980 0.97 0.97
maximal βj coverage 0.94 0.97 0.96 0.99 0.96 0.97

The above Table XXXIV gives the same summary statistics simulation table presented

in Zhang and Zhang (2014). For the set-ups of α = c(1, 2) and ρ = c(0.2, 0.8), we obtain
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Appendix A (Continued)

similar results showing the superiority of LDPE method in the paper. However, when the

signal strengths are weak and the number of signals is large, the bias, standard deviation, and

the median absolute error are all increased. Although the coverage rate for all the βs and the

maximal βj suggest that the confidence interval has good coverage, the increase bias indicate the

var(βj) is inflated, therefore enlarging the confidence interval to get a good coverage probability.
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Appendix B

FUNCTIONAL DE-BIASED ESTIMATOR

To verify the computational procedures of our code and to demonstrate the possible limita-

tions discussed above, simulations are conducted with similar set-up in the (Guo et al., 2016)

and additional cases. According to (Guo et al., 2016), n = 400, m = 600, p varies from 25

to 600, all the non-zero βs equal with a flat rate τ , X ∼ N(0, (0.8)|i−j|), ε ∼ N(0, 1), and

Y = Xβ + ε.

They used the mean squared error (MSE) of the estimated ||β̂||22. Results are displayed in

Table XXXV. It can be seen that FDE method works well when size of non-zero βs is small.

With the increase of signal strength, the MSE increases adequately under sparsity situation.

However, It worsens quickly when the p increases. Specially, when p is large relative to n, the

MSE of FDE method is exploded.

TABLE XXXV: MSE OF FDE WITH VARIOUS SETTINGS

Strength Parameters, τ
Sparsity Parameter, p 0.1 0.2 0.3 0.4

25 0.032 0.073 0.073 0.081
50 0.118 0.290 0.323 0.364
100 0.470 1.501 2.087 2.136
200 2.190 12.260 31.338 55.194
400 12.658 154.364 730.431 2562.352
600 26.781 455.299 2160.898 6286.643
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