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SUMMARY

The Equation Problem in finitely presented groups asks if there exists an algorithm which

determines in finite amount of time whether any given equation system has a solution or not.

We show that the Equation Problem in central extensions of hyperbolic groups is solvable.
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CHAPTER 1

INTRODUCTION

Decision problems in groups has been an important area of group theory since Max Dehn

proposed the Word Problem, the Conjugacy Problem and the Group Isomorphism Problem in

1911. The Equation Problem is a vast generalization of the word problem and the conjugacy

problem. Let G be a finitely presented group and let C be a generating set for G. Denote

a set of variables by U . An equation system is a finite collection of equations wi = 1 where

wi ∈ (U ∪ C)∗. Let E = {wi = 1 | i = 1 · · ·n} be an equation system in G. A solution of E

in G is a map f : U → G such that the induced monoid homomorphism (sending each c ∈ C

to itself) f̄ : (U ∪ C)∗ → G maps wi to 1 for 1 ≤ i ≤ n. Let C be a class of finitely presented

groups. The Equation Problem in C asks the following question: Is there an algorithm which

takes as input a presentation of a group G ∈ C and a finite system of equations with constants

in G and which decides whether there exists a solution or not? When the answer is positive,

we say that the Equation Problem in C is solvable.

It is well known that there exists finitely presented groups with unsolvable Word Problem.

Since the Equation problem is a generalization of the Word Problem. A direct consequence

is the existence of groups with unsolvable equation problem. In fact there exists a free 3-step

nilpotent group of rank 2 with unsolvable equations problem ((18), see also (15)). Therefore the

Equation Problem is strictly harder than the word problem and the conjugacy problem since

these two problems are solvable in finitely generated nilpotent groups (See (16, Chapter 4)).
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The most famous breakthrough in solving equations over groups is the solution of the Equa-

tion Problem in free groups by Makanin (9). In (3) Dahmani and Guirardel and independently

in (8) Lohrey and Senizergues give an algorithm for solving equations and inequations with

rational constraints (See Def 4) in virtually free groups. One of the most successful methods

of solving the Equation Problem for groups is to reduce it to the Equation Problem over a

(virtually) free group. Diekert and Muscholl (4) reduce the Equation Problem in right-angled

Artin groups to free groups. Rips and Sela (14) reduce the Equation Problem in torsion free

hyperbolic groups to the Equation Problem in free groups. Dahmani and Guirardel (3) reduce

the problem in hyperbolic groups (possibly with torsion) to solving equations with rational

constraints over virtually free groups.

Besides being a natural algorithmic problem in groups, the equation problem has the

following interpretation in terms of homomorphisms between groups: Let K, G be finitely

presented groups and 〈x1, · · · , xn | r1, · · · , ri〉 be a presentation of K. Suppose one’s fa-

vorite elements in K are w1, · · · , wl. Here wi are words in xi. Let c1, · · · , cl be elements

of G. Here is a natural question one might want to ask: Is there a homomorphism from K

to G sending wi to ci? The question is equivalent to asking whether the equation system

E = {ri = 1, wj = cj | 1 ≤ i ≤ m; 1 ≤ j ≤ l} has a solution in G. Under this interpreta-

tion xi become variables and note that ri are words in xi. Hence a positive solution to the

Equation Problem for G gives a way to determine algorithmically whether particular kinds of

homomorphisms to G exist.
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A geodesic triangle in a metric space is said to be δ-slim if each of its sides is contained

in the δ-neighbourhood of the union of the other two sides. A geodesic space X is said to be

hyperbolic there exists some δ>0 if every geodesic triangle in X is δ-slim. A finitely generated

group is hyperbolic if its acts properly and cocompactly on a hyperbolic space.

Hyperbolic groups are one of the central classes of objects in geometric group theory. The

study of hyperbolic groups has been very fruitful since Gromov introduced them in 1987. In

particular, hyperbolic groups have very well-controlled algorithmic properties. All the decision

problems mentioned above are solvable for hyperbolic groups.

In this thesis, we consider the Equation Problem in central extensions of hyperbolic groups.

We prove the following theorem.

Theorem 1. The Equation Problem is solvable in central extensions of hyperbolic groups.

A source of interesting examples of central extensions of hyperbolic groups is 3-manifold

theory. A Seifert fibered space is a 3-manifold together with a “nice” decomposition as a disjoint

union of circles. Most “small” 3-manifolds are Seifert fibered spaces, and they account for all

compact oriented manifolds in 6 of the 8 Thurston geometries of the geometrization conjecture

(proved by Perelmann. See (10)). One of the most important algebraic invariants of 3-manifold

is the fundamental group. The fundamental groups of a large and interesting class of Seifert

fibered spaces are central extensions of hyperbolic groups. All these Seifert fibered spaces are

aspherical and the fundamental group is a complete topological invariant. Hence information

about maps between fundamental groups of these spaces gives essentially all information up to

homotopy about maps between these spaces. As pointed out above the Equation Problem is
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an important tool for studying maps between groups. We believe there will be applications of

Theorem 1 that lead to new understanding of maps between Seifert fibered spaces.

The main tools we use are the following: (1) Canonical representatives constructed by Rips

and Sela (See (14)), which allow them to solve equation systems over torsion free hyperbolic

groups; (Dahmani and Guirardel ((3)) solve equations over hyperbolic groups with torsion based

on Rips and Selas work.) (2) The theory of equations over virtually free group by Dahmani

and Guirardel ((3)) and (3) the work of Neumann and Reeves on the automaticity of central

extensions of hyperbolic groups ((12)).

The organization of this thesis is as follow. In Chapter 2 we recall important definitions

and key results from (3) and (12), which are the main tools we use in this paper, and describe

the idea of the proof of Theorem 1. In Chapter 3, we construct the finite state automata that

we use in the proof of Theorem 1. In Chapter 4, we prove Theorem 1.



CHAPTER 2

BACKGROUND AND THE IDEA OF THE PROOF OF THEOREM 1

In the chapter we recall important definitions and key results from (3) and (12) and explain

the idea of the proof of Theorem 1.

2.1 Equation Problem in hyperbolic groups

Definition 1. Let δ>0. A geodesic triangle in a metric space is said to be δ-slim if each of its

sides is contained in the δ-neighbourhood of the union of the other two sides. A geodesic space

X is said to be hyperbolic there exists some δ>0 if every triangle in X is δ-slim. A finitely

generated group is hyperbolic if its Cayley graph is hyperbolic.

Let Γ be a hyperbolic group, X be a finite symmetric generating set of Γ, KΓ be the Cayley

graph of Γ with respect to X and δ be a hyperbolic constant for KΓ.

Definition 2. The Rips complex of KΓ, denoted by R50δ(KΓ), is the simplicial complex whose

set of vertices is Γ and whose simplices are subsets of Γ of diameter at most 50δ in KΓ.

Denote the 1-skeleton of the first barycentric subdivision of R50δ(KΓ) by K.

The point of considering K is to associate a canonical center to every subset of Γ of diameter

at most 50δ in KΓ.

The action of Γ on KΓ extends to an action on K. The quotient K/Γ is a finite graph and

can be given the structure of a finite graph of finite groups (vertices and edges are decorated

5
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by stabilizers of their preimages in K). Hence π1(K/Γ) is virtually free. A finite presentation

of π1(K/Γ) can be computed.

As in (3), let V be the set of paths v in K which start at the identity and end at a vertex

of KΓ up to homotopy relative to endpoints. Let π denote the natural homomorphism from

V to Γ sending each path to its endpoint. We give V a group structure by defining vv′ to

be the homotopy class of the concatenation v · (π(v)v′) (where π(v)v′ is the translate of v′ by

π(v) ∈ Γ).

Dahmani and Guirardel prove the following (3, Lemma 9.9)

Lemma 1. The group V is virtually free. More precisely, it is isomorphic to the fundamental

group of the finite graph of finite groups K/Γ. In particular, a presentation of V is computable

from a presentation of Γ.

We need a slightly stronger statement about V .

Lemma 2. A finite presentation 〈Y |R〉 of V is computable. Moreover one can compute each

y ∈ Y as an explicit path in K.

Note that a finite presentation of V is computable by Lemma 1. The point of Lemma 2 is

that one can compute each y ∈ Y as an explicit path in K.

Proof. First we note that any finite neighborhood of K can be constructed since the word

problem of Γ is solvable. Let θ : T → K be the universal cover of K. By (3, proof of Lemma

9.9) we have:

1. V acts on T by isometries;
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2. θ is π-equivariant;

3. T/V (given a graph of group structure as in (17, page 54)) is isomorphic to K/Γ as graph

of groups. In particular they are isomorphic as graphs.

Starting with a vertex t0 ∈ T which is mapped to 1Γ ∈ K by θ, one can construct any finite

neighborhood of t0 in T and compute the map u in that neighborhood. (This is because one

can construct any finite neighborhood of 1Γ ∈ K and one can construct any finite ball of the

universal cover of a locally finite graph.)

Since the quotient map from K to K/Γ can be computed in any finite neighborhood of 1Γ,

one can compute the quotient map from T to T/V explicitly in any finite neighborhood of t0.

Given any v ∈ V explicitly as a path in K and any point t in T in a explicitly constructed

finite neighborhood of t0, one can compute v · t explicitly. (Here we assume that the explicitly

constructed finite neighborhood of t0 also contains v · t. )

One can compute elements of the vertex groups explicitly as paths in K: vertex groups are

stabilizers of vertices of T . One can find those vertices explicitly. For any given element of V ,

one can check whether it fixes any given vertex. Hence one can compute all elements in the

stabilizer of a given vertex by checking each element of V according to their lengths (in K).

One knows when to stop checking because one knows the size of each stabilizer.

One can also compute all the γy (as in (17)) explicitly because given any two vertices of T

in the same V -orbit , one can find an explicit element of V that takes one to the other.

Since the presentation of V given by π1(T/V ) has elements of the vertex groups of (G, T/V )

and γy’s as generators, the proof is complete.
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We now recall how Dahmani and Guirardel reduce an equation system in Γ to finitely many

equation systems in V .

By introducing new variables, one can find an equivalent triangular equation system for any

equation of length greater than three. (The picture behind this is that one can cut a polygon

into triangles.) For equation of length two, say x2 = 1, one can replace it by the triangular

equation with x21 = 1. Therefore it suffice to consider only triangular equation systems.

Denote a set of variables (unknowns) by U and a finite set of words in X by C. Let

F = {γi,1γi,2γi,3 = 1, i = 1, · · ·, n} be a triangular equation system over Γ, where γi,j ∈ U ∪ C.

Let µ0 = 8 and λ0 = 400δm0, where m0 is a bound on the cardinality of balls of radius 50δ

in KΓ. Consider (λ1, µ1) = (λ0, µ0 + 2 + 2/λ0), so that any concatenation of a (λ0, µ0)-quasi-

geodesic with a path of length 1 at each extremity is a (λ1, µ1)-quasi-geodesic.

Definition 3. QG(V ) ⊂ V is the set of elements such that the corresponding reduced path in

K is (λ1, µ1)-quasi-geodesic.

Denote by V≤l the set of elements of V whose corresponding reduced path in K has length

at most l.

Dahmani and Guirardel use Rips and Sela’s canonical representatives (14) to prove the

following key proposition (3, Proposition 9.10), which allows them to reduce any equation

system in Γ to finitely many equation systems in V .

Proposition 1 (Dahmani-Guirardel). Then there exists a computable constant κ1 (depending

on Γ and F) such that for any solution (gu) ∈ ΓU we have the following:
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For each u ∈ U ∪ Ū , there exists g̃u ∈ QG(V ) with g̃ū = (g̃u)−1 and π(g̃u) = gu. For each

γi,1γi,2γi,3 = 1 in F and for each j ∈ {1, 2, 3 mod 3}, there exists li,j ∈ QG(V ) and ci,j ∈ V≤κ1

such that:

1. g̃γi,j = li,jci,j(li,j+1)−1 in V ;

2. π(ci,1ci,2ci,3) = 1 in Γ.

Conversely, given any family of elements of V : (g̃u)u∈U∪Ū ; (li,j)1≤i≤n,1≤j≤3 and (ci,j)1≤i≤n,1≤j≤3

satisfying g̃ū = (g̃u)−1, (1) and (2), respectively, the family gu = π(g̃u) is a solution of F .

The g̃u’s are called Canonical Representatives.

For each tuple c̄ of ci,j ∈ V≤κ1 satisfying (2), define an equation system F(c̄) in V as follows:

Let {vi,j | 1 ≤ i ≤ n, 1 ≤ j ≤ 3} be a set of variables such that vi,j and vi′,j′ are the same

variable if and only if γi,j and γi′,j′ are the same. Let {pi,j | 1 ≤ i ≤ n, 1 ≤ j ≤ 3} be a set of

distinct variables. We define

F(c̄) =



pi,1ci,1(pi,2)−1 = vi,1

pi,2ci,2(pi,3)−1 = vi,2

pi,3ci,3(pi,1)−1 = vi,3

1 ≤ i ≤ n; 1 ≤ j ≤ 3;

We call F(c̄) tripod equation system associated with c̄.

Suppose that {v̄i,j , p̄i,j} is a solution of F(c̄) in V . Let ṽi,j = π(v̄i,j). Then since ci,j satisfy

Condition (2) in Proposition 1 we have that

ṽi,1ṽi,2ṽi,3 = 1, i = 1, · · ·, n.
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With these equations we are almost ready to say that {ṽi,j} is a solution of F . The one extra

thing we need is that ṽi,j should equal γi,j whenever γi,j is a constant in Γ. This is ensured by

using Equation system with rational constraints, which is defined below.

Definition 4. A rational subset of a finitely presented group G is the image of a regular

language of some generating set under the canonical projection.

Let C be a generating set for G. Denote a set of variables by U . An equation system with

rational constraints is an a finite collection of equations wi = 1 where wi ∈ (U ∪C)∗ with finite

set of pairs (u, Ru), where u ∈ U and Ru is a rational subset of G.

Let E = {wi = 1 | i = 1 · · ·n} ∪ {(u, Ru) | u ∈ U)} be an equation system with rational

constraints in G. A solution of E in G is a map f : U → G such that f(u) ∈ Ru and the

induced monoid homomorphism (sending each c ∈ C to itself) f̄ : (U ∪ C)∗ → G maps wi to 1

for 1 ≤ i ≤ n.

Convention 2. We will use the notation u ∈ Ru instead of (u, Ru) when we write rational

constraints in equation systems.
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We add rational constraints to the tripod equations system F(c̄) as follow: If γi,j is a

constant in Γ, let Lγi,j be the rational subset (of V ) {g̃ ∈ QG(V ) | π(g̃) = γi,j}. Otherwise let

Lγi,j = V . We define:

FR(c̄) =



pi,1ci,1(pi,2)−1 = vi,1

pi,2ci,2(pi,3)−1 = vi,2

pi,3ci,3(pi,1)−1 = vi,3

vi,j ∈ Lγi,j

1 ≤ i ≤ n; 1 ≤ j ≤ 3;

Suppose {v̄i,j , p̄i,j} to denote a solution of FR(c̄) in V . When γi,j is a constant, the rational

constraint vi,j ∈ Lγi,j implies that ṽi,j = π(v̄i,j) = γ. Therefore {ṽi,j} is a solution of F .

On the other hand, by Proposition 1 if F has a solution in Γ then FR(c̄) has a solution

in V for some tuple c̄ of ci,j ∈ V≤κ1 satisfying (2) in Proposition 1. All such tuples c̄ can be

computed since each ci,j has bounded length. Note that the length bound κ1 on ci,j given by

Proposition 1 is determined by Γ and F . Hence the set of tuples c̄ of ci,j ∈ V≤κ1 satisfying

(2) in Proposition 1 is determined by Γ and F . Since there are finitely many c̄, any equation

system in any hyperbolic group can be reduced to finitely many equation systems FR(c̄) in

some virtually free group, which are solvable by the next theorem (3, Theorem 3):

Theorem 3 (Dahmani-Guirardel). There exists an algorithm which takes as input a presenta-

tion of a virtually free group G, and a system of equations with constants in G, together with a

set of rational constraints, and which decides if there exists a solution or not.
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Rational constraints play a very important role in our proof of Theorem 1 as we explain in

the next section.

2.2 Idea of the proof of Theorem 1

Let E be a central extension of a hyperbolic group by a finitely generated abelian group.

Given a finite presentation of E, by (2, Proposition 1.1) one can compute the finite presentations

of all terms in a short exact sequence

1 → A → E → Γ → 1

where Γ is a hyperbolic group and A is a finitely generated abelian group. Denote the inclusion

from A to E by i and the projection from E to Γ by p.

Let E = {ei,1ei,2ei,3 = 1, i = 1, · · ·, n} be a triangular equation system in E. Denote by F

the equation system p(E) = {p(ei,1)p(ei,2)p(ei,3) = 1, i = 1, · · ·, n} in Γ, where p(ei,j) = ei,j if

ei,j is a variable. Here is an attempt to check whether E has a solution in E:

Use the algorithm in Theorem 3 to solve all the tripod equation systems with rational

constraints FR(c̄) associated to F and Γ.

If none of the FR(c̄) has a solution, then F has no solution in Γ and hence E has no solution

in E.

Suppose some FR(c̄) has a solution. Let {v̄i,j , p̄i,j} be a solution. Then {π(v̄i,j)} is a solution

of F in Γ. Let s : Γ → E be a section. In general, {s(π(v̄i,j))} is not a solution of E . But we
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know that s(π(v̄i,1))s(π(v̄i,2))s(π(v̄i,3)) ∈ A for all 1 ≤ i ≤ n. We set up the following equation

system in A:

W(c̄, v̄i,j , p̄i,j) = {wi,1wi,2wi,3 = −s(π(v̄i,1))s(π(v̄i,2))s(π(v̄i,3)) | 1 ≤ i ≤ n},

where wi,j and wi′,j′ represent the same variable if ei,j and ei′,j′ are the same variable in E

and wi,j = ei,j − s(p(v̄i,j)) is a constant in A when ei,j is a constant in E. Suppose {w̄i,j} is

a solution of W(c̄, v̄i,j , p̄i,j). It is easy to check that {ēi,j = s(π(v̄i,j))w̄i,j} is a solution of E .

Linear algebra can be used to solve W(c̄, v̄i,j , p̄i,j) since A is finitely generated and abelian. We

check all W(c̄, v̄i,j , p̄i,j) to see if they have a solution in A. If at least one does, than E has a

solution.

We point out that if E has a solution, then the process above will detect it. (To see

this, suppose E has a solution {ēi,j}, then {p(ēi,j)} is a solution of F . Hence there is some

c̄ such that F(c̄) has a solution {v̄i,j , p̄i,j} with π(v̄i,j) = p(ēi,j). It is easy to check that

{w̄i,j = ēi,j − s(p(v̄i,j))} is a solution of W(c̄, v̄i,j , p̄i,j).) Hence if the above process terminates

before any solution is found, then E has no solution in E.

There is a obvious problem about solving E this way: F = p(E) can have infinitely many

solutions in Γ even if E has no solution. In this case at least of the tripod equation system

with rational constraints FR(c̄) has infinitely many solutions. So there are infinitely many

W(c̄, v̄i,j , p̄i,j) to check. But none of them has a solution and so the process of checking will

never terminate. Here is an explicit example of this phenomenon:
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Example 1. Let S be the genus two surface and T 1S be the unit tangent bundle of S. The

following short exact sequence defines π1(T 1S) as a central extension of π1(S), which is hyper-

bolic.

1 → Z →< a, b, c, d, z | [a, b][c, d] = z−2, z central >→< a, b, c, d | [a, b][c, d] = 1 >→ 1

Let x be a variable. The equation [a, b][x, d] = 1 has no solution in π1(T 1S) but its projection in

π1(S) has infinitely many solutions: x = cdn for all n ∈ Z. To see this, first solve [a, b][x, d] = 1

in π1(S), where we have [a, b][x, d] = [a, b][c, d]. By simply algebraic manipulation, we got

x−1cd = dx−1c. But in π1(S), the only elements that commute with d are of the form dn for

n ∈ Z. Hence we have that x = cdn for all n ∈ Z are the only solutions. Now any solution

of [a, b][x, d] = 1 in π1(T 1S) must project down to a solution of its projection in π1(S). Hence

if there is a solution, then it has the form x = cdnzm. Plug it into x, we have [a, b][c, d] = 1,

which does not hold in π1(T 1(S)). Therefore [a, b][x, d] = 1 has no solution in π1(T 1(S)).

To deal with the above problem, we use rational constraints.

For each FR(c̄) we will have finitely many ways to add more rational constraints to it. We

denote the resulting equation systems with rational constraints by Fk
R(c̄). We will prove the

following:

1. If {v̄i,j , p̄i,j} is solution of FR(c̄) then it is a solution of Fk
R(c̄) for some k.
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2. If {v̄i,j , p̄i,j} and {v̄′i,j , p̄′i,j} are solutions of Fk
R(c̄), then we have

s(π(v̄i,1))s(π(v̄i,2))s(π(v̄i,3)) = s(π(v̄′i,1))s(π(v̄′i,2))s(π(v̄′i,3))

and one can compute this value from the rational constraints in Fk
R(c̄). We denote the

above value by s(c̄, k).

Now instead of solving possibly infinitely many equation systems W(c̄, v̄i,j , p̄i,j), we only

need to solve, for each c̄ and k, the corresponding pair of equation systems Fk
R(c̄) and

Wk(c̄) = {wi,1wi,2wi,3 = −s(c̄, k) | 1 ≤ i ≤ n}.

By (1), (2) we have that E has a solution in E if and only if Fk
R(c̄) has a solution in V and

Wk(c̄) has a solution in A for some c̄ and k.

Since there are finitely many tuples c̄ and for each c̄ there are finitely many k, there are

finitely many pairs of Fk
R(c̄) and Wk(c̄). So any equation system in E can be reduced to finitely

many equation systems with rational constraints in V and finitely many equation systems in

A. Therefore we know that the Equation Problem in central extensions of hyperbolic groups is

solvable.

To define the rational constraints in Fk
R(c̄) we need tools from (12), which we recall in the

next section.
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2.3 Central extensions of hyperbolic groups

In this section, we recall some definitions and facts from (12). We include the proofs of

some of these facts since they are not in (12).

Recall that KΓ is the Cayley graph of Γ with respect to X. Denote by L the language (over

X) of all (λ, ν)-quasi-geodesic words in KΓ. Everything in this section works for any fixed λ

and ν, but in the next chapter we will fix a specific pair (λ, ν). Note that L is regular (See (6)).

Let N a finite-state automaton accepting L. Then L is an asynchronous biautomatic structure

of Γ (See (5) and (11)).

Definition 5 (L-rational). Let π : X∗ → Γ be the canonical projection. A subset T of Γ is

called L-rational if the language {w ∈ L | π(w) ∈ T} is regular.

Let s : Γ → E be a section and σs : Γ× Γ → A be the cocycle defined by s.

Definition 6. The cocycle σs is L-regular if

1. The sets σs(g,Γ) and σs(Γ, g) are finite for each g ∈ Γ.

2. For each h ∈ Γ and a ∈ A the subset {g ∈ Γ | σs(g, h) = a} is an L-rational subset of Γ.

Theorem 4 (Neumann-Reeves). For any central extensions of hyperbolic groups E defined by

1 → A → E → Γ → 1, there exists a section ρ : Γ → E such that σρ is L-regular, where L is

any biautomatic structure of Γ.

In (12) the above theorem is proved for a specific biautomatic structure of L. (In (12), L is

the language of maximising words. See (12, Lemma 2.1) for more detail. But then the above

theorem follows easily by applying (11, Proposition 1.1).
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Remark 1. Note that given a presentation of E, the L-rational structure of {g ∈ Γ | σρ(g, h) =

a} can be computed (i.e. a finite state automaton which accepts all L-words representing ele-

ments of {g ∈ Γ | σρ(g, h) = a} can be constructed explicitly). One can see this by examining

the proof of the above theorem from (12) and using the fact that any finite balls of the Cayley

graphs of E and Γ can be constructed.

Let ρ : Γ → E be a section such that σρ is L-regular. Hence we know that {g ∈ Γ | σρ(g, x) =

a} is L-rational for x ∈ X and a ∈ A. We also need the fact that {g ∈ Γ | σρ(x, g) = a} is

L-rational for x ∈ X and a ∈ A. Since (12) doesn’t include a proof, we give a proof.

Lemma 3. {g ∈ Γ | σρ(x, g) = a} is L-rational for x ∈ X and a ∈ A.

Proof. Consider the finite subset D = {ρ(x)i(−σρ(g, x)) | g ∈ Γ, x ∈ X}±1 of E as in (11,

Proposition 2.2). If w = x1 · · ·xn ∈ X∗ then there exists w′ ∈ D∗ whose initial segments have

values ρ(x1), ρ(x1x2), · · · , ρ(x1 · · ·xn). Let L′ be the language L′ = {w′ | w ∈ L}. Then by (11,

Proposition 2.2) L′ is a regular language. Let Z be a generating set for A. It is easy to see that

D ∪ i(Z) is a generating set of E. Let KE be the Cayley graph of E with respect to D ∪ i(Z).

For x ∈ X and a ∈ A consider the set F = {(w1, w2) ∈ L′ × L′ | ρ(x)w1 = w2i(a)}. Since

L is a biautomatic structure on Γ, we can apply (11, Proposition 2.2) and see that there exist

K such that w1 and w2 K-fellow-travel in KE if (w1, w2) ∈ F . Hence F is the language of a

two-tape finite state automata. Therefore F1 = {w1 ∈ L′ | ∃w2 ∈ L′, ρ(x)w1 = w2i(a)}, which

is the projection of F to the first factor, is regular. Let F ′
1 = {v ∈ L | σρ(x, v) = a}. One

can use the finite-state automaton accepting F1 to read words in L and F ′
1 is the language
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accepted by it. Therefore F ′
1 is regular, which is equivalent to {g ∈ Γ | σρ(x, g) = a} being

L-rational.

Convention 5 (s-coordinates). For any section s : Γ → E and any g ∈ Γ, a ∈ A, we denote

by (g, a)s the element s(g)i(a) in E and call (g, a) the s-coordinates of s(g)i(a). For simplicity

we omit the subscript when the section under consideration is clear.

We will use a symmetric section to lift the solutions of E in Γ to E. The symmetric section

q associated to ρ lands in an extension of E, which we now define.

Since A is finitely generated and abelian, it is isomorphic to Zn ⊕ Zd1 ⊕ · · · ⊕ Zdm . We

identify A with Zn ⊕ Zd1 ⊕ · · · ⊕ Zdm by fixing an isomorphism between them. Let A′ =

Zn ⊕ Z2d1 ⊕ · · · ⊕ Z2dm .

Let ι1 be the injective homomorphism from A to A′ defined by

ι1(a1, · · · , an, b1, · · · , bm) = (2a1, · · · , 2an, 2b1, · · · , 2bm).

This map determines a pushout extension 1 → A′ → E′ → Γ → 1 in the following sense: Let

E′ = Γ×A′ be the direct product of Γ and A′ as sets. The map from A′ to E′ is the inclusion

from A′ to {1} ×A′ and the map from E′ to Γ is the projection of E′ to the first factor. Make

E′ into a group by defining

(g1, a1)(g2, a2) = (g1g2, a1 + a2 + ι1(σρ(g1, g2))).
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Let ι2 denote the natural inclusion from E to E′, which maps (g, a) to (g, ι1(a))ρ. Let ρ′ be

the section from Γ to E′ defined by ρ′ = ι2ρ. Hence an element (g, a′) in E′ has ρ′-coordinates

(g, a′) and we have σρ′(g, h) = ι1(σρ(g, h)) for any g, h ∈ Γ.

Convention 6. Let ι3 be the map (not a homomorphism) from A to A′ defined by

ι3(a1, · · · , an, b1, · · · , bm) = (a1, · · · , an, b1, · · · , bm).

To simplify notation, in the rest of the paper, if σρ(−,−) appears in the second component of

the ρ′-coordinates of an element in E′, it represents the element ι3(σρ(−,−)) in A′.

Definition 7. The symmetric section q : Γ → E′ is defined by:

q(g) = (g,−σρ(g, g−1))

in ρ′-coordinate of E′.

Lemma 4. q is symmetric, i.e., q(g)q(g−1) = 1.

Proof. In ρ′-coordinates of E′ we have

q(g)q(g−1) = (g,−σρ(g, g−1))(g−1,−σρ(g−1, g))

= (1,−σρ(g, g−1)− σρ(g−1, g) + 2σρ(g, g−1))

= (1, σρ(g, g−1)− σρ(g−1, g))
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One the other hand, in ρ-coordinate of E we have

(g, 0)(g−1,−σρ(g, g−1)) = (1,−σρ(g, g−1) + σρ(g, g−1)) = (1, 0).

Hence (g−1,−σρ(g, g−1)) is the inverse of (g, 0). So we have

(1, 0) = (g−1,−σρ(g, g−1))(g, 0) = (1,−σρ(g, g−1) + σρ(g−1, g)).

Therefore we have −σρ(g, g−1) + σρ(g−1, g) = 0. So we know

q(g)q(g−1) = (1, σρ(g, g−1)− σρ(g−1, g)) = (1, 0).

Let σq be the cocycle corresponding to q.

Lemma 5. σq is L-regular.

Proof. Let x ∈ X and g ∈ Γ. In the ρ′-coordinate we have

q(g)q(x) = (g,−σρ(g, g−1))(x,−σρ(x, x−1))

= (gx,−σρ(g, g−1)− σρ(x, x−1) + 2σρ(g, x))
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On the other hand, we have q(gx) = (gx,−σρ(gx, (gx)−1)). Therefore we have

σq(g, x) = σρ(gx, (gx)−1)− σρ(g, g−1)− σρ(x, x−1) + 2σρ(g, x)

= σρ(g, g−1)− σρ(g, x)− σρ(x−1, g−1) + σρ(x, x−1)

−σρ(g, g−1)− σρ(x, x−1) + 2σρ(g, x)

= σρ(g, x)− σρ(x−1, g−1).

From the above equation we know that σq(Γ, x) is finite since both σρ(Γ, x) and σρ(x−1,Γ) are

finite. Similarly, one can show that σq(x,Γ) is finite. Let a ∈ A′. From the above computation

we have

{g ∈ Γ | σq(g, x) = a}

=
⋃

a1−a2=a

({g ∈ Γ | σρ(g, x) = a1} ∩ {g ∈ Γ | σρ(x−1, g−1) = a2})

Since σρ is L-regular, the left side of the above equation is a finite union and {g ∈ Γ | σρ(g, x) =

a1} is an L-rational set. By Lemma 3.1 and the fact that the reverse of a regular language is a

regular language, {g ∈ Γ | σρ(x−1, g−1) = a2} is a L-rational set. Therefore {g ∈ Γ | σq(g, x) =

a} is L-rational; so σq is regular.

Lemma 6. {g ∈ Γ | σq(x, g) = a} is L-rational for x ∈ X and a ∈ A′.

Proof. Reverse the roles of g and x in the proof of the last lemma.



CHAPTER 3

FUTURE PREDICTING AUTOMATA AND PARITY PREDICTING

AUTOMATA

In this chapter we define the Future Predicting Automata and Parity Predicting Automata.

They allow us to define the rational constraints we put on the variables of the tripod equation

systems in V .

3.1 Lifting rational constraints to V

Both Future Predicting Automata and Parity Predicting Automata define rational subsets

of Γ. We explain how to lift these rational subsets to V first. This allows us to determine and

fix the constants λ and ν which define L.

Recall that Y is a finite generating set of V . We define a morphism φ from Y ∗ to X∗ to lift

rational constraints to V .

By Lemma 2 we know each y ∈ Y as explicit path in K. For each y ∈ Y we choose and

fix a KΓ-geodesic word wy representing π(y). Let φ : Y ∗ → X∗ be the monoid homomorphism

induced by the map from Y to X∗ sending y to wy. For any regular language K ⊂ X∗, it is

a standard fact that φ−1(K) = {w ∈ Y ∗|φ(w) ∈ K} is a regular language over Y . (See (7)

Theorem 4.2.4 for a proof.) Let QG(V ) be as in Definition 3.

22
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Lemma 7. There exist λ, ν depending only on Γ such that the following is true: For any

v ∈ QG(V ), there exists w ∈ Y ∗ representing v such that φ(w) represents a (λ, ν)-quasi-geodesics

in KΓ.

Proof. For any adjacent vertices s, t ∈ K, let [s, t] denote the unique edge between them. If

s = t, let [s, t] be s considered as a constant path.

Suppose the length of v (considered as a path in K) is n. Let s0, · · ·, sn be the vertices

along v. By the construction of K, there are two types of vertices in K: vertices of KΓ and

barycenters. If si is a barycenter of some simplex of R50δ(KΓ), let s′i be a vertex of this simplex.

If si is a vertex of KΓ, let s′i = si. Then s′0, · · ·, s′n determine a path v′ in K. Here the path

between s′i−1 and s′i consists of the edges [s′i−1, si−1], [si−1, si] and [si, s
′
i] and we denote this

path by [s′i−1, s
′
i]. Note that v′ equals v in V .

Since s′i is a vertex in KΓ, it also represent an element of Γ. Let vi = (s′i−1)
−1[s′i−1, s

′
i].

Then vi are element of V and v = v′ = v1 · · · vn.

For each vi, pick a Y -geodesic word wi representing vi. Let w = w1 · · ·wn. Then w is a

Y -word representing v. Since there are finitely many elements of V of length less than four,

there is an upper bound K1 on the length of wi. Here K1 depends only on Γ. Hence w has

length at most nK1.

There is an upper bound K2 depending only on Γ on the length of φ(y) for all y ∈ Y since

Y is finite. Let n′ be the length of φ(w). Then we have

n′ ≤ nK1K2
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Let d be the distance in K between the end points of v. Let dX be the distance in KΓ

between the end points of v.

Since K is quasi-isometric to KΓ, we have

1
K0

d− C ≤ dX

for some K0 and C depending only on Γ.

We know that v is a (λ1, ν1)-quasi-geodesic in K since v ∈ QG(V ), hence we have

1
λ1

n− ν1 ≤ d.

From the three equations above, we have

1
K0K1K2λ1

n′ − ν1 − C ≤ dX .

Let λ = K0K1K2λ1 and ν = ν1 + C. Then the above equation implies that φ(w) is a

(λ, ν)-quasi-geodesics in KΓ. Note that (λ, ν) depends only on Γ.

3.2 Future Predicting Automata

We are now ready to define the Future Predicting Automata. We will first define the

Future Predicting Automaton, which accepts exactly the language L. The Future Predicting

Automaton has many accepting states. The languages defined by each of these accepting states
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give a partition of L and these subsets of L will be used to define the rational constraints we

need in the next chapter.

For the rest of the paper, we use L to denote the regular language of words over X repre-

senting (λ, ν)-quasi-geodesic in KΓ , where λ and ν are given by Lemma 7.

By Lemma 5 {g ∈ Γ | σq(g, x) = a} is L-rational for x ∈ X, a ∈ A′ and

Ax = {σq(g, x) ∈ A′ | g ∈ Γ}.

is finite. For each x ∈ X, a ∈ Ax we choose and fix a finite state automaton Mx,a which accepts

exactly the L-words representing elements in {g ∈ Γ | σq(g, x) = a}. Denote the set of states

and the transition map of Mx,a by Sx,a and Fx,a, respectively.

Definition 8 (FPA). The Future Predicting Automaton, denoted by M , is defined as follows:

States: S =
∏

x∈X,a∈Ax
Sx,a.

Transition function: F : S ×X → S is defined by

F
(
(sx,a)x∈X,a∈Ax , x′

)
=

(
Fx,a(sx,a, x

′)
)
x∈X,a∈Ax

.

Initial state: (Ix,a)x∈X,a∈Ax, where Ix,a is the initial state of Mx,a.

Accepting state: The set of accepting states T consists of states (sx,a)x∈X,a∈Ax ∈ S satisfying:

for all x′ ∈ X there exists a unique a′ ∈ Ax′ such that sx′,a′ is an accepting state of Mx′,a′.

Remark 2. Note that M has finitely many states since X, Ax and Sx,a are finite for all x ∈ X,

a ∈ Ax.
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Lemma 8. The language accepted by the Future Predicting Automaton is L.

Proof. Suppose w is accepted by M . Then w ends up in a state in T . By the definition of T ,

for any x ∈ X, there exists a unique a ∈ Ax, such that sx,a is an accepting state of Mx,a. This

together with the definition of M implies that w is accepted by Mx,a. Then by the definition

of Mx,a, we know that w is an L-word representing an element in {g ∈ Γ | σq(g, x) = a}. In

particular, w is in L.

Now suppose w is in L. Use M to read w. Suppose it ends at the state (sx,a)x∈X,a∈Ax . Note

that sx,a is an accepting state of Mx,a if and only if we have σq(w, x) = a, where w is interpreted

as the element of Γ it represents. Hence for each x′ ∈ X, there is a unique a′ ∈ Ax′ such that

sx′,a′ is an accepting state of Mx′,a′ . Therefore (sx,a)x∈X,a∈Ax is in T . So w is accepted by

M .

Definition 9. Let s̄ = (sx,a) ∈ T . The Future Predicting Automaton associated with s̄, denoted

by M(s̄), is the finite state automaton having the same states, transition function and initial

state as the Future Predicting Automaton M , but s̄ as the only accepting state.

Let L(s̄) be the regular language over X accepted by M(s̄). The following fact is obvious

from the definition and Lemma 8.

Lemma 9. {L(s̄) | s̄ ∈ T} is a finite partition of L.

For any s̄ ∈ T , let Ms̄ be the finite state automaton which has the same states, transition

map and accepting states as M , but has s̄ as the initial state. Note that Ms̄ is different from

M(s̄).
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Definition 10. A word v ∈ X∗ is compatible with s̄ ∈ T if v is accepted by Ms̄.

Note that v is compatible with s̄ simply means that for any w ∈ L(s̄), the word wv is in L

(or equivalently accepted by M). The following fact is clear from Definition 10.

Lemma 10. For any s̄ ∈ T , the language of all words compatible with s̄ is regular.

Convention 7. We interpret any w ∈ X∗ as the element of Γ represented by the word w when

any cocycle is applied to w.

The next lemma is the key property of the Future Predicting Automata.

Proposition 2. Suppose that w1, w2 ∈ L(s̄). Then σq(w1, v) = σq(w2, v) provided v ∈ X∗ is

compatible with s̄ ∈ T .

Proof. Let v = x1x2 · · · xl. We argue by induction on l.

Suppose l = 1. Since w1, w2 ∈ L(s̄), they both end at the same state of M(s̄). Hence for

a ∈ Ax1 , we have that w1 and w2, when read by Mx1,a, end up in the same states. By the

definition of FPA there exists a unique a1 ∈ Ax1 such that Mx1,a1 accepts both w1 and w2.

Therefore by the definition of Mx1,a1 , we have σq(w1, x1) = σq(w2, x1) = a1.

By the cocycle condition of σq, for i = 1, 2 we have

σq(wi, x1x2 · · · xl) = σq(wi, x1x2 · · · xl−1) + σq(wix1x2 · · · xl−1, xl) − σq(x1x2 · · · xl−1, xl)

By induction the first term does not depend on i. The third term clearly does not depend on

i. Showing that the second term does not depend on i will complete the proof.
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Since s̄ and v are compatible, we have that wiv = wix1x2 · · · xl is in L. Therefore we

know that wix1x2 · · · xl−1 is in L for i = 1, 2 since L is closed under taking subword. In fact

both w1x1x2 · · · xl−1 and w2x1x2 · · · xl−1 end up in the same accepting state when read by M

since that is true for w1 and w2. So there exists a unique al ∈ Axl
such that Mxl,al

accepts

wix1x2 · · ·xl−1 for i = 1, 2. Hence σq(wix1x2 · · ·xl−1, xl) = al, which does not depend on i.

The above lemma explains the name “Future Predicting Automaton” since all we need to

know to “predict” the value of σq(w, v) is where w ends when read by the Future Predicting

Automaton. By Proposition 2 the following definition makes sense.

Definition 11. Let s̄ ∈ T and v ∈ X∗. Suppose s̄ and v are compatible. Define σq(s̄, v) to be

σq(w, v) for any w ∈ L(s̄).

3.3 Parity Predicting Automata

Recall that q : Γ → E′ is the symmetric section (Definition 7). We are lifting solutions of

equation system in Γ by q. We need to define appropriate rational constraints on variables of

the Tripod Equation systems so that we can predict whether their lifts land in E or not. The

Parity Predicting Automata define these rational constraints.

We first define the Left Future Predicting Automaton(LFPA) and the Right Future Pre-

dicting Automaton(RFPA), which we will use to define the Parity Predicting Automaton.

Let ρ be the section given by Theorem 4. Hence we know that {g ∈ Γ | σρ(g, x) = a} is

L-rational for all x ∈ X and a ∈ A and A1
x = {σρ(g, x) | g ∈ Γ} is finite.
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For each x ∈ X and a ∈ A1
x choose and fix a finite state automaton M1

x,a which accepts

exactly the L-words representing elements in {g ∈ Γ | σρ(g, x) = a}. Denote by S1
x,a and F 1

x,a

the set of states and the transition function of M1
x,a, respectively.

The following definition is almost the same as the definition of the Future Predicting Au-

tomaton M , except that we are now considering the section ρ instead of q.

Definition 12. The Left Future Predicting Automaton M1 over X is defined as follows:

States: S1 =
∏

x∈X,a∈A1
x
S1

x,a

Transition function: F1 : S1 ×X → S1 is defined by

F1

(
(s1

x,a)x∈X,a∈A1
x
, x′

)
=

(
F 1

x,a(s
1
x,a, x

′)
)
x∈X,a∈A1

x
.

.

Initial state: (I1
x,a)x∈X,a∈A1

x
, where I1

x,a is the initial states of M1
x,a.

Accepting states: The set of accepting states T1 consists of states (s1
x,a)x∈X,a∈A1

x
satisfying:

for all x′ ∈ X there exists a unique a′ ∈ A1
x′ such that s1

x′,a′ is the accepting state of M1
x′,a′.

One can prove the following lemma the same way as we prove Lemma 8

Lemma 11. The language accepted by M1 is L.

Definition 13. Suppose s̄1 = (s1
x,a)x∈X,a∈A1

x
is an accepting state of M1. For any x′ ∈ X,

define σρ(s̄1, x
′) = a′, where a′ is the unique element of A1

x′ such that s1
x′,a′ is the accepting

state of M1
x′,a′.
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The next lemma follows directly from the above definition and the definition of M1
x,a.

Lemma 12. Suppose w ∈ X∗ ends up in the state s̄1 ∈ T1 when read by M1. Then σρ(w, x) =

σρ(s̄1, x)

By Lemma 3 the set of all the L-words representing elements in {g ∈ Γ | σρ(x, g) = a}

is a regular language. Hence its reverse is also a regular language. Let M2
x,a be the finite

state automaton accepting the reverse language. Let S2
x,a and F 2

x,a be the set of states and the

transition function of M2
x,a, respectively. Let A2

x = {σρ(x, g) | g ∈ Γ}. Note that A2
x is finite by

Theorem 4.

Definition 14. The Right Future Predicting Automaton M2 over X is defined as follows:

States: S2 =
∏

x∈X,a∈A2
x
S2

x,a.

Transition function: F2 : S2 ×X → S2 is defined as follow:

F2

(
(s2

x,a)x∈X,a∈A2
x
, x′

)
=

(
F 2

x,a(s
2
x,a, (x

′)−1)
)
x∈X,a∈A2

x
.

Initial state: (I2
x,a)x∈X,a∈A2

x
, where I2

x,a is the initial states of M2
x,a.

Accepting states: The set of accepting states T2 consists of states (s2
x,a)x∈X,a∈A2

x
satisfying

that for all x′ ∈ X there exists a unique a′ ∈ A2
x′ such that s2

x′,a′ is the accepting state of M2
x′,a′.

One can prove the following lemma the same way as we prove Lemma 8

Lemma 13. The language accepted by M2 is

L−1 = {w−1 = w−1
n · · ·w−1

1 | w = w1 · · ·wn ∈ L}.



31

Definition 15. Suppose s̄2 = (s2
x,a)x∈X,a∈A2

x
is an accepting state of M2. Define σρ(x′, s̄2) = a′,

where a′ is the unique element of A1
x′ such that s1

x′,a′ is the accepting state of M1
x′,a′.

The next lemma follows directly from the above definition and the definition of M2
x,a.

Lemma 14. Suppose w ∈ X∗ ends up in the state s̄2 ∈ T2 when read by M2. Then σρ(x,w−1) =

σρ(x, s̄2)

We now define a homomorphism Pa, which makes what we mean by “parity” precise. Denote

the natural project from Z to Z2 by P2. Recall that the finite generated abelian group A central

in E is identified with Zn⊕Zd1 ⊕· · ·⊕Zdm . The homomorphism Pa : A → Zn
2 ⊕Zd1 ⊕· · ·⊕Zdm

is defined by

Pa(a1, · · · , an, b1, · · · , bm) = (P2(a1), · · · , P2(an), b1, · · · , bm).

The parity of an element a ∈ A is define to be Pa(a).

Let a ∈ A. Recall that ι3 and ι1 are defined in Convention 6 and the paragraph before it,

respectively. In general ι3(a) does not lie in ι1(A). However once we know the parity of a, we

can use it to “move” ι3(a) to something in ι1(A). We now make this precise: Define the map

(not a homomorphism) ι4 : Zn
2 ⊕ Zd1 ⊕ · · · ⊕ Zdm → A′ = Zn ⊕ Z2d1 ⊕ · · · ⊕ Z2dm by

(a1, · · · , an, b1, · · · , bm) = (a1, · · · , an, b1, · · · , bm)

Then the following fact is clear.
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Lemma 15. For any a ∈ A, we have ι3(a) + ι4(Pa(a)) ∈ ι1(A).

Now we define the Parity Predicting Automaton.

Definition 16 (PPA). The Parity Predicting Automaton, denoted by D, is defined as follows:

States: SD = S1 × S2 × (Zn
2 ⊕ Zd1 ⊕ · · · ⊕ Zdm) ∪ {∅}.

Transition functions: FD : SD ×X → SD is defined as follows:

If s̄1 ∈ T1 and s̄2 ∈ T2, then we define

FD

(
(s̄1, s̄2, b), x

)
=

(
F1(s̄1, x), F2(s̄2, x), b′

)
,

where

b′ = b + Pa
(
σρ

(
x, x−1

)
− σρ

(
s̄1, x

)
− σρ

(
x−1, s̄2

))
.

Otherwise we define

FD

((
s̄1, s̄2, b

)
, x

)
= ∅.

For all x ∈ X, we define

FD(∅, x) = ∅.

The initial state: (I1, I2, 0). Here I1 and I2 are the initial states of M1 and M2 respectively.
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The accepting states: All states (s̄1, s̄2, b) so that s̄1 ∈ T1 and s̄2 ∈ T2.

The following fact is clear from the above definition.

Lemma 16. The language accepted by D is L.

Definition 17. Let d ∈ Zn
2 ⊕Zd1 ⊕ · · · ⊕Zdm. The Parity Predicting Automaton associated to

d, denoted by D(d), is the same as the Parity Predicting Automaton with the extra requirement

that the third component of any accepting state is d.

Let L(d) denote the regular language defined by D(d).

Lemma 17. {L(d) | d ∈ Zn
2 ⊕ Zd1 ⊕ · · · ⊕ Zdm} is a finite partition of L.

The following lemma is the key property of the Parity Predicting Automata.

Lemma 18. Let w ∈ L(d). Then Pa
(
σρ(w,w−1)

)
= d.

Proof. We proceed by induction on the length of w. The base case is when w has length 0.

In this case, w is the identity. Hence σρ(w,w−1) = 0. Since D’s initial state has 0 as its last

component, the lemma is true in this case.
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Suppose the lemma is true for words of length less then l. Let w = x1 · · ·xl. By the cocycle

condition of σρ we have

σρ(w,w−1) = σρ(x1 · · ·xl, x
−1
l · · ·x−1

1 )

= σρ(x1 · · ·xl, x
−1
l ) + σρ(x1 · · ·xl−1, x

−1
l−1 · · ·x

−1
1 )

−σρ(x−1
l , x−1

l−1 · · ·x
−1
1 )

= σρ(x1 · · ·xl−1, 1)− σρ(x1 · · ·xl−1, xl) + σρ(xl, x
−1
l )

+σρ(x1 · · ·xl−1, x
−1
l−1 · · ·x

−1
1 )− σρ(x−1

l , x−1
l−1 · · ·x

−1
1 )

= σρ(x1 · · ·xl−1, x
−1
l−1 · · ·x

−1
1 ) + σρ(xl, x

−1
l )

−σρ(x1 · · ·xl−1, xl)− σρ(x−1
l , x−1

l−1 · · ·x
−1
1 )

Suppose x1 · · ·xl−1 ends at a state (s̄1, s̄2, bl−1). Note that s̄1 ∈ T1 and s̄2 ∈ T2 (otherwise w

wouldn’t be accepted by D). By the induction hypothesis, Pa
(
σρ(x1 · · ·xl−1, x

−1
l−1 · · ·x

−1
1 )

)
=

bl−1. Then by the equation above we have

Pa
(
σρ(w,w−1)

)
= Pa

(
σρ(x1 · · ·xl−1, x

−1
l−1 · · ·x

−1
1 )

)
+

Pa
(
σρ(xl, x

−1
l )− σρ(x1 · · ·xl−1, xl)− σρ(x−1

l , x−1
l−1 · · ·x

−1
1 )

)
= bl−1 + Pa

(
σρ(xl, x

−1
l )− σρ(x1 − · · ·xl−1, xl)− σρ(x−1

l , x−1
l−1 · · ·x

−1
1 )

)
.
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On the other hand, by the definition of D, x1 · · ·xl ends at the state
(
F1

(
s̄1, xl

)
, F2

(
s̄2, x

−1
l

)
, b

)
,

where

b = bl−1 + Pa
(
σρ(xl, x

−1
l )− σρ(s̄1, xl)− σρ(x−1

l , s̄2)
)

Therefore it is enough to show that

σρ(x1 · · ·xl−1, xl) = σρ(s̄1, xl)

and

σρ(x−1
l , x−1

l−1 · · ·x
−1
1 ) = σρ(x−1

l , s̄2).

Since x1 · · ·xl−1 ends at (s̄1, s̄2, bl−1), we know that x1 · · ·xl−1 ends at s̄1 when read by

M1 and it ends at s̄2 when read by M2. Hence by Lemma 12 and Lemma 14, the above two

equations follow and the proof of the lemma is completed.



CHAPTER 4

PROOF OF THEOREM 1

Let U be a finite set of variables and C ⊂ E be a finite set of constants in E. Recall from

Chapter 2 that it is enough to consider triangular equation systems. Let E = {ei,1ei,2ei,3 =

1, i = 1, · · ·, n} be a triangular equation system where ei,j ∈ U ∪ C.

Now we construct equation systems Vt over V and Wt over A where t runs over some finite

set Θ. The size of Θ depends on E and Γ. Then we show that E has a solution in E if and only

if there is some t ∈ Θ such that Vt has a solution in V and Wt has a solution in A.

First we describe the finite set Θ over which the subscript t of Vt and Wt runs. The index set

Θ consists of tuples
(
(ci,j), (s̄i,j), (bi,j), (di,j)

)
1≤i≤n,1≤j≤3

satisfying the following 4 conditions:

Recall that V≤l is the set of elements of V whose corresponding reduced path in K has

length at most l. Let κ1 be as in Proposition 1. There exists κ2 such that all elements of

V≤κ1 are represented by some Y -words of word length as most κ2. Recall that φ is the monoid

homomorphism from Y ∗ to X∗ defined in the Section 3.1.

Condition 1: For each 1 ≤ i ≤ n, 1 ≤ j ≤ 3, ci,j is a Y -word of word length at most κ2 and

for each i we have π(ci,1ci,2ci,3) = 1 in Γ.

Condition 2: For 1 ≤ i ≤ n, 1 ≤ j ≤ 3, s̄i,j ∈ T is an accepting state of the Further

Predicting Automaton so that s̄i,j and φ(ci,j) are compatible.

36
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Recall that for any s̄ ∈ T , Ms̄ is the finite state automaton which has the same states,

transition map and accepting states as M , but has s̄ as the initial state. Let s̄′i,j be where

φ(ci,j) ends when read by Ms̄i,j . Denote the language of words in X that are compatible with

s̄′i,j by L(s̄i,j , ci,j). Let A(s̄i,j , ci,j) = {σq(s̄′i,j , w) | w ∈ L(s̄i,j , ci,j)}.

Condition 3: For all 1 ≤ i ≤ n, 1 ≤ j ≤ 3, bi,j ∈ A(s̄i,j , ci,j).

Condition 4: For all 1 ≤ i ≤ n, 1 ≤ j ≤ 3, di,j ∈ Zn
2 ⊕ Zd1 ⊕ · · · ⊕ Zdm .

Lemma 19. Θ is finite.

Proof. Since the lengths of ci,j ’s are bounded, there are finitely many tuples (ci,j) satisfying

Condition 1. We know that T is finite for it is the set of accepting states of a finite state

automaton (FPA). Hence there are finitely many tuples (s̄i,j) satisfying Condition 2.

For each choice of (ci,j) and (s̄i,j), note that A(s̄i,j , ci,j) = {σq(ui,j , w) | w ∈ L(s̄i,j , ci,j)}

for any ui,j ∈ L(s̄′i,j). Hence A(s̄i,j , ci,j) is finite by Lemma 5. Therefore there are finitely

many choices for (bi,j). At last, possibilities of (di,j) are bounded since Zn
2 ⊕Zd1 ⊕ · · · ⊕Zdm is

finite.

For each t =
(
(ci,j), (s̄i,j), (bi,j), (d̄i,j)

)
1≤i≤n,1≤j≤3

we have the following setups:

Let L(s̄i,j) ⊂ X∗ be the regular language associated to s̄i,j .

Let L(bi,j) = {w ∈ L(s̄i,j , ci,j) | σq(s̄′i,j , w) = bi,j}.

Lemma 20. L(bi,j) is regular.
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Proof. Pick and fix ui,j ∈ L(s̄′i,j). Note that L(bi,j) = {w ∈ L | σq(ui,j , w) = bi,j} ∩ L(s̄i,j , ci,j).

By Lemma 5 {w ∈ L | σq(ui,j , w) = bi,j} is regular and L(s̄i,j , ci,j) is regular by Lemma 10.

Hence L(bi,j) is a regular language.

Let L(di,j) ⊂ X∗ be the regular language associated to di,j .

If ei,j is a constant in E, let L(ei,j) denote the regular language of all L-representatives of

p(ei,j); otherwise, let L(ei,j) = L.

Convention 8. For any regular language K, we use φ−1(K) to denote the rational subset of

V defined by φ−1(K) ⊂ Y ∗.

We now define Vt as follows:

Let {vi,j | 1 ≤ i ≤ n, 1 ≤ j ≤ 3} be a set of variables such that vi,j and vi′,j′ are the same

variable if and only if ei,j and ei′,j′ are the same. Let P = {pi,j |1 ≤ i ≤ n, 1 ≤ j ≤ 3} be

another set of distinct variables.

Vt =



pi,1ci,1(pi,2)−1 = vi,1

pi,2ci,2(pi,3)−1 = vi,2

pi,3ci,3(pi,1)−1 = vi,3

pi,j ∈ φ−1(L(s̄i,j))

p−1
i,j+1 ∈ φ−1(L(bi,j))

vi,j ∈ φ−1(L(di,j))

vi,j ∈ φ−1(L(ei,j))

1 ≤ i ≤ n; 1 ≤ j ≤ 3; 3 + 1 = 1
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Let ai,j = σq(s̄i,j , φ(ci,j)). Recall that π : V → Γ sends each v ∈ V (which is a path in K)

to its terminal point.

Lemma 21. Suppose {ṽi,j , p̃i,j} is a solution of Vt. The following are true:

1. σq

(
π(p̃i,j), π(ci,j)

)
= ai,j;

2. σq

(
π(p̃i,jci,j), π((p̃i,j+1)−1)

)
= bi,j;

3. Pa
(
σρ

(
π(ṽi,j), π((ṽi,j)−1)

))
= di,j.

4. π(ṽi,j) = p(ei,j) if ei,j is a constant.

Proof. First note for vi ∈ V and wi ∈ Y ∗ represents vi we have

σq

(
π(v1), π(v2)

)
= σq

(
φ(w1), φ(w2)

)
.

Hence we can prove any statement about σq

(
π(v1), π(v2)

)
by proving the same statement about

σq

(
φ(w1), φ(w2)

)
Since p̃i,j ∈ φ−1(L(s̄i,j)), there exists p′i,j ∈ Y ∗ representing p̃i,j such that φ(p′i,j) ∈ L(s̄i,j).

Hence by Lemma 2 and the definition of ai,j , we have σq

(
φ(p′i,j), φ(ci,j)

)
= ai,j , which proves

(1).

For (2), since (p̃i,j+1)−1 ∈ φ−1(L(bi,j)), there exists p′i,j+1 ∈ Y ∗ representing p̃i,j+1 such

that φ
(
(p′i,j+1)

−1
)
∈ L(bi,j). By the definition of L(bi,j) we know that σq

(
ui,j , φ((p′i,j+1)

−1)
)

=
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bi,j and that φ
(
(p′i,j+1)

−1
)

is compatible with s̄′i,j . We know that φ(p′i,jci,j) ∈ L(s̄′i,j) by the

definition of s̄′i,j . We have ui,j ∈ L(s̄′i,j). Hence by Proposition 2 we have

σq

(
φ(p′i,jci,j), φ((p′i,j+1)

−1)
)

= σq

(
ui,j , φ((p′i,j+1)

−1)
)

= bi,j

For (3), since ṽi,j ∈ φ−1(L(di,j)), there exists v′i,j ∈ Y ∗ representing ṽi,j such that φ(v′i,j) ∈

L(di,j). Hence by Lemma 18 we have Pa
(
σρ

(
φ(v′i,j), (φ(v′i,j))

−1
))

= di,j .

(4) directly follows from the definition of L(ei,j).

We now define the equation system Wt in A correspond to Vt.

Let {wi,j | 1 ≤ i ≤ n, 1 ≤ j ≤ 3} be a set of constants and variables satisfying the follows:

1. wi,j = wi′,j′ if and only if ei,j = ei′,j′ .

2. If ei,j is a variable in E , then wi,j is a variable in Wt.

3. When ei,j is a constant in E, we define

wi,j = ι−1
1

(
ι2(ei,j) · (qp(ei,j))−1 · ι4(di,j)

)

Note that in the last case wi,j may not be well defined since ι1 is not surjective. If this

happens, we define Wt to have no solution.

The equation system Wt over A is defined as follow:

Wt =
{ ∑3

j=1 wi,j = ι−1
1

( ∑3
j=1(ai,j + bi,j + ι4(di,j))− σq

(
π(ci,1), π(ci,2)

))
; 1 ≤ i ≤ n
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Note that the right hand sides of the equations above might not be well defined since ι1 is not

surjective. In that case, we define Wt to have no solution.

Theorem 9. E has a solution in E if and only if Et = Vt∪Wt constructed above has a solution

for some t ∈ Θ.

Proof. Suppose Et has a solution for t =
(
(ci,j), (s̄i,j), (bi,j), (di,j)

)
, i.e. Vt has a solution in V

and Wt has a solution in A. Let {ṽi,j , p̃i,j} be a solution of Vt and {w̃i,j} be a solution of Wt.

Recall that i is the inclusion from A′ to E′, ι1 is embedding of A into A′ and ι2 is the

embedding of E into E′. We will show that

ẽi,j = q
(
π(ṽi,j)

)
i
(
ι1(w̃i,j)− ι4(di,j)

)

is a solution of E in E′. Here we think of E as an equation system in E′ by replacing all constants

by their image under ι2.

First note that ẽi,j has q-coordinates
(
π(ṽi,j), ι1(w̃i,j)− ι4(di,j)

)
. By direct computation, we

have:

ẽi,1ẽi,2ẽi,3

=
(
π(ṽi,1), ι1(w̃i,1)− ι4(di,1)

)(
π(ṽi,2), ι1(w̃i,2)− ι4(di,2)

)(
π(ṽi,3), ι1(w̃i,3)− ι4(di,3)

)
=

(
π(ṽi,1)π(ṽi,2)π(ṽi,3), σq(π(ṽi,1), π(ṽi,2)) + σq(π(ṽi,1)π(ṽi,2), π(ṽi,3)) +

3∑
j=1

(ι1(w̃i,j)− ι4(di,j))
)

(1)
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By the definition of Vt and the fact that {ṽi,j} is a solution of Vt, we have π(ṽi,1)π(ṽi,2)π(ṽi,3) =

1 in Γ .

Now we consider the second component of (1). The following claim reduces the first two

terms into something we have control over.

Claim 1.

σq(π(ṽi,1), π(ṽi,2)) + σq(π(ṽi,1)π(ṽi,2), π(ṽi,3))

= σq(π(ci,1), π(ci,2))−
3∑

j=1

σq(π(p̃i,j), π(ci,j))−
3∑

j=1

σq(π(p̃i,j)π(ci,j), π(p̃i,j+1)−1)

Proof. Since {ṽi,j , p̃i,j} is a solution of Vt. We have



p̃i,1ci,1(p̃i,2)−1 = ṽi,1

p̃i,2ci,2(p̃i,3)−1 = ṽi,2

p̃i,3ci,3(p̃i,1)−1 = ṽi,3

1 ≤ i ≤ n

Project these equations to Γ by π, we have



π(p̃i,1)π(ci,1)(π(p̃i,2))−1 = π(ṽi,1)

π(p̃i,2)π(ci,2)(π(p̃i,3))−1 = π(ṽi,2)

π(p̃i,3)π(ci,3)(π(p̃i,1))−1 = π(ṽi,3)

1 ≤ i ≤ n

A direct computation using the cocycle condition of σq and the fact that q is symmetric gives

the identity in the claim.
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By (1) and (2) of Lemma 21, we have

3∑
j=1

σq(π(p̃i,j), π(ci,j)) =
3∑

j=1

ai,j

and
3∑

j=1

σq(π(p̃i,j)π(ci,j), π(p̃i,j+1)−1) =
3∑

j=1

bi,j .

Now Claim 2 and the fact that {w̃i,j} is a solution of Wt tell us that the second component

of (1) equals

σq

(
π(ci,1), π(ci,2)

)
−

3∑
j=1

(ai,j + bi,j) +
3∑

j=1

ι1(w̃i,j)−
3∑

j=1

ι4(di,j)

= σq

(
π(ci,1), π(ci,2)

)
−

3∑
j=1

(ai,j + bi,j + ι4(di,j)) +
3∑

j=1

ι1(w̃i,j) = 0 (∗)

At this point, we have shown that ẽi,1ẽi,2ẽi,3 = 1 in E′.

Claim 2. ẽi,j = q
(
π(ṽi,j)

)
i
(
ι1(w̃i,j)− ι4(di,j)

)
is in ι2(E).

Proof. We use the ρ′-coordinate for E′. Note that an element (g, a)ρ′ ∈ E′ is in ι2(E) if and

only if a ∈ ι1(A) . By the definition of the symmetric section q, we have

ẽi,j =
(
π(ṽi,j),−ι3

(
σρ

(
π(ṽi,j), π(ṽ−1

i,j )
))

+ ι1(w̃i,j)− ι4(di,j)
)

ρ′
.
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Hence it is enough to show that −ι3
(
σρ

(
π(ṽi,j), π(ṽ−1

i,j )
))
− ι4(di,j) ∈ ι1(A). But this follows

Lemma 15 since we know that

Pa
(
σρ

(
π(ṽi,j), (π(ṽ−1

i,j )
))

= di,j .

by (3) of Lemma 21. The proof of the claim is complete.

Therefore we know that E has a solution in ι2(E). Note that ι2(E) is isomorphic to E. So E

has a solution in E. We have completed the proof of the “if” part of the theorem at this point.

Now suppose E has a solution in E. Then E (with constants replaced by their images under

ι2) has a solution in ι2(E) ⊂ E′. Let {ẽi,j} be such a solution. We will show that one of the Et

we constructed also has a solution.

First note that {p(ẽi,j)} is a solution of E (with the constants replaced by their p images)

in Γ . Then by Proposition 1 for some (ci,j) satisfying Condition 1, the tripod equation system

V1
t =



pi,1ci,1(pi,2)−1 = vi,1

pi,2ci,2(pi,3)−1 = vi,2

pi,3ci,3(pi,1)−1 = vi,3

1 ≤ i ≤ n

has a solution {p̃i,j , ṽi,j} in V such that π(ṽi,j) = p(ẽi,j).

By Proposition 1 we know that p̃i,j , ṽi,j are (λ1, ν1)-quasi geodesics in K. Hence by Lemma 7

there exists p′i,j , v
′
i,j ∈ Y ∗ representing p̃i,j , ṽi,j such that φ(p′i,j), φ(v′i,j) are (λ, ν)-quasi geodesics

in KΓ and p′i,j is a subword of v′i,j . Recall in the definition of the tripod equation system, vi,j
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and vi′,j′ are defined to be the same variable if ei,j and ei′,j′ are the same variable. However we

don’t require v′i,j and v′i′,j′ to be the same Y -word even if vi,j and vi′,j′ are the same variable

(hence ṽi,j = ṽi′,j′).

Use the Future Predicting Automaton M to read φ(p′i,j). Suppose it ends at the state s̄i,j .

Note that s̄i,j and φ(ci,j) are compatible since φ(v′i,j) is in L and φ(p′i,j)φ(ci,j) is a subword of

φ(v′i,j). Hence (s̄i,j) satisfy Condition 2. With the above choice of ci,j and s̄i,j , let s̄′i,j be the

state where φ(ci,j) ends when read by Ms̄i,j .

Note that φ(p′i,jci,j) ∈ L(s̄′i,j). Also φ(p′−1
i,j+1) ∈ L(s̄i,j , ci,j) because φ(p′i,jci,jp

′−1
i,j+1) is in

L. Let bi,j = σq

(
π(p̃i,jci,j), π(p̃−1

i,j+1)
)
. Then we have bi,j ∈ A(s̄i,j , ci,j) = {σq(s̄′i,j , w) | w ∈

L(s̄i,j , ci,j)}. Therefore (bi,j) satisfy Condition 3.

Use the Parity Predicting Automaton D to read φ(v′i,j). Let di,j ∈ Zn
2 ⊕Zd1 ⊕ · · · ⊕Zdm be

the last component of the state where it ends.

The above choice of
(
(ci,j), (s̄i,j), (bi,j), (di,j)

)
satisfies all conditions defining Θ. Let t =(

(ci,j), (s̄i,j), (bi,j), (di,j)
)
.

Let Et be the system of equations defined by the above t. Then it is clear from the con-

struction of Et that {p̃i,j , ṽi,j} is a solution of it.

Let ẽ2
i,j ∈ A′ = Zn⊕Z2d1 ⊕· · ·⊕Z2dm be the second component of the ρ′-coordinates of ẽi,j .

Since ẽi,j lies in ι2(E), we know that ẽ2
i,j ∈ ι1(A). By the above way of choosing di,j and (3) of

Lemma 21 we have

di,j = Pa
(
σρ

(
π(ṽi,j), π(ṽ−1

i,j )
))

.



46

Therefore by Lemma 15 we know that ẽ2
i,j + ι3

(
σρ

(
π(ṽi,j), π(ṽ−1

i,j )
))

+ ι4(di,j) ∈ A′ lies in ι1(A).

Let w̃i,j ∈ A be the unique element such that

ι1(w̃i,j) = ē2
i,j + ι3

(
σρ

(
π(ṽi,j), π(ṽ−1

i,j )
))

+ ι4(di,j).

Claim 3. {w̃i,j} is a solution of Wt.

Proof. With all the notation above, we have

ẽi,j = q
(
π(ṽi,j)

)
i
(
ι1(w̃i,j)− di,j

)

just as in the proof of the “if” part. But this time, we know that {ẽi,j} is a solution of E′

instead of {w̃i,j} being a solution of Wt and everything else is the same. So we can go through

the same calculation and when we reach (∗), we use the fact that ẽi,1ẽi,2ẽi,3 = 1 to conclude

that (∗) holds. Therefore {w̃i,j} is a solution of Wt over A.

The proof of Theorem 9 is complete.

Theorem 1 follows from Theorem 9 since equation systems with rational constraints in

virtually free groups are solvable by Theorem 3 and equation systems in finitely generated

abelian groups can be solved by using linear algebra.
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