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SUMMARY

Diffusion of contaminants, diseases, rumors, fads, and many other dynamic processes typi-

cally take place through a network of interacting entities. Entities themselves can be as diverse

as people, computers, organizations, and genes, among others. Similarly, interactions among the

entities can be of many forms, including friendships, physical proximity, electronic and verbal

communication, file sharing, physical molecular forces, and gene regulation. Network analysis

is one way to mathematically model and understand relationships among entities and how a

stochastic process, such as diffusion of a phenomenon taking place in the network, is affected

by those relationships. One fundamental question in the context of diffusion, particularly in

social networks is: which entities in a network are critical for a given diffusion process? For

instance, these critical entities could be individuals to whom free products should be given in a

network so that the adoption of the product is maximized, or individuals in a population who

should be vaccinated so that the spread of a virus or a contaminant is minimized or, leaders

in a network that are critical for initiating a mass movement. Mathematical forms of many

variants of this question have been shown to be in the class of NP-hard problems. Moreover,

strong inapproximability results exist for most of them. A number of heuristics have also been

formulated in the last decade or so to produce effective solutions for certain network models.

However, effective yet efficient solutions and better insights into effects of the network structure

on diffusion have still eluded the scientific community.
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SUMMARY (Continued)

In this research, I address the question of finding critical individuals for diffusion in networks

in the context of network theory, graph mining, and social network analysis. My research focuses

on two complementary optimization goals: maximization and minimization of the extent of the

resulting extent of diffusion. I work with explicitly dynamic or time evolving networks instead

of traditional static or aggregate representation of networks.

For diffusion maximization, I focus on finding the set of, what has been called, “influential

individuals”. That is, those individuals in the network who, when used as the initiators of the

particular diffusion process, maximize the resulting extent of diffusion.

In my research I worked on the following problems in the context of diffusion maximization

goal:

1. I extend the hardness results of diffusion maximization from traditional network models

to explicitly dynamic networks. I show that the problem of finding the optimal set of

influential individuals remains NP–hard for dynamic social networks. I provide a (1−1/e)-

approximation algorithm for finding a set of most influential individuals.

2. I analyze the impact of structural changes in dynamic networks on the prediction of

influential nodes in those networks. The motivation here is to measure the effectiveness

of the best methods given the natural evolution of the underlying networks.

3. I examine the extent of diffusion problem by analyzing the global structural properties of

real–world networks as indicators of diffusion trends. Specifically, my investigations use

the effective density of the diffusion network as an indicator of: (a) when it is necessary to

employ a sophisticated yet computationally expensive method, (b) when even a random

xi



SUMMARY (Continued)

set of diffusion initiators performs as well as the best methods, in expectation; or (c)

when and why certain heuristics, such as choosing high degree nodes for maximizing the

diffusion in the network, work.

For diffusion minimization problem, I focus on finding individuals who should be vacci-

nated or blocked from the network in order to minimize the resulting extent of diffusion in the

remaining network. I extend the standard network theoretic network measures to dynamic net-

works and investigate connections between local network structure and diffusion minimization.

I develop simple, practical, and locally computable heuristics for identifying critical nodes for

minimizing diffusion in those networks.

For rigorous analysis of the stochastic process of diffusion optimization, realistic network

generative models are crucial. Unfortunately, there are not many such models for dynamic

networks. To address this shortcoming, I present a statistical model for generating realistic

dynamic networks over time. Modeling such networks is necessary for two reason. First, in

order to better understand the underlying dynamics of the population. Second, in order to

generate synthetic networks that emulate the real–world properties, for validation. I present a

truly dynamic statistical generative network model that captures membership, formation, and

fluidity of community membership and the resulting structure of interactions.

The application domain on which I primarily and extensively focus in my research, is behav-

ioral ecology, especially, of equids. Specifically, I studied the relationship the effect of influence

maximization on social organization in equids. My contribution in this area is the analysis

of the relationship between social network structure of equids–specifically, grevys zebra and
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onagers - to the functions (leadership formation, loyalties, protection, survival) performed by

these networks. The goal of this work is to find clues in the global network structure of two

types of equids that differentiate one network from the other for achieving various above men-

tioned goals. With this work I provide ecologists with sophisticated computational tools for

understanding differences in social organization of various species of equids.
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CHAPTER 1

INTRODUCTION

Many natural and artificial systems exhibit diffusion on or in network structures. This is

a process by which information, viruses, ideas, and behavior spread over a network of indi-

viduals, computers, or webpages, among others. For example, adoption of a new technology

begins on a small scale with a few “early adopters”, then more and more people adopt it as

they observe friends and neighbors using it. Eventually the adoption of the technology may

spread through the social network as an epidemic “infecting” most of the network. Similarly,

a process of infectious or viral spread starts with an initial set of infected individuals. The

infection then spreads to susceptible individuals in close proximity or contact of the infected set

of individuals. These diffusion processes then unfold over the network and potentially create

cascades. These cascade processes have been the subject of studies in social sciences (80; 118;

139; 152), economics (76; 89; 144), epidemiology (34; 63; 143), statistical physics (124; 129;

133; 136), and recently in computer science (17; 30; 81; 92; 94; 100; 107; 111). Diffusion of

information, innovation, viral marketing, and epidemic spread are some of the cascading phe-

nomenon addressed in these research areas. Other than the population and the accompanying

social networks, resource (such as water or air) distribution networks are another application of

diffusion processes (27; 28; 29). Similarly, behavior propagation in animal proximity networks

that results in mass movements in those networks is another interesting area of research for the

1
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diffusion of influence phenomena. Hence, diffusion in networks is an important problem for a

diverse set of applications.

One of the most crucial research problems in networks is the optimization of the extent

of diffusion in those networks. For instance, which set of entities in a network facilitate or

inhibit the diffusion process the most in a network? From a viral marketing perspective, which

k individuals should be given free samples of a product so that the number of individuals

who eventually adopt the product, can be maximized? Or, from an epidemiology perspective,

which k individuals should be vaccinated so that spread of the disease in the population can be

minimized? Both the diffusion maximization and many variants of the diffusion minimization

objectives are NP–hard. Subsequently, approximation algorithms for these problems have been

proposed (92; 107). However, most of these approximations rely on a stochastic simulation

process that requires many iterations. These approaches then become infeasible for very large

networks. To counteract this problem many effective and efficient heuristics have been proposed

in the last decade or so (13; 51; 53; 63; 83; 100).

In my research, I investigate methods for finding nodes in a network that are critical for

diffusion optimization in a network. Given a network, a probabilistic diffusion model and the

number k, the central question of my research is: which k individuals optimize the extent of

diffusion the most when they are targeted to initiate the diffusion process. In this research, I

address the diffusion optimization objective for the two complementary goals of maximization

and minimization.
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Mathematical epidemiology, social science, and lately computer science has expended signifi-

cant effort in developing and studying models of diffusion. Typically, these studies have assumed

stationarity of the underlying network by aggregating the set of interactions (or edges) among

the entities of a network over time into a fixed set of entities related to each other through

the set of interactions. Such networks are called aggregate networks. An aggregate network

is an accumulated and static representation of a population network. However, the real–world

is not static and the diffusion process is inherently dynamic. Thus, to overcome these limita-

tions of aggregate networks, some of my work is focused on explicitly dynamic or time–evolving

networks.

Structural properties, such as, clustering coefficients, eigenvalues, expansion factors, and

centrality measures are some of the graph theoretic properties that have been shown to relate

to various social phenomena. In social sciences, as early as 1960s, Granovettor’s insight about

the strength of weak ties (79), and a large body of research on the diffusion of innovations (139;

152), has shown that an individual’s ideas and behaviors are direct functions of the ideas and

behaviors of the people the individual is connected to. Recently, many studies have shown

a positive correlation between the network structure and various social phenomena such as

community affiliations, communication pattern, as well as, diffusion process in networks. Based

on the conclusions drawn from this vast body of research, in this work, I further explore the

relationship of global and local network structure and diffusion in networks.

The goal of my research has been to develop efficient methods for diffusion optimization

objectives while tapping into a graph theoretic framework of network structure. In addition,
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I extend the study of diffusion processes from aggregate to explicitly dynamic networks. This

research can be broadly divided into five parts.

1. Network dynamics. I formulated dynamic network structure properties by incorporat-

ing the time factor into the traditional network theoretic properties (Chapter 5). These

properties provide the foundation for the analysis of diffusion in dynamic networks.

2. Diffusion maximization. Diffusion maximization is the problem of identifying a fixed

set of k nodes in a network such that when a stochastic diffusion process in the net-

work is initiated from them, the diffusing phenomenon reaches the maximal extent of the

population (Section 6.1). For diffusion maximization, I first established why dynamics

matter by comparing diffusion in dynamic and aggregate networks (Section 6.2). I further

investigate how the evolution of network affects the prediction of the extent of diffusion

and the identity of spreaders in a network (Section 6.3). I investigate the relationship

between global network structure and the extent of diffusion (Section 6.4). Specifically, I

investigate the effect of network density and modularity on the extent of diffusion. More-

over, I establish the connection between global network structure and the hardness of

finding good diffusion initiators in networks. Lastly, I analyze the effect of dynamic net-

work structure, such as dynamic communities, on diffusion in the network using certain

stochastic diffusion models (Section 6.5).

3. Diffusion minimization. Diffusion minimization is the problem of identifying a fixed set

of k nodes in a network that when blocked from the network, the effect of diffusing process

is minimized the most in the network (Section 7.1). For diffusion minimization problem,
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I devised heuristic methods for identifying critical individuals that minimize the extent of

diffusion the most in dynamic networks. I approach this problem by identifying aggregate

and dynamic network properties (Section 7.2) that are most effective in reducing the extent

of diffusion. I compare the blocking ability of individuals in the network to their respective

structural ranking based on the dynamic measures proposed in Chapter 5. I find that

overall, simple ranking according to a node’s static degree, or the dynamic version of a

node’s degree, performed consistently well. Surprisingly the dynamic clustering coefficient

seems to be a good indicator, while its static version performs worse than the random

ranking. This provides simple practical and locally computable algorithms for identifying

key blockers in a network.

4. Dynamic network generative model. In this part of the thesis I present a statistical

model for generating realistic dynamic networks over time (Section 4.3). Modeling such

networks is necessary both to better understand the underlying dynamics of the popula-

tion, as well as, for generating synthetic networks that emulate the real–world properties,

for validating analysis. This model captures membership, formation, and fluidity of com-

munity membership, and the resulting structure of interactions. This model is designed

to incorporate some of the most fundamental properties of the real world networks. I

particularly use this model to analyze the effect of network structure on the extent of

diffusion in dynamic networks in Section 6.5.

5. Social organization in equids. In this work I compare the relationship between social

network structure of equids — specifically, grevys zebra and onagers — to the functions
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(leadership formation, loyalties, protection, survival) these structures are optimized for

to perform (Chapter 8). Equids display a variety of different forms of social organization;

Plains zebra associate in small, closed harems, whereas onagers (wild asses) and grevys

zebra are found in looser, more ephemeral associations. Horses appear to be somewhat

intermediate. The goal of this part of my work is to find clues in the global network struc-

ture of two types of equids that differentiate one network from the other for achieving

various diffusion goals. With this work I provide ecologists with sophisticated computa-

tional tools for understanding various risks and benefits for which these animals optimize

for in their social organization.

The structure of the document is laid out in the following way. In Chapter 2, I briefly

describe various concepts that are fundamental for this research. Chapter 3, provides a brief

literature survey of applications of diffusion in networks, the computational complexity results,

the approximation and the heuristic approaches for diffusion optimization as well as compu-

tational social network analysis. In Chapter 4, I briefly describe the dynamic and aggregate

real–world networks used in the various experimental studies in this research. Moreover, I de-

scribe the network generative models employed in this research to generate synthetic networks.

Lastly, I describe the statistical dynamic network model that I developed. In chapter 6, I

address the diffusion maximization objective. Chapter 7 deals with the rigorous comparison

of dynamic network structure with the goal of diffusion minimization. Lastly, in Chapter 8,

I discuss the mathematical modeling of processes driving the social network organization in

equids.



CHAPTER 2

PRELIMINARIES

Analysis of diffusion processes over networks has two separate components. One is the net-

work that serves as a conduit to the diffusion process. Second is the stochastic diffusion process

itself. In this chapter, I revisit the traditional definition of networks from the literature as

well as state the time–incorporating extension to that representation of the network. Similarly,

stochastic diffusion models come in various flavors. I discuss some of the models from mathe-

matical epidemiology and social sciences that I use repeatedly in my work. Moreover, I state

the network structural properties that are heavily used in the analysis of relationship between

network structure and the extent of diffusion in those networks. These network properties are

limited to static/aggregate network representations. In Chapter 5, I introduce the extension to

these network properties for explicitly dynamic networks. Lastly, I state some of the functions

and their properties that are used extensively as the basis for diffusion optimization.

2.1 Types of networks

In my work, I represent network structures in two distinct ways: the traditional aggregate

network of connections and interactions and a non–traditional dynamic time–ordered series of

interactions. Formal definitions of both are as follows:

7
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2.1.1 Aggregate network

The aggregate network is the graph GA = (V,E) of individuals V and their interactions E

observed over a period of time. In this representation an edge exists between pairs of individuals

if they have ever interacted during the observed time period. Multiple interactions between a

pair of individuals over time are represented as a single weighted (by frequency) edge between

them or multiple edges between them (multigraph). This representation provides an aggregate

view of the interactions where the timing and order of interactions is neglected. For the most

part, my analysis is based on the multigraph representation of network of interactions.

Definition Let {1, . . . , T} be a finite set of discrete timesteps. Let Vt be the set of entities

observed at time t and let Et be the set of interactions among entities set Vt at t. The aggregate

graph GA = (V,E) of such a network is the set of entities V and interactions E such that

V =
⋃
t Vt and (u, v) ∈ E if ∃(ut, vt) at some timestep t between 1, . . . , T .

Many network problems are based on fundamental relationships involving time. Consider,

for example, the problems of modeling the flow of information through a distributed network,

studying the spread of a disease through a population, or analyzing the reachability properties

of an airline timetable. In such settings, a natural model of a network is the one in which

each interaction is annotated with a time label specifying the time at which the pair of entities

involved actually interacted. I call such a network a dynamic network.

2.1.2 Dynamic network

I represent a dynamic network as a series 〈G1, . . . , GT 〉 of static networks where each Gt is

a snapshot of individuals and their interactions at time t. For my work, I assume that the time
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during which the individuals are observed is finite. For simplicity, I also assume that the time

period is divided into discrete steps {1, . . . , T}.

Definition Let {1, . . . , T} be a finite set of discrete timesteps. Let V = {1, . . . , n} be a set of

individuals. Let Gt = (Vt, Et) be a graph representing a snapshot of a static network at time

t. Vt ⊆ V , is a subset of entities V observed at time t. An edge (ut, vt) ∈ Et if entities u and

v are connected at time t and for all v ∈ V and t ∈ {1, . . . , T − 1}, (vt, vt+1) ∈ E are directed

self edges of entities across timesteps.

A dynamic network GD = 〈G1, . . . , GT 〉 is the graph GD = (V,E) of the time series of

graphs Gt such that V =
⋃
t Vt and E =

⋃
tEt ∪

⋃
t−1 (vt, vt+1).

Analysis of network structures and their local and global properties complement research

about diffusion processes and how the global and local network configuration affect the extent

or rate of spread. Diffusion of innovations research has been greatly enhanced by network

analysis because it provides more exact specification of critical individuals like who influences

whom during the diffusion process. Similarly, network analysis has benefited from diffusion re-

lated research by providing real-world applications to compare and validate many mathematical

network models.

2.2 Static network structure and properties

Network theory provides an extensive vocabulary to label entities of a network. This vo-

cabulary also provides a set of concepts by which various properties of the network and its

entities can be evaluated. Thus, network theory gives us this variety of mathematical concepts
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by which a network and its entities can be precisely quantified and measured. Following is a

list of network related concepts that I refer to in the diffusion related work. They are divided

into the macro–level, global network properties and the micro–level, local node level properties.

2.2.1 Global properties

Global properties of a network refer to the average properties of the entire network being

studied. Although diffusion has been known to occur mostly at the local level the overall global

structure has been shown to have a significant impact on the evolution of diffusion trends in a

network (55). Some of the basic global properties of the network that have a significant impact

on the extent of diffusion are the following.

2.2.1.1 Density

Density D(G) is the proportion of the number of edges |E| present in a network relative to

the possible number of edges
(|V |

2

)
.

D(G) =
|E|(|V |
2

) .
2.2.1.2 Path

A simple path P (u, v) between a pair of nodes u, v is a sequence of nodes u = v1, v2, . . . , vp =

v with every consecutive pair of nodes connected by an edge(vi, vi+1) ∈ E.

2.2.1.3 Diameter

Diameter Dia(G) is the length of the longest shortest path.

Dia(G) = max
i,j
{d(vi, vj) : vi, vj ∈ V }.
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2.2.1.4 Average path length

Average path length AVG–PATH(G) is the average of all shortest path lengths between all

pairs of nodes in a network.

AVG–PATH(G) =

∑
i,j∈V d(vi, vj)(|V |

2

) .

2.2.2 Local properties

In network analysis various properties of the representing graph are studied as proxies of

the properties of the entities and their interactions. For example, the degree, various centrality

measures, clustering coefficients, or the Eigenvalues (PageRank) of the nodes have been used

to determine the relative importance of the individuals (42; 90) in networks. Following are the

local network properties I study in relation to diffusion in networks.

2.2.2.1 Degree

Degree of a node is the number of its unique neighbors. It is perhaps the simplest measure

of the influence of an individual: the more neighbors one has, the higher the chances of reaching

a larger proportion of a population.

2.2.2.2 Betweenness

Betweenness of an individual is the sum of fractions of all shortest paths between all pairs of

individuals that pass through this individual. It is a parameter that measures the importance

of individuals in a network based on their position on the shortest paths connecting pairs of

non-adjacent individuals (11; 71; 72).
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2.2.2.3 Closeness

Closeness of an individual is the average (geodesic) distance of the individual to any other

individual in the network (72; 142).

2.2.2.4 Clustering coefficient

Clustering coefficient is a measure of degree to which nodes in a graph tend to cluster

together (125).

Next I state the stochastic diffusion models I use in my work for simulating diffusion in

networks.

2.3 Types of diffusion models

Diffusion models are studied extensively in a wide range of disciplines. I focus on two of the

general models from mathematical epidemiology and behavior/social sciences.

2.3.1 Independent cascade model

The independent cascade model was first introduced in (59; 75) in the context of word-of-

mouth marketing. This is also the most commonly used simple model to study disease trans-

mission in networks (57; 117; 119; 124; 133). In this model, transmission from one individual

to another happens independent of interactions with all the other individuals.

The Independent Cascade model describes a diffusion process in terms of two types of

individuals, active and inactive. The process unfolds in discrete synchronized timesteps. In

each timestep, each active individual attempts to activate each of its inactive neighbors. The

activation of each inactive neighbor is determined by a probability of success. If an active

individual succeeds in affecting any of its neighbors, those neighbors become active in the next
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time step. Each attempt of activation is independent of all previous attempts as well as the

attempts of any other active individual to activate a common neighbor.

2.3.1.1 Independent cascade model and dynamic networks

Let GD = (V,E) be a dynamic network, A0 ⊆ V be a set of active individuals, and puv

be the probability of influence of u on v1. An active individual ut ∈ A0 at timestep t tries to

activate each of its currently inactive neighbors vt with a probability p, independent of all the

other neighbors. If ut succeeds in activating vt at timestep t, then vt will be active in step t+1,

whether or not (ut+1, vt+1) ∈ Et+1. If ut fails in activating vt, and at any subsequent timestep

ut+i gets reconnected to the still inactive vt+i, it will again try to activate vt+i. The process

runs for a finite number of timesteps T . I denote by σ(A0) = AT the correspondence between

the initial set A0 and the resulting set of active individuals AT . I call the size of the set AT ,

|AT |, the extent of diffusion.

The diffusion process in the independent cascade model in a dynamic network is different

from the aggregate network in one important aspect. In the aggregate case, each individual u

uses all its attempts of activating each of its inactive neighbors v with the same probability p in

one timestep t. This is the timestep right after the individual u itself becomes active. After that

single attempt the active individual becomes latent: that is, it is active but unable to activate

others. However in the dynamic network model as defined above, the active individuals never

1For simplicity, I assume p is uniform for all V and remains fixed for the entire period of simulation.
The uniform probability values also ensure that I test how the blocking ability of individuals depends
solely on the structure of the network, controlling for other parameters that may affect this ability.
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become latent during the spreading process. In my work, I only consider the progressive case

in which an individual converts from inactive to active but never reverses (no recovery in the

epidemiological model). It is a particularly important case in the context of identifying blockers

since the blocking action is typically done before any recovery.

2.3.2 Linear threshold model

Granovetter first introduced threshold models of diffusion (80). He postulated that individ-

uals differ in the degree they are influenced by the behavior of others in their social system.

For example, some individuals instantly adopt a new product introduced in the market whereas

others gradually adopt based on varying peer pressure. In general these sets of individuals are

differentiated as early and late adopters. Thus, the degree by which each individual is influenced

is not homogenous across a social system.

The linear threshold model also describes the diffusion over two sets of individuals, active

and inactive. Each inactive individual has a certain susceptibility to become active, which

is denoted by the individual’s “threshold”. Each active individual has a certain “weight” of

influence over each of its inactive neighbors. An individual becomes active if the accumulated

weight of all its active neighbors becomes larger than the individual’s susceptibility threshold.

More formally, the linear threshold model is defined by two parameters. For each individual

v, a threshold θv ≤ 1 indicates the latent tendency of this individual to be activated. For each

edge (wt, vt) ∈ Et (for 0 ≤ t ≤ T ) the weight bwt,vt is the influence of the individual w on v,

that is, w’s ability to activate v. For each v,
∑
bw,v ≤ 1.
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2.3.2.1 Linear threshold model and dynamic networks

The diffusion process described by linear threshold model in a dynamic network graph starts

with a given set of thresholds θv assigned to each individual. The initial set of active individuals

is A0. The process unfolds in discrete timesteps, 1 . . . T . At each step t, each inactive individual

vt is influenced by the set of its active neighbors. The inactive individual vt becomes active at

timestep t+1, if
∑
bwt,vt ≥ θv. If

∑
bwt,vt < θv then v remains inactive and at every subsequent

timestep, a new attempt is made to activate vt+i by the set of its neighbors active at time t+ i.

Each attempt is independent of any previously made attempts. The process continues for T

steps or until no more activation are possible. The outputs, again, are the set of individuals

active at time T , AT and the size of that set |AT |. I denote by σ(A0) = AT the correspondence

between the initial set A0 and the resulting set of active individuals AT .

The diffusion process in the dynamic network graph is different from the static network

graph, where each active individual is given only one attempt to activate any of its inactive

neighbor.

2.3.3 Independent cascade vs Linear threshold model

The difference between the independent cascade model and the linear threshold model is

that in the former model each attempt of activation is independent of the attempts by all the

other active individuals. However in the later model each inactive individual is influenced by

the aggregated weight of all its active neighbors.
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In my work I focus on discrete optimization functions only. In the following section I describe

some of the fundamental properties of set functions that I heavily rely on for devising efficient

solutions for various diffusion optimization objectives.

2.4 Sub–modularity and monotonicity

Sub–modularity is an extensively studied concept in theoretical computer science, especially

for designing optimization algorithms. It appears naturally in many applications, either as a

structural property of combinatorial problems or as a natural assumption on certain valuation

function. The concept of sub–modularity has historically been known as law of diminishing

returns in most economics literature. Sub–modular functions are set functions, which can be

considered a discrete counterpart to convex functions.

Consider an arbitrary function f(·) that maps subsets of the finite set U to non-negative

real numbers.

Definition f(·) is submodular if it satisfies the natural diminishing returns property. This

property states that the marginal gain of adding an element v to a set S is at least as great as

adding v to a set T , where S ⊆ T :

∀v, S ⊆ T : f(S ∪ v)− f(S) ≥ f(T ∪ v)− f(T )1.

1I abuse the set notation slightly by denoting the singleton set {v} as just v for simplicity.
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One of the properties of the submodular functions is that if a non–negative function f(·) is

submodular then it is monotonically increasing, i.e.

f(S ∪ v) ≥ f(S).

Definition (monotonicity.) A function f : {0, 1}U → R is monotone if for any S ⊆ T ⊆ N ,

f(S) ≤ f(T ).

2.4.1 Maximizing sub–modular monotonic functions

Here I explain the hardness of maximizing a sub–modular function subject to a size con-

straint. That is, given a function f(·) that is monotone, submodular, normalized, and a k ∈ N,

find a set S with |S| ≤ k maximizing f(S). This problem is NP-hard, since it contains set cover

as a special case.

2.4.1.1 Approximation

A simple greedy algorithm by Nemhauser et al. permits a (1− 1/e)−approximation for the

maximization problem (122).

Algorithm 1: Greedy Approximation

Initialization: S = ∅;
while |S| ≤ k do
S := S ∪ v : arg maxv{f(S ∪ v) ∀v ∈ N}

end while



CHAPTER 3

RELATED WORK

Dynamic phenomena such as opinions, information, fads, behavior, and disease spread

through a network by contacts and interactions among the entities of the network. Such spread-

ing phenomena have been studied in a number of domains including: social networks, epidemi-

ology, electronic networks, and physical distribution networks. These diffusion processes can

largely be divided into two forms of diffusion: Diffusion of innovation and diffusion of contam-

ination. In the first two sections I touch upon the seminal work in these lines of research as

well as briefly describe the subsequent progress in the last decade in these areas. Although it

is natural to distinguish between the two classes of diffusion processes, the research in these

areas have shown quite a lot of overlap (55). In a later section I describe the set of diffusion

optimization objectives studied extensively in theoretical computer science. The last section

deals with the research progress in network theory with respect to social network analysis.

3.1 Diffusion of diseases and contagions

Diffusion of communicable diseases, viruses, bacteria, contagions, and other contaminants

is one of the most well studied class of diffusion processes. Other than the biological hazards,

viruses and worms in computer networks and the Internet is another interesting application

for processes spreading over the network. Traditionally, mathematical modeling of diffusion

18
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of epidemics in networks has relied on the system of differential equations that makes the

simplifying assumption of homogeneity among the interacting entities of the networks (9; 34).

In statistical physics, the concept of bond percolation has been applied to mathematical

epidemic modeling (19; 124; 129; 143; 161). This line of research although started with the

assumption of uniform random mixing among the entities of the network, the later work incor-

porates more complex network structures. Ball et al. in (19) provide a probabilistic framework

that considers networks with “two levels of mixing”. In this framework, each entity in the

network belongs to the global network as well as a subgroup in the network. They conclude

that the diffusion of diseases in the subgroups takes place much more easily than in the larger

global network. Later, an alternative approach of calculating effect of clustering on SIR epi-

demic is given in (91). Kuperman and Abramson in (103) extend Keeling’s work to SIRS

model for diseases. In real–world, diseases do not die out completely, rather, they reappear

periodically. This is typically known as the endemic state. Using more realistic network struc-

tures, Pastor-Satorras and Vespignani initiate the extent of diffusion of computer viruses on the

Internet graph with scale–free degree distribution (133). Recently, Ferreira et al. quantitatively

compare the epidemic thresholds for various network models using variants of mean–field the-

ory (68). Claudio and Pastor-Satorras give a more nuanced relationship of hubs and network

core to the extent of epidemics in heterogenous networks in (43).

Independently, there has been extensive research going on in studying diffusion of epidemics

in game–theoretic settings (13). A remarkably different attempt in this line of work is the
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analysis of competing activation mechanisms in epidemics on networks based on the network

structural properties (44).

3.2 Diffusion of innovations

Diffusion of innovation is the spread of ideas, opinions, fads, and adoption of products

through certain channels over time among the members of a social system. Models of diffusion

of contagion have been used to explain the diffusion of ideas and opinions as early as nine-

teenth century (105; 115), albeit not in any scientific way. By the late 1960s, the conceptual

link between adoption and diffusion had been greatly reinforced by their enshrinement in sim-

ple mathematical models, which were mostly derived from classical models of mathematical

epidemiology (24). These various models, however, all embodied the core substantive assump-

tion that new adopters are influenced by the proportion of the population that has adopted

previously. For example, based on the theory of conditional decision models, social scientists

have explained diffusion of various social behaviors like self–management (144; 146), segrega-

tion (145), ethnic norms (104), effects of social networks in diffusion of innovation (140), and

rejection of innovation (1). These models vary in terms of both substance and details, but agree

that individual decision–making can be formalized as the probability of any given individual

acting is dependent on what his or her peers (friends, family, and coworkers, or other relevant

social reference group) are willing to do. Granovetter later formalized this line of research by

presenting “Threshold Models of Collective Behavior” (80). He postulated that individuals are

not homogenous in the degree they are influenced by their social system. Dodds and Watts (58)

later proposed a more general model of diffusion for “contagion” that contained both epidemic
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as well as the threshold models as special cases. Initial modeling of diffusion in social networks

heavily relied on uniform mixing models from mathematical epidemiology (9; 156).

However, in the two decades with the better understanding of network structures, more

sophisticated and realistic model of diffusion of information have been developed (117; 124;

129; 160; 161). In recent years, a number of studies have made use of online data to study

various social diffusion processes (4; 17; 18; 45; 106; 107).

3.3 Algorithmic results in diffusion optimization

The problem of identifying influential individuals in a social network has been most rig-

orously formulated and analyzed by Kempe et al. (92). They showed that this problem is

NP-complete. Moreover, they provide a greedy approximation algorithm that guarantees a

solution no worse than (1− 1/e) factor of the optimal for many general models of the spread of

influence. Later, Mossel et al. (120) showed that the general case of finding a set of nodes with

the largest “influence” is NP-hard, and has a (1− 1/e− ε)− approximation algorithm. Unfor-

tunately, this approximation algorithm is computationally intensive. Strong inapproximability

results for several variants of identifying nodes with high influence in interaction networks have

been shown in (47). Given the variety of diffusion processes, a diverse range of applications

for the diffusion problem, and the computational challenges involved, many techniques have

been developed to address variants of the diffusion detection, maximization, and minimization

problem. These techniques focus mainly on the diffusion function itself to solve the problem.

Asur et al. presented an event–based characterization of critical behavior in interaction graphs

for the purposes of modeling evolution, link prediction, and influence maximization (14).
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Identifying key nodes for spread minimization objective has algorithmically and heuristically

been dealt with in literature (63; 86; 93; 106). In (106), Leskovec et al. proposed an elegant

algorithm that optimizes multiple criteria related to spreading processes such that the spreading

phenomenon is detected as quickly as possible. Eubank et al. experimentally showed that global

graph theoretic measures like expansion factor and overlap ratio are good indicators for devising

vaccination strategies in static network models for populations (63). Another immunization

strategy based on the aggregate network model was proposed in (51). They propose an efficient

method of picking high degree nodes in a network to immunize thus inhibiting the spread of

disease. Kempe et al in (93) showed that a variant of the blocker identification problem is NP-

hard. In (10), Angluin et al. provide an approximation algorithm for diffusion maximization

without resorting to learning the network structure.

For diffusion minimization (12) proposed a game theoretic approach for inoculation strate-

gies for victims of viruses based on sum-of-squares partition problem. It has been shown that

removing nodes of the highest eigenvalues reduces the diffusion the most (135; 151; 153). Ex-

pansion factor of a graph has been shown to be a good indicator for detecting the spread of a

virus over the Internet (13). The core versus periphery structure of the network has been shown

to facilitate the inference of network of influence (77). Immunization of hubs in a network (85)

is a good strategy to minimize diffusion however, clustering coefficient is not an effective mea-

sure (83; 85) for such a goal. Immunizing neighbors of randomly selected nodes can result in

efficient diffusion minimization (51). Degree centrality heuristic has been shown to work well
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for containing spread of misinformation (38). Also, degree centrality has been shown to strongly

correlate with rates of infection (89).

Other than optimization of information and contagion diffusion in population networks,

a separate line of research has been going on to study diffusion of contaminants in distribu-

tion networks. (27; 28; 29) studied the optimal sensor placement sensors in water distribution

networks in large cities. Recently, Brummitt et al. analyzed cascades of load shedding in

electric grids coupled with other infrastructure (37). They provide a multi–type branching

process framework for better prediction of cascading processes on modular random graphs and

on multi–type networks in general.

3.4 Computational network analysis

Computational network analysis has attracted considerable interest in social and behavioral

sciences, economics, and computer science communities among many others for a a while now.

The development of faster and more sophisticated techniques for collecting and storing vast

amount of data has resulted in improving our ability to analyze large social, biological, and

computer networks. Computational techniques have started to play a central role in bridging the

gap between network analysis methods and many real–world concepts and physical processes.

Diffusion is one such phenomenon. Following is a brief literature survey of various network

properties studied to analyze diffusion in networks.

The fundamental difference between network and non–network explanation of a process is

the inclusion of concepts and information on relationships among entities in a study. Whether

we want to study local actions in the context of global structure of relationships of entities or
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the overall structure as it is, network analysis operationalizes structure in terms of networks of

relationship among entities. Regularities and patterns in interactions give rise to structures or

networks. The idea of representing societies as networks of interacting individuals dates back to

Lewin’s earlier work of group behavior (109). Typically, there is a single network representing

all interactions that have happened during the entire observation period. Using this aggregate

network model, the structure and properties of many social networks have been studied from

different perspectives (23; 32; 33; 35; 87).

Interdependence between individual decisions alludes that the structure of relations between

individuals is likely to impact the spread of conditional behaviors. Using systematic modeling of

real–world networks, (2; 53; 113) model the diffusion process in networks by incorporating the

network structure with the stochastic diffusion process. Social science shows that the location

and other local structural characteristics of where the diffusion starts results in effectively

different trends in diffusion (2). Size and density of the network affect the cascades of actions,

depending on the structural position of a certain type of critical individuals (78). Recently,

models of segregation have been extended to incorporate the real–world network structure like

the small world phenomenon (66). Diffusion of innovation is more likely to fail in random

networks than in a highly clustered network of consumers (48). “The strength of weak ties”

is a highly influential work of Mark Granovetter (79) that highlights the social dynamics of

a population. This study elucidates the cliquishness of the local community level structure

and existence of infrequent links between densely connected subgroups. The significance of

evolution of social populations for the diffusion of ideas, fads, traditions, riots, and other social
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trends cannot be over stated. Thus, it is important to analyze the spread of knowledge in

a population network while embedding its underlying structure in the overall equation of the

spreading behavior. Network properties, such as, short average path length and high clustering

coefficient correlate positively with diffusion maximization (95). Watts in (156) gives an exact

solution for the threshold model in random graphs for the case where initially a low density

of individuals have adopted a trend cascading through the network. Analysis of diffusion of

knowledge in a fully regular lattice like network structure to completely random network, that

is, from a local clique like structure to a completely irregular structure has shown that the

diffusion of same types of knowledge results in different trends of prevalence in a population

with different social structures (53). Recent works have focused on specific networks to co–relate

spread of ideas and information in particular networks like the web (81; 101; 102).

In network analysis various local properties of the graph representing the population are

studied as proxies of the properties of the individuals, their interactions, and the population

itself. For example, the degree, various centrality measures, clustering coefficients, or the eigen-

values (PageRank) of the nodes have been used to determine the relative importance of the

individuals, e.g., (42; 90). Betweenness centrality has been used to identify cohesive communi-

ties (74) and the distributions of shortest path lengths employed to measure the “navigability”

of the network (157). These and many other graph theoretic measures have been translated to

many social properties (112; 123; 124). Network measures such as clustering and assortative

mixing coefficients have been used to design local vaccination strategies (86).



CHAPTER 4

NETWORK DATA AND MODELS

This research work is based on the empirical study of many real–world and synthetic net-

works. The next section provide the summary of the real–world networks used in this work. In

the later section, the description and generative process of the synthetic networks is provided.

In the end, I present the dynamic network generative model that I developed for analysis on

real time evolving networks.

4.1 Real world networks

The real–world networks used in this research, include a diverse range of samples from

computer networks, human and animal population networks, co-authorship networks, social

networks, and blogosphere among others. Following is a brief description of those networks.

Autonomous systems: The graph of routers comprising the Internet can be organized into

sub–graphs called Autonomous Systems (AS). Each AS exchanges traffic flows with some

neighbors (peers). A communication network of who–talks–to–whom from the Border

Gateway Protocol logs constructed by (107) is used in our analysis. The data was collected

from University of Oregon Route Views Project - Online data and reports. The dataset

contains 735 daily instances which span an interval of 785 days from November 8, 1997

to January 2, 2000.

26
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Co-authorship network: This data set is a sample of the Digital Bibliography and Library

Project (110). This is a bibliographic dataset of publications in Computer Science. I use

a subset of the data from 1984–2002. In this network each node represents an individual

author and two authors are interacting if they are co-authors on a paper. The sample I

used contains 1000 individuals and 1891 co-authorship links. This is one of the sparsest

real networks used in this work.

Live journal: LiveJournal is a free on–line community with almost 10 million members; a

significant fraction of these members are highly active. (For example, roughly 300,000 up-

date their content in any given 24-hour period.) LiveJournal allows members to maintain

journals, individual and group blogs, and it allows people to declare which other members

are their friends (16; 108).

Gnutella P2P network: A sequence of snapshots of the Gnutella peer–to–peer file sharing

network from August 2002. There are total of 9 snapshots of Gnutella network collected in

August 2002. Nodes represent hosts in the Gnutella network topology and edges represent

connections between the Gnutella hosts (107; 138).

Epinions: This is who–trust–whom online social network of a general consumer review site

Epinions.com. Members of the site can decide whether to “trust” each other or not. All

the trust relationships interact and form the Web of Trust which is then combined with

review ratings to determine which reviews are shown to the user (137).
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Political Blogs: This is a directed network of 1224 web blogs connected by 16715 hyperlinks

based on US politics before the 2004 elections. For our experiments I convert the directed

graph to undirected graph (3).

Political Books: A network of books about US politics published around the time of the

2004 presidential election and sold by the online bookseller Amazon.com. Edges between

books represent frequent co–purchasing of books by the same buyers1 (128).

Zachary Karate Dataset: This is an aggregate network of friendships between the 34 mem-

bers of a karate club at a US university, as described by Wayne Zachary in 1977 (158). It

is a sparse network with only 75 friendship links.

Enron: The Enron e-mail corpus is a publicly available database of e-mails sent by and to

employees of the now defunct Enron corporation2. I used the version of the dataset

restricted to the 150 employees of Enron organization who were actually subpoenaed.

The raw Enron corpus contains 619,446 messages belonging to 158 users (5; 96).

Onagers: Populations of wild asses (Equus hemionus), also known as onagers, were observed

by biologists (141; 150) in the Little Rann of Kutch, a desert in Gujarat, India, during

January–May 2003. This data is recorded through visual scans. The dataset contains 29

individuals and 402 proximity relationships.

1The network was compiled by V. Krebs and is unpublished, but can found on Krebs’ web site:
http://www.orgnet.com

2Available with a full description at http://www.cs.cmu.edu/∼enron/
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Grevys Zebras: Populations of grevys zebras (Equus grevyi) were observed by biologists (69;

70; 141; 150) from June–August 2002 in the Laikipia region of Kenya. Predetermined

census loops were driven on a regular basis (approximately twice per week) and individuals

were identified by unique stripe patterns. Upon sighting, an individual’s GPS location

was taken. In the resulting network, each node represents an individual animal and two

animals are interacting if their GPS locations are the same. The dataset contains 28

individuals and 778 proximity links between them resulting in a very dense network.

MIT Reality Mining. The MIT Reality Mining dataset consists of social interactions among

100 students and faculty over a nine month period at the Massachusetts Institute of

Technology (61). Interactions were inferred from recorded Bluetooth connections between

Nokia 6600 smart phones distributed to the participants. Our processed dynamic network

consists of 96 vertices. I quantized the data to 4 hours unit based on the analysis by

Clauset and Eagle (50).

Haggle Infocomm. The Haggle Infocomm dataset consists of social interactions among at-

tendees at an IEEE Infocomm conference in the Grand Hyatt Miami (148). There were

41 participants and the duration of the conference was 4 days. The time quantization

period was 10 minutes.

Plains Zebra. Plains zebra (Equus burchelli) are another species of zebra. The data were

collected in a similar fashion to that of the grevys dataset. The data were collected

through visual scans (approximately once per day) over a period of several months (70).

Each entity is a plains zebra and the interactions represent spatial proximity as determined
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by ecologists based on GPS locations. It should be noted that this similarity between the

plains Zebra dataset and the grevys Zebra dataset should not be taken to mean that

the social interaction patterns will also be the same. There is evidence to indicate that

different species of zebra can exhibit very different interaction patterns (150). The plains-

1 dataset represents data from observations of 282 individuals from 12th July 2003 to 19th

September 2006. The plains-2 dataset represents observations of a different population of

313 individuals from 5th January 2004 to 3rd July 2007.

Portland: The Portland dataset (64) is a statistically correct simulation of the movement of

1.6 million individuals of Portland on a daily basis. Each node in the network represents

an individual and the two individuals are interacting if they are at the same “location”,

as defined by the simulation. I use a subset of 1588 individuals over 80 timesteps.

IMDB Photo Network The Internet Movie Database (IMDB)1 maintains a large archive

of tagged and dated photographs of individuals associated with the production of com-

mercial entertainment, including actors, directors and musicians. One might reasonably

assert that people tagged on a popular online movie information repository are ‘recogniz-

able’ to the general public, and that a degree of social association exists between people

photographed together. Thus, similar to the methodology of the plains Zebra sightings,

IMDB Photo Network is a collection of metadata on 45,477 photos with two or more

1http://www.imdb.com
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TABLE I: Real–world networks’ statistics

Dataset Nodes Edges Density

AS 16299 34157 .0002570

DBLP 964 1891 .0004074

Live Journal 15001 66286 .0005890

P2P 8114 26013 .0007903

Epinions 9997 216213 .0043270

Political Blogs 1224 16715 .0223320

Pol Books 105 441 .0809520

Karate 34 75 .1336900

Enron 147 3467 .3229890

plains 282 29050 .730606

Reality Mining 96 3625 .794956

onagers 29 402 .9901000

grevys 28 779 1

people, which collectively represents a partial structure of the social network of people

associated with the entertainment industry. The quantization period was one day.

The summary basic statistics of the real–world networks is given in Table I.

4.2 Synthetic network models

Many empirical studies in this work also include synthetic networks based on real–world

network models. The following two network models are primarily employed in this research.

Preferential attachment model The web, citation networks, and the network of film actors

are among a few examples of social networks that have been shown to exhibit a skewed

degree distribution (20; 21; 22; 157). Preferential attachment model (22) generates net-

works with skewed degree (specifically, power law) distributions. This is one of the first
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network generative models. In this model the network evolves over time. Nodes are added

to the network sequentially, each new node creates links to already existing nodes pro-

portional to how well connected the other nodes are. Hence, a new node is much more

likely to get connected to a high degree node than to a low degree node. The idea is based

on the premise of “rich getting richer”. Many real–world networks have been shown to

exhibit this process of growth. The skewness of the degree distribution is determined by

a parameter γ which is usually set between 2 and 3 based on the type of network being

studied.

Block mixture model Nodes of real–world networks are often structured in tight relatively

well–connected clusters (communities) (127). The stochastic block mixture model was

proposed for this purpose in the context of social sciences, using a Bayesian approach (131).

Further refinements, such as the assortative mixing (114) has made this model a natural

choice to analyze real–world networks in controlled parameter settings. The block mix-

ture model designates the nodes into C blocks. Given two parameters, the inter– and

intra–block edge probabilities, the edges are generated uniformly at random, with the

appropriate probabilities for each pair of nodes.

Apart from the progress in developing realistic network generative models that depict the

static network properties relatively accurately, there is a need for realistic and tractable statis-

tical models for the networks that evolve over time. For example, in epidemiology there is a

need for data–driven modeling of human sexual relationship networks for the purpose of mod-

eling and simulation of the diffusion of sexually transmitted disease. In the following section, I
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present one such model that I developed. This is a probabilistic network generative model that

given a fixed set of nodes, generates networks over time with skewed component distribution

with varied sizes and tunable degree distribution within each component.

4.3 Dynamic network generative model

In this work I present a statistical model for generating realistic dynamic networks over

time. Modeling such networks is necessary both to better understand the underlying dynamics

of the population, as well as, for generating synthetic networks that emulate the real–world

properties, for validating analysis.

Classically there are two main schools of network modeling. The approach primarily used

in social sciences is to treat the entire network as a maximum likelihood object from a statis-

tical distribution where some of the parameters, such as the number of dyads or triads, are

fixed (84). A radically different approach originates from the random graph community, where

generative models are designed to emulate large scale global statistical behaviors in networks,

such as the degree distribution (8; 21) and average distance (114), among others. A glaring

shortcoming of this second class of models is that these models are fundamentally evolutionary

but not truly dynamic. That is, once a connection is established it cannot be removed. This

intuitively contradicts how social links are formed, reinforced, and lost in real world. These

models essentially give a “static” representation of the dynamics of interactions aggregated up

to a certain point in time.

Here is a simple example of what the above mentioned models fail to capture. At given point

in time, society exists as a collection of loosely formed communities (74). As an individual joins
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a community, she/he forms relationships with its members. Overtime the individual updates

those relationships by adding more links to already existing members or new–comers and by

removing other links. Moreover, some individuals leave the communities all–together. Most

of the models in the aforementioned two classes capture one or the other network properties

but fail to incorporate many others. Especially, the existing models do not capture dynamic of

forming and breaking relationships in a fluid community membership.

4.3.1 Model

In this work I present a truly dynamic statistical generative network model that captures

membership, formation, and fluidity of community membership and the resulting structure of

interactions. This model incorporates some of the most fundamental properties of the real–

world networks. A time evolving network generative model that evaluate network community

structure is presented in (121). However, the multiplicity of scale and relationships renders it

harder to analyze in detail.

At a high level, the interactions in my model are driven by the individuals’ membership

in informal communities. Individuals tend to interact more within a community than accross

communities however, over time they may update their affiliations.

4.3.1.1 The dynamic generative process

The network generative process works as follows. The model requires the parameters

listed in Table II. Given the size of the network N and the number of timesteps T . In each

timestep ti ∈ T , I generate a set of communities according to the community distibution vector

〈C0, . . . , Cm〉. Nodes 1, . . . , N are proportionally assigned to each community. Then, based
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TABLE II: Parameters for the generative model

Parameter Description

N Size of the network

T Number of timesteps

〈C0, . . . , Cm〉 Distribution of community sizes.

Pintra Intra–cluster link probability.

Pinter Inter-cluster link probability.

Optional parameters to setup the dynamics of link formation within communities. For example,
for preferential attachment model, skewness and average degree.

on the Pintra probability, nodes within a community a linked to each other. In the next step,

the nodes are connected across communities using the probability Pinter. The above steps are

repeated for each timestep in T . Once the community distribution and node affiliations are

fixed in each timestep, nodes are switched from one community to another community across

timesteps based on the probability Psw. Note that this process of community affiliation over

time roughly follows the stochastic block model generative process with the evolution of the net-

work with time incoporporated into it. Other than the basic uniform probability of interactions

within a community Pintra, the model can take optional parameters to specify other individ-

ual level interactions pattern. For example, in the current version, this generative model can

take Preferential Attachement model as the process by which nodes interact among themselves

within a community.

4.3.2 Experimental results

I study the dynamic evolution of networks over a wide range of parameter values. For

instance, to generate networks that have at most one giant community and other communities
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that are trivially small, while maintaining a preferential attachment model of connectivity

within a community, I sample thousands of networks by controlling for the relevant parameters.

Figure 2 shows the degree distribution of a class of networks in which the giant component

encompasses 40–50 % of the network and all the rest of the components are some constant

fraction of log of the network size. For the preferential attachment model the exponent of

skewness γ is set between 2 and 3, as has been shown for most real–world networks. For

networks based on this model, the minimum average degree is set slightly above 1 to mimic the

growth process. The resulting synthetic networks have a bimodal degree distribution. That is,

there is a large frequency of smaller degrees but also a relatively significant number of nodes

that have degrees closer to the size of the largest component. This instantiation of the network

generative process also captures the modular structure of the underlying dynamic network, as

is evident by the sample graph in Figure 1.

To verify how well this model imitates reality, I test it in two ways. First, I measure the

global network properties of the dynamic network model. Real–world networks have been shown

to belong to certain classes of degree distributions, have short geodesics, and/or high clustering

coefficient. I estimate the parameter settings of our model that correlate to the properties

observed in real world. Secondly, I use the maximum likelihood approach to measure the

actual properties of the real–world dynamic networks. Such as, the probability of switching

of individuals within communities, the probability of links within and across communities, the

expected number of communities given an observed number of observations in time, and the

sizes of the communities relative to the size of the population. I use those parameters to
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Figure 2: Degree distribution of skewed community structure
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synthetically generate similar networks using our generative model and measure how well I can

replicate the real process.

4.3.3 Conclusion

Research in computational generative modeling of networks has, over more than a decade,

tried to build as realistic models as mathematically and statistically possible. However, for

the most part they have failed to capture the complexity of multiplicity of properties exhibited

by such networks. In this work, I propose a generative model for dynamic networks based

on the notion of distribution of communities within the population that split and merge over

time. Thus, this model not only emulates the dynamics of individual level interactions within

communities but it also incorporates the structural changes of the communities themselves.



CHAPTER 5

STRUCTURAL PROPERTIES OF DYNAMIC NETWORKS

In this work, I extend the study of network structure measures to explicitly dynamic net-

works. Many network problems are based on fundamental relationship involving time. Con-

sider, for example the problem of modeling the flow of information (40; 41; 54; 73), spreading

of diseases in a population (57; 63; 91; 99; 124), viral marketing (59; 60), and transportation

networks (7). For all such domains the evolution of the network over time plays a key role.

Hence, it is vital to define the structural properties of such dynamic networks, so that I can

compare such networks and better understand their differences.

In the following, I state the dynamic global as well as local structural properties that I

developed.

5.1 Global properties

Global properties of a network refer to the average properties of the entire network. Al-

though diffusion occur mostly at the individual level interactions, the overall global structure has

been shown to have a significant impact on the evolution of diffusion trends in a network (55).

Extensions of some of the basic global properties of the network that have a significant impact

on the extent of diffusion are the following.

39
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5.1.1 Dynamic Density

Dynamic Density is the average over all timesteps of the density of each time snapshot.

Let D(Gi) be the density of timestep i. Then, density of a dynamic network DT (G) over T

timesteps is:

DT (G) =
1

T

∑
1<t≤T

D(Gt).

That is, the dynamic density averages the static density over the entire time series.

5.1.2 Temporal Paths

The notion of a path is fundamental to most of graph related measures, from connectivity

problems and spanning trees to flows and cuts, all are based on paths. Paths that take into

account the time labeling on edges are known as temporal paths (93). A temporal path is a

time respecting path if the time labels of the sequence of edges on the path are nondecreasing.

A path is strictly time respecting if the time labels of the edges are increasing.

Definition A temporal path p(u, v) between a pair of individuals u and v, is a sequence of

edges connecting them. Formally,

p(u, v) = {(v0 = u, v1), (v1, v2), . . . , (vn−1, vn), (vn, vn+1 = v)}

such that, ∀(vj , vj+1), (vi, vi+1) ∈ p(u, v) and ∀i < j, λ(vi, vi+1) < λ(vj , vj+1).
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5.1.2.1 Geodesic

Traditionally, geodesic is the shortest distance from one individual to another individual

where distance is some function of edges on the shortest path. Usually, distance is the number

of edges on the path when the graph is unweighted. In dynamic networks, geodesic is the length

of the shortest temporal path. The length of temporal path is defined in two ways.

1. If the delays between any two consecutive interactions are ignored then length d(u, v) of

a path p(u, v) is the number of edges on the path, assuming that each edge or interaction

takes one timestep.

d(u, v) = |{(v0 = u, v1), . . . , (vn−1, vn = v)}|

where (v0 = u, v1) is the first edge on the path starting at u and (vn−1, vn = v) is the last

edge ending at v.

2. Alternatively, the length of a path is the time it takes for an interaction to take place

between a pair of non-adjacent individuals. Simply, the length is the time difference of

the first and last interactions on the path. The delays are implicitly embedded in this

distance measure between the two individuals.

d(u, v) = λ(vn−1, vn = v)− λ(v0 = u, v1) + 1
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where λ(vn−1, vn = v) and λ(v0 = u, v1) are time labels of the last and first interaction

respectively on the path p(u, v) between u and v.

The first definition of length of a path is equivalent to the length of a path in a simple un-

weighted aggregate graph. However, unlike the aggregate graph, there is a path between any

two individuals only if it is time respecting.

Hence, the geodesic g(u, v) of two non-adjacent individuals u and v in a dynamic network

is defined as:

g(u, v) =


1 if (u, v) ∈ E

λ(vn−1, vn = v)− λ(v0 = u, v1) + 1 if (vn−1, vn), (v0 = u, v1) ∈ E

Geodesic between two individuals in a dynamic network can be interpreted differently based

on the timing of interactions, the duration of interactions, and the number of individuals in-

volved in the interaction. The value of the geodesic is the same for all three interpretations.

Hence, any of them can be independently used for defining the shortest paths. All these factors

have different relevance and meaning in various domains. Following are the three representa-

tions of the shortest paths in dynamic networks.

5.1.2.2 Shortest Simple Temporal Path

Shortest Simple Temporal Path ps(u, v), between a pair of individuals u and v is the shortest

time respecting path between those individuals, with each intermediate individual present at

most once. The length of the shortest simple temporal path is the geodesic g(u, v).
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ps(u, v) =


(u, v) if (u, v) ∈ E

{(v0 = u, v1), (v1, v2), . . . , (vn−1, vn), (vn, vn+1 = v)} if (vi, vi+1) ∈ E

5.1.2.3 Shortest Link Path

Shortest Link Path pl(u, v), is the shortest simple temporal path with minimum number of

individuals on the path. The significance of this type of path is that it reduces the dependency

of the source and destination on intermediate individuals.

pl(u, v) = min |ps(u, v)|

5.1.2.4 Shortest Temporal Trails

Another way of measuring the significance of intermediate individuals on the shortest paths

of non–adjacent individuals is in terms of the ratio of the time spent on an intermediate node

to the total length of the path. Note, that the length of the path is defined in terms of

time for the temporal paths. It is obvious that an individual that retains the information for

the longest time in a shortest path is more significant than others in some ways. Then, by

accounting for delay at each intermediate individual, the paths are no longer simple. The delay

on each intermediate individual is essentially a self loop around that individual. These routes

in temporal networks are called temporal trails1. A temporal trail pd(u, v) between u and v is

1A trail may repeat vertices but must not repeat edges



44

a sequence of edges pd(u, v) = 〈(v0 = u, v1), (v1, v2), . . . , (vn−1, vn), (vn, vn+1 = v)〉, such that

λ(vt−1, vt) < λ(vt, vt+1) for t = 1, . . . , n− 1.

The shortest such trails are the one with the smallest geodesic. I call them the Shortest

Temporal Trails. The important thing is that these shortest trails have the same geodesic as

the shortest simple paths and shortest link paths between the same pair of individuals.

5.1.2.5 Dynamic diameter

Dynamic diameter is the length of the longest shortest temporal path. Since the geodesic

is the same for all three types of temporal paths, the value of the diameter is consistent across

all three path measures. However, the actual diameter can be interpreted differently based on

the definition used.

DiaT (G) = max{dT (vi, vj) : vi, vj ∈ V }.

5.1.2.6 Average temporal path length

Average temporal path length is the average of all shortest temporal path lengths between

all pairs of nodes in a network.

AVG–PATHT =

∑
i,j∈V dT (vi, vj)(

V
2

) .

5.2 Local properties

In network analysis various local properties of the graph are studied as proxies of the prop-

erties of the nodes/entities and their interactions. For example, the degree, various centrality

measures, clustering coefficients, or the Eigenvalues (PageRank) of the nodes have been used
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to determine the relative importance of the individuals (42; 90) in networks. Following are the

extensions of some of the local network properties I study in relation to diffusion in networks,

to dynamic networks.

5.2.1 Dynamic Degree

Dynamic Degree is the change in the neighborhood of an individual over time. Informally,

it is the rate at which new friends are gained over time. Let N(ut) be the neighborhood of

individual u at timestep t. The relative change in the neighborhood is then1 :

|N(ut−1)4N(ut)|
|N(ut−1) ∪N(ut)|

|N(ut)|.

The Dynamic Degree DEGT of u is the total accumulated rate of friend addition.

DEGT (u) =
∑

1<t≤T

|N(ut−1)4N(ut)|
|N(ut−1) ∪N(ut)|

|N(ut)|.

Note, that here I consider a friend to be “new” if it was not a friend in the previous

timestep. The definition is easily extended to incorporate a longer term memory of friendship.

The dynamic degree captures the gregariousness of an individual, an important quality from a

spreading perspective.

1Here 4 denotes the symmetric difference of the sets
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The dynamic degree, unlike its standard aggregate version, carries the information of the

timing of interactions and is sensitive to the order, concurrency, and delay among the interac-

tions.

5.2.1.1 Dynamic Average Degree

In the dynamic network the interactions among the individuals change with time. The

dynamic average degree is the average over all timesteps of the interactions of an individuals

in each timestep:

AV G-DEG(u) =
1

T

∑
1≤t≤T

DEG(ut).

where, DEG(ut) is the size of the neighborhood of u at timestep t.

5.2.2 Betweenness Centrality

Based on the above definition of temporal paths, I define betweenness centrality in dynamic

networks in two different ways. Temporal betweenness centrality is based on the shortest

simple or link paths. Whereas, delay betweenness centrality is based on the shortest simple

trails definition of temporal paths.

5.2.2.1 Temporal Betweenness Centrality

Temporal betweenness centrality measures the importance of individuals based on their

position in the shortest temporal paths of all other nodes. Temporal betweenness centrality

BT (v) of node v is defined as:

Let gst be the number of shortest temporal paths between s and t. Let gst(v) be the number

of shortest temporal paths between s and t that pass through v. Let BT (st)(v) be the fraction
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of shortest temporal (s, t) paths passing through v. Then, the temporal betweenness centrality

BT (v), of a node v is defined as the sum of fraction of all shortest temporal paths passing

through the node v between all pairs of nodes. Formally, the temporal betweenness centrality

is:

BT (v) =
∑
s 6=t6=v

BT (st)(v) =
∑
s 6=t6=v

gst(v)

gst
.

5.2.2.2 Delay Betweenness Centrality

The delay betweenness centrality, BD(v), of individual v, is defined as:

Let nstst be the number of shortest trails from s to t. Let nstst(v) be the number of time

steps of delay of v that all shortest trails from s to t. Let BD(st)(v) denote the delay-dependency

of (s, t) on v. The delay-betweenness centrality BD(v) of a vertex v is the sum of all delay-

dependencies BD(st)(v) of all other node pairs (s, t). Formally, the delay betweenness centrality

is:

BD(v) =
∑

s,t:s 6=t6=v
BD(st)(v) =

∑
s,t:s 6=t6=v

nstst(v)

nstst
.

5.2.3 Dynamic Closeness

Dynamic Closeness of a node is the average time it takes from that individual to reach any

other individual in the network. Dynamic closeness is based on shortest temporal paths and

the geodesic is defined as the time duration of such paths.
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Let dT (u, v) be the length of the shortest temporal path from u to v. Following the definition

in (142) I define dynamic closeness as follows.

CT (u) =
1∑

v∈V \{u}

dT (u, v)
.

5.2.4 Dynamic Clustering Coefficient

Dynamic Clustering Coefficient is the sum of the fractions of an individual’s neighbors who

have been friends among themselves in previous timesteps. That is, the dynamic clustering

coefficient measures how many of your friends are already friends.

Let CF (ut) be the number of friends of u that are already friends among themselves by

timestep t. Let N(ut) be the neighborhood of individual u at timestep t. Then,

CF (ut) =
∑

i,j∈N(ut)

t−1∑
k=0

Ek(i, j).

The dynamic clustering coefficient is then the fraction of u’s neighbors who are already friends

among themselves.

CCT (u) =
∑

0≤t<T

CF (ut)

|N(ut)|(|N(ut)| − 1)
.



CHAPTER 6

DIFFUSION MAXIMIZATION

Diffusion maximization is the process by which diffusion of a phenomenon takes place in

a network through the entities of the network with the goal of maximizing the diffusing pro-

cess. Finding entities critical for maximizing the extent of diffusion in a network is one of the

fundamental questions related to diffusion in networks. I call this set of critical individuals as

spreaders. A multitude of definitions and variants of the corresponding function for spread-

ers and diffusion maximization exist in literature. Following is some of the general to specific

interpretations of diffusion and spreaders in literature.

6.1 Problem statement

Definition (Diffusion) Diffusion(·) is a function that gives the overall average extent of diffu-

sion of a spreading process in a network. That is, the expected number of individuals affected

by a stochastic diffusion process after a specified number of timesteps. The estimate of the

diffusion is dependent on the underlying diffusion model and the structure of the network.

Diffusionv(·) is the expected extent of diffusion in a network, when the diffusion process is

initiated by the individual v. Given a diffusion model M and a distribution of the probability

of activation X , I define the diffusion functions as follows:

Diffusionv : {G,M,X} → R+

49



50

Diffusion(G) =
1

|V |
∑
v∈V

Diffusionv(G,M,X )

The extent of diffusion is the commonly used criterion for diffusion maximization objective

but other variants of this function have been introduced in the literature with respect to the

kind of applications of diffusion processes being studied. Lescovec et al. in (106) define the

optimization goal in terms of detection of a diffusion process taking place in a network. In

this case, the goal is to minimize the time to detection of a diffusion process, the density of

population unaffected by the diffusion process, or the size of the population affected before

detection. The last goal is exactly the extent of spread objective defined above.

6.2 Maximizing the extent of diffusion in a dynamic network

In this part of my research, I address the problem of maximizing the extent of diffusion

in dynamic networks (Section 2.1.2). I show that the problem of finding the optimal set of

influential individuals remains NP–hard for dynamic social networks. I provide a (1 − 1/e)-

approximation algorithm for finding a set of most influential individuals (Section 6.2.2). I

experimentally compare the optimal solution with the proposed approximation algorithm using

real–world network data (Section 4.1) and show that the approximation algorithm performs

comparable to the optimal in practice.

In this work, diffusion process is simulated using two of the most common diffusion models:

the Independent Cascade model (75; 76) and the Linear Threshold model (80). The details of

the two models are provided in Section 2.3. I compare the resulting extent of diffusion, quanti-

tatively and qualitatively, for both the aggregate and the dynamic networks. I experimentally
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show that for independent cascade model, diffusion in the aggregate network overestimates the

actual extent of diffusion taking place in the dynamic networks. Whereas, for the linear thresh-

old model, the aggregate network underestimates the actual extent of diffusion measured in the

dynamic networks. Moreover, I show that the set of influential individuals derived from the

aggregate network model may be completely different from the one obtained from the explicitly

dynamic analysis. Hence, it shows that ignoring the time order of interactions in general gives

results that do not relate to the actual spreading process taking place in the population. Algo-

rithms that explicitly address the dynamic aspects of the data are necessary and must be used

where the data on the timeline of interactions is available and I provide such an algorithm.

6.2.1 Problem Statement

I now formally define the Dynamic Influence Maximization problem:

Given: a dynamic social network G = 〈G1, . . . , GT 〉 over T timesteps and an integer k and a

diffusion model M.

Find: the initial set of individuals A0 of size |A0| = k

Objective: maximize the extent of spread initiated by A0 as measured by the expected size

of the set of active individuals f(A0) = |AT | in G after T timesteps under the diffusion

model.

I consider this problem for both the independent cascade model (Section 2.3.1) and the linear

threshold model (Section 2.3.2). I show that the Dynamic Influence Maximization problem is

NP–hard for both models but it can be efficiently approximated using a simple greedy approach.
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6.2.2 Complexity

Kempe et al. (92) show that the static Influence Maximization problem is NP-hard using

reductions from the Set Cover problem for the Independent Cascade model and from the Vertex

Cover problem for the Linear Threshold model. Both reductions are to instances of the Influence

Maximization problem where the diffusion happens in one timestep. Thus, the static instance of

the Influence Maximization problem is a special cases of the Dynamic Influence Maximization

problem with T = 1 timestep. Therefore, the Dynamic Influence Maximization problem for

both spread models remains NP–hard.

6.2.3 Approximation Algorithm

Here I present an approximation algorithm for both diffusion models. I use the notion of

submodular functions described in 2.4.

6.2.3.1 The Overall Approach

For the Dynamic Influence Maximization problem the goal in the terminology of the sub-

modular functions is to find a set S of individuals such that f(S) is maximal, that is adding

any other individual to S will not increase the value of f(S). This is an NP–hard problem for

any submodular function by reduction from the Hitting Set problem (52; 122). A simple greedy

hill climbing algorithm (122) gives a (1 − 1/e)-approximation of the optimal solution. I use a

similar greedy approach to achieve a (1−1/e)-approximation and show that you cannot do any

better for the specific case of the Dynamic Influence Maximization problem. I need to show

that the expected number of active individuals is a monotonic submodular function of the set

of initiating individuals.
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Theorem 1. If f(.) is a submodular and monotonic function, then the greedy hill climbing

algorithm gives a (1− 1/e)–approximation of the optimal solution (122).

The definition of the approximation ratio assumes that the function f(·) is either already

known or is easily computable. However, for the stochastic diffusion process there is no such

known function. The best that can be done is to simulate the stochastic diffusion process on

sample inputs several times and to estimate the expected set of active individuals AT at time

T using the Monte Carlo method. Kempe et al. (92) show that for some ε > 0, there is a γ > 0

such that using (1 + γ)-accurate estimates of f results in a (1− 1/(e− ε))-approximation of the

static Influence Maximization problem. This provides an approximation scheme that achieves

an approximation ratio arbitrarily close to the 1− 1/e. I use this approximation approach for

the Dynamic Influence Maximization problem with the two diffusion models. In the next two

sections I prove that the influence maximization function f(·) is submodular and monotonic

for the two diffusion models. With the following results, it naturally follows that the above

approximation algorithm gives within (1− 1/e) of the optimal solution.

6.2.3.2 The Independent Cascade Model

Using the above approach I prove that for an arbitrary instance of the independent cascade

model, the resulting influence function f(·) is submodular as well as monotonic. That is, the

increase in the expected number of activated individuals for any set S ⊆ T and an individual

vi is f(S ∪ v)− f(v) ≥ f(T ∪ v)− f(v). The dynamic network graph is defined by the natural

ordering of individual to individual connections based on the timesteps. For each timestep t,

to find whether an individual vt is successful in activating an individual wt I flip a coin for
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the edge (vt, wt) with the bias pvt,wt . The probability pv,v for the edges of the form (vt, vt+1)

for all timesteps t and all individuals is set to 1. Also, I only consider the progressive case in

this work, therefore, when an individual vt becomes active at time t, it will remain active for

all subsequent timesteps. The coin flips can occur earlier than the processing of a given edge.

Thus, I flip all the coins for G at the beginning of the diffusion process and use the results

when the corresponding edge needs to be processed. I call the edges for which the coin flips

indicate success “live” and the rest are “blocked”. All edges of type (vt, vt+1) have probability

1 of activation, therefore, they are live by default. Note, that an individual u will be active

if only if there is a path from some individual in A0 to u consisting entirely of live edges. By

fixing the outcomes of coin flips and selecting a set A0 at the beginning, I can easily find the

set of active individuals at the end of the spreading process by tracing a path of live edges from

each individual in A0.

Let X be a sample set of outcomes of coin flips for all edges. I define the activation outcome

of an active individual v by R(v,X), which is the set of individuals activated by v. Given a

sample set of coin flips X and an initial set A0, I denote the number of active individuals at

the end of the spreading process by fX(A0). Note, that fX(A0) is the size of the union of all

R(v,X) where v ∈ A0. The overall (incomputable) influence function f(A0) is the expectation

of fX(A0) over all possible sets of coin flips X. I show that fX(A0) is submodular.

Lemma 2. fX(A0) =
∑

v∈A0
R(v,X) is a submodular function.
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Proof. Let S and T be two sets such that S ⊆ T . Consider the quantity fX(S ∪ v) − fX(S).

By definition

fX(S ∪ v) − fX(S)

= |
⋃

u∈S∪v
R(u,X)−

⋃
u∈S

R(u,X)|

= |R(v,X)−
⋃
u∈S

R(u,X)|

≥ |R(v,X)−
⋃
u∈T

R(u,X)|

= fX(T ∪ v)− fX(T )

That is, the number of elements in R(v,X) that are not already in ∪u∈SR(u,X) is at

least as big as the number of elements not in the larger set T . This inequality shows that

fX(A0) is submodular for the independent cascade model. Moreover, fX(·) is monotone, since

fX(S ∪ v 6∈ S) ≥ fX(S) + 1.

6.2.3.3 The Linear Threshold Model

For the linear threshold model as well, I show that the resulting diffusion function f(·) is

submodular. Unlike the independent cascade model, a general influence function for the linear

threshold model based on fixed choices of thresholds θv for each individual is not submodular.

This is due to the accumulated effect of individuals on other individuals. As defined above, each

individual ut has an influence bv,u ≥ 0 on each of its neighbor vt, such that the total influence on

vt at time t is
∑

(ut,vt)∈Et

bv,u. Here, I use the approach of (92), to resolve the non–submodularity

of the spreading function. At time t, for each individual vt I pick at most one edge incident
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on vt from any neighbor individual ut with probability bv,u, and do not pick any other incident

edge with the probability 1−
∑

(ut,vt)∈Et

bv,u. If ut is not connected to vt then bv,u = 0. An edge

(ut, vt) is called “live” if it has been picked for activation and all other edges connected to vt

are called “blocked”. Note, that unlike in the independent cascade model, where each edge is

live independent of the other edges and an individual can have multiple live edge paths, in this

process, each active individual belongs to a unique live edge path.

In this modified version of the linear threshold model, the submodularity property of the

function f(·) holds as in the independent cascade model. I pick a sample distribution X of

live/blocked edges, and define R(v,X) as the set of individuals reachable through live edge paths

from v. Thus, for the initial set A0, it follows that fX(A0) is the cardinality of ∪v∈A0R(v,X),

which is the submodular function of A0. Finally, since f(·) is an expectation of fX(·) over all

X, it is a non–negative linear combination of the functions fX(·) and hence is also submodular.

Moreover, fX(·) is monotone, since fX(S ∪ v 6∈ S) ≥ fX(S) + 1.

Now, I show that the original linear threshold model is equivalent to the modified version.

Lemma 3. The distribution over active sets obtained by running the linear threshold process

to completion starting from A0, is equivalent to the distribution of active sets reachable by A0

under the random selection of live edges defined above.
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Proof. Consider the active set At at time t, and let v be an individual which is not yet active.

This individual becomes active at t + 1 if the set of individuals At − At−1 pushes it over the

threshold θv. Thus, the probability of activation of each individual can be defined as:

Pr(activation of v) =

∑
u∈At−At−1

bvt,ut

1−
∑

u∈At−1

bvt−1,ut−1

.

Similarly, for the redefined linear threshold model using random live–edge pattern, I run

the diffusion process by revealing the identities of live edges gradually as follows. At time t, At

is the set of active individuals. I pick an individual vt outside of At and check whether vt has

a live edge connecting it to any individual in At. If yes, then vt becomes active in time t + 1.

The activation of vt at t+ 1 shows that the live edge of vt comes from the set At −At−1. This

is equivalent to the probability ∑
u∈At−At−1

bvt,ut

1−
∑

u∈At−1

bvt−1,ut−1

.

Thus, the probability of activation through the live edge path is equivalent to the probability

of activation of an individual obtained by the original diffusion process. Hence, by induction

over the time steps, the distribution over active sets obtained by linear threshold model is the

same as that of the live edge path process.

This completes the proof of the submodularity of f(·) for both diffusion models. Thus, as

outlined in Section 6.2.3, a simple greedy heuristic of selecting one initially active individual,

at a time, that provides the largest marginal gain, gives a (1− 1/e)-approximation.
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In the next section, I show the experimental results of evaluating the performance of the

approximation algorithm in practice, as well as compare the static and the dynamic influence

maximization problem solutions.

6.2.4 Experiments

6.2.4.1 Types of experiments

I perform three sets of simulations using each diffusion model.

1. I compare the optimal solution to the results of the greedy approximation algorithm for

the dynamic network.

2. I compare quantitatively the extent of diffusion given by the approximation algorithm in

the dynamic versus static/aggregate version of the dynamic networks.

3. I qualitatively compare the extent of diffusion in the dynamic networks using the initial

set obtained by solving for diffusion maximization in static networks.

Note, for both the optimal and greedy approximation, the function f(·) needs to be com-

puted. It is an open question to compute this quantity exactly by an efficient method, but very

good estimates can be obtained by simulating the random process. More specifically, I simulate

both the process for T = 10000 trials for each initial set. This value is chosen after simulating

the diffusion process for several thousands runs and finding the least T beyond which the extend

of spreads obtained are comparable to T .

Following is the sketch of the the optimal algorithm.

1. Set the size of the initial set to k.
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2. For each possible subset of individuals of the initial set size:

(a) Simulate the spreading process for T trials with each spread model.

(b) Mark each individual not in the initial set as activated if that individual was active

in more than half of the trials.

(c) Pick the initial set that results in the maximum number of active individuals. This

is the optimal set that maximizes the spread.

Algorithm 2 formally explains the optimal method.

Algorithm 2: Optimal Influence Maximization

Set size of the initial set: |S| = k;
Initialization: S = ∅;
for all S ∈

(
N
k

)
do

Initialize: AT = ∅;
repeat

Estimate the extent of diffusion AT in G(V,E) using S as the initially active set.
until T trials
if v ∈ V active for more than half of the Trials then
AT = AT ∪ {v}

end if
end for
return S with max(Nk ) |AT |.

Following is the sketch of the greedy approximation algorithm.

1. Simulate the diffusion process independently with each individual i.
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2. Calculate the expected extent of diffusion from each individual i.

3. Pick the individual i that gives the maximum extent of diffusion.

4. Remove that individual and all those individuals that were activated by it in more than

half of the trials from the population.

5. Repeat steps (1–4) until k most influential individuals have been picked, where k is the

initial set size.

Algorithm 3 formally explains the greedy approximation method.

Algorithm 3: Greedy Approximation

Initialization: S = ∅;
while |S| ≤ k do
S := S ∪ v : arg maxv{f(S ∪ v) ∀v ∈ N}

end while
return S

Following are the details of the experiments.

Optimal vs Approximate: For small datasets I simulate the approximate as well as the

optimal diffusion processes using the two models. The optimal solution is computed

through exhaustive search of k most influential individuals out of the N in the network. I

compare the difference in the extent of diffusion for the initial set sizes of k = 3, 5, and at
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most 10 individuals. Exhaustive search is not feasible beyond k = 10 even for very small

networks (N ≤ 30).

Dynamic vs Static - Quantitative: For the second set of experiments I compare the extent

of diffusion in the static and the dynamic networks.

Dynamic vs Static - Qualitative: For the third set of experiments I compare the diffusion

in static and dynamic networks qualitative. I compare the sets of activated individuals

in the static and the dynamic networks when the same initial set of individuals is used. I

take the initial sets obtained by the approximation algorithm on the static network. I use

those those sets as the initial sets for the spreading processes in the dynamic network.

6.2.4.2 Experiment results

6.2.4.2.1 Data sets

The experimental results are based on the grevys, onagers, Portland, and Co–authorship

networks described in Section 4.1.

Following are the results for each diffusion model.

6.2.4.2.2 Independent Cascade

Parameter settings I compare the extent of diffusion for the initial set size k of 3 to at

most 10. It is important to mention here that for k = 1 the optimal and approximate methods

have identical results. For k = 2 the two solutions are too close to compare. Hence, I start

with k = 3 as the size of the initial set. For k > 10 the exhaustive optimal method is infeasible

to evaluate. Moreover, by k = 10, the initial set is too large already and all the individuals
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get activated very easily from both the methods, making the distinction between the two hard

to compared. The probability of activation on each edge is set uniformly at random. These

experiments are repeated for a range of probability values. After rigorously and exhaustively

trying a range of parameters, I find that at the upper threshold of activation, when the entire

population gets activated is at pr > 0.2. While for pr ≤ 0.05 the extent of diffusion is trivially

small and is not very interesting to analyze. Here I show the results for pr = 0.2. Each

stochastic diffusion simulation is run for over a 1000 trials. The number of iterations 1000 was

chosen as the one to be sufficient for the convergence of the Monte Carlo simulations.

Optimal vs Approximate For this set of experiments I use small data sets, as it is infea-

sible to compute the optimal solution on large networks. These experiments are performed on

grevys and onagers datasets, as each has less than 30 individuals. Both optimal and approxi-

mate(greedy) methods are simulated on the two networks. The first set of simulations are on

the grevys dataset. I compare the results of initial set sizes of 3, 5, 7 and 10 individuals. I could

not get the optimal solution for the initial set size of 10 since the number of subsets of size 10

for the dataset,
(
28
10

)
> 2.810, is too big and the exhaustive search is not feasible. However, the

value of the optimal solution for 10 initial individuals is at least 27 (which is the value of the

optimal solution for 7 initial individuals) and is more likely to be 28, the entire population.

The second set of simulations were conducted on the onagers data. Initial set sizes are 3, 5,

and 6. I did not need to consider larger initial sets since 6 initial individuals activate the entire

population. The results for both datasets are shown in Table III. The results are based on the

Independent cascade model with probability of diffusion pr = 0.2.
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The objective in animal populations is to test the hypothesis of how behavior spreads. Thus,

I can then compute predictions with the observed behavior.

TABLE III: Optimal Vs Approximate–grevys and onagers

Data Set Pop.size Init set size Opt Approx

grevy’s 28 3 20 18
5 23 20
7 27 22
10 – 25

onagers 29 3 26 26
5 28 28
6 29 29

The experiments show that the results obtained using the approximation algorithm are

within 80% accuracy of the optimal solution. This is better than the (1−1/e) ≈ 0.632 accuracy

predicted by the theoretical analysis.

Dynamic vs Static: Quantitative Comparison In the second set of experiments, I

compare the extent of diffusion in the dynamic and the static networks using the approximation

algorithm only. I use the Portland and DBLP data sets for this set of experiments. The size

of these networks are 211 and 1374, respectively. The initial sets are of the sizes 3, 5, and 10

individuals. The probability of activation is set to be the same for all edges and is 0.2. The

results for the Portland and DBLP datasets are given in Table IV. I observe that the extent of
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spread resulting from the same size of the initial set of individuals is much greater in the static

network than in the dynamic network. The difference is much more pronounced in the DBLP

dataset, the sparser of the two.

TABLE IV: Dynamic vs Static: Quantitative and Qualitative

Data set Pop.size Init set size Static Dynamic Dynamic using Static init. set

Portland 211 3 186 96 40
5 211 125 65
10 211 181 -

DBLP 1374 3 58 7 4
5 65 11 9
10 76 22 18

Dynamic vs Static: Qualitative Comparison In the last set of experiments I compare

the extent of diffusion in the dynamic network obtained using the initial set resulting from

running the approximation algorithm on the static network. I use the Portland and the DBLP

datasets for this set of experiments as well. The initial set sizes are 3 and 5 for Portland, since

5 initial individuals activate the entire network, and 3, 5, and 10 for DBLP. The probability of

activation is set to 0.2. The results are shown in Table IV.

I take the best (approximate) set obtained in the static network and use it to initiate the

spread in the dynamic network. However, the resulting extent of diffusion is much less than
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the extent of diffusion obtained using the approximation algorithm directly on the dynamic

network. This experiments demonstrates that the optimal set of initial individuals is not the

same in the static and the dynamic networks. Moreover, a set that performs well in the static

network may perform very poorly in the dynamic network.

6.2.4.2.3 Linear Threshold

Parameter settings For all the experiments I used initial sets of sizes up to 10 or the

size that resulted in the entire population being activated. The threshold probabilities were set

randomly for each individual. Each stochastic diffusion simulation is run for over a 1000 trials.

The number of iterations 1000 was chosen as the one to be sufficient for the convergence of the

Monte Carlo simulations.

I perform the same three sets of the experiments using the linear threshold model of spread.

Optimal vs Approximate I calculate the extent of diffusion using the optimal exhaustive

search and the greedy approximation algorithm on the grevys and the onagers datasets. The

results for this set of experiments are presented in Table V. The results demonstrate that the

approximate algorithm is 100% accurate on this dataset for the linear threshold model and,

thus, can be used in practice for a good estimate of the extent of diffusion.

Using the same data used in the experiments for the independent cascade model, I observe

that the extent of spread in linear threshold model is greater with the same size of the initial

set. For grevys, population size of 28, starting with 6 initial individuals results in the activation

of the entire population. For onagers, with the population size of 29, having only 3 individuals
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TABLE V: Optimal Vs Approximate–grevys and onagers

Data Set Pop.size Init set Opt Approx

grevys 28 3 25 25
5 27 27
6 28 28

onagers 29 3 29 29

in the initial set results in the activation of the complete population, both in the optimal and

the approximate solutions.

Dynamic vs Static: Quantitative Comparison To compare the extent of diffusion

obtained by the approximation algorithm in the dynamic and the static networks, I use the

complete Portland data set of 1588 individuals and DBLP data of 1374 individuals. The initial

set sizes are 3, 5, and 10 individuals. None of the initial sets resulted in activation of the

entire population but the 10 individuals’ set came very close to it. The results are shown

in Table VI. As in the independent cascade case, the extent of diffusion in the dynamic and the

static networks is very different. However, unlike in the independent cascade, here the extent

of diffusion in the dynamic network is greater than in the static.

Dynamic vs Static: Qualitative comparison In the last set of experiments with the

linear threshold model I compare the extent of diffusion in the dynamic network obtained using

the initial set resulting from running the approximation algorithm on the static network. Again,
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TABLE VI: Dynamic vs Static: Quantitative & Qualitative

Data set Pop.size Init set size Static Dynamic Dynamic using Static init. set

Portland 1588 3 665 1569 25
5 724 1571 30
10 1396 1576 71

DBLP 1374 3 961 1165 62
5 971 1167 70
10 993 1172 84

I use the Portland and the DBLP datasets with the initial set sizes 3, 5, and 10 individuals.

The results are shown in Table VI.

As in the independent cascade case, the best initial set obtained for the static network

performs extremely poorly in the dynamic network. Thus, also for the linear threshold model,

to find the right set of initial individuals we must perform the analysis on the dynamic network.

6.2.5 Conclusions and Future Work

In this work I defined the problem of finding the set of individuals that maximizes the

extent of diffusion in an explicitly dynamic social network. I show that this Dynamic Influence

Maximization is NP–hard for two common stochastic diffusion models. I propose a (1 − 1/e)-

approximation algorithm that performs well in practice.

I compare the results of Influence Maximization in the dynamic and the static representa-

tions of social networks. The extent of diffusion in the two types of representations is different

and the difference depends on the diffusion model and the dynamic topology of the networks.
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Moreover, the individuals that maximize the extent of diffusion in the dynamic and static graphs

are different.

Thus, the aggregate static representation not only gives an inaccurate information about

networks, using it to make predictions about the diffusion of ideas, behavior, or diseases in a

social network may lead to absolutely incorrect conclusions. Hence, it is crucial to use dynamic

network graphs where the interactions among individuals is sensitive to the time order.

However, in many instances, we must provide an estimate of the extent of spread and some

idea of the individuals that might be its facilitators even when the explicit dynamic information

about the interactions is not unavailable. Thus, we need to come up with some measures that

give theoretical estimates of the spread in dynamic networks based on static graphs.

There are many other possible extensions of this research. In this work I focused on iden-

tifying the facilitators of a spreading process. A very important but computationally a much

harder problem is to identify the set of individuals that effectively prevent diffusion in a net-

work. Such individuals would be the best candidates for vaccination in case of a spread of a

disease. In this work, I simplified the models by considering only the progressive case, where

an individual remains active once it has been activated. This work naturally extends to non-

progressive models. Finally, diffusion models other than the two discussed here can be used to

get a better comparison between the dynamic and the static network representations.

In conclusion, understanding how processes spread in networks is an important and grow-

ing area within many application domains. We must find the right models, measures, and

algorithms to study explicitly dynamic networks. My work demonstrates the importance of
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dynamic information and takes the first steps in analyzing the behavior of spreading processes

in explicitly dynamic data. In the next section I explore just how much dynamic change affects

the estimates of spread in dynamic networks.

6.3 The Impact of Structural Changes on Predictions of Spreading in Networks

In a typical realistic scenario, there exist some past data about the structure of the network

which are analyzed with respect to some possibly future spreading process, such as behavior,

opinion, disease, or computer malware. How sensitive are the predictions made about spread

and spreaders to the changes in the structure of the network? I investigate the answer to this

question by considering seven real–world networks that have an explicit timeline and span a

range of social interactions, from celebrity sightings to animal movement. For each dataset,

I examine the results of the spread analysis with respect to the changes that occur in the

network as the time unfolds as well as introduced random perturbations. I show that neither

the estimates of the extent of spread for each individual nor the set of the top spreaders are

robust to structural changes. Thus, analysis performed on historic data may not be relevant

by the time it is acted upon.

Prediction of the course and extent of processes spreading in social networks and identifi-

cation of the top spreading individuals have become important issues in many contexts, from

epidemiology to viral marketing. In a typical realistic scenario, there exists some past data

about the structure of the network which is analyzed with respect to the future spread of some

process, such as behavior, opinion, disease, or computer malware. The important tasks are (a)
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estimating the possible number of affected individuals once the process starts, (b) predicting

who those individuals may be, (c) identifying the most effective spread initiators, and (d) iden-

tifying individuals that can effectively block the spread of the process. However, by the time

the outcomes of such analysis are acted upon, such as by selecting marketing targets or vacci-

nation candidates, time has elapsed and the network structure may have changed significantly

from what was used for the initial analysis. The effectiveness of the marketing scheme (97) or

epidemiological response may be sabotaged if analysis results are sensitive to such structural

changes.

In this work, I focus mainly on the tasks of estimating the extent of spread and identifying

the top spreaders. These are the individuals that, when used as the start of a spread, affect the

largest proportion of the population. I ask how sensitive the predictions made about spread

and spreaders are to changes in the structure of the network. To answer this overall question,

I formulate three specific questions:

1. How much does the relative spreading ability of individuals change? Most

algorithms for estimating the extent of spread and for identifying the top spreaders fun-

damentally rely on estimates of the spreading ability of each individual. Thus, it is

important to know how reliable those estimates are both in terms of actual numbers and

in the ranking they impose on individuals.

2. How much does the identity of the top spreaders change? While the first question

asks whether our predictions hold for all the individuals in the population, this question
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focuses only on the top spreaders. The set of top spreaders may be more or less robust

than the rest of the individuals, yet it is typically more critical to the impeding action.

3. How does the spreading ability of the top spreaders from the past compare

with that of the top spreaders after the change? While the identity of the top

spreaders may change as the network changes, the previous set of top spreaders may still

perform well. Although it may not be the best set of top spreaders in the new network,

I ask whether it is good enough.

I investigate the answers to these questions by considering seven real–world networks (Sec-

tion 4.1) that have an explicit timeline and span a range of social interactions, from celebrity

sightings to animal movement. For each dataset, I examine the results of the spread analysis

with respect to the changes that occur in the network as time unfolds, as well as introduced

random perturbations (Section 6.3.2). I show that neither the estimates of the extent of spread

for each individual nor the set of the top spreaders are robust to structural changes (Section

7.4). Thus, analyses performed on historic data may not be relevant by the time they are acted

upon if the network changes substantially in the meantime.

6.3.1 Preliminaries

6.3.1.1 Static and Dynamic Networks

Recall from Section 2.1 the definition of the aggregate and the dynamic networks.

Definition A dynamic network is a time-series of labeled graphs G = 〈G1, . . . , GT 〉, where

Gt = (Vt, Et) is the graph of interactions taking place at timestep t. Vt ⊆ V is the set of
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individuals observed at timestep t, and an edge (v1, v2) exists in Et if v1 and v2 were observed

interacting in that time period.

The question of how much actual time should be quantized into a ‘timestep’ is beyond

the focus of this work. However, I note that many types of social systems have natural time

quantizations such as hours or days. Recently, Caceres et al. gave a rigorous formulation for

choosing scales of quantization of temporal data (39). Figure 3 shows a dynamic network of

interactions between four individuals.

One can aggregate a range of timesteps in a dynamic network into a single static graph, or

an aggregate network. This is done by accumulating vertices and edges present in a given range

of timesteps. Note that aggregating the entire range of timesteps results in a traditional social

network, i.e. a single graph of all edges without any temporal information.

Definition Given a dynamic network G, a static, or an aggregate network G[i,j] is the accumu-

lation of vertices and edges of the range [i, j] of timesteps of G:

V (G[i,j]) =
⋃
i≤t≤j

Vt E(G[i,j]) =
⋃
i≤t≤j

Et

If i = 1 and j = T , then the resultant aggregate network G[1,T ] is equivalent to the traditional

social network G.

In traditional approaches, network analysis is performed on the aggregate network rather

than the original explicitly dynamic network. One might immediately recognize a problem

here: paths in an aggregate network might not correspond to valid propagation paths in the
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Figure 3: A dynamic network (top), an aggregated network (bottom left), a traditional social
network (bottom right).

original dynamic network. Since the propagation of a rumor or virus must proceed along a

sequence of edges that are increasing in time, and since an aggregate network has no temporal

information, modeling the spread of a process without considering time can lead to grossly

inaccurate results (82).

6.3.1.2 Network Diffusion

A process spreading in a network can be described formally using many models of trans-

mission. For this paper I use a model that has been extensively studied in the context of social

networks and viral marketing, the Linear Threshold model (80). This model is extensively

described in Section 2.3.2.

6.3.2 Methodology

To answer the three questions posed in Section 6.3, I recall a typical scenario for network

analysis: the network is observed for some time, then is analyzed as one aggregated social

network. The results of the analysis are then deployed in the network, which has changed in
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the meantime. In order to determine the effect of the changes on the results of the historical

analysis, I use the following overall experimental template:

1. Consider (part of) the dynamic network as an aggregate “historical data” network Gh.

2. Perform analysis on Gh: estimate the spreading ability of each individual and identify the

top spreaders.

3. Extract the changed network Gf . I do this in two ways, both by considering the actual

future segment of the network and by randomly perturbing the network to introduce

changes.

4. Perform analysis on Gf : estimate the spreading ability of each individual and identify

the top spreaders. Compare the results of the analysis on Gh with the results on Gf .

This will answer questions 1 and 2: how much does the relative spreading ability of each

individual and the identify of the top spreaders changes.

5. Recall that the third question was how well do the top spreaders from the past perform in

the future relative to the best spreaders of the future. To answer this question, I simulate

the spread in Gf (changed network) starting both from the top spreaders of Gf and the

top spreader of Gh and compare their performance.

As I have pointed out, there are at least two ways to consider the changes that may happen

in the structure of the network as the network evolves with time. First, I may look at the

actual dynamic network and aggregate a portion of it into an initial “historical” segment used

for analysis. Subsequent segments are designated “future” data and used to validate the results
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of the analysis. The changes in the structure of the network then are the actual changes that are

recorded in the data. This is the approach of temporal cross-validation, which is an adaptation

of the well-known statistical technique.

Temporal cross-validation involves dividing the timeline of the dynamic network into several

segments and aggregating each segment into a single graph. Any analysis technique performed

on the graph of one segment should then produce similar results in another segment, given

that it is the same underlying network (and presumably the same dynamics) being modeled.

If this is not the case, then I can conclude that either the analysis technique is not robust,

or that the underlying dynamics of the network are changing. In either case, the particular

analysis technique is then unlikely to produce actionable results. For this study, for temporal

cross-validation I divide each dynamic network into five segments of equal duration.

While the temporal cross-validation approach examines the robustness of the analysis with

respect to actual recorded network changes, these changes may not be representative of the

changes that may, in principle, happen in the network. Thus, for the second way to introduce

changes into the structure of the network, I take the aggregate network and randomly remove

and add edges to introduce possible perturbations and provide the answer to the expected

robustness of the analysis.

6.3.2.1 Experimental Setup

I initiate the experiments with the “historical” data network Gh. This is the aggregate

network of either a segment of or the entire dynamic network. That is, Gh = (Vh, Eh), where
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Vh are the nodes present in timesteps i ≤ t ≤ j, Eh =
⋃j
t=iEt. Here i and j are either the first

and the last timestep of a particular network segment or i = 0 and j = T .

I define an objective function for each vertex v, denoted spread(v), which is the proportion

of the population that v eventually activates if it starts as the only active node in the network.

This is determined, as in earlier approaches (92), by Monte Carlo simulations. I simulate the

linear threshold spreading process on the network starting with v as the only active node, for

each node v ∈ V . The threshold values Θv are chosen randomly for each iteration, and all three

variants of the linear threshold spreading process are simulated – aggregate spread on Gh, and

dynamic spread with and without memory on the underlying dynamic network 〈Gi, . . . , Gj〉.

In all cases, I simulate the spreading process for j − i + 1 timesteps. I used 500 iterations

of each spread simulation, which was sufficient to produce consistent results. After simulating

the spread from each individual, in each iteration, I note the number of activated individuals

σ(v) = |Af |. The overall spreading capacity of v is then the average over all iterations of the

size of the active set proportionally to Vh: spread(v) = 1
500

∑
σ(v)/|Vh|.

I then rank the individuals in the order of their spreading ability: spread(v1) ≥ spread(v2) ≥

· · · ≥ spread(v|vh|). I call the first k individuals in this order the “top k spreaders”. While as

a set, this may not be the best set of k individuals from which to start a spreading process,

individually they are the top k performers. I investigate whether they remain in the top k as

the network changes.

As mentioned earlier, I obtain the changed network of “future” data Gf in two ways. In the

temporal cross-validation setting this is one of the segments that follows the segment of Gh.
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That is, Gf = (Vf , Ef ) is the aggregate network of a latter segment. For random perturbations,

I remove a fraction p of existing edges uniformly at random and add the same number of edges

that were not in the network, preserving the overall number of edges. I use the range of

p = {0.05, 0.1, 0.3}, that is, changing 5, 10 and 30 percent of the edges. Note, that if the density

of a network is d, one cannot change more than 1− d fraction of the edges in this scheme.

To answer the first question about the change in the relative spreading ability of individuals,

I measure the correlation between the orderings imposed on the individuals by their spreading

ability. That is, given the ordering imposed by spread(v) function in Gh and Gf , I measure the

difference in the orderings using Spearman’s rank correlation coefficient (149). For the second

question, I measure the difference in the identity of the top k spreaders for k = {5, 10} by

measuring the Jaccard similarity (88) of those sets in networks Gh and Gf .

Finally, I answer the last question by taking the top k spreaders from Gh and using them

as the set of initially active individuals in Gf . I denote the average proportion of activated

individuals as APX. I compare that number to the same process repeated with the initial

set being the top k spreaders from Gf itself. I denote the average proportion of activated

individuals in the latter case by OPT . I then measure the performance of the historical top

spreaders in the changed network as the fraction APX/OPT .

I perform our analysis across different datasets representing a wide range of types of inter-

actions. A summary of results obtained from my analysis is presented in Section 7.4.
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6.3.3 Datasets

For these experiments, I used real dynamic networks spanning the range of interactions

from animal behavior to celebrity sightings. Following are the dynamic networks used in this

analysis. Animal Social Networks: grevys zebra and plains zebra animal networks, Mobile

P2P: MIT Reality Mining and Haggle InfoComm network, Enron Email Network, IMDB Photo

network. Section 4.1 provides the description of all these networks. Table I summarizes the

basic statistics of the datasets.

6.3.4 Results

I now describe the results of the experiments and analysis that address each of the three

questions, in turn, posed in Section 6.3. In all the figures, the datasets are shown in the order

of increasing network density.

6.3.4.1 The change in the relative spreading ability of individuals

Recall that to answer the question of how valid the predictions about the spreading capacity

of each individual in the network are as the network changes over time, I compare the rankings

of the individual’s spreading capacity. I calculated the Spearman correlation coefficient between

those rankings in the original and changed networks. Figure 4 shows the correlations of the

ranking by static linear threshold spread in the aggregate network of a given segment versus

the rankings by the static and the two dynamic linear threshold spread within the same and

all future segments of a dynamic network. For example, the bottom row of the plots shows the

static spread ranking in the first segment versus all the rankings in each of the five segments,

while the top row shows the ranking of the fourth segment versus the rankings of the fourth and
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fifth segments. As expected, the only perfect correlation is between the static spread ranking

with itself within the same segment. What is unexpected, however, is how little correlation

there exists between the dynamic and the static spread models and how quickly the correlation

deteriorates as time unfolds.

Figure 4: Spearman’s correlation coefficient comparing the ranking of individuals (by estimated
spreading capacity) across different segments. Comparisons are made both within the same
segment and between current and future segments. Results for three different spread models
are shown.

To measure how much the network actually changes with time, I calculated the distance be-

tween the aggregate networks of every two segments. I measure this distance as the complement
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of the Jaccard similarity of the edge sets of the two networks. Figure 5 shows the scatter plot

of the distance between segment networks versus the Spearman correlation coefficient between

the spread rankings of the individuals in the two networks. The surprising feature of the plots

is how little correspondence there is between the network similarity and the consistency of the

rankings. Moreover, note that in most datasets the distance between any two segments is at

least .4 and often reaches .8, which means networks typically change very fast with time.

Figure 5: Spearman correlation coefficient between the ranking of individuals (by their esti-
mated spreading capacity) as a function of the dissimilarity between the underlying networks.
Dissimilarity (x-axis) is measured as the complement of the Jaccard similarity on the edge sets
of the networks.
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The result of random perturbations of the edges in networks are shown in Figure 6. Here I

only compare the rankings of the static linear threshold spread on the aggregate networks before

and after the perturbation. I do not consider the dynamic spread models since the perturbations

are not explicitly dynamic and I do not control the timesteps in which the random edges are

perturbed. These results also show that the quality of the predictions of the spreading capacity

of the individuals deteriorates rapidly with the increase in the amount of perturbation.

Figure 6: Spearman’s correlation coefficient between the ranking of all individuals and the
Jaccard similarity between the 5 and 10 top ranked individuals in the original and perturbed
networks, both as functions of the percent of randomly perturbed edges in the network. The
datasets are ordered by increasing density. The amount of perturbation cannot exceed the
complement of the density.

6.3.4.2 The change in the identity of the top spreaders

The second question I asked was whether, despite the fact that overall the relative predic-

tions about the spreading capacity of individuals may not be robust, the identities of the top

spreaders remain relatively constant. I compare the sets of the top five and top ten ranked



82

individuals in the network before and after the spread. I measure the Jaccard similarity of the

sets of the top spreaders. Figure 7 shows the similarity of the sets of the top five spreaders

between the first segment and all subsequent segments. All other pairs of segments show a

similar trend. As the results show, the identity of the top five spreaders changes drastically as

time unfolds. Figure 8 shows the scatter plot of the similarity between the top five sets versus

the amount of change in the network.

Even in the identity of the top ranked individuals there is little correspondence between the

amount of change in the network and the consistency of the results. Recall that the datasets

are ordered by their density. There is a possible trend that in sparser networks the top ranked

individuals remain more consistently in the top, but before I draw any conclusions, this trend

must be investigated further. Figure 6 shows the similarity of the top spreaders for the randomly

perturbed networks. Even at 5% perturbation these sets are almost entirely different. Thus, for

example, even small changes in the network may invalidate the predictions about the potentially

good marketing targets.

6.3.4.3 The relative performance of the historical spreaders

Finally, despite the fact that, as I saw, the identity of the top spreaders may have changed, I

asked whether the old top spreaders would still “perform” sufficiently well in the new, changed

network. That is, if the top spreaders from the original network are used to initiate the spread

in the new, changed network, how would the number of individuals affected by this spread

compare to the extent of spread initiated by the new set of the top spreaders in the new
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Figure 7: Jaccard similarity comparing the top 5 individuals (ranked by spreading capacity) in
segment 1 with the top 5 individuals in subsequent segments. The x-axis is the current segment
to which the top five set from segment 1 is being compared.

network? The answer to this question directly implies the answer to whether the actions based

on past predictions are valid as the network changes and lead to sufficiently good results.

Figure 9 shows the relative performance of the top five ranked individuals in segment 1

compared to the top five individuals in each subsequent segment. Despite the fact that the

identity of the top individuals changes, I see that the old top spreaders perform as well as the

new top spreaders in many cases. However, this is true only for the networks where spread

saturation is easily achieved and spread initiated from almost any set of individuals reaches

everybody in the population. In sparser networks like IMDB and Enron, the performance of

the old top spreaders deteriorates with time. Figure 10 shows the relationship between the

performance of the top ranked sets and the amount of change between the old and the new

networks which, again, demonstrates that there is little correspondence between the amount of

perturbation and the performance of the top individuals.



84

Figure 8: Jaccard similarity between the sets of top 5 individuals (ranked by spreading capacity)
as a function of the dissimilarity between the underlying networks.

Surprisingly, on randomly perturbed networks, the original top 5 set of individuals per-

formed always nearly as well as the top set from the perturbed network. This is despite the

fact that the sets themselves have few individuals in common. Thus, random perturbations

may not be representative of changes in real networks and it is, then, particularly important to

distinguish true patterns of network evolution and noise.

Static Linear Threshold Spread
Dynamic Linear Threshold Spread with Memory
Dynamic Linear Threshold Spread without Memory

1 2 3 4 5
0

1

IMDB HagglePlains - 2 Plains - 1Enron Grevys Reality Mining

Figure 9: Relative performance of the top five sets of individuals from each segment in sub-
sequent segments. Each datapoint with the x-coordinate value x is the ratio of the estimated
extent of spread in segment x initiated by the top five individuals from segment 1 to that
initiated by the top five individuals from segment x itself.
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Figure 10: Relative performance of the top five sets of individuals as a function of the amount
of change in the network. Each datapoint with x-coordinate x is the ratio of the estimated
extent of spread initiated in the changed network by the top five individuals from the original
network to that initiated by the top five individuals from the changed network itself, where the
fraction of edges differing between the original and the changed networks is x.

6.3.5 Conclusions and Future Work

Most social network analysis is performed on historical and typically aggregate data, and the

possible structural changes that happen as the network evolves are not taken into consideration.

Thus, by the time the analysis is completed and acted upon, its results may not be valid if the

network indeed has changed in the meantime. In this paper, I asked how much such changes

can affect the results of network analysis in the context of diffusion in networks. Specifically,

I asked three questions: (a) whether the predictions about the relative spreading capacity of

each individual are robust; (b) whether the sets of the top spreaders are relatively unaffected;

and (c) whether the performance of the top spreaders in terms of the extent of spread they may

cause remains good enough even after the changes. In the process of answering these questions,
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I also compared the predictions made on an the traditional aggregate, static representation of

a network to the explicitly dynamic view of social interactions.

I found that in real dynamic networks the predictions about the relative spreading capacity

of individuals and the identity of the top spreaders are sensitive even to minimal changes in the

network. Moreover, I found that networks change significantly with time, often by as much as

40% of edges in a short time period. Surprisingly, I also found that there is little correspondence

between the amount of change in the network and the robustness of the predictions. Finally,

while in the real timeline, the performance of the top spreaders from the past did not compare

well with the performance of the current top spreaders, in randomly perturbed networks past

top spreaders typically did well even after the perturbations.

Thus, overall, I found that not only do predictions from the past not hold well into the

future, these predictions do not deteriorate gracefully either. This implies that I cannot esti-

mate the robustness of our predictions by measuring the amount of structural change in the

network. Moreover, since random changes do not diminish the relative spreading ability of the

top spreaders as much as the changes with real passage of time, I conclude that a few critical

edges can make a big difference. Thus, we need methods for identifying edges that are critical to

the robustness of the predictions. We must also develop analysis techniques that take possible

future network changes into consideration.

Finally, in almost all experiments, the analysis performed in an aggregate network using a

static diffusion model had little correspondence to the explicitly dynamic models of spreading
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processes simulated on dynamic networks. Thus, in explicitly dynamic networks we must use

analysis methods that explicitly take the dynamic nature of interactions into consideration.

6.4 The effect of network structure regime on the extent of diffusion

Who are the most influential individuals in a (social) network and can we efficiently find

them? Computationally this and similar questions have been shown to be in the class of NP-hard

problems (92; 106; 153). Moreover, even the best approximation algorithms are infeasible for

massive network data available on today’s ubiquitous large platforms, such as social networking

websites, blogosphere, and communication networks. However, is it really necessary to expend

this intensive computational effort in order to identify those individuals? While theoretically

the answer seems to be ‘yes’, in practice many efficient heuristics have been demonstrated to be

effective. In this work I show that the hardness of computationally finding the most influential

individuals in a network depends on the structural properties of that network, such as its density

(or, rather, the effective density, which is the combination of density and the probability of

activation, that is, the density within the spread network) and modular structure.

The goal of this work is to find clues in the global network structure that make a particular

heuristic for identifying influential individuals work better than others and to figure out when

heuristics work at all and when a serious computational effort is unavoidable. Thus, I take a

step back from devising yet another method that works for a certain set of networks, to answer

a more general question of what makes a certain heuristic effective, and not another, for a given

network? Specifically, I show that it is possible to use effective density and modular structure

of a network as indicators of when it is necessary to employ a sophisticated yet computationally
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expensive method versus when even a random set of spread initiators will perform as well as

the best, in expectation, for maximizing the diffusion of influence in the network. I find that

the effective density, which is the product of the density and the rate of diffusion, is a better

indicator of the extent of diffusion than the density on its own. A diffusion process with very low

rate of diffusion in denser networks behaves similar to the diffusion process in sparse networks

at high rates of diffusion. I show that trends in diffusion follow two regimes.

1. Density regime: networks with (effective) densities above and below a certain threshold

are amenable to simple heuristics. In dense networks, in fact, there is no differentiation

between influence of individuals and any random set of individuals is good, given a high

enough rate of spread. In effectively sparse networks simple heuristics like highest degree

nodes, perform well.

2. Modularity regime: In between the two extremes, the difference between the best and a

random set of individuals may be significant. That difference, in fact, depends on how

modular (clumped, clustered, non–uniform) the network is. The more modular, non-

uniform, the network is, the bigger that difference is. Thus, it is for those intermediate

density networks with rich complicated structure that we need to use sophisticated and

computationally intensive approaches to find influential individuals.

This result supports the findings that simple heuristics perform well in practice since most real

world networks are very sparse, with few exceptions that are very dense (that represent small

single communities).
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To demonstrate my results, I systematically empirically evaluate the difference between the

expected and the optimal extent of diffusion on a variety of synthetic and real–world networks,

over a range densities and degrees of modularity. My results consistently tell the same story:

density and modularity matter and can tell us when to use a simple heuristic and when to

put the effort and use more sophisticated yet computationally expensive methods. Indeed,

once stated this way, it is not surprising and quite intuitive: in dense networks everybody is

connected to almost everybody and any set of individuals will do well; and in sparse networks

nothing spreads well beyond the immediate neighbors so high degree nodes do best. However,

my work for the first time test this assertion in a systematic way, quantifies the critical network

properties, identifying the transition thresholds and lay the groundwork for a more rigorous

theoretical analysis.

6.4.1 Diffusion in Uniform random and Scale–free networks

To understand how the extent of diffusion is affected by the global network structure we

estimate the difference in the best and worst extents theoretically in two network models ex-

tensively studied in social network analysis. I first estimate the expected extent of diffusion in

the most tractable network model, uniform random model. This model is defined as a set of

N nodes connected to each other with a uniform probability p (62). Next, I give estimates for

the more realistic real–world model, scale–free networks. For estimates on diffusion, we assume

the underlying stochastic process is of the monotonic susceptible-infected form of diffusion (92),

defined by one parameter p ∈ (0, 1]: the rate of diffusion. Without loss of generality, I as-
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sume that the number of diffusion initiators k = 1 for the theoretical estimates. We denote by

E(N, p), the expected extent of diffusion, with rate of diffusion p, in a network of size N .

6.4.1.1 Uniform random networks

A uniform random network G(N, d) is a set of N nodes connected to each other with

probability d. Thus, a uniform random network is fully defined by the probability (density)

d of the network. I use the bounds on network connectivity in such networks from (62) to

estimate the expected extent of diffusion in these networks.

Theorem 4. Sparse: Expected extent of diffusion, E(N, p) ∼ 0, with high probability, as

N →∞, when q × d < 1/N .

Intermediate density: Expected extent of diffusion, E(N, p) ∈ (p × n2/3, log(N)/N ], with

high probability, when, 1/N < d× p < log(N)/N .

Dense: Expected extent of diffusion, E(N, p) ∼ N , with high probability, when d × p ≥

logN/N .

Proof. Sparse: In uniform random graph, if d < 1/N , then the graph G(N, d) almost surely

has no connected component of size larger than O(log(N)) (62). Assuming each activation

happens independently in the graph, from the above result, it immediately follows that if

d < 1/N and p ≤ 1, then, the expected extent of diffusion E(N, p) is bounded above by

d× p < d ≤ 1/N .

Intermediate density: In uniform random graph, if d = 1/N , then the graph G(N, d) al-

most surely has a giant component whose size is of order n2/3. If d → c/N , for some
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constant c > 1, then the graph G(N, d) almost surely has a unique giant component con-

taining a positive fraction of the N nodes. No other component has more than O(log(N))

nodes (62). Using these results, the expected extent of diffusion in such a network is

bounded below by pn2/3 yet it is no more than log(N)
N . The lower bound comes from the

expected extent of diffusion E(n2/3, p) in the giant component. Assuming each edge in

the giant is activated independently with probability p from the diffusion process, the

expected extent in this component is at least pn2/3. On the other extreme, when the

density d→ c
N of G(N, d), for some constant c > 1, the expected extent of diffusion is at

most p cN < log(N)
N when N →∞.

Dense: In uniform random graphs, if p ≥ log(N)/N , the graph is almost surely connected (62).

It follows immediately from this result that for q ∼ 1, the diffusing process affects almost

the entire population.

6.4.1.2 Scale–free networks

Real–world networks have been shown to have skewed degree distribution, approximated

by power law distribution with the exponent γ ∈ [2, 3], resulting in what is called a scale–free

network. In such networks, it has been shown that there is no “threshold” for diffusion (132).

This is because the second moment of the distribution diverges so that the ratio of the second

and first moment is zero (31). In other words, a diffusion process with an arbitrarily small

rate of diffusion can potentially affect the entire population. Hence, the extent of diffusion is

dictated by the structure of the network more than the rate of diffusion. To understand the
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effect of scale–free structure on the extent of diffusion, I tie the skewness γ to the densities of

such networks. I use the estimates of scaling of maximum degree and the number of minimum

degree nodes in general scale–free networks from (56) to formulate various regimes of densities

in this type of networks.

Theorem 5. In scale–free networks with exponent of skewness γ, the maximum expected degree

d̂→ N
1

γ−1 for any γ value as N →∞. In addition, the number of nodes A with degree O(1) is

of order N when γ > 0. However, A→ Nγ when γ < 0 as N →∞.

Proof. Using the generalized harmonic mean HN−1,γ =
(

1
N

∑N−1
k=1 k

γ
)−1

, the expected maxi-

mum degree d̂ in a scale–free graph with exponent γ can be estimated as follows (56).

d̂ = max{x :
N

HN−1,γ

N−1∑
k=x

k−γ > 1}. (6.1)

Where, HN−1,γ =
∑N−1

k=1 1/kγ . The above summation converges to Riemann zeta function 1

ζ(γ) for N → ∞. That is,
∑N−1

k=x k
−γ = ζ(γ). The above maximum expected degree estimate

can be rewritten as the integral between the interval [x,N − 1]. Moreover, when γ > 1 and

N � 1, ζ(γ) converges to 1. Thus,

N

HN−1,γ

∫ N−1

x
k−γdk = 1. (6.2)

1The Riemann zeta function or EulerRiemann zeta function, ζ(s), is a function of a complex variable
s that analytically continues the sum of the infinite series which converges when the real part of s is
greater than 1.
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Integrating,

N

HN−1,γ(1− γ)
[(N − 1)1−γ − x1−γ ] = 1. (6.3)

Now, solving for x, the maximum expected degree, we get:

d̂ = x = [
N

(γ − 1)HN−1,γ
]→ N

1
γ−1 , asN →∞. (6.4)

The number of nodes A with unitary degree O(1) in scale–free networks, can be given as:

A =
N

HN−1,γ
. (6.5)

When γ > 0, the harmonic series diverges, hence, A → N as N → ∞. On the other hand,

when γ < 0, the harmonic series converges, hence, A→ Nγ as N →∞.

Corollary 1. From Theorem 5, in scale–free networks when γ ≤ 2, the maximum expected

degree d̂ → N1/γ as N → ∞. When 0 < γ < 2, the maximum expected degree d̂ → N as

N → ∞. When γ < 0, the maximum expected degree d̂ → 1/N as N → ∞ by substituting

in Equation 6.3.

6.4.1.2.1 Sparse scale–free networks

Here I show that scale–free network with exponent of skewness 2 < γ ≤ 3 are sparse.

Theorem 6. Scale–free networks with power law exponent γ ∈ [2, 3] are sparse, that is, the

order of the edges ‖E‖ is O(N).
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Proof. Sparsity of scale–free networks with 2 < γ ≤ 3 follows immediately from Theorem 5.

Since the number of nodes with degree O(1) is near N it implies that most of the nodes have

degree O(1), that is all but c1N nodes, for some constant c1 ∝ 1/N , have very small degree.

Then the number of edges in the network can be approximated as |E| ∼ c1Nd̂+(1−c1)NO(1) ∼

O(N).

Extent of diffusion. Sparseness and skewness of such scale–free networks with 2 < γ ≤ 3

render degree–based heuristics (such as choosing nodes with highest degrees) very effective in

maximizing the extent of diffusion. From Theorem 5, sparse scale–free networks are charac-

terized by the existence of “hubs” – nodes with a very high degree compared to the average.

Selectively initiating the diffusion process through these nodes maximizes the extent of diffusion

in expectation.

Theorem 7. In scale–free network G(N,E) with 2 < γ ≤ 3, the expected extent of diffusion

E(N, p) at the rate of diffusion p, is optimal in expectation, when initiated by the node with the

maximum expected degree d̂.

Proof. I show that the worst case extent of diffusion from a maximal degree node is comparable

to the best case extent of diffusion from the lowest degree node, asymptotically. Hence, even in

the worst case, the nodes with maximum expected degree are good candidates for maximizing

the extent of diffusion in sparse scale–free networks.

Recall, from Theorem 5, we know that all but a small fraction of nodes have degree O(1).

Suppose c1N is the number of nodes that have the maximum expected degree d̂ ∼ N . From the
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definition of power law distribution, c1 ∝ 1
N . That is, only a small fraction of nodes have high

degrees. Similarly, the number of nodes A with degree O(1) tends to N . Let c2 be the fraction

of nodes with degree O(1). Then, 0 � c2 < 1/O(1). For the proof, I assume the diffusion

process to be a two step process. Note, in a stochastic diffusion process, each progressive step

of diffusion propagation, is at least a factor p(< 1) times less than the previous step. That is

the probability of activating nodes in each subsequent step reduces by a multiplicative factor

of p. Hence, the expected extent of diffusion in the network is dominated by the first few steps.

The best case network for starting from a node with a low degree is an instance of a scale–

free network where a node of degree O(1) is connected to all nodes with maximum expected

degree d̂ ∼ N . The expected extent of diffusion in such case can be approximated as: E(N, p) ≤

pc2[pd̂+p(c2−c1)O(1)] ≤ p2c2d̂2+p2(c2−c1). Since c1 ∼ 1/N and c2 ∼ N , then E(N, p) ≈ p2N .

The worst case network for starting from a node with a high degree is an instance of a

scale–free network where a node with maximum expected degree is d̂ ∼ N is connected to all

nodes that have some small constant O(1) degree themselves. The expected extent of diffusion

in such case can be approximated as: E(N, p) ≤ pd̂[pc1d̂ + p(c2 − c1)O(1)] ≤ p2c2d̂
2 + p2N .

Since d̂→ N , then c1 ∼ 1/N and c2 ∼ N , then E(N, p) ≈ p2N .

That is, asymptotically, the expected extent of diffusion from a node with the maximum

expected degree in the worst case scenario is comparable to the expected extent of diffusion

from a node with degree O(1).

Most real–world networks are sparse (Table I). Hence, even though degree based heuristics

may not provide provable guarantees to the extent of diffusion, now we have a better under-
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standing of why such heuristics work in real world examples. In Section 6.4.3, I experimentally

show the effectiveness of degree heuristics in sparse real–world and synthetic scale–free networks.

While sparseness is a common property, which is regularly exploited in devising efficient

heuristics for diffusion, there are many examples of dense networks in real–world. Therefore, it

is essential to understand the structure of such networks for estimating the extent of diffusion.

Next, I show some analysis of denseness of scale–free networks and its affect on the extent of

diffusion.

6.4.1.2.2 Dense scale–free networks

Theoretically, a network is dense if the number of edges, E ∼ N2. From Theorem 5, we

know that when γ < 0, the maximum expected degree is of order N , whereas the number of

nodes with O(1) degree decrease in the order of Nγ . That is, most of the nodes have uniformly

high degrees.

Extent of diffusion. The above result shows that dense scale–free networks have uni-

formly high degrees. That is, the resulting network is almost a clique and any edge can be

activated with probability p of diffusion. Thus, the resulting diffusion network is equivalent to

a diffusion process in a uniform random graph and is completely determined by the diffusion

probability p.

Theorem 8. In scale–free network G(N,E) with γ < 0, the expected extent of diffusion E(N, p)

with rate of diffusion p is ∼ pN .

Proof. The proof of this theorem follows directly from Newman’s results on the scaling of

moments of degree distribution in scale-free networks with γ < 0 (126). When γ < 0, the
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first moment of degree distribution diverges as N → ∞. That is, the number of highest

degree nodes is no longer small but rather of the order of N . Hence, asymptotically almost all

nodes have uniformly high degrees. In other words, the resulting network has dense clique–like

structure. Thus, the resulting diffusion network is essentially a uniform random graph with

edge probability p and the extent of diffusion depends solely on p and not on the identity of

the initiating node. Hence, for a dense network of N nodes, E(N, p) ∼ pN .

Table VII summarizes some of the significant results about the uniform and scale–free

network structures that are useful for estimating the extent of diffusion in such networks.

For 0 ≤ γ < 1, Genio et al. show that scale–free networks are either not realizable due to the

extreme difference in the highest degrees (∼ N) and the number of nodes with the O(1) degree

(∼ N) or the degree distribution is not continuous (that is, the degree distribution exists with

cut-offs) (56). Such a distribution results in a wide range of complex structures. For networks

within such range of γ values, I devise a heuristic that exploits the modularity of the network

to maximize the extent of diffusion in such networks. I analytically show in Section 6.4.1.2.3

and experimentally in Section 6.4.3 the improvement in extent of diffusion using this heuristic.

6.4.1.2.3 Intermediate density scale–free networks

From the results in the above two sections, it is clear that for γ < 0, scale-free networks

are dense whereas, for 2 < γ < 3 the scale-free networks are very sparse. The networks with

γ ∈ [0, 2], are neither very sparse nor dense. Aiello et al. (6) show that in scale–free networks

when 0 < γ < 1, with high probability the graph is connected and when 1 < γ < 2, with

high probability the second largest components are of size Θ(1). That is, the graph is not
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Density sparse intermediate density dense

No. of edges |E| < logN ∼ logN ≤ |E| ≤ N |E| > O(N)

density d < 1
N d ∈ [ 1

N ,
logN
N ) d > logN

N

Uniform

No connected
component
larger than
O(logN) (62)

Connected com-
ponent of order
O(n2/3).
Unique giant
component. No
other component
contains more
than O(logN)
node (62).

Connected graph (62).

Diffusion estimates

Very little con-
nectivity, hence,
extent of diffusion
0 with probabilty
O(1).

No more than
the size of largest
connected com-
ponent.

With high proba-
bility O(N)p net-
work affected by
the diffusion pro-
cess.

skewness 2 < γ < 3 0 < γ < 2 γ < 0

Scale-free

Small number
of high degree
nodes, and large
number of low
degree nodes.
(56)

Scale–free graph
not realizable
with high proba-
bility. (56)

Connected graph.
With high prob-
ability almost all
nodes have uni-
formly high de-
grees (56).

Diffusion estimates
Extent of diffu-
sion ∼ maximum
expected degree.

Depends on mod-
ularity structure
of the network.

With high prob-
ability the extent
of diffusion sim-
ilar to uniform
random networks.

TABLE VII: Summary: Structure and estimates of diffusion in uniform and scale–free networks
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connected with high probability. Hence, in this range of γ values, we find that both loosely

connected as well as unconnected structures of scale–free networks can be realized. Thus, such

networks have large connected components yet not necessarily very dense. In this intermediate

density range, one way to estimate the extent of diffusion is by incorporating various structure

characteristics estimated in such networks in literature. Here, I specifically use the modular

nature of the network to devise practical and effective heuristic for estimating near optimal

extent of diffusion.

Extent of diffusion The optimal diffusion maximization method requires exhaustive

search for the best k nodes from the
(
n
k

)
possible choices as the initiators of the diffusion process.

On the other extreme is the naive approach of picking any uniformly random set of k nodes from

the network as diffusion initiator. In the previous sections I showed that the structure of the

network simplifies this diffusion maximization problem, such that simple heuristics and even the

uniform random choice of diffusion initiators give estimates close to the optimal. Here I extend

that analysis to networks with complex modular structures. Hence, in scale–free networks

which do not have simple structures such as regular graphs or very skewed connectivity, the

complexity and non-uniformity of the structure has to be incorporated in devising effective

strategies for diffusion maximization. As I show in the previous sections and later verify with

experimental results, that once we have the knowledge of the expected network structure, the

optimal extent of diffusion can be estimated by simple structural measures. Hence, in this

intermediate density region with complex structures we must analyze various global structural

properties to find properties that estimate the extent of diffusion in those network structures
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the best. For instance, there is substantial evidence in literature that population networks

organize themselves in clusters (74; 114; 123; 127). In such modular or clustered networks, an

improvement over choosing a uniformly random set of diffusion initiators would be to choose

the diffusion initiator by taking into consideration the modular structure of the network. Here

I propose a heuristic that selects nodes to initiate the diffusion process from the “boundaries”

of clusters within a network, that is, those nodes that connect disparate clusters to each other.

Intuitively, such nodes are structurally well placed to be effective diffusion maximizer within

as well as across modules. In networks with such modular structure I show that this simple

heuristic that favors the boundary nodes, as diffusion initiators, between various modules gives

the extent of diffusion very close to the optimal.

The optimal extent of diffusion is the exhaustive method of finding the k initiators from(
N
k

)
choices.

Let Bi be the ith cluster in graph G with Ni nodes and Ei edges. The expected extent of

diffusion E(N, k, p) in such a block mixture network when k initiators are chosen uniformly at

random from among all the nodes can be approximated as:

E(N, k, p) = E(N = ∪iBi, k, p) =
∑
i

E(Bi, ki, p).

Where p is the rate of diffusion and ki are the spread initiators picked uniformly at random

from block Bi.
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On the other hand, the expected boundary extent of diffusion B(N, k, p) is given by:

B(N, k, p) =
∑
i

E(Bi, ki, pi) +
∑
ij

E({Bi, Bj}, ki + kj , pij)

Where, E({Bi, Bj}, ki + kj , pij) is the expected extent of diffusion across blocks Bi, Bj . Hence,

B(N, p, k) > E(N, p, k) by a factor of
∑

ij E({Bi, Bj}, ki + kj , pij). (The optimal spread is,

of course, at least as large as the heuristic estimate.) Hence, I conclude that the modular

network structure calls for better methods of approximating the optimal extent of diffusion. It

is also worth noting that such boundary nodes have above average degrees. Since the expected

degree of a node within the block Bi is di, the boundary node by definition has an expected

degree of di +
∑

j∈{∪Bj} dij . Thus, with relatively high degrees, high betweenness, and high

vertex expansion factor such nodes are better candidates for diffusion maximization. While

using boundary nodes as initiators may be a good heuristic, it is clear that, theoretically, they

do not always constitute an optimal choice. The NP-completeness and approximability gap of

(1− 1/e) factor holds for these intermediate density networks.

I now present the results of an experimental investigation of the performance of the proposed

boundary heuristic, as well as the high degree and random approaches for diffusion maximiza-

tion.
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6.4.2 Experimental methodology

6.4.2.1 Diffusion process

I simulate spread in the real–world and synthetic networks using the Independent cascade

spreading model. This model is explained in full detail in Section 2.3.1.

6.4.2.1.1 Extent of diffusion simulations

The extent of spread in a network is the number of individuals affected at the end of a

diffusion process (simulation), initiated by a set of individuals. I measure this extent based on

three types of diffusion initiators.

1. Optimal diffusion: The k spreaders that maximize the extent of diffusion in the network.

Since for large networks it is NP-hard to find the exact k best spreaders, I use the greedy

approximation described in Section 6.2.4.1.

2. Random spreaders: Any k spread initiators picked uniformly at random from the net-

work. This set of k individuals is picked randomly overly multiple runs of the stochastic

simulation. The resulting extent of diffusion is the average over all runs. The number of

runs to simulate the diffusion process from each random set of diffusion initiators is set to

c log(N). Where c > 0 is a constant, that is set to 10 for this set of experiments. I tried

higher values of c, however, the extra runs did not improve the variance in the results by

any significant margin. N is the size of the network population. This method is formally

described in Algorithm 4.
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3. Degree and boundary heuristics: k highest degree or highest conductance boundary nodes

chosen from the network as diffusion initiators. In this approach, I first calculate the

structural property M (degree or boundary node value) for the network. Rank the nodes

in decreasing value of the property M . Then pick the top k highest degree or most well

connected boundary nodes from the network. The diffusion process is then simulated in

the network through this set of top k nodes. Algorithm 5 formally states this method.

Algorithm 4: Expected extent of diffusion with random set of initiators

Initialize: Total Spread := 0;
while Run ≤ c log(N) do

Initialize: S = Random(k) from N ;
f(S) := Spread(S);
Total Spread := Total Spread + f(S) ;

end while
Expected Spread := Total Spread

c log(N) ;
return Expected Spread ;

Algorithm 5: Extent of diffusion with network property M

Initialize: Set S = Top(k,M []) from N ;
return f(S) := Spread(S);
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In each network I find the extent of diffusion using the three types of spreaders. I compare

the the optimal extent of diffusion (greedy approximation) to the expected extent in the network

- based on randomly selected sample of diffusion initiators. I also compare the optimal extent to

the two heuristic methods. The difference in the extent of diffusion, for each pair of methods,

highlights the disparity in the network structure and how it affects the resulting extent of

spread. I focus on how this difference varies with network density.

6.4.2.2 Datasets

The experimental analysis in this work is based on a large set of real–world networks as well

as synthetic networks generated using well studied generative network models. I examine nu-

merous real–world networks including blogosphere, online social networks, email exchange net-

works, router networks, co-authorship, human, and animal proximity networks. Following are

the the network datasets that I analyze in this work: Autonomous Systems (AS), Co–authorship

network (DBLP), Live Journal, Peer 2 Peer (P2P), Epinions, Political Blogs, Political Books,

Karate, Enron, onagers, and grevys. The details of these networks are presented in Section 4.1.

The list of networks and their basic statistics is given in Table I. It is important to note here

that most of the real–world networks are very sparse. The results of these experiments, shown

in Figure 17, are consistent with the trends I deduce in Section 6.4.1.2.

Further for Reality mining, and plains zebra networks I analyze the densification of these

networks over time and its effect on the estimates of the extent of diffusion. Note that of the

list of the datasets I worked with here, only these two datasets have the actual evolution of

network recorded over time 4.1. I aggregate the interactions in each of these networks over
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Figure 11: Reality Mining time series

time. In this way I get samples of the same network that are “evolving” with time. Hence, with

this aggregation process I get a set of networks from the same domain and interaction dynam-

ics but varying (increasing) densities. Figure 11 and Figure 12 show the series of aggregated

Reality Mining and plains zebra networks. These time series of networks is the progressively

(successively) accumulated interactions in each network. The size of the node represents the

relative degree of the node.

6.4.2.2.1 Synthetic networks

To evaluate how the theoretical analysis the extent of diffusion in networks is manifested

in practice, I use two generative network models that have been shown to represent real–world

networks closely.
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Figure 12: Plains zebras series

I use the Preferential Attachment model for generating scale-free networks (22). This model

is explained in detail in Section 4.2. To generate networks from low to high density using this

model I take the following steps. This model is completely defined by two parameters. The

exponent γ of the skewness of degree and the minimum average degree m of each node. The

γ parameter dictates the degree distribution whereas the m parameter the process of edge

formation among the nodes. The generative process takes three inputs, a fixed network size

N , γ, and m. In these experiments I set N = 500. (For networks with larger N , especially at

high density, estimating even the approximate extent of diffusion becomes infeasible.) Initially,

an empty network G(0, 0) is created with 0 nodes and 0 edges. In each subsequent steps, one
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node is added to the network until all N nodes are exhausted. Each node v ∈ N is added to

the network and connected to m other nodes proportional to the degree of the existing nodes.

At the end of N steps I get a sample of a scale–free network with a given γ and m. For the

same parameter setting I generate multiple networks. For this work, I sample 50 networks for

each parameter settings. I estimate the extent of diffusion using the diffusion model and the

methods described in Section 6.4.2.1. The exponent γ is set in the range [−1, 3]. The parameter

m controls for the density of each network.

For finer insights into how network structure, other than its density, contributes to the

disparity in the optimal and the expected or the heuristic spreads, I use the block mixture

model (131) to generate another set of synthetic networks. The stochastic block mixture model

was proposed for this purpose in the context of social sciences, using a Bayesian approach (131).

Further refinements, such as the assortative mixing (114) has made this model a natural choice

to analyze real world networks in controlled parameter settings. The details of this model

are presented in Section 4.2. The block mixture model designates the nodes into m blocks.

Given two parameters, the inter– and intra–block edge probabilities (di, di,j respectively), the

edges are generated uniformly at random, with the appropriate probabilities for each pair of

nodes. For this generative process, I need four parameters: N–size of the network, m–the

number of modules or clusters, di–the intra–block connectivity probability, di,j–the inter–block

connectivity probability. In the first step, N are distributed proportional to the sizes of the

cluster. (Here the sizes of the clusters are assumed to be uniform.) In the second step, nodes

within each cluster are connected with probability di. In the last step nodes across clusters
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are connected with probability di,j . To instantiate networks for the entire range of overall

network density d ∈ (0, 1] and the fixed N = 500, for density d I sample 0.5d ≥ pi < d

and 0 ≥ pi,j < 0.5d. This process results in networks of various densities and various levels of

modularities. I sample d at the scale of 0.01. The results shown in Figure 13 are at a less granular

scale as all intermediate densities resulted in approximately similar estimates of diffusion for

similar parametric values. Again, I sample 50 networks for each parameter settings. I estimate

the extent of diffusion using the diffusion model and the methods described in Section 6.4.2.1.

The resulting set of synthetic networks not only provide me with data to compare density

with the extent of diffusion but also gives a better insight into the modular structure of networks

for finer analysis. The process of adding (but not removing) interactions to create increasingly

denser networks is similar to the way most network generative models are defined. Moreover,

assuming the underlying generative process which is evidenced by the network is stable, those

series represent networks with similar dynamics.

6.4.3 Results and analysis

I observe the following three trends in my experimental analysis. (a) The optimal extent of

diffusion is well approximated by the expected extent of diffusion in networks of high densities

but not in the intermediate density networks; (b) degree–based heuristics result in optimal or

near–optimal diffusion in sparse networks, but these heuristics may not perform consistently

well for denser networks; And (c) modularity of a network can be exploited for designing

better heuristics that approximate the optimal extent of diffusion well especially for networks

of intermediate density range.
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Following are the experimental results and more detailed observations of the three trends.

6.4.4 Optimal vs expected extent of diffusion

Figure 14, Figure 15, and Figure 16 show the difference between the (greedy) optimal and

the expected extent of diffusion as a function of the effective density (product of density and

rate of diffusion: d × p) in Reality mining, plains zebra, and synthetic scale–free networks,

respectively. The plots show the following three trends in the extent of diffusion as the effective

densities of the networks progressively increase.

First, in low effective density (sparse) networks (≤ .004 for real–world networks and ≤ .001

for synthetic networks), the extent of diffusion is very low, irrespective of the method used.

Sparse networks lack a “well defined” structure, by definition, most nodes in such networks are

minimally connected. Such real–world networks have extremely skewed degree distribution: a

very small number of nodes have disproportionately high degrees and the remainder of nodes

are sparsely connected. Hence, in these networks, the extent of diffusion is very low relative

to the size of the network even with high rates of diffusion since most nodes have few or no

neighbors to whom they can propagate. Only high degree nodes can influence many others but

there are so few of them, and their neighbors have such low degrees, that they hardly make a

dent in the overall extent of diffusion.

The second trend we observe is that at high effective densities (≥ 0.2 for real–world networks

and ≥ .003 for synthetic networks), most nodes are uniformly well connected. In expectation,

the extent of diffusion initiated by any random node is high and is comparable to the optimal

extent of diffusion in these dense networks due to the high uniformity in the network structure.
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In high effective density networks, I find that diffusion processes behave almost deterministically,

that is, in expectation, the entire connected component is affected by the diffusion process,

irrespective of who initiates it. Hence, similar to sparse effective density, I find that in such

networks, the optimal approach does not outperform the expected by much.

Finally, and most interestingly, in networks of intermediate effective densities I find a clear

phase transition in the difference between the extent of diffusion resulting from the optimal

and random initiators. This difference in the optimal and the random methods increases until

it peaks and starts to decline gradually, as network densities progressively increase. In this

intermediate region, the extent of diffusion is very sensitive to the identity of the initiator.

Clearly, in this region it is worth while to devise near–optimal yet better performing diffusion

maximization techniques.

Figure 17, shows the difference in the optimal and expected extent of diffusion for all the

real–world networks from Table I. I observe that in sparse networks, the difference in the optimal

and random method exists but is very small and is not consistent with increasing density. One

important thing to highlight here is that depending on the size of the network, the set of initially

activated nodes had to be adjusted proportional to the network size (in this work I pick no more

than 5%) of the network nodes as the initial set. In intermediate density region, I notice that

the difference in the two methods peaks. However, in very dense networks (these are mostly

proximity networks(clique–like structures), the difference is almost zero. I observe that in these

high density networks, the connectivity among the nodes is uniformly high.
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Figure 13: The difference in extent of diffusion, w.r.t increasing effective density of networks,
between the optimal, random, and boundary heuristic methods.

Note one difference between the scale–free and the real–world networks: compared to the

real–world networks, the effective density region of the high difference between (greedy) optimal

versus random methods is confined to a smaller range of densities. Clearly, network characteris-

tics other than density and skewness in degree distribution implicitly contribute to the extent of

diffusion, that are not captured by the scale–free networks. Before I delve further into this issue

I analyze the behavior of some of the most well studied heuristics for diffusion maximization in

the same effective density settings.

6.4.4.1 Optimal vs degree–based heuristic

I compare the extent of diffusion from the optimal, as well as, the random method to the

extent of diffusion given by one of the very well studied heuristics for diffusion maximization,
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Figure 14: Reality Mining!"##$%
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the degree–based heuristic. Degree centrality has frequently been shown to correlate with the

influence maximization objective (38; 89) and I have proved similar results in Section 6.4.1.2.

I simulate diffusion in Reality Mining, plains zebra, scale-free synthetic networks by using k

highest degree nodes. I compare the extent of diffusion from those high degree nodes with the

optimal and the expected extent of diffusion. The difference in the extent of diffusion between

the optimal and the degree heuristic for k = 1 are shown in Figure 14 and Figure 15 for Reality

Mining and plains zebra networks, respectively. For other values of k the difference in the

extent of diffusion between the optimal and the degree heuristic is almost the same. I find

that the difference in the degree heuristic and greedy–optimal extent of diffusion is negligible
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Figure 15: plains zebras!"##$%
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at low densities. In fact, at low effective density (below 0.005) the optimal diffusion initiators

are indeed precisely the nodes with the highest degrees, in concordance with the theory.

At high effective density (above 0.5), even though the results from heuristics are comparable

to the optimal, the identities of the optimal spread initiators and the heuristically chosen nodes

are not necessarily the same. Recall, that at those densities, I proved earlier that any randomly

chosen set of initiators performs as well as the optimal. Thus, the good performance of the

heuristics here is not due to the identity of the chosen initiator but due to the fact that any
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Figure 16: Scale–free networks
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Figure 17: Real-world networks

node serves well. This eliminates the significance of a heuristic or even the optimal approach

over a random one in high density networks.

In the intermediate density region, although the degree heuristic still works better than ran-

dom, the differences in the extent of diffusion between the greedy–optimal and degree heuristic

methods are inconsistent. Thus, the degree heuristic may work for some networks but not

others, and there are no theoretical or empirical guarantees for its performance in this region.

This is typically the case of any other heuristic for estimating extent of diffusion in networks.

These fluctuations in effectiveness of various methods have not been taken into consideration

in formulating better methods for diffusion maximization. This study gives us a better under-
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standing of the effects of network structure on diffusion and it shows where we need to put

more efforts, by exploiting the structure of networks, for devising better methods for diffusion

maximization.

For better insights into the effect of network structure (especially in networks that fall

within the intermediate effective density region) on the extent of diffusion, I use stochastic

block mixture model process to generate networks in the full range of density from 0 to 1. I

compare the extent of diffusion of the greedy–optimal with the randomly selected initiators, as

well as the heuristic of selecting the boundary nodes, proposed above. I show that this heuristic

outperforms the random by a large margin. Moreover, in the intermediate density networks,

this heuristic performs very close to the greedy–optimal method.

6.4.4.2 Effect of network modularity on the extent of diffusion

Recall from Section 6.4.2.2.1, that a network can be represented as a set of blocks, with

inter– and intra–block probabilities for connectivity. For a well–defined clustering of nodes to

exist it is assumed that the inter–block probabilities (e.g. pi,j) of forming links (between blocks

Bi, Bj) are much lower than the intra–block probabilities (e.g. pi within a block Bi). I generate

a large number of networks with density between [0, 1] having a range of inter– and intra–

block probabilities. In these networks, I estimate the greedy–optimal, random, and boundary

heuristic based extents of diffusion. I compare the boundary heuristic with the optimal and

expected extent of diffusion. I observe essentially the same three trends in the difference in

extent of optimal and random extent of diffusion across the range of density [0, 1]. That is,

at the two extremes of the density regime, the difference between the optimal and random is
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negligible. In between the two extremes the two methods do not compare well. Here, with the

supplementary knowledge of the modular structure of the network, I experimentally observe

that selecting nodes at the boundary of the blocks in the network, results in the extent of

diffusion remarkably close to the greedy-optimal.

In this intermediate density region the optimal extent of diffusion differs significantly from

the expectation, where the diffusion initiators are chosen uniformly at random. This result

supports what I have shown in real–world and scale–free networks in Section 6.4.4. However,

the choice of the stochastic block mixture model provides us with a better understanding of

the effect of network modularity on the extent of diffusion. Figure 13 shows that at the effec-

tive density of 3 × 10−5 and above (much lower than networks that do not exhibit significant

level of modularity, example, real–world sparse networks and scale–free networks) the random

method performs very poorly compared to optimal (70% difference). This difference peaks at

the effective density of .0001. I observe that the difference between the inter–and intra–block

probabilities is maximal here (50%). This is the point at which, in the scale–free networks I

observe significant differences between the greedy–optimal and the expected (Figure 16). How-

ever, surprisingly, the boundary heuristic that takes into consideration the modular structure

of the network gives close to optimal result. Notice, that the difference between the greedy–

optimal and the boundary heuristic is minimum where the inter–and intra–block probabilities

difference is maximum. This reinforces the fact that network modular structure plays a deciding

role in diffusion maximization.
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Towards the other extreme, when networks become very dense, the random method is

comparable to optimal (as proved). The boundary heuristic, although performs reasonably

close to the greedy–optimal, at such high density the difference between the inter–and intra–

block probabilities is very low (for the sampled networks reported here, it is < 0.007).

Hence, I show that the additional knowledge of the modular structure was helpful in devising

a better heuristic for this specific model for networks with intermediate density. Consequently,

I conclude, that the global network properties, density and degree of modularity, of real–world

networks are natural parameters for designing efficient and accurate methods for influence

maximization.

6.4.5 Discussion and conclusion

This work is a systematic exploration of the connection between network structure, specif-

ically, density, modularity, and the extent of diffusion in those networks. My results show a

strong effect of density on the extent of diffusion and the ease of finding effective diffusion

initiators. I show that with respect to the extent of diffusion, networks can be demarcated into

three broad classes: sparse, intermediate density, and dense networks. I show that networks

with densities above and below certain thresholds are amenable to simple heuristics or even

simple random choices, whereas in between the two extremes is a region that require better and

efficient methods for effective solutions of spread maximization.

In sparse networks, simple, degree based heuristics perform as well as the the optimal

methods. Moreover, real–world networks are mostly sparse and generally have skewed degree
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distribution. Hence, in most real–world networks, we do not need to employ computationally

expensive methods for diffusion maximization.

In dense networks, I find that, due to the uniformity of local structure of nodes, extents of

diffusion by any method, including the optimal, are very similar. I find that proximity networks,

such as, animal social networks are usually very dense. Hence, a random set of spread initiators,

in expectation, gives close to the optimal result for diffusion maximization.

In between the low and high effective density regions is an intermediate range of densities

where the behavior of the optimal is markedly different from random diffusion method. Hence, it

is this intermediate range of densities for which application of sophisticated and computationally

intense methods is necessary for finding good diffusion initiators efficiently. However, even

in this intermediate range of densities we find that the particular defining structure of the

networks make local structural measures like degree and variants of degree heuristics to be

good estimates of the optimal extent of diffusion. Moreover, observing the relatively well defined

modularity of the network structure in this intermediate region for block mixture model we get a

better understanding of what makes certain heuristics more effective than others. Thus, taking

advantage of the insights provided by this rigorous experimental analysis, better structural

based heuristics can be devised that are efficient and easier to evaluate.

To summarize, I experimentally showed that the optimal extent of diffusion in sparse net-

works is achieved by the high degree nodes and in very dense networks it is achieved by any

choice of diffusion initiators for a given diffusion model. Hence, for networks of these effective

density ranges we do not need to use computationally challenging methods to find the most
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effective diffusion initiators. This result leads to the discovery of an intermediate effective den-

sity range where diffusion in networks is sensitive to the identity of the initiators. I further

verify that the general degree–based heuristics for finding good diffusion initiators work very

well for most networks due to their inherent sparsity, or boundary nodes–based heuristics due

to the modular structure of the underlying network. Hence, we can simplify a computationally

hard problem of finding critical individuals for maximizing diffusion by limiting the application

of computationally expensive methods to within a certain range of densities and certain struc-

tures. This work also gives us the basis to further explore the effect of network structure on the

extent of diffusion, both theoretically and empirically, to design algorithms that take advantage

of this connection of extent of diffusion to the network structure.

6.5 Effect of dynamic network structure on diffusion in networks

In this work I examine how density and modularity of dynamic networks affect the choice

of influence maximization heuristics and the optimality of the resulting solutions. In recent

years, online social networks, such as Facebook and Twitter, have provided real examples

for understanding diffusion of information, ideas, and adoption of products in fast evolving

networks (15; 159). Other than social networks, applications such as contamination detection

in water distribution networks or spread of diseases, also inherently rely on the dynamic process

of diffusion (130; 134). In the past, almost all efforts focused on “static” networks (106) in which

the ties among nodes remain fixed over time. In recent years, there has been some work done in

studying diffusion in “evolutionary” networks, such as co–authorship networks. However, this

is also a limiting example of social networks as the assumption here is that links are never lost.
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Yet, most networks are highly dynamic. In social networks, individuals maintain different

connections in different contexts, such as friends or work colleagues and these relationships

change with time. Similarly, the animal networks change with age, migration, and risk factors

in the environment. Despite all the real–world examples, there has been little work done

in incorporating these relationship dynamics while analyzing the extent of influence in such

networks with a few exceptions such as (10). And most of the work that has been done focused

on designing algorithms or heuristics that work for any general dynamic networks.

6.5.1 Contributions

In this part of my work, analyze the global structure of explicitly dynamic networks for

understanding when to employ a sophisticated algorithm vs a simple heuristic. Moreover,

similar to the static network analysis for diffusion maximization (Section 6.4), I employ simple

dynamic structural measures that can guide this choice. Specifically, I analyze networks in term

of their changing density and community structure to investigate the trends in the extent of

diffusion of influence.

In this work, I use density of a dynamic network as an indicator of influence maximization.

I ask the following three questions:

• When it is necessary to employ a sophisticated yet computationally expensive method?

• When even a random set of spread initiators perform as well as the best in expectation

for maximizing the spread in the network?

• Why certain heuristics, such as, degree centrality can be used as good initiator of the

diffusion process in certain networks and not for others?
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I show experimentally that for network densities above and below a certain threshold, the

difference between the optimal and expected spread is negligible. In between the two extremes,

the difference between the two approaches is markedly large. This region, rich with non–

trivial and complicated structure, requires further work to devise efficient techniques for finding

optimal spreaders.

6.5.2 Methodology

I use the statistical dynamic network generative model introduced in Section 4.3 to generate

dynamic networks with a wide range of properties. This generating model provides us with

an extensive set of parameters through which networks of varying densities and community

structures can be generated. For this analysis, I use this dynamic network generative process to

instantiate networks with skewed community size distribution. I use the Independent cascade

diffusion model (92) to simulate diffusion in networks. I estimate three main types of extent of

diffusion in these networks.

6.5.2.1 Methods

Following are the three methods used for estimating the extent of diffusion in dynamic

networks.

1. Optimal (or the greedy approximation) extent of diffusion. Note that the greedy approx-

imation gives the same result as the optimal when the initial set size k = 1 . The details

of both methods are provided in Section 6.2.4.1.

2. Expected extent of diffusion by a uniformly random set of diffusion initiators. Algorithm 4

formally describes this algorithm.
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3. Extent of diffusion by degree and betweenness heuristics. This method is described in

Algorithm 5.

6.5.2.2 Diffusion model

I simulate spread in the real–world and synthetic networks using the Independent cascade

spreading model. This model is explained in full detail in Section 2.3.1.

6.5.2.3 Parameter settings

I perform extensive Independent cascade model based diffusion simulation over a set of

networks sampled from the network generative process explained in Section 4.3. I sample

thousands of networks by controlling for network modularity over time while controlling for

the static network density. I sample networks with a skewed cluster size distribution based on

the conclusions by Chung et al. for networks with skewed degree distributions (49). Thus, in

this set of synthetic networks the giant component encompasses about 40–50 % of the network

and all the rest of the components are some constant fraction of log of the network size. The

connectivity of nodes within each cluster is set using the preferential attachment model. For the

preferential attachment model the exponent of skewness γ is set between 2 and 3, as has been

shown for most real–world networks (123). For networks based on this model, the minimum

average degree is set slightly above 1 to mimic the growth process. The resulting synthetic

networks have a bimodal degree distribution. That is, there is a large frequency of smaller

degree nodes but also a relatively significant number of nodes that have degrees closer to the

size of the largest component. This instantiation of the network generative process also captures
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the modular structure of the underlying dynamic network, as is evident by the sample graph

in Figure 1. I sample over 500 such networks of various densities and levels of modularity.

6.5.3 Experimental results

I compare the optimal extent of diffusion with the expected extent of diffusion in the syn-

thetic dynamic networks. I find that networks with very low static effective density have highly

skewed static structure. This renders heuristics like highest degree very effective for diffusion

maximization. On the other hand, networks that are very dense (static density), the best

methods for estimating the extent of diffusion are comparable to the baseline, that is a uni-

formly random set of spreaders. However, there is an in–between region of density for which the

difference between the optimal and random is very significant. This is meaningful since with

only the basic knowledge about the underlying network structure, I observe, that it is easier

to determine when we need to employ a sophisticated yet computationally expensive method

and when something as simple as random set of spread initiators will work for diffusion maxi-

mization. I also compare the optimal spreaders to the heuristic methods in that intermediate

density region to evaluate their effectiveness. I find that although degree heuristic gives result

closer to the optimal, it is the nodes that connect communities that consistently perform well

in this region. I further estimate the extent of diffusion in this region of density using the dy-

namic betweenness centrality measure. Recall, the dynamic betweenness centrality presented

in Section 5.2.2, ranks each node in the network based on their structural as well as temporal

position.
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Figure 18 shows results of difference in optimal and expected for various seed set = 5,

10, and 15. From this result I observe the two phase shifts in the difference in the extent of

diffusion at effective density of 0.01 and 0.3. Again, this shows that in dynamic networks, just as

in static network, above and below certain densities it is easier to estimate the greedy–optimal

extent of diffusion by something as simple as a random set of diffusion initiators. However, in

between the low and high density region, the difference in the greedy–optimal and the expected

is significantly large. I use the degree and the dynamic betweenness heuristic to show that

within this region simple heuristics give estimates close to the greedy–optimal.

Figure 19 shows the difference in optimal and random, degree, and betweenness. Clearly,

there are two phase shifts for when the expected performs as well as optimal. As is observed

in the results degree gives near optimal extent of diffusion in low density networks. Dynamic

betweenness heuristic gives diffusion estimates remarkably close to optimal in dynamic networks

with intermediate density. Moreover, degree as well as random expected extent of diffusion

perform much worse as compared to the optimal. Towards the dense network extreme, all

methods converge to the optimal, including the uniform random expected extent of diffusion.

6.5.4 Conclusions

I show that dynamic networks with densities above and below a certain threshold are

amenable to simple heuristics. In dense networks, in fact, there is no differentiation between

optimal influence of individuals and any random set of individuals is good, given a high enough

rate of diffusion. In sparse networks simple heuristics like highest degree nodes perform well. In

between the two extremes, the difference between the optimal and a random seed set is signifi-
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Figure 18: Difference in the greedy–optimal and the expected extent of diffusion
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Figure 19: Difference in the greedy-optimal and Expected, Degree and, Betweenness heuristics
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cant. That difference, in fact, depends on how modular (clumped, clustered, non uniform) the

network is. Networks with such densities have complex structures that require sophisticated

methods for influence maximization.



CHAPTER 7

DIFFUSION MINIMIZATION

In the context of the propagation of diseases or undesirable behavior, it is important to

minimize extent of diffusion in a network by identifying a set of blockers: individuals that

are most effective in stopping or slowing down the spread of a process through the population.

This problem of diffusion minimization is complementary to the diffusion maximization problem

discussed in Chapter 6.

How can we stop the diffusion of a dynamic process through a social network? This problem

has applications to many diverse areas such as preventing or inhibiting the spread of diseases (25;

63; 86), computer viruses1 (26; 57), rumors, and undesirable fads or behaviors (59; 60; 80; 81).

A common approach to inhibit the diffusion of such processes is to identify key individuals

whose removal will most dampen the diffusion. In the context of the spread of a disease, it is a

question of finding individuals to be quarantined, inoculated, or vaccinated so that the disease

is prevented from becoming an epidemic. I call this set of key individuals the blockers of the

spreading process.

1In particular, we are concerned with computer malware that spreads through social networks, such
as email viruses and worms, cell-phone viruses, and other related malware such as the MySpace worm.

129
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7.1 Problem statement

Diffusion minimization is the problem of finding a set of nodes in a network, whose removal

from the network reduces the extent of diffusion in the network the most. I call such a set

of nodes as “blockers” of the diffusion process and the function that finds such a set of nodes

as “blocking function”. Informally, blockers are a set of entities in a network that minimizes

the extent of diffusion in the network the most. In case of a virus or disease propagation in a

network, it is the set of individuals that once quarantined or vaccinated will result in containing

the extent of diffusion of the disease the most. In case of contaminant flowing through a network

of pipes and junction, it is the set of junction that when equipped with proper sensors, minimizes

the time of detection of the contaminant or the source of contaminant.

I formally define the Diffusion Minimization problem in terms of the blocking function as

follows:

Definition (Blocking) A blocking funcion kBl(G) is a minimization function that finds a set

of k nodes whose removal from the network minimizes the expected extent of diffusion the most

in that network. Let Diffusionv(·) be the expected extent of diffusion in the network. Then,

the expected minimization in the extent of diffusion after removing k nodes from the network

G is:

kBl(G) = min
X⊆V,|X|=k

Spread(G \X).

An alternative but equivalent definition is based on maximization:
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Definition (Blocking) Blocking kBl(·) is the function that finds k individuals in the network

that results in the maximum reduction in the extent of spread in the network when that set

is removed from the network. That is, this function finds the best blocker(s) in the network.

Let BlX(·) is a function that measures the reduction in the expected extent of diffusion after

removing the set X of individuals from the network.

BlX : G→ R+, BlX(G) = Spread(G)− Spread(G \X).

Then Blocking is:

kBl(G) = max
X⊆V,|X|=k

BlX(G).

This definition of the individuals’ blocking capacity by its removal, in the context of diffusion

of a contagion, corresponds to the quarantine action. Vaccination or inoculation leave the

node in the network but deactivate its ability to propagate the contagion. A subtle difference

between removal of a node and vaccinating a node is that the former changes the network

structure whereas the later only blocks the flow. For susceptible infected removed model from

mathematical epidemiology the two actions are equivalent at the abstract level for estimating

the extent of diffusion in networks. Another interpretation of diffusion minimization is to limit

the diffusion of a contaminant by detecting the source of contaminant as quickly as possible.

Here the goal of optimization is to minimize the time of detection. Depending on the application,

this goal is different from minimizing the impact of diffusion from the above definitions.
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7.2 Finding good blockers in dynamic networks

A comprehensive survey of work in this area is given in Section 3.3. Although diffusion

minimization by finding critical junctions, points, or nodes in a network is an extremely impor-

tant problem for many applications such as spread of viruses, diseases, contamination, among

others. However, most of the scientific work in this regard is limited to either some applications

or some simple functions. This problem generally has so far resisted systematic algorithmic

solutions. In an effort to formulate practical solutions, in the following work we ask: Are there

structural network measures that are indicative of the best blockers in dynamic social networks?

I compare the blocking ability of individuals to the values of their structural properties

proposed in Chapter 5. For instance, I analyze whether a high degree node is a good blocker.

I find that overall, simple ranking according to a node’s static degree, or the dynamic version

of a node’s degree, performed consistently well. Surprisingly the dynamic clustering coefficient

seems to be a good indicator, while its static version performs worse than the random ranking.

This provides simple practical and locally computable algorithms for identifying key blockers

in a network.

7.2.1 Contributions

There has been significant previous work related to studying and controlling the spread of

dynamic processes in a network (27; 28; 29; 40; 46; 57; 59; 63; 75; 86; 92; 93; 106; 107; 117;

124; 133; 139). Unfortunately, these results have three properties rendering them ineffective for

identifying good blockers in large networks.
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1. Many proposed algorithms focus on identifying nodes that will be most effective in start-

ing the spread of a process rather than blocking it (92; 106); or alternatively, focus on

identifying nodes in the network that will be most effective in sensing that a process has

started to spread, and where the process initiated (27; 28; 29). In this work, my focus is

specifically on identifying those nodes that are good blockers.

2. Algorithms proposed in previous work all require computationally expensive calculations

of some global properties over the entire network, or rely on expensive, repeated stochastic

simulations of the diffusion of a dynamic process. In this work, I present algorithms that

identify good blockers quickly, based only on local information.

3. Perhaps the most critical problem in previous work is the elision of the dynamic nature

of social interactions. The very nature of a diffusion process implies an explicit time axis.

For example, the flow of information through a social network is dependent on who has

the information at what point in time and who are the individuals in contact at that

moment with the information carrier that are likely to acquire the information next (93).

In this work, I focus on explicitly dynamic networks, defined in Section 2.1.2. In these

networks, I study the social interactions over a finite period of time, measured in discrete

timesteps.

The main contributions of this work are summarized below.

• I formally define the problem of identifying key diffusion blockers in networks in Sec-

tion 7.1.
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• I measure the network properties defined in Section 2.2 of each node and rank the nodes

based on those values.

• I compare the reduction in the extent of diffusion based on removing individuals from a

network in the ranking order imposed by various network measures. I identify measures

that consistently give a good approximation of the best spread blockers.

• I compare the difference in the sets of top blockers identified by various measures.

• I extensively evaluate our methods on the following real dynamic networks: Enron email

network, Bluetooth networks of MIT Reality Mining and UMass proximity, DBLP co–

authorship network, and animal population networks of grevys zebras and onagers. The

details of these networks are provided in Section 4.1.

Ultimately, I show that the dynamics of interactions matters and simple local measures, such as

degree, are highly indicative of an individual’s capacity to prevent the spread of a phenomenon

in a population. The implication of our results are that there are practical scalable heuristics

for identifying quarantine and vaccination targets in order to prevent an epidemic.

7.2.2 Methodology

I evaluate the effectiveness of each of the structural properties as indicator of node’s block-

ing capacity under the Independent Cascade spreading model. The model is explained in

Section 2.3.1. Following is the algorithm for estimating the extent of diffusion in each dynamic

network G = (V,E) using each network property/measure.

7.2.2.1 Algorithm

For each measure and for each dynamic network dataset, we follow the following steps:
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1. Order the individuals 0, . . . , |V − 1| according to the ranking imposed by the measure.

2. For i = 0 to |V − 1| do:

(a) Remove node i from G = (V,E).

(b) Estimate the extent of spread in G \ i by averaging over stochastic simulations of

Independent Cascade model initiated at each node in turn, 3000 iterations for each

starting node.

(c) If the extent of spread is less than 10% of the nodes in the network then Stop.

Set of the removed individuals are the best blockers according to their ranks.

7.2.2.2 Probability of activation

We conducted the Independent Cascade spreading experiments on a variety of networks

with diverse structural properties like density/sparsity, diameter and average path length etc.

In each network, we assigned a different probability of activation based on the structure of the

network. Following is the procedure we used to find a meaning full probability of activation to

work with for a given network.

1. For a given G = (V,E) , run the Independent Cascade Spreading process with p = 1.

Notice that this is a deterministic process.

2. Calculate the average extent of spread S in G = (V,E). Notice, this will give us roughly

the size of the largest connected component of the network G.

3. Rerun the spreading process while setting p < 1. Calculate the average extent of spread

in the network.
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4. Repeat the last step while reducing p until the average extent of spread is only as large

as 50% of S.

5. Set probability of activation for G equal to p.

7.2.2.3 Network properties

I use the following network properties as heuristics: dynamic and aggregate versions of

degree, betweenness, closeness centralities, and clustering coefficient, as well as the average

dynamic degree (turnover rate). For the global measures of betweenness and closeness we

locally approximate them within 1, 2, and 3 hops neighborhoods. I also rank individuals based

on their neighbors within 1, 2, and 3 hops of nodes and edges. The static network properties

are defined in Section 2.2.2 and their dynamic counterparts are introduced in Section 5.2. Since

the diffusion occurs primarily due to local level interactions, I introduce two properties based

on the local connectivity of each node. Following are the two measures that exploit the local

neighborhoods of individuals.

Nodes in Neighborhood is the number of nodes in the local neighborhood of an individual.

The number of nodes in the 1-neighborhood is precisely the degree of an individual. I

extend the measure by considering the 2- and 3-neighborhoods of each individual.

Edges in Neighborhood is the number of edges in the local neighborhood of an individual.

I compute the edges in neighborhood for 1, 2 and 3 hop neighborhoods of each individual.

This measure loosely captures the local density of the neighborhood of an individual.

Overall, I use 26 different measures.
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I compare the extent of diffusion using the above structural properties heuristic to the

optimal exhaustive search of the best blockers or greedy local search algorithm. Moreover, I

compare the heuristics to the random selection of k nodes as blockers of diffusion in the network.

7.2.2.4 Lower Bound: Best Blockers

I identify the best blockers one at a time using exhaustive search over all the individuals.

To find one best blocker, I remove each individual, in turn, from the network and estimate

the extent of spread using stochastic simulations of the Independent Cascade model in the

remaining network. The best blocker, then, is the individual whose removal results in the

minimum extent of diffusion. I then repeat the process with the remaining individuals. This

process imposes another ranking on the nodes.

Optimally, one needs to identify the set of top k blockers. However, this problem is com-

putationally hard and an exhaustive search is infeasible. I have conducted limited experiments

on the datasets considered in this paper and in all cases the set of iterative best k blockers

(estimated using the above procedure) equals to the set of top k (optimal using exhaustive

search) blockers. This preliminary result warrants future investigation and rigorous evaluation.

7.2.2.5 Upper Bound: Random Blockers

To estimate the worst blocking scenario in a network I pick individuals at random to block.

I estimate the reduction in spreads after removing each individual. I repeat the process until

only 10% of the remaining population is infected by the spreading process. This method is

repeated for several runs R and eventually the average extent of diffusion is calculated over all

R runs. For these experiments R is set to c log(N), where c is a constant greater than 1 and N
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is the network size. This Upper bound gives us an insight into how hard blocking the spread

of a phenomenon in certain network structure can be.

7.3 Datasets

In this section I briefly describe the datasets used in the experiments. I use the following

datasets in these experiments: grevys, onagers, DBLP, Reality Mining, Enron, and UMass.

These network datasets are explained in extensive detail in Section 4.1. Table VIII provides

a summary of the statistics of the networks used in these experiments. Here V is the number

of individuals, E is the number of edges, T is the number of timesteps, D is density and DT

is dynamic density, d is the diameter within a connected component and dT is the dynamic

diameter, and p is average shortest path length and pT is the average temporal shortest path

length.

grevy onagers DBLP Enron MIT UMass

V 28 29 1374 147 96 20
E 779 402 2262 7406 67107 2664
T 44 82 38 701 2940 693
D 0.30 0.36 0.002 0.04 0.68 0.72
DT 0.52 0.24 0.09 0.14 0.18 0.35
d 4 3 15 6 2
dT 36 74 37 618 315 8
p 1.84 1.66 5.5.4 2.66 1.32
pT 4.81 7.51 5.12 461.24 4.21 3.71

TABLE VIII: Dynamic network dataset statistics.
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7.4 Results and Discussion

For each of the datasets I have evaluate all the measures to determine how effectively they

identify good blockers. Figure 20, Figure 21, Figure 22, Figure 23, Figure 24, and Figure 25

show reduction in the extent of diffusion from the best measures on all datasets. For all the

plots, the x–axis is the number of individuals removed and the y–axis shows the corresponding

extent of spread. The lower the extent of diffusion, the better is the blocking capacity of the

individuals removed. Thus, curves lower on the plot correspond to measures that are better

indicators of blocking power.

The comparison of all the measures showed that four measures performed consistently well as

blocker indicators: degree in aggregate network, the number of edges in the immediate aggregate

neighborhood (local density), dynamic average degree, and dynamic clustering coefficient. This

is good news from the practical point of view of designing epidemic response strategies since all

the measures are simple, local, and easily scalable. Surprisingly, while the local density and the

dynamic clustering coefficients seem to be good indicators, the aggregate clustering coefficient

turned out to be the worst, often performing worse than a random ordering. Betweenness and

closeness performed inconsistently. Page Rank did not perform well in the only dataset with

directed interactions (Enron)1.

As seen in Figure 24 and Figure 25, the ease of blocking the spread depends very much

on the structure of the dynamic network. In the two bluetooth datasets, MIT Reality Mining

1On undirected graphs, Page Rank is equivalent to degree in aggregate network
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Figure 20: Reduction in the extent of diffusion - grevys
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Figure 21: Reduction in the extent of diffusion - onagers
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Figure 22: Reduction in the extent of diffusion - DBLP
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Figure 23: Reduction in the extent of diffusion - Enron
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Figure 24: Reduction in the extent of diffusion - Reality Mining
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Figure 25: Reduction in the extent of diffusion - UMass
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and UMass, all orderings, including the random, performed similarly. Those are well connected

networks, as evident by the large difference between the dynamic diameter and the average

shortest temporal path. The only way to reduce the extent of spread to below 10% of the

original population seems to be trivially removing nearly 90% of the individual population. On

the other hand, Enron and DBLP show the opposite trend of being easily blockable by a good

ranking measure.

In addition to comparing the extent of spread based on the ranking by various measures,

I compare the sets of the top ranked blockers identified by the four best measures as well as

the best possible ordering. Figure 26 and Figure 27 show the scatter plots of the pairwise

comparisons of rankings induced by the four measures. The scatter plots show that, in general,

there is little correspondence between the rankings imposed by various measures. The only

strong relationship, as expected, is between the number of edges in the neighborhood of a

node and its degree in the aggregate network. Each plot shows the ranking of the individuals

according to two measures. Individuals ranked top by both measures are in the upper right

corner of each plot. Nodes with the same value for a particular measure have the same rank

for that measure.

I further explore the difference in the sets of the top ranked individuals by computing the

size of the common intersection of all the top sets ranked by the four measures and the best

possible ranking. I use the size of the set determined by the best possible ordering as the set size

for all measures. Table IX shows the size of the common intersection for all datasets. Again,

I see a strong effect of the structure of the network. The MIT Reality Mining and the UMass
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Dataset Set size Inter. size Inter. frac

grevys 5 2 .40
Onagres 9 3 .33
DBLP 16 0 0
Enron 13 4 .31
Reality Mining 60 48 .80
UMass 12 10 .83

TABLE IX: The size of the common intersection of all the top sets ranked by the four measures
and the best ranking. Set size is the size of the sets determined by the best blocking order-
ing. The size of the intersection is the number of the individuals in the intersection and the
Intersection fraction is the fraction of the intersection of the size of the set.

datasets have most of the same nodes ranked as top by all measures. On the other hand, in

DBLP the four measures produced very different top ranked sets, yet all four measures were

extremely good indicators of the blockers. In other networks, while there are some individuals

that are clearly good blockers according to all measures, there is a significant difference among

the measures. Overall, these results lead to two future directions: 1) investigating the effect of

the overall network structure on the “blockability” of the network; and 2) designing consensus

techniques that combine rankings by various measures into a possible better list of blockers.

7.5 Conclusions and Future Work

In this work I investigated the task of preventing a dynamic process, such as disease, from

spreading through a network of social interactions. I formulated the problem of identifying

good blockers: nodes whose removal results in the maximum reduction in the extent of spread

in the network. I focused on identifying structural network measures that are indicative of

whether or not a node is a good blocker. Since the timing and order of interactions is critical
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in propagating many spreading phenomena, I focused on explicitly dynamic networks. I used

26 different measures as candidates for identifying good blockers in dynamic networks.

I conducted experiments on six dynamic network datasets spanning a range of contexts,

sizes, density, and other parameters. I compared the extent of diffusion while removing one

node at a time according to the ranking of nodes imposed by each measure. Overall, four

measures performed consistently well in all datasets and were close to identifying the overall

best blockers. These four measures were node degree, number of edges in node’s neighborhood,

dynamic average degree, and dynamic clustering coefficient. The traditional aggregate cluster-

ing coefficient and dynamic closeness performed the worst, often worse than a random blocking

process. All four best measures are local, simple, and scalable measures and, thus, potentially

lead to good practical epidemic prevention strategies. However, before such policy decisions are

made, we need to verify that my results hold true in other, larger and more complete datasets

and are not an artifact of the particular types of dynamic data sets that are currently available

to the research community.

The striking disparity between the performance of the dynamic and aggregate clustering

coefficient indicates the necessity of taking the dynamic nature of interactions explicitly into

consideration in network analysis. Moreover, this disparity justifies the extension of traditional

network measures and methods to the dynamic setting. In future, the informativeness of a range

of dynamic network measures in various application contexts needs to be further investigated.

I also compared the sets of nodes ranked at the top by various measures. Interestingly, in

the networks in which it was difficult to block the diffusion process, all the measures resulted
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in very similar rankings of individuals. In contrast, in the networks where the removal of a

small set of individuals was sufficient to reduce the spread significantly, the best measures

gave very different rankings of individuals. Thus, there seems to be a dichotomy in the real–

world networks I studied. On one hand, there are certain types of networks (e.g. MIT Reality

Mining and UMass datasets) that are hard to block in that it is inherently challenging to find

good blockers, no matter what measures are used. On the other hand, there are certain types

of networks that are inherently easy in the sense that many different sets of nodes are good

blockers. In future, the specific structural attributes of a network that delineate this difference

between networks for which it is hard or easy to identify good blockers needs to be further

investigated.

The comparison of the top ranked sets also shows that while there may be some common

nodes ranked high by all measures, there is a significant difference among the measures. Yet,

all the rankings perform comparably well. Thus, there is a need to test a consensus approach

that combines the sets ranked top by various measures into one set of good candidate blockers.

This is similar to combining the top k lists returned as a web search result (65).

This work focused on the practical approaches to identifying good blockers. However, the

theoretical structure of the problem is not well understood. While the blocking function is

submodular, it is non–monotonic and, thus, so far has defied good approximation algorithms.

Recent developments in the analysis of non–monotonic submodular functions (67; 154) may be

applicable in this context and may result in good approximation guarantees.
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Dyn Avg Deg vs Dyn CC Dyn Avg Deg vs ENN1

Dyn Avg Deg vs Agg. Deg Dyn CC vs ENN1

Dyn CC vs Agg Deg Agg Deg vs ENN1

Figure 26: Comparison of best measures in Enron dataset
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Dyn Avg Deg vs Dyn CC Dyn Avg Deg vs ENN1

Dyn Avg Deg vs Agg. Deg Dyn CC vs ENN1

Dyn CC vs Agg Deg Agg Deg vs ENN1

Figure 27: Comparison of best measures in onagers dataset



CHAPTER 8

SOCIAL ORGANIZATION IN EQUIDS

Social interactions among various equids (zebras, horses, asses) populations is one of the

ecological applications of my research. Across various types of equids, ecologists have observed

an immense diversity in social behavior. Social interactions differ in their type, frequency, and

duration. For example, interactions among these animals can be cooperative, antagonistic, or

territorial, as well as interactions or social bonds may last for years or minutes or just sec-

onds (98). Which type of interaction occurs and with what frequency and duration will depend

on factors such as foraging resources, risks of predators, population size, among others (98).

This raises the question for ecologists as to how to comprehend multiple and complex interaction

patterns that can arise even if the number of participants is relatively small.

8.1 Motivation

Equids display many different forms of social organization; plains zebra associate in small,

closed harems, whereas onagers (asses) and grevys zebra are found in looser, more ephemeral

associations. Horses appear to be somewhat intermediate (69; 70; 150). The goal of this work is

to find links between the population network structure and the various functions these animals

tend to optimize for in their interactions. A by–product of this analysis is that the ecologists

get a better sense of salient differentiating features in the network structures of the two types

of equids based on the vitalness of the functions each population is attempting to optimize for.

152
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With this work I provide ecologist sophisticated computational tools for understanding various

social functions and organization of these animals. I perform extensive experiments on these

networks to analyze the network structures and their properties. I identify critical network

properties that characterize a certain network structure for optimizing a certain diffusion goal.

With these methods ecologists are better equipped to answer questions about different social

structures in equids.

8.2 Network structure and functions

Sociologists started addressing the above question more than sixty years ago by observ-

ing human interaction patterns and how those interactions were shaped by various functions

performed by humans. In recent years, models of interactions and the processes (functions)

taking place on them, have been extensively formalized in the fields of statistical physics and

mathematical epidemiology, among others. Network theory has long been used to investigate

human social organization. Its main strengths being the potential to address population–level

problems by building up complex social structures from individual level interactions (147; 155).

Furthermore, network statistics can be used to derive novel quantitative measures that char-

acterize social structure at the level of the individual, and these measures can then be used

alongside other standard statistical variables (e.g. measures of relatedness or reproductive suc-

cess). These advances provide us with a powerful set of tools for computational analysis of

animal social networks.
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8.2.1 Statistical physics

Physicists have long been hypothesizing that biological systems can be understood in the

same way as collective behavior in physics, where statistical mechanics provides a bridge be-

tween microscopic rules and a macroscopic phenomena. Most of the work in this line of research

aims to show how individual level attributes can help to explain and predict patterns at the

level of populations that can propagate to higher –more abstract– levels of organization in the

population (116). For example, power–law has been shown to explain the fractal nature of

nature (36). In the same vein, I study the behavior propagation of equids using probabilistic

diffusion models. Overtime, this propagation results in stable network structures that is anal-

ogous to a certain network signature that signifies the social dynamics of various species and

how they differ from one another.

8.2.2 Network theory

Network theory provides a quantitative framework that can be used to characterize social

structure both at the level of the individual and the population. These quantitative variables

provide a new tool in addressing key questions in behavioral ecology particularly in relation to

the evolution of social organization and the impact of social structure on evolutionary processes.

For example, network measures could be used to compare social networks of different species or

populations making full use of the comparative approach. However, the networks approach can

in principle go beyond identifying structural patterns and also can help with the understanding

of processes within animal populations such as disease transmission and information transfer.
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Finally, understanding the pattern of interactions in the network (i.e. who is connected to

whom) can also shed some light on the evolution of behavioral strategies.

These techniques from stochastic modeling as well as network theory, make it possible to

calculate quantitative metrics describing social structure across different scales of organization,

from the individual to the population with respect to the functions performed by the individuals

in these networks.

8.3 Problem statement

In this work I compare the relationship between social network structure of equids - specif-

ically, grevys zebra and onagers - to the functions (leadership formation, loyalties, protection,

survival) these structures are optimized for, using Independent Cascade (Section 2.3.1) and

Linear Threshold (Section 2.3.2) diffusion models.

8.4 Diffusion maximization

I study the differences, between grevys and onagers populations, in maximizing various

trends of diffusion (such as, awareness of a predator, knowledge of water and food resources)

using the Independent cascade and Linear threshold models. I compare the following two trends

in the two networks:

Extent of diffusion: The expected size of the population affected by the diffusing process

given a constant rate of diffusion and a fixed size population initiating the diffusion

process.

Rate of diffusion: The expected extent of diffusion relative to the size of population initi-

ating the diffusion process.
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Following sections provide the description of the conclusion drawn for maximizing the above

two goals using the independent cascade and linear threshold model of diffusion in the two

populations.

8.4.1 Independent cascade diffusion

8.4.1.1 Extent of diffusion

I find that in grevys, with high expectation diffusion starts from the largest component,

that is composed of almost 55% of the population, but it does not go easily beyond that

component Figure 28. However, at the same rate of diffusion, the diffusion process extends to

almost the entire population in onagers Figure 29.The diffusion progresses linearly beyond the

the largest component when best diffusion initiator is picked using the greedy approximation

approach stated in Section 2.4.1.1.

After rigorously simulating the independent cascade process on the two networks with var-

ious parametric values, I find that at very low rates of diffusion, it is relatively easier to spread

in grevys than in onagers. Since the onagers network is sparsely connected the low rates render

it harder to reach tenuously connected individuals. On the other hand, the tight, temporally

persistent, cohesive structure of the grevys network facilitates the diffusing process to reach a

large extent of population. At the diffusion rate of as low as 0.05 the best extent with just a

single active individual reaches as high as 50% of the population. Whereas, for the same rate of

infection, in onagers, only 25% of the population gets activated while any additional activation

occurs linearly with the size of the initially active individuals. Hence, at a rate high enough,

the distributiveness of the onagers network gives it an edge over more structured networks.
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8.4.1.2 Rate of diffusion

I find that the rate of diffusion is higher in onagers than in grevys. As shown in the results

in Figure 29 for the same rate of infection of .25, it takes 3 individuals to reach the entire

population in onagers. In grevys, on the other hand, for the same extent of diffusion it takes

about 10 individuals (Figure 28). (Extent of diffusion in grevys for 0.05 and .25 are not much

different from each other.)

8.4.2 Linear threshold diffusion

8.4.2.1 Extent of diffusion

I find the extent of diffusion using the linear threshold model is quantitatively similar to

that of the independent cascade model for both grevys and onagers networks. That is, ex-

tent of diffusion is generally much higher in onagers than in grevys, as evident from Figure 30

and Figure 31. The similar extent of diffusion for the two models indicates, that even with com-

pletely opposite dynamics of the diffusion processes, the structure of the population significantly

influences the extent of diffusion in the population.

8.4.2.2 Rate of diffusion

Figure 30 and Figure 31 show that the rate of diffusion in onagers is much higher than

in grevys using the linear threshold model. Even in the worst case (uniform random) it takes

no more than 4 individuals to activate the entire population of onagers. Since at any given

time each individual is close to very few other individuals, it becomes easier for the set of

active individual to activate their inactive neighbor. Thus, a diffusion process initiated with a
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Figure 28: Diffusion in grevys with independent cascade
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Figure 29: Diffusion in onagers with independent cascade
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Figure 30: Diffusion in grevys with linear threshold model

strategically “good” set of individuals, can reach the entire population. Whereas, in grevys, it

takes 4 or more individuals to result in the same extent of diffusion.

8.4.3 Grevys vs onagers

The overall trend observed for the two population is that diffusion happens relatively easily

in onagers than in grevys. The random and distributed nature of the onagers network facilitate

the diffusion of processes such as diseases and information. Grevys, on the other hand have
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Figure 31: Diffusion in onagers with linear threshold model
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a relatively more cohesive structure. From Section 6.4 we know that in more clustered the

network structures, the extent of diffusion across the cluster is dependent on the rate of diffusion.

Therefore, in grevys its easier to spread within a cluster but harder to propagate the spreadin

process across clusters.

8.5 Diffusion minimization

I focus on the following two measures for diffusion minimization, using the independent

cascade and linear threshold diffusion models.

Expected extent of diffusion: This is the average extent of diffusion in the network over

all nodes. That is, it is the expected value of the extent of diffusion, when the diffusion

process is initiated by each node independently.

Blocking set size: A blocking set is a group of individuals that when removed (blocked) from

the network brings the extent diffusion in the network to below some minimum threshold.

Blocking set size is then the minimal such set of individuals which when blocked from the

network will result in the extent of diffusion no more than the threshold.

8.5.1 Independent cascade

8.5.1.1 Expected extent of diffusion

The expected extent of diffusion in onagers is significantly more than in grevys. This trend

can be observed in Figure 32 and Figure 33. For the two population of the same size, we

see that the expected extent of diffusion in onagers and grevys are about 55% and 33% of
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the population, respectively. Hence, for onagers the network with higher expected extent of

diffusion, it is harder to block the diffusion process in this network.

8.5.1.2 Blocking set size

Secondly, although the best blocking in both grevys and onagers require almost identical

number of blockers to limit the extent of diffusion to about 10% of the population. I find that

in most cases (of measures) it requires somewhere between 12 and 17 individuals to achieve

such low extent in onagers whereas in grevys most measure ranking enable effective blocking

with top 10 individuals (Figure 32 and Figure 33).

8.5.2 Linear threshold

8.5.2.1 Expected extent of diffusion

Figure 34 and Figure 35 show that the expected extent of diffusion in onagers is significantly

more than in grevys. For the two populations of the same size, I see that the expected extent of

diffusion in onagers is 80% of the population unlike grevys where the diffusing process reaches

only 30% of the population. Hence, for onagers the network with higher expected extent of

diffusion, it is harder to block the process.

8.5.2.2 Blocking set size

Secondly, although the best blocking in both grevys and onagers require almost identical

number of blockers to contain the spread to about 10% of the population. I find that in most

cases (of measures) it requires around 20 of the 28 individuals to contain the extent of diffusion

to within 10% of the onagers population whereas in grevys most measure ranking enable effective

blocking with top 15 individuals. These observations are summarized in Figure 34 and Figure 35.
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Figure 32: Reduction in the extent of diffusion in grevys with independent cascade model
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Figure 33: Reduction in the extent of diffusion in onagers with independent cascade model
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Figure 34: Reduction in the extent of diffusion in grevys with linear threshold model
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Figure 35: Reduction in the extent of diffusion in grevys with linear threshold model
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8.5.3 Grevys vs Onagers

It is easier to block the diffusion of a process in grevys than in onagers. This trend is con-

sistent with what is generally observed in distributed (non–centralized) networks. Distributed

networks are more robust to random failures. Whereas, more centralized and structured net-

works are reliant on its cores and its easier to disrupt them by removing the core or “hubs” in

the network.

8.6 Network measures as indicators of extent of diffusion

Following is the summary of my preliminary observation about the effectiveness of various

network measures as indicators of diffusion in the two networks.

• Individuals with higher betweenness centrality are effective in blocking the diffusion pro-

cess in both grevys and onagers (Figure 34 and Figure 35).

• In onagers it is easy to reach a large set of population with almost all the network measures

(Figure 30 and Figure 31).

• In grevys, it is relatively easy to reach all the individuals within a group since this animal

tend to live in cohesive groups. However, it is hard to reach across the groups (?? and

Figure 31).

8.7 Conclusions

With the help of these preliminary observations I provide ecologists with systematic inter-

pretation of animal network structure and its effect on their behavior. The goal of this work is

to find links between the population network structure and the various functions these animals
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tend to optimize for in their interactions. A by–product of this analysis is that the ecologists

get a better sense of salient differentiating features in the network structures of the two types

of equids based on the vitalness of the functions each population is attempting to optimize for.

With this work I provide ecologist sophisticated computational tools for understanding various

social functions and organization of these animals. I perform extensive experiments on these

networks to analyze the network structures and their properties. I identify critical network

properties that characterize a certain network structure for optimizing a certain diffusion goal.

With these methods ecologists are better equipped to answer questions about different social

structures in equids.
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