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SUMMARY

Phase I clinical trials concerns the estimation of the MTD (maximum tolerated dose), which

is the dose level corresponding to the target toxicity rate pt. If pt is set to be 0.3, then it

suggests that the on-going trial allows as many as 30% of the patients administered to the

studying drug/compound to experience DLT (dose limiting toxicity). Once pt is fixed, the

MTD becomes the most crucial target to be identified, since it often serves as the upper bound

for the dose range applied in the following phases of the study.

A great deal of methods have been proposed to address the MTD estimation problem,

among which the CRM (continual reassessment method, (40)) stands out due to its simplicity

and outstanding performance. The general idea behind CRM is that a dose-response curve

would be assumed and fitted to the binary/Bernoulli toxicity data Y , and then each patient

would be assigned to the dose that is most likely associated with the target toxicity rate,

designated as the MTD. During the process, it treats the dose-toxicity curve as a function of x

and p, where they represent dose level and toxicity probability, respectively. Then the function

is solved for x, at the target toxicity rate pt.

We extends the classic CRM by incorporating the idea of optimal design theory. More

specifically, instead of assigning the most recent updated M̂TD to the newly accrued cohort

of patients, we build an optimal design on the latest estimated θ̂, where θ is the unknown

parameter in the working model E(Y ) = p = ψ(x, θ). The resulting design, which guides the

dose allocation for the newly recruited, would have the property of minimizing the asymptotic
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SUMMARY (Continued)

variance of θ̂, which is formulated by using the Fisher information matrix of θ. We denote this

new approach the OD-CRM, which indicates that this strategy is developed within the CRM

framework, and coupled with the optimal design theory.

We employ the OD-CRM to identify the MTD under three working models, the simple power

model, the two-parameter logistic model, and the two-parameter probit model, respectively. For

simple power model, we prove that, regardless of the target toxicity rate specified in the trial,

the OD-CRM always selects the dose level such that the corresponding toxicity rate is around

0.2, which is exactly the commonly used target toxicity rate. Moreover, through simulation

studies done under varied scenarios, we show that by bringing in the idea of optimal design

into the study, when the pt is set beyond 0.2, the percentage of DLT occurrence will drop by

a great amount. As for logistic and probit model, we prove that with the MTD being the

target dose, the standard CRM approach would yield the exact optimal result, as produced by

the OD-CRM, which justifies the efficiency of the CRM theoretically, from the perspective of

optimal design theory.

Then we move on to a more practical problem encountered in oncology clinical studies, the

late-onset toxicities. Due to the nature of the disease, some of the AEs (adverse event) would

occur long after the initial drug administration, which brings great challenge to the early-phase

dose-finding designs. To address this delayed-response issue, we adopt the weighting mechanism

discussed in Cheung and Chappell (8), which essentially assigns each toxicity response to a

weight that depends on the patient’s enrollment time and the observed data. The weighted data

are then incorporated into the working model to facilitate the following statistical inferences.
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SUMMARY (Continued)

We continue the study for the same three models as mentioned above. For the simple power

model, we draw a general conclusion regarding the optimal dose allocation at each stage of the

trial because its parameter is a scalar which would make the resulting optimal designs universal

and applicable to all different settings. As for the other two models, analytical results can only

be obtained under a simplified setting where we only focus on D-optimality, and dose allocation

for the first stage of the study (so there will be no existing designs from previous stages).

We also offer a general dose-finding algorithm, based on the OWEA (optimal weight ex-

change algorithm, (56)), to explore the performance of the OD-CRM under a broader clinical

trial setup. We use the BMA (Bayesian model averaging) technique to unify all the three models

in a weighted manner, and compare our method with three other widely applied ones, namely,

the TITE-CRM (8), the EM-CRM (59), and the DA-CRM (32). Ours simulation results show

the OD-CRM as a very promising novel approach in the sense that (a) its performance under

various scenarios was stable even when the data were generated non-parametrically, (b) the

percentages of correctly identifying the MTD it returned were the highest among all comparing

methods, with the EM-CRM performing comparably to it, and (c) it tended to allocate most

of the enrolled patients to the lowest two, three doses (with six in total), which would alleviate

the safety and ethical concerns to a great extent.

Some possible future work are discussed in the end, which includes bringing in a different

weighting mechanism, adding some randomness into the design, considering dose combinations,

and involving efficacy data though the early phases.
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CHAPTER 1

INTRODUCTION

Although the term “phase I” is sometimes applied to almost any early-phase trial, in clinical

oncology studies, it usually refers specifically to a dose finding study where toxicity is the

primary endpoint (13). For the agent being studied, the dose to be found here is the one with

the greatest therapeutic effect and acceptable toxicity. We often refer to this dose as the MTD,

i.e., maximum tolerated dose. It is served as the dose level upper bound for efficacy evaluation

in the following Phase II study. The main focus of this thesis will be oncology phase I trials

with a binary toxicity endpoint, with the goal of accurately identifying the MTD. 1

1.1 MTD identification and methods proposed

Most designs for dose finding in phase I trials assume a nondecreasing dose-toxicity and

dose-efficacy relationship. Under this assumption, highest dose indicates greatest therapeutic

benefit; and if at the same time its toxic level is acceptable, then it is considered as the MTD,

our research target.

To determine whether the toxic level of a certain dose is acceptable or not is not straight-

forward since patients’ toxicity responses are heterogeneous. That is to say, at a given dose,

some patients may experience little or no toxicity, while others show severe or fatal adverse

symptoms. Therefore, acceptable toxicity is typically defined with respect to the percentage of

1Part of this Chapter was published in two of the author’s publications (52) and (53).
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toxicity occurrence in the whole population. For example, among a group of enrolled patients,

after administration of a drug at a certain dose, 20% of them experience toxicity, then the toxic

level of this dose is considered to be 0.2; and if the highest tolerable toxicity rate, or to say,

the target toxicity rate is set to be 0.3, then this dose is viewed as safe/acceptable in terms of

toxicity response.

The judgment of whether a patient experiences toxicity or not depends on the presence

or absence of DLT, dose limiting toxicity. Suppose we grade all the expected adverse events

(AEs) on a scale of 0 to 5, with each grade defined to be none, mild, moderate, severe, life-

threatening, and fatal, then DLT can be deemed to be grade 3 or worse (standard in cancer:

grade 4 hematologic or grade 3/4 non-hematologic toxicity). In this case, if in the trial a patient

shows severe, i.e., grade 4, AEs, then he/she is presented with DLT, thus is recorded with 1 as

the toxicity response.

Before moving on to specific approaches in identifying the MTD, we mention several design

specifications. First, we do not consider treatment switch in the study due to possible cumu-

lative effects from previous administered doses. Second, we assume doses given to the enrolled

patients are chosen from a discrete candidate dose set D = {d1, ..., dD} designed before the

trial begins, and issues like the choice of starting dose d1, set size D, and dose spacing dj − di,

1 ≤ i < j ≤ D, are not the focus of this thesis thus are all considered pre-specified.

1.1.1 Non-parametric methods

In this subsection we briefly review some of the non-parametric methods proposed to identify

the MTD in Phase I clinical trials. We start with the traditional escalation rule (TER, (48))



3

and its modification, the strict traditional escalation rule (sTER). Then the random walk (RW,

(16)) strategies including the up-and-down rule (UaDR), the biased-coin design (BCD) are

discussed.

1. TER and sTER

The widely-applied TER is also known as the “3+3 design” where the decision of whether

the current dose level di should decrease to di−1, stay the same, or increase to di+1 depends

on the cumulative toxicity responses recorded from all entered patients. More specifically,

patients are treated in cohorts of three and are given the same dose level di. If none of

them shows a DLT, the next cohort receives the next higher dose di+1; if two or more

patients experience DLT, we de-escalate to level di−1; otherwise, the next cohort is treated

at di again. Then if one out of six patients treated at di shows DLT, the trial goes up to

di+1; otherwise, de-escalates to di−1. After that, few additional patients could be included

to be treated at the stopping dose di, or its lower dose set {d1, ..., di−1}. MTD is chosen

to be the highest dose at which none or one out of six patients experiences DLT.

If we want to put more awareness to the safety concern of an ongoing trial, the sTER

provides a more conservative way of implementing the TER, in the sense that after the

first cohort evaluation, if two or three patients show a DLT, the trial stops instead of

decreasing to the next lowest level. In the end, the MTD can be identified as the highest

dose level below the stopping dose, at which at least six patients have been treated with

no more than one occurrence of DLT (additional patients may need to be recruited to

meet this criterion). If no such dose exists, the starting dose d1 would be taken as the



4

final estimation of the MTD. The typical “3 + 3 designs” can be generalized to the “a+ b

designs” where a+ b = 6.

2. RW – UaDR and BCD

The UaDR belong to the class of RWs since dose assignment of the next entered patient

depends only on the toxicity response of the current patient, thus renders the dose al-

location strategy to be a random walk which operates on the finite lattice of the given

doses. The basic UaDR treats the newly-entered patient at the next lower dose di−1 if the

current patient exhibits DLT, otherwise he/she is given the next higher dose di+1. Sev-

eral modifications have been proposed later to use UaDR as a tool in combining different

designs.

When combining with the 3 + 3 rule, Storer later proposed several single-stage and two-

stage UaD designs (see (48), (49), and (50)). Storer’s C design (UaD-C) indicates that

the trial proceeds following the UaDR and escalates only if two consecutive patients show

no DLT. A slightly more advanced version is the Storer’s D design (UaD-D) where three

patients are treated at the same dose di. The trial escalates to di+1 if no DLT is observed,

and deescalates to di−1 if more than one DLT occurs. Another cohort of three is treated

at the same level di if only one patient out of the three shows a DLT. The two-stage design

version of the above mentioned two approaches states that we implement the elementary

UaDR until the first occurrence of DLT and the trial continues using the Storer’s C design

or the Storer’s D design at the next lower dose level.
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In addition to the UaDR, a BCD (15) also belongs to the category of sequential RW where

the newly-entered patient is given the next lower dose di−1 if a DLT is observed from the

current enrolled patient who is treated at dose di; otherwise di+1 is administered with

probability p ≤ 0.5, or di again with probability 1−p. When boundary points d1 or dD is

encountered, the algorithm stays at that dose level. It was shown that by choosing p to be

(pt/1− pt), with pt < 0.5 being the target toxicity rate, the procedure will asymptotically

center the allocation proportions unimodally around the MTD, the corresponding dose

level of pt.

1.1.2 Parametric methods

Due to the limitations of a small sample size and the lack of clinical information regard-

ing the choice of MTD, non-parametric methods are argued to be less efficient compared with

Bayesian methods in terms of accurate MTD estimation and economical study plan. In princi-

ple, Bayesian approaches allow one to combine available prior information with observed toxicity

data to obtain a posterior MTD estimate that reflects pre-clinical knowledge and experiences,

along with the updated information given by the patients enrolled in the ongoing trial.

The most applied Bayesian approach in identifying the MTD in Phase I clinical trials is

the continual reassessment method (CRM, (40)). The procedure starts by assuming a working

model ψ that depicts the monotone relationship between dose level x and its corresponding

probability of DLT occurrence P(Y = 1|x, θ), where Y is the binary toxicity response, and θ

the unknown parameter. Thus we have P(Y = 1|MTD, θ) = ψ(MTD, θ) = pt, where pt is the

target toxicity rate.
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A starting dose is given to the first cohort of patients using the prior estimation of the MTD,

which is associated with the prior distribution of θ and the predetermined value of pt. Then

patients are brought into the study sequentially, with each cohort treated at the most recent

estimated MTD calculated through θ update under Bayesian structure. If MTD estimate is not

the same with any of the doses in the given candidate set, we choose the one that minimizes

the distance between its estimated toxicity rate and pt. In other words, the assumed dose-

toxicity curve keeps being inverted to identify which one of the available levels has associated

estimated toxicity probability as close as we can get to the targeted rate. After a fixed number

of patients been evaluated fully, the final MTD estimate is the dose level that would be given to

the hypothetical patient that enters next. More details regarding the CRM will be illustrated

in Section 1.2.

Note that when the dimension of θ is one, like the simple power model, x in ψ dose not

necessarily have to be the real dose level administered to patients; it can just be a dose label as

long as the assumption of monotonicity is not violated. In this case it is required that for any

x and p, there exists one and only one θ such that ψ(x, θ) = p. The choice of this “dose label”

mentioned above was discussed in detail in (9) using the word “skeleton” that represents one’s

prior belief regarding the toxicity rate associated with each does.

1.2 CRM and its practice with optimal design theory

Since its original introduction in 1990, the CRM often serve as a fundamental base for many

subsequently proposed dose-finding approaches. It also provides us with an algorithm form for

the key method described and established in this thesis, the OD-CRM, which combines optimal
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design theory and the elementary structure of the CRM. Therefore, we feel it is necessary to

elaborate more on this fundamental parametric dose-finding method, as well as its advantages

and adjustments. Following that, we explain in short the reasons of developing a novel dose-

finding method within the CRM framework, as well as the logic of incorporating optimal design

theory into Phase I clinical trials.

1.2.1 Standard CRM procedure and related adjustments

We present the procedures for implementing the standard CRM as follows.

(I). Determine the target toxicity rate pt and an available dose set D = {d1, ..., dD};

(II). Assume a working model ψ(x, θ) and a prior distribution g0(θ) based on pre-clinical in

vitro and in vivo studies;

(III). Assign dose d∗0 ∈ D to the first entered cohort where d∗0 minimizes either one of the

following distance functions

i. f1(d) = d− ψ−1(pt, θ̂0), θ̂0 =

∫
Ω

θ · g0(θ)dθ

ii. f2(d) = pt −
∫

Ω

ψ(d, θ) · g0(θ)dθ

and Ω is the parameter space;

(IV). At step j, j = 1, 2, ..., we have gj−1(θ) being the latest updated probability distribution

of θ. We collect binary toxicity response Yj from evaluated patients and assign dose

d∗j ∈ D to the j + 1th entered cohort where d∗j minimizes either one of the following

distance functions
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i. f1(d) = d− ψ−1(pt, θ̂j) θ̂j =

∫
Ω

θ · gj−1(θ) · L(θ|Yj)dθ

ii. f2(d) = pt −
∫

Ω

ψ(d, θ) · gj−1(θ)L(θ|Yj)dθ

and L(θ|Yj) is the likelihood function;

(V). Repeat procedure (IV) until the accumulated sample size reaches a certain predetermined

limit.

(VI). Final MTD estimate d∗ is chosen from D that minimizes either one of the distance

functions in (IV).

Remark 1. Note that here j represents the last recruited cohort thus all estimates/distributions

updates are final.

Compared with some of the non-parametric methods where the next dose is based purely

on the response of the current cohort, the CRM enjoys an advantage of making full use of all

the available data at hand in order to give a better dose assignment. As indicated by Shen

and O’Quigley (41), the CRM will converge eventually to the dose whose toxicity rate is closest

to pt, even when the working model is misspecified. Its practical performance under small to

moderate samples, though, requires to be further investigated. Also, the CRM was shown to

perform quite robustly in terms of dealing with the variation of the true θ value, in the sense

that instead of trying to fit an overall model to the data obtained each time at a single chosen

dose, which may cause problems like non-identifiability when parameter dimension is larger

than one, the main goal of the CRM is rather to identify the target percentile, i.e., the MTD,

from the assumed dose-toxicity curve.
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Simulation study carried out by Korn et al. (29), Goodman et al. (21), and O’Quigley

(38) all provided evidences of efficient operating characteristics of the CRM, in terms of a high

percentage of accurately identifying the true MTD and a low rate of toxicity occurrence. When

the prior used in the Bayesian structure is not too strong as to push the algorithm towards an

aggressive direction, the CRM design behaves properly as well (9).

As for the safety issues that many investigators have doubt about, work done by O’Quigley

and Chevret (39), O’Quigley and Shen (41), Ahn (1), Reiner et al. (43), O’Quigley (37)

all indicated CRM to be safer than any of the commonly used up and down schemes when

pt < 0.3. It was also argued that CRM can easily be adjusted to increase its safety level simply

by moving the target toxicity rate to a lower range, which in a way reinstates its flexibility

advantage against most non-parametric designs.

Furthermore, extra flexibility can be gained by relaxing some of the model’s rigidity. Instead

of assuming a solo working model directly from the beginning, one could pick out a small finite

set of candidate models and choose one that fits collected data the best under the heading of

Bayesian model choice (20). Based on indifference intervals described by Cheung and Chappell

(9), Lee and Cheung (30) provided procedures that can generate a satisfactory working model.

The Bayesian model averaging (BMA) strategy adopted by Yuan and Yin (58) made use of the

posterior estimates for the relevant toxic probabilities which are then weighted with respect to

the corresponding posterior model probabilities.

Another parametric method that evolved from the CRM is the EWOC, i.e., escalation with

overdose control (2). It shares the same framework as the CRM, with the main difference being
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the dose assignment fashion at each enrollment time. The EWOC selects the next dose whose

posterior probability exceeding the most recent updated MTD is equal to some pre-determined

cutoff, for example, 0.25. Unlike the CRM, where each selected dose is the one closest to the

current estimated MTD, the EWOC utilizes tolerance parameters to control the probability of

aggressive dose escalation. After some stopping rule is being met, the final estimate of the MTD

is calculated by minimizing the posterior expected loss with respect to a preset loss function.

Model mis-specification within the context of overdose control was further investigated by Chu

et al. (10). This is a very encouraging adaptation of the CRM when the ongoing trial has

a primary concern of avoiding overdosing and models with higher parameter dimension are

justified to be included in the study.

We should also mention that there is nothing particularly Bayesian about the CRM, whose

basic framework can be adapted to a non-Bayesian setting where prior of θ is ignored and all pa-

rameter updates are entirely likelihood based. However, the working dose-toxicity model cannot

be fit to the data until at least one patient shows DLT and another doesn’t. Thus, additional

guidance needs to be followed to lead the dose escalation process until heterogeneity is achieved.

Two-stage designs were thus developed (see (48), (49), and (34)), where an “initial stage” was

added to the algorithm which guarantees the heterogeneity in toxicity response in order to set

off the likelihood-based estimation procedure. Practical modifications like involving additional

patients or intermediate doses were also proposed later to meet some of the requirements in

making Bayesian/frequentist inferences under certain model or parameter restrictions.
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1.2.2 OD-CRM applied in general dose-finding problems

In the field of oncology product development, one needs to put extra effort on maintaining

the balance between optimal dose before approval and rapid access to effective medications

by patients (36). The possibility of recommending unacceptably toxic doses in traditional

designs and the conservativeness of the standard CRM where a no-skipping rule is applied

through the whole phase for most of the time make a revisit to early-phase dose finding methods

urgently needed. FDA-AACR hosted an Oncology Dose Finding Workshop in June, 2016, where

developing novel dose-fining strategies were highlighted and greatly encouraged.

It is pointed out that in reality, many non-optimal doses are taken into late-phase trials thus

often resulting in a high rate of dose interruption. Given the recent emphasis put on obtaining

better dose selections in early phases, the drive for conducting strictly rigorous dose-finding

trials could be “dialed downed” a little. Moreover, the paradigm of determining a single dose,

often the MTD, to investigate in Phase II studies requires to be altered in order to meet the

more essential objective of Phase I designs, that is, recommendation of a safe and efficacious

dose range based on which Phase II trials are to be conducted.

The necessity in speeding up drug development cannot be underestimated, especially in

oncology trials due to the life-threatening nature of the disease. The single-dose allocation

standard applied in all CRM-based methods may in some cases hinder the rapid-information-

collection spirit. Also, the attention the CRM puts on one-point estimation (the MTD) helps in

identifying the target quantile, but may show some weakness when establishing the dose-toxicity

profile becomes a more crucial goal due to the increasing need in dose-ranging phase II trials.
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In other words, MTD does not need to be estimated through all interim study time points; a

slightly “diverged” path where more information on the underlying dose/response relationship

is to be obtained may lead the way further into more efficient and conductive following phases.

Finally, the battle between limited sample size and valid statistical inference has been addressed

intensively in the early-phase studies. A design that can achieve a satisfying balance between

the two is without doubt relevant and favorable.

It can be seen now that there exists enough reasons for us to bring in new aspects and ideas

into early-phase dose-finding designs which can at the same time attend to the three issues

stated in the last paragraph. Following this logic, we put forward a dose-finding technique where

optimal design theory is incorporated into the basic CRM structure, i.e., the OD-CRM, where

dose allocation at each interim time point is dealt with by creating optimal dose assignment.

Such an approach can be expected to improve the dose selection process in the sense that (a)

optimal dose assignments obtained at each step through constructing optimal designs are very

likely to contain more than one doses, therefore proceeds the study by involving more patients

into various doses in a timely fashion, allowing benefits and risks of the studied drug/compound

to be understood earlier; (b) as compared to other CRM-based approaches where the estimated

MTD is given to all patients in a single cohort, OD-CRM chooses dose(s) that is/are not

directly related with the target toxicity rate but instead aiming at giving a better description of

the dose-response relationship in the end; and (c) the underlying rationale of utilizing optimal

design theory lies perfectly with the restrictions and goals in Phase I clinical trials, that is, to
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increase statistical inference accuracy under a finite sample size, or to reduce the sample size

given a specified estimation precision.

Suppose at an interim study point we recruit n patients and allocate them to the doses from

the candidate dose set D = {d1, ..., dD}, each with ni observations, i = 1, ..., D. The purpose

of optimal design here is to find a combination of {n1, ..., nD} under restriction
∑

ni = n,

such that the resulting design is the best with respect to some optimality criterion. Since

such problem is in general intractable, the corresponding approximate designs, in which ni’s

are replaced by their corresponding weights ωi = ni/n, i = 1, .., D, are considered. A general

approximate design can be expressed as follows,

ξ = {(x1, ω1), ..., (xn, ωn)},
n∑
i=1

ωi = 1, and xi ∈ X , i = 1, ..., n,

where we have n design points and X is the design space.

In order to identify optimal dose weights, one has to take into account the effect of those dose

levels on the parameter estimation precision, which is generally reflected by the variance of the

estimator. Based on Searle and Gruber (46), the variance-covariance matrix of the maximum

likelihood estimator (MLE) of the parameter of interest, say b(θ), can be written as

(
∂b(θ)

∂θ

)
I−1(θ)

(
∂b(θ)

∂θ

)T
,

where I(θ) is the Fisher information matrix of the model parameter.
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On one hand, an optimal design aims at minimizing the variance-covariance matrix under

some optimality criterion; on the other hand, the evaluation of Fisher information matrices for

nonlinear models usually depend on the value of the unknown parameter. Thus, the challenge

in designing an experiment under such situation is that while one is looking for the best design

with the aim of better estimating the unknown parameter, one has to know the parameter

value first to identify the best design. A common approach to tackle this dilemma is to use

“locally” optimal designs, where we initiate the designing process based on a best “guess” of the

unknown parameter (see (55) and (4)). This approach suits the sequential design framework

in that the underlying model is refit once we have new observed outcomes and optimal design

can be chosen based on the updated parameter value. Hereafter, the word “locally” is omitted

for simplicity.

For a given design ξ, by standard asymptotic theory, the MLE of θ has approximately

multivariate normal distribution with covariance matrix proportional to I−1
ξ (θ). We consider

the MTD as a function of θ, i.e., MTD = ψ−1(x, θ) := b(θ), then the variance of the M̂TD = b(θ̂)

under design ξ can be written as

Vξ(M̂TD) = Vξ(b(θ̂)) =

(
∂b(θ)

∂θ

)
I−1
ξ (θ)

(
∂b(θ)

∂θ

)T ∣∣∣∣∣
θ=θ̂ξ

. (1.1)

A design ξ∗ minimizing V(M̂TD) results in an accurate estimation of the MTD, which

can also be justified under the Bayesian framework: the asymptotic normal distribution of

the M̂TD approximates the posterior distribution of the M̂TD under a Bayesian structure;
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hence, minimizing the (log-) variance of the M̂TD is equivalent to minimizing the (approximate)

Shannon entropy of the posterior distribution of the M̂TD (7).

1.3 Delayed-response problem

In some of the phase I settings dose escalation is based on toxicity responses recorded and

evaluated within a relatively short period of time, typically no more than 4-6 weeks (13). It is

expected to be the usual case where AEs associated with DLT appearance will occur soon after

drug administration. However, there may be other scenarios where toxicities are undeveloped

after the patient is brought into the study and start to take place after chronic dosing over an

extended period of time. Any of the techniques mentioned earlier can be implemented without

alteration in such a setting, where all previously-entered cohorts must be evaluated fully before

another recruitment is permitted. One of the most dominant inferior consequences of that is

the over-extended duration of the trial, some can even last for years.

On the other hand, if one tends to make use of all the data at hand from previously-entered

cohorts without some weighting mechanism in operation, it is highly likely to give over-toxic

dose recommendations in the end due to the use of short-term safety data and lack of accounting

for intra-patient correlation between the early-showing and late-showing of DLT.

Unlike other general medicine which the targeting diseases are not as severe as cancer/tumor,

drug development in oncology studies tends to have a higher tolerance on toxicity response if

the drug shows promising efficacy. Thus, quicker identification of an efficacious dose can take

precedence over finding an “absolute non-toxic” dose due to the special nature of the disease

in study.
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In real applications, especially within the oncology area, this delayed-response hurdle is

quite regularly encountered. Here “response” can be referred as both the toxicity response and

efficacy response; however, the majority of this thesis is focused on evaluating toxicity outcome

only, the extended application of the method aiming at streamlining Phase I and II trials will

be discussed in Chapter 5.

Here we breifly list some real clinical trials with late-onset toxicity presence. In radio-

therapy trials, dose-limiting toxicities often occur long after the treatment is finished (see (11)

and (12)). In a trial treating patients with pancreatic cancer, the full evaluation period was 9

weeks while the accrual rate was 1 per week (35). In the area of molecularly targeted agents,

among a total of 445 patients in 36 trials, 57% of the grade 3 and 4 toxicities were late-onset

(42). In a case study with gemcitabine-induced lung toxicity in breast cancer, the toxicity did

not occur until more than a year after the initiation of gemcitabine therapy (47). Data from

the National Cancer Institute’s Surveillance, Epidemiology, and End Results (SEER) program

showed that Lymphoma treatment has evolved greatly to reflect the fact that even when cure is

achieved, significant chronic or late-onset toxicity can vitiate long-term patient outcomes (24).

1.3.1 Methods proposed regarding the delayed-response problem

Relatively little attention has been paid to this study problem, one of the most early and

noteworthy work being done in the field is the TITE-CRM (time-to-event CRM) design (see

(8) and (5)). It has the same structure as that of the CRM, with the sole difference being

the weight put on each observation when formulating the likelihood function. The standard

CRM considers all responses as fully-evaluated, i.e., all with weight one; while the TITE-CRM
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assigns weight wi to the ith observation based on its “reliability”. A simple choice would be

the ratio that patient’s enrollment time ui and the full evaluation period T which depends on

the nature of the disease and curing drug/compound being studied. More complex versions of

the weight functions were also discussed, most of which are related to the assumed distribution

of the time-to-event variable for each patient/each dose level, or the instant risk at each time

point. Both concepts are commonly seen in survival analysis.

In 2008, Bekele and colleges (3) modified the TITE-CRM framework by adding a set of rules

with the goal to induce possibilities of enrollment suspension. The rules are established on the

knowledge of the risk of toxicity at selected doses. If the predicted toxicity rate is deemed

unacceptable, the design will temporarily suspend accrual until new data present evidence of

a reduction on the predicted risk. In 2013, Wages, Conaway, and O’Quigley (54) explored

the TITE-CRM design with the setting of dose combinations. The multiple-agent situation

complicates the on-going trials due to the uncertainty with the dose-toxicity monotonicity,

which could be reduced to a partial-order (PO) problem. Extension of the TITE-CRM to the

PO setting was studied in the paper and was showed by simulation studies to be promising in

the sense that it has similar performance in terms of the true MTD selection rate and a shorter

trial duration at the same time.

Following work focused on this specific issue also adopted the thought of how to make use of

all the “incomplete” observations. A natural thought would be treating them as missing data

and utilizing existing strategies developed in the missing-data realm. Yuan and Yin in 2011 (59)

proposed a method called the EM-CRM where censored observations due to incomplete follow-
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ups are substituted in the parameter inference with expectations calculated using a modified

EM algorithm. Later in 2013, Liu, Yin, and Yuan (32) proposed a similar method, the DA-

CRM, where the Bayesian data augmentation technique was chosen to compensate for the

incompleteness of the toxicity observations. Specifically, instead of deriving a posterior mean

for each delayed response, a sample point is drawn from each posterior conditional distribution.

Moreover, the model parameter is not estimated using the MLE as in the EM-CRM case, but

again sampled from its corresponding posterior distribution.

We reviewed the following three methods in detail in chapter 2: the TITE-CRM, the EM-

CRM, and the DA-CRM. In chapter 4, simulation studies are conducted to compare the per-

formance of these designs with our proposed method, the OD-CRM in the late-onset toxicity

setting, which will be introduced in the next section, and elaborated in chapter 3.

1.3.2 OD-CRM applied in the delayed-response problems

We assume for each enrolled patient, the entire evaluation time is T . Usually T is chosen

by clinical investigators based on the disease nature and the treating mechanism to ensure

that if a drug-induced DLT should occur, it would occur within the time interval (0, T ] after

the administration of the treatment agent. There are K interim study intervals within each

patient’s evaluation period, namely, (u0, u1], (u1, u2],..., and (uK−1, uK ], where u0 = 0 and

uK = T . Note that they do not have to be equally-spaced. For an enrolled patient, at time

point t = u1, ..., uK−1, he/she may show late-onset toxicity; and by time uK , he/she would have

been fully evaluated, whether the response is toxicity or not. The trial will recruit new patients

at each interim study time point, thus it is also the time for doing parameter inferences and
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making dose allocation decisions. We also assume the independence between the recruitment

and time-to-toxicity of patients.

As compared to Yj , the true response of the jth patient, we define here a new binary

variable Yj,k, k = 1, ...,K, as the toxicity outcome for patient j after being enrolled for time

uk, k = 1, ...,K. Note that when k < K, Yj,k = 1 means toxicity response has been observed,

i.e., Yj = 1; but Yj,k = 0 doesn’t necessarily mean that there’s no DLT, it only says that the

true response Yj is still missing/waiting to be observed till time uK .

• If Yj,k = 1, for k = 1, ...,K, then Yj = 1, and patient j is considered fully-evaluated with

DLT;

• If Yj,K = 0, then Yj = 0, and patient j is considered fully-evaluated without DLT;

• If Yj,k = 0, for k = 1, ...,K − 1, then Yj is missing, and patient j is considered not

fully-evaluated with late-onset toxicity.

Notice that the missing data mechanism being discussed here is not at random in the sense

that its missing nature depends on the time-to-toxicity of patients under given agent(s) thus

should be considered informative and non-disregardable. It is also a special case of non-ignorable

missing data since the missing mechanism can be defined as follows,

Mj(Uj) =


1 if Uj > t and t < T,

0 if Uj ≤ t ≤ T or Uj =∞,
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where t is the actual follow-up time, and Mj(Uj) and Uj denote the missing data indicator and

time-to-toxicity of patient j, respectively. Note that Uj =∞ means no DLT before T .

We adopt the idea of bringing a weight function w that depicts the relationship between

true response Y. and the interim outcome Y.,k (8). This weight function in the form of a vector

with each dimension contributing to each interim time point, w = (w1, ..., wK), can be seen as

conditional probabilities such that given the fact that patient will show DLT by the end of the

evaluation period, what is the probability that he/she will show DLT by time uk, k = 1, ...,K.

Thus for patient j, we have

wk = P(Tox by time tk|Tox by the end)

= P(Yj,k = 1|Yj = 1),

and model Yj,k can thus be given as

P(Yj,k = 1) = wkψ(xj , θ),

P(Yj,k = 0) = 1− wkψ(xj , θ),

where as stated in Section 1.1.3, ψ is the working model and xj the dose level of patient j.

We can see that pseudo data Y.,k’s are thus included in the design in a “down-weighted”

manner. In summary, the joint probabilities of outcomes for patient j by time uk, k = 1, ...,K−

1, i.e., Yj,k’s, and time uK = T , i.e., Yj , are presented in Table 1.
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Pseudo response by time uk
Row total

True response by time T No-DLT (Yj,k = 0) DLT (Yj,k = 1)

No-DLT (Yj = 0) 1− ψ(xj , θ) 0 1− ψ(xj , θ)

DLT (Yj = 1) (1− wk)ψ(xj , θ) wkψ(xj , θ) ψ(xj , θ)

Column total 1− wkψ(xj , θ) wkψ(xj , θ) 1

Table 1: Joint probabilities of outcomes by time uk and uK = T for patient j

We can see that the row totals correspond to the Bernoulli distribution of Yj , and the

column totals yield the marginal distribution of Yj,k, k = 1, ...,K.

For patient j who hasn’t shown DLT by time uk−1, i.e., Yj,k−1 = 0, we define two conditional

probabilities, p̃j,k, q̃j,k, to depict his/her random toxicity outcome by the next time point uk:

q̃j,k = P(Yj,k = 0|Yj,k−1 = 0) =
P(Yj,k = 0, Yj,k−1 = 0)

P(Yj,k−1 = 0)

=
P(Yj,k = 0)

P(Yj,k−1 = 0)
=

1− wkψ(xj , θ)

1− wk−1ψ(xj , θ)
, (1.2)

p̃j,k = P(Yj,k = 1|Yj,k−1 = 0) = 1− P(Yj,k = 0|Yj,k−1 = 0)

= 1− 1− wkψ(xj , θ)

1− wk−1ψ(xj , θ)
=

(wk − wk−1)ψ(xj , θ)

1− wk−1ψ(xj , θ)
. (1.3)

Note that p̃j,k + q̃j,k = 1.



22

Now with the marginal and conditional probabilities defined above, for the sake of illustra-

tion hereafter, we define two joint probabilities

qj,k = P(Yj,k = 0, Yj,k−1 = 0) = P(Yj,k = 0) = 1− wkψ(xj , θ), (1.4)

pj,k = P(Yj,k = 1, Yj,k−1 = 0) = P(Yj,k = 1|Yj,k−1 = 0) · P(Yj,k−1 = 0) = (wk − wk−1)ψ(xj , θ).

(1.5)

Note that pj,k + qj,k = P(Yj,k−1 = 0) = qj,k−1.

To summarize and compare, we have all defined (conditional/marginal/joint) probabilities

(for patient j) tabulated as follows.

Marginal qj,k = P(Yj,k = 0) = 1− wkψ(xj , θ)

Conditional
p̃j,k = P(Yj,k = 1|Yj,k−1 = 0) =

(wk − wk−1)ψ(xj , θ)

(1− wk−1)ψ(xj , θ)

q̃j,k = P(Yj,k = 0|Yj,k−1 = 0) =
1− wkψ(xj , θ)

1− wk−1ψ(xj , θ)

Joint
pj,k = P(Yj,k = 1, Yj,k−1 = 0) = (wk − wk−1)ψ(xj , θ)

qj,k = P(Yj,k = 0, Yj,k−1 = 0) = P(Yj,k = 0) = 1− wkψ(xj , θ)

Relation
p̃j,k · qj,k−1 = pj,k

q̃j,k · qj,k−1 = qj,k

Table 2: Probabilities of different events for patient j
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The design problem here is to find an optimal dose allocation ξ = {(di, ωi), i = 1, ..., D} for

each recruitment, at the beginning of the experiment. Specifically, suppose now we are at a

certain time point t, and we are to make inferences based on the data collected by time t, i.e.,

to obtain θ̂|(data by time t). In order to obtain the most efficient θ̂, we need to guarantee data

collected by then are informative, which requires us to optimize the “information” we are to

obtain by time t.

As stated in Section 1.2.3, the construction of ξ depends on the minimization of the asymp-

totic variance of M̂TD (Equation 1.1), which we can see is not influenced by data collected

along the way, i.e., independent of data Y . Thus optimal designs/dose allocations for each

recruitment are constructed at the beginning of the trial, rather than at each study time point.

We should mention that since locally optimal designs are dependent on the value of parameter

θ, which keeps updating at each stage, thus the designs constructed are “unchanged” in terms

of their corresponding “formulas”, instead of the actual values of each design point and weight,

with which the dose allocations are guided.



CHAPTER 2

PREVIOUS WORK ON DELAYED-RESPONSE

Since MTD is defined in a DLT percentile manner with respect to a fixed duration of

time, and is usually assumed to be less than the time of patient enrollment in a trial, then

when there are long-term toxicities present, it is very likely that the trial will overestimate

the MTD due to the mistreating of the late-onset toxicities as no-DLTs. Numerous examples

that have been given in Section 1.3.1 showed that an increasing need in new methods tackling

the delayed-response problem, which is also considered a major drawback of the original CRM

where its timeliness was seriously criticized. In this chapter we summarize and compare several

methods that are proposed in the context of late-onset toxicities, including their setups and

methodologies.

2.1 TITE-CRM

In 2000, Cheung and Chappell (8) proposed a method that incorporates the time-to-event of

each patient into the CRM, denoted as the TITE-CRM, which allows patients to be entered in

a staggered fashion. By defining a weight function which builds a bridge between the observed

data at each interim study time point and the true toxicity responses in the end, the TITE-

CRM is essentially an extension of the original CRM which occurs under the situation that all

enrolled patients being censored by the end of the evaluation period T .

24
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More specifically, the TITE-CRM extends CRM by considering a weighted dose-response

model G(d,w, θ) that is monotone increasing in w with marginal constraints

G(d, 0, θ) = 0,

and

G(d, 1, θ) = ψ(d, θ),

where d is the dose and ψ(d, θ) the dose-response model in a standard CRM setup. Therefore,

θ is estimated based on the weighted likelihood

Ln(θ) =

n∏
i=1

G(d[i], wi,n, θ)
yi,n(1−G(d[i], wi,n, θ))

1−yi,n (2.1)

where yi,n and wi,n are, respectively, the indication of toxic response for the ith patient and the

weight assigned to this observation before the (n+ 1)th patient enters. Motivated by simplicity

and the goal of satisfying the marginal constraints, here the paper proposed to incorporate w

linearly into ψ. That is,

G(d,w, θ) = wψ(d, θ) for w ∈ [0, 1]. (2.2)

Similar to the classic CRM setup, it follows that the weighted likelihood Ln defined in

Equation 2.1 is a regular likelihood if G is the assumed model. In fact, model G (Equation 2.2)
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can be viewed as a time-to-toxicity regression model. Let Ui be the time-to-toxicity for patient

i, then we have

G(d[i], wi, θ) = Hi(u) (cdf of the random variable Ui)

= P(Ui ≤ u)

= P(Ui ≤ u|Ui ≤ T )P(Ui ≤ T ) + P(Ui ≤ u|Ui ≥ T )P(Ui ≥ T )

P(Ui≤u|Ui≥T )=0
============= P(Ui ≤ u|Ui ≤ T )P(Yi = 1)

set
= wi(u, T )ψ(d[i], θ). (2.3)

Thus the weight function wi is identified with a truncated probability distribution of Ui with

wi(0, T ) = P(Ui ≤ 0|Ui ≤ T ) = 0 and wi(T, T ) = P(Ui ≤ T |Ui ≤ T ) = 1; and the dose-response

curve ψ with the marginal model at time T . Notice here the regression interpretation justifies

the linearly-incorporated weight model stated in Equation 2.2. We could see that although the

subscript i in Ui and Hi(u) indicates different patients, the real influence factor is the dose

assigned to that patient d[i]; thus hereafter we refer time-to-toxicity Ui and its cdf Hi(u) not

by each patient, but by each corresponding dose level, di ∈ D, where D is the dose set.

During the implementation of the TITE-CRM method in a trial, according to the regression

model (Equation 2.3), we present three cases here to involve all possible outcomes that are to

be observed.

• When Yi = 1, i.e., a DLT is observed, full information from this patient should be claimed

by setting wi to 1. This is also justified by the definition of wi above, which is P(Ui ≤
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u|Ui ≤ T ) taking value 1 since DLT is already observed at this point which would make

the patient’s time-to-toxicity Ui fall before this time point u. Therefore, contribution of

observation Yi = 1 to the weighted likelihood (Equation 2.1) is

G(d[i], wi, θ)
Yi(1−G(d[i], wi, θ))

1−Yi

= G(d[i], wi, θ) = wi ψ(d[i], θ) = ψ(d[i], θ).

• When Yi = 0 and the patient’s follow-up time ui is less than T , contribution of observation

Yi = 0 to the weighted likelihood (Equation 2.1) is

G(d[i], wi, θ)
Yi(1−G(d[i], wi, θ))

1−Yi

= 1−G(d[i], wi, θ) = 1− wi(ui, T )ψ(d[i], θ).

• When Yi = 0 and the patient’s follow-up time ui reaches T , contribution of observation

Yi = 0 to the weighted likelihood (Equation 2.1) is

G(d[i], wi, θ)
Yi(1−G(d[i], wi, θ))

1−Yi

= 1−G(d[i], wi, θ) = 1− wi(ui, T )ψ(d[i], θ)

= 1− wi(T, T )ψ(d[i], θ) = 1− ψ(d[i], θ).
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Two patient-homogeneous weight functions were discussed by the authors. The first would

bring the weight function under an accelerated failure time model as

w(u;T, d, θ) =
ψ0{log(u/T )c − a+ θd}

ψ0{θ(d− a/θ)}
,

where ψ0 is some distribution and model parameter θ > 0. This weight function has the

advantage of being sensitive to data and could reevaluate wi’s adaptively according to the

toxicity observations recorded through the trial.

Another weight scheme that does not depend on the model parameter was introduced as

w(u;T ) =
k

z + 1
+

1

z

(
u− t(k)

t(k+1) − t(k)

)
,

where z is the total number of toxic observations, 0 = t(0) < t(1) ≤ · · · ≤ t(z) < t(z+1) = T are

the ordered failure times, and k = max
0≤j<z

{j : u ≥ t(j)}. This weight function puts less weight

on each observed Y if DLTs have been recored at the second half of the evaluation period, and

even less weight on newly-enrolled patients when some toxic data are observed near the end,

i.e., when u is close to T .

In this paper, the weight function was taken to be the ratio of the actual follow-up time u

to the entire evaluation period T , i.e.,

w(u, T ) =
u

T
, (2.4)
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which is patient-homogeneous and independent of the toxicity observations. It might be con-

sidered as oversimplified, yet, according to the authors, has been shown to be sufficient under

many design scenarios.

Due to the limitations when using the MLE before the appearance of DLTs under the

frequentist paradigm, and the possible over-aggressive escalation with an informative prior

under the Bayesian structure, an initial design which determines an early-stage dose escalating

scheme together with a transition rule that helps move design to the proposed model-based

TITE-CRM stage, was implemented in the simulation studies. More specifically, three patients

are included at a time starting at the lowest dose, and the design will level up to the next dose

given no reported DLTs. The switch to the TITE-CRM happens after the first occurrence of a

toxicity response. It was also the initial design considered in O’Quigley and Shen (41).

In implementing the TITE-CRM, the dose-response model ψ was chosen to be ψ(α) = pαd ,

and the prior distribution on the model parameter α was taken to be g(α) = 1 − exp(−α) for

α > 0. There were six doses involved, with prior belief/skeleton set to be (p1, p2, p3, p4, p5, p6) =

(0.05, 0.10, 0.20, 0.30, 0.50, 0.70). Five toxicity configurations used in O’Quigley et al. (40) were

used in the simulation. See Table 3.

The TITE-CRM algorithm can then be described as follows,

(I). If the initial stage is not implemented, then we start the trial by treating the first cohort

at the a priori best dose determined by parameter prior g(α). Otherwise, we begin with

the initial stage where the first entered cohort is treated at the lowest dose and fully
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Toxicity probability

0.05, 0.10, 0.20, 0.30, 0.50, 0.70

0.30, 0.40, 0.52, 0.61, 0.76, 0.87

0.05, 0.06, 0.08, 0.11, 0.19, 0.34

0.06, 0.08, 0.12, 0.18, 0.40, 0.71

0.00, 0.00, 0.03, 0.05, 0.11, 0.22

Table 3: Toxicity configurations in the TITE-CRM simulation

followed; dose is escalated continuously until the appearance of the first DLT. Then we

switch to the TITE-CRM.

(II). At the current stage, α is estimated following the regression model (Equation 2.3) with

weight function w = u/T and working model ψ = pαd . The parameter inference can

be handled either under the Bayesian framework, i.e., the posterior mean, or follow the

frequentist manner, i.e., the MLE. Then the dose allocation for the next cohort is the

one with toxicity probability closest to pt, the target toxicity rate.

(III). Once the pre-determined maximum sample size is reached, based on the final estimate

of model parameter α, the dose that has the toxicity probability closest to pt is selected

as the MTD.

2.2 EM-CRM

In 2011, Yuan and Yin (59) proposed a method targeting the late-onset toxicity problem

that treats unobserved toxicity outcomes as missing data, or to say, censored observations due
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to incomplete follow ups, and then utilizes a modified EM algorithm (14) as the main technique

to adjust the standard CRM design, denoted as the EM-CRM.

Again, let Ui denote time-to-toxicity of each patient, and ui the actual follow-up time. It

then follows that

Yi =



1 if Ui ≤ ui ≤ T

0 if Ui > ui = T

missing if Ui > ui, and ui < T

(2.5)

where T is the entire evaluation period. Note that Ui is considered as a continuous random

variable. Under the case when Yi = 0, we set Ui =∞; otherwise, Ui takes value in (0, T ].

Some notation used in the paper which have bot been introduced before are now listed here

with slight modifications in order to be consistent with the following sections.

• u0 < u1 < · · · < uK : distinct observed event times with u0 = 0 and uK = T .

• mk: number of DLTs occurred at uk for k = 0, ...,K − 1.

• ck: number of censored observations in the interval [uk−1, uk) for k = 1, ...,K.

• Ck: set of censored observations in the interval [uk−1, uk) for k = 1, ...,K.

• λ = (λ0, ..., λK−1): unknown discrete hazards at u′ks with λk = P(U = uk|U ≥ uk) and

1− λk = P(U > uk|U ≥ uk).

Under CRM-based designs, the log-likelihood of the complete data is a linear function of

the ith response Yi, i = 1, 2, ..., n. Assuming simple power model ψd(α) = p
exp(α)
d , d = 1, ..., D,
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as the working model, when applying the EM algorithm, at the rth iteration, given the current

parameter estimates α(r) (parameter in the dose-response model) and λ(r) (discrete hazards at

each observed event time points), the E step of the (r + 1)th iteration essentially substitutes

the missing value of yi directly with its expectation in the form of

E(Y
(r+1)
i |Ui > ui, α

(r),λ(r))

= P(Y
(r+1)
i = 1|Ui > ui, α

(r),λ(r))

=
P(Y

(r+1)
i = 1|α(r))P(Ui > ui|Y (r+1)

i = 1,λ(r))

P(Y
(r+1)
i = 1|α(r))P(Ui > ui|Y (r+1)

i = 1,λ(r)) + P(Y
(r+1)
i = 0|α(r))P(Ui > ui|Y (r+1)

i = 0,λ(r))

=
ψ(di, α

(r))
∏
k:uk<ui

(1− λ(r)
k )

ψ(di, α(r))
∏
k:uk<ui

(1− λ(r)
k ) + 1− ψ(di, α(r))

. (2.6)

Note that the second equality comes from the the probability law that

P(A|B) =
P(A)P(B|A)

P(A)P(B|A) + P(Ac)P(B|Ac)
,

and the last equality stems from the fact that

P(Ui > ui|Y (r+1)
i = 0,λ(r)) = P(Ui > ui|Ui =∞) = 1,

and

P(Ui > ui|Y (r+1)
i = 1,λ(r)) =

∏
k:uk<ui

(1− λ(r)
k ).
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Then in the following M-step, the likelihood function

L(α|y) =
n∏
i=1

{
p

exp(α)
di

}yi {
1− pexp(α)

di

}1−yi
(2.7)

is updated by substituting yi with y
(r+1)
i , where depending on Equation 2.5, y

(r+1)
i is either 1,

0, or E(Y
(r+1)
i ) obtained in Equation 2.6. It can be shown that

λ
(r+1)
k =

mk∑K−1
j=k

(
mj +

∑
i∈Cj y

(r+1)
i

) , k = 0, 1, ...,K − 1,

is analogous to the Kaplan-Meier estimator (27); and α(r+1) is obtained through maximizing

the updated likelihood function L(α|y(r+1)) (Equation 2.7).

To enhance the robustness of the design, S sets of toxicity probabilities/skeletons, namely,

{p11, ..., p1D},..., {pS1, ..., pSD}, each leading to an independent CRM power model, were pro-

posed to be specified simultaneously. Frequentist approaches, which avoid specifying prior dis-

tributions, are adopted in the following algorithm. More specifically, two methods are selected

to evaluate the importance of each model.

• Model selection

Two commonly applied information criteria, AIC and BIC, are both considered. Since

in this case, for each candidate model, r, the number of model parameters, and n, the

number of observations are the same, these two criteria are equivalent. Essentially, the

model selected in each step is the one with the largest likelihood value (Equation 2.7).
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• Model averaging

Compared with model selection where inferences and dose escalations ad de-escalations

are based solely on one chosen model, model averaging method is considered to be more

robust in the sense that it can account for additional uncertainty brought in by the

variability in the candidate model set where the ambiguity of the working model gets

acknowledged and following inferences are standing on all the competing models instead

of a single chosen one.

The smoothed AIC estimator (see (6) and (23)) is used as the estimate of the toxicity

probability across all candidate models. That is,

ψ̄d =

S∑
s=1

ws ψ̂sd =

S∑
s=1

ws ψ
exp(α̂s)
sd , (2.8)

where α̂s is the MLE of αs obtained through the EM algorithm under the sth model, and

ws =
exp(−AICs/2)∑S
s=1 exp(−AICs/2)

with AICs = −2 logLs + 2r for s = 1, ..., S.

In implementing the EM-CRM, six dose levels constituted the dose set D with monotonously

increasing toxicity probabilities. A total of eight toxicity scenarios were assumed and listed in
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Table 4. Three skeletons were used to represent three different power models with their own

prior opinions:

(p1, p2, p3, p4, p5, p6) =



(0.05, 0.14, 0.18, 0.22, 0.26, 0.30), skeleton 1

(0.08, 0.12, 0.20, 0.30, 0.40, 0.50), skeleton 2

(0.20, 0.30, 0.40, 0.50, 0.60, 0.70), skeleton 3

Toxicity scenarios

0.08, 0.10, 0.12, 0.30, 0.50, 0.60

0.06, 0.08, 0.10, 0.15, 0.30, 0.45

0.05 0.14, 0.18, 0.22, 0.26, 0.30

0.20, 0.30, 0.40, 0.50, 0.60, 0.70

0.08, 0.12, 0.20, 0.30, 0.40, 0.50

0.05, 0.10, 0.30, 0.50, 0.60, 0.70

0.02, 0.03, 0.04, 0.05, 0.30, 0.50

0.50, 0.60 ,0.70, 0.80, 0.85, 0.90

Table 4: Toxicity configurations in the EM-CRM simulation

Suppose patients are treated in cohorts. For safety, dose escalation and de-escalation are

restricted by one dose level at a time. The EM-CRM algorithm can then be described as follows,
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(I). The first entered cohort is treated at the lowest dose and fully followed; dose is escalated

continuously until the appearance of the first DLT. Then we switch to EM-CRM.

(II). At the current dose level dcurr, based on the cumulated data, we obtain the estimates for

the toxicity probabilities, ψ̄d, d = 1, ..., D, using the EM-algorithm coupled with model

selection or model averaging procedure. Then we find d∗ such that

d∗ = argmind∈D={1,..,D}
∣∣ψ̄d − pt∣∣ .

Then

• if dcurr > d∗, the next dose level will decrease to dcurr − 1;

• if dcurr < d∗, the next dose level will increase to dcurr + 1;

• if dcurr = d∗, the next dose level will remain at dcurr.

(III). Once the maximum sample size is reached, the dose that has the toxicity probability

closest to pt is selected as the MTD.

2.3 DA-CRM

In 2013, Liu, Yin, and Yuan (32) proposed another method targeting the late-onset toxicity

problem where incomplete toxicity outcomes are also treated as missing data, as in the EM-CRM

design. The difference of the two methods lies in the substitution of the incomplete observations.

Instead of calculating an expectation of each pseudo data point, the DA-CRM design adopts

the Bayesian data augmentation strategy (51) to sample both the missing responses and model
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parameters from their corresponding posterior full conditional distributions. The method was

denoted as the DA-CRM where DA stands for data augmentation.

The setup here is very similar to the one stated under the EM-CRM method, so we will not

describe again. We also use the notation introduced in Section 2.2.1 with two additional ones:

• xi = min(Ui, ui): the observed time, where Ui still denote the time-to-toxicity of patient

i, and ui his/her actual follow-up time.

• δik: toxicity indicator of patient i in the kth time interval [uk−1, uk), k = 1, ...,K.

Again assuming simple power model ψd(α) = p
exp(α)
d , d = 1, ..., D, as the working model

with prior α ∼ N(0, σ2), when applying the DA algorithm, at the rth iteration, given the current

parameter estimates α(r) and λ(r), the I (imputation) step of the (r + 1)th iteration essentially

samples the missing value of yi from its full conditional distribution given by

Y
(r+1)
i |(α(r),λ(r)) ∼ Ber

 ψ(di, α
(r)) exp

(
−
∑K−1

k=0 λ
(r)
k sik

)
ψ(di, α(r)) exp

(
−
∑K−1

k=0 λ
(r)
k sik

)
+ 1− ψ(di, α(r))

 , (2.9)

where sik = uk − uk−1 if xi > uk, sik = xi − uk−1 if xi ∈ [uk−1, uk), and sik = 0 otherwise.

Then in the following P (posterior) step, observed data y(r) = (y
(r)
1 , ..., y(r)

n ) is updated by

substituting y
(r)
i with y

(r+1)
i , where still depending on Equation 2.5, y

(r+1)
i is either 1, 0, or the

imputed data sampled according to Equation 2.9, respectively. Then α(r+1) is sampled from its

posterior distribution

f(α|y(r+1)) ∝ L(α|y(r)) · g(α)
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where L(α|y) is the likelihood under simple power model (Equation 2.7) and g(α) the density

function of N(0, σ2). Similarly, λ(r+1) is then sampled from its posterior

λ
(r+1)
k |y(r+1) ∼ Gamma

(
λ̃k
2

+

n∑
i=1

δik,
1

2
+

n∑
i=1

y
(r+1)
i sik

)
,

where λ̃k =
K

T (K − k + 0.5)
, for k = 0, 1, ...,K − 1.

Toxicity scenarios

0.10, 0.15, 0.30, 0.45, 0.60, 0.70

0.08, 0.10, 0.20, 0.30, 0.45, 0.60

0.15, 0.30, 0.45, 0.60, 0.70, 0.80

0.06, 0.08, 0.10, 0.20, 0.30, 0.50

Table 5: Toxicity configurations in the DA-CRM simulation

In implementing the DA-CRM, dose set D contained six doses with monotonously increasing

toxicity probabilities. A total of four toxicity scenarios were assumed and listed in Table 5. One

skeleton was used for all scenarios where (p1, p2, p3, p4, p5, p6) = (0.08, 0.12, 0.20, 0.30, 0.40, 0.50).

Normal prior N(0, 2) was assumed for parameter α.

The DA-CRM procedure is the same with that of the EM-CRM stated in Section 2.2.1 with

the sole difference being the calculation of toxicity probabilities in the 2nd step, where there’s
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no model selection/averaging problem (since a single skeleton is adopted through out the whole

simulation). Thus we have,

ψ̂d =

∫
p

exp(α)
d g(α|y)dα, d = 1, ..., D.



CHAPTER 3

A NEW METHOD – OD-CRM

With all the introduction on the importance and necessity of developing novel dose-finding

methodologies in Section 1.2.3, in this chapter we shall illustrate the methodology OD-CRM

(optimal design within the structure of CRM) in detail, along with associated theoretical results

derived under various scenarios. 1

3.1 OD-CRM in general MTD-identifying problems

We will study OD-CRM under general dose-finding setup (no delayed-response) for three

models separately, namely, simple power model, two-parameter logistic model, and two-parameter

probit model. In the following article we use upper-script and lower-script p, l, and pb to distin-

guish these models and their corresponding equations. As introduced in Chapter 1, we denote

response Y to be a binary random variable where 1 indicates patient experiencing DLT and 0

otherwise. We also consider X to be the dose level assigned to each entered patient, where its

realization x, determined by the resulting optimal designs, will take value from the dose level

set D = {d1, ..., dD}.

1Part of this Chapter was published in two of the author’s publications (52) and (53).

40
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3.1.1 Simple power model

A simple power model is given by

Y ∼ Ber(ψp(x, αp)), ψp(x, αp) = E(Y |X = x) = xexp(αp) (3.1)

where

αp ∈ R and 0 < x < 1. (3.2)

Note that here x in the model is the toxicity belief of its corresponding dose d that falls in

between of 0 and 1, so that for any real αp, we have 0 < p = xexp(αp) < 1; and more importantly,

p|x1 < p|x2 when x1 < x2, thus the increasing monotonicity of dose level x and toxicity rate p is

satisfied. The specific transformation of dose level d to its toxicity belief, called the “skeleton”,

was discussed in (9).

In a trail with the goal of identifying the MTD, we derive optimal dose allocations un-

der simple power model through OD-CRM analytically. Corresponding result is presented in

Theorem 1.

Theorem 1. Under simple power model (Equation 3.1), for any parameter αp ∈ R, regardless

of the target toxicity rate pt set in the trial, the optimal design always choose the dose level with

the corresponding toxicity rate p̃, where p̃ is the solution to equation log p+ 2− 2p = 0.
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Proof. Let βp = exp(αp), then under design ξ = {(xi, ωi), i = 1, ..., k}, the information matrix

for βp can be derived as follows,

Ip(βp) =

k∑
i=1

ωi Eβp

(
−∂

2 logLi(βp|(xi, yi))
∂βp

2

)

=

k∑
i=1

wi
x
βp
i (log xi)

2

1− xβpi

where Li(βp|(xi, yi)) is the likelihood function of parameter βp under each data point (xi, yi).

We consider MTD as a function of βp,

MTDp = bp(βp) = p
1/βp
t (3.3)

where pt is the target toxicity rate. Then the asymptotic variance for M̂TD = bp(β̂p) is

V =

[(
p

1/βp
t

)
(ln pt)

(
− 1

β2
p

)]2
[

k∑
i=1

ωi
x
βp
i (log xi)

2

1− xβpi

]−1

.

As we discussed before, βp = exp(αp) is substituted by its best guess under locally optimality

context. Therefore, a design that puts all the weights on point x0, where x0 maximizes function

f(x) =
xβp(log x)2

1− xβp
,

is the optimal design that minimizes V ; therefore we have ξopt = {(x0, 1)}.
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Substitute x in function f with p, where x = p1/βp according to Equation 3.1, we have

f(x) =
xβp(log x)2

1− xβp
=

(
1

βp

)2 p (log p)2

1− p
.

Note that maximizing function

g(p) =
p (log p)2

1− p

on p ∈ (0, 1) is equivalent to maximizing function f(x) on x ∈ (0, 1). Set

dg(p)

dp
=

log p

(1− p)2
(log p+ 2− 2p) = 0,

and let p̃ be the solution to the equation above. A numerical approximation to p̃ on (0, 1) is

p̃ ≈ 0.2032. Since (log p)/(1−p)2 < 0 on (0, 1), g(p) will be maximized at p̃ if we can show that

log p+ 2− 2p is negative on (0, p̃) and positive on (p̃, 1). We can easily check that log p+ 2− 2p

is strictly increasing on (0, 0.5) and strictly decreasing on (0.5, 1). Consequently, log p+ 2− 2p

must be negative on (0, p̃) and positive on (p̃, 0.5). In addition, log p + 2 − 2p|p=1 = 0 implies

that log p+ 2− 2p > 0 on [0.5, 1). Thus point p̃ maximizes g(p) on (0, 1).

One may argue that it seems unreasonable to construct designs disregard of what the target

pt is. With that doubt in mind, the logic behind the result given in Theorem 1 is explained

as follows. As mentioned in Section 1.1.2, when the dimension of model parameter is one, x

in model ψ could be a dose label/dose transformation instead of the actual dose administered

to patients, as long as the monotonicity between dose x and toxicity rate p is guaranteed.
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Moreover, the one-parameter power model satisfies the requirement that there exists one and

only one αp such that p = ψ(x, αp), which further promises the one-on-one map between αp

and MTD|pt since MTDpt can be written as an one-on-one transformation of αp given pt, as

shown in Equation 3.3. Therefore, an optimal design that givens the “best” estimation of model

parameter αp in the sense of asymptotic variance minimization, will at the same time provide

us with the “most accurate” MTD estimate.

If the target toxicity rate in a medical trial is fixed at some other value, the corresponding

efficiency loss is presented in Table 6. We can see from the result that as long as the target

toxicity rate is chosen from a reasonable range, when compared to resulting designs constructed

by the OD-CRM, the standard CRM procedure will generate a nearly optimal design with

negligible efficiency loss.

pt 0.10 0.15 0.20 0.25 0.30 0.35

Relative efficiency 0.910 0.981 0.999 0.990 0.960 0.916

Table 6: Relative efficiency under different target toxicity rate

However, the optimal design derived here is based on the asymptotic distribution of the

MTD; whereas in practical circumstances, sample size is usually limited. Simulations targeted

at a finite sample size are thus given here with the expectation to confirm designs built by
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OD-CRM will perform well not only under an asymptotic structure, but in real life situations

as well.

The simulations were conducted under power model (Equation 3.1) , α ∈ R, with β = exp(α)

being set to be 0.5 and 2, respectively. For each model, the performance of the standard CRM

and that of the OD-CRM were compared under four different target toxicity rates: 0.15, 0.25,

0.3, and 0.35, all of which are practically common in Phase I clinical trials.

Target rate Toxicity scenario

pt = 0.15 0.05 0.10 0.15 0.25 0.30 0.40

pt = 0.25 0.05 0.10 0.20 0.30 0.40 0.50

pt = 0.3 0.05 0.10 0.20 0.30 0.40 0.50

pt = 0.35 0.15 0.2 0.3 0.37 0.40 0.50

Table 7: Toxicity configurations for testing on each different pt

Notice that in a actual clinical studies, we may not have a dose level which exactly corre-

sponds to the target toxicity rate. Bearing that in mind, cases where pt = 0.25 and 0.35 in

the simulation performed were targeted at the situation when pt was not included in the true

dose-toxicity correspondence from which data were generated. Table 7 lists the true toxicity

rate setups for testing on each different pt. For each value of pt, we have six true toxicity rates

and their corresponding dose levels (not shown in the table) from which data were simulated.
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Under the case when pt = 0.25, both dose levels 0.2 and 0.3 were considered to be the accurate

MTD estimate; while for the case when pt = 0.35, the accurate MTD estimate was considered

to be the dose level corresponds to toxicity rate 0.37. Sample size was set at 24 with cohort size

3, and each scenario was repeated 1000 times. Results from the simulation are shown in Table 8.

The entries in Table 8 consist of two values, where the first one represents the percentage of

accurately identifying the MTD, and the second the percentage of toxicity occurrence.

Panel 1: β = 0.5

p0 0.15 0.25 0.3 0.35

standard CRM (0.505,0.217) (0.762,0.304) (0.422,0.348) (0.335,0.386)

OD-CRM (0.504,0.263) (0.752,0.259) (0.388,0.262) (0.302,0.267)

Panel 2: β = 2

p0 0.15 0.25 0.3 0.35

standard CRM (0.567,0.134) (0.803,0.213) (0.464,0.260) (0.358,0.307)

OD-CRM (0.593,0.180) (0.810,0.176) (0.408,0.174) (0.343,0.199)

Table 8: Comparison of performance of standard CRM and OD-CRM

The comparison results confirmed our counter-intuitive conclusion under the non-asymptotic

structure. Under both models, performance of the standard CRM and the OD-CRM in terms

of selecting the right dose level were comparable with small differences. Furthermore, under

all scenarios except the one with pt = 0.15, the percentage of toxicity occurrence of the OD-
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CRM dropped by about 20%. This superiority is very intuitively understandable. Since the

OD-CRM always operates on the point with the corresponding toxicity rate of 0.2, naturally

it would generate less toxicity cases than the standard CRM procedure, where patients are

assigned to dose levels with the corresponding toxicity rates greater than 0.2. However, when

the target toxicity rate is set to be less than 0.2, the OD-CRM would be likely to have a higher

percentage of toxicity occurrence than that of the standard CRM.

3.1.2 Two-parameter logistic model

A two-parameter logistic model is given by

Y ∼ Ber(ψl(x, θl)), ψl(x, θl) = E(Y |X = x) =
exp(cl)

1 + exp(cl)
, (3.4)

where cl = αl + βlx, x > 0, and

βl > 0, αl < log
pt

1− pt
:= clt. (3.5)

The assumptions on the parameter are justified as follows. As in the simple power model

case, we assume that the probability of toxicity p increases with increasing dose level x. From

Equation 3.4, we can see that p is an increasing function with respect to cl, thus to guarantee

the increasing monotonicity of p and x, we should have βl > 0. Moreover, it is expected that

the target toxicity rate, pt, cannot be lower than the toxicity rate at placebo level, i.e., p|x=0.

That is,

pt > p|x=0 =
exp(αl)

1 + exp(αl)
.
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Thus we shall have an upper bound for parameter αl as in αl < log
pt

1− pt
= clt. Note that αl

can be interpreted as the placebo effect while clt = log
pt

1− pt
= αl + βlxt, is the MTD effect.

Now under design ξ = {(xi, ωi), i = 1, ..., k}, the information matrix for θl = (αl, βl)
T can

be expressed as follows,

Il(θl) =
k∑
i=1

ωi hl(xi, θl)h
T
l (xi, θl)

where

hl(x, θl) =

(
exp

(
cl
2

)
1 + exp(cl)

,
x exp

(
cl
2

)
1 + exp(cl)

)T
def
=
(
hl,1(x, θl), hl,2(x, θl)

)T
. (3.6)

Again, we write MTD as a function of θl, i.e.,

MTD
def
= ηl = bl(θl) =

1

βl
(clt − αl) (3.7)

where we can see that the MTD is a scalar function of θl. Thus the c-optimality, which is

designed to optimize the estimation of scalar combination of model parameter, is an appropriate

choice here. The geometric approach provided by Elfving (17) is a powerful tool for identifying

c-optimal designs. We present a version of the Elfving c-optimality theorem that suits our

ongoing scenarios.

Elfving’s theorem Let Y be a random variable with expectation E(Y ), where a two-

parameter model is used to depict the relationship between E(Y ) and x: E(Y ) = ϕ(x, α, β);

and the information matrix for θ = (α, β)T under design ξ = {(xi, ωi), i = 1, ..., k} can be

expressed in the form of I(θ) =
k∑
i=1

wih(xi, θ)h
T (xi, θ), where h is a vector of dimension two.
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Let E denote the convex set of {h(x)} ∪ {−h(x)}, x ∈ X . Suppose we are interested in a scalar

parameter η = KT θ where K is a two-dimensional real constant vector, then the optimal design

contains two points h(x1), h(x2) (not necessarily different), such that the convex combination

of them reach the boundary of the Elfving set E along the same direction of vector K =
∂η

∂θ
.

Utilizing Elfving’s method, we have the following theorem.

Theorem 2. Under logistic model (Equation 3.4) with parameter assumptions (Equation 3.5),

for any 0 < pt < 0.5, the optimal design for estimating the MTD is to collect data at the point

of the MTD value estimated directly from the fitted dose-response curve.

Proof. By directly applying Elfving’s theorem given above, we know that the optimal design

points hl(x1), hl(x2), where function hl is defined in Equation 3.6, are chosen such that the

convex combination of them reach the boundary of the Elfving set El = Conv
{
{hl(x)} ∪

{−hl(x)}
}

, x > 0, along the same direction of vector:

∂ηl
∂θl

=
∂bl(θl)

∂θl
=

(
− 1

βl
,−clt − αl

β2
l

)T
def
= (b

′
l,1, b

′
l,2)T . (3.8)

An example of Elfving set under two-parameter logistic model is shown in Figure 1.

Since βl is always positive, b
′
l,1 is thus negative. So vector (b

′
l,1, b

′
l,2)T intersects with the

Elfving set El only in the third quadrant. Now our goal is to find this intersection point of

vector (b
′
l,1, b

′
l,2)T and Elfving set El. We achieve this goal by proving the following lemma.

Lemma 1. Under logistic model (Equation 3.4) with parameter assumptions (Equation 3.5),

for any 0 < pt < 0.5, vector (b
′
l,1, b

′
l,2)T defined in Equation 3.8 always intersects with the
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Figure 1: An Elfving set example under two-parameter logistic model

Elfving set El on the part of the original lower curve
{
− hl(x)

}
(i.e., the bold part AD shown

in Figure 1).

Let

Sl(x)
def
=

hl,2(x)

hl,1(x)
=

x exp
(
cl
2

)
1 + exp(cl)

/
exp

(
cl
2

)
1 + exp(cl)

= x (3.9)

denote the slope of vector (hl,1(x), hl,2(x))T for x ∈
{
{hl(x)} ∪ {−hl(x)}

}
. It is easy to see

that the slope of vector (hl,1(x), hl,2(x))T at the original lower curve (the AD part) equals the
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x value of that point. Then it is equivalent to show that the direction of vector (b
′
l,1, b

′
l,2)T falls

between 0 and SxA , that is,

0 <
b′l,2
b′l,1

=
clt − αl
βl

< Sl(xA) = xA, (3.10)

with point (hl,1(xA), hl,2(xA)) being the tangent point on curve
{
− hl(x), x > 0

}
, where the

corresponding tangent line AP is the common tangent line of the two curves
{
hl(x), x > 0

}
and{

− hl(x), x > 0
}

, i.e., the lower boundary of the convex hull El. Hereafter in this proof, we

refer to point (hl,1(xA), hl,2(xA)) described above as the tangent point A (as shown in Figure 1).

Note that here we consider the value of 0.5 as the upper bound for pt because it is medically

reasonable in most of the clinical trials. Since pt =
exp(clt)

1 + exp(clt)
< 0.5, we have clt < 0. Now

from the range of pt and parameter assumptions stated in Equation 3.5, we have

αl < clt < 0 ⇒ 0 <
1

βl
(clt − αl) < −

αl
βl
.

The first inequality in Equation 3.10 is thus clear. In order to prove the second inequality,

we only need to show that −αl
βl
< xA. Let

Hl(x) =
∂(−hl,2(x))

∂x

/
∂(−hl,1(x))

∂x
= x+

1 + exp(cl)
βl
2 (1− exp(cl))

denote the slope of curve
{
− hl(x), x > 0

}
at each x. Then it is easy to see that −αl

βl
:= xC

is the point with slope being +∞/−∞ (point C shown in Figure 1). Although it is quite clear
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from the graph that point A is to the right of point C which suggests that xC < xA, we still

give a concise mathematical explanation to reinstate the conclusion rigorously.

With Hl(x) defined above, we have

dHl(x)

dx
= 1 +

4 exp(cl)

(1− exp(cl))2
> 0 for all x > 0,

which suggests an increasing pattern of function Hl(x) with respect to x with a critical point

C at xC = −αl
βl

. We summarize the behavior of function Hl(x) on x ∈ [0,+∞) in Table 9.

Point D Point C Point B Point O

x 0 −αl
βl

xB +∞

Hl(x)
2(1 + exp(αl))

βl(1− exp(αl))
> 0 +∞/−∞ 0 +∞

Table 9: Lower curve slope change under logistic model

Note that Hl(0) =
2(1 + exp(αl))

βl(1− exp(αl))
> 0 is due to parameter assumptions stated in Equa-

tion 3.5. Since A is the tangent point on curve
{
− hl(x), x > 0

}
, Hl(A) is same as the slope

of the tangent line PA, which serves as the lower boundary of the convex hull El thus connects

curve
{
hl(x), x > 0

}
from the first quadrant to curve

{
− hl(x), x > 0

}
in the third quadrant.

Therefore the slope of line PA is positive, so does Hl(xA). Then from Table 9 we know that
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point A is either on curve DC, or curve BO, with the previous possibility ruled out due to the

convex nature of the set El. So point A is to the right of point B, thus to the right of point C.

So far lemma 1 has been proved completely; and moving directly from the conclusion given

in lemma 1, we know that under logistic model (Equation 3.4) with parameter assumptions

(Equation 3.5), for any 0 < pt < 0.5, an optimal design contains only one point x, i.e., the

intersection point of vector (b
′
l,1, b

′
l,2)T and curve AD, with weight 1, which can be derived

easily according to Equation 3.9:

x = Sl(x) =
hl,2(x, θl)

hl,1(x, θl)
=
b
′
l,2

b
′
l,1

=

(
−

log pt
1−pt − αl
β2
l

)/(
− 1

βl

)
=

1

βl
(clt − αl) .

Compared with Equation 3.7, we can see that the optimal point x here is the same as the direct

estimation of MTD from the dose-toxicity curve, thus complete the proof of Theorem 2.

3.1.3 Two-parameter probit model

A two-parameter probit model is given by

Y ∼ Ber(ψpb(x, θpb)), ψpb(x, θpb) = E(Y |X = x) = Φ(cpb), (3.11)

where cpb = αpb + βpbx, x > 0, and

βpb > 0, αpb < Φ−1(pt) := cpbt. (3.12)
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Here Φ is the standard normal cumulative density function (cdf) and justification of assumptions

on the parameter (Equation 3.12) is similar to the one given under logistic model, thus will not

be shown again.

Similarly, under design ξ = {(xi, ωi), i = 1, ..., k}, the information matrix for θpb = (αpb, βpb)
T

can be expressed as follows,

Ipb(θpb) =

k∑
i=1

ωi hpb(xi, θpb)h
T
pb(xi, θpb)

where

hpb(x, θpb) =

(
φ(cpb)√

Φ(cpb)(1− Φ(cpb))
,

xφ(cpb)√
Φ(cpb)(1− Φ(cpb))

)T

and φ is the standard normal probability density function (pdf).

Again, we write MTD as a function of θpb, i.e.,

MTD
def
= ηpb = bpb(θpb) =

1

βpb
(cpbt − αpb) ,

and utilize Elfving’s theorem introduced in Section 3.1.2 to find the optimal design for identi-

fying the MTD. A preliminary result is given in Theorem 3.

Theorem 3. Under probit model (Equation 3.11) with parameter assumptions (Equation 3.12),

for any 0 < pt < 0.5, the optimal design for estimating MTD is to collect data at the point of

the MTD value estimated directly from the fitted dose-response curve.
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Proof. Following the same logic as in the proof under the logistic model case, here we have an

Elfving set Epb = Conv
{
{hpb(x)} ∪ {−hpb(x)}

}
, x > 0, with the target vector and its direction

being

∂ηpb
∂θpb

=
∂bpb(θpb)

∂θpb
=

(
− 1

βpb
,−

cpbt − αpb
β2
pb

)T
def
= (b

′
pb,1, b

′
pb,2)T

and
b′pb,2
b′pb,1

=
cpbt − αpb

βpb
, respectively. Moreover, the slope of vector (hpb,1(x), hpb,2(x))T for

x ∈
{
{hpb(x)} ∪ {−hpb(x)}

}
can be calculated as

Spb(x)
def
=

hpb,2(x)

hpb,1(x)
=

xφ(cpb)√
Φ(cpb)(1− Φ(cpb))

/
φ(cpb)√

Φ(cpb)(1− Φ(cpb))
= x.

An example of an Elfving set under two-parameter probit model is shown in Figure 2.

-0.5 0.5
h pb,1

-0.6

-0.4

-0.2

0.2

0.4

0.6

h pb,2
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P

B

C

D O

Figure 2: An Elfving set example under two-parameter probit model
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By comparing the analysis components of the probit model with those of the logistic model,

we say that these two models are very similarly structured in the sense that (i) their MTD

expressions, b(θ) function, the target vector
∂η

∂θ
and its direction

b′2
b′1

, all share the same formula

respectively, with corresponding MTD effect ct; and (ii) their h(x, θ) vectors follow the same

pattern as in h2(x) = xh1(x), which makes them both have the property that the slope of

vector (h1(x), h2(x))T at the original curve equals the x value of that point, i.e., S(x) = x.

Therefore, the counterpart of lemma 1 for the probit model can be proved following similar

arguments as in the logistic model case, with differences presented as follows.

We denote the slope of curve
{
− hpb(x), x > 0

}
at each x as

Hpb(x) =
∂(−hpb,2(x))

∂x

/
∂(−hpb,1(x))

∂x
= x+

2

βpb(µ(cpb)− λ(cpb)− 2cpb)

where µ(c) =
φ(c)

1− Φ(c)
and λ(c) =

φ(c)

Φ(c)
. Then again −

αpb
βpb

:= xC is the point with slope being

+∞/−∞ (point C shown in Figure 2) because cpb|x=xC = 0 and µ(0) = λ(0) =

√
2

π
. Now we

examine the behavior of Hpb(x) on [0,+∞).

From conclusions given by Sampford (see (44) and (45)), µ(c) =
φ(c)

1− Φ(c)
is increasing

and convex with oblique asymptote y = c; while λ(c) =
φ(c)

Φ(c)
is decreasing and convex with

oblique asymptote y = −c. Therefore, µ′(c) is positive and increasing while λ′(c) is negative

and increasing, both with respect to c. Then we have, 0 < µ′(c) < 1 and 0 < −λ′(c) < 1. Thus

d(µ(c)− λ(c)− 2c)

dc
= µ′(c)− λ′(c)− 2 < 1 + 1− 2 < 0 (3.13)
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and

dHpb(x)

dx
= 1− 2

(µ(c)− λ(c)− 2c)2
(µ′(c)− λ′(c)− 2) > 0 for all x > 0,

which again, suggests an increasing pattern of function Hpb(x) with respect to x with a critical

point C at xC = −
αpb
βpb

. We again summarize the behavior of function Hpb(x) on x ∈ [0,+∞)

in Table 10.

Point D Point C Point B Point O

x 0 −
αpb
βpb

xB +∞

Hpb(x)
2

(µ(αpb)− λ(αpb)− 2αpb)βpb
> 0 +∞/−∞ 0 +∞

Table 10: Lower curve slope change under probit model

Note that Hpb(0) =
2

(µ(αpb)− λ(αpb)− 2αpb)βpb
> 0 is due to the assumptions postulated

on the model parameter stated in Equation 3.12, and the fact that µ(αpb) − λ(αpb) − 2αpb >

µ(0)− λ(0)− 2 · 0 = 0. With the same arguments as stated in the logistic model case, we know

that the tangent point A is to the right of point C, which proves lemma 1 under probit model

and further completes the prove of Theorem 3.

As we can see from Theorem 2 and 3, our resulting designs coincide with the largely used

dose selection method where the dose level assigned to the next allocated cohort is determined
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by the MTD estimated from the newly fitted dose-toxicity curve. Therefore, we can see that

under regular dose-finding setup, while the way of dose allocation in a standard CRM-based

design is intuitively plausible, it turns out to be statistically the “best” from the optimal design

point of view as well.

3.2 OD-CRM in MTD-identifying problems with late-onset toxicities

Following the description of dose-finding design setup with delayed responses present given

in Section 1.3.2, here in this Section we study OD-CRM for the same three models. First,

at each interim study time point t, we divide all enrolled patients into K groups, X1, ...,XK ,

with each group including all the patients who have been enrolled for k periods, k = 1, ...,K.

After patients have been enrolled for an entire evaluation period T = uK , we stop adding their

enrollment time. Note that “enrollment time” here is counted at an individual level such that a

patient may has been enrolled for k periods while the trial has been going on for a longer time.

For patient j who belongs to Xk, we define a k-dim vector Zj,k = (Yj,1, ..., Yj,k) to depict

his/her behavior by time t. Then Zj,k follows a multinomial distribution that takes values from

1(1) := (1, 1, ..., 1),1(2) := (0, 1, ..., 1), ...,1(k) := (0, 0, ...., 0, 1) and 0(k) =: (0, ..., 0) (3.14)

where 1l denotes the event of first showing toxicity after enrollment time ul, l = 1, ..., k; and 0k

the event of showing no toxicity after being enrolled for k periods. Then we have, for l = 1, ..., k,
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P(Zj,k = 1l) = P(Yj,1 = · · · = Yj,l−1 = 0, Yj,l = · · · = Yj,k = 1)

= P(Yj,l−1 = 0, Yj,l = 1)

= (wl − wl−1)ψ(xj , θ) = pxj ,l.

Note that the second equality stems from the fact that

{Yj,l−1 = 0} ⊆ · · · ⊆ {Yj,1 = 0} and {Yj,l = 1} ⊆ · · · ⊆ {Yj,k = 1}.

Also,

P(Zj,k = 0k) = P(Yj,1 = · · · = Yj,k = 0)

= P(Yj,k = 0)

= 1− wkψ(xj , θ) = qxj ,k.

Note that
k∑
l=1

p.,l + q.,k = 1 for each k = 1, ...,K.

Now the overall likelihood and log-likelihood function by time t can be expressed as follows,

L(θ) =

K∏
k=1

∏
x∈Xk

(
k∏
l=1

p
1{Yx,k=1l}

x,l · q
1{Yx,k=0k}

x,k

)
, (3.15)

l(θ) =
K∑
k=1

∑
x∈Xk

(
k∑
l=1

1{Yx,k=1l} log(px,l) + 1{Yx,k=0k} log(qx,k)

)
.
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For the sake of calculating the MLE of θ, we summarize patients’ contribution to the log-

likelihood in Table 11, where for each k = 1, ...,K, X lk includes patients in the kth group with

observed response Y.,k = 1l, l = 1, ..., k; while X 0
k includes patients in the kth group with

observed response Y.,k = 0k.

Patient groups Contribution to the log-likelihood

X 1
k log(px,1)

X 2
k log(px,2)
...

...

X kk log(px,k)

X 0
k log(qx,k)

Table 11: Log-likelihood table

Notice that if two patients belong to X l1k1 and X l2k2 , respectively; and k1 6= k2, 0 < l1 =

l2 = l ≤ k1, k2, then their contribution to the log-likelihood are in the same format as log(px,l),

where x represents their own dose level.
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For the purpose of calculation, some equations/formulas are presented here for each k =

1, ...,K, l = 1, ..., k.

E
(
1{Yx,k=1l}

)
= px,l = (wl − wl−1)ψ

E
(
1{Yx,k=0k}

)
= qx,k = 1− wkψ

∂ log(px,l)

∂θT
=

 ∂ log((wl − wl−1)ψ)

∂α

∂ log((wl − wl−1)ψ)

∂β
· · ·

 =

 ψ′α
ψ

ψ′β
ψ
· · ·


∂ log(qx,k)

∂θT
=

 ∂ log(1− wkψ)

∂α

∂ log(1− wkψ)

∂β
· · ·

 = −

 wkψ
′
α

1− wkψ
wkψ

′
β

1− wkψ
· · ·


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∂2 log(px,l)

∂θ∂θT
=



∂2 log((wl − wl−1)ψ)

∂2α

∂2 log((wl − wl−1)ψ)

∂α∂β
· · ·

∂2 log((wl − wl−1)ψ)

∂α∂β

∂2 log((wl − wl−1)ψ)

∂2β
· · ·

...
...

. . .



= − 1

ψ2



(ψ′α)2 − ψ′′αψ ψ′αψ
′
β − ψ′′αβψ · · ·

ψ′αψ
′
β − ψ′′αβψ (ψ′β)2 − ψ′′βψ · · ·

...
...

. . .



∂2 log(qx,k)

∂θ∂θT
=



∂2 log(1− wkψ)

∂2α

∂2 log(1− wkψ)

∂α∂β
· · ·

∂2 log(1− wkψ)

∂α∂β

∂2 log(1− wkψ)

∂2β
· · ·

...
...

. . .



= − 1

(1− wkψ)2



wkψ
′′
α(1− wkψ) + (wkψ

′
α)2 wkψ

′′
αβ(1− wkψ) + w2

kψ
′
αψ
′
β · · ·

wkψ
′′
αβ(1− wkψ) + w2

kψ
′
αψ
′
β wkψ

′′
β(1− wkψ) + (wkψ

′
β)2 · · ·

...
...

. . .



where as defined before, ψ = ψ(x, θ) is the toxicity probability and θ = (α, β, · · · ) is the

unknown model parameter.
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Then the Fisher information matrix can be derived as follows,

I(θ) = −E

(
∂2l(θ)

∂θ∂θT

)
=

K∑
k=1

∑
x∈Xk

(
k∑
l=1

E
(
1{Yx,k=1l}

)(
−
∂2 log(px,l)

∂θθT

)
+ E

(
1{Yx,k=0k}

)(
−
∂2 log(qx,k)

∂θθT

))

=

K∑
k=1

∑
x∈Xk

k∑
l=1

wl − wl−1

ψ



(ψ′α)2 − ψ′′αψ ψ′αψ
′
β − ψ′′αβψ · · ·

ψ′αψ
′
β − ψ′′αβψ (ψ′β)2 − ψ′′βψ · · ·

...
...

. . .



+
1

1− wkψ



wkψ
′′
α(1− wkψ) + (wkψ

′
α)2 wkψ

′′
αβ(1− wkψ) + w2

kψ
′
αψ
′
β · · ·

wkψ
′′
αβ(1− wkψ) + w2

kψ
′
αψ
′
β wkψ

′′
β(1− wkψ) + (wkψ

′
β)2 · · ·

...
...

. . .



=

K∑
k=1

∑
x∈Xk

wk
ψ(1− wkψ)



(ψ′α)2 (ψ′α)(ψ′β) · · ·

(ψ′α)(ψ′β) (ψ′β)2 · · ·

...
...

. . .


. (3.16)

At any time point t, I(θ) can be divided into two parts: (i) Iobs, where x ∈ Xk, k = 2, ...,K

are fixed/observed; and (ii) Iran, where x ∈ X1 determines the dose allocation for the newly-
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enrolled patients, i.e., the design points of interest. In the following context, we use design

ξ = {(xd, ωd), d = 1, ..., D} to denote dose allocation for each newly-enrolled cohort, where

x1, ..., xD are all the available doses each with corresponding weights ωd, d = 1, ..., D, and
D∑
d=1

ωd = 1.

3.2.1 Simple power model

Under power model (Equation 3.1) with postulated assumptions on the parameter (Equa-

tion 3.2), we have

ψ′α(x, α) =
∂xexp(α)

∂α
= xexp(α) log(x) exp(α).

Then under design {(xd, ωd), d = 1, ..., D}, according to information matrix given in Equa-

tion 3.16, we have

Ip(αp) = Ipobs(αp) + Ipran(αp)

=

K∑
k=2

∑
x∈Xk

wkx
exp(αp)

1− wkxexp(αp)
(log(x) exp(αp))

2 + n

D∑
d=1

ωd
w1x

exp(αp)
d

1− w1x
exp(αp)
d

(log(xd) exp(αp))
2.

(3.17)

where n is the size of each recruitment and w1 is the first element in the weight function

w = (w1, ..., wK).

At any stage, Ipobs(αp) is a fixed scaler; thus maximizing Ip(αp) in Equation 3.17 is equivalent

to maximizing Ipran(αp) itself. Therefore, a design that puts all the weights on point xd, where

xd maximizes function

fp(x) =
w1x

exp(α)

1− w1xexp(α)
(log(x) exp(α))2,
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is the optimal design that maximizes Ipran(α). Thus, we have ξpopt = {(xd, 1)}.

Substitute x in function fp(x) with p, where x = p1/ exp(α) according to power model (Equa-

tion 3.1), we have

fp(p) = w1 ·
p(log p)2

1− w1p
.

Similar to the proof of Theorem 1, maximizing function

f̃p(p) =
p(log p)2

1− w1p

on p ∈ (0, 1) is mathematically equivalent to maximizing function fp(x) on x ∈ (0, 1). Differ-

entiate f̃p(p) with respect to p, we obtain

df̃p(p)

dp
=

log p

(1− w1p)2
(log p+ 2− 2w1p) = 0.

Since
log p

(1− w1p)2
< 0 for p ∈ (0, 1), the solution pd to equation

log p+ 2− 2w1p = 0 (3.18)

if exists, is the possible maximizer of f̃p(p); thus the corresponding xd = p
1

exp(αp)

d is the targeting

dose in ξpopt. The following theorem shows that pd exists, and is indeed the local maximizer of

f̃p(p) on (0,1).

Theorem 4. The solution to Equation 3.18, pd, exists and maximizes f̃p(p) on (0,1).
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Proof. In order to prove that pd exists, and is indeed the local maximizer of f̃p(p) on (0, 1),

we need to show that
df̃p(p)

dp
is positive on (0, pd) and negative on (pd, 1). Remember that

log p

(1− w1p)2
< 0 for p ∈ (0, 1), thus we only need to show that log p + 2 − 2w1p is negative on

(0, pd) and positive on (pd, 1).

When p → 0, log p + 2 − 2w1p → −∞; when p → 1, log p + 2 − 2w1p → 2 − 2w1 > 0 since

w1 ∈ (0, 1). According to the intermediate value theorem, there exists at least one root for

log p+ 2− 2w1p on (0, 1). Now we show that pd is the only root for log p+ 2− 2w1p on (0, 1).

Taking derivative of log p+ 2− 2w1p, we have

d(log p+ 2− 2w1p)

dp
=

1

p
− 2w1

set
= 0⇒ p =

1

2w1
.

Note that when p ∈ (0,
1

2w1
),

1

p
− 2w1 > 0; when p ∈ (

1

2w1
,∞),

1

p
− 2w1 < 0. Thus log p+ 2−

2w1p is strictly increasing on (0,
1

2w1
), and strictly decreasing on (

1

2w1
,∞). Moreover,

log p+ 2− 2w1p|p= 1
2w1

= 1− log(2w1) > 1− log 2 > 0.

Now on (0,1), log p+ 2− 2w1p behaves according to the following,

• If
1

2w1
≥ 1, i.e., w1 ∈ (0, 0.5], log p+ 2− 2w1p starts from −∞, passes through the p-axis

at p = pd and continues to increase to point (1, 2− 2w1).

• If 0 <
1

2w1
< 1, i.e., w1 ∈ (0.5, 1), log p + 2 − 2w1p starts from −∞, passes through the

p-axis at p = pd, reaches its maximum at p =
1

2w1
, and decreases to point (1, 2 − 2w1),

which is still above the p-axis.
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A comparison of these two cases is shown in Figure 3. Now under both circumstances, we

have showed that log p+ 2− 2w1p is negative on (0, pd), and positive on (pd, 1). Thus complete

the proof.

(a) When w = 0.1 (b) When w = 0.6

Figure 3: Behavior of log p+ 2− 2w1p under different w values

Result regarding the optimal dose allocation is given in the following theorem.

Theorem 5. Under simple power model (Equation 3.1), for any parameter αp ∈ R, the optimal

design chooses the next dose level with the corresponding toxicity rate p∗, where p∗ is the solution

to equation log p− 2w1p+ 2 = 0.
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Notice that the optimal dose level depends on the estimate of the first-stage weight function

w1.

Binary general linear regression under two-parameter models

Before we move onto logistic and probit model, we first summarize some facts for binary

general linear regression under two-parameter regression models.

At the first stage of a study trial, Iobs(θ) is a zero matrix which makes I(θ) = Iran(θ). Then

for a given design ξ = {(xd, ωd), d = 1, ..., D},
D∑
d=1

ωd = 1, let cd = α+ βxd, suppose the Fisher

information matrix for parameter θ = (α, β) can be written as

Iξ(θ) =
D∑
d=1

ωd · w1h(cd, w1)


1 xd

xd x2
d

 ,

which can be rearranged as

Iξ(θ) = AT (α, β)Cξ(α, β)A(α.β) (3.19)

where

A(α, β) =


w

1
2
1 −α

β
w

1
2
1

0
1

β
w

1
2
1


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and

Cξ(α, β) =
D∑
d=1

ωd




g1(cd)

g2(cd)




g1(cd) g2(cd)


 =



D∑
d=1

ωdΨ1(cd)
D∑
d=1

ωdΨ2(cd)

D∑
d=1

ωdΨ2(cd)
D∑
d=1

ωdΨ3(cd)


(3.20)

in which (consider w1 as fixed)

g1(cd) = h
1
2 (cd), g2(cd) = cdg1(cd) = cdh

1
2 (cd),

and

Ψ1(cd) = g2
1(cd) = h(cd), Ψ2(cd) = cdg

2
1(cd) = cdh(cd), Ψ3(cd) = c2

dg
2
1(cd) = c2

dh(cd).

Next, we’ll discuss the optimal design construction under two-parameter logistic model and

two-parameter probit model, respectively.

3.2.2 Two-parameter logistic model

Under logistic model (Equation 3.4), we have
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hl(c) =
exp(c)

(1 + exp(c))2(1 + (1− w1) exp(c))
,

gl1(c) = (hl(c))
1
2 =

exp( c2)

(1 + exp(c))
√

1 + (1− w1) exp(c)
,

gl2(c) = c (hl(c))
1
2 =

c exp( c2)

(1 + exp(c))
√

1 + (1− w1) exp(c)
,

and

Ψl
1(c) = hl(c) =

exp(c)

(1 + exp(c))2(1 + (1− w1) exp(c))
,

Ψl
2(c) = chl(c) =

c exp(c)

(1 + exp(c))2(1 + (1− w1) exp(c))
,

Ψl
3(c) = c2hl(c) =

c2 exp(c)

(1 + exp(c))2(1 + (1− w1) exp(c))
.

We construct optimal designs based on results derived by Yang and Stufken (57). First we

show that (Ψl
1(c),Ψl

2(c),Ψl
3(c)) are Type I or Type II functions on [Al, Bl], where [Al, Bl] is

the range for the transformed dose level c. Following is our choice for [Al, Bl] and the related

justifications.

Under logistic model (Equation 3.4), the relationship between toxicity probability p and the

transformed dose level c is

p =
exp(c)

1 + exp(c)

where p is increasing with respect to c.
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For ethical reasons, the toxicity probability p can not be set too high. Here, we adopt 1/3

as an upper bound for p, which will give an equivalent upper bound of − log 2 for c. Then we

decide on the lower bound. Notice that when c→ −10, p→ 4.5E − 5, which is nearly 0. Thus

we adopt −10 as lower bound for c. Consequently, the range for the transformed dose level c,

[Al, Bl], can set to be any subset of [−10,− log 2], i.e., [Al, Bl] ⊂ [−10,− log 2].

Taking first derivatives with respect to c, we want to examine the values of the expressions

of (Ψl
1(c))′,

(
(Ψl

2(c))′

(Ψl
1(c))′

)′
, and

((
(Ψl

3(c))′

(Ψl
1(c))′

)′/( Ψl
2(c)

(Ψl
1(c))′

)′)′
, which are all too complicated

to study analytically. Thus we use graphing tools to check whether or not they satisfy all

the required conditions stated in (57). More specifically, we increase w1 by 0.01 from 0 to

1 and graph each of these three functions against c, which ranges from −10 to − log 2. By

numerical checking, we have the following inference. For all w1 ∈ (0, 1), (Ψl
1(c))′,

(
(Ψl

2(c))′

(Ψl
1(c))′

)′
,

and

((
(Ψl

3(c))′

(Ψl
1(c))′

)′/( Ψl
2(c)

(Ψl
1(c))′

)′)′
are all positive functions, which lead to a positive product

for all c ∈ [Al, Bl] ⊆ [−10,− log 2] (numeral checking graphs are partly shown in Figure 4),

which further renders (Ψl
1(c),Ψl

2(c),Ψl
3(c)) as Type II functions on [Al, Bl] ⊆ [−10,− log 2].

Then following Lemma 3 given in Yang and Stufken (57), the optimal design under logistic

model (Equation 3.4) is ξlopt = {(cld, ωld), (Bl, 1− ωld)}, where cld ∈ [Al, Bl).

Now we derive analytical results under D-optimality. First, when there are only two optimal

design points present, D-optimality will put equal weights for both design points, i.e., ωld = 0.5,

and ξlD−opt = {(cld, 0.5), (Bl, 0.5)}. We now derive the choice of cld.
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The upper legend is the w1 value and the lower one is the minimum
value of the product function on [−10,− log 2].

Figure 4: Behavior of the product for logistic model under nine w1 values

Rewriting CξlD−opt
(α, β) in Equation 3.20 as

CξlD−opt
(α, β) =


gl1(cld) gl1(Bl)

gl2(cld) gl2(Bl)




0.5 0

0 0.5




gl1(cld) gl2(cld)

gl1(Bl) gl2(Bl)

 ,
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then ignoring terms independent of cld, we re-express |IξlD−opt(θl)| in Equation 3.19 up-to-a-

constant as

|IξlD−opt(θl)| ∝

∣∣∣∣∣∣∣∣∣∣∣∣
gl1(cld) gl1(Bl)

gl2(cld) gl2(Bl)

∣∣∣∣∣∣∣∣∣∣∣∣

2

= (gl1(Bl))2 (gl1(cld)(B
l − cld))2.

Since (gl1(Bl))2 > 0, it is easy to see that the targeting cld in ξlD−opt is the maximizer of the

following function on [Al, Bl),

f l(c) = (gl1(c)(Bl − c))2 =
exp(c)(Bl − c)2

(1 + exp(c))2(1 + (1− w1) exp(c))
.

The following theorem provides the local maximizer of f l(c) on [Al, Bl).

Theorem 6. Function f l(c) has exactly one maximum point, cld, on any [Al, Bl) ⊂ [−10,− log 2].

Proof. Since f l(c) ≥ 0 with right boundary f l(Bl) = 0, f l(c) is decreasing to the near left

of point Bl. In order to show that it has exactly one maximum point on any [Al, Bl) ⊂

[−10,− log 2], we only need to show that f l(c) is either (i) increasing on [−10, c∗] and then

decreasing on [c∗, Bl); or (ii) decreasing on [−10, Bl). Therefore,
df l(c)

dc
has at most one root

on [−10, Bl).

Differentiating f l(c) with respect to c, we obtain

df l(c)

dc
=

exp(c)(Bl − c)
(1 + (1− w1) exp(c))2(1 + exp(c))3

· f̃ l(c),
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where

f̃ l(c) = 2(1− w1)(c−Bl − 1) exp(2c) + (c−Bl − 2− 2(1− w1)) exp(c) +Bl − c− 2. (3.21)

Since
exp(c)(Bl − c)

(1 + (1− w1) exp(c))2(1 + exp(c))3
> 0 for c ∈ [Al, Bl), we only need to show that f̃ l(c)

is monotone on [−10, Bl).

Taking derivative of f̃ l(c) with respect to c, we have

df̃ l(c)

dc
= 2(1− w1)(2(c−Bl)− 1) exp(2c) + (c−Bl − 2(1− w1)− 1) exp(c)− 1 < 0

for all w1 ∈ (0, 1) and c ∈ [−10, Bl), which shows that f̃ l(c) is strictly decreasing on [−10, Bl);

thus completes the proof.

At c = Bl, we have f̃ l(Bl) = −2(1 − w1) exp(2Bl) − 2(2 − w1) exp(Bl) − 2 < 0, thus the

behavior of f l(c) depends on the value of f̃ l(Al) = (1 − exp(Al) − 2(1 − w1) exp(2Al))(Bl −

Al)− 2(1 + exp(Al))(1 + (1− w1) exp(Al)). With definition of functions

d1(Al) =
2(1 + exp(Al))(1 + (1− w1) exp(Al))

(1− exp(Al)− 2(1− w1) exp 2A)
(3.22)

and

d2(Al) =
(2− log 2−Al) exp(Al) + 2 + log 2 +Al

2eAl [(Al + log 2− 1) exp(Al)− 1]
, (3.23)
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To summarize the behavior of f l(c) on any [Al, Bl) ⊂ [−10,− log 2], the following two scenarios

are presented here:

(I). when 1−d2(Al) ≤ w1 and Bl ≥ Al+d1(Al), f̃ l(Al) ≥ 0, f̃ l(c) has one root, cld ∈ [Al, Bl),

which maximizes fpb(c) on [Al, Bl);

(II). when (i) 1 − d2(Al) ≤ w1 and Bl < Al + d1(Al), or (ii) 1 − d2(Al) > w1, f̃ l(Al) < 0,

which makes f l(c) decreasing on [Al, Bl). Thus cld = Al maximizes f l(c) on [Al, Bl).

Result regarding the optimal dose allocation is given in the following theorem.

Theorem 7. At the first stage, under logistic model (Equation 3.4), for any transformed dose

range c = αl + βlx ∈ [Al, Bl] ⊆ [−10,− log 2], the D-optimal dose assignment is

ξlD−opt = {(c∗, 0.5), (Bl, 0.5)},

and the choice of c∗ would be one of the following two cases:

• When 1 − d2(Al) < w1 and Bl > Al + d1(Al), c∗ ∈ (Al, Bl) is the solution to equation

f̃ l(c) = 0;

• Otherwise, c∗ = Al.

Functions f̃ l(c), d1(A), and d2(A) are defined in Equation 3.21, Equation 3.22, and Equa-

tion 3.23, respectively.

Notice that the optimal dose level still depends on the estimate of the first-stage weight

function w1.
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3.2.3 Two-parameter probit model

Under probit model (Equation 3.11), we have

hpb(c) =
φ2(c)

Φ(c)(1− w1Φ(c))
,

g1(c) = (hpb(c))
1
2 =

φ(c)√
Φ(c)(1− w1Φ(c))

,

g2(c) = c (hpb(c))
1
2 =

cφ(c)√
Φ(c)(1− w1Φ(c))

,

and

Ψpb
1 (c) = hpb(c) =

φ2(c)

Φ(c)(1− w1Φ(c))
,

Ψpb
2 (c) = chpb(c) =

cφ2(c)

Φ(c)(1− w1Φ(c))
,

Ψpb
3 (c) = c2hpb(c) =

(cφ(c))2

Φ(c)(1− w1Φ(c))
.

Similar to the case of logistic model, by numerical checking, we have the following con-

clusion. For all w1 ∈ (0, 1), (Ψpb
1 (c))′,

(
(Ψpb

2 (c))′

(Ψpb
1 (c))′

)′
, and

((
(Ψpb

3 (c))′

(Ψpb
1 (c))′

)′/( Ψpb
2 (c)

(Ψpb
1 (c))′

)′)′
are all positive functions, which lead to a positive product for all c ∈ [Apb, Bpb] ⊆ [−10, Bpb

0 ],

where Bpb
0 is the solution to function −2c − λ(c) = 0 and λ(c) =

φ(c)

Φ(c)
is defined in Section

3.1.3 (numeral checking graphs are partly shown in Figure 5). Now that we have numerically

showed that (Ψpb
1 (c),Ψpb

2 (c),Ψpb
3 (c)) are Type II functions on [A,B] ⊆ [−10, Bpb

0 ], then again,
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following Lemma 3 given in Yang and Stufken (57), the optimal design under probit model

(Equation 3.11) is ξpbopt = {(cpbd , ω
pb
d ), (Bpb, 1− ωpbd )}, where cpbd ∈ [Apb, Bpb).

The upper legend is the w1 value and the lower one is the minimum
value of the product function on [−10, Bpb

0 ].

Figure 5: Behavior of the product for probit model under nine w1 values

Analytical results underD-optimality will again render ωpbd = 0.5, and ξpbD−opt = {(cpbd , 0.5), (Bpb, 0.5)}.

We now derive the choice of cpbd .
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Following similar arguments stated in the logistic model case, we have

|I
ξpbD−opt

(θpb)| ∝

∣∣∣∣∣∣∣∣∣∣∣∣
gpb1 (cpbd ) gpb1 (Bpb)

gpb2 (cpbd ) gpb2 (Bpb)

∣∣∣∣∣∣∣∣∣∣∣∣

2

= (gpb1 (Bpb))2(gpb1 (cpbd )(cpbd −B
pb))2,

and the targeting cpbd in ξpbD−opt is the maximizer of the following function on [Apb, Bpb),

fpb(c) = (gpb1 (c)(Bpb − c))2 =
((Bpb − c)φ(c))2

Φ(c)(1− w1Φ(c))
.

The following theorem provides the local maximizer of fpb(c) on [Apb, Bpb).

Theorem 8. Function fpb(c) has exactly one maximum point, cpbd , on any [Apb, Bpb) ⊂ [−10, Bpb
0 ).

Proof. We rewrite fpb(c) as

fpb(c) =
(c−Bpb)2

w1
λ(c)µw(c)

where

λ(c) =
φ(c)

Φ(c)
, µw(c) =

w1φ(c)

1− w1Φ(c)
. (3.24)

Notice that µw1=1(c) is the same as function µ(c) defined in Section 3.1.3. Since fpb(c) ≥ 0

with right boundary fpb(Bpb) = 0, fpb(c) is decreasing to the near left of point Bpb. In order

to show that it has exactly one maximum point on any [Apb, Bpb) ⊂ [−10, Bpb
0 ), we only need

to show that fpb(c) is either (i) increasing on [−10, c∗] and then decreasing on [c∗, Bpb
0 ); or (ii)

decreasing on [−10, Bpb
0 ). That is to say,

dfpb(c)

dc
has at most one root on [−10, Bpb

0 ).
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Using the fact that φ′(c) = −cφ(c) and Φ′(c) = φ(c), we have

λ′(c) :=
dλ(c)

dc
= −cφ(c)

Φ(c)
−
(
φ(c)

Φ(c)

)2

= −λ(c)(λ(c) + c),

µ′w(c) :=
∂µw(c)

∂c
= − cw1φ(c)

1− w1Φ(c)
− w1φ(c)(−w1φ(c))

(1− w1Φ(c))2
= µw(c)(µw(c)− c).

Therefore,

dfpb(c)

dc
=

2(c−Bpb)

w1
λ(c)µw(c) +

(c−Bpb)2

w1
λ′(c)µw(c) +

(c−Bpb)2

w1
λ(c)µ′w(c)

=
(c−Bpb)

w1
λ(c)µw(c)

[
2 + (c−Bpb)(µw(c)− λ(c)− 2c)

]
.

Now we need to prove that 2+(c−Bpb)(µw(c)−λ(c)−2c) has at most one root on [−10, Bpb
0 ).

It suffices to show that

f̃pb(c) = (c−Bpb)(µw(c)− λ(c)− 2c) (3.25)

is monotone on [−10, Bpb
0 ). Since

∂µw(c)

∂w1
=

φ(c)

1− w1Φ(c)

(
1 +

w1Φ(c)

1− w1Φ(c)

)
> 0,

we have

µ′w(c) = µw(c)(µw(c)− c) < µw1=1(c)(µw1=1(c)− c) = µ(c)(µ(c)− c) = µ′(c).
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Thus we have µ′w(c) − λ′(c) − 2 < µ′(c) − λ′(c) − 2 < 0, as already proved in Equation 3.13.

Also,

µw(c)− λ(c)− 2c > µw1=0(c)− λ(c)− 2c = −λ(c)− 2c > −λ(c)− 2c|
c=Bpb0

= 0.

Since c < Bpb, we have

df̃pb(c)

dc
= (µw(c)− λ(c)− 2c) + (c−Bpb)(µ′w(c)− λ′(c)− 2) > 0,

which shows that f̃pb(c) is monotone (in fact increasing) on [−10, Bpb
0 ), thus completes the

whole proof.

Now the actual behavior of fpb(c) depends on the values of Apb and Bpb. Let

min{(c−Bpb)(µw(c)−λ(c)−2c)} = (c−Bpb)(µw(c)−λ(c)−2c)|c=Apb = (Apb−Bpb)(µw(Apb)−λ(Apb)−2Apb),

we present the following two scenarios:

(I). When (Apb−Bpb)(µw(Apb)− λ(Apb)− 2Apb) ≤ −2, 2 + (c−Bpb)(µw(c)− λ(c)− 2c) = 0

has one root, cpbd ∈ [Apb, Bpb), which maximizes fpb(c) on [Apb, Bpb);

(II). When (Apb−Bpb)(µw(Apb)− λ(Apb)− 2Apb) > −2, 2 + (c−Bpb)(µw(c)− λ(c)− 2c) > 0

on [Apb, Bpb), which makes fpb(c) decreasing on [Apb, Bpb). Thus cpbd = Apb maximizes

fpb(c) on [Apb, Bpb).
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Result regarding the optimal dose allocation is given in the following theorem.

Theorem 9. At the first stage, under probit model (Equation 3.11), for any transformed dose

range c = α+ βx ∈ [Apb, Bpb] ⊆ [−10, Bpb
0 ], the D-optimal dose assignment is

ξpbD−opt = {(c∗, 0.5), (Bpb, 0.5)},

and the choice of c∗ would be one of the following two cases:

• When (Apb − Bpb)(µw(Apb) − λ(Apb) − 2Apb) < −2, c∗ ∈ (Apb, Bpb) is the solution to

equation f̃pb(c) + 2 = 0;

• Otherwise, c∗ = Apb.

Functions µw(c), λ(c), and f̃pb(c), are defined in Equation 3.24, and Equation 3.25, respectively.

Notice that the optimal dose level still depends on the estimate of the first-stage weight

function w1.



CHAPTER 4

SIMULATION STUDIES

All analytic results derived and presented in Chapter 3 are built under the constraints

that either (a) the assuming working model is one-dimension so that information matrices are

scalars which eliminates the affect of existing designs since optimizing Inew + Iexist is equivalent

to optimizing Inew itself; or (b) only first-stage designs are being constructed so that Iexist = 0

and related D-optimality conclusions can be established with the help of matrix-determinant

manipulation and optimality results for two-parameter models given in Yang and Stufken (57).

Moreover, when more than one working models are to be brought into the process of design con-

struction, giving theoretical results become infeasible due to the complication in the formulation

of Fisher infromation matrices.

Therefore, in order to obtain optimal dose allocations for a broader design setup, meaning

multi-stage, multiple working models, different parameter targets, and an unified Φp optimality

criterion, we need a general and efficient algorithm that can quickly and accurately locate

optimal designs under any given experimental structure. For the simulation studies constructed

here in Chapter 4, we adopt the optimal weight exchange algorithm (OWEA) proposed by Yang,

Biedermann, and Tang (56).

82



83

4.1 The modified OWEA

The OWEA has been shown to be able to apply to a wide class of optimality problems:

any set of differentiable functions of the parameters of interest; all Φp-optimality criteria with

p being an non-negative integer; locally or multistage optimal designs. The OWEA works by

iteratively updating the selected design points and their corresponding weights until convergence

to a globally optimal continuous design is achieved through verification of the GET (general

equivalence theorem, (28)). During this process, to optimize the weights, instead of relying

completely on numeric computation, the OWEA adopts the Newton’s method, a second-order

optimization approach that features a quadratic convergence rate, which will increase the speed

of convergence to a great extent. For various optimality targets, through applications to many

commonly studied nonlinear models, in terms of convergence speed, the OWEA has been found

to be consistently outperforming existing algorithms (details about the performance advantages

of the OWEA can be found in (56)).

The original OWEA proposed in 2013 was implemented under locally optimal design frame-

work and was later extended by Biedermann and Yang (in preparation) to construct a Bayesian

optimal design structure. They proved the convergence of the extended OWEA and showed it

to possess the qualitiy of fast computational speed under various scenarios. The extended ver-

sion is similar to the original one with the main difference being the derivatives of the objective

functions changed to their integration forms with respect to model parameter θ. All the other

algorithm logic and procedures are similar to the original OWEA.
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4.1.1 Notation and idea

The Φp optimality criterion embedded in the OWEA was given in Kiefer (28) and can be

described using a class of functions

Φp (Σξ0+ξ(b)) =

[
1

v
Tr (Σξ0+ξ(b))

p

]1/p

, 0 ≤ p <∞, (4.1)

where b(θ) is the target function/parameter of interest with dimension v, and Σξ0+ξ(b) =

Vξ0+ξ(b̂) is the asymptotic variance of b(θ̂) under existing design ξ0 and current design ξ, as

defined in Equation 1.1.

Normally p here could take any non-negative integers but the following three scenarios stand

out as the most commonly used criteria that have meaningful statistical interpretations.

• When p = 0, i.e., D-optimality that minimizes the volume of the confidence region for

the parameter estimates.

Φ0 (Σξ0+ξ(b)) = lim
p→0

Φp (Σξ0+ξ(b)) = |Σξ0+ξ(b)|1/v .

• When p = 1, i.e., A-optimality that minimizes the sum of asymptotic variance of the

estimate for each parameter dimension.

Φ1 (Σξ0+ξ(b)) =
1

v
Tr (Σξ0+ξ(b)) .
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• When p → ∞, i.e., E-optimality that minimizes the maximum eigenvalue of the asymp-

totic variance-covariance matrix for the parameter estimates.

Φ∞ (Σξ0+ξ(b)) = λmax (Σξ0+ξ(b)) .

Following the definition of the Φp criterion, its corresponding directional derivative with

respect to each design point x ∈ X , dp(x,Σξ0+ξ(b)), can be derived as follows,

dp(x,Σξ0+ξ(b)) = C(Σξ0+ξ(b)) Tr
(

(Σξ0+ξ(b))
p−1A(x, b, ξ)

)
, (4.2)

where

A(x, b, ξ) ∝
(
∂b(θ)

∂θT

)
(Iξ0+ξ)

−1(Ix − Iξ)(Iξ0+ξ)
−1

(
∂b(θ)

∂θT

)
,

and

C(Σξ0+ξ(b)) =


1, p = 0,

(
1

v

) 1
p

(Tr (Σξ0+ξ(b))
p)

1
p
−1
, p > 0.

Notice that minimizing Φp given in Equation 4.1 is equivalent to minimizing

Φ̃p (Σξ0+ξ(b)) =


log |Σξ0+ξ(b)| , p = 0,

Tr (Σξ0+ξ(b))
p , p > 0.

(4.3)
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Bayesian model-averaging

All illustrated above are with respect to a single working model, where statistical prac-

tice followed ignores the ambiguity in model selection. The underlying risk with respect to

over-confident statistical inferences and presumptuous decision making makes it extremely im-

portant to take account of the problem of model uncertainty. One coherent and conceptually

straightforward technique to tackle it would be Bayesian model averaging (BAM) analysis,

which provides a mechanism robust to model choice since it allows researchers and practition-

ers to form a “committee” of candidate models instead of putting extra effort on agreeing on a

single “best” one.

Let ∆ be any quantity of interest, such as a parameter estimator, a loss function, or the

utility of a certain action, then its posterior distribution given data Y can be written as

P(∆|Y) =
M∑
m=1

πm P(∆|ψm,Y),

where ψ1, ..., ψM are the M models considered. P(∆|Y) can be seen as a weighted summation

of the posterior distribution of ∆ under each candidate model ψm, with leverage πm being the

posterior model probability P(ψm|D), m = 1, ...,M . The update of πm with new data follows

P(ψm|D) ∝ P(Y|ψm)P(ψm),
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where P(ψm) is the prior belief on model m with the constraint that
M∑
m=1

P(ψm) = 1, and

P(Y|ψm) is the integrated likelihood of ψm(θm). More specifically,

P(Y|ψm) =

∫
P(θm|ψm)P(Y|θm, ψm) dθ,

where P(θm|ψm) is the prior density for θm under model ψm, and P(Y|θm, ψm) is the corre-

sponding likelihood.

Consider ∆̂m = E(∆|Y, ψm), then the posterior mean and variance of ∆ were given in

Hoeting, et. al. (25) as

E(∆|Y) =
M∑
m=1

∆̂m P(ψm|Y),

and

V(∆|Y) =
M∑
m=1

(
V(∆|Y, ψm) + ∆̂2

m

)
P(ψm|Y)−E(∆|Y)2.

Madigan and Raftery (33) pointed out that averaging over the entire model set M in the

structure illustrate above would yield better predictive ability with respect to a logarithmic

scoring metric, when compared to the way of utilizing any single working model ψm ∈ M.

Empirical studies under various setups were carried out by Hoeting, et. al. (25) that showed

very promising evidence to support this theoretical statement. Here in this paper, we still face

the model uncertainty problem that no one can guarantee an absolute accurate dose-toxicity

response curve. Therefore we absorb the BMA strategy into our dose-finding framework to
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compensate for the estimation precision loss due to the unavoidable deviation from the true

underlying working mechanism.

Suppose M working models under prior belief π = (π1, ..., πM ) are brought into the design,

with toxicity probability respectively being ψm(x, θm), m = 1, ...,M . For the mth model, under

existing design ξ0 and current design ξ, with target parameter function bm(θm), we have

Σm,ξ0+ξ(bm) =
∂bm(θm)

∂θTm
I−1
ξ0+ξ(θm)

(
∂bm(θm)

∂θTm

)T
.

Then the weighted Φp, dp, and Φ̃p values are calculated as

Φp(Σξ0+ξ(b)) =
M∑
m=1

πmΦp (Σm,ξ0+ξ(bm)) ,

dp(x,Σξ0+ξ(b)) =
M∑
m=1

πmdp(x,Σm,ξ0+ξ(bm)),

Φ̃p (Σξ0+ξ(b)) =

M∑
m=1

πmΦ̃p (Σm,ξ0+ξ(bm)) , (4.4)

where function Φp(Σ), dp(x,Σ), and Φ̃p(Σ) are defined respectively in Equation 4.1, Equa-

tion 4.2, and Equation 4.3.

4.1.2 Implementation of the OWEA

A step-by-step procedure of implementing the (extended) OWEA in the context of dose

allocation is described as follows:

(I). Given the dose set D = {d1, ..., dD}, we start by randomly selecting s of them and

assigning equal weight of 1/s to each dose. The support is denoted as S(0).
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(II). With S(t) being the given support, t = 0, 1, 2, ..., update the current weights for design

points in S(t) to optimal weights using Newton’s method. Elimination of zero, one, or

multiple design points from S(t) may occur during Newton’s iterations. S(t) with its

optimal weight ω(t) constitute design ξ(t), t = 0, 1, ....

(III). For the current design ξ(t), find d∗ ∈ D such that d∗ maximizes dp

(
x,Σξ0+ξ(t)(b)

)
(Equation 4.4). Check to see whether the value of dp

(
d∗,Σξ0+ξ(t)(b)

)
is less than ε, a

pre-specified threshold. If so, ξ(t) is the desired design, i.e., the optimal dose allocation

for the newly recruited cohort of patients. Otherwise, go to the next step.

(IV). Update ξ(t) by including d∗ with weight zero. Then we have a new support S(t+1) =

{S(t), d∗} with initial weight {ω(t), 0} to repeat steps (II) and (III).

Remark 2. The choice of s in step (I) does not matter that much in theory since different

resulting continuous optimal designs from different starting designs should all be equivalent in

the sense that they all have the same objective criterion value. But we need to mention that the

increase of s will cause the increase of difficulty in computing the Hessian matrix embedded in

Newton’s method, thus slow down the computation speed. Here we recommend selecting three

doses to begin with, i.e., s = 3, one low dose, one high dose, and one from the middle.

Remark 3. The rationale behind step (III) lies within the theory of the GET, where a design

ξ∗ is Φp-optimal for b(θ) if and only if for all x ∈ X , we have

dp(x, ξ
∗) =

∂Φp (Σξ0+ξ∗(b))

∂x
≤ 0,
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with equality achieved only at x ∈ ξ∗.

The Newton’s method in step (II) can be performed according to the following steps (start

with α = 1):

(i). With support S(t) and current weight at the rth iteration ω(t)
r , r = 0, 1, 2, ..., t = 0, 1, 2, ...,

next iteration updates ω(t)
r by

ω
(t)
r+1 = ω(t)

r − α

 ∂2Φ̃p

(
Σξ0+ξ(t)(b)

)
∂ω∂ωT

∣∣∣∣∣∣
ω=ω

(t)
r

−1
∂Φ̃p

(
Σξ0+ξ(t)(b)

)
∂ω

∣∣∣∣∣∣
ω=ω

(t)
r

,

where ξ(t) denotes design with support S(t) and weight to be determined, and the model-

averaged function Φ̃p(Σ) is defined in Equation 4.4.

(ii). Check to see if there are non-positive components in ω
(t)
r+1. If so, go to step (iv); otherwise,

go to step (iii).

(iii). Check if

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
∂Φ̃p

(
Σξ0+ξ(t)(b)

)
∂ω

∣∣∣∣∣∣
ω=ω

(t)
r+1

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣, where ||·|| denotes the Euclidean norm, is less than

ε′, another predetermined cutoff. If so, ω
(t)
r+1 is the desired/optimal weight for support

S(t). Otherwise, start the next iteration.

(iv). Reduce α by half, repeat step (i) until α reaches ε′′, also a pre-specified limit. Then

remove the sample point/dose level with the smallest weight; reset α to 1 and go back to

step (i) with the new support and its corresponding weight.

Remark 4. The three thresholds, ε, ε′, and ε′′, were set to be 10−6 in the empirical study.
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The model-averaged derivatives,
∂Φ̃p (Σξ0+ξ(b))

∂ω
and

∂2Φ̃p (Σξ0+ξ(b))

∂ω∂ωT
, following Equation 4.4,

are described below:

∂Φ̃p (Σξ0+ξ(b))

∂ω
=

M∑
m=1

πm
∂Φ̃p (Σm,ξ0+ξ(bm))

∂ω
,

∂2Φ̃p (Σξ0+ξ(b))

∂ω∂ωT
=

M∑
m=1

πm
∂2Φ̃p (Σm,ξ0+ξ(bm))

∂ω∂ωT
,

where for the mth model, m = 1, ...,M , Φ̃p (Σm,ξ0+ξ(bm)) is given in Equation 4.3. Concrete

expressions of
∂Φ̃p (Σm,ξ0+ξ(bm))

∂ω
and

∂2Φ̃p (Σm,ξ0+ξ(bm))

∂ω∂ωT
can be found in (56).

4.2 Weight function update

In the work of Cheung and Chappell (8), the authors assumed that the weight function is

linear and increasing with respect to the enrollment time. Applying this idea, the time-weighted

estimate for the weight function, for k = 0, 1, ...,K, follows

w̃k =
uk
T
.

Ji and Bekele (26) pointed out that when the assumption of linearity is violated, the time-

weighted method may lead to biased results. Similar to their model-based approach, we describe

here a Bayesian method to estimate the weight function.

At a certain interim study time point, we have ntox :=
K∑
k=1

ntoxk patients who have experi-

enced DLT, where for each k, ntoxk is the number of patients whose toxicity reaction showed

up in time interval (uk−1, uk]. Notice that here the time points and time intervals are regarding
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the timeline of each individual patient, instead of the whole trial. Then of all the ntox patients,

those whose DLT occur before enrollment time uk can be calculated as
k∑
l=1

ntoxl , which is re-

lated with the time-to-toxicity with respect to each dose level. Since at any study point, given

the current observed data, ntox is fixed; thus conditioned on ntox, for each k = 1, ...,K, we have

k∑
l=1

ntoxl ∼ Binom(ntox, wk).

Assume the prior for wk follows Beta(α
(0)
k , β

(0)
k ), where α

(0)
k , β

(0)
k > 0 are the shape parameters.

The elicitation of α
(0)
k and β

(0)
k could follow the relation

E(Beta(α
(0)
k , β

(0)
k )) =

α
(0)
k

α
(0)
k + β

(0)
k

set
= w̃k =

uk
T

(4.5)

so that the prior is centered about the time-weighted estimate w̃k introduced above. Taking

advantage of conjugacy between Binomial and Beta distribution, we have the posterior of wk

following

wk ∼ Beta

(
α

(0)
k +

k∑
l=1

ntoxl , β
(0)
k + ntox −

k∑
l=1

ntoxl

)
,

which effectively, can be viewed as adding α
(0)
k − 1 toxicities and β

(0)
k − 1 non-toxicities to the

data set. Then after achieving the posterior distribution, the estimate ŵk, k = 1, 2, ...,K, can

be obtained via posterior mean:

ŵk =
α

(0)
k +

∑k
l=1 n

toxl

α
(0)
k + β

(0)
k + ntox

.
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4.3 Algorithm for the OD-CRM

Now we illustrate the procedures for carrying out the OD-CRM.

(I). Calculate respectively the prior mean for weight functionw = (w1, ..., wK) from the prior

Beta distribution stated in Equation 4.5, and for model parameters θ = (θ1, ..., θM )

from each corresponding prior distributions g(0)
m (θm), m = 1, ...,M . Denote them as

w(0) and θ(0). Assume a model prior for model averaging scheme, π(0) = (π
(0)
1 , ..., π

(0)
M ).

Then apply the OWEA illustrated in Section 4.1.2 to obtain the optimal dose allocation

ξ(1)
∣∣∣(w(0),θ(0),π(0)

)
for the first entered cohort.

(II). Before the r + 1th recruitment, r = 1, 2, ..., R− 1, with R being the preset cohort limit,

the observed toxicity response, enrollment time, and time-to-toxicity with respect to each

enrolled patient are recorded in data set Z(r). We then update the posterior distribution

and estimate for w, θ, and π under Bayesian structure:

(i) Regarding the weight function, for k = 1, ...,K, we have

w
(r)
k ∼ Beta

(
α

(0)
k +

k∑
l=1

(
ntoxl

∣∣∣Z(r)
)
, β

(0)
k +

(
ntox

∣∣∣Z(r)
)
−

k∑
l=1

(
ntoxl

∣∣∣Z(r)
))

,

and

w
(r)
k =

α
(0)
k +

∑k
l=1

(
ntoxl

∣∣Z(r)
)

α
(0)
k + β

(0)
k +

(
ntox

∣∣Z(r)
) ,

where α
(0)
k and β

(0)
k are chosen based on the elicitation rule stated in Equation 4.5.

Remark 5. In the empirical study, for each k we set α
(0)
k = uk, β

(0)
k = T − uk.
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(ii) Regarding the model parameter, for m = 1, ...,M , we have

g(r)
m (θm) ∝ g(0)

m (θm) · Lm
(
θm

∣∣∣Z(r)
)
, (4.6)

and

θ(r)
m =

∫
θm · g(r)

m (θm) dθm,

where likelihood function Lm(θm) is given in Equation 3.15. Notice that here

for different models, the p, q functions, involved in the likelihood and defined in

Equation 1.2 and Equation 1.3, are also different due to the change in toxicity

probability model ψm(x, θm).

(iii) Regarding the model weights, for m = 1, ...,M , we have two ways for updating,

where we either use the posterior mean for each θm, or use the posterior distribu-

tion.

• Posterior mean.

π(r)
m

∣∣∣θ(r)
m ∝ π(0)

m · Lm
(
θ(r)
m

)
.

• Posterior distribution.

π(r)
m

∣∣∣g(r)
m ∝ π(0)

m ·
∫
Lm

(
θm

∣∣∣Z(r)
)
· g(r)
m (θm) dθm.

(III). Optimal dose allocation ξ(r+1)
∣∣∣(w(r),θ(r),π(r)

)
is constructed for the (r+ 1)th entered

cohort, r = 1, ..., R − 1. Then repeat step (II) until maximum sample size is reached.
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For those in the study without being fully evaluated, we follow them until every one of

them has completed the entire assessment period T .

(IV). Final inference regarding the MTD is made based on the complete data Z(R). Due to

the estimation method difference lie in the π update, we have two final estimates for

toxicity probability pd, for each d ∈ D.

• Posterior Mean.

p̂d

∣∣∣θ(R) =

M∑
m=1

(
π(R)
m

∣∣∣θ(R)
m

)
· ψm

(
d, θ(R)

m

)
.

• Posterior distribution.

p̂d

∣∣∣g(R) =

M∑
m=1

(
π(R)
m

∣∣∣g(R)
m

)
·
∫
ψm(d, θm) · g(R)

m (θm) dθm.

Then Final MTD estimation, d∗, is given by

d∗ = min
d∈D
|p̂d − pt|

where pt is the pre-determined target toxicity rate.

We should mention that although under Bayesian structure, our posterior update for w, θ,

and π are all based on current cumulative likelihood L(r) and their start-up priors, instead of

the standard approach where the posterior from the last iteration is adopted as the prior for
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the next update, these two methods are actually equivalent to each other. We shall roughly

explained it here.

Under standard Bayesian framework, with an assumed start-up prior f (0), after the rth

observation(s), the posterior distribution for the model parameter is updated following

f (r) ∝ L
(
Y(r)

)
· L
(
Y(r−1)

)
· · ·L

(
Y(1)

)
· f (0),

where Y(r) denotes the data change after the inclusion of the rth subject(s). When applied in the

clinical trial situation, we have Y(r) = Z(r)\Z(r−1), which stems from the fact that the recorded

response Z(r) here in the dose-finding study with late-onset toxicities, is the multinomial data

showing the patients’ accumulative DLT experiences after the enrollment of the rth cohort (see

Equation 3.14), instead of the observation change occurred in between of the post-recruitment

of the (r − 1)th and rth cohort. Therefore we have

f (r) ∝ L
(
Y(r)

)
· L
(
Y(r−1)

)
· · ·L

(
Y(1)

)
· f (0)

= L
(
Z(r) \ Z(r−1)

)
· L
(
Z(r−1) \ Z(r−2)

)
· · ·L

(
Z(1) \ Z(0)

)
· f (0)

= L
((
Z(r) \ Z(r−1)

)
∪
(
Z(r−1) \ Z(r−2)

)
∪
(
Z(1) \ Z(0)

))
· f (0)

Z(0)=∅
====== L

(
Z(r)

)
· f (0).

Compared with Equation 4.6, we can see that they are in fact the same.
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4.4 Empirical study

Here in this section we compare the performance of the proposed OD-CRM with three

previously established methods reviewed in Chapter 2, i.e., the TITE-CRM, the EM-CRM, and

the DA-CRM. Notation regarding different designs are listed below.

• ODMEAN: OD-CRM coupled with the posterior mean structure;

• ODBAYE: OD-CRM coupled with the posterior distribution structure;

• TITEMEAN: TITE-CRM without the initial stage and θ is updated with its posterior

mean at each step;

• TITEMLE: TITE-CRM with the initial stage and after switching to the standard TITE

design, θ is updated with its MLE at each step;

• EMSEL: EM-CRM coupled with the model selection analysis;

• EMAVG: EM-CRM coupled with the model averaging analysis;

• DA: the standard DA-CRM.

All the algorithms are implemented following their implementation procedures respectively

given in Section 2.1, 2.2, 2.3, and 4.3. One thing we mention here is that, for the BMA technique

we built into the OD-CRM designs, when considering the power model, instead of focusing on

a single selected skeleton, we use three of them the same as mentioned in the EM-CRM design.

They share the same parameter αp and are equally weighted. That is, the weight for each

skeleton/each power model stay the same through the whole the trial with summation equal
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to π1, the total power model weight. The rest analysis follows the exact same structure as

explained under the BMA framework.

Data generating mechanism Toxicity scenarios

Model averaging with
αp = 0.5

θl = (−3, 1.5)

θpb = (−2.5, 0.5)

w = {0.3, 0.4, 0.3}

0.10, 0.15, 0.20, 0.30, 0.50, 0.70

0.05, 0.10, 0.15, 0.20, 0.27, 0.35

0.05, 0.10, 0.15, 0.20, 0.25, 0.30

0.25, 0.32, 0.40, 0.50, 0.60, 0.70

0.30, 0.40, 0.50, 0.55, 0.60, 0.70

0.02, 0.05, 0.08, 0.30, 0.40, 0.50

0.20, 0.25, 0.30, 0.35, 0.40, 0.45

Power model with αp = 0.5 0.10, 0.15, 0.20, 0.30, 0.50, 0.70

Logistic model with θl = (−3, 1.5) 0.10, 0.15, 0.20, 0.30, 0.50, 0.70

Probit model with θpb = (−2.5, 0.5) 0.10, 0.15, 0.20, 0.30, 0.50, 0.70

Non-parametric with dose set {1, 2, 3, 4, 5, 6} 0.10, 0.15, 0.20, 0.30, 0.50, 0.70

Table 12: Toxicity configurations in the comparison of difference designs

Six dose levels were involved in all scenarios with eleven toxicity configurations listed in

Table 12. The first seven were generated by an averaged model that included all the three

models we referred to earlier, with model parameters and model weights specified in the first

column. The latter three were designed for the situations when we assume the toxicity re-

sponse is induced by a single working model. And the very last scenario pointed to the set-
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ting of an non-parametric case with monotone dose-toxicity constraint implied. When power

model was involved in toxicity generation, the skeleton of the dose set (toxicity belief of each

dose level) is computed with formula
exp(x)

exp(x) + 1
, where x is the corresponding dose level.

This simulated skeleton-dose curve gave us a standard increasing relationship which we be-

lieve can represent a non-knowledgeable prior view of the toxic character of different dose

levels with no other medical or clinical information interfering. Note that under the same

data generating mechanism, different toxicity scenarios imply different dose sets. For exam-

ple, the dose sets for scenario 1 and 2, respectively, are D1 = {1.08, 1.43, 1.70, 2.17, 3.06, 4.09}

and D2 = {0.54, 1.08, 1.43, 1.70, 2.04, 2.39}. And for the case when the toxicity configurations

are the same, different working models would mean different dose sets. For example, the

dose sets for scenario 9 and 10, respectively, are D9 = {0.54, 0.84, 1.08, 1.44, 2.00, 2.56} and

D10 = {2.44, 2.93, 3.32, 3.95, 5.00, 6.05}.

Now we present the reasons for choosing these eleven toxicity configurations. The first one is

a general demonstration of one’s belief on the toxicity rate distribution that is well-spread across

the range of the dose set and at the same time, approximately equally-spaced with the target

one fitted in the middle. The second and the third were constructed within a conservative view

where all six doses produce relatively low toxicity rate and the target rate is thus pushed to the

end. The forth and fifth were presented as contrasts to the previous pair in the sense that now

doses were assumed to be over-toxic such that the target rate shows up by the beginning. Note

that the second and fourth scenarios did not contain the target 0.3, thus the nearest, i.e., 0.27

and 0.32 were considered the “right” toxicity to choose, respectively. These two were meant to
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simulate the situation where an exact target dose is not part of the pre-determined available set

that study is built on. The sixth scenario has a jump in the probabilities, that is, the first three

rates are all under 0.1 and then leaps to the target, 0.3, at the forth dose. The seventh was

sketched with the six toxicity rates very close to each other so that it would be more difficult

for the algorithms to distinguish from one another. And the following three scenarios were

included here to show the advantage of using BMA analysis when the assumed single working

model in the design is actually wrong. The very last one gives us some perspective into the

doubt that whether model-based designs can perform well when they are forced to cope with

an non-parametric generating mechanism.

Sample size was set at 48 with cohort size 4, thus we have a total of 12 recruitments. For

the OD-CRM designs, the unknown model parameter was targeted at the first 6 recruitments,

i.e., optimal designs were built for θ, in order to obtain better θ inferences; then the MTD

took over as the parameter of interest during the last 6 recruitments, i.e.,optimal designs were

built for the MTD, aiming to produce more accurate MTD recommendations. The evaluation

period was 12 month (T = 12) with enrollment took place at the 1st, 2nd, 4th, 6th, 8.5th, and

the 12th month, that is, we have a total of 7 (K = 7) interim study time point with each uk

settled up as described. The true weight function w = {w1, ..., w7} that helped generating data

was placed at w = {0.15, 0.28, 0.45, 0.59, 0.71, 0.92, 1.00}. Target toxicity rate was set to be

30% (pt = 0.3). BMA technique involving all three models was utilized through all OD-CRM

designs with model prior {1/3, 1/3, 1/3} . Simulation results are presented in Table 13.
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The entries consist of a pair of number show the simulation results of each design under each scenario where, at each dose, the 1st

number is the percentage of recommendation for the MTD and the 2nd is the percentage of patients treated there. Last column of the

table is the percentage of patients experiencing DLTs.

Design Dose 1 Dose 2 Dose 3 Dose 4 Dose 5 Dose 6 DLT percentage

Scenario 1 0.10 0.15 0.20 0.30 0.50 0.70

ODMEAN (0.00,45.27) (3.20,8.42) (22.80,6.10) (68.00,10.45) (6.00,13.40) (0.00,16.36) 28.47

ODBAYE (0.20,41.86) (4.60,23.00) (26.00,6.44) (59.20,2.73) (9.60,12.55) (0.40,13.42) 25.59

TITEMEAN (0.00,9.08) (4.60,16.00) (28.20,26.33) (60.40,41.12) (6.80,6.90) (0.00,0.57) 24.81

TITEMLE (0.20,17.12) (6.60,27.07) (33.00,27.15) (54.40,22.57) (5.80,5.75) (0.00,0.35) 21.00

EMSEL (0.00,18.92) (5.20,22.12) (33.40,21.57) (48.20,16.43) (12.40,11.98) (0.80,8.98) 26.81

EMAVG (0.00,20.92) (4.40,21.67) (32.20,18.87) (51.80,19.90) (11.60,11.93) (0.00,6.72) 25.59

DA (0.00,44.83) (0.00,34.67) (3.00,17.00) (58.20,2.75) (32.00,0.33) (6.80,0.42) 30.52

Scenario 2 0.05 0.10 0.15 0.20 0.27 0.35

ODMEAN (0.00,24.16) (0.20,7.35) (2.40,5.52) (14.60,4.28) (48.20,3.65) (34.60,55.04) 23.80

ODBAYE (0.00,19.93) (0.40,17.96) (5.60,10.93) (23.40,7.09) (41.20,4.54) (29.40,39.55) 20.67

TITEMEAN (0.00,0.33) (0.00,7.83) (3.00,18.42) (44.60,46.87) (49.80,21.37) (2.60,0.22) 19.33

TITEMLE (0.00,10.62) (0.20,17.53) (7.00,22.28) (44.60,30.53) (40.40,15.33) (7.80,3.70) 17.15

to be continued . . .
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. . . continued

Design Dose 1 Dose 2 Dose 3 Dose 4 Dose 5 Dose 6 DLT percentage

EMSEL (0.00,11.23) (0.00,13.87) (3.80,14.80) (18.60,14.48) (33.40,15.13) (44.20,30.48) 21.65

EMAVG (0.00,12.42) (0.00,14.50) (3.00,13.85) (29.80,19.75) (41.80,17.17) (35.40,22.32) 20.53

DA (0.00,11.00) (0.00,14.42) (7.60,20.08) (31.40,26.67) (35.00,18.67) (26.00,9.17) 19.17

Scenario 3 0.05 0.10 0.15 0.20 0.25 0.30

ODMEAN (0.00,25.98) (0.00,5.08) (1.80,3.77) (11.20,3.82) (18.60,2.45) (68.40,58.90) 21.15

ODBAYE (0.00,23.74) (0.40,6.77) (5.40,15.37) (20.40,9.89) (25.20,6.72) (48.60,37.52) 19.12

TITEMEAN (0.00,2.97) (0.00,7.48) (5.00,16.58) (29.00,46.62) (40.20,23.27) (25.80,3.08) 19.04

TITEMLE (0.00,10.30) (0.40,15.87) (6.00,22.85) (33.00,29.78) (30.40,16.37) (30.20,4.83) 16.60

EMSEL (0.00,12.22) (0.00,14.65) (4.00,13.50) (14.42,14.12) (30.20,13.68) (51.60,31.83) 19.91

EMAVG (0.00,12.48) (0.40,13.72) (5.40,14.98) (16.00,18.30) (33.60,15.38) (44.60,25.13) 19.46

DA (0.00,9.58) (0.00,15.08) (2.80,19.17) (28.20,25.75) (32.40,16.92) (36.60,13.50) 18.17

Scenario 4 0.20 0.30 0.40 0.50 0.60 0.70

ODMEAN (35.20,70.55) (48.20,2.01) (15.20,7.43) (1.40,2.33) (0.00,8.05) (0.00,9.64) 34.43

ODBAYE (39.20,73.32) (46.80,6.84) (12.60,4.48) (1.40,1.92) (0.00,0.52) (0.00,8.28) 32.18

to be continued . . .
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Design Dose 1 Dose 2 Dose 3 Dose 4 Dose 5 Dose 6 DLT percentage

TITEMEAN (34.80,42.75) (48.00,23.97) (16.00,11.77) (1.20,19.92) (0.00,1.55) (0.00,0.05) 34.12

TITEMLE (39.20,58.42) (46.80,29.18) (13.20,9.68) (0.80,0.25) (0.00,0.22) (0.00,0.00) 28.80

EMSEL (46.40,59.30) (37.60,25.18) (14.40,8.97) (1.60,4.17) (0.00,1.80) (0.00,0.58) 30.15

EMAVG (45.00,63.15) (39.20,22.17) (14.60,9.48) (1.00,3.93) (0.20,0.98) (0.00,0.28) 29.63

DA (0.20,47.33) (40.20,31.17) (54.60,16.42) (3.20,5.00) (0.00,0.08) (0.00,0.00) 29.96

Scenario 5 0.30 0.40 0.50 0.55 0.60 0.70

ODMEAN (69.00,72.34) (23.60,2.28) (6.80,7.70) (0.60,1.94) (0.00,7.83) (0.00,7.91) 37.88

ODBAYE (73.40,76.46) (23.80,6.78) (2.40,4.06) (0.40,1.78) (0.00,5.18) (0.00,5.75) 35.97

TITEMEAN (62.20,54.13) (33.80,19.58) (4.00,6.95) (0.00,18.02) (0.00,1.30) (0.00,0.02) 37.64

TITEMLE (73.20,75.07) (25.00,19.67) (1.80,4.40) (0.00,0.82) (0.00,0.05) (0.00,0.00) 33.05

EMSEL (74.80,72.20) (22.40,19.20) (2.40,5.43) (0.40,1.93) (0.00,0.82) (0.00,0.42) 33.16

EMAVG (77.60,77.83) (19.60,15.52) (2.60,4.52) (0.20,1.65) (0.00,0.37) (0.00,0.12) 33.23

DA (45.80,61.67) (50.00,28.25) (3.00,9.33) (1.20,0.75) (0.00,0.00) (0.00,0.00) 35.52

Scenario 6 0.02 0.05 0.08 0.30 0.40 0.50

to be continued . . .
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Design Dose 1 Dose 2 Dose 3 Dose 4 Dose 5 Dose 6 DLT percentage

ODMEAN (0.00,38.17) (1.40,5.44) (29.60,5.38) (54.20,3.53) (14.80,9.72) (0.00,37.78) 25.41

ODBAYE (0.00,25.13) (0.60,16.67) (23.60,18.33) (58.80,13.80) (17.00,7.12) (0.00,18.95) 18.76

TITEMEAN (0.00,5.33) (0.00,11.80) (21.80,21.58) (59.20,49.88) (19.00,10.78) (0.00,0.62) 21.82

TITEMLE (0.00,8.70) (0.00,10.72) (32.60,19.00) (57.00,40.18) (9.40,19.65) (1.00,1.75) 22.78

EMSEL (0.00,9.63) (3.00,10.71) (42.00,13.54) (48.00,20.67) (7.00,17.58) (0.00,27.88) 28.60

EMAVG (0.00,10.42) (3.00,11.17) (47.50,13.33) (45.50,23.92) (4.00,23.54) (0.00,17.63) 27.13

DA (0.00,9.67) (6.20,11.92) (56.20,15.75) (35.60,27.75) (2.00,25.25) (0.00,9.67) 25.38

Scenario 7 0.20 0.25 0.30 0.35 0.40 0.45

ODMEAN (10.80,57.95) (27.00,1.83) (30.80,2.16) (18.40,2.32) (8.00,1.18) (5.00,34.56) 29.60

ODBAYE (12.60,57.13) (38.60,11.88) (33.20,4.21) (11.80,1.66) (2.60,0.31) (1.20,24.82) 27.47

TITEMEAN (3.00,18.47) (30.20,23.68) (40.80,21.85) (23.80,31.23) (2.20,4.48) (0.00,0.28) 28.88

TITEMLE (14.20,42.47) (41.60,30.98) (30.60,17.20) (13.00,8.67) (0.60,0.58) (0.00,0.10) 24.95

EMSEL (18.80,42.57) (30.40,27.97) (27.00,13.53) (13.80,7.37) (9.00,4.27) (1.00,4.30) 25.91

EMAVG (17.40,47.98) (37.00,23.58) (25.00,13.65) (14.20,8.50) (6.00,3.68) (0.40,0.26) 25.44

to be continued . . .
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Design Dose 1 Dose 2 Dose 3 Dose 4 Dose 5 Dose 6 DLT percentage

DA (0.00,34.83) (1.00,29.58) (35.20,21.33) (49.20,0.11) (12.60,2.75) (2.00,0.42) 26.40

Scenario 8 0.10 0.15 0.20 0.30 0.50 0.70

ODMEAN (0.60,55.31) (15.40,6.27) (20.80,8.99) (58.40,2.98) (4.60,6.34) (0.20,20.11) 27.46

ODBAYE (0.40,50.08) (11.60,14.00) (33.80,14.87) (47.00,1.60) (7.20,4.17) (0.00,15.28) 25.61

TITEMEAN (0.00,15.90) (9.60,23.48) (24.80,29.07) (65.40,28.27) (0.20,3.13) (0.00,0.15) 26.92

TITEMLE (0.20,16.43) (11.60,30.80) (25.60,33.85) (62.20,17.25) (0.40,1.60) (0.00,0.07) 24.59

EMSEL (0.80,18.63) (11.60,25.23) (31.00,23.17) (50.80,16.07) (5.60,10.15) (0.20,6.80) 28.52

EMAVG (0.40,22.63) (12.00,23.63) (28.40,24.47) (55.20,17.95) (4.00,7.47) (0.00,3.85) 26.96

DA (0.00,16.25) (2.40,21.88) (27.00,28.21) (59.40,24.33) (11.20,7.96) (0.00,1.38) 23.57

Scenario 9 0.10 0.15 0.20 0.30 0.50 0.70

ODMEAN (0.00,36.84) (10.80,24.99) (36.20,9.39) (49.60,6.74) (3.40,3.56) (0.00,18.48) 25.63

ODBAYE (0.00,38.39) (9.60,23.08) (34.60,15.21) (52.00,7.55) (3.80,0.20) (0.00,15.57) 24.60

TITEMEAN (0.00,16.72) (9.60,24.20) (40.40,26.90) (49.80,28.33) (0.20,3.63) (0.00,0.22) 26.85

TITEMLE (0.00,16.48) (9.40,30.83) (45.00,32.12) (44.00,17.90) (1.60,2.63) (0.00,0.03) 24.64

to be continued . . .
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Design Dose 1 Dose 2 Dose 3 Dose 4 Dose 5 Dose 6 DLT percentage

EMSEL (0.00,21.38) (12.20,23.65) (41.40,26.15) (44.40,17.95) (2.00,7.47) (0.00,3.40) 26.66

EMAVG (0.00,19.48) (13.00,26.68) (39.40,23.67) (41.40,15.15) (6.00,9.35) (0.20,5.67) 27.84

DA (0.00,17.92) (5.00,24.67) (32.60,27.58) (56.40,22.83) (6.00,5.67) (0.00,1.33) 22.67

Scenario 10 0.10 0.15 0.20 0.30 0.50 0.70

ODMEAN (0.00,48.23) (19.00,6.40) (30.20,9.31) (48.60,6.89) (2.20,8.33) (0.00,20.84) 29.63

ODBAYE (0.00,44.63) (11.00,12.23) (35.80,18.48) (47.80,7.50) (5.20,0.84) (0.20,16.31) 26.14

TITEMEAN (0.00,17.52) (0.20,23.57) (8.40,27.47) (68.20,27.92) (23.20,3.35) (0.00,0.18) 27.04

TITEMLE (0.00,16.70) (10.00,30.95) (43.20,30.75) (45.40,18.87) (1.40,2.65) (0.00,0.08) 24.58

EMSEL (0.00,16.72) (11.20,25.35) (44.00,24.40) (38.60,15.97) (6.00,10.75) (0.20,6.82) 29.17

EMAVG (0.20,20.02) (11.00,23.95) (44.40,24.95) (41.20,20.17) (3.20,7.68) (0.00,3.23) 27.22

DA (0.00,12.83) (0.40,20.42) (27.40,26.83) (57.20,26.58) (15.00,10.00) (0.00,3.33) 23.81

Scenario 11 0.10 0.15 0.20 0.30 0.50 0.70

ODMEAN (0.00,37.65) (12.00,20.22) (41.20,14.10) (45.40,7.24) (1.40,8.70) (0.00,12.08) 25.96

ODBAYE (0.40,37.46) (11.20,17.55) (45.40,15.34) (40.60,14.59) (2.40,7.02) (0.00,8.03) 26.05

to be continued . . .
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Design Dose 1 Dose 2 Dose 3 Dose 4 Dose 5 Dose 6 DLT percentage

TITEMEAN (0.20,17.04) (5.60,23.83) (35.60,27.29) (46.80,28.51) (11.60,3.18) (0.20,0.15) 26.95

TITEMLE (0.00,17.13) (12.00,31.40) (42.00,31.62) (44.00,17.45) (2.00,2.33) (0.00,0.07) 24.28

EMSEL (0.40,17.93) (14.40,25.93) (42.00,25.63) (38.00,14.90) (5.00,10.10) (0.20,5.50) 28.70

EMAVG (0.00,21.00) (12.40,24.53) (44.08,24.55) (41.00,18.13) (1.80,8.18) (0.00,3.60) 27.33

DA (0.00,14.92) (1.20,22.17) (31.00,26.08) (49.60,21.83) (17.20,11.42) (1.00,3.58) 24.06

Table 13: Simulation study comparing the performance of different designs
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From the simulation results, we can see that the four methods each have their own advan-

tages and disadvantages over various working situations. For scenario 1, the most standard

design setup, all methods performed similarly well with OD-CRM possessing slight superior-

ity. The latter four scenarios where the target was either by the end or by the beginning of

the toxicity set, the OD-CRM and EM-CRM performed relatively stable, as compared to the

TITE-CRM. Its performance relied somehow on the skeleton layout, as can be seen from its

putting most of the choices on the doses near the fourth one, i.e., the target one in its prior

skeleton setup (scenario 2 and 3). We can also sense its conservativeness from its low rate of

hit in scenario 3 where the target was the highest dose level, and its high rate of hit in scenario

4 and 5 where the target fell into the lower range of the design set. For scenario 6 where there

was a jump between the target dose (the fourth one) and its previous one, all designs had the

tendency to compensate for this inconsistency gap of the two consecutive doses by staying at the

lower one, as can be seen by the large percentage of selection of the third dose. For scenario 7

where the six toxicity rates were close to each other, all approaches present a not-so-outstanding

outcome where the rate of selecting the true MTD was around or below 40%.

We would expect OD-CRM to have slight inferiority comparing with the other three methods

for scenario 8, where data were generated solely by power model, the only working model for

EM-CRM, TITE-CRM, and DA-CRM, whereas OD-CRM used all three candidates. However,

when data were produced by logistic, or probit model alone (scenario 9 and 10), while the

OD-CRM still got comparable performances compared to the other three, when examining the

percentage of patient treated at each dose level, we found that the OD-CRM put most of the
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enrolled patients at the lowest dose, caused by our Bayesian prior choice for model parameter.

Therefore, we could see that the OD-CRM, while still yielding satisfying scores, could be more

safe in the sense that its dose allocation can operate to place more attention on the lowest one.

We should mention that our approach still got room to improve in terms of its efficacy in

selecting the true target dose. More specifically, the real parameter to estimate in the OD-CRM

design setup should be xt, the target dose level that satisfies the following equation,

3∑
m=1

πmψm(xt, θm) = pt (4.7)

where same as before, pt is the target toxicity rate, and (ψm, πm), m = 1, 2, 3, are the three

candidate models and their weights. Yet, the current parameter to be estimated when imple-

menting the OD-CRM is a weighted version of x1,t, x2,t, and x3,t, where

xm,t(θm, pt) = ψ−1
m (θm, pt), m = 1, 2, 3.

Therefore, for further improvement, we could treat Equation 4.7 as the sole target parameter

and take derivatives with respect to θ′m, then solve for
∂xt(θ, pt)

∂θ′m
, m = 1, 2, 3, respectively. By

taking this step, the objective function in constructing optimal designs would change from

3∑
m=1

πm

[(
∂xm,t(θm, pt)

∂θ′m

)
I−1
ξ (θm)

(
∂xm,t(θm, pt)

∂θ′m

)′]
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to
3∑

m=1

πm

[(
∂xt(θ, pt)

∂θ′m

)
I−1
ξ (θm)

(
∂xt(θ, pt)

∂θ′m

)′]
,

which we believe would enhance the performance of the proposed OD-CRM to a great extent.



CHAPTER 5

CONCLUSIONS AND FUTURE WORK

The main purpose of this dissertation is about improving the efficiency of dose allocation

in early-phase clinical trials when the primary endpoint is the toxicity response, and correctly

identifying the MTD is the ultimate goal. More specifically, when we take a look at the oncology

studies, the target toxicity rate is usually higher than the normal cutoff due to the severeness of

the disease, which also often results in an urgent need to find an effective agent with appropriate

dose level where the strict requirement of absolute safety could be somewhat loosened. On the

other hand, the treatments to tumor/cancer, unlike other general medicines, always incur high

level of AEs at the latter half of the usual evaluation period, thus makes the problem of the

so-called late-onset toxicities attracting so much attention.

We summarize here in this chapter our primary results on the newly-proposed dose-finding

approach, the OD-CRM, where optimal design theory is incorporated into the classic CRM

statistical inference framework. We would like to mention that although MTD is the parameter

of interest discussed in this thesis, it can be easily extended to other medically significant dose

targets, like the MED (minimal effective dose), or the BOD (biological optimal dose), as long

as they could be expressed as a function of the assumed working model, i.e., target dose = b(θ),

so that its asymptotic variance could be formulated in terms of the Fisher information matrix,

like the one stated in Equation 1.1. Some on-going work and future directions within this area

of research are presented in the following sections.
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5.1 Conclusions on standard dose-finding problems

OD-CRM applied in a standard MTD-finding problem is introduced in Section 1.2.2 and

elaborated in Section 3.1. Its main difference compared with the classic CRM approach lies

essentially in the objective function used in choosing the dose level for the next entered cohort of

patients. For the classic CRM, in order to obtain dnext, we only need to solve for equation b(θ̂) =

pt, where b(·) is the MTD expressed in a form of function of θ, the unknown model parameter,

while θ̂ is the latest updated θ estimate, and pt the target toxicity rate. In comparison, using

the asymptotic theory, we minimize the variance of M̂TD in order to obtain better estimation

accuracy under some optimality criterion, and the corresponding objective function is thus

written as b′(θ)I(θ)b(θ), where I(θ) is the Fisher information matrix of parameter θ under the

assumed working model ψ(x, θ).

The conclusions we listed in Section 3.1 provide strong evidence to support the well-admitted

claim that the CRM algorithm under standard clinical trial setup, is highly efficient, which has

also been demonstrated through many simulation studies (19).

More specifically, we proved that for simple power model, the OD-CRM will always select

next dose level with the corresponding toxicity rate very close to 0.2, regardless of the value

of the target toxicity rate set in the study. Recall that when CRM was first introduced by

O’Quigley et al. in 1990 (40), a toxicity probability of 0.2 was employed as the target rate.

Since then, many other studies in related fields also adopt 0.2 as the target toxicity rate to meet

standard pharmaceutical requirements. Therefore our optimality result here further confirms

their choices of design, which set the target toxicity rate to be 0.2, to be not only medically
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reasonable, but also statistically optimal. If the on-going medical trial fixes its pt to be some

value other than 0.2, but stays close, the efficiency loss, from the optimal design perspective,

is quite small and can be neglected (Table 6). The result is very encouraging because now we

have known that under the simple power model, as long as the target toxicity rate is chosen

from a reasonable range (say, from 0.1 to 0.35), the standard CRM procedure will generate

an optimal design, or at least a nearly optimal design with negligible efficiency loss. Then the

simulations conducted further (Table 8) reinstated our conclusion’s liability in the sense that it

stands not just under the asymptotic structure, but holds when constrained by limited sample

size as well.

As for the case of the two-parameter logistic and probit model, when the target toxicity rate

pt is set to be less than 0.5, under model parameter assumptions (Equation 3.5, Equation 3.12),

we proved that the standard CRM algorithm is exactly optimal when MTD is the target dose

to be identified, which justifies the efficiency of the CRM theoretically from the optimal design

point of view.

We should also mention that Theorems 2 and 3 are not subject to constraint 0 < pt < 0.5.

In fact, for the case pt > 0.5, as long as parameter α in the model is negative and independent

of pt (as compared to the pt-involved upper bound stated in Equation 3.5 and Equation 3.12),

the range for pt can be widened to cover almost all the (0, 1) interval (detailed proof not shown

here). However, since in a practical clinical trial, it is rare to see the target toxicity rate being

set higher than 0.5, we will thus not elaborate more on this circumstance.
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5.2 Conclusions on dose-finding problems with delayed-responses

OD-CRM applied in a MTD-finding problem with late-onset toxicities is introduced in

Section 1.2.3 and elaborated in Section 3.2. The dose assignment part in the method is still taken

care of by the optimal design theory, whereas for the newly arisen delayed-response problem,

we address it by attaching different weights to different observations based on their “liability”.

This “liability” of each data point is associated with their current DLT response, enrollment

time, and assigned dose level, then formulated using a conditional probability that links the

true toxicity rate with the observed response at each time point. This weighing mechanism

essentially incorporates recorded data, whether it is fully-evaluated or not, into the statistical

inference procedure in a “down-weighted” manner. This approach prevents over-estimation of

the MTD by throwing incomplete data away which could result in a false-optimistic guess of

patients’ toxic reaction, and at the same time makes use of all the statistics at hand to generate

more informative estimates, both for the unknown parameters and the underlying working

model, therefore is deemed particularly capable in terms of shortening the trial duration to a

great extent.

The result we presented in Theorem 5 provides us with a general guidance of dose selection

when we assume the simple power model as the only working model. As the conditions become

complicated with the increase of parameter dimension, Theorem 7 and 9 give the optimal

dose allocation under D-optimality for the first stage of a MTD-finding trial, under the two-

parameter logistic and probit model, respectively. Then in terms of a broader clinical setup

with multi-stage designs and multiple working models, we offer a general dose-finding algorithm
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which is built on the foundation of an efficient and well-established optimal-design-construction

algorithm, i.e., the OWEA (56).

We compare the OD-CRM with three other designs that are widely implemented in the

late-onset toxicity realm, namely, the TITE-CRM (8), the EM-CRM (59), and the DA-CRM

(32). The TITE-CRM is one of the most early proposed method dealing with the problem, and

it is the first design that came up with the weighing mechanism we mentioned and also used in

our method. The latter two approaches treat the delayed responses as missing data, and utilize

either a modified EM algorithm, or the Bayesian data augmentation technique, to substitute

the incomplete observations with their “best guess” of toxicity outcome.

Empirical studies were conducted under eleven toxicity configurations to cover various dose-

response scenarios. BMA framework was employed in the OD-CRM designs to compensate for

the uncertainty of the underlying working system. The update of the weight function was

done also under Bayesian structure where for each interim study time point, a Beta prior was

assumed and conjugated with the Binomial toxicity data. Simulation results, as tabulated in

Table 13, show great potential of the OD-CRM, as its ability to remain stable in terms of its

performance of identifying the true MTD (percentage ranges from about 30% to 70%), under

so many dissimilar scenarios, which includes a non-parametric case (scenario 11) where the

toxicity data were not generated by any parametric model.

Moreover, as we can see from the first two, three columns of the table, under the OD-

CRM designs, almost all patients (up to 90%) were administered with the lowest two, three

doses; and the total DLT occurrence rates (the last column) were controlled under a reasonable
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bound (35%), even for the case with a high-toxicity generator (scenario 5). This is a very

appealing property for safety and ethical concerns that researchers and practitioners may have

with respect to this method.

One more thing we should point out is the flexibility of our method. The dose-finding

algorithm we offer here can easily be modified to embrace multiple targets. For example, if we

want to estimate MTD and MED at the same time, an easy and natural way of doing so would

be to change the objective function from V̂(M̂TD) to
1

2
V̂(M̂TD) +

1

2
V̂(M̂ED), which could

be rather difficult for the other non-variance based designs, since their way of dose selection

is through solving an objective equation, and an objective equation system corresponding to

multiple targets would result in multiple solutions thus rendering the following dose allocation

process tricky and complex.

5.3 Future work

Some of the very interesting and worth-exploring problems are roughly discussed here in

this section.

1. Different weighting mechanism.

Although we practiced the combination of optimal design and Cheung and Chappell’s

weight function, some other weighting mechanism could also be incorporated into our

OD-CRM design framework. For example, based on the interpretation of weight func-

tion embedded in the time-to-toxicity regression model (Equation 2.3), we should have

wi(u, T ) =
Hi(u)

ψ(di, θ)
, where Hi(u) is the time-to-toxicity distribution under dose i. Thus
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following two popular Hi(u) assumptions, we could utilize the following two formulas to

estimate each wi.

• When time-to-toxicity U follows a log-logistic model with scale parameter 1 and

location parameter bi.

wi(u, T ) =
Hi(u)

ψ(di, θ)
=

1
1+u−bi

pi
=

1

pi

(
1 + u

logT ( 1
pi
−1)
) .

The last equality stems from the constraint that the location parameter bi’s should

be chosen so that the distribution of Ui at u = T (the end of the evaluation period)

would equal to its corresponding toxicity probability, i.e., Hi(T ) = pi.

• When time-to-toxicity U follows a Weibull model with shape parameter 4 and scale

parameter λi.

wi(u, T ) =
Hi(u)

ψ(di, θ)
=

1− exp

(
−
(
u
λi

)4
)

pi
=

1

pi

{
1− exp

[
− u

4

T 4

(
log

1

1− pi

)]}
.

λi’s are to be chosen in similar fashion as described in the log-logistic model case.

Therefore, the wi(u, T ) is estimated at each stage with pi replaced by ψ(di, θ̂). Notice that

here the weight function is updated under a heterogeneous structure such that patients

with different dose administrations, di and dj , i 6= j, will be assigned different weights to

their observations, regardless of whether they have been enrolled for the same duration

of time or not.
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2. Adding some randomness into the design.

One may argue that many good properties of the optimal design theory lie within a

continuous data universe. Although in our proposed algorithm, optimal dose(s) is/are

chosen from the available dose set so that dose assignment could be followed directly, a

stronger result could be generated when we have a continuous dose range to construct

optimal designs from, which, in a practical situation, is often unattainable. Therefore,

further investigation on new types of design (e.g., add some random mechanism into the

sampling procedure) could be helpful in order to balance the goal of achieving certain

optimality criterion and obtaining consistency for parameter estimation in dose-finding

problems, when only few dose levels are available at each recruitment stage.

For example, the EM-CRM provides us with a very attractive data-manipulating strategy.

In future work, instead of bringing the weighted version of the data into the model,

we could consider substituting each delayed toxicity with its predicted risk obtained by

reiterating its expectation based on the parameter estimates and the parameter updates

based on the“upgraded” data. Then at the end of each iteration, the converged Marcov

chain would yield a final θ̂ and E(Y), which are then built into the Fisher information

and likelihood function to guide the following optimal-dose(s) finding process.

3. Dose combination.

Dual-agent problem is also one of the most intriguing problems encounted in dose-finding

studies. The interaction of the two drugs may put the dose-toxicity monotonicity into a

questionable place. One of the method to address this problem would be a partial-order
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(PO) design, meaning that there exists only a few pairs of treatments whose ordering of the

toxicity probabilities are known at the beginning of the trial. Then several guesses would

be proposed regarding the rest of the toxicity probabilities, with each guess representing

a unique model, thus rendering the dose-combination problem into a model averaging or

model selection problem. A TITE design combined with this PO structure was discussed

in Wages, Conaway, and O’Quigley (54).

The DA-CRM approach (32) we discussed in earlier chapters can also be extended to

embrace this dual-agent problem. Liu and Ning (31) proposed this modification of the

DA-CRM by modeling the two-dimensional dose-toxicity surface using the Finney model

(18), which is broadly applied in drug-to-drug interaction studies (22).

4. Involving efficacy outcome.

Another practical impediment in adaptive clinical trials is the difficulty in a fully-usage

of the collected data. Usually the data accrued in Phase I studies are only examined for

the toxicity responses but not the efficacy. One reason would be that the subject pool for

early-phase studies only involves healthy volunteers while efficacious effect is normally seen

on patients with the target disease. However, the oncology trials possess this advantage

of recruiting patients with actual tumor/cancer even at Phase I (because the toxic effect

of an anti-tumor drug on a healthy person would be too much to withhold). Therefore we

could consider a streamline of Phase I/II design where toxicity and efficacy are modeled

at the same time.
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Specifically, we consider grouping the binary bivariate responses into ordinal outcomes,

say, no DLT and no efficacy would be the 1st category, no DLT and efficacy would be the

2nd, and DLT the 3rd. Then by utilizing a proportional odds model, or a continuation

ratio model, these three outcomes would be seen as a realization from a multinomial

distribution with each probability expressed out according to the chosen model. We also

would like to extend this line of thought into the dual-agent complication which would

enlarge the parameter dimension to four (proportional odds model) and six (continuation

ratio model). It still requires substantial additional work to get obtain an organized

framework. We will continue exploring this path with the hope of developing a novel and

practical solution.
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