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SUMMARY

The objective of this research is to apply genetic algorithms (GA) for optimizing truss geom-

etry with inducing periodicity and develop impulse-response based nondestructive evaluation

approach using the advantage of periodic system design. Size optimization refers to a minimiz-

ing of cross sectional areas of the elements for a given topology of a structural system. The

topology of a truss system is inspired from periodic lattices where elements periodically repeat

themselves. In the optimization algorithm cross sectional areas of the truss elements are treated

as a discrete design variable. According to the design variable, genetic algorithm attempts to

find minimum weight of the structure by satisfying certain conditions such as tensile strength,

compression strength and displacement of the structural elements. Using the optimized struc-

tural configuration with periodic arrangement of truss members, the impulse-response method

is applied to identify the structural state of each repeating unit cell. The main hypothesis is

that each unit cell has similar frequency response at the undamaged state. Once damage forms

in a unit cell, its behavior deviates from the unit cell behavior. The approach has been numeri-

cally and experimentally demonstrated. The numerical models have been built using COMSOL

Multiphysics software in the frequency domain. Numerical results include the impulse responses

of the trusses with different numbers of unit cells and three different unit cell topologies for

pristine and damaged conditions. In the experimental study, a steel truss bridge with eight

repeating unit cells (one of the numerically modeled configurations) is built and tested using

impact hammer and accelerometer. The positions of the impact hammer and accelerometer are

ix



SUMMARY (Continued)

moved to each unit cell to record the frequency response and observe the periodic behavior. A

damage is then introduced to a unit cell, and the deviance from the periodic behavior is ob-

served in that unit cell as predicted. The developed approach allows nondestructive testing of

periodically placed truss systems without baseline by simply comparing the frequency response

of each unit cell.

x



CHAPTER 1

INTRODUCTION

1.1 Statement of Problem

The achievement of the best solution often comes together with the challenge of selecting

between different design factors: therefore, optimization is inherently involved into the design

process [1]. In general, optimization can be subcategorized into three main concepts: load-

carrying capacity (safety), producibility and economy [2]. These three concepts are interrelated

with each other and affect the cost of structure. In this research, load-carrying capacity is

studied and the structural cost is naturally included into the optimization problem. There are

certain criteria for the purpose of the structure functionality, which are specified in the design

codes. In the conventional design process, these criteria are taken into account one by one.

However, in order to achieve the best solution, in other words the most economical outcome,

these criteria have to be considered simultaneously. Genetic algorithm (GA) allows to treat

them at once as constraints in an efficient way. It is essential to say that all kinds of designs

without optimization are deficient in terms of economy. Another issue that engineers face is

lifespan of structures. All structures have a certain service lifespan due to deterioration of

their materials. After that, structures have to be retrofitted or demolished. The determination

of structural state and the prioritization for repair can be achieved by periodically recorded

nondestructive evaluation (NDE) data. NDE provides real time inspection by using data ob-

1
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tained from sensors. A damage in the structural members can be diagnosed and replaced with

new elements, thus the lifespan of the structure can be increased. Generally speaking, design

optimization and NDE are considered as two different disciplines. In fact, these two disciplines

must be treated together considering the interaction of the structural design and nondestruc-

tive evaluation data. This new perspective not only gives the most feasible solution, but also

considers future structural design concepts as “design for NDE”.

1.2 Research Objective

The main objective of this research is to integrate the design optimization and NDE ap-

proach into the same platform. It is necessary to study them concurrently. The optimization

of steel structures relies on minimizing the total weight of the structure. This minimization

problem can be readily done by the GA optimization. Since GA allows the use of constraints

and does not require any derivation of function, it is a proper and efficient technique for struc-

tural optimization. The periodic assembly of the truss system is imposed as a constraint in

the optimization process. By using periodicity, finite element model can be reduced greatly by

repetitive finite element models. The influence of periodic assembly on the NDE method used

in this study (impulse response method) is numerically and experimentally demonstrated.

1.3 Structure of Thesis

Chapter 2 begins with the background of optimization, literature review of genetic algo-

rithm and its applications, and benchmark example for soundness of the method. Chapter 3

presents numerical and experimental studies of periodically assembled steel trusses using the
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impulse response method. Finally, chapter 4 discusses the major conclusions of the research

and recommendations for future work.



CHAPTER 2

APPLICATION OF GENETIC ALGORITHM TO TRUSS

OPTIMIZATION WITH PERIODICITY

2.1 Introduction

A structure is defined as the constitution of materials in order to carry loads. Optimization

refers to accomplishing the structural design in a best way. Therefore, structural optimization

answers the question of how the loads can be transmitted to the ground in the best way. The

best is not the same for all optimization problems. For this reason, it is necessary to define

an appropriate best to achieve an optimal solution. The definition of the best is fulfilled by an

objective function in GA. However, it is not sufficient to converge to a feasible solution, thus the

optimization problem must be constrained. Design manuals and other structural requirements

become a part of this method in terms of constraints. The objective in the truss optimization

is minimizing the weight of the structure. Minimum weight criterion refers to the most eco-

nomical solution since less materials will be used in the construction. Structural optimization

is subcategorized into three: size, shape and topology. Firstly, size optimization indicates that

the smallest cross sectional areas of the members which are permitted are used in the structure.

Secondly, shape optimization searches for the optimum joint arrangement. Thirdly, topology

optimization refers to best connectivity between existing joints while cross sectional areas of

the members and joints’ coordinates are fixed [3]. There are various optimization methods,

4
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e.g. sequential linear programming (SLP) [4], Newton’s method [5], gradient based method [6]

and heuristic methods [7]. In this thesis, genetic algorithm is used as a heuristic optimiza-

tion method. The heuristic optimization methods are more efficient than other optimization

methods. For example, the other methods may not converge to local optimum, but heuristic

methods do not need function derivatives, which means they have a great chance to find global

optimum. Since heuristic methods do not require a derivative function, it is easy to apply to

various optimization problems.

2.2 General Description of Genetic Algorithm

Philosophy of genetic algorithm is based on the adaptation mechanics of the most viable

species. There is a direct correlation between this method and genetics in terms of terminol-

ogy [8]. Holland [9] has established genetic algorithm in order to demonstrate the adaptive

mechanism of natural systems. Genetic algorithm has distinct aspects that outperform the

conventional optimization methods [10]. These aspects in the sense of advantages can be listed

as follows:

• Parameters are coded as binary numbers in GA that present the effectiveness in the

algorithm.

• The best solution is investigated around multiple points rather than a single point.

• The criterion of the optimization is based on the value of objective function, not function

derivatives.

• Deterministic rules are not applicable in GA, since every operation is based on its prob-

ability.
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2.2.1 Formulation of Optimization Problem in Genetic Algorithm

2.2.1.1 Design Variables (Genes)

Design variables are the numbers used in the optimization problem. These numbers have to

be converted into a binary system. These binary numbers are called “genes”. Genes constitute

a chromosome, in other words a string. According to the size optimization in truss problems,

the design variables will be cross sectional areas (An):

Xn = (A1, A2, A3..., An) (2.1)

where Xn is the vector of design variables in the algorithm [11].

Cross sectional areas represented above are genes, and three random genes are assigned to

create a string such that:

String = A1A2A3 Binary code = 1111|1000|1100

2.2.1.2 Objective Function (Fitness)

General optimization problems are evaluated by an objective function; however the objec-

tive function is embedded into fitness in GA. Each strings has their fitness values, which are

calculated through fitness function [1]. The optimization problem can be either maximization
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or minimization. If the problem has to be maximized, the fitness function [12] must be equal

to the objective function such that:

fitness =

n∑
i=1

f(xn) (2.2)

If the problem has to be minimized, the objective function [1] must be altered in order to

calculate fitness. In this case, the lowest possible design variables will give the highest fitness

values such that:

fitness =
1

1 +
∑n

i=1 f(xn)
(2.3)

In both cases, the fitness function is aimed to be maximum in GA.

2.2.1.3 Constraints

In the optimization problems, there are several conditions that have to be satisfied, especially

in structural optimization. For instance, in steel truss optimization it is important to select

a proper cross sectional area that will meet with the design criteria such as tensile strength,

compression strength and deflection. However, the method itself does not allow solving the

constrained optimization problems [13]. This issue can be eliminated by a penalty function. By

inserting constraints into a penalty function, the constrained optimization problem becomes an

unconstrained optimization problem. The penalty function [14] is formulated such that it is

based on stress violation of structural members:

p(xn) = max

[ |σi|
|σa|
− 1, 0

]
(2.4)
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where σi and σa are stress in member i and allowable stress, respectively. If there is no

violation in the element stresses, penalty value will be 0; otherwise, it will be a positive integer

and affect the fitness such that:

fitness =


f(xn) if − σa ≤ σi ≤ +σa

f(xn)− p(xn) otherwise

(2.5)

The duty of the penalty function as it is stated above is to decrease the fitness of undesirable

strings in order to lower their potential of being a solution for the optimization problem.

2.2.2 Operators in Genetic Algorithm

There are four operators in GA: initialization, selection, crossover and mutation.

Figure 1: Genetic algorithm flow chart.
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Genetic algorithm flow chart is shown in Figure 1. Genetic algorithm operators take place

during the optimization. The end condition terminates the optimization when there is no more

improvement in the population. The optimal solution (the best string) is chosen from the

terminated population.

(a) Initialization

In genetic algorithm, searching for a solution begins from multiple points in the design

domain [14]. Each point, namely strings, represents a possible solution for the problem. The

population comprises of the strings, and the size of the population affects the computation time

dramatically.

(b) Selection (Reproduction)

After initializing a population, the selection of the best individuals (strings) from the pop-

ulation is an essential part of the genetic algorithm. This operation involves the selection of

strings based on their fitness values in the population. In other words, valuable strings have

more chance to transfer descendants to the new generation [14]. As a selection method, roulette

wheel selection is recommended by Holland [15]. In this method, a number of selections are

equivalent to the population size in order to have same population size in the next generation.

Selections are made according to the ratio between fitness value of one string and total fitness

value of the whole population.

(c) Crossover

All selected strings according to roulette wheel selection are put into mating pool for

crossover. Crossover operation is conducted in two phases. Firstly, new selected members
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are mated to each other randomly in the mating pool. Secondly, each coupled string is crossed

over at a location K through the string. K is a random integer that varies between 1 and string

length less 1 (1, L-1) [10]. When the location K is set, all genes after position K will be switched

along the coupled strings. The location K is illustrated with |.

For example:

Before Crossover After Crossover

A1 = 01101|0 A′1 = 011011

A2 = 11001|1 A′2 = 110010

(d) Mutation

Mutation is a useful operator to keep diversity in the population with a small possibility [1].

Mutation alters a single gene 0 to 1 or 1 to 0 in the string.

For example:

Before Mutation After Mutation

A1 = 00100 A′1 = 10100

A2 = 11001 A′2 = 10001
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The first gene in A1 and the second gene in A2 have been mutated. This operator serves as

a local enhancement while algorithm is working, and increases the speed of convergence to an

optimal solution.

2.2.3 Parameters in Genetic Algorithm

There are three parameters in genetic algorithm: population size (Psize), crossover proba-

bility (Pc) and mutation probability (Pm). In structural optimization, population size (total in-

dividuals in each generation), crossover probability and mutation probability are recommended

as 25-125, 0.6-0.9 and 0.005-0.05, respectively by Roman et al [14].

2.2.4 Optimization Examples Using Genetic Algorithm

Two different optimization examples will be presented in this section in order to demonstrate

robustness of GA. MATLAB is used to develop the optimization problem. It is important to

indicate that MATLAB always tries to minimize the objective function in GA toolbox. For this

reason, if the optimization problem is desired to be maximized, the objective function has to

be taken as the reciprocal.

2.2.4.1 Size Optimization of 10-Element Planar Truss

This problem is a benchmark for size optimization of truss structures which have been

studied by Schmit and Farshi [16], Schmit and Miura [17], Venkayya [18], Sedaghati [19], Kaveh

and Rahami [20], Li et al. [21], Farshi and Ziazi [22], Asl, Aslani and Pahani [23]. In this

problem, the goal is to find minimum structural weight by changing the members’ cross sectional

areas. This problem has two design constraints such as member displacement (ua = +2in) and

stress (σa = +25ksi). Optimization is performed using MATLAB GA optimization toolbox.
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MATLAB is very efficient for this kind of optimization problem, because it allows to merge

finite element model of a truss into genetic algorithm. In this problem, population size is set

to 200. In GA population size between 100 and 200 is recommended if the number of variables

is higher than 5. Otherwise, population size less than 100 is sufficient for optimum solution.

Table I shows material properties of the benchmark problem. The material properties do not

represent any specific material, they are used consistently by the researchers mentioned above.

The boundary conditions and the load configuration of the benchmark problem are shown in

Figure 2.

TABLE I: Material properties of 10-element planar truss.

Modulus of Elasticity, E 10,000ksi

Density, ρ 0.1lb/in3

ua ±2in

σa ±25ksi

The objective function of this problem is defined as minimizing the total weight of the

structure (w =
∑10

i=1 ρAili) while the element stresses (σi) and displacements (ui) are limited

by σa and ua, respectively.

The variables w, ρ, Ai, li, ui, ua, σi, σa are weight of the truss, density, member cross sec-

tional area, member length, member displacement, allowable displacement and member stress
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Figure 2: 10-element planar truss.

and allowable stress, respectively. The design domain is squeezed into 0.1in2 and 35in2 by

assigning upper and lower bounds of member cross sectional areas.

TABLE II: Comparison of the weight minimization results.

Design Variables, in2 Schmit and Farsh [16] Venkayya [18] Schmit and Muira [17] Kaveh and Rahami [20] Farshi and Ziazi [22] Li et al. [21] Sedaghati [19] Asl et al. [23] This Work
A1 33.43 30.42 30.67 30.67 30.52 30.70 30.52 30.51 30.25
A2 0.10 0.13 0.10 0.10 0.10 0.10 0.10 0.10 0.10
A3 24.26 23.41 23.76 22.87 23.20 23.17 23.20 23.20 23.80
A4 14.26 14.91 14.59 15.34 15.22 15.18 15.22 15.19 14.95
A5 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10
A6 0.10 0.10 0.10 0.46 0.55 0.55 0.55 0.56 0.59
A7 8.39 8.70 8.58 7.48 7.47 7.46 7.46 7.46 7.41
A8 20.74 21.08 21.07 20.97 21.03 20.98 21.04 21.07 20.92
A9 19.69 21.08 20.96 21.70 21.53 21.51 21.53 21.47 21.57
A10 0.10 0.19 0.10 0.10 0.10 0.10 0.10 0.10 0.10

Total Weight, lb 5089.00 5084.90 5076.85 5061.90 5061.40 5060.92 5060.85 5058.66 5057.71

Table II presents the minimized total weight of the problem. According to the results, GA

optimized the structure by achieving lighter weight than the other works.
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2.2.4.2 Size Optimization of 10-Bay Periodic Truss Bridge

Size optimization of a 10-bay periodic truss bridge has a similar optimization process as the

benchmark problem. All truss connections are pinned and the structural members are selected

as bar elements. It is assumed that there are bridge piers at every 10-bay. The boundary

conditions are assumed as simply supported at each end. While optimization is performed,

tensile and buckling strength and vertical deflection at the mid span are taken into consideration

as the constraints. Since the bridge is symmetrical along its deck, the bridge is modeled as 2D

planar truss instead of 3D truss.

Every optimization has different solutions with respect to the loads applied on the system.

In this study, the optimization has been done according to 4000psi concrete strength and live

load of HS20 truck. AASHTO [24] states that distributed live load of HS20 truck is 53.33lb/in

for each lane.

TABLE III: Total load for each bay of the truss.

Concrete Deck 539.97kips

HS20 Truck 76.80kips

Total 616.76kips

Table III shows the total dead and live load to which each bay of the system is exposed.

Total load is distributed to each unit cell equally as shown in Figure 3.
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Similar to the benchmark problem, minimization of the total weight (w =
∑10

i=1 ρAili) is

the objective function. The element tensile (Ti) and compression (Ci) stresses are constrained

by yielding strength (σy) and buckling strength (Cn), respectively. The Deflection limit (ua) is

applied to node 6 alone, because it is at midspan. The algorithm finds optimum cross sectional

areas of the bar elements between 1in2 and 75in2. The material properties of the truss bridge

are given in Table IV.

Figure 3: Load distribution along the truss, x-z view.

TABLE IV: Materials properties (ASTM A992 Steel).

Modulus of Elasticity, E 29,000ksi

Density, ρ 0.28b/in3

ua, L/300 6in

σy 50ksi
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Buckling load, Pn is classified into two cases: elastic and inelastic buckling according to

AISC 360-16 [25].

Pn = FcrAg (2.6)

Fcr, the critical stress depends on:

Fcr =

[
0.658

Fy

Fe

]
Fy, if

KL

r
≤ 4.71

√√√√√ E

Fy
(2.7)

Fcr = 0.877Fe, if
KL

r
> 4.71

√√√√√ E

Fy
(2.8)

where Fe, K, r and L are Euler buckling load, column effective length factor, radius of gy-

ration, and member length, respectively. Since all structural members have pin connections,

K is considered as 1. Similar to the previous problem, finite element analysis of the truss is

embedded into GA as a constraint in MATLAB.
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TABLE V: Weight minimization results of the truss.

Design Variables, in2

A1 28.31 A2 15.55 A3 22.87 A4 11.11

A5 20.44 A6 22.22 A7 8.05 A8 8.89

A9 17.10 A10 14.68 A11 6.83 A12 20.45

A13 26.53 A14 26.88 A15 32.60 A16 65.18

A17 32.64 A18 43.35 A19 29.98 A20 27.62

A21 1.16 A22 1.24 A23 20.40 A24 16.57

A25 24.78 A26 3.86 A27 22.69 A28 3.79

A29 14.60 A30 10.65 A31 9.57 A32 50.11

A33 9.61 A34 4.19 A35 14.17 A36 17.69

A37 27.62 A38 1.42 A39 19.95 A40 4.03

A41 20.32

Total Weight, lb 57713.10

Table V shows the weight optimization results of the truss bridge. Genetic algorithm finds

the minimum cross sectional areas according to demanding capacity of the elements. Since

every element in the truss has different demand/capacity ratio, cross sectional areas of the ele-

ments vary all along the bridge. However, according to the periodic design, all unit cells need

to have the same cross section as well as topology. In order to make NDE method proposed in

this research (based on impulse response method) applicable to the truss, the periodicity has

to be satisfied. Therefore, a damage in the structure becomes traceable.
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TABLE VI: Weight minimization results of the truss.

Design Variables, in2

A1 20.44 A2 22.22 A3 20.44 A4 22.22

A5 20.44 A6 22.22 A7 20.44 A8 22.22

A9 20.44 A10 22.22 A11 10.65 A12 65.18

A13 32.64 A14 65.18 A15 32.64 A16 65.18

A17 32.64 A18 65.18 A19 32.64 A20 65.18

A21 32.64 A22 10.65 A23 10.65 A24 50.11

A25 9.61 A26 10.65 A27 10.65 A28 50.11

A29 9.61 A30 10.65 A31 10.65 A32 50.11

A33 9.61 A34 10.65 A35 10.65 A36 50.11

A37 9.61 A38 10.65 A39 10.65 A40 50.11

A41 9.61

Total Weight, lb 62394.00

Table VI shows optimization results of the truss bridge with periodicity using the results pre-

sented in Table V. Elements numbered 17, 16, 5, 6, 30, 31, 32, 33 and 34 are used as a periodic

pattern, because these elements have the highest demand/capacity ratio. Total weight of the

structure increases 4680.90lb when periodicity is applied to the system.

2.2.5 Summary

In this chapter, GA is applied to different optimization problems. The first impression is

that the number of design variables and constraints have a significant effect in the convergence

time. Two numerical examples indicate that when the structural complexity (number of el-

ements, constraints, geometry etc.) increases, the convergence time to the optimal solution

increases as well. The integration of periodic design into the finite element analysis enhances

the performance of the algorithm, thus the optimal solution is achieved efficiently. For instance,
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in the 10-bay truss bridge example, only one portion of the bridge between its two piers is mod-

eled instead of the entire structure. This reduces the work load of the algorithm, thereby the

optimum solution is found rapidly.



CHAPTER 3

IMPULSE RESPONSE METHOD TO PERIODICALLY ASSEMBLED

TRUSSES

3.1 Introduction

While most truss configurations are non-redundant, the detectability of damage has not

been considered as a design variable. The most common Structural Health Monitoring (SHM)

methods implemented to truss structures are vibration monitoring [26], strain monitoring [27],

and acoustic emission [28]. Typically, the damage detection method is formulated based on

truss geometry and materials. This approach requires the development of calibration curves

using experimental data, and depends on many variables (e.g., connection details, boundary

conditions, configuration), which reduce the minimum detectable damage. In this research,

an inverse approach is proposed such that the ideal structural configuration with periodic

placement truss units is built with the known localized dispersion curve such that the influence

of damage can be deduced using nondestructive evaluation methods such as impulse response

without any calibration curves and independent from the boundary conditions. Recent studies

show that the periodic assemblies of structures influence the propagation of elastic waves in

certain frequency bands with strong attenuation characteristics [29]. The periodic structure

design has been investigated by Brun et al. [30] in order to suppress high vibration of slender

multi-girder steel bridges by adding lightweight periodic waveguide truss system with particular

20
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non-vibration frequency range equivalent to frequencies causing high vibration in the original

structure. In addition to changing vibration modes, the periodic design can introduce unique

material properties. For instance, Grima et al. [31] developed two and three dimensional truss

structures exhibiting negative compressibility, which causes structural compression under axial

tensile load. Hutchinson and Fleck [32] combined the matrix method with Bloch’s theorem to

analyze the structural behavior of periodic pin-jointed trusses.

In this research, the influence of damage in a periodic steel truss is inspected in terms of

acceleration response. Acceleration history of three different unit cells in the truss are analyzed

under impulse excitation. Numerical and experimental studies have been conducted in order to

validate this research. In the first stage, impulse response of different numbers of unit cells is

investigated using finite element analysis (FEA). This investigation has a crucial role in order

to determine how many unit cells are needed for desired periodic behavior. In the second

stage, an numerical simulations under impulse excitation of the truss are done using COMSOL

Multiphysics software. The simulation includes both pristine and damaged conditions of the

truss. In the third stage, eight-bay steel truss is built in laboratory, and acceleration response

of the truss is recorded in both pristine and damaged conditions. In the experimental setup, 4

kHz impulse hammer and accelerometer are used as exciter and receiver, respectively. There

are two principal questions, which are intended to be answered;

• Is it possible to obtain acceptable periodic behavior with limited number of unit cells in

a system?
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• How does acceleration response change in the vicinity of a damaged element in a period-

ically assembled system?

3.2 Numerical Results

3.2.1 Influence of Number of Unit Cells in Periodicity

In periodic trusses, each unit cell of the truss has periodic boundary condition, which is

based on the assumption that the truss has infinite number of unit cells. In this case, each

unit cell in the truss has the same response under an excitation, because each cell becomes

independent from boundary conditions. However in reality, truss systems are built with finite

unit cells, for this reason the responses of three adjacent unit cells assembled by combining 5,

15, 30, and 100 unit cell trusses are studied. For consistent results, each truss system has unit

cells with the same shape, topology and cross sectional area. The procedure is carried out for

3 different unit cell topologies. Impulse transmission model is performed in frequency domain

using COMSOL Multiphysics software. As an excitation signal, real impulse data is used in

the finite element model, which is obtained from the impulse hammer. The frequency and time

domain histories of impulse excitation are shown in Figure 5. The acceleration history of a

selected node in a unit cell in -x direction is extracted from FEM. Figure 4 shows the excitation

and measurement locations in the truss for three different topologies.
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(a)

(b)

(c)

Figure 4: Different periodic assemblies of unit cells; (a) topology 1, (b) topology 2, (c) topology
3.
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(a) (b)

Figure 5: The impulse source using the impact hammer; (a) time domain, (b) frequency domain.

(a) (b)

(c) (d)

Figure 6: Impulse response of truss topology 1; (a) 5 cells, (b) 15 cells, (c) 30 cells, (d) 100
cells.
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(a) (b)

(c) (d)

Figure 7: Impulse response of truss topology 2; (a) 5 cells, (b) 15 cells, (c) 30 cells, (d) 100
cells.
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(a) (b)

(c) (d)

Figure 8: Impulse response of truss topology 3; (a) 5 cells, (b) 15 cells, (c) 30 cells, (d) 100
cells.
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Figures 6, 7 and 8 show that the periodic behavior of a truss system is directly proportional to

number of finite unit cells. However, there is no dissimilarity between three different topologies

in terms of their impulse responses as the arrangements of truss members in the horizontal

(periodic) direction are similar. By considering this, topology 1 is used building the experimen-

tal truss model. The truss model with 8 unit cells is selected in order to observe the periodic

behavior experimentally with finite number of unit cells.

3.2.2 Experimental Truss Configuration

Finite element model of 2D truss consists of 35 circular hollow section steel bars built

originally by ASCE students for bridge competition. The truss system is simply supported at

both ends, and each bars is considered as pin connection. 5% damping is assumed in the finite

element model. Boundary conditions, dimensions, impulse and sensor locations are presented

in Figure 9. This configuration is used in both experimental and numerical models. Table VII

shows the material properties and cross sectional areas of the truss elements.

Figure 9: Truss configuration.
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TABLE VII: Material properties and cross sectional areas of the bar elements.

Material Properties Cross sectional Area, in2

Density, ρ 490lb/ft3 e1,e9 0.17

Modulus of Elasticity, E 29000ksi e18,e35 0.76

Poisson’s Ratio, ν 0.33 e2-e34 0.23

3.2.3 Impulse Response of 2D Truss Using COMSOL Multiphysics Software

Transmission model is performed using COMSOL Multiphysics software for both pristine

and damaged conditions.

3.2.3.1 Pristine Condition

The impulse responses of three adjacent unit cells with the pristine condition are shown in

Figure 10. The first two peak frequencies at 0.18 kHz and 1.18 kHz agree with each other. The

periodic behavior is observed better after 4 kHz as the influence of boundary condition reduces

at higher frequencies.
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Figure 10: Numerical impulse responses of three adjacent unit cells for the pristine truss.

3.2.3.2 Damaged Condition

The influence of damage in elements e25, e27 and e29 is studied separately. In the exper-

imental model, damage is introduced by 50% cross sectional area reduction using saw cut in

a bar element, and replaced separately for e25, e27 and e29. The damage in the finite element

model is introduced as stiffness reduction. The equivalent stiffness reduction due to local area

change needs to be calculated. The local element stiffness matrix for 2D bar is:

[k] =
AE

L



C2 CS −C2 −CS

CS S2 −CS −S2

−C2 −CS C2 CS

−CS −S2 CS S2


(3.1)



30

where k is local element stiffness matrix, A is cross sectional area, E is Modulus of Elasticity, L

is element length, C and S are cosine and sine with respect to global axis of the bar element [33].

Cross sectional area of the bar elements controls the stiffness. In order to find equivalent stiffness

reduction due to 50% cross sectional area reduction at a local point, 3D solid models of pristine

and damaged bar elements are configured. For linear and elastic systems, nodal forces are

calculated by

{F} = [K] · {d} (3.2)

where F is the vector of global nodal forces, d is the vector of displacements, and K is the

global stiffness matrix [33]. The stiffness reduction in 3D model can be found by applying axial

unit force to the pristine and damaged models.

(a) (b)

Figure 11: 3D solid models of damaged elements; (a) pristine, (b) damaged.
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Figure 11 shows 3D models of a bar element for pristine and damaged conditions. Fixed

boundary condition is assigned to the bottom of the bar element, and 1N unit force is applied

to the top of the element in order to find the flexibility and then stiffness. According to the

results from the 3D model of a damaged bar element, 50% local cross sectional area reduction

causes 25% general stiffness reduction. For this reason, in order to compare numerical model

and experimental model, 25% area reduction is constituted in the 2D finite element truss model

in COMSOL Multiphysics software. Additionally, 10% and 50% reduced stiffness models are

studied.

Figures 12, 13 and 14 show that the damage in the unit cells increases the acceleration

response. This consequence has a good agreement with Eq. (3.2), because the excitation

force is same for any measurement, and there is an inverse proportion between stiffness and

displacement (response). The damaged unit cells have higher acceleration response than the

other pristine cells, therefore damaged unit cells can easily be identified.
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(a)

(b)

(c)

Figure 12: Numerical impulse responses when damage is introduced to member in unit cell 1;
(a) unit cell 1 response, (b) unit cell 2 response, (c) unit cell 3 response.
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(a)

(b)

(c)

Figure 13: Numerical impulse responses when damage is introduced to member in unit cell 2;
(a) unit cell 1 response, (b) unit cell 2 response, (c) unit cell 3 response.



34

(a)

(b)

(c)

Figure 14: Numerical impulse responses when damage is introduced to member in unit cell 3;
(a) unit cell 1 response, (b) unit cell 2 response, (c) unit cell 3 response.
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3.3 Experimental Results

3.3.1 Experimental Setup

The experimental setup has four major components: impulse hammer, uniaxial accelerome-

ter, signal conditioner, oscilloscope and steel truss as shown in Figure 15. The impulse hammer

(item no: 086C03) is manufactured by PCB PIEZOTRONICS with a variable tip to control the

impact source function amplitude and duration. The impulse hammer has 10−2V/lbf sensitiv-

ity. Uniaxial accelerometer (item no: 352C33) manufactured by PCB PIEZOTRONICS has the

frequency bandwidth of 0.5-10000 Hz and sensitivity of 102.5×10−3V/g. Both impulse hammer

and accelerometer are connected to signal conditioner unit (item no: 482C05). The output of

impulse hammer is connected to the first channel of oscilloscope to record the impulse source

function and trigger the accelerometer. The impulse hammer is applied horizontally at each

excitation location. The accelerometer attached horizontally to the truss system is connected to

the second channel of the oscilloscope with 12.5 MHz sampling frequency and 10 ms duration.
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(a)

(b)

Figure 15: Experimental setup; (a) connection detail of the equipment, (b) bridge model.

3.3.2 Pristine Condition

The impulse response experiments are repeated five times for each unit cell. The locations of

impulse hammer and accelerometer are moved as shown in Figure 9 for measuring the responses

of each unit cell. Figure 16 and Figure 17 show time domain histories and their frequency spec-

tra, respectively. The experiments show good repeatability. Figure 16 (d) and Figure 17 (d)
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show the comparison of the averaged measurement of each unit cell in time domain and fre-

quency domain, respectively. In general, the acceleration amplitudes and frequency distribution

have similar behavior for all the unit cells for the pristine condition.

(a) (b)

(c) (d)

Figure 16: Time histories of the repeated impulse response results for; (a) cell 1, (b) cell 2, (c)
cell 3, (d) the comparison of averaged waveforms of each unit cell.
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(a) (b)

(c) (d)

Figure 17: Frequency spectra of the repeated impulse response results; (a) cell 1, (b) cell 2, (c)
cell 3, (d) the comparison of averaged frequency spectra of each unit cell.
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3.3.3 Damaged Condition

The damage is introduced sequentially in the three adjacent unit cell. The impulse re-

sponses of the unit cells have been measured in order to track the damage location. During

the experiment, damage is proposed in unit cell 1, and the other unit cells are kept as pristine

condition. The same procedure is performed for the other unit cells, thus the location effect of

the damage can be observed.

The numerical results are shown in Figures 18 to 23 in time and frequency domain. The

results includes vibration responses of unit cells when damage is introduced sequentially to

elements e25, e27 and e29. The damaged conditions of e25 (cell 1) and e27 (cell 2) cause sig-

nificant increase at peak frequency amplitude when the damaged member is introduced into

unit cell 1 or 2 while the response of unit cell 3 is similar to the pristine condition. When the

damaged member is introduced into unit cell 3, it is noticed that all the unit cells diverge from

the pristine condition. It is interpreted that the close proximity of unit cell 3 may cause such

result.
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(a)

(b)

(c)

Figure 18: Time histories of three unit cells when damage member is introduced in cell 1; (a)
cell 1, (b) cell 2, (c) cell 3.
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(a)

(b)

(c)

Figure 19: Time histories of three unit cells when damage member is introduced in cell 2; (a)
cell 1, (b) cell 2, (c) cell 3.
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(a)

(b)

(c)

Figure 20: Time histories of three unit cells when damage member is introduced in cell 3; (a)
cell 1, (b) cell 2, (c) cell 3.



43

(a)

(b)

(c)

Figure 21: FFT results of five different impulse response of three adjacent unit cells when
damage member is introduced in cell 1; (a) cell 1, (b) cell 2, (c) cell 3.
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(a)

(b)

(c)

Figure 22: FFT results of five different impulse response of three adjacent unit cells when
damage member is introduced in cell 2; (a) cell 1, (b) cell 2, (c) cell 3.
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(a)

(b)

(c)

Figure 23: FFT results of five different impulse response of three adjacent unit cells when
damage member is introduced in cell 3; (a) cell 1, (b) cell 2, (c) cell 3.
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3.3.4 Calculation of Damping Using Q Factor Method

In the numerical model, 5% damping is assumed. Damping of the truss is calculated in

order to validate the value used in numerical models. Q factor method is chosen as a tool for

damping calculation. In the method, acceleration response of cell 2 pristine condition is used.

Figure 24 shows the vibration response of cell 2 in using dB scale.

(a) (b)

Figure 24: Q factor method; (a) notation, (b) cell 2 response in dB scale.

ξ =
f2 − f1

2fc
(3.3)

In Eq. (3.3) ξ is damping ratio, fc is resonant frequency and f2−f1 is half-power bandwidth [34].

According to calculations, damping is found as 6%. Since the actual damping of the truss is

close to the assumed damping, numerical model is acceptable.
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3.3.5 Comparison between Numerical and Experimental Results

The comparison between numerical and experimental models is performed by evaluating

the peak energy of the resonant frequency in the acceleration response. Peak energy ratios for

25% stiffness reduction are given for both numerical and experimental models. In addition,

numerical model includes peak energies between 10-50% stiffness reductions.

(a) (b) (c)

Figure 25: Peak energies for 10-50% stiffness reductions in numerical model; (a) damage in unit
cell 1, (b) damage in unit cell 2, (c) damage in unit cell 3.

Figure 25 shows the peak energy levels for different stiffness reductions of numerical models

which includes the damage cases in cell 1, 2 and 3. Since the vibration response increases

proportionally for the increment of the damage, the peak energies also increases. According to

Figure 25, the damaged unit cells have higher peak energies than other pristine unit cells. For

this reason the damaged unit cells are identified explicitly.
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TABLE VIII: Peak energy ratio comparison between numerical and experimental model for
25% stiffness reduction.

Numerical Model Experimental Model

Damage in Cell 1 25% 23%

Damage in Cell 2 25% 16%

Damage in Cell 3 18% -23%

The peak energy levels of numerical and experimental models for 25% stiffness reduction

are compared in Table VIII. Both models have similar level of increase in terms of peak energy

for cell 1 and cell 2 damage cases. However, the damaged conditions of experimental model

in the unit cells 3 has lower increase than the numerical model. The reason for this can be

due to inadequate bolt tensioning between experiments. Additionally, the unit cell 3 is close to

the right end of the truss system, where boundary conditions may affect the system periodic

behavior.

3.4 Summary

The acceleration responses of periodic trusses are studied using impulse response method

numerically and experimentally. In the numerical models, the acceleration responses of three

adjacent unit cell are evaluated for assembling 5, 15, 30 and 100 unit cell trusses. The eval-

uations show that the periodicity of the truss response is more apparent for high number of

repetitive unit cells such as 100 unit cells. Additionally, periodicity is still applicable for a

limited number of unit cells by considering the response near resonant frequency or higher

frequency bandwidths.
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The numerical and experimental models of a specific truss topology assembled with 8 unit

cells are studied for pristine and damaged conditions. According to the results, the impulse

response method allows to identify the location of the damage by evaluating the peak energy

ratio levels of different unit cells.



CHAPTER 4

CONCLUSIONS

4.1 Summary

Genetic algorithm is a powerful tool for structural optimization. Size optimization of peri-

odically assembled truss is performed using genetic algorithm. The periodicity of the system

is ensured before and after the optimization for combining with the NDE method of impulse

response. Implementing the periodicity of the system into the optimization not only provides an

efficient optimization, but also gives better understanding about the structural behavior. The

objective of this thesis is to develop an inverse method by including both structural optimization

and NDE into the same platform.

Genetic algorithm optimization is applied to two different truss systems. The first optimiza-

tion problem is known as a benchmark problem, and it has been studied by many researchers.

The second problem is a 10-bay periodically assembled truss bridge. The optimization of the

10-bay truss bridge involves results with and without periodicity, and the total weights of both

systems are compared.

Impulse response of the periodically assembled truss is studied experimentally and numeri-

cally. In the numerical study, different numbers of unit cell trusses are evaluated under impulse

excitation for three different truss topologies in order to observe how periodic behavior changes

with the truss assembly and topology. Certain numbers of unit cells are selected based on the

50
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frequency domain analysis of the desired periodic behavior. Impulse response of the selected

truss is analyzed for different levels of stiffness reduction in one diagonal member in each unit

cell. In the experimental study, impulse responses of pristine and damaged condition of the

truss are analyzed in time and frequency domains.

4.2 Findings

• The periodic behavior is affected by number of unit cells in a truss system. When number

of unit cells are increased, the frequency spectrum of each adjacent cell in the same truss

system has similar behavior, especially high frequency components. Lower frequency

modes are more affected by boundary conditions. The impulse responses for different

number of unit cells indicate that the periodic behavior is directly proportional to number

of unit cells.

• The acceleration response of damaged unit cell increases with the increment of damage,

while other undamaged unit cells behave similar to their pristine condition. The direct

comparison of adjacent unit cells allows identifying the position of damaged unit cell.

4.3 Future Work

• Genetic algorithm optimization requires finite element analysis for structural optimiza-

tion. However, standard finite element method is not convenient for an optimization

of periodic structures. The optimization gives the best results regardless of a periodic

configuration. For this reason, after the optimization, periodicity of the structure is de-

generated. In order to avoid this, recursive finite element method can be used in genetic
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algorithm. Recursive finite element method assembles only one periodic pattern in the

finite periodic structure, and the entire structure is built by applying periodic boundary

condition. This method will allow optimization for structures without losing periodic-

ity. Since the recursive finite element method does require only one periodic pattern

for modeling the entire system; number of elements in the model are reduced, thus the

optimization process will take less time.

• The impulse responses experiments are performed using the impulse hammer, generating

excitation source up to 8 kHz. However, higher frequency excitation results in better

periodic behavior between unit cells. Currently, there is no commercially available impulse

hammer with an excitation frequency higher than 20 kHz. An impulse hammer can be

designed with an excitation frequency higher than 20 kHz using micro size hammer tip

using micromachining technology.

• The impulse response method will be carried out in a field experiment using a truss bridge

assembled with periodic unit cells.

• The Impulse response method studied in this research can be extended to 3D periodic

systems such as space trusses. In order to record all the components of the acceleration

response, triaxial accelerometers can be used.
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