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SUMMARY	
	

	 Poor	glucose	control	is	believed	to	contribute	importantly	to	cardiovascular	disease	(CVD)	–	a	

leading	complication	and	cause	of	death	in	people	with	Type	I	Diabetes	Mellitus	(T1DM).		Good	sleep	

also	has	been	shown	to	play	an	important	role	in	maintaining	cardiovascular	and	metabolic	health,	and	

sleep	quality	is	reduced	in	people	with	T1DM.		Nonetheless,	minimal	research	has	been	conducted	to	

define	the	simultaneous	relationships	between	glucose	variations,	sleep	quality	and	CVD	risk	in	

individuals	with	T1DM.		To	test	the	hypotheses	that	glucose	variations	are	causally	related	to	sleep	

disruption	and	that	sleep	disruption	mediates	inflammation	and	CVD	risk	in	individuals	with	T1DM,	two	

aims	were	proposed:		1)	to	quantify	sleep	disturbances	and	to	determine	their	relationship	to	glucose	

variability	and	2)	to	define	the	relationship	between	sleep	disruption	and	markers	of	CVD	risk	in	young	

adults	with	T1DM.	

	 Thirty	young	adults,	age	18-30,	were	enrolled	for	participation	in	the	research	study.		Subjects	

wore	a	continuous	glucose	monitoring	system	and	a	sleep/activity	monitor	(actigraph)	in	home	for	three	

days	and	two	nights	and	underwent	polysomnography	(PSG)	in	the	laboratory	on	the	third	night.			While	

actigraphy	provided	information	about	sleep	and	wake	behavior	throughout	the	test	period,	PSG	

complemented	this	by	providing	direct	information	on	brain	activity	during	sleep	on	the	third	night.		The	

amount	of	power	in	five	electroencephalogram	(EEG)	Bands	–	Delta	and	Theta	(characteristic	of	sleep);	

Alpha,	Beta	and	Gamma	(characteristic	of	wakefulness)	–	was	tracked	throughout	the	PSG	study	night.	

Wavelet	coherence	analysis	revealed	a	strong	but	time-varying	and	frequency	specific	coupling	between	

glucose	and	sleep	measured	by	both	actigraphy	and	PSG.		Evidence	for	a	bi-directional	causal	

relationship	between	glucose	and	brain	activity	was	provided	by	Granger	causality	analysis.		In	the	Delta,	

Theta,	Alpha	and	Beta	Bands,	69%	to	92%	of	subjects	demonstrated	significant	causal	interactions	

between	EEG	and	glucose.	In	the	Theta	and	Alpha	Bands,	instances	of	glucose	variations	causing	changes	
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	SUMMARY	(continued)	

in	EEG	and	EEG	changes	driving	glucose	variations	occurred	with	approximately	equal	frequency.		

Increasing	glucose	caused	increasing	Alpha	Power	and	decreasing	Theta	and	Delta	power,	suggesting	

that	glucose	changes	disturb	sleep	by	causing	arousal	or	awakening.		Increases	in	Beta	and	Delta	power	

consistently	caused	increasing	glucose	levels	while	increasing	Theta	power	caused	decreasing	glucose.		

These	findings	argue	that	there	is	a	bi-directional	relationship	between	glucose	and	brain	activity	during	

sleep	in	young	adults	with	T1DM.	This	study	also	provides	evidence	that	both	sleep	disruption	and	poor	

glycemic	control	mediate	increased	inflammatory	processes	in	T1DM.		For	example,	plasma	

concentration	of	Tumor	Necrosis	Factor-α	(TNF-α)	consistently	increased	during	the	sleep	period.		

Further,	more	frequent	arousal	from	sleep	was	significantly	associated	with	higher	levels	of	interleukin-6	

(IL-6)	upon	awakening,	even	after	controlling	for	glycemic	control.		Only	subjects	with	good	glycemic	

control	exhibited	a	normal	pattern	of	decreased	IL-6	upon	awakening.			

	 Overall,	findings	from	this	study	demonstrate	a	bi-directional	relationship	between	sleep	and	

glucose	changes,	and	that	both	sleep	disruption	and	glycemic	control	may	play	important	roles	in	

mediating	levels	of	inflammation,	which	are	associated	with	CVD	development	in	T1DM.		These	findings	

lay	a	foundation	for	future	interventional	studies	including	healthy	control	groups	to	provide	

information	about	the	mechanisms	behind	these	relationships.		Understanding	the	relationships	

between	sleep,	glucose	control	and	inflammation	in	T1DM	is	essential	as	this	knowledge	may	lead	to	

better	clinical	management	of	diabetes	and	ultimately	improved	quality	of	life.
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I.	INTRODUCTION	

A. Pathophysiology	of	Type	1	Diabetes	Mellitus	and	its	Complications	

Type	1	Diabetes	Mellitus	(T1DM)	is	characterized	by	autoimmune-mediated	destruction	of	

pancreatic	beta	cells.		The	incidence	and	prevalence	of	T1DM	are	increasing	in	the	United	States	and	

around	the	world.		T1DM	results	in	a	life-long	need	for	exogenous	insulin	and,	despite	vigilant	

management,	wide	glucose	variations	are	a	common	occurrence	in	afflicted	individuals.	Cardiovascular	

Disease	(CVD)	is	a	leading	cause	of	morbidity	and	mortality	in	individuals	with	T1DM,	but	the	role	of	

glucose	variability	in	CVD	onset	and	progression	remains	controversial.		Increasingly,	sleep	is	being	

recognized	as	a	key	factor	contributing	to	cardiovascular	(CV)	health,	but	interactions	between	sleep,	

sleep-disturbance	and	CVD	have	not	been	systematically	studied	in	T1DM.		Sleep	architecture	is	known	

to	be	disrupted	in	individuals	with	T1DM,	but	the	potential	contribution	of	glucose	variations	to	this	

disruption	has	been	minimally	investigated.		This	dissertation	study	was	aimed	to	determine	the	role	of	

glucose	variations	in	sleep	disruption	and	the	potential	mediating	effect	of	sleep	disturbance	on	markers	

of	inflammation	and	CV	stress	in	young	adults	with	T1DM.	

1. Incidence	and	Prevalence	of	T1DM		

Approximately	1.25	million	Americans	are	diagnosed	T1DM,	with	the	incidence	and	

prevalence	of	this	disorder	increasing	in	the	United	States	and	worldwide	(1–3).		Reports	from	the	

Philadelphia	Diabetes	registry	and	the	SEARCH	for	Diabetes	registry	between	2000	and	2004	estimated	

the	incidence	of	T1DM	in	0-20	year	olds	to	be	between	17.2	and	24.3	per	100,000	(4,5).		Based	on	these	

studies,	the	highest	incidence	occurs	in	10-14	year	olds	and	non-Hispanic	white	children	(4,5).		Another	

study	reported	that	between	1978	and	2004	T1DM	incidence	increased	from	14.8	to	23.9	per	100,000	

among	children	0-17	years	old	(6).		Non-Hispanic	white	youth	exhibited	the	most	rapid	increase	at	2.7%	

per	year;	the	rate	in	Hispanic	youth	increased	at	1.6%	per	year	(6).		Most	recently,	the	overall	prevalence	

of	T1DM	was	estimated	to	have	increased	21.1%	between	2001	and	2009	(7).		Imperatore	and	colleagues	
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(2012)	project	that	the	prevalence	of	T1DM	may	increase	several-fold	by	2050,	making	T1DM	an	

immense	health	threat	facing	the	United	States	population.			

2. Pathophysiology	and	Development	of	T1DM		

a. Normal	Physiology	of	the	Immune	System	

Two	of	the	major	cell	types	in	the	immune	system	are	B-	and	T-lymphocytes,	

which	provide	protection	against	disease.	Cluster	of	differentiation	4	antigen	expressing	(CD4+)	cells	are	

known	as	helper	T-lymphocytes	and	are	activated	by	antigen	presenting	cells	(APCs).		APCs	digest	and	

present	small	pieces	of	foreign	particles	(known	as	antigens)	on	their	cell	surface,	with	a	major	

histocompatibility	complex	(MHC)	protein.		MHC	proteins	(including	class	I	[MHC	I]	and	class	II	[MHC	II])	

bind	to	the	foreign	particle,	allowing	recognition	by	the	T-cell.		Macrophages	are	antigen	presenting	cells	

that	use	MHC	class	II	proteins.		Activated	macrophages	secrete	a	host	of	inflammatory	cytokines,	such	as	

interleukin-6	(IL-6)	and	tumor	necrosis	factor	alpha	(TNF-α).		Binding	of	a	CD4+	cell	to	the	antigen	

presented	by	the	macrophage	activates	the	CD4+	cell	to	start	secreting	cytokines,	initiating	an	immune	

response.	Cluster	designation	8	antigen	expressing	(CD8+)	cells,	also	known	as	cytotoxic	T-lymphocytes,	

are	responsible	for	elimination	of	target	cells.		Normally,	CD8+	cells	recognize	antigens	presented	on	

MHC	I	proteins.			Once	activated,	the	CD8+	cells	initiate	destruction	in	the	target	cell.		In	a	healthy	

immune	system,	APCs	can	distinguish	self	from	non-self	antigens	and	only	present	foreign	antigens	to	T-

lymphocytes	(8).			Helper	T-lymphocytes	also	activate	B-lymphocytes.		Once	activated	by	the	T-

lymphocytes,	B-lymphocytes	proliferate	and	produce	immunoglobulins	(antibodies)	against	the	specific	

antigen.		These	antibodies	share	a	similar	structure	characterized	by	four	polypeptide	chains:	two	heavy	

chains	and	two	light	chains.		Each	chain	has	variable	and	constant	regions.		The	variable	regions	are	the	

sites	of	antigen	binding	and	are	specific	to	the	antigen.		Once	formed	to	the	antigen,	the	antibody	can	

elicit	various	responses.	Some	antibodies	coat	the	surface	of	foreign	bodies	to	enhance	phagocytosis;	
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other	antibodies	bind	to	the	foreign	particle	and	promote	elimination;	while	other	antibodies	activate	

inflammatory	cytokine	responses	resulting	in	cytotoxicity	to	the	foreign	cell	(9).			

b. Pathophysiologic	Changes	in	T1DM	

T1DM	results	from	autoimmune	destruction	of	the	pancreatic	beta	cells,	which	

are	responsible	for	the	production	and	secretion	of	insulin.		Activated	T-	and	B-lymphocytes	as	well	as	

macrophages	infiltrate	the	pancreas	resulting	in	eventual	destruction	of	all	beta	cells.		In	pancreases	

removed	from	cadavers	who	were	diagnosed	with	T1DM	near	death,	an	islet	infiltrate	(insulitis)	has	been	

noted,	comprising	CD4+	and	CD8+	cells,	macrophages	and	B-lymphocytes	(10).		This	immune	response	is	

triggered	by	self-antigens	inappropriately	presented	on	APCs.		In	most	cases,	B-lymphocytes	are	activated	

to	produce	autoantibodies	against	the	beta	cells,	and	this	may	contribute	to	the	diagnosis	of	T1DM.		The	

most	common	autoantibodies	seen	in	T1DM	are	raised	against	the	islet	cell,	insulin,	protein	tyrosine	

phosphatase,	or	glutamic	acid	decarboxylase,	or	those	against	a	key	zinc	transporter	(essential	for	insulin	

storage	and	secretion)	in	the	pancreatic	beta	cell	(11–14).		Autoantibodies	can	be	detected	years	before	

clinical	signs	of	hyperglycemia	develop	(11,13).		Although	the	specific	auto-antibodies	may	vary	slightly	

between	geographical	locations,	the	detection	of	antibodies	can	predict	up	to	80%	of	people	who	will	go	

on	to	develop	T1DM	(15,16).					

Development	of	T1DM	is	also	associated	with	certain	polymorphisms	in	the	genes	encoding	

MHC	proteins	located	on	the	human	leukocyte	antigen	(HLA)	region	of	the	short	arm	of	chromosome	6.		

Results	of	genetic	studies	have	most	consistently	supported	that	polymorphisms	in	class	II	genes	on	

chromosome	6	which	encode	for	HLA	D	region	subunit	R	and	HLA	D	region	subunit	Q	are	associated	with	

development	of	T1DM	(17).			

c. Time	Course	and	Diagnosis	of	T1DM	

T1DM	can	develop	at	any	time	in	a	person’s	life,	but	even	a	person	carrying	

high-risk	genetic	alleles	associated	with	T1DM	may	not	ever	develop	the	disease.		Further,	T1DM	is	more	
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common	in	certain	geographic	regions	than	in	others.		Together,	these	observations	suggest	that	

environmental	triggers	may	play	an	epigenetic	role	in	accelerating	or	inducing	auto-immunity	and	

development	of	T1DM.		There	have	been	several	proposed	environmental	triggers,	including	infectious	

agents	and	dietary	exposures	(18,19).		Enteroviruses	have	received	attention	in	recent	research	as	a	

possible	trigger	for	T1DM	onset	(20,21).		Research	into	dietary	triggers	has	provided	mixed	results	

(18,22).		The	prospective	and	ongoing	Environmental	Determinants	of	Diabetes	in	the	Young	study,	is	

designed	to	identify	environmental	triggers	of	T1DM	onset	(23),	but	findings	remain	to	be	published.			

	 	 A	model	of	the	natural	course	of	T1DM,	originally	proposed	by	Eisenbarth	in	1986	(24)	and	

updated	in	2014	by	Atkinson	(12),	suggests	that	there	is	a	genetic	predisposition	to	T1DM,	with	one	or	

multiple	precipitating	events	(occurring	as	early	as	in	utero)	which	cause	gradual	loss	of	beta	cell	mass	

and	insulin	release.		The	model	also	proposes	that	environmental	triggers	may	influence	the	rate	of	

progression	of	T1DM	and	that	some	individuals	with	T1DM	may	retain	low	levels	of	beta	cell	mass	long	

after	disease	diagnosis	(12).			

	 	 Diagnosis	of	diabetes	is	made	if	an	individual	has	one	of	the	following:	a	fasting	plasma	glucose	≥	

126	mg/dl,	a	2-hour	glucose	tolerance	test	of	≥	200	mg/dl	or	a	random	plasma	glucose	of	≥	200	mg/dl	

with	clinical	signs	of	hyperglycemia	or	hemoglobin	A1c	(HbA1c)	≥	6.5%	(25).				Once	diagnosed	with	

T1DM,	an	individual	is	faced	with	life-long	replacement	of	insulin	and	self-management	of	glucose	

levels.		Insulin	can	be	administered	via	multiple	daily	injections	or	via	insulin	pump.		The	continuous	

insulin	infusion	pump	provides	a	basal	rate	of	fast-acting	insulin	and	the	individual	programs	additional	

bolus	insulin	doses	to	account	for	food	intake,	activity	and	other	factors.		Studies	have	shown	that	

insulin	pumps	can	provide	better	glycemic	control	(26,27)	and	reduce	episodes	of	hypoglycemia	(26,28)	

in	people	with	T1DM.		Further,	a	recent	observational	study	found	that	pump	therapy	was	associated	

with	decreased	cardiovascular	risk,	a	major	complication	of	T1DM	(29).			
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3. Pathophysiology	of	T1DM	Complications	

The	inability	to	produce	insulin	in	T1DM	leads	to	hyperglycemia	when	insulin	is	not	

appropriately	replaced.		Chronic	hyperglycemia	in	T1DM	often	leads	to	the	development	of	

complications,	including	cardiovascular	disease,	stroke,	neuropathy,	nephropathy,	and	retinopathy.	Each	

of	these	major	complications	arises	from	dysfunction	of	specialized	cells	(e.g.	endothelial	cells,	

glomerular	cells,	neurons)	resulting	from	exposure	to	high	levels	of	glucose.		An	important	molecular	

mechanism	potentially	underlying	this	cellular	damage	is	production	of	high	levels	of	reactive	oxygen	

species	(ROS)	by	the	mitochondria	(30)	secondary	to	hyperglycemia.		

ROS	are	created	via	increased	glycolysis,	which	augments	activity	of	the	tricarboxylic	acid	cycle	

(TCA).		Up-regulation	of	the	TCA	cycle	yields	increased	nicotinamide	adenine	dinucleotide	(NADH;	the	

main	carrier	for	electrons	to	the	Electron	Transport	Chain	[ETC]),	increasing	superoxide	(O2
-)	production	

via	coenzyme	Q.		ROS	(such	as	superoxide)	react	with	lipids,	DNA	proteins	and	other	proteins	via	

electron	donation	or	proton	abstraction,	deranging	their	function	(30).		One	such	interaction	is	

increased	transcription	and	translation	of	the	enzyme	poly-ADP	ribose	polymerase	(PARP).		PARP	

decreases	the	expression	of	GAPDH	(glyceraldehyde	phosphate	dehydrogenase),	a	necessary	enzyme	for	

efficient	glycolysis	(31).		Impaired	glycolysis	produces	elevated	glucose,	increased	glycolytic	

intermediates	and	activation	of	pathways	for	their	breakdown.		Unfortunately,	these	pathways	can	

further	exacerbate	ROS	production,	increasing	damage	to	the	cells.	

There	are	four	main	pathways	activated	via	increased	glycolytic	intermediates.		The	first	is	

activation	of	the	polyol	pathway	in	which	the	enzyme	aldose	reductase	uses	nicotinamide	adenine	

dinucleotide	phosphate	(NADPH)	to	reduce	glucose	to	sorbitol,	which	decreases	NADPH	supply.		NADPH	

is	necessary	to	maintain	reduced	glutathione,	a	key	antioxidant	in	red	blood	cells	which	helps	to	

decrease	levels	of	ROS	(32,33).	The	second	pathway	is	activation	of	protein	kinase	C	(PKC),	an	enzyme	

responsible	for	phosphorylation	reactions	in	cells.		PKC	activation	has	numerous	deleterious	
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downstream	effects.		One	main	effect	is	an	increase	in	NADPH	oxidase	synthesis.		NADPH	oxidase	is	an	

enzyme	which	produces	superoxide	via	electron	transfer	from	NADPH	to	molecular	oxygen	(34).		PKC	

activation	also	increases	Nuclear	Factor	Kappa-light	chain-enhancer	of	activated	B	cells	(NF-kB)	

production,	a	promoter	of	DNA	transcription,	leading	to	production	of	inflammatory	cytokines,	such	as	

IL-6	and	TNF-α	(35,36).			The	third	pathway	is	the	hexosamine	biosynthesis	pathway,	which	increases	

UDP-N-acteylglucosamine	(UDP-GlcNac).	UDP-GlcNac	modifies	Protein	Kinase	B	(Akt)	resulting	in	

decreased	endothelial	nitric	oxide	synthase	and	nitric	oxide	(NO)	production	(37).		The	fourth	pathway	

induced	by	hyperglycemia	is	production	of	advanced	glycation	end	products	(AGE).		AGEs	are	formed	via	

glycation	of	amino	acids	and	also	through	the	breakdown	of	fructose	and	triose	phosphates.	These	AGEs	

alter	the	function	enzymes	as	well	as	proteins	in	the	extracellular	matrix	(leading	to	decreased	elasticity)	

and	can	also	bind	to	specific	cell	surface	receptors	(RAGEs).		Such	binding	activates	intracellular	

pathways	yielding	increased	ROS,	inflammatory	cytokine	and	cellular	adhesion	molecule	production	

(38–40).			

Continuous	activation	of	these	4	pathways	by	constant	hyperglycemia	may	ultimately	

overwhelm	cellular	mechanisms	to	offset	the	deleterious	effects	of	ROS,	especially	in	the	vasculature	

(41).		These	cellular	changes	may	contribute	to	complications	including	cardiovascular	disease,	

retinopathy,	neuropathy,	and	nephropathy	(30,42).	

B.		 Cardiovascular	Disease,	Inflammation	and	Hypothalamic-Pituitary-Adrenal	Activation	in	T1DM	

Despite	advances	in	management	of	T1DM,	CVD	remains	one	of	the	leading	causes	of	death	

(43–45).		Tight	control	of	glucose	decreases	risk,	but	hyperglycemia	alone	does	not	completely	explain	

development	of	CVD	(46,47)	and	the	mechanisms	underlying	CVD	in	T1DM	remain	incompletely	

understood	(45).			

Glucose	variability	is	a	universal	feature	of	T1DM	and	has	been	hypothesized	to	play	a	role	in	the	

onset	and	progression	of	overt	CVD	(48).	Because	glucose	variability	induced	elevated	levels	of	oxidative	
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stress	and	inflammation	in	human	cell	cultures,	some	investigators	have	hypothesized	there	to	be	an	

association	between	increased	glucose	variability	and	development	of	CVD	complications	(49,50).		

Further,	microvascular	complications	have	been	associated	with	increased	glucose	variability	(51,52).		

However,	other	investigators	have	failed	to	find	an	association	between	glucose	variability	and	CVD	

complication	development	(53,54).		Inflammation	has	been	identified	as	a	key	factor	in	development	of	

CVD	(55,56).		Both	hyperglycemia		(57–59)	and	hypoglycemia	(60)	have	been	associated	with	increased	

inflammatory	markers,	and	elevated	TNF-α	and	IL-6	levels	correlate	with	hemoglobin	A1c	(HbA1c),	a	

marker	of	glycemic	control,	in	people	with	T1DM	(61–63).			

Elevated	plasma	cortisol,	which	is	secreted	from	the	hypothalamic-pituitary-adrenal	(HPA)	axis,	

has	been	reported	in	people	with	T1DM	as	compared	to	controls	(64,65)	and	poor	glycemic	control	is	

associated	with	elevated	cortisol	in	children	(66).		Increased	activation	of	the	HPA	has	been	linked	to	

accelerated	development	of	CVD	in	T1DM	(67,68).			

C.			 Sleep,	Metabolism,	Inflammation	and	HPA	Activation	

Research	has	shown	that	sleep	plays	an	important	role	in	metabolism.		Physiologically,	normal	

sleep	is	associated	with	characteristic	changes	in	metabolism.		Slow	Wave	Sleep	(SWS)	is	associated	with	

increased	growth	hormone	secretion	(69),			which	in	turn	decreases	insulin	sensitivity	(70),	altering	

glucose	control.		Rapid	Eye	Movement	(REM)	sleep	is	associated	with	decreased	interstitial	glucose	

concentration,	perhaps	due	to	increased	brain	glucose	utilization	(71).	Experimentally	restricting	(73,74)	

or	fragmenting	sleep	by	brief	arousals	(72)	resulted	in	decreased	insulin	sensitivity	in	healthy	individuals.		

Sleep	also	influences	immune	function,	including	inflammatory	responses.	In	healthy	individuals,	

monocyte	and	lymphocyte	production	decreases	during	sleep	(75),	and	one	night	of	sleep	restriction	(4	

hours	compared	to	8	hours	sleep)	increases	secretion	of	TNF-α	and	IL-6	by	monocytes	(76).		One	night	of	

total	sleep	deprivation	in	healthy	men,	increased	evening	levels	of	TNF-α	(77)	as	well	as	IL-6	and	TNF-α	

receptor	expression	(78).			
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Disrupted	sleep	patterns	also	have	been	reported	to	cause	altered	cortisol	secretion	in	healthy	

adults.		Leproult	and	colleagues	found	elevated	evening	cortisol	secretion	after	partial	and	total	sleep	

restriction	(79).	Mendoza	and	colleagues	reported	an	association	between	elevated	evening	cortisol	

secretion	and	parent-reported	sleep	problems	in	children	(80).		Decreased	morning	salivary	cortisol	

levels	have	been	reported	in	people	with	self-reported	sleep	disruption	(81).		Further,	decreased	salivary	

cortisol	levels	have	been	reported	in	young	adult	women	after	a	night	of	sleep	restriction	(3	hours	total	

sleep)	(82).			

From	the	above	evidence,	it	is	clear	that	sleep	plays	a	role	in	maintaining	metabolic	health,	

normal	levels	of	inflammatory	activity	and	HPA	activation.		The	impacts	of	sleep	and	sleep	disruption	on	

IL-6,	TNF-α	and	cortisol	levels	have	not	been	systematically	investigated	in	young	adults	with	T1DM.		 	

D.	 Sleep	in	T1DM	

	 Self-reported	sleep	quality	is	reduced	in	both	children	and	adults	with	T1DM	(83–85).		Perfect	et	

al.	reported	that	children	with	T1DM	spent	less	time	in	deep	SWS	and	more	time	in	lighter	sleep	as	

compared	to	healthy	controls	(86)	and	Jauch-Chara	et	al.	reported	a	trend	toward	less	SWS	and	

increased	light	sleep	in	young	adults	with	T1DM	when	compared	to	healthy	controls	(87).			

	 Several	groups	of	investigators	have	reported	a	correlation	between	HbA1c	and	sleep	

disturbances.		Self-reported	sleep	disturbances	and	trouble	with	initiating	sleep	have	been	positively	

correlated	with	HbA1c	in	children	with	T1DM	(88,89).		Perfect	and	colleagues	reported	a	negative	

association	between	HbA1c	and	percent	of	time	in	SWS	in	children	with	T1DM	(86)	and	Barone	et	al.	

recently	reported	that	HbA1c	was	positively	associated	with	the	number	of	full	awakenings	from	sleep	in	

adults	with	T1DM	(90).		Further,	adults	with	T1DM	who	had	short	sleep	duration	(less	than	6.5	hours	per	

night)	had	significantly	higher	HbA1c	levels	as	compared	to	those	with	sleep	durations	longer	than	6.5	

hours	(91).		One	possible	mechanism	for	these	findings	is	that	sleep	disturbances	result	in	decreased	

insulin	sensitivity	thus	resulting	in	impaired	glycemic	control.		Indeed,	insulin	sensitivity	was	decreased	
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after	a	single	night	of	partial	sleep	restriction	as	compared	to	a	normal	night	of	sleep	(4	hours	compared	

to	8.5	hours)	in	young	adults	with	T1DM	(92).						

	 Conversely,	variations	in	glucose	level	commonly	occur	during	the	sleep	period	and	likely	

influence	sleep	architecture	in	people	with	T1DM.			The	impact	of	hypoglycemia	on	sleep	has	been	the	

focus	of	most	investigations	into	the	relationship	between	glucose	level	and	sleep	in	T1DM.		This	is	

important	as	hypoglycemia-related	seizures	and	death	are	more	common	during	the	night	and	this	likely	

reflects	the	decreased	response	to	hypoglycemia	observed	during	sleep	(93–95).		Non-severe	nocturnal	

hypoglycemia	is	common	in	patients	with	T1DM	(96–99)	and	patients	report	difficulty	falling	back	to	

sleep	after	awakening	from	hypoglycemia	during	the	night	(100,101).		In	a	small	study,	there	was	no	

difference	in	sleep	architecture	found	between	teenagers	with	T1DM	who	experienced	spontaneous	

hypoglycemia	(<2.5	mmol/L)	and	those	who	did	not	become	hypoglycemic.		However,	only	six	of	the	

total	20	subjects	experienced	hypoglycemia	in	this	study	in	which	blood	glucose	was	obtained	via	IV	

catheter	every	30	minutes	(102).		Matyka	and	colleagues	reported	that	the	number	of	full	awakenings	

was	significantly	higher	in	children	with	T1DM,	but	this	was	not	related	to	occurrences	of	hypoglycemia	

as	measured	by	a	continuous	glucose	monitoring	system	(CGMS)	(103).			In	the	same	study,	SWS	was	

significantly	more	prevalent	during	episodes	of	hypoglycemia	(103).		Increased	motor	activity,	measured	

by	actigraphy,	was	associated	with	hypoglycemia	during	sleep	in	adolescents	with	T1DM	(104).		In	

children,	episodes	of	profound	hypoglycemia	were	associated	with	increased	SWS,	but	rapid	declines	in	

glucose	(>	25	mg/dl/hour)	were	associated	with	increased	awakenings	from	sleep	(105).		These	results	

suggest	that	rapid	fluctuations	in	glucose	may	impact	sleep	continuity	in	T1DM.		Indeed,	increased	

glucose	variability	was	associated	with	number	of	awakenings	in	adults	with	T1DM	(90).		The	effect	of	

hyperglycemia	on	sleep	has	been	minimally	investigated	in	T1DM.		In	one	recent	study,	investigators	

found	that	adults	with	T1DM	with	mean	glucose	levels	>	154	mg/dL	had	decreased	overnight	urinary	

melatonin	excretion	(106).		Thus,	hyperglycemia	may	alter	normal	circadian	cycling.			
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	 These	findings	highlight	that	there	are	physiological	interactions	between	sleep	and	glucose	

homeostasis	and	that	these	may	become	disrupted	or	exaggerated	in	individuals	with	T1DM	–	who	lack	

an	intact	pancreatic	control	system	to	regulate	glucose	level	–	leading	to	wide	fluctuations	in	glucose	

level	during	both	wakefulness	and	sleep.		However,	the	role	of	glucose	variability	in	sleep	disruption	in	

young	adults	with	T1DM	has	not	been	systematically	investigated.	

E.	 Framework	and	Aims	for	Study	

	 Review	of	the	literature	argues	that	altered	glucose	homeostasis,	which	is	characteristic	of	

T1DM,	leads	to	development	of	inflammation	and,	as	a	consequence,	to	development	of	CVD.	Sleep	has	

been	shown	to	play	an	important	role	in	maintenance	of	metabolic	and	CV	health	and	sleep	disruption	

consistently	is	reported	in	people	with	T1DM,	but	the	mechanisms	behind	this	disruption	are	unclear.		I	

hypothesize	that	glucose	variability	associated	with	T1DM	may	play	a	causative	role	in	sleep	disruption	

and	this	sleep	disruption	may	contribute	to	increased	inflammation	over	time	in	people	with	T1DM.		

Figure	I	provides	an	overview	of	the	conceptual	schema	for	my	dissertation	study.	Aim	1	was	to	quantify	

sleep	disturbances	and	to	determine	the	relationship	between	glucose	variability	and	sleep	architecture	

in	young	adults	with	T1DM.	Hypothesis:	Fluctuations	in	interstitial	glucose	level	as	measured	by	a	CGMS	

consistently	precede	and	are	causally	related	to	sleep	disruption	(e.g.	arousal,	awakening,	decreased	

electroencephalogram	[EEG]	delta	power,	increased	EEG	alpha	power).		Aim	2	was	to	quantitatively	

define	the	relationships	among	sleep,	inflammatory	cytokines,	and	endocrine	stress	markers	measured	

before	and	after	sleep	in	young	adults	with	T1DM.	Hypothesis:	Plasma	levels	of	IL-6,	TNF-α,	and	cortisol	

are	significantly	elevated	following	sleep	as	compared	to	pre-sleep.			
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F.	 Overview	of	Dissertation	Study	

Subjects	who	were	18-30	years	old,	with	T1DM	for	at	least	five	years	and	who	used	pumps	for	

insulin	delivery	were	recruited	from	the	Chicago	area.		Subjects	were	excluded	for	any	of	the	following	

reasons:	worked	night	or	rotating	shifts;	reported	being	pregnant;	reported	diagnosed	CVD	(with	the	

exception	of	controlled	hypertension);	reported	being	diagnosed	with	diabetic	complications	(e.g.	

retinopathy,	nephropathy	or	neuropathy);	were	diagnosed	with	psychiatric	disease	or	were	taking	

psychoactive	medications;	were	diagnosed	with	a	sleep	disorder	or	reported	use	of	medications	to	aid	in	

FIGURE	I:	CONCEPTUAL	FRAMEWORK	FOR	DISSERTATION	STUDY	
I	hypothesize	that	disturbed	sleep	plays	a	key	role	contributing	to	elevated	CVD	risk	and	CV	stress	
markers	in	young	adults	with	T1DM	–	both	directly,	and	by	mediating	the	impact	of	glucose	
variability.	Aim	1	is	to	quantify	sleep	disturbances	and	to	determine	the	relationship	between	
glucose	variability	and	disturbed	sleep	in	young	adults	with	T1DM.		Aim	2	is	to	characterize	the	
relationship	between	sleep	and	markers	CV	stress	and	CVD	risk	in	young	adults	with	T1DM	
measured	before	and	after	sleep.	
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sleep;	a	score	of	14	or	greater	on	the	Patient	Health	Questionnaire-9	(PHQ-9);	reported	active	use	of	

illicit	drugs;	reported	use	of	corticosteroids;	had	uncontrolled	thyroid	disease;	or	reported	severe	

metabolic	instability	(e.g.	hospitalization	for	hypoglycemia;	occurrence	of	hypoglycemic	seizures	or	

ketoacidosis)	during	the	previous	2	months.			

	 Subjects	were	contacted	by	telephone,	screened	to	ensure	eligibility	and	scheduled	for	their	

initial	visit.		Upon	arrival	to	the	second	floor	at	the	University	of	Illinois	at	Chicago	College	of	Nursing,	

subjects	were	provided	with	informed	consent	documents.		After	completing	initial	informed	consent,	

study	procedures	were	begun.		Subjects	provided	demographic	information	including	age,	race,	

ethnicity	and	gender.		A	brief	health	history	was	obtained	including	smoking	status,	alcohol	and	caffeine	

consumption	and	general	health	status.		Subjects	completed	the	PHQ-9,	the	Epworth	Sleepiness	Scale	

(ESS)	and	the	Pittsburgh	Sleep	Quality	Index	(PSQI).		The	standardized	sleep	and	food	diaries	used	for	

this	study	were	explained	to	the	subjects	and	operational	guidelines	for	use	of	the	CGMS	and	actigraphy	

monitor	were	reviewed.		Subjects	were	instructed	to	wear	the	actigraphy	monitor	on	their	non-

dominant	wrist	and	not	to	remove	it.		The	sensor	for	the	CGMS	was	inserted	in	the	abdominal	

subcutaneous	fat	tissue,	the	transmitter	was	attached	to	the	sensor	and	the	system	was	covered	with	

tegaderm	to	prevent	the	sensor	from	falling	out.	Subjects	were	instructed	regarding	procedures	for	

calibrating	the	system	every	12	hours	with	a	capillary	glucose	measurement.		A	brief	physical	

examination	was	performed	to	obtain	height,	weight,	hip	and	waist	circumferences	and	vital	signs	

(blood	pressure,	heart	rate,	oxygen	saturation,	respiratory	rate).	The	heart	and	lungs	were	auscultated	

and	the	thyroid	was	palpated	to	rule	out	major	abnormalities.		A	capillary	glucose	measurement	was	

taken	and	a	blood	sample	was	collected	to	measure	HbA1c	and	to	perform	a	complete	blood	count.		If	a	

subject	reported	using	thyroid	medication,	an	extra	venous	blood	sample	was	obtained	for	a	thyroid	

stimulating	hormone	assay	to	ensure	euthyroid	status.		This	completed	the	initial	visit.			
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	 Each	subject	spent	the	next	three	days	and	two	nights	performing	their	usual	routines.		On	the	

third	night,	subjects	arrived	at	the	Sleep	Science	Center	at	the	University	of	Illinois	at	Chicago	for	

overnight	polysomnography	(PSG).		PSG	monitoring	was	performed	by	a	registered	polysomnographic	

technologist.		PSG	comprised	computer-based	recording	(Respironics,	Alice5®)	of:	2	central,	2	frontal	

and	2	occipital	EEG	leads,	bilateral	referential	electrooculogram,	chin	and	anterior	tibialis	

electromyogram,	lead	I	electrocardiogram,	respiratory	movement	of	thorax	and	abdomen	by	

piezoelectric	strain	gauges,	airflow	via	nasal	pressure	cannula	and	oronasal	thermistors	and	arterial	

oxygen	saturation	of	hemoglobin	by	pulse	oximeter.		Lights	out	for	each	subject	was	between	10	and	11	

pm	and	lights	on	was	6	am	to	ensure	at	least	7	hours	of	time	in	bed.		Just	prior	to	lights	out,	a	venous	

blood	sample	was	taken	to	measure	IL-6,	TNF-α	and	cortisol	levels.		Additional	samples	were	obtained	

just	after	lights	on	and	one	hour	after	lights	on	to	measure	the	same	three	markers.		After	the	end	of	the	

sleep	study	and	between	venipunctures,	subjects	completed	the	Stanford	Sleepiness	Scale	(SSS;	a	

measure	of	subjective	sleepiness)	and	performed	the	psychomotor	vigilance	task	(PVT;	an	objective	

measure	of	vigilance	and	motor	reaction	time).		Subjects	returned	the	CGMS	and	activity	monitors	and	

received	a	$250	cash	remuneration	for	participation	in	the	study.	

G.	 Overview	of	Chapters	

The	results	of	the	study	are	provided	as	chapters	and	are	formatted	as	manuscripts	for	

submission	to	peer-reviewed	journals.		In	view	of	this	fact,	several	abbreviations	are	defined	at	their	first	

instance	in	each	chapter.	The	second,	third	and	fourth	chapters	provide	the	results	of	Aim	1	and	the	fifth	

chapter	provides	the	results	of	Aim	2.		The	last	chapter	is	a	discussion	synthesizing	the	findings	from	all	

chapters.		Appendix	A	presents	the	rationale	and	mathematical	details	of	the	methods	used	for	data	

analysis	in	Chapters	2-4.		Appendix	B	outlines	the	methods	employed	to	validate	the	Matlab	code	

developed	to	implement	the	methods	of	Appendix	A.		A	detailed	presentation	and	rationale	for	the	



14	
	

	

methods	employed	in	assays	of	inflammatory	cytokines	is	provided	in	Appendix	C.		Current	Institutional	

Review	Board	approval	is	contained	in	Appendix	D.
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II.	COUPLING	BETWEEN	GLUCOSE	VARIATIONS	AND	ACTIVITY	DURING	SLEEP	AND	WAKE	OVER	A		

60-HOUR	PERIOD		
A.	 Introduction	

Glucose	levels	fluctuate	widely	throughout	the	day	and	night	in	individuals	with	Type	1	Diabetes	

Mellitus	(T1DM).		Factors	impacting	glucose	level,	such	as	insulin	sensitivity,	exhibit	both	a	circadian	

rhythm	(107,108)	and	differences	between	sleep	and	wakefulness	(109,110).		However,	there	has	been	

limited	investigation	into	circadian	and	sleep/wake	influences	on	glucose	control	in	individuals	with	

T1DM.			

Structured	physical	activity	(exercise)	also	influences	glucose	level	in	both	healthy	individuals	

(111)	and	those	with	T1DM	(112,113).		Routine	“free-living”	daily	activity	also	may	contribute	to	glucose	

variations,	but	there	are	limited	data	regarding	this	relationship.	It	is	possible	that	variations	in	routine	

daily	activity	between	sleep	and	wake	may	contribute	significantly	to	sleep/wake-	or	circadian-related	

changes	in	glucose;	but,	again,	this	possibility	has	not	been	systematically	studied.				

It	is	likely	that	the	coupling	between	physical	activity	and	glucose	variation	is	bi-directional	and	

that	the	nature	and	strength	of	this	relationship	changes	over	the	course	of	a	24-hour	period;	but	this	

has	not	been	directly	established	in	individuals	with	T1DM.	Thus,	the	purposes	of	this	investigation	were	

to:	1)	quantify	the	coupling	between	glucose	variations	and	routine	physical	activity	over	a	60-hour	

period;	2)	determine	differences	in	this	coupling	between	sleep	and	wakefulness;	and	3)	identify	the	

strength	and	timing	of	circadian	variations	in	glucose/activity	coupling	in	young	adults	with	T1DM.		

B.	 Methods	

1.	 Protocol	

Twenty-seven	subjects	with	T1DM	for	at	least	five	years,	who	wore	insulin	pumps	and	

did	not	work	rotating	or	night	shifts,	participated	in	the	study.		Individuals	using	medication	that	might	

alter	sleep	or	wakefulness,	or	with	uncontrolled	thyroid	disease,	or	who	reported	diabetes	
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complications	were	excluded.		The	Institutional	Review	Board	of	the	University	of	Illinois	at	Chicago	

approved	all	study	procedures.		Informed	consent	was	obtained	from	all	individual	participants.	

After	subjects	provided	informed	consent,	a	subcutaneous	abdominal	sensor	was	placed	for	the	

continuous	glucose	monitoring	system	(CGMS;	Guardian-RTTM,	Medtronic)	and	an	activity	monitor	

(Actiwatch2TM,	Respironics)	was	applied	to	the	non-dominant	wrist.		Subjects	then	went	about	their	

normal	daily	routine	and	on	the	third	night	came	to	the	laboratory	for	an	overnight	sleep	study.	We	

analyzed	glucose	and	activity	data	collected	from	6	pm	on	the	first	day	through	6	am	on	the	fourth	day	

of	the	study.		Average	interstitial	glucose	was	recorded	every	5	minutes	by	the	CGMS.	The	Guardian	

CGMS	included	a	disposable	sensor,	a	wireless	transmitter	and	a	monitor.		The	sensor	sampled	glucose	

levels	every	10	seconds	and	the	average	value	of	these	samples	was	transmitted	wirelessly	and	stored	

by	the	monitor	every	5-minutes.		The	overall	system	required	calibration	with	a	capillary	glucose	level	

every	12	hours;	a	procedure	performed	by	the	subjects	throughout	the	protocol.	The	CGMS	reports	

interstitial	glucose	concentrations	between	40	–	400	mg/dl.	After	each	subject	completed	the	protocol,	

their	glucose	values	were	downloaded	from	the	monitor	using	CareLink®	software	provided	by	the	

manufacturer.		Activity	count	totals	were	logged	every	30	seconds,	smoothed	(5-minute	moving	

average)	and	resampled	every	5	minutes	to	allow	alignment	with	glucose	values.		For	missing	data,	the	

last	non-missing	value	was	carried	forward	until	the	next	non-missing	point	(maximum	cumulative	

missing	data	was	120	min	[2	subjects]).		Sleep	periods	were	determined	using	Actiware	software	

(Respironics),	using	the	default	settings	provided	by	the	software.	The	wake	threshold	40	activity	counts	

for	10	minutes,	the	sleep	onset	threshold	was	10	minutes	of	immobility.	

2.	 Wavelet	Coherence	

Wavelet	coherence	analysis	(WCA)	identifies	time	varying	and	frequency	specific	

coupling	between	two	processes	(114)	and	wavelet	theory	has	been	reviewed	elsewhere	(115).	Briefly,	

wavelets	are	time-limited	mathematical	functions	useful	to	decompose	recorded	physical	activity	and	
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glucose	waveforms	into	different	frequency	components	and	to	then	compute	the	time	varying	

coherence	(coupling)	between	them	at	each	underlying	frequency	(114).		We	utilized	the	Morlet	wavelet	

function,	performing	computations	with	the	wavelet	coherence	toolbox	(Matlab	2013a)	provided	by	

Grinsted	et	alles.		This	yielded	updated	coherence	values	every	5	minutes	for	each	of	84	underlying	

oscillations	with	periods	ranging	from	10	to	1248	minutes.	For	the	present	analyses,	we	excluded	all	

coherence	values	potentially	influenced	by	“end	effects”,	as	described	by	Grinsted	at	al.	(114).	To	

facilitate	interpretation	of	the	60-hour	recordings,	we	collapsed	the	84	wavelet	“scales”	into	six	Bands	

with	differing	fluctuation	period	ranges	(Band	1:	10-30	min;	Band	2:	30-60	min;	Band	3:	60-120	min;	

Band	4:	120-240	min;	Band	5:	240-480	min;	Band	6:	480-960	min).			Each	recording	also	was	segmented	

according	to	Sleep	and	Wake	periods;	with	each	Wake	period	being	bisected	into	equal	halves,	yielding	

three	approximate	8-hour	segments	for	each	circadian	day.	Due	to	their	shorter	length,	each	of	these	

segments	was	assessed	by	WCA	using	only	the	first	four	Bands	(periods	of	10	to	240	minutes).		Because	

ANOVA	demonstrated	no	significant	differences	(p	>	0.05	for	each)	among	the	3	Sleep	intervals	or	

among	the	4	Wake	sub-intervals,	these	intervals	were	separately	averaged	to	provide	a	single	mean	

coherence	and	mean	phase	for	Sleep	and	for	Wake	for	each	Band	in	each	subject.			

To	identify	which	computed	coherence	values	were	statistically	significant	(p	<	0.05),	we	utilized	

Monte	Carlo	simulations	(N	=	500)	(114).		The	mean	coherence,	number	of	intervals	of	significant	

coherence	and	mean	duration	of	these	intervals	were	tabulated	for	each	Band	of	each	recording.	To	

allow	more	intuitive	interpretation,	the	phase	relationship	between	glucose	and	activity	was	converted	

to	an	equivalent	delay	(in	minutes)	as	a	function	of	time	in	each	Band.		ANOVA	was	used	to	identify	

differences	in	coherence	parameters	among	the	Bands	and	between	Sleep/Wake	intervals	using	each	of	

these	factors	as	a	repeated	measure	(STATA	14;	StataCorp).	Pairwise	differences	between	Bands	and	

Sleep/Wake	intervals	were	determined	by	post-hoc	tests	controlled	by	Scheffe’s	test.		
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3.	 Bivariate	Correlation	

Pearson	correlation	coefficients	were	determined	for	the	mean	coherence	values	in	

each	Band	in	relation	to	Hemoglobin	A1c	(HbA1c),	mean	glucose,	and	the	Epworth	Sleepiness	Scale	(ESS)	

score,	a	subjective	measure	of	daytime	sleepiness.	These	correlations	were	computed	for	the	60-hour	

recordings,	and	also	stratified	according	to	Sleep/Wake	state.	

4.	 Circadian	Analysis	

To	characterize	circadian	variations	in	coherence,	we	utilized	cosinor	analysis.	For	each	

Band	of	each	recording,	we	fitted	(least-squares	regression)	a	cosine	wave	with	a	period	of	1440	

minutes	(24	hours)	to	the	coherence	data:		

Coherence	=	amplitude*cos	((2π*time)/1440	+	phase)	+	constant		

We	report	the	average	Pearson	correlation	coefficient	(r2),	amplitude	and	acrophase	(clock	time	of	peak	

coherence)	of	the	best-fit	cosine	wave	for	each	Band.		

C.	 Results	

1.	 Demographics	

Twenty-three	(9	males)	of	27	subjects	completing	the	protocol	were	included	in	the	

present	analysis	(2	subjects	with	apnea/hypopnea	index	>5;	2	subjects	with	>2h	missing	data	were	

excluded).	Included	subjects	had	a	mean	±	SD	age	of	24	±	4.0	years,	diabetes	duration	of	12.2	±	4.9	

years,	HbA1c	of	7.6	±	1.0%	(60	±	10.9	mmol/mol)	and	body	mass	index	of	26.0	±	3.6	kg/m2.		All	subjects	

wore	their	own	insulin	pumps	(various	manufacturers)	during	the	study,	and	no	changes	were	made	to	

their	usual	insulin	regimens	or	diabetes	care.		

2.	 Coherence	

Figure	II	depicts	the	characteristic	patterns	of	physical	activity	and	glucose	associated	

with	time	of	day	and	Sleep/Wake	intervals	for	a	single	subject	(top	panel).	The	lower	panel	displays	the	

time	and	frequency	dependent	coherence	between	these	two	processes	as	a	heat	map.		Globally,	the	
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group-mean	coherence	over	the	entire	60-hour	recording	interval	and	over	all	fluctuation	periods	(10-

960	min)	was	0.39	±	0.14	(SD).	Mean	coherence	by	Band	was:	Band	1:	0.38	±	0.02;	Band	2:	0.35	±	0.04;	

Band	3:	0.34	±	0.06;	Band	4:	0.38	±	0.08;	Band	5:	0.39	±	0.10;	Band	6:	0.46	±	0.19.		Mean	coherence	in	

Bands	2	and	3	was	significantly	lower	than	that	for	Band	6	(p	≤	0.01	for	each).			

It	is	evident	(Figure	II)	that	even	within	each	Band,	the	coupling	(coherence)	between	glucose	

and	activity	was	time-varying,	with	multiple	discrete	intervals	of	statistically	significant	coherence	

exhibited	during	the	60-hour	recording.	Table	1	summarizes	the	average	number	and	duration	of	these	

statistically	significant	intervals.		ANOVA	revealed	significant	independent	effects	of	Band	(p	<	0.00005)	

and	Sleep/Wake	state	(more	intervals	during	Wake	than	Sleep;	p	<	0.04)	on	the	number	of	intervals,	

with	no	interaction.		The	number	of	intervals	of	significant	coherence	decreased	progressively	from	

Band	1	to	Band	6	(Table	1).	Post-hoc	contrasts	(Scheffe)	revealed	that	the	numbers	of	significant	

intervals	in	Bands	1-3	were	significantly	different	from	each	other	as	well	as	from	Bands	4-6	(p	≤	0.0005	

for	each	comparison);	Bands	4-6	did	not	differ	from	one	another.		For	the	Sleep	and	Wake	intervals,	

Bands	3	and	4	were	significantly	different	from	Bands	1	and	2	for	both	Sleep	(p	≤	0.037	for	each	

comparison)	and	Wake	(p	≤	0.0005	for	each	comparison),	however	Bands	3	and	4	were	not	different	

from	each	other	during	either	Sleep	or	Wake.			
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FIGURE	II:	EXAMPLE	OF	COHERENCE	BETWEEN	ACTIVITY	AND	GLUCOSE	OVER	60	HOUR	
PERIOD	

The	top	panel	illustrates	raw	activity	(total	activity	counts	per	5-min;	Blue)	and	glucose	values	(mg/dL;	
Green)	over	the	60-hour	recording	period,	with	clear	daily	(circadian)	variations	in	both	activity	and	
glucose.	Vertical	shaded	regions	denote	the	recorded	sleep	periods	for	this	subject.	The	bottom	panel	
illustrates	the	time	varying	and	frequency	specific	coherence	between	activity	and	glucose.		The	color	
bar	at	the	right	of	this	panel	provides	the	scale	for	coherence	(ranging	from	0	–	1),	with	intervals	of	
statistically	significant	coherence	shaded	red	and	enclosed	by	a	black	border.	
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	 Band	
1	 2	 3	 4	 5	 6	

	
	
60-
Hour	

N	 23	 23	 23	 22	 20	 14	
#		

Intervals	
20.5	
(2.5)	

9.5		
(2.5)	

4.6		
(1.3)	

2.3	
	(0.9)	

1.7		
(0.6)	

1.1		
(0.3)	

Mean	
Duration		

37.6	
(8.0)	

91.0	
(22.3)	

181.1	
(82.7)	

428.2	
(214.2)	

626.3	
(301.2)	

872.1	
(477.7)	

	
	
Wake	

N	 23	 23	 23	 15	 -	 -	
#		

Intervals	
9.3	
(2.2)	

4.5		
(1.9)	

2.3		
(1.2)	

1.5	
	(0.5)	

-	 -	

Mean	
Duration		

35.5	
(9.0)	

79.5	
(29.6)	

139.0	
(138.5)	

311.1	
(211.7)	

	 	

	
	
Sleep	

N	 23	 23	 23	 18	 -	 -	
#		

Intervals	
8.3		
(2.3)	

3.5		
(1.3)	

2.2	
(1.1)	

1.4		
(0.6)	

-	 -	

Mean	
Duration		

33.1	
(11.7)	

70.1	
(32.3)	

97.5	
(66.9)	

128.9	
(84.9)	

-	 -	

	

	
	
	
	
	
	

The	mean	duration	of	the	intervals	progressively	increased	from	Band	1	to	Band	6	for	the	60-

hour	recordings.	One-way	ANOVA	with	post-hoc	contrasts	revealed	that	mean	durations	in	Bands	1-3	

were	significantly	shorter	than	in	Bands	4-6	(p	<	0.02	for	each)	and	in	Band	4	was	significantly	shorter	

than	in	Band	6	(p	≤	0.0005).			Two-way	ANOVA	revealed	significant	effects	of	Band,	Sleep/Wake	state	

and	their	interaction	on	the	mean	duration	of	coherent	intervals	(p	≤	0.0003	for	each).		Stratified	one-

way	ANOVA	demonstrated	(Table	1)	that	the	mean	duration	of	intervals	of	significant	coherence	in	Band	

4	was	significantly	shorter	during	Sleep	than	during	Wake	intervals	(F	=	9.76,	p	=	0.004).		During	Sleep	

and	Wake,	the	mean	duration	of	intervals	in	Band	1	was	less	than	those	in	Bands	3	and	4	(p	≤	0.001	for	

TABLE	1:	SUMMARY	OF	NUMBER	AND	DURATION	OF	INTERVALS	OF	SIGNIFICANT	
COHERENCE	

Mean	Duration	is	reported	in	minutes.	N	indicates	the	number	of	subjects	that	had	at	least	one	discrete	
interval	of	significant	coherence.		Values	in	parentheses	indicate	standard	deviation.	
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each	[Sleep];	p	≤	0.04	for	each	[Wake]).		During	Sleep,	Band	2	mean	duration	was	significantly	less	than	

in	Band	4	(p	=	0.02)	and	during	Wake,	Bands	2	and	3	were	significantly	less	than	in	Band	4	(p	<	0.0005	

for	each).			

Considering	the	temporal	variations	in	coherence	observed	(Figure	II;	Table	1),	we	hypothesized	

that	coupling	would	differ	during	Sleep	versus	Wake.		Figure	III	illustrates	the	mean	coherence	within	

each	Band	for	Sleep	and	Wake	intervals.	ANOVA	using	Band	and	Sleep/Wake	state	as	within-subject	

repeated	factors	revealed	a	significant	effect	of	Band	(F	=	17.7,	p	<	0.00005)	on	mean	coherence,	but	the	

effects	of	Sleep/Wake	state	and	its	interaction	with	Band	were	not	significant.			One-way	ANOVA	with	

post-hoc	comparisons	revealed	that	mean	coherence	was	highest	in	Band	4	(2	to	4	hour	fluctuation	

periods)	during	both	Sleep	and	Wake	intervals	(F	=	6.7,	p	=	0.0004	and	F	=	7.17,	p	=	0.0002,	respectively).		

The	mean	coherence	in	Band	4	differed	significantly	from	coherence	in	Bands	1	and	2	during	wake	

intervals	(p	≤	0.01	for	each)	and	from	Bands	2	and	3	during	Sleep	intervals	(p	≤	0.013	for	each).	In	

addition,	in	Band	1	(10–30	minute	fluctuations)	the	mean	coherence	was	significantly	higher	during	

Sleep	(0.37	±	0.04)	than	during	Wake	(0.34	±	0.04)	intervals	(F	=	4.34,	p	=	0.04).	
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The	temporal	alignment	between	coherent	fluctuations	in	glucose	and	activity	is	indicated	by	

the	phase	calculation,	which	we	converted	to	an	equivalent	delay,	in	minutes.		Mean	phase	delay	in	

Band	2	was	significantly	negative	(changes	in	glucose	leading	changes	in	activity)	for	the	60-hour	

recordings	(-1.5	±	1.9	min,	p	=	0.0014);	delays	for	all	other	Bands	were	not	significantly	different	from	

zero.		Figure	IV	presents	the	mean	phase	delay	for	each	Band	(1–4)	during	Sleep	and	Wake	intervals.		

During	Sleep	intervals,	the	mean	phase	delay	was	negative	in	all	Bands,	indicating	that	changes	in	

FIGURE	III:	MEAN	COHERENCE	BETWEEN	ACTIVITY	AND	GLUCOSE	DURING	SLEEP	AND	
WAKE	STATES	AT	DIFFERENT	FLUCTUATION	PERIODS	

*	indicates	p	<	0.05.		
Mean	coherence	was	high	(>0.30)	for	all	Bands	during	both	Sleep	and	Wake;	with	Band	4	exhibiting	
the	highest	mean	coherence.		Band	4	coherence	was	significantly	higher	than	Bands	1	and	2	during	
Wake	(p	<	0.05	for	each);	and	higher	than	Bands	2	and	3	during	Sleep	(p	≤	0.05	for	each).	Mean	
coherence	in	Band	1	(10-30	min	fluctuations)	was	significantly	higher	during	Sleep	than	during	Wake	
(p	=	0.04).	Error	bars	denote	SD.			
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glucose	were	consistently	leading	changes	in	activity.		This	negative	delay	was	significantly	different	

from	zero	only	for	fluctuation	periods	of	30	to	120	minutes	(Bands	2	and	3;	p	<	0.02	for	each;	Figure	IV).	

During	wakefulness,	the	phase	delay	was	significantly	negative	in	Bands	1	and	2	(p	<	0.05	for	each)	but	

was	much	more	variable	and,	on	average,	positive	(changes	in	activity	leading	changes	in	glucose)	in	

Bands	3	and	4.	One-way	ANOVA	revealed	that	mean	phase	in	Band	3	was	significantly	more	negative	

during	Sleep	versus	Wake	(-4.4	±	7.1	min	[Sleep]	vs.	1.6	±	4.9	min	[Wake];	F	=	11.13,	p	=	0.0017).		The	

same	Sleep/Wake	trend	was	seen	among	Bands	2-4	(Figure	IV).	

	 	



25	
	

	

	
	

	
	
	
	
	
	

	3.	 Bivariate	Correlation		

Bivariate	correlation	applied	to	the	60-hour	recordings	revealed	a	significant	negative	

relationship	of	mean	coherence	in	Band	1	to	mean	glucose	(r	=	-0.60,	p	=	0.003)	and	a	trend	for	the	

relationship	of	mean	coherence	in	Band	1	to	HbA1c	(r	=	-0.32,	p	=	0.13).		Similar	relationships	were	

observed	during	Sleep	intervals:	mean	coherence	in	Band	1	versus	mean	glucose	(r	=	-.55,	p	=	0.007)	and	

HbA1c	(r	=	-0.38,	p	=	0.07).		Mean	coherence	in	Bands	1	and	2	during	Sleep	also	demonstrated	

FIGURE	IV:	MEAN	PHASE	DELAY	BETWEEN	ACTIVITY	AND	GLUCOSE	DURING	SLEEP	AND	
WAKE	STATES	AT	DIFFERENT	FLUCTUATION	PERIODS	

*	indicates	significantly	different	from	zero	(p	<	0.05)		
Data	are	mean	±	SD	(reported	in	minutes);	on	average,	changes	in	glucose	occurred	prior	to	(led)	
changes	in	activity	during	Sleep	periods	across	all	of	the	Bands;	but	no	consistent	pattern	was	observed	
across	Bands	during	Wake	periods.	During	Wake,	the	mean	phase	delay	was	significantly	negative	in	
Bands	1	and	2,	whereas	during	Sleep,	the	mean	phase	was	significantly	negative	in	Bands	2	and	3	(p	<	
0.05	for	each).	In	Band	3	the	mean	phase	delay	was	significantly	negative	during	Sleep	with	respect	to	
Wake	(p	=	0.007).		
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significant	correlations	with	the	ESS	score	(r	=	-0.44,	p	=	0.04	for	Band	1	and	r	=	-0.48,	p	=	0.02	for	Band	

2);	with	higher	coherence	associated	with	less	daytime	sleepiness.	Similarly,	during	Wake	intervals	there	

were	significant	negative	correlations	of	mean	coherence	in	Bands	1	and	2	with	HbA1c	(r	=	-0.65,	p	<	

0.001	for	Band	1;	r	=	-0.43,	p	=	0.04	for	Band	2));	and	a	trend	for	mean	glucose	(p	≤	0.11	for	Bands	1	and	

2).	In	contrast	to	Sleep,	increasing	coherence	in	Band	2	during	Wakefulness	was	associated	with	

increased	daytime	sleepiness	measured	by	ESS	(r	=	0.41,	p	=	0.05).		There	was	no	relationship	between	

ESS	and	mean	coherence	in	any	other	Band	during	the	Wake	intervals	(p	>	0.3	for	each).		

4.	 Circadian	Analysis		

Figure	V	illustrates	the	best-fit	circadian	cosine	waves	overlaid	on	the	time-varying	

coherence	data	for	one	60-hour	recording.	For	clarity,	only	Bands	2,	4	and	6	are	presented;	overall	

characteristics	and	fit	for	Bands	1,	3	and	5	were	similar.		The	fit	(r2)	tended	to	improve	from	Bands	1-4	

and	then	decreased	for	Band	6.		Table	2	provides	the	mean	r2,	amplitude	and	acrophase	of	the	best-fit	

cosine	waves	for	each	Band.		ANOVA	(F	=	6.69,	p	≤	0.0001)	with	pairwise	contrasts	(Scheffe)	revealed	

that	the	mean	r2	values	for	Bands	4	and	5	were	significantly	greater	than	those	for	Bands	1-3	(p	≤	0.02	

for	each)	and	6	(p	<	0.0001).	ANOVA	also	demonstrated	(F	=	4.43,	p	=	0.002)	that	the	amplitudes	of	

circadian	variations	in	coherence	for	Bands	1-3	and	5	were	significantly	lower	than	the	amplitude	for	

Band	4	(p	≤	0.03	for	each	comparison);	and	the	amplitudes	for	Bands	2-5	were	significantly	higher	than	

Band	6	(p	≤	0.01	for	each	comparison).		The	acrophase	(time	associated	with	peak	coherence)	ranged	

from	5	to	7	pm	and	was	equivalent	across	all	Bands.			
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FIGURE	V:	EXAMPLE	CIRCADIAN	COSINE	WAVE	FIT	OF	COHERENCE	IN	3	BANDS	OVER	60	
HOURS	

Data	are	from	one	subject.		In	each	subpanel,	black	line	represents	the	actual	time	varying	coherence	
data	for	one	Band	and	the	gray	line	depicts	the	best-fit	cosine	wave	for	that	Band.	For	clarity	only	Bands	
2,	4	and	6	are	depicted.	
	



28	
	

	

*	

*	

*	

*	

	
	

Band	 Mean	r2	 Mean	Amplitude	
Acrophase	
(SD	in	min)	

1	 0.04	(0.03)	 0.05	(0.02)		 5:16	pm	(210.6)	
2	 0.09	(0.05)	 0.07	(0.03)	 5:36	pm	(172.7)	
3	 0.09	(0.08)	 0.07	(0.04)	 5:50	pm	(185.7)	
4	 0.23	(0.17)	 0.11	(0.06)	 6:38	pm	(201.5)	
5	 0.21	(0.18)	 0.09	(0.04)	 6:14	pm	(203.4)	
6	 0.05	(0.05)	 0.03	(0.02)	 6:25	pm	(199.5)	

	

						 								
	
	
	
	
	
D.	 Discussion	

The	present	study	represents	a	systematic	evaluation	of	the	relationship	between	routine	

physical	activity	and	glucose	variations	across	Wake	and	Sleep	periods	for	multiple	days	in	young	adults	

with	T1DM.		Coherence	analysis	demonstrated	substantial	coupling	between	physical	activity	and	

glucose	variations,	with	one-third	to	one-half	of	their	variance	being	shared	during	both	wakefulness	

and	sleep.	Moreover,	our	findings	suggest	multiple	modes	of	activity/glucose	coupling	with	differing	

characteristic	time	scales	and	potentially	different	physiological	mechanisms	of	control.		For	example,	

although	mean	coherence	was	broadly	equivalent	during	both	sleep	and	wakefulness,	coherence	

nonetheless	demonstrated	significant	circadian	variations	over	a	60-hour	time	span,	and	this	circadian	

rhythm	in	coupling	was	distinctly	strongest	for	activity/glucose	fluctuations	with	periods	between	2	and	

4	hours.	Conversely,	only	the	most	rapid	fluctuations	(periods	of	10	to	30	minutes)	demonstrated	

significant	differences	between	wake	and	sleep	states;	with	mean	activity/glucose	coherence	being	

higher	during	sleep	than	wakefulness.	It	is	also	noteworthy	that	for	rapid	fluctuations	with	periods	from	

TABLE	2:	PARAMETERS	OF	CIRCADIAN	COSINOR	REGRESSION	FOR	COHERENCE	
*signifies	statistical	significance			
Mean	r2	was	significantly	higher	for	Bands	4	and	5	than	for	other	Bands	(p	≤	0.01	for	each	comparison).		
Mean	Amplitude	was	significantly	higher	for	Band	4	than	Bands	1-3	and	6	(p	≤	0.03	for	each).	Acrophase	
did	not	vary	significantly	between	Bands.	
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10	to	60	minutes,	changes	in	glucose	consistently	preceded	coherent	changes	in	activity.	For	slower	

fluctuations,	this	timing	relationship	was	much	more	variable;	with	glucose	changes	tending	to	lead	

activity	changes	during	Sleep	periods	and	vice	versa	during	wakefulness.		

We	observed	a	consistent	pattern	of	time-varying	and	frequency	specific	glucose/activity	

coupling:	1)	mean	coherence	was	highest	for	the	slowest	fluctuations	examined	and	a	small	number	of	

extended	intervals	of	significant	coherence	typically	was	observed	in	these	Bands;	2)	rapid	fluctuations	

(10–30	minutes)	were	characterized	by	somewhat	lower	mean	coherence	but	a	larger	number	of	brief	

intervals	of	significant	coherence.	This	latter	mode	of	coupling	may	be	of	particular	importance	during	

sleep,	as	the	mean	coherence	of	rapid	fluctuations	was	higher	during	sleep	than	wakefulness	(Figure	III).	

Further,	phase	calculations	demonstrated	that	rapid	glucose	variations	consistently	led	activity	changes	

(Figure	IV),	suggesting	the	possibility	that	rapid	changes	of	glucose	during	sleep	led	to	awakenings,	and	

attendant	physical	movements	(activity),	as	has	been	reported	in	children	with	T1DM	(105).	Matyka	and	

colleagues	also	found	that	children	with	T1DM	had	more	disrupted	sleep	than	healthy	children.	These	

awakenings	were	not	associated	with	hypoglycemia,	but	the	relationship	between	glucose	variability	

and	awakenings	was	not	reported	(103).		Radan	et	al.	showed	that	motor	activity,	assessed	by	

actigraphy,	was	increased	during	periods	of	nocturnal	hypoglycemia	documented	by	serial	blood	

samples	in	teenagers	with	hypoglycemia	(104).	Perhaps	paradoxically,	strong	coupling	between	rapid	

fluctuations	in	glucose	and	activity	during	sleep	also	may	impart	clinical	benefits,	as	we	found	that	

higher	coherence	in	this	Band	was	positively	correlated	with	better	short	and	long	term	glucose	control	

(lower	mean	glucose	and	lower	HbA1c,	respectively),	as	well	as	reduced	daytime	Sleepiness	(ESS	score).		

During	wakefulness,	mean	coherence	for	rapid	fluctuations	was	lower	than	during	sleep,	with	

glucose	fluctuations	consistently	leading	changes	in	physical	activity.		However,	for	slower	fluctuations	

the	delay	differed	significantly	between	Sleep	and	Wake	intervals,	with	activity	changes	tending	to	lead	

glucose	changes	during	wakefulness,	by	the	opposite	during	sleep.	These	findings	suggest	that	the	
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relationship	between	glucose	and	physical	activity	is	likely	both	bidirectional	and	operating	on	multiple	

time-scales,	especially	during	wakefulness.		This	would	not	be	surprising,	as	during	the	daytime	many	

factors	including	at	least:	calorie	intake	(116);	aerobic	and	resistance	exercise	(117–120);	and	work,	

school	and	family	demands,	impact	daytime	glucose	control	in	people	with	T1DM.	Future,	larger	scale	

trials	should	be	aimed	to	determine	the	mechanistic	basis	and	full	physiological	roles	for	coherence	

between	rapid	fluctuations	of	glucose	and	activity,	especially	during	sleep.	

Circadian	influences	also	impact	the	coupling	between	glucose	variations	and	physical	activity,	

with	coherence	of	2–4	hour	activity/glucose	fluctuations	demonstrating	the	greatest	circadian	

modulation	(Figure	V	and	Table	2);	and	with	peak	coupling	during	the	early	evening	hours	(Table	2).		

Multiple	biological	processes	exhibit	circadian	patterns,	including	insulin	sensitivity	in	individuals	with	

T1DM	(121,122),	with	the	lowest	values	during	the	early	morning	hours	(109).		These	factors	may	

contribute	to	the	circadian	pattern	of	coherence	reported	here.		Further,	we	allowed	our	subjects	to	

engage	in	their	normal	exercise	routines.	Moderate	physical	exercise	during	the	day	increases	the	

likelihood	of	nocturnal	hypoglycemia	(118,119).		In	adolescents	with	T1DM,	glucose	needs	remained	

elevated	for	as	long	as	7-11	hours	after	completion	of	moderate	daytime	exercise	(118,119).		To	the	

extent	that	glucose	utilization	rate	impacts	glucose/activity	coherence,	the	above	findings	suggest	that	

exercise	may	have	contributed	to	a	circadian	variation	in	coherence	in	our	subjects.		

In	summary,	we	report	strong	time-	and	frequency-dependent	coupling	between	routine	

unstructured	physical	activity	and	glucose	variations	in	young	adults	with	T1DM.	The	strength	and	

nature	of	coupling	differed	between	sleep	and	wake	and	demonstrated	circadian	periodicity,	with	the	

peak	coherence	characteristically	observed	during	the	early	evening	hours.		The	associations	of	

coherence	with	HbA1c	and	daytime	sleepiness	indicate	potential	clinical	relevance	of	coupling	between	

routine	activity	and	glucose	variations.		Larger-scale,	interventional	studies	will	be	needed	to	establish	

the	mechanisms	underlying	these	interactions	and	their	full	clinical	implications.		
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III.	COUPLING	BETWEEN	EEG	POWER	AND	GLUCOSE	CHANGES	DURING	SLEEP	

A.	 Introduction	

Accumulating	evidence	suggests	a	physiological	relationship	between	sleep	and	glucose	control	

that	is	both	bi-directional	and	time	varying.	This	relationship	may	be	of	clinical	importance	for	

individuals	with	Type	1	Diabetes	Mellitus	(T1DM),	who	rely	on	administration	of	exogenous	insulin	for	

management	of	their	disease.		Despite	improvements	in	insulin	delivery	systems	and	even	with	close	

management,	serum	glucose	levels	fluctuate	widely	in	people	with	T1DM	(96,97).	Such	glucose	

variations	may	contribute	to	both	the	impaired	sleep	quality	(84)	and	difficulty	returning	to	sleep	after	

non-severe	hypoglycemia	(101)	reported	by	individuals	with	T1DM.		Further,	an	association	between	

rapid	glucose	fluctuations	and	awakenings	from	sleep	has	been	reported	in	children	with	T1DM	(105).		

Conversely,	sleep	also	plays	a	role	in	glucose	homeostasis	(123).	A	single	night	of	experimental	

sleep	fragmentation	(increased	arousals	during	sleep)	or	sleep	restriction	(to	4	hours)	resulted	in	

decreased	insulin	sensitivity	in	healthy	adults	(72)	and	those	with	T1DM	(92).		Moreover,	even	during	a	

single	night,	normal	variations	in	sleep	depth	are	associated	with	alterations	in	glucose	metabolism;	and	

deep	sleep	is	associated	with	increased	growth	hormone	secretion	and	decreased	insulin	sensitivity	(69).		

Despite	this	evidence,	minimal	research	has	been	conducted	to	characterize	the	likely	bidirectional	and	

time	varying	interactions	between	sleep	level	and	glucose	in	individuals	with	T1DM.			

Using	continuous	measures	of	glucose	and	brain	activity	measured	by	electroencephalogram	

(EEG),	it	is	possible	to	characterize	the	relationship	between	sleep	and	glucose	in	T1DM.		Quantitative	

Electroencephalogram	(qEEG)	analysis	provides	a	continuous	measure	of	EEG	power	and	its	distribution	

over	frequencies	during	the	sleep	period.	Thus	qEEG	is	a	useful	tool	for	tracking	temporal	fluctuations	in	

sleep	depth	and	sleep	fragmentation	during	the	night	(124,125).		Continuous	glucose	monitoring	

systems	(CGMS)	provide	a	continuous	measure	of	glucose	throughout	the	night	and	are	commonly	

employed	to	monitor	glucose	levels	in	people	with	T1DM	(96,126).		Wavelet	coherence	analysis	(WCA)	is	
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a	method	that	permits	the	assessment	of	both	time	varying	and	frequency	specific	coupling	between	

two	time	series	(114,127).		This	method	has	been	widely	employed	in	both	econometric	and	

neuroscience	studies,	but	has	not	been	applied	to	studies	of	glucose	homeostasis.	The	purpose	of	this	

investigation	was	to	characterize	the	coupling	between	glucose	variations	and	qEEG	sleep	measures	

using	WCA	in	young	adults	with	T1DM.		We	hypothesized	that	this	coupling	would	exhibit	both	time-

varying	and	frequency	specific	characteristics	through	the	night	and	the	relationships	identified	would	

vary	between	high	and	low	EEG	frequencies.	

B.		 Methods	

1.		 Subjects	

Thirty	young	adults,	aged	18-30	years,	who	had	been	diagnosed	with	T1DM	for	at	least	

five	years	and	who	used	pumps	for	insulin	delivery	were	recruited	for	the	study.		Exclusion	criteria	

included	self-report	of:	pregnancy;	shift-work	(night	or	rotating	shifts);	use	of	corticosteroids;	diagnosis	

of	primary	cardiovascular	disease,	retinopathy,	nephropathy	or	peripheral	neuropathy;	diagnosed	a	

primary	sleep	disorder	or	chronic	use	of	oral	sleep	medications;	use	of	psychoactive	medications	(e.g.	

antidepressants)	or	illicit	drugs	(e.g.	marijuana	or	cocaine);	or	recent	history	(last	2	months)	of	severe	

metabolic	instability	(e.g.	hospitalization	for	hypoglycemia;	occurrence	of	hypoglycemic	seizures	or	

ketoacidosis).	Individuals	with	well-controlled	hypertension	(systolic	pressure	<	130	mmHg)	or	thyroid	

disorder	(thyroid	stimulating	hormone	level	within	normal	range)	were	eligible	to	participate.	

2.	 Study	Protocol	

Subjects	came	to	the	College	of	Nursing	at	the	University	of	Illinois	at	Chicago	for	their	

first	visit.		After	informed	consent	was	provided	and	inclusion/exclusion	criteria	were	verified,	a	

continuous	glucose	monitoring	sensor	(Guardian®	REAL-Time	System,	Medtronic	MiniMed)	was	placed	

in	the	abdominal	subcutaneous	tissue,	an	actigraphy	monitor	(Actiwatch2,	Respironics)	was	placed	on	

the	non-dominant	wrist	and	subjects	were	instructed	in	their	use.	Subjects	completed	demographic	



33	
	

	

questionnaires	as	well	as	the	Pittsburgh	Sleep	Quality	Index	(PSQI)	(128)	and	Epworth	Sleepiness	Scale	

(ESS)	(129).	A	venous	blood	sample	was	collected	to	measure	hemoglobin	A1c	(HbA1c).		Subjects	left	the	

laboratory	and	spent	three	days	and	two	nights	carrying	out	normal	routine	activity.		On	the	third	night,	

subjects	returned	for	overnight	polysomnography	(PSG)	at	the	Sleep	Science	Center	of	the	University	of	

Illinois	at	Chicago.		A	registered	polysomnographic	technologist	applied	the	sensors	and	conducted	the	

PSG	study	for	each	subject.		PSG	testing	comprised	computer-based	recording	(Respironics,	Alice5®)	of:	

2	central,	2	frontal	and	2	occipital	EEG	leads,	bilateral	referential	electrooculogram,	chin	and	anterior	

tibialis	electromyogram,	lead	I	electrocardiogram,	respiratory	movement	of	thorax	and	abdomen	by	

piezoelectric	strain	gauge,	airflow	via	oronasal	thermistor	and	nasal	pressure	cannula	and	arterial	

oxygen	saturation	of	hemoglobin	by	pulse	oximeter.		Lights	out	for	each	subject	was	between	10	and	11	

pm	and	lights	on	was	6	am,	ensuring	at	least	7	hours	of	time	in	bed.		After	the	end	of	the	sleep	study,	

subjects	filled	out	the	Stanford	Sleepiness	Scale	(SSS),	a	measure	of	subjective	sleepiness,	which	

completed	their	participation	in	the	study.			

3.		 Glucose	Data	

The	Guardian	CGMS	included	a	disposable	sensor,	a	wireless	transmitter	and	a	monitor.		

The	sensor,	which	was	inserted	into	abdominal	subcutaneous	tissue,	sampled	glucose	levels	every	10	

seconds	and	the	average	value	of	these	samples	was	transmitted	wirelessly	and	stored	by	the	monitor	

every	5-minutes.		The	overall	system	required	calibration	with	a	capillary	glucose	level	every	12	hours;	a	

procedure	performed	by	the	subjects	throughout	the	protocol.	The	CGMS	reports	interstitial	glucose	

concentrations	between	40	–	400	mg/dl.	After	each	subject	completed	the	protocol,	their	glucose	values	

were	downloaded	from	the	monitor	using	CareLink®	software	provided	by	the	manufacturer.			Mean	

overnight	glucose	and	two	measures	of	glucose	variability	(standard	deviation	[SD]	and	continuous	net	

glycemic	action	for	one	hour	periods	[CONGA-1])	were	determined	from	the	CGMS.	
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4.	 EEG	Data	

Six	EEG	derivations	were	recorded:	two	frontal	(F3/A2	and	F4/A1),	two	central	(C3/A2	

and	C4/A1)	and	two	occipital	(O1/A2	and	O2/A1).	All	EEG	signals	were	bandpass	filtered	(0	to	200	Hz)	

and	digitized	500	times	per	second.		For	analysis	purposes,	EEG	data	collected	during	the	PSG	were	

imported	into	Matlab	utilizing	the	EEGlab	plugin	(130,131).		For	each	EEG	derivation,	we	determined	

power	in	the	Delta	(0.5	-	4.0	Hz),	Theta	(4.03	-	8.0	Hz),	Alpha	(8.03	-	15.0	Hz),	Beta	(15.03	-	30.0	Hz)	and	

Gamma	(30.03	-	80.0	Hz)	Bands	as	follows.		For	each	30-second	EEG	epoch	the	Fast	Fourier	Transform	

(FFT)	periodogram	was	calculated	and	both	the	absolute	and	normalized	(%	total)	power	were	

calculated	for	each	Band.		For	each	Band,	these	values	were	averaged	over	10	consecutive	30-second	

epochs	to	provide	a	statistically	consistent	estimate	of	absolute	and	normalized	EEG	power	for	each	

Band	every	5-minutes;	allowing	for	temporal	alignment	with	the	simultaneous	interstitial	glucose	

measurements	provided	by	the	CGMS.	Temporal	alignment	between	EEG	and	glucose	signals	was	

performed	using	high-resolution	time	stamps	provided	by	both	the	Alice5	and	CGMS	devices.		

5.	 Statistical	Analysis	

a. Wavelet	Coherence	Analysis	

WCA	was	used	to	determine	the	coupling	between	glucose	variations	and	EEG	

power	in	each	Band	for	each	EEG	channel.		WCA	is	useful	to	identify	time	varying	and	frequency	specific	

coupling	between	two	signals,	and	such	applications	have	been	reviewed	in	detail	elsewhere	

(114,115,132).			WCA	relies	on	wavelet	transformation	of	signals	from	the	time	domain	into	a	joint	time-

frequency	domain.	This	approach	is	particularly	advantageous	over	traditional	Fourier	transformation	

when	the	underlying	time	series	is	not	stationary.	Briefly,	wavelet	transformation	decomposes	a	signal	

into	a	family	of	components,	each	having	the	same	sampling	rate	as	the	original	signal	but	with	each	

component	representing	a	different	time	scale.		This	wavelet	decomposition	process	is	thus	analogous	

to	applying	a	“filter	bank”	to	the	underlying	signal.	Wavelet	coherence	involves	computing	the	time-
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varying	coupling,	or	coherence,	between	two	signals	that	have	undergone	wavelet	decomposition.	The	

result	is	a	matrix	providing	the	coherence	coefficient	–	which	is	analogous	to	the	squared	correlation	

coefficient	–	as	a	function	of	time	and	time	scale	(or	equivalently,	frequency)	(114,127).	

As	recommended	by	Grinsted	et	al.,	we	utilized	the	Morlet	wavelet	function	for	the	present	

analysis	(114),	as	this	function	provides	a	balance	between	time	resolution	and	frequency	resolution.	

We	utilized	the	wavelet	coherence	toolbox	provided	by	Grinsted	and	colleagues	in	Matlab	2014b.		This	

yielded	updated	coherence	values	every	5	minutes	for	each	of	48	underlying	oscillation	scales	with	

periods	ranging	from	10	minutes	to	160	minutes.	However,	as	described	by	Grinsted	et	al.,	coherence	

values	computed	at	the	end	and	beginning	of	a	recording	may	be	influenced	by	“end	effects”	and	thus	

should	be	considered	not	valid	(114).		The	Wavelet	Coherence	toolbox	identifies	the	“cone	of	influence”	

for	each	period,	indicating	the	values	at	the	beginning	and	end	of	the	recording	period	which	are	

influenced	by	end	effects.	We	only	consider,	and	report	in	this	paper,	on	the	coherence	values	outside	

of	the	cone	of	influence	(not	influenced	by	end	effects).			The	coherence	values	(in	relation	to	glucose	

variations)	of	each	EEG	power	Band	were	averaged	across	all	channels	to	provide	an	average	coherence	

for	each	Band.	Finally,	to	facilitate	interpretation	of	results,	for	each	EEG	Band	we	determined	average	

coherence	during	periods	of	statistically	significant	coupling	within	each	of	three	Ranges	of	fluctuation	

periods:		Rapid	(10-30	min	fluctuation	period),	Moderate	(30-90	min	fluctuation	period)	and	Slow	(90-

160	min	fluctuation	period].		

To	identify	statistically	significant	coherence	values	(p	<	0.05),	we	utilized	Monte	Carlo	

simulations	(N	=	500)	as	described	by	Grinsted	and	colleagues	(114).		The	mean	coherence,	the	number	

of	intervals	of	significant	coherence	and	the	mean	duration	of	the	intervals	of	significant	coherence	

were	tabulated	for	each	of	the	fluctuation	period	Ranges	for	each	EEG	power	Band	of	each	recording.	

Coherence	analysis	also	provided	the	phase	relationship	between	variations	in	interstitial	glucose	and	

each	EEG	power	Band	at	each	time	point	in	each	Range.	To	allow	more	intuitive	interpretation	of	this	
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information,	phase	was	converted	to	an	equivalent	delay	(in	minutes)	for	each	fluctuation	period	Range.		

To	identify	potential	coherence	differences	(with	respect	to	glucose	variations)	for	Sleep-related	and	

Wake-related	EEG	power,	we	separately	averaged	coherence,	number	of	intervals	of	significant	

coherence,	duration	of	these	intervals	and	equivalent	phase	delay	for	the	Delta	and	Theta	Bands	(Sleep-

related	EEG	activity)	and	again	for	the	Alpha,	Beta	and	Gamma	Bands	(Wake-related	activity).				

ANOVA	was	used	to	identify	differences	in	coherence	parameters	among	the	fluctuation	period	

Ranges	and	EEG	Bands	using	each	of	these	factors	as	a	repeated	measure	and	with	post-hoc	contrasts	

controlled	by	Scheffe’s	test	(STATA	14;	StataCorp).		Paired	t-tests	were	used	to	compare	differences	

between	coherence	parameters	for	the	Sleep	versus	Wake	EEG	groups.		P-values	of	≤	0.05	are	reported	

as	significant.			

b. Bivariate	Correlation		

Pearson	product-moment	correlation	coefficients	were	determined	for	the	mean	

coherence	values	in	each	Band	in	relation	to	Hemoglobin	A1c	(HbA1c)	(a	measure	of	average	glycemic	

control),	mean	glucose	and	glucose	variability	(SD	and	CONGA-1)	during	the	PSG	study,	standard	clinical	

measures	reported	from	visual	scoring	of	the	sleep	study	(%	of	each	stage	of	sleep,	number	of	

awakenings	and	number	of	arousals),	PSQI	and	ESS	scores.		

C.	 Results	

1.	 Subjects	

A	total	of	29	subjects	completed	the	protocol.		Two	of	the	subjects	had	mild	sleep	apnea	

(Apnea	Hypopnea	Index	≥	5),	and	were	excluded	from	the	analysis.		Subject	characteristics	are	provided	

in	Table	3.			 	



37	
	

	

N	=	27	
Age	(years)	 23.8	(4.1)	

Gender	(M/F)	 11	/	16	

BMI	(kg/m2)	 26.0	(3.3)	

Duration	of	Diabetes	(years)	 12.1	(4.6)	
HbA1c	(%)	 7.9	(1.4)	

Mean	Overnight	Glucose	(mg/dL)	 137.6	(55.8)	
CONGA-1	Glucose	(mg/dL)	 17.9	(9.3)	

Std.	Deviation	Glucose	(mg/dL)	 22.7	(13.7)	
ESS	(0-24	range)	 4.7	(2.6)	
PSQI	(0-21	range)	 4.7	(2.3)	
SSS	(0-7	range)	 2.4	(0.63)	

Total	Sleep	Time	(minutes)	 372.8	(42.0)	
Stage	1	(%	Total	Sleep	Time)	 6.4	(4.3)	
Stage	2	(%	Total	Sleep	Time)	 51.1	(8.6)	

Stage	3	(Deep	Sleep)	(%	Total	Sleep	Time)	 21.1	(5.0)	
REM	(%	Total	Sleep	Time)	 21.4	(6.2)	

Sleep	Efficiency	(%)	 81.4	(8.8)	
Sleep	Onset	Latency	(minutes)	 36.2	(18.4)	

#	Arousals	 30.7	(19.7)	
#	Awakenings	 24.9	(9.4)	

Wake	After	Sleep	Onset	(minutes)	 52.7	(34.9)	

	

	
	

	
	

	
	

2.	 Coherence	

The	top	panel	in	Figure	VI	plots	glucose	and	power	for	the	Theta	EEG	Band	as	a	function	

of	time	throughout	the	PSG	study	for	one	EEG	channel	(O1/A2)	of	one	subject.		The	bottom	panel	plots	

the	coherence	of	glucose	with	Theta	power.		Intervals	of	statistically	significant	coherence	are	red	in	

TABLE	3:	DEMOGRAPHIC,	GLYCEMIC	CONTROL	AND	SLEEP	
CHARACTERISTICS	OF	SUBJECTS	

Mean	(SD)	is	reported	for	all	continuous	variables,	gender	is	reported	
as	Male/Female	breakdown.		ESS:	Epworth	Sleepiness	Scale	(higher	
numbers	indicate	higher	sleepiness,	scores	greater	than	10	indicate	
clinically	significant	sleepiness);	PSQI:	Pittsburgh	Sleep	Quality	Index	
(higher	numbers	indicate	poorer	sleep	quality;	scores	>	5	indicates	
poor	sleep);	SSS:	Stanford	Sleepiness	Scale	(higher	numbers	indicate	
increased	sleepiness,	measured	after	PSG).	
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color	and	surrounded	by	a	black	line.		As	illustrated,	there	were	intervals	of	high	coherence	between	the	

signals	within	all	period	Ranges	at	varying	times	through	the	PSG	recording.			

	

	
	

	

	

	
	

	

Figure	VII	illustrates	the	average	number	of	intervals	of	statistically	significant	coherence,	as	well	

as	the	average	duration	of	these	intervals	by	Range	for	each	EEG	Band.		Average	number	of	intervals	

was	highest	for	the	Rapid	Range	of	fluctuations	in	all	Bands,	and	was	never	more	than	1	for	Slow	Range	
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FIGURE	VI:	EXAMPLE	OF	COHERENCE	BETWEEEN	THETA	EEG	POWER	AND	GLUCOSE	DURING	
SLEEP	

Top	Panel:	EEG	power	in	Theta	Band	(blue)	and	glucose	(red)	sampled	every	5	minutes	for	entire	PSG	
study.	Bottom	Panel:	Heat	map	depicting	frequency	specific	and	time	varying	coherence	between	EEG	
power	in	Theta	Band	and	glucose	over	PSG	study.		Red	areas	bounded	by	a	black	line	indicate	
statistically	significant	coherence	(p	<	0.05),	based	on	Monte	Carlo	simulation.		Ranges	on	the	y-axis	
indicate	the	cut-points	for	the	3	fluctuation	period	Ranges	(Rapid:	10-30	minutes;	Moderate:	30-90	
minutes;	Slow:	90-160	minutes).		The	lighter	shaded	area	indicates	the	cone	of	influence	(COI)	or	areas	
where	the	results	of	coherence	cannot	be	trusted.	Only	the	values	outside	the	COI	(not	shaded)	were	
included	in	the	analysis.		More	frequent	but	shorter	intervals	of	significant	coherence	are	present	for	
the	Rapid	Range	of	fluctuations	in	comparison	to	Moderate	or	Slow	fluctuations.	
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fluctuations.		Repeated	measures	ANOVA	revealed	a	significant	effect	of	Range	and	subject	(p	<	0.0001	

for	each),	but	EEG	Band	did	not	have	a	significant	effect	(p	=	0.10)	on	the	number	of	intervals	(Overall	

Model	F	=	13.76,	p	<	0.0001).	Further,	the	duration	of	statistically	significant	intervals	was	shortest	for	

Rapid	and	longest	for	Slow	fluctuations	(F	=	55.94,	p	<	0.0001	for	main	effect	of	Range;	p	≤	0.0001	for	

contrast	between	Rapid	and	Slow	fluctuations),	and	was	similar	among	all	EEG	Bands	for	Moderate	and	

Slow	fluctuations.	For	Rapid	fluctuations,	the	aggregated	mean	duration	of	intervals	in	the	Wake	Bands	

(Alpha,	Beta	and	Gamma;	(28.3	±	1.9	minutes	[mean	±	standard	error)	was	significantly	longer	(t	=	-2.15,	

p	=	0.04)	than	the	aggregated	mean	duration	of	intervals	for	the	Sleep	(Delta	and	Theta;	22.2	±	1.7	

minutes)	Bands.		
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FIGURE	VII:	AVERAGE	NUMBER	AND	DURATION	OF	INTERVALS	OF	SIGNIFICANT	
COHERENCE	ACROSS	FREQUENCY	RANGES	FOR	ALL	EEG	BANDS	

Top	Panel	Shows	Number	of	Intervals	and	bottom	Panel	shows	duration	of	Intervals.		Slow	Range	
fluctuations	demonstrated	significantly	longer	duration	with	fewer	intervals	of	significant	coherence	
as	compared	to	the	Rapid	Range	fluctuations	across	all	EEG	Bands.	
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Figure	VIII	illustrates	the	mean	coherence	values	during	intervals	of	significant	coherence	for	

each	fluctuation	period	Range	across	the	five	EEG	Bands.		Mean	coherence	was	significantly	higher	(F	=	

5.27,	p	<	0.001	for	overall	ANOVA)	for	Rapid	fluctuations	than	for	Moderate	fluctuations	(p	<	0.03	for	

each	Band).	Slow	fluctuations	exhibited	intermediate	coherence	(Figure	VIII).	These	findings	did	not	

differ	among	the	EEG	Bands	(p	=	0.40).		
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FIGURE	VIII:	MEAN	SIGNIFICANT	COHERENCE	FOR	FREQUENCY	RANGES	ACROSS	EEG	BANDS	
*	indicates	significantly	different	
Mean	Coherence	for	the	Rapid	Range	(10-30	minutes)	was	significantly	higher	than	the	Moderate	
Range	for	all	Bands	(p	≤	0.03	for	all	comparisons).		No	differences	were	noted	between	EEG	Bands.			
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Mean	phase	delay	for	Rapid	and	Moderate	Range	fluctuations	was	positive	(EEG	power	leading	

glucose)	in	the	Delta	and	Theta	Bands	and	negative	(glucose	leading	EEG	power	changes)	in	Alpha,	Beta	

and	Gamma	Bands.		For	the	Slow	Range	fluctuations	this	was	largely	inverted;	phase	delay	for	Delta,	

Theta	and	Beta	was	positive	and	for	Alpha	and	Gamma	was	negative.	However,	these	effects	did	not	

reach	statistical	significance	using	repeated	measures	ANOVA.			As	illustrated	in	Figure	IX,	a	significant	

pattern	did	emerge,	however,	when	pooling	mean	phase	data	for	Delta	and	Theta	(Sleep	activity)	versus	

Alpha,	Beta	and	Gamma	(Wake	activity).	Mean	phase	delay	was	significantly	different	from	zero	for	the	

“Waking”	EEG	Bands	in	the	Moderate	Range	(-3.81	±	1.5	minutes,	t	=	-2.6,	p	=	0.02),	and	this	differed	(p	

=	0.06)	from	the	phase	delay	for	the	“Sleep”	EEG	Bands	(1.7	±	2.5	minutes)	in	this	Range.	
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3.	 Bivariate	Correlation	
	 Table	4	provides	a	matrix	of	correlation	coefficients	assessed	for	coherence	in	each	EEG	

Band	and	Range	against	measures	of	sleep,	sleep	quality,	sleepiness	and	glycemic	control.		For	Rapid	

fluctuations	(10-30	minutes),	significant	negative	correlations	were	found	for	Delta	EEG	Band	coherence	

with	SD	of	glucose	(r	=	-0.38,	p	<	0.05)	and	sleep	efficiency	(r	=	-0.41,	p	=	0.03).		There	was	a	significant	

positive	correlation	between	CONGA-1	and	Gamma	EEG	Band	coherence	(r	=	0.48,	p	=	0.01)	in	the	Rapid	

Range.		In	the	Moderate	Range	(fluctuations	of	30-90	minutes),	%	of	Rapid	Eye	Movement	(REM)	sleep	

was	negatively	associated	with	Theta	EEG	Band	coherence	(r	=	-0.40,	p	=	0.04)	and	CONGA-1	was	
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FIGURE	IX:	MEAN	PHASE	DELAY	BETWEEN	“SLEEP”	AND	“WAKE”	EEG	BANDS	FOR	
FLUCTUATION	RANGES	

*	Signifies	significantly	different	from	zero	
On	average,	“Wake”	EEG	Bands	(Alpha,	Beta	and	Gamma)	had	negative	phase	delays	and	“Sleep”	
EEG	Bands	(Delta	and	Theta)	had	positive	phase	delays.		Phase	delay	for	Wake	and	Sleep	EEG	
Bands	were	not	different	from	each	other	for	all	the	frequency	Ranges,	but	Moderate	Range	
fluctuations	were	significantly	different	from	zero	in	the	Wake	EEG	bands	(-3.81	±	1.5	minutes,	t	=	
-2.6,	p	=	0.02).		
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positively	associated	with	Beta	and	Gamma	EEG	Band	coherence	(r	=	0.49,	p	=	0.01	and	r	=	0.41,	p	=	

0.03,	respectively).				Further,	PSQI	scores	were	positively	associated	with	Beta	and	Gamma	EEG	Band	

coherence	for	fluctuations	in	the	Moderate	Range	of	periods	(r	=	0.44	and	r	=	0.48,	p	<	0.02,	

respectively).		For	Slow	fluctuations,	Theta	EEG	Band	Coherence	was	significantly	positively	correlated	

with	HbA1c	(r	=	0.49,	p	=	0.02)	and	Sleep	Onset	Latency	(r	=	0.59,	p	=	0.004).			



	

	
	

	

	
Delta	 Theta	 Alpha	 Beta	 Gamma	

	
N	

Rapid	
27	

Mod	
27	

Slow	
19	

Rapid	
27	

Mod	
27	

Slow	
21	

Rapid	
27	

Mod	
27	

Slow	
20	

Rapid	
27	

Mod	
27	

Slow	
21	

Rapid	
27	

Mod	
27	

Slow	
22	

Mean	Glucose	 -0.36	 -0.26	 -0.04	 -0.28	 -0.01	 0.27	 0.12	 0.21	 -0.33	 -0.09	 -0.08	 -0.15	 -0.09	 -0.01	 -0.04	

SD		Glucose	 -0.38*	 -0.34	 -0.07	 -0.22	 0.06	 0.31	 -0.15	 0.22	 -0.23	 -0.02	 0.23	 -0.22	 0.05	 0.13	 -0.11	

CONGA-1	 -0.17	 -0.04	 -0.03	 -0.02	 0.07	 0.23	 0.01	 0.33	 -0.10	 0.34	 0.49*	 -0.16	 0.48*	 0.41*	 0.05	

HbA1c	 -0.02	 -0.23	 0.18	 -0.13	 0.23	 0.49*	 -0.07	 0.10	 -0.39	 -0.02	 -0.15	 0.08	 -0.16	 -0.18	 -0.16	

ESS	 -0.29	 0.01	 -0.08	 -0.10	 -0.19	 -0.08	 -0.08	 0.20	 0.02	 0.01	 -0.11	 0.09	 -0.02	 -0.18	 -0.01	

PSQI	 -0.05	 0.04	 -0.25	 0.07	 0.21	 0.00	 0.37	 0.16	 0.03	 0.16	 0.44*	 0.30	 0.01	 0.48*	 0.06	

#	Arousals	 0.01	 -0.23	 0.14	 -0.14	 0.09	 0.27	 -0.19	 -0.03	 -0.13	 -0.17	 -0.16	 0.09	 -0.31	 -0.37	 -0.11	

#	Awakenings	 -0.09	 0.06	 -0.42	 -0.15	 0.17	 -0.32	 -0.04	 0.01	 -0.6*	 0.09	 0.10	 -0.36	 -0.12	 -0.10	 -0.41	

%	Stage	3	 0.00	 0.28	 -0.03	 0.01	 0.12	 0.05	 0.20	 0.13	 0.27	 0.08	 0.18	 0.01	 0.14	 0.15	 0.30	

%	Stage	2	 0.26	 -0.26	 0.03	 -0.01	 0.13	 0.07	 -0.19	 -0.04	 -0.24	 -0.10	 -0.09	 -0.35	 0.10	 -0.04	 -0.14	

%	Stage	1	 -0.18	 0.03	 -0.17	 0.01	 0.16	 -0.05	 0.09	 -0.05	 -0.09	 -0.02	 0.05	 -0.01	 -0.16	 0.03	 -0.23	

%	REM	 -0.23	 0.11	 0.10	 0.00	 -0.4*	 -0.11	 0.04	 -0.02	 0.21	 0.08	 -0.05	 0.48*	 -0.14	 -0.09	 0.08	

WASO	 0.29	 0.10	 -0.25	 0.26	 0.04	 0.03	 0.19	 0.15	 -0.02	 0.03	 0.31	 -0.09	 0.07	 0.15	 0.06	

TST	 -0.37	 -0.06	 0.15	 -0.24	 -0.16	 -0.35	 -0.21	 -0.11	 0.03	 0.03	 -0.15	 0.05	 -0.05	 -0.03	 -0.17	

SE	 -0.41*	 -0.16	 0.21	 -0.28	 -0.18	 -0.29	 -0.25	 -0.19	 0.05	 -0.13	 -0.25	 0.17	 -0.17	 -0.21	 -0.09	

SLAT	 0.32	 0.12	 0.19	 0.20	 0.23	 0.59*	 0.27	 0.31	 -0.01	 0.22	 0.03	 0.03	 0.21	 0.10	 0.26	

Table	4:	BIVARIATE	CORRELATIONS	OF	EEG/GLUCOSE	COHERENCE	WITH	STANDARD	MEASURES	OF	SLEEP	AND	GLYCEMIC	CONTROL	
*	indicates	p	<	0.05	
Number	under	Frequency	Range	(Rapid;	Mod;	Slow)	indicates	number	of	subjects	for	each	correlation.	



46	
	

	
	

D.	 Discussion	

The	present	study	demonstrates	for	the	first	time,	to	our	knowledge,	a	high	degree	of	time	

varying	and	frequency	specific	coupling	between	glucose	variations	and	EEG	power	during	sleep	in	

young	adults	with	T1DM.			Statistically	significant	coherence,	or	coupling,	was	observed	during	a	

substantial	portion	of	the	night	in	all	fluctuation	period	Ranges,	but	the	temporal	pattern	of	coupling	

differed	among	these	Ranges.	The	strength	of	coherence	during	intervals	of	significance	was	highest	for	

Rapid	Range	fluctuations	(periods	of	10-30	minutes)	for	all	EEG	power	Bands	(Figure	VIII).		Further,	the	

average	number	of	intervals	of	significant	coherence	was	higher	for	Rapid	fluctuation	periods	in	all	EEG	

power	Bands.		Our	data	also	suggest	differences	in	the	nature	of	the	coupling	between	glucose	

variations	and	EEG	in	sleep-related	(Delta	and	Theta)	versus	wake-related	(Alpha,	Beta,	Gamma)	Bands	

during	the	sleep	period.		Specifically,	both	the	average	duration	of	intervals	of	significant	coherence	and	

the	mean	phase	delay	differed	between	wake-related	and	sleep-related	Bands	(Figures	7	and	9).	

Understanding	the	time-varying	mutual	relationship	between	glucose	changes	and	brain	activity	during	

sleep	may	have	future	implications	for	disease	management	in	people	with	T1DM.	

	 Periods	of	strong	coherence	between	variations	in	glucose	and	EEG	power	were	seen	in	all	three	

Ranges	of	fluctuation	period	and	for	all	EEG	power	Bands.		A	relationship	between	glucose	level	and	EEG	

power	has	been	reported	previously	in	people	with	T1DM.		The	neurons	of	the	brain	are	dependent	on	

glucose	for	fuel	(133,134),	thus	a	degree	of	coherence	is	expected	between	glucose	variations	and	EEG	

power.	Hypoglycemia,	achieved	using	a	hypoglycemic	insulin	clamp,	has	been	shown	to	increase	low	

frequency	EEG	power	during	wakefulness	(135–137)	as	well	as	during	sleep	(138,139)	in	people	with	

T1DM.	A	recent	study	in	patients	with	T1DM	revealed	that	spontaneous	hyperglycemia	during	sleep	was	

associated	with	increased	power	in	both	high	and	low	EEG	frequency	Bands	(140).		Our	findings	extend	

the	work	of	these	investigators,	as	we	found	that	fluctuations	in	glucose,	irrespective	of	hyper	or	
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hypoglycemia,	are	coupled	to	EEG	power	during	sleep	and	that	there	is	a	time	varying	characteristic	to	

this	relationship,	with	the	strength	of	coupling	varying	throughout	the	night.			

We	showed	that	intervals	of	significant	coupling	occurred	most	frequently	and	were	of	shorter	

duration	for	Rapid	(10	to	30	minute)	fluctuations	(Figure	VII).		This	suggests	the	possibility	that	rapid	

glucose	fluctuations	cause	short-term	awakening	or	arousals	from	sleep.	Consistent	with	this	view,	it	has	

been	previously	reported	that	children	with	T1DM	had	more	awakenings	than	healthy	controls	(103)	

and	that	rapid	changes	(>25	mg/dL/hr)	in	glucose	during	sleep	were	associated	with	increased	

awakenings	from	sleep	in	these	children	(105).		Adolescents	(86)	and	young	adults	(141)	with	T1DM	also	

exhibit	reduced	deep	sleep	and	increased	light	sleep	as	compared	to	controls.		

Significant	coherence	between	glucose	and	EEG	power	also	was	observed	for	slower	(periods	

from	30	to	160	minutes)	fluctuations	during	discrete	time	intervals	through	the	night	(Figure	VI).		This	

observation	supports	the	biological	plausibility	of	slow	changes	in	sleep	depth	driving,	or	causing,	

changes	in	glucose.		Deep	sleep	exhibits	a	characteristic	ultradian	pattern	of	cycling	through	the	night,	

with	periodic	increases	of	Delta	power	every	60	to	120	minutes	(142).		During	deep	sleep	growth	

hormone	secretion	increases,	which	decreases	insulin	sensitivity	and	increases	glucose	(69,70,143).		

Thus,	independent	of	the	many	other	factors	that	may	influence	glucose	level,	after	a	period	of	delta	

sleep	increased	glucose	would	be	expected.		Although	the	present	data	do	not	directly	address	causality,	

intervals	of	significant	coherence	between	glucose	and	EEG	Delta	power	are	consistent	with	the	above	

mechanism.		Likely	due	to	the	high	rate	of	brain	glucose	utilization,	REM	sleep	(manifested	as	reduced	

Delta	and	increased	Theta	power)	is	associated	with	decreased	interstitial	glucose	levels	(71).		Thus,	the	

normal	cycling	between	deep	and	REM	sleep	may	be	expected	to	drive	fluctuations	in	glucose	with	a	

period	of	60	to	120	minutes.	Again,	the	observed	intervals	of	Delta	and	Theta	power	coherence	with	

glucose	on	this	time	scale	are	at	least	consistent	with	this	possible	mechanism.			
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In	the	present	study,	glucose	variability,	measured	by	CONGA-1,	was	significantly	associated	

with	coherence	between	rapid	(Rapid	Range)	fluctuations	of	glucose	and	EEG	power	in	the	Gamma	

Band.		Further,	CONGA-1	and	PSQI	score,	a	subjective	measure	of	sleep	quality,	were	significantly	

correlated	with	coherence	in	the	Moderate	Range	fluctuations	of	glucose	and	EEG	power	for	the	Beta	

and	Gamma	Bands.		The	mechanisms	underlying	this	association	cannot	be	determined	from	the	

present	study.	But,	to	speculate,	it	is	possible	that	changes	in	Beta	and	Gamma	–	EEG	power	associated	

with	arousal/awakening	–	produced	changes	in	glucose	levels,	possibly	driven	by	sympathetic	nervous	

system	activation	resulting	in	increased	glucose	variability	and	resulting	in	reduced	subjective	sleep	

quality.	

Phase	information	derived	from	wavelet	coherence	analysis	can	identify	the	timing	relationship	

between	coherent	oscillations	of	two	signals.		We	converted	the	calculated	phase	information	(in	

radians)	to	an	equivalent	phase	delay	(in	minutes)	to	allow	a	more	intuitive	interpretation.		This	

approach	revealed	that	for	30	to	90	minute	fluctuations,	glucose	changes	were	leading	(and	therefore	

potentially	contributing	to)	wake-related	EEG	power	changes,	whereas	sleep-related	EEG	power	changes	

were	leading	(and	therefore	potentially	contributing	to)	glucose	fluctuations	(Figure	IX).		Again,	these	

relationships	are	consistent	with	the	possible	impact	of	slow-wave	versus	REM	sleep	on	subsequent	

glucose	levels	described	above.	However,	it	should	be	noted	that	inter-subject	variability	for	phase	was	

high.		Future	studies	with	larger	samples	and	healthy	control	subjects	will	be	needed	to	identify	

consistent	patterns	of	phase	for	coupled	oscillations	of	glucose	and	EEG	power	in	people	with	T1DM.	

In	summary,	the	present	study	shows,	for	the	first	time,	a	strong	time	and	frequency	specific	

coupling	between	EEG	power	and	glucose	variations	in	young	adults	with	T1DM.		Our	findings	are	

consistent	with	a	bidirectional	relationship	between	glucose	and	EEG	power	during	sleep.		Rapid	

fluctuations	in	glucose	and	EEG	power	exhibit	periods	of	strong	coupling,	which	suggests	that	rapid	

fluctuations	in	glucose	may	drive	rapid	changes	in	sleep	EEG	power.		Strong	coupling	between	slower	
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fluctuations	of	glucose	and	EEG	also	occur	and	may	reflect	characteristic	changes	of	brain	activity	during	

sleep	that	alter	glucose	levels.	Future	studies	with	controlled	interventions	and	healthy	control	subjects	

are	needed	to	fully	elucidate	the	causal	mechanisms	underlying	the	observed	coupling	between	glucose	

and	brain	activity	during	sleep.		Understanding	this	relationship	in	people	with	T1DM	is	clinically	

relevant,	as	both	sleep	and	glycemic	control	are	potentially	modifiable.		From	this	understanding,	

interventions	may	be	developed	to	ultimately	improve	outcomes	in	people	T1DM.			
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IV.	CAUSAL	RELATIONSHIPS	BETWEEN	EEG	POWER	AND	GLUCOSE	DURING	SLEEP	

A. Introduction	

Recent	research	identifies	sleep	as	an	important	process	for	maintenance	of	both	cardiovascular	

(144)	and	metabolic	(123)	health.		Children	(85)	and	adults	(84)	with	Type	1	Diabetes	Mellitus	(T1DM)	

report	reduced	sleep	quality	as	compared	to	healthy	age	and	gender	matched	individuals;	and	these	

reports	are	confirmed	by	objective	laboratory	polysomnography	(PSG)	(86,141).		However,	the	

mechanisms	underlying	disturbed	sleep	in	people	with	T1DM	remain	poorly	defined.		Impaired	glucose	

homeostasis	has	been	hypothesized	as	a	contributing	factor	to	reduced	sleep	time	and	sleep	continuity	

among	individuals	with	T1DM.			T1DM	is	characterized	by	inability	of	the	Beta	cells	to	produce	insulin	

and	a	resulting	reliance	on	exogenous	insulin	administration.	Wide	fluctuations	in	plasma	and	tissue	

glucose	levels	can	occur	anytime	throughout	the	day	or	night,	even	with	vigilant	self-management.		

Nocturnal	hypoglycemia	(96,97)	and	hyperglycemia	(86)	are	common	occurrences	in	T1DM.		

Moreover,	rapid	changes	in	glucose	have	been	associated	with	arousals	from	sleep	in	children	with	

T1DM	(105).		Beyond	traditional	visually	assigned	sleep	stages	and	events,	changes	in	

electroencephalogram	(EEG)	power	spectra	may	provide	more	sensitive	information	about	sleep	

continuity	and	depth	during	a	PSG	study.			Associations	have	been	reported	between	quantitative	EEG	

(qEEG)	power	and	experimentally	induced	changes	in	glucose	during	wakefulness	(136,137)	as	well	as	

during	sleep	(138,139).	However,	little	is	known	about	the	relationship	between	spontaneous	glucose	

fluctuations	and	qEEG	activity	during	sleep,	and	virtually	nothing	is	known	about	potential	cause	and	

effect	relationships	between	these	processes	in	people	with	T1DM.		

Granger	causality	analysis	is	a	well-established	methodology	for	identifying	causal	connectivity	

(145).	The	approach	employs	statistical	estimation	of	the	predictability	of	one	time	series	based	on	

knowledge	of	one	or	more	others.	Originally	developed	for	econometric	analysis,	Granger	causality	has	

been	extensively	applied	in	neuroscience,	but	has	not	been	used	to	examine	interactions	between	
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glucose	and	brain	activity.			Cross-correlation	functions	also	have	been	used	to	support	causal	inferences	

by	determining	the	“time	shift”	necessary	to	optimize	the	cross-correlation	between	two	time	series.		

The	notion	here	is	that	a	cause	must	precede	its	effect,	such	that	if	a	change	in	one	signal	consistently	

precedes	(predicts)	a	subsequent	change	in	a	second	signal,	the	former	is	a	potential	cause	of	the	latter.	

The	aim	of	this	study	was	to	employ	Granger	causality	and	cross	correlation	function	analysis	to	

determine	the	relationship	between	spontaneous	glucose	fluctuations	and	qEEG	measures	of	brain	

activity	during	sleep	in	young	adults	with	T1DM.			We	hypothesized	that:	1)	sleep	EEG	and	glucose	exert	

bidirectional	causal	influences	and	2)	these	causal	interactions	are	EEG	frequency	specific.	

B.		 Methods	

1.		 Subjects	

Young	adults,	18-30	years	old,	diagnosed	with	T1DM	for	at	least	five	years	and	treated	

with	continuous	subcutaneous	insulin	infusion	were	recruited	for	the	study.		Individuals	were	excluded	if	

they:	were	pregnant;	worked	night	or	rotating	shifts;	reported	use	of	corticosteroids;	were	diagnosed	

with	primary	cardiovascular	disease,	retinopathy,	nephropathy	or	peripheral	neuropathy;	had	

uncontrolled	hypertension	or	thyroid	disease;	were	diagnosed	with	a	primary	sleep	disorder	or	reported	

chronic	use	of	oral	sleep	medications;	reported	use	of	psychoactive	medications	(e.g.	antidepressants)	

or	illicit	drugs	(e.g.	marijuana	or	cocaine);	or	reported	severe	metabolic	instability	(e.g.	hospitalization	

for	hypoglycemia,	hypoglycemic	seizures	or	ketoacidosis)	during	the	preceding	2	months.			

2.		 Study	Protocol	

All	procedures	were	approved	by	the	institutional	review	board	of	the	University	of	

Illinois	at	Chicago.	Informed	consent	was	provided	by	all	subjects	prior	to	any	study	procedures.		After	

verifying	that	all	inclusion	and	exclusion	criteria	were	met,	a	sensor	(Guardian®	REAL-Time	System,	

Medtronic	MiniMed)	for	the	continuous	glucose	monitoring	system	(CGMS)	was	placed	in	the	abdominal	

subcutaneous	tissue	and	the	CGMS	was	initialized	for	recording.	An	actigraphy	monitor	(Actiwatch2,	
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Respironics)	was	placed	on	the	non-dominant	wrist	and	subjects	were	instructed	in	the	use	of	both	

devices.		Subjects	next	completed	the	Pittsburgh	Sleep	Quality	Index	(PSQI)	(128)	and	the	Epworth	

sleepiness	scale	(ESS)	(129),	answered	demographic	questions	and	provided	a	venous	blood	sample	for	

determination	of	hemoglobin	A1c	(HbA1c).		Subjects	then	left	the	laboratory	and	spent	three	days	and	

two	nights	carrying	out	their	normal	routine	activity.		On	the	third	night,	subjects	underwent	laboratory	

polysomnography	(PSG)	at	the	Sleep	Science	Center	of	the	University	of	Illinois	at	Chicago.		A	registered	

polysomnographic	technologist	conducted	all	PSG	procedures	for	each	subject.		Each	PSG	comprised	

computer-based	recording	(Alice5,	Respironics)	of:	multiple	EEG	leads,	bilateral	referential	

electrooculogram,	chin	and	anterior	tibialis	electromyogram,	lead	I	electrocardiogram,	respiratory	

movement	of	thorax	and	abdomen	by	piezoelectric	strain	gauges,	airflow	via	nasal	pressure	cannula	and	

oronasal	thermistors	and	arterial	oxygen	saturation	of	hemoglobin	by	pulse	oximeter.		Lights	out	for	

each	subject	was	between	10	and	11	pm	and	lights	on	was	at	6	am,	ensuring	a	minimum	time	in	bed	of	7	

hours.		After	the	PSG,	subjects	completed	the	Stanford	Sleepiness	Scale	(SSS;	a	subjective	measure	of	

immediate	sleepiness)	to	complete	the	protocol.			

3.	 	Glucose	Data	

The	Guardian	CGMS	included	a	disposable	sensor,	a	wireless	transmitter	and	a	monitor.		

The	sensor,	which	was	inserted	into	subcutaneous	tissue,	sampled	glucose	levels	every	10	seconds	and	

the	average	value	of	these	samples	was	transmitted	wirelessly	and	stored	by	the	monitor	every	5-

minutes.		The	overall	system	required	calibration	with	a	capillary	glucose	level	every	12	hours;	a	

procedure	performed	by	the	subjects	throughout	the	protocol.	The	CGMS	reported	interstitial	glucose	

concentrations	between	40	–	400	mg/dl.	After	each	subject	completed	the	protocol,	their	glucose	values	

were	downloaded	from	the	monitor	using	CareLink®	software	provided	by	the	manufacturer.			
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4.	 EEG	Data	

Six	EEG	derivations	were	recorded:	two	frontal	(F3/A2	and	F4/A1),	two	central	(C3/A2	

and	C4/A1)	and	two	occipital	(O1/A2	and	O2/A1).	All	EEG	signals	were	bandpass	filtered	(0	to	200	Hz)	

and	digitized	500	times	per	second.		For	analysis	purposes,	EEG	data	collected	during	the	PSG	were	

imported	to	Matlab	utilizing	the	EEGlab	plugin	(130,131).		For	each	EEG	derivation,	we	determined	

power	in	the	Delta	(0.5	-	4.0	Hz),	Theta	(4.03	-	8.0	Hz),	Alpha	(8.03	-	15.0	Hz),	Beta	(15.03	-	30.0	Hz)	and	

Gamma	(30.03	-	80.0	Hz)	Bands	as	follows.		For	each	30-second	EEG	epoch	the	Fast	Fourier	Transform	

(FFT)	periodogram	was	calculated	and	both	the	absolute	and	normalized	(%	total)	power	were	

calculated	for	each	Band.		For	each	Band,	these	values	were	averaged	over	10	consecutive	30-second	

epochs	to	provide	a	statistically	consistent	estimate	of	absolute	and	normalized	EEG	power	for	each	

Band	every	5-minutes;	allowing	for	temporal	alignment	with	the	simultaneous	interstitial	glucose	

measurements	provided	by	the	CGMS.	Temporal	alignment	between	EEG	and	glucose	signals	was	

performed	using	high-resolution	time	stamps	provided	by	both	the	Alice5	and	CGMS	devices.		

5.		 Statistical	Analyses	

a.	 	Granger	Causality			

The	statistical	approach	of	Granger	causality	(146)	was	utilized	to	determine	the	

relationship	between	changes	in	glucose	and	changes	in	EEG	power	in	all	5	Bands.		Briefly,	Granger	

causality	is	a	statistical	test	which	identifies	the	predictability	of	one	time	series	by	one	(or	more)	other	

time	series.	The	Granger	coefficient	was	determined	through	a	series	of	vector	autoregressive	(VAR)	

linear	models	and	was	tested	for	significance.		The	non-negative	Granger	coefficient	provides	

information	about	the	rate	of	information	transfer	from	one	signal	to	the	other	(146).		A	significant	

Granger	coefficient	can	be	interpreted	to	mean	that	variable	x	Granger	causes	variable	y	because	past	

values	of	x	and	y	can	better	predict	the	present	value	of	y	than	the	past	values	of	y	alone	(146,147).		For	

each	recording,	we	analyzed	the	possibility	that	EEG	changes	cause	glucose	changes	(EEG→Glucose)	and	
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the	possibility	that	glucose	changes	cause	EEG	changes	(Glucose→EEG).		The	Multivariate	Granger	

Causality	(MVGC)	toolbox	(148)	for		Matlab	was	used	to	perform	the	analysis	(147).		Stationarity	(mean,	

variance	and	autocorrelation	do	not	change	with	time)	is	an	assumption	of	Granger	causality	and	must	

be	tested	in	order	to	ensure	correct	interpretation	(146).		The	MVGC	toolbox	provides	error	checking	

which	includes	stationarity	testing	(147).		Out	of	780	total	Granger	tests,	39	did	not	meet	the	

stationarity	criteria	(5%).		Data	from	one	subject	violated	stationarity	for	all	EEG	channels	and	this	

subject	was	not	included	in	further	analyses.	

Whenever	significant	(p	<	0.05)	Granger	causality	was	identified,	the	sense	of	the	relationship	

between	EEG	power	and	glucose	was	examined	in	two	ways:	1)	the	net	sign	of	the	significant	VAR	model	

coefficients	was	determined	and	2)	the	direction	and	magnitude	of	the	initial	impulse	response	was	

measured.	VAR	modeling	represented	the	impact	of	EEG	on	glucose	as	follows:	

𝑋! =  𝐴!!,!

!

!!!

∗  𝑋!!! +  𝐴!",!

!

!!!

∗  𝑌!!! + 𝜀!,! + 𝐶	

where:	 	 Xt	is	glucose	at	time	step	t	

	 	 Yt	is	EEG	power	at	time	step	t	

	 	 𝜀!,!	is	the	error	term	for	x	at	time	step	t	

p	is	the	model	order	(determined	using	Akaike	Information	Criteria)		 	

𝐴!!,! 	is	the	kth	order	coefficient	for	x	on	x	

𝐴!",! 	is	the	kth	order	coefficient	for	y	on	x	

C	is	the	constant	for	the	regression	equation	

For	each	VAR	model	demonstrating	significant	causality,	the	regression	process	

identified	which	of	the	𝐴!",! 	coefficients	were	statistically	significant.		The	error	term,	𝜀!,!,		has	a	normal	

distribution	with	a	mean	of	zero.		To	assess	the	directionality	of	the	Granger	causal	influence	of	y	on	x,	

we	determined	the	sign	of	the	averaged	significant	coefficients.		For	example	if	the	sign	of	averaged	
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significant	coefficients	was	negative,	we	inferred	that	an	increase	in	y	caused	a	decrease	in	x.	For	any	

VAR	model,	the	associated	impulse	response	function	(IRF)	characterizes	the	impact	of	a	one	standard	

deviation	increase	in	the	input	(y)	for	a	single	time	step	on	the	output	(x).		Although	the	IRF	reflects	the	

integrated	effects	of	both	y	and	x	on	future	values	of	x,	the	initial	response	(time	step	1)	is	determined	

solely	by	the	influence	of	y	on	x.		To	explore	the	independent	effect	of	y	on	x,	we	examined	the	IRF	

response	of	y	on	x	exclusively	at	time	step	1	(initial	impulse	response).	

Across	the	5	EEG	Bands,	the	occurrence	of	significant	Granger	coefficients	for	EEG→Glucose	and	

Glucose→EEG	causality	and	the	associated	signs	of	the	mean	significant	VAR	coefficients	and	initial	

impulse	response	were	tabulated	using	frequency	tables	and	assessed	using	Pearson	Χ2.		The	median	

magnitude	of	the	initial	impulse	response	was	compared	between	Bands	using	the	Mann-Whitney	U	

test.		For	each	EEG	Band,	standard	clinical	measures	of	sleep	architecture	(149)	(e.g.	number	of	arousals,	

number	of	awakenings,	wake	after	sleep	onset	[WASO],	sleep	efficiency	[SE])	as	well	as	glucose	

homeostasis	(e.g.	HbA1c,	overnight	mean	glucose,	standard	deviation	of	glucose)	were	compared	using	

t-tests	between	subjects	who	had	significant	Granger	coefficients	and	those	who	did	not.	

b.		 Cross-Correlation	Function	

	Cross-correlation	function	analysis	determines	the	relationship	between	two	

time-series	by	applying	a	lag	to	one	of	the	signals.		The	cross-correlation	function	extends	simple	

correlation	computation	by	identifying	the	best-fit	lag.	Extending	the	findings	from	the	Granger	causality	

analysis,	the	cross-correlation	function	can	be	useful	to	identify	an	optimal	lag	between	two	signals.		

Further,	the	correlation	coefficient	has	a	sign	that	provides	information	about	the	nature	of	the	

relationship	between	the	two	signals.		The	cross-correlation	function	between	glucose	and	EEG	power	

for	each	Band	over	the	entire	PSG	recording	was	calculated,	applying	lags	of	-100	minutes	to	100	

minutes	to	glucose	values.		The	maximum	correlation-coefficient	and	the	number	of	positive	and	

negative	extreme	values	(“peaks”	and	“troughs”	with	absolute	values	at	least	50%	of	the	maximum)	
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were	calculated	for	each	subject	for	all	five	EEG	Bands	for	all	6	channels	and	then	the	coefficients	and	

number	of	extreme	values	were	averaged	by	Band	across	the	channels.		The	correlation	coefficients	

were	z-transformed	by	calculating	the	inverse	hyperbolic	tangent	of	each	coefficient	to	be	able	to	

compare	average	values	to	each	other	and	to	assess	differences	from	zero	(150).			Reported	values	are	

untransformed	values.	

c.	 Bivariate	Correlation	

The	Pearson	product-moment	correlation	coefficient	was	determined	for	the	

normalized	average	power	(%	total)	for	all	EEG	Bands	in	relation	to	standard	clinical	measures	of	sleep	

and	glycemic	control.	

C.		 Results	

1.		 Subjects	

A	total	of	30	subjects	enrolled	in	the	study	and	29	completed	the	PSG.		Of	the	29,	two	

had	mild	sleep	apnea	with	an	apnea	hypopnea	index	(AHI)	≥	5,	and	were	excluded	from	analysis.		Table	5	

presents	the	biometric	characteristics,	glucose	control	(HbA1c)	and	self-reported	sleep	quality	and	

sleepiness	of	the	27	subjects	included	in	the	final	analysis.					 	



57	
	

	

Descriptive	Statistics	(N	=	27)	
Age	(years)	 23.8	(4.0)	

Duration	(years)	 12.1	(4.6)	
HbA1c	(%)	 7.8	(1.4)	
BMI	(kg/m2)	 26.0	(3.3)	
Male	(%	total)	 11	(39.3)	

Caucasian	(%	total)	 24	(88.9)	
Current	Smoker	(%	total)	 1	(3.7)	
PSQI	(possible	range	0-21)	 4.7	(2.3)	
ESS	(possible	range	0-24)	 4.7	(2.6)	
SSS	(possible	range	1-7)	 2.3	(0.63)	

Mean	Overnight	Glucose	(mg/dL)	 137.5	(55.8)	
AHI	(Apneas	and	hypopneas	per	hour)	 0.83	(0.88)	

TST	(minutes)	 372.8	(42.0)	
Latency	(minutes)	 36.2	(18.4)	
Efficiency	(%)	 81.4	(8.8)	

Stage	1	Sleep	(%)	 6.5	(4.2)	
Stage	2	Sleep	(%)	 51.1	(8.6)	
Stage	3	Sleep	(%)	 21.1	(5.0)	
REM	Sleep	(%)	 21.3	(6.2)	
WASO	(minutes)	 52.7	(34.9)	

Number	of	Arousals	 30.7	(19.7)	
Number	of	Awakenings	 24.9	(9.4)	

	

			 	
	
	
	
	
	

2.	 	Granger	Causality	

		 	 Twenty-six	out	of	the	27	subjects	were	included	in	the	analysis	because	data	from	one	

subject	violated	tests	for	stationarity.		Averaged	across	Bands,	51.6%	of	all	subjects	showed	significant	

EEG→Glucose	Granger	causality	and	27.0%	of	all	subjects	demonstrated	significant	Glucose→EEG	

Granger	causality	in	at	least	one	channel.		There	were	15	instances	(2.0%)	of	mutual	causality	

TABLE	5:	DEMOGRAPHIC,	SLEEP	AND	GLYCEMIC	CONTROL	
CHARACTERISTICS	OF	SUBJECTS	

Data	provided	are	Mean	(SD)	for	all	variables	except	Male	and	
Caucasian	which	are	reported	as	number	(%	total).	
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(simultaneous	EEG→Glucose	and	Glucose→EEG	causality),	7	out	of	the	15	occurred	in	the	Alpha	Band.		

As	highlighted	in	Table	6,	for	both	EEG→Glucose	and	Glucose→EEG	causality,	the	proportion	of	tests	

exhibiting	significant	Granger	coefficients	varied	among	the	EEG	Bands.	Statistically	significant	

EEG→Glucose	causality	was	more	frequently	observed	in	all	EEG	Bands.	Statistically	significant	

Glucose→EEG	causality	was	observed	most	frequently	for	the	Theta	and	Alpha	(42.3%)	Bands.		

	
	
	
	

	 Delta	 Theta	 Alpha	 Beta	 Gamma	

EEG→Glucose	 12	(46.2)	 15(57.7)	 12	(46.2)	 15	(57.7)	 13	(50.0)	

Glucose→EEG	 6	(23.0)	 11	(42.3)	 11	(42.3)	 4	(15.4)	 3	(12.0)	

	
	
	
	
	
Figure	X	shows	typical	IRF	graphs	for	Alpha	and	Theta	Glucose→EEG	causality	for	a	single	

subject.		As	evidenced	by	the	figure,	the	average	initial	impulse	response	was	negative	for	Theta	and	

positive	for	Alpha;	Theta	=	-8.57	±	28.9	μV2	(SD)	and	Alpha	=	5.93	±	20.5	μV2,	p	=	0.03	for	Median	Test	of	

equality.	Table	7	provides	the	frequency	of	positive	and	negative	values	for	significant	VAR	coefficients	

in	subjects	with	significant	Granger	coefficients.		In	cases	of	significant	Glucose→EEG	causality,	average	

VAR	coefficients	for	the	Theta	EEG	Band	were	most	often	negative	and	for	the	Alpha	EEG	Band	were	

most	often	positive.		Moreover,	the	proportion	of	negative	versus	positive	VAR	coefficients	differed	

significantly	between	the	Theta	and	Alpha	EEG	Bands	(Chi2	=	6.7,	p	=	0.01).		Regarding	significant	

Glucose→EEG	causality	in	the	Delta	EEG	Band,	all	subjects	exhibited	negative	VAR	coefficients	(p	=	0.03	

versus	equal	likelihood	of	positive	and	negative	coefficients)	and	the	average	initial	impulse	response	

TABLE	6:	NUMBER	OF	SUBJECTS	WITH	SIGNIFICANT	GRANGER	COEFFICIENTS	ACROSS	
EEG	BANDS	

Number	of	Subjects	with	Significant	Granger	in	at	least	one	channel	(%total),	across	all	bands.	
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also	was	negative	(-542.7	±	1281	μV2).	For	significant	EEG→Glucose	causality	in	the	Theta	EEG	Band,	the	

VAR	coefficients	were	more	commonly	negative	and	the	average	initial	impulse	response	also	was	

negative	(-0.33	±	0.7	mg/dL).		The	proportions	of	positive	coefficients	were	significantly	higher	than	

negative	coefficients	for	the	Beta	and	Delta	EEG	Bands	(p	=	0.01	for	each).	The	average	impulse	

response	was	positive	for	Beta	(0.10	±	0.2	mg/dL)	and	nearly	zero	for	Delta	(-0.04	±	0.15	mg/dL).		
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FIGURE	X:	IMPULSE	RESPONSE	FUNCTION	EXAMPLES	FOR	GLUCOSE	DRIVING	ALPHA	AND	THETA	
EEG	CHANGES	

Impulse	responses	provide	a	measure	of	the	impact	of	a	one	standard	deviation	change	in	the	predictor	
variable	(in	this	case	glucose)	on	the	dependent	variable	(EEG	of	Alpha	and	Theta)	over	time.	After	the	initial	
step,	the	IRF	is	also	influenced	by	the	autoregressive	effects	of	EEG	changes	on	itself.	
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	 Delta	 Theta		 Alpha	 Beta	 Gamma	

	
Neg	 Pos	 Neg	 Pos	 Neg	 Pos	 Neg	 Pos	 Neg	 Pos	

EEG	!	Glucose	 4	 8	 10	 5	 6	 5	 4	 10	 7	 5	

Glucose	!	EEG	 5	 0	 7	 3	 2	 6	 2	 0	 2	 1	

	

	

	
	
	
	

Subjects	exhibiting	significant	Glucose→EEG	causality	in	the	Alpha	or	Theta	EEG	Bands	

experienced	more	arousals	from	sleep	than	did	those	without	significant	causality	(39.42	±	22.7	vs.	20.8	

±	10.0,	p	=	0.02,	respectively).		The	number	of	awakenings	was	significantly	higher	for	subjects	with	

significant	Glucose→EEG	causality	in	the	Delta	EEG	Band	as	compared	to	those	without	significant	

causality	(31.3	±	9.3	vs.	22.2	±	8.2,	p	=	0.02).		Subjects	with	significant	Alpha	Band	EEG→Glucose	

causality	had	higher	mean	overnight	glucose	than	did	subjects	without	significant	causality	(163.2	±	

62.2	mg/dL	vs	118.8	±	42.5	mg/dL,	respectively,	p=0.04).		Subjects	with	significant	Theta	Band	

EEG→Glucose	causality	had	significantly	less	REM	sleep	and	significantly	more	deep	(Stage	3)	sleep	

than	did	subjects	without	significant	causality	(REM:	19.0	±	6.2%	vs.	24.3	±	5.2%,	p	=	0.03;	Stage	3:	23.1	

±	5.4%	vs.	18.4	±	5.4%,	p	=	0.02).	

3.		 Cross-Correlation	Function	

Figure	XI	shows	the	cross-correlation	coefficients	for	one	subject	across	all	lags	assessed	

for	each	of	the	five	EEG	Bands.		A	similar	pattern	was	observed	in	most	subjects:	with	the	cross-

correlation	function	characterized	by	multiple	positive	and	negative	extreme	values	for	each	Band,	and	

with	a	prominent	extreme	value	occurring	at	a	lag	near	zero	for	all	Bands.		Out	of	26	subjects,	24	

TABLE	7:	FREQUENCY	OF	POSITIVE	AND	NEGATIVE	COEFFICIENTS	FOR	SIGNIFICANT	VAR	MODELS	
Average	net	sign	of	significant	coefficients	for	VAR	models	in	Subjects	with	significant	Granger	coefficients,	
across	EEG	bands	for	each	direction	of	causality.		“Neg”	indicates	negative	Sign	and	“Pos”	indicates	positive	
sign.	
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(92.31%)	subjects	exhibited	at	least	one	negative	and	one	positive	peak	in	every	EEG	Band	tested.		

Further,	of	the	26	subjects,	10	(38.5%),	13	(50%),	11	(42.3%),	12	(46.2%),	and	16	(61.5%)	exhibited	

extreme	values	at	0	±	2	lags	for	the	Delta,	Theta,	Alpha,	Beta	and	Gamma	Bands,	respectively.	Figure	XII	

provides	the	average	correlation	coefficients	across	all	lags	for	all	subjects.		There	was	a	high	degree	of	

variability	among	subjects	for	the	cross-correlation	function	at	all	lags	assessed.		On	average,	the	peak	

correlation	between	glucose	and	EEG	was	provided	by	a	lag	near	zero	for	all	EEG	Bands.		The	signs	of	the	

correlation	coefficients	for	Delta	and	Theta	Bands	tended	to	be	negative	at	a	zero	lag	and	tended	to	be	

positive	for	Alpha,	Beta	and	Gamma.			

	 	



63	
	

	

	

	

	 	

-0.4	

-0.3	

-0.2	

-0.1	

0	

0.1	

0.2	

0.3	

0.4	
	C
or
re
la
^o

n	
Co

effi
ci
en

t	

Lag (Minutes) 

Delta	

Theta	

Alpha	

Beta	

Gamma	

FIGURE	XI:	CROSS-CORRELATION	FUNCTIONS	FOR	ONE	SUBJECT	ACROSS	EEG	BANDS	
Lags	were	applied	to	glucose	in	five-minute	increments	up	to	±	100	minutes	(negative	lag	indicates	glucose	is	
leading	EEG	and	positive	lag	indicates	EEG	leading	glucose	change).		Most	subjects	exhibited	multiple	peaks	at	
both	positive	and	negative	lags	for	all	5	EEG	Bands.			
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	 Because	the	initial	impulse	response	demonstrated	that	glucose	fluctuations	caused	oppositely-

directed	effects	on	Alpha	and	Theta	activity,	the	maximum	cross-correlation	coefficients	of	glucose	

versus	EEG	power	in	the	Theta	and	Alpha	Bands	were	assessed	for	those	subjects	who	had	a	maximum	

value	within	the	range	of	0	±	2	lags	(±10	minutes).		As	depicted	in	Figure	XIII,	for	these	subjects,	the	

average	cross	correlation	coefficients	for	Theta	and	Alpha	were	different	from	each	other	(Theta:	-0.25	±	

0.42	[mean	±	SD]	and	Alpha:	0.35	±	0.40,	p	=	0.05).		
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FIGURE	XII:	MEAN	CROSS-CORRELATION	FUNCTIONS	ACROSS	EEG	BANDS	
The	sign	of	correlation	coefficients	were	highly	variable	for	subjects.		Most	subjects	had	an	extreme	value	at	or	
near	a	zero	lag	and	the	sign	tended	be	negative	for	Delta	and	Theta	(associated	with	sleep)	and	positive	for	
Alpha,	Beta	and	Gamma	(associated	with	wake).			
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4.		 Bivariate	Correlation	

Normalized	Gamma	power	(high	power	associated	with	awakenings)	was	positively	

correlated	with	WASO	(r	=	0.55,	p	=	0.003)	and	negatively	associated	with	SE	(r	=	-0.62,	p	=	0.001).		

Normalized	Delta	power	was	negatively	associated	with	number	of	arousals	(-0.45,	p	=	0.02).		

Normalized	Theta	power	was	negatively	associated	with	number	of	awakenings	(-0.42,	p	=	0.03)	as	well	

as	SSS	score	(r	=	-0.38,	p	=	0.048).		HbA1c	was	negatively	associated	with	number	of	arousals	(r	=	-0.52,	p	

=	0.01).			

D.		 Discussion	

In	the	present	study	we	aimed	to	determine	the	relationship	between	glucose	and	brain	activity	

assessed	by	quantitative	EEG	analysis	in	young	adults	with	T1DM.		Granger	analysis	supported	our	

hypotheses	that:	1)	sleep	EEG	and	glucose	exert	bidirectional	causal	influences	and	2)	these	
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FIGURE	XIII:	PEAK	CORRELATION	COEFFICIENT	FOR	ALPHA	AND	THETA	IN	SUBJECTS	WITH	OPTIMAL	
LAG	BETWEEN	±10	MINUTES	

Values	were	significantly	different	by	un-paired	t-test.		Theta:	-0.25	±	0.42	and	Alpha:	0.35	±	0.40,	p	=	0.05	
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relationships	are	EEG	Band-specific.		Across	all	5	of	EEG	Bands,	70%	to	100%	of	all	subjects	

demonstrated	a	causal	connection	with	glucose.		Taken	collectively,	the	present	findings	support	the	

existence	of	both	positive	and	negative	feedback	loops	involving	both	glucose	and	brain	activity	in	young	

adults	with	T1DM.	Specifically,	increasing	glucose	can	drive	changes	in	EEG	activity	consistent	with	

arousal	or	awakening	that,	in	turn,	can	casue	either	a	further	increase	or	a	corrective	decrease	in	

glucose	level.	Cross-correlation	function	analysis	revealed	that	interactions	between	glucose	and	EEG	

may	occur	on	differing	time	scales,	but	that	most	subjects	exhibited	short-latency	coupling	with	delays	

of	≤10	minutes.		The	bidirectional	relationship	between	glucose	level	and	brain	activity	during	sleep	

identified	in	this	study	may	have	important	implications	for	understanding	glucose	homeostasis	and	its	

management	in	young	adults	with	T1DM.	

Our	findings	support	the	view	that	increases	in	glucose	can	cause	arousals	or	awakenings	from	

sleep	in	young	adults	with	T1DM.		Both	the	average	sign	of	significant	VAR	coefficients	(Table	7)	and	the	

initial	impulse	response	function	(Figure	X)	demonstrated	that	increasing	glucose	frequently	was	causal	

to	a	shift	from	Theta	Band	to	Alpha	Band	EEG	power;	a	shift	consistent	with	arousal	or	awakening.		

Results	from	cross-correlation	function	analysis	support	this	interpretation	and	further	suggest	that	the	

relationship	between	increases	in	glucose	and	sleep	disruption	most	often	have	a	short	latency.	As	

expected	from	the	VAR	coefficient	and	initial	impulse	response	analyses,	the	cross	correlation	

coefficients	between	glucose	and	EEG	power	exhibited	opposite	signs	for	the	Alpha	and	Theta	Bands	

(Figure	XIII)	in	subjects	with	a	peak	correlation	at	a	lag	of	≤10	minutes.		Also	consistent	with	the	

interpretation	that	increasing	glucose	drives	arousal	or	awakening,	in	subjects	demonstrating	

Glucose→EEG	causality	in	the	Delta	Band	the	relationship	was	negative.	In	other	words,	increasing	

glucose	decreases	the	Delta	actvity	associated	with	deep	sleep.	The	view	that	increases	in	glucose	lead	

to	short-latency	disruptions	in	sleep	is	further	supported	by	the	finding	that	subjects	with	significant	

Granger	coefficients	for	Glucose→EEG	causality	in	Alpha	or	Theta	had	a	significantly	higher	number	of	
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arousals	from	sleep	than	those	who	did	not	have	significant	Granger	coefficients	for	either	Band	(39.4	±	

22.7	vs.	20.8	±	10.0,	respectively).		

It	is	also	possible	that	a	decrease	in	glucose	leads	to	an	increase	in	Theta	and	Delta	and	decrease	

in	Alpha	activity,	suggesting	a	shift	toward	a	deeper	sleep.	Indeed,	multiple	studies	have	shown	that	

hypoglycemia	induces	EEG	changes	during	wakefulness	(135–137)	and	sleep	(138,139)	in	people	with	

T1DM.		Tribl	et	al.	(1996)	found	an	increase	in	Theta	and	decrease	in	Alpha	activity	during	induced	

hypoglycemia	in	7	young	adults	(mean	age	33	years)	with	T1DM	(137).	In	a	more	recent	study,	Sejling	

and	colleagues	found	similar	results,	EEG	power	in	lower	frequency	Bands,	most	specifically	the	Theta	

Band,	increased	during	induced	hypoglycemia	in	24	adults	with	T1DM	while	they	were	awake	(151).		

Bendston	and	colleagues	showed,	in	a	small	study	of	children	with	T1DM,	that	hypoglycemia	(less	than	2	

mmol/L	or	36	mg/dL)	caused	an	increase	in	EEG	power	in	the	Delta	and	Theta	Bands	in	3	(out	of	8)	

subjects	(139)	during	sleep.	Thus,	consistent	with	our	current	findings	based	on	Granger-causality	

analysis,	decreasing	glucose	may	lead	to	deepening	of	sleep.			

Schultes	et	al.	(2007)	found	that	there	was	a	decreased	awakening	response	to	hypoglycemia	in	

adults	with	T1DM	as	compared	to	age-matched	healthy	controls	(152).		In	a	group	of	adolescents	with	

T1DM,	the	occurrence	of	spontaneous	hypoglycemia	did	not	result	in	awakenings	(153).		A	decrease	in	

the	epinephrine	response	to	hypoglycemia	induced	by	insulin-clamp	has	been	reported	in	both	children	

(94)	and	adults	(93)	with	T1DM	as	compared	to	healthy	controls.		Further,	a	decreased	awakening	

response	to	spontaneous	hypoglycemia	during	sleep	has	been	reported	in	children	with	T1DM	(95).			

However,	Pillar	and	colleagues	reported	that	a	rapid	(>25mg/dL/hr)	decrease	in	glucose	levels	was	

associated	with	awakenings	from	sleep	in	children	with	T1DM	(105),	suggesting	the	rate	of	change	in	

glucose	may	play	an	important	role	in	its	impact	on	sleep	processes.		We	cannot	determine	the	time	

course	between	causal	relationships	reported	in	this	study,	thus	it	is	possible	that	rate	of	change	in	

glucose	may	be	important	in	its	effect	on	changes	in	sleep.			
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Additional	interventional	studies	investigating	the	relationship	between	both	the	rate	and	

direction	of	change	in	glucose	values	and	their	impact	on	EEG	during	sleep	in	people	with	T1DM	are	

needed	to	fully	understand	the	impact	of	glycemic	variability	on	sleep	continuity	and	depth.		The	

present	study	is	important	in	its	demonstration	of	significant	bidirectional	causality	between	EEG	and	

glucose	during	sleep	in	a	naturalistic,	non-interventional	context.		This	important	new	evidence	provides	

additional	motivation	to	conduct	interventional	studies	to	more	precisely	determine	the	mechanisms	

underlying	the	observed	causality.			

	 The	present	Granger	analysis	also	supports	the	conclusion	that	fluctuations	in	EEG	power	during	

sleep	cause	changes	in	glucose	in	young	adults	with	T1DM.		Specifically,	we	report	that	increases	in	high	

frequency	(Beta	Band)	EEG	during	sleep	can	cause	increases	in	glucose.		Significant	Granger	coefficients	

for	Beta	EEG→Glucose	changes	were	observed	in	over	one-third	of	subjects.	Moreover,	the	average	sign	

of	significant	VAR	coefficients	and	the	average	initial	impulse	response	both	were	consistently	positive,	

indicating	that	increases	of	Beta	power	caused	increased	glucose.	We	cannot	determine	mechanisms	

underlying	this	relationship	from	our	study,	but	it	is	possible	that	this	is	due	to	impaired	insulin	

sensitivity	caused	by	increased	wakefulness	during	the	sleep	period.		It	has	been	reported	that	sleep	

restriction	leads	to	decreased	insulin	sensitivity	the	next	morning	in	young	adults	with	T1DM	(92).		In	a	

recent	study	in	nine	children	with	T1DM,	researchers	showed	that	during	sleep,	spontaneous	

hyperglycemia	was	associated	with	an	increase	in	EEG	power,	including	Beta	and	Gamma	Band	powers	

(140).		Our	results	extend	these	findings,	suggesting	that	an	increase	in	high	frequency	EEG	during	sleep	

may	be	causally	linked	to	increased	glucose	levels	in	people	with	T1DM.		Changes	in	Theta	power	were	

casually	related	to	glucose	changes	in	15	subjects	and	on	average,	the	direction	of	this	relationship	was	

opposite;	increasing	theta	power	was	predictive	of	decreasing	glucose.		Theta	power	is	increased	during	

REM	sleep;	our	findings	support	the	previous	report	that	REM	sleep	was	associated	with	decreased	

concentrations	of	interstitial	glucose	in	healthy	individuals	(71).		
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The	sign	of	the	VAR	coefficients	for	EEG→Glucose	causality	in	the	Delta	Band	was	more	

commonly	positive,	however	the	initial	impulse	response	was	close	to	zero	(-0.04).		It	is	well	known	that	

Delta	power	(a	marker	of	slow	wave	sleep)	has	a	normal	ultradian	cycling	of	around	90	-	120	minutes	

during	the	sleep	period,	which	is	stronger	in	the	beginning	of	the	night	(154).		Growth	hormone	is	

normally	secreted	during	slow	wave	sleep	which	causes	a	decrease	in	insulin	sensitivity	(143).		Thus,	

after	a	bout	of	slow	wave	sleep	(or	increased	Delta	activity),	glucose	levels	may	increase	for	a	period	of	

time.		Our	findings	highlight	a	bi-directional	relationship	between	EEG	and	glucose	changes	throughout	

one	night	of	sleep.		These	relationships	likely	operate	on	different	time	scales	through	the	night;	rapid	

changes	in	glucose	may	drive	arousals	or	awakenings;	while	changes	in	Delta	power	may	result	in	

increasing	glucose	levels	over	longer	periods	of	time.		Granger	analysis	does	not	provide	information	

about	the	time-course	of	causal	relationships.			

	 Cross-correlation	analysis	can	be	helpful	to	identify	the	variability	within	the	relationship	

between	two	signals	across	time.		As	illustrated	in	Figures	11	and	12,	at	short	latencies,	Band	specific	

directionality	was	seen,	with	sleep	related	EEG	(Delta	and	Theta	power)	exhibiting	a	negative	

relationship	to	glucose	and	wake	related	EEG	(Alpha,	Beta	and	Theta)	exhibiting	a	positive	relationship.		

However,	we	were	not	able	to	determine	an	optimal	lag	between	glucose	changes	and	EEG	power	in	any	

of	the	Bands,	likely	due	to	the	bi-directionality	and	potential	time-varying	nature	of	the	relationship	

between	glucose	and	EEG	power.	Indeed,	as	Figures	11	and	12	illustrate,	all	5	Bands	exhibited	multiple	

local	peaks	in	correlation	over	positive	and	negative	lags.			At	periods	where	EEG	is	driving	glucose	

changes,	the	cross-correlation	is	expected	to	have	an	extreme	value	at	a	positive	lag	and	when	glucose	is	

driving	EEG	changes,	the	cross-correlation	is	expected	to	have	an	extreme	value	at	a	negative	lag.	The	

bidirectional	relationship	between	glucose	and	EEG	power	throughout	the	night	may	be	why	we	could	

not	find	a	single	optimal	lag	between	glucose	and	EEG	power;	when	averaged	across	the	night,	these	

opposite	relationships	decrease	the	correlation	coefficient	at	all	lags.				
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	 Delta	and	Theta	Band	activity	are	more	prevalent	during	sleep	whereas	Alpha,	Beta	and	Gamma	

Band	activity	are	more	prevalent	during	wakefulness.			Investigating	the	correlation	between	normalized	

banded	power	and	traditional	measures	of	sleep	continuity/disruption,	we	found,	as	expected,	that	less	

Delta	power	was	associated	with	a	higher	number	of	arousals	and	lower	Theta	power	was	associated	

with	an	increased	number	of	awakenings	and	higher	levels	of	subjective	sleepiness		(SSS	score)	the	next	

morning.		We	also	found	that	HbA1c	and	number	of	arousals	were	significantly	correlated,	providing	

further	support	that	disrupted	sleep	is	related	to	poor	overall	glycemic	control.		Barone	and	colleagues	

reported	a	positive	correlation	between	number	of	awakenings	from	sleep	and	HbA1c	in	adults	with	

T1DM	(90).		Other	authors	have	reported	a	negative	relationship	between	HbA1c	and	time	spent	in	slow	

wave	sleep	in	children	and	adults	with	T1DM	(86,155).	The	mechanism	behind	this	may	be	due	to	

impaired	insulin	sensitivity.		Sleep	fragmentation,	achieved	by	causing	EEG	microarousals	in	healthy	

subjects,	caused	decreased	insulin	sensitivity	(72).			To	our	knowledge,	the	effect	of	microarousals	on	

insulin	sensitivity	has	not	been	studied	in	individuals	with	T1DM.		

	 The	small	sample	size	and	observational	nature	of	our	study	do	not	allow	us	to	fully	determine	

causality.		Further,	EEG	data	were	obtained	in	a	laboratory	setting,	which	is	not	the	subjects’	normal	

sleeping	environment.	Despite	the	variability	in	relationships	between	glucose	and	EEG	in	our	sample,	

our	findings	demonstrate	strong	causal	relationships	between	spontanteous	fluctuations	of	EEG	power	

and	glucose,	which	may	have	implications	for	glycemic	control	in	people	with	T1DM.	Future	research	

conducted	in	larger	samples,	including	control	groups	and	utilizing	interventional	designs	will	help	to	

define	the	mechanistic	basis	of	the	observed	causality	and	to	further	delineate	the	significance	of	these	

findings.			

	 In	summary,	the	current	study	provides	evidence	for	a	bidirectional	causal	relationship	between	

brain	activity	during	sleep	and	glucose	changes	in	young	adults	with	T1DM.	Increasing	glucose	can	drive	

changes	in	EEG	activity	consistent	with	arousal	or	awakening	from	sleep,	and	this,	in	turn,	may	drive	
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either	a	further	increase	or	a	corrective	decrease	in	glucose	level.		Future	studies	are	needed	to	define	

the	long-term	impacts	of	such	nested	interactions	between	glucose	and	brain	activity	in	young	adults	

with	T1DM.	Such	understanding	may	be	valuable	to	optimize	diabetes	management	strategies.		
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V.	RELATIONSHIP	BETWEEN	SLEEP,	INFLAMMATORY	MARKERS	AND	CORTISOL	

A.	 Introduction	

It	is	well	known	that	Type	1	Diabetes	Mellitus	(T1DM)	increases	the	risk	of	cardiovascular	events	

(156)	and	cardiovascular	disease	(CVD).		Over-activation	of	inflammatory	processes	(55,157)	or	of	the	

Hypothalamic-Pituitary-Adrenal	(HPA)	axis	(67,68)	can	contribute	to	the	development	of	atherosclerotic	

CVD.		People	with	T1DM	have	elevated	levels	of	cortisol	(65)	and	inflammatory	cytokines	such	as	

interleukin-6	(IL-6)	and	tumor	necrosis	factor	alpha	(TNF-α)	(158–160);	derangements	that	could	lead	to	

CVD	in	these	individuals.			

Poor	glycemic	control,	manifested	as	increased	Hemoglobin	A1c	(HbA1c)	is	well	known	to	be	

associated	with	increased	incidence	of	CVD	in	T1DM	(156).		However,	sleep	disruption	also	may	be	an	

important	contributor	to	development	of	CVD.		Achieving	normal	sleep	is	one	important	component	of	

health	maintenance,	including	cardiovascular	health.		Disrupted	sleep	increases	inflammatory	cytokine	

and	stress	hormone	levels	(including	cortisol),	even	in	healthy	individuals	(79,161–163).		People	with	

T1DM	have	impaired	sleep	in	comparison	to	healthy	controls	(86,103,141).		This	degraded	sleep	

architecture	may	result	in	chronic	inflammation,	ultimately	increasing	CVD	risk.		It	is	important	to	

understand	if	sleep	plays	a	role	in	increased	inflammation	and	activation	of	the	HPA	axis	in	individuals	

with	T1DM,	as	this	has	not	been	systematically	studied,	andsleep	is	a	potentially	modifiable	behavior.	

We	hypothesized	that	sleep	characteristics	may	mediate	inflammation	as	well	as	cortisol	levels	in	young	

adults	with	T1DM.			

The	aim	of	this	study	was	to	define	the	relationships	between	sleep,	the	inflammatory	markers	

IL-6	and	TNF-α,	and	cortisol	in	young	adults	with	T1DM.	
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B.	 Methods	

1.	 Subjects	

Young	adults	aged	18-30	years,	diagnosed	with	T1DM	for	at	least	five	years	and	treated	

by	insulin	pump	were	recruited	for	the	study.		Individuals	were	excluded	if	they:	were	pregnant;	worked	

night	or	rotating	shifts;	reported	use	of	corticosteroids;	were	diagnosed	with	primary	cardiovascular	

disease,	retinopathy,	nephropathy	or	peripheral	neuropathy;	had	uncontrolled	hypertension	or	thyroid	

disease;	were	diagnosed	with	a	primary	sleep	disorder	or	reported	chronic	use	of	oral	sleep	

medications;	reported	use	of	psychoactive	medications	(e.g.	antidepressants)	or	illicit	drugs	(e.g.	

marijuana	or	cocaine);	or	reported	severe	metabolic	instability	(e.g.	ketoacidosis,	hypoglycemia	

or,hypoglycemic	seizures)	during	the	last	2	months.			

2.	 Study	Protocol	

All	procedures	were	approved	by	the	institutional	review	board	of	the	University	of	

Illinois	at	Chicago.	After	informed	consent	was	provided	and	inclusion/exclusion	criteria	were	verified,	a	

continuous	glucose	monitoring	sensor	(Guardian®	REAL-Time	System;	Medtronic	MiniMed)	was	placed	

in	the	abdominal	subcutaneous	tissue	and	an	actigraphy	monitor	(Actiwatch2,	Respironics)	was	placed	

on	the	non-dominant	wrist.		Subjects	completed	the	Pittsburgh	Sleep	Quality	Index	(PSQI)	(7)	and	

Epworth	Sleepiness	Scale	(ESS)	(8)	and	answered	questions	about	demographics.		A	sample	of	blood	was	

drawn	to	measure	hemoglobin	A1c	(HbA1c),	a	marker	of	glycemic	control.		Subjects	then	left	the	

laboratory	and	spent	three	days	and	two	nights	carrying	out	their	normal	routine	activity.		On	the	third	

night,	subjects	underwent	polysomnography	(PSG)	at	the	Sleep	Science	Center	of	University	of	Illinois	

Chicago.	Lights	out	for	each	subject	was	between	10	pm	and	11	pm	and	lights	on	was	at	6	am,	ensuring	

at	least	7	hours	of	time	in	bed.		Blood	was	collected	from	each	subject	immediately	prior	(within	10	

minutes)	to	lights	out,	immediately	after	lights	on	(within	10	minutes),	and	again	one	hour	(within	five	

minutes)	after	lights	on.		Each	sample	was	drawn	with	a	21-gauge	needle	from	an	antecubital	vein	while	
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subjects	were	either	lying	in	bed	or	sitting	comfortably	in	a	chair.		The	samples	were	drawn	into	an	

ethylenediaminetetraacetic	acid	coated	10-ml	tube.	To	separate	the	plasma,	each	blood	sample	was	

centrifuged	(Eppendorf	5810	RTM)	at	1800	revolutions	per	minute	for	12	minutes	at	4°	Celsius.		The	

plasma	was	aliquoted	into	plastic	tubes,	labeled	with	subject	ID	number,	sample	number	(time	point	of	

collection)	and	stored	at	-80°	Celsius	until	the	completion	of	the	study.			

3.	 PSG-Derived	Sleep	Measures	

PSG	comprised	computer-based	recording	(Alice	5,	Respironics)	of:	multiple	EEG	leads,	

bilateral	referential	electrooculogram,	chin	and	anterior	tibialis	electromyogram,	lead	I	

electrocardiogram,	respiratory	movement	of	thorax	and	abdomen	by	piezoelectric	strain	gauges,	airflow	

via	nasal	pressure	cannula	and	oronasal	thermistors	and	arterial	oxygen	saturation	of	hemoglobin	by	

pulse	oximeter.	Each	sleep	study	was	scored	using	American	Academy	Sleep	Medicine	guidelines	for	

visual	scoring	(149).		Standard	overnight	summary	variables	were	extracted	from	each	PSG,	including:	

sleep	latency	(SLAT),	total	sleep	time	(TST),	sleep	efficiency	(SE),	percentages	of	each	sleep	stage,	

arousal	index	(ARI),	slow-wave	sleep	percent	(SWS%),	and	wake	after	sleep	onset	(WASO,	minutes).		

Apnea	Hypopnea	Index	(AHI)	was	determined	for	each	subject	and	subjects	were	excluded	from	analysis	

if	they	had	an	AHI	≥5.		An	apnea	was	defined	as	a	cessation	in	airflow	for	at	least	10	seconds	and	a	

hypopnea	was	defined	as	a	reduction	in	thoracoabnominal	movement	amplitude	by	≥30%	combined	

with	a	4%	desaturation	as	measured	by	pulse	oximeter	(164).		

4.	 Inflammatory	Cytokine	and	Cortisol	Assays	

IL-6	and	TNF-α	were	measured	from	plasma	samples	using	commercially	available	high	

sensitivity	enzyme-linked	immunosorbent	assay	(ELISA)	kits	(Quantikine®	High	Sensitivity	ELISA,	R&D	

systems).		Cortisol	levels	were	measured	using	a	commercially	available	competitive	binding	assay	kit	

(ParameterTM,	R&D	Systems).		The	mean	lower	limit	of	detection	for	TNF-α	was	reported	to	be	0.106	

pg/ml	and	for	IL-6	was	0.039	pg/ml.		The	average	intra-assay	coefficient	of	variation	(CoV)	was	5.4%	for	
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TNF-α	and	7.4%	for	IL-6.		The	average	inter-assay	CoV	was	8.3%	for	TNF-α	and	7.8%	for	IL-6	(165,166).		

The	mean	lower	limit	of	detection	for	the	cortisol	assay	was	reported	as	0.071	ng/mL.	Average	intra-

assay	CoV	was	6.97%	and	the	average	inter-assay	CoV	was	13.6%	for	the	cortisol	assay	(167).		All	three	

markers	were	run	in	duplicate	and	the	average	of	the	two	values	was	taken.			

5.	 Statistical	Analysis	

To	normalize	distributions	and	linearize	relationships	for	statistical	analysis,	IL-6	and	

TNF-α	were	inverse	(reciprocal)	transformed	and	cortisol	levels	were	square-root	transformed.		Mean	

and	standard	deviation	data	reported	below	are	untransformed,	whereas	pairwise	correlations	and	

regressions	are	reported	for	the	transformed	variables.		Repeated	measures	Analysis	of	Variance	

(ANOVA)	was	used	to	compare	levels	of	IL-6,	TNF-α,	and	cortisol	between	time	points.		Post-hoc	

pairwise	contrasts	between	time	points	were	tested	using	paired	t-tests.		To	assess	the	effects	of	

average	glycemic	control	on	inflammatory	cytokines	and	cortisol,	subjects	were	separated	into	two	

groups:	those	with	“Poor”	Control	(>7.0%)	and	those	with	“Good”	Control	(≤7.0%)	HbA1c	(25).	ANOVA	

using	glycemic	control	(Good	versus	Poor)	as	a	fixed	effect	and	time	(Pre-sleep;	Awakening;	1-Hour	Post	

Awakening)	as	a	within	subject	repeated	measure	was	performed	to	determine	their	effects	on	the	

inflammatory	cytokine	and	cortisol	measures.	Pairwise	comparisons	were	used	to	test	specific	contrasts.		

Greenhouse-Geisser	correction	was	applied	to	the	F	statistic	of	all	repeated	measures	reported.		

Unpaired	t-tests	were	used	to	compare	the	difference	in	mean	values	of	IL-6,	TNF-α	and	cortisol	

between	glycemic	groups.		The	Pearson	product-moment	correlation	coefficient	was	calculated	between	

standard	clinical	measures	of	sleep	(from	PSG)	and	glycemic	control	with	reciprocal	values	of	IL-6,	TNF-α,	

and	square	root	values	of	cortisol	at	each	time	point.		

All	statistical	analyses	were	performed	using	STATA®	14.0	(StataCorp®)	and	a	p-value	≤	0.05	

indicated	significance.					
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C.	 Results	

1. Subjects	and	Sleep	Characteristics	

Blood	was	obtained	from	27	of	the	30	subjects	enrolled.		Two	of	these	subjects	

exhibited	an	AHI	≥	5	and	were	excluded	from	the	analysis.		Table	8	summarizes	glycemic	control	as	well	

as	self-reported	and	PSG-derived	measures	of	sleep	and	sleep	quality	of	subjects	included	in	the	analysis	

(N	=	25).		

	
	
	

Characteristic	 N	=	24	

Age	(years)	 23.8	(3.9)	

Male	(%)	 11	(44.0)	

Caucasian	(%)	 22	(88.0)	

Diabetes	Duration	(years)	 11.9	(4.4)	

HbA1c	(%)	 7.8	(1.3)	

BMI	(kg/m
2
)	 26.0	(3.4)	

PSQI	(Range	0-21)	 4.84	(2.3)	

ESS	(Range	0	–	24)	 4.8	(2.7)	

Total	Sleep	Time	(min)	 372.9	(43.0)	

Sleep	Efficiency	(%)	 81.3	(9.1)	

Sleep	Latency	(min)	 36.4	(18.9)	

WASO	(min)	 53.0	(36.2)	

Stage	1	Sleep	(%)	 6.3	(4.3)	

Stage	2	Sleep	(%)	 50.7	(8.7)	

Stage	3	Sleep	(%)	 21.2	(5.2)	

REM	Sleep	(%)	 21.8	(6.2)	

Number	of	Awakenings	(Total	#)	 24.3	(9.2)	

Number	of	Arousals	(Total	#)	 30.3	(20.2)	

Apnea	Hypopnea	Index	(#	per	hour)	 0.88	(0.89)	
	

														 	
	
	

TABLE	8:	DEMOGRAPHIC,	GLYCEMIC	CONTROL	AND	SLEEP	CHARACTERISTICS	
Data	are	reported	as	Mean	(SD);	Male	and	Caucasian	are	reported	as	number	(%	of	total).	
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2. Temporal	Variations	of	IL-6,	TNF-α	and	Cortisol	

Table	9	provides	the	mean	values	for	TNF-α,	IL-6	and	cortisol	measured	immediately	

before	sleep,	upon	awakening	and	1-hour	post	awakening	for	the	entire	group.		Repeated	measures	

ANOVA	demonstrated	a	significant	effect	of	time	on	TNF-α	(F	=	68.41,	p	<	0.0001),	with	values	at	

awakening	and	1-hour	post	awakening	being	significantly	higher	than	pre-sleep	(p	<	0.0001	for	each).	

Repeated	measures	ANOVA	for	cortisol	showed	the	same	pattern	(F=	54.25,	p	<	0.0001),	with	cortisol	

significantly	higher	at	awakening	and	1-hour	post	awakening	than	pre-sleep	(p	<	0.0001	for	each).			

Repeated	measures	ANOVA	for	IL-6	showed	a	significant	effect	of	time	(F	=	5.66,	p	<	0.009));	mean	

values	were	significantly	lower	at	awakening	and	1-hour	post	awakening	than	pre-sleep	(p	=	0.014	and	p	

=	0.003,	respectively).		

	
	
	
	

	 TNF-α			(pg/mL)	 IL-6	(pg/mL)	 Cortisol	(ng/mL)	

Before	Sleep	
0.96	(0.48)	
n	=	24	

1.04	(0.59)	
n	=	24	

9.1	(7.2)	
n	=	22	

Awakening	
1.4	(0.66)	
n	=	24	

0.85	(0.55)	
n	=	24	

61.2	(44.0)	
n	=	23	

1	Hr	Post	
1.6	(0.62)	
n	=	23	

0.74	(0.32)	
n	=	23	

82.42	(33.2)	
n	=	22	

	

				 	

	

TABLE	9:	VALUES	OF	TNF-α,	IL-6	AND	CORTISOL	BEFORE	AND	AFTER	SLEEP	
Values	are	mean	(SD);	*	Indicates	p	≤	0.03;	#	indicates	p	≤	0.0001		
TNF-α:	Awakening	and	1-hour	post	awakening	significantly	higher	than	pre-sleep	(p	<	0.0001);	1-hour	post	
awakening	significantly	higher	than	awakening	(p	=	0.01,	indicated	with	*);	IL-6:	Awakening	and	1-hour	post	
awakening	significantly	lower	than	pre-sleep	(p	≤	0.014);	Cortisol:	Awakening	and	1-hour	post	awakening	
significantly	higher	than	pre-sleep	(p	<	0.0001).			
	

*	

#	 *	 #	
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3. IL-6,	TNF-α	and	Cortisol	in	Relation	to	Average	Glycemic	Control			

Repeated	measures	ANOVA	demonstrated	significant	effects	of	HbA1c	on	TNF-α	and	IL-

6	(F	=4.89,	p	=	0.03	and	F	=	5.09,	p	=	0.03,	respectively),	but	no	effect	on	cortisol	level.		Further,	there	

was	no	significant	interaction	between	HbA1c	and	sample	time	for	TNF-α,	IL-6	or	cortisol.		Figure	XIV	

shows	the	differences	in	IL-6	(top	panel,	a)	and	TNF-α	(bottom	panel,	b)	values	stratified	according	to	

HbA1c	group.		The	Poor	glycemic	control	group	had	significantly	higher	mean	TNF-α	levels	upon	

awakening	(Poor:	1.72	±	0.78	[SD]	pg/mL	vs.	Good:	1.11	±	0.24	pg/mL,	p	=	0.0004)	and	1-hour	post	

awakening	(Poor:	1.82	±	0.66	pg/mL	vs.	Good:	1.25	±	0.36	pg/mL,	p	=	0.0042).		Further,	the	Poor	

glycemic	control	group	exhibited	significantly	higher	mean	IL-6	values	1-hour	post	awakening	(Poor:	0.85	

±	0.35	pg/mL	vs.	Good:	0.56	±	0.15	pg/mL,	p	=	0.011).		No	significant	differences	were	found	between	

Poor	and	Good	glycemic	control	for	cortisol	at	any	time	point.		
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FIGURE	XIV:	PRE-	AND	POST-SLEEP	IL-6	AND	TNF-α	IN	SUBJECTS	WITH	GOOD	VERSUS	
POOR	GLYCEMIC	CONTROL		

Top	Panel	(a):	Values	of	IL-6	between	groups:	The	Poor	Glycemic	Control	Group	(HbA1c	>	
7.0%)	had	significantly	higher	values	one	hour	post	awakening	as	compared	to	the	Good	
Glycemic	Control	Group	(HbA1c	≤	7.0%).		Bottom	Panel	(b):	Values	of	TNF-α		between	groups:	
Both	awakening	and	one	hour	post	awakening	values	were	higher	for	the	Poor	Glycemic	
Control	Group	as	compared	to	the	Good	Glycemic	Control	Group.	
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4. Correlations	of	TNF-α,	IL-6	and	Cortisol	with	Sleep	and	Glycemic	Control	Measures	

Table	10	provides	the	correlations	between	reciprocal	values	of	IL-6	and	TNF-α	and	

square	root	values	of	cortisol	for	each	time	point	with	standard	measures	of	sleep	and	glycemic	control.		

A	significant	negative	correlation	was	observed	between	(reciprocal)	TNF-α	and	Hba1c	at	all	time	points	

(pre-sleep:	r	=	-0.66,	awakening	r	=	-0.77,	1-hour	post	awakening:	r	=	-0.71;	p	≤	0.0004	for	each).		

Further,	a	significant	negative	correlation	was	found	between	(reciprocal)	TNF-α	upon	awakening	and	

the	number	of	arousals	during	the	preceding	sleep	period	(r	=	-0.	42,	p	=	0.04).		A	negative	correlation	

was	observed	between	(reciprocal)	IL-6	1-hour	post	awakening	and	both	Hba1c	(r	=	-0.41,	p	=	0.05)	and	

number	of	arousals	(r	=	-0.	54	and	r	=	-0.53,	respectively;	p	=	0.01	for	each).		A	significant	positive	

correlation	was	found	between	(reciprocal)	IL-6	upon	awakening	and	number	of	awakenings	during	the	

preceding	sleep	period	(r	=	0.48,	p	=	0.02).		Pre-sleep	(reciprocal)	IL-6	values	were	positively	correlated	

with	%	of	stage	3	sleep	(r	=	0.45,	p	=	0.03)	and	WASO	(r	=	0.41,	p	=	0.05).		Awakening	values	of	(square	

root)	cortisol	were	positively	associated	with	WASO	(r	=	0.48,	p	=	0.02).	One	hour	post	awakening	

(square	root)	cortisol	was	negatively	correlated	with	number	of	arousals	(r	=			-0.54,	p	=	0.01)	and	HbA1c	

(-0.46,	p	=	0.03).		Number	of	arousals	and	HbA1c	were	themselves	positively	correlated	(r	=	0.52,	p	=	

0.006).		Reciprocal	TNF-α	and	Il-6	values	were	positively	correlated	(r	=	0.56,	p	=	0.006)	only	at	1-hour	

post	awakening.		
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D.	 Discussion	

In	the	present	study,	we	report	significant	pre-sleep	to	post-sleep	changes	of	inflammatory	

cytokines	and	cortisol	in	a	group	of	18-30	year	olds	with	T1DM.	IL-6	levels	were	lower	whereas	cortisol	

and	TNF-α	levels	were	higher	in	the	morning	(Table	1).		This,	to	our	knowledge,	is	the	first	report	of	an	

increase	in	TNF-α	levels	after	sleep	in	young	adults	with	T1DM.		For	the	entire	subject	group,	higher	

inflammatory	cytokine	levels	were	significantly	correlated	to	HbA1c	as	well	as	to	PSG-derived	measures	

of	sleep	disruption.		Subjects	with	poor	glycemic	control	exhibited	higher	levels	of	IL-6	and	TNF-α	than	

did	those	with	good	control.		Sleep	disturbance	may	play	a	role	in	mediating	increased	levels	of	

inflammation	and/or	reduced	glycemic	control	in	young	adults	with	T1DM.	

	 Reciprocal	IL-6	 Reciprocal	TNF-α	 Square	Root	Cortisol	
	 	 T1	 T2	 T3	 T1	 T2	 T3	 T1	 T2	 T3	

HbA1c	(%)	 -0.23	 -0.27	 -0.41*	 -0.66#	 -0.77#	 -0.71#	 0.07	 -0.28	 -0.46	
Mean	Glucose	(mg/dL)	 -0.22	 -0.02	 -0.08	 -0.22	 -0.24	 -0.05	 0.08	 0.00	 -0.29	
CONGA-1	(mg/dL)	 0.03	 0.13	 0.02	 0.00	 0.20	 0.15	 0.17	 -0.13	 -0.19	
SD	Glucose	(mg/dL)	 0.08	 0.02	 -0.11	 0.15	 0.13	 0.15	 0.19	 0.06	 -0.36	

WASO	(min)	 0.41	 0.37	 0.26	 0.12	 0.22	 0.14	 -0.03	 0.48*	 0.15	
%	Stage	3	 0.45*	 0.32	 0.35	 0.17	 0.23	 0.18	 -0.04	 0.18	 0.28	
%	Stage	2	 0.00	 -0.16	 0.10	 -0.09	 -0.08	 0.17	 0.00	 0.13	 -0.18	
%	Stage	1	 0.19	 0.23	 -0.08	 -0.13	 -0.21	 -0.34	 -0.03	 -0.05	 0.24	
%	REM	 -0.52*	 -0.21	 -0.39	 0.08	 0.06	 -0.16	 0.06	 -0.31	 -0.14	

#	Arousals	 -0.28	 -0.54*	 -0.53*	 -0.26	 -0.42*	 -0.32	 0.13	 -0.09	 -0.54*	
#	Awakenings	 0.11	 0.48	 0.24	 0.06	 0.02	 -0.03	 -0.15	 0.10	 0.13	

Sleep	Latency	(min)	 0.18	 0.11	 0.15	 -0.12	 0.03	 0.06	 0.28	 -0.13	 -0.19	
Sleep	Efficiency	(%)	 -0.47*	 -0.40	 -0.36	 -0.09	 -0.21	 -0.21	 0.00	 -0.35	 -0.12	

Total	Sleep	Time	(min)	 -0.40	 -0.26	 -0.19	 0.06	 -0.07	 -0.04	 0.00	 -0.27	 0.05	

TABLE	10:	CORRELATION	TABLE	OF	PRE-SLEEP,	AWAKENING	AND	1-HOUR	POST	AWAKENING	
RECIPROCAL	VALUES	OF	IL-6	AND	TNF-α	AND	SQUARE	ROOT	VALUES	OF	CORTISOL	WITH	

STANDARD	MEASURES	OF	SLEEP	AND	GLYCEMIC	CONTROL	
#indicates	p	<	0.0001;	*	indicates	p<	0.05	
CONGA-1:	Continuous	Net	Glycemic	Action-1	Hour;	SD	Glucse:	Standard	Deviation	of	Glucose	
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Sleep	disruption	has	been	shown	to	impact	TNF-α	and	IL-6	levels.	Acute	sleep	deprivation	has	

been	reported	to	cause	an	increase	in	TNF-α	levels	with	no	effect	on	IL-6	levels	in	healthy	men	(77).		In	

another	study	of	total	sleep	deprivation,	Schearer	et	al.	(2001)	showed	that	IL-6	secretion	was	increased	

but	TNF-α	levels	were	not	affected	(78).		Investigators	have	also	reported	that	modest	sleep	restriction	

(6	hours	of	sleep)	increased	IL-6	levels	and	TNF-α	levels	in	men,	but	only	IL-6	levels	in	women	(168).		We	

report,	in	the	present	study,	elevations	in	TNF-α	after	a	night	of	normal	undisrupted	sleep	in	a	group	of	

young	adults	with	T1DM.		Additionally,	a	significant	negative	correlation	was	found	between	arousals	

and	the	reciprocal	of	IL-6	and	TNF-α;	which	indicates	a	positive	correlation	between	IL-6	and	TNF-α	and	

number	of	arousals.		This	supports	the	view	that	sleep	disruption	may	contribute	to	elevated	

inflammatory	activity	in	young	adults	with	T1DM.		

Elevated	levels	of	IL-6	and	TNF-α	have	been	reported	in	children	(158)	and	adults	(159)	with	

T1DM	as	compared	to	controls.		However,	no	studies,	to	our	knowledge,	have	examined	these	levels	in	

relation	to	the	sleep	period	in	people	with	T1DM.		In	the	present	study,	we	found	a	significant	increase	

in	the	awakening	and	one	hour	post	awakening	levels	of	TNF-α	as	compared	to	pre-sleep	values.	In	

contrast,	IL-6	levels	were	lower	upon	awakening	and	one	hour	after	awakening	in	our	sample.		TNF-α	

values	have	been	reported	to	not	exhibit	a	circadian	pattern	(169,170),	with	stable	levels	seen	

throughout	the	24-hour	period.	It	has	been	reported	that	IL-6	exhibits	a	circadian	pattern,	with	a	peak	

around	5	am	and	a	nadir	around	8	am	(171,172).		The	observed	post-sleep	decrease	in	IL-6	was	driven	by	

the	good	glycemic	control	group;	the	poor	glycemic	control	group	exhibited	no	decrease	in	IL-6.		This	

finding	suggests	that	the	normal	circadian	pattern	of	IL-6	may	be	disrupted	in	individuals	with	poor	

glycemic	control.		It	must	be	noted	that	HbA1c	and	number	of	arousals	were	themselves	correlated,	and	

when	HbA1c	was	controlled	by	multiple	regression,	the	relationship	of	arousals	to	TNF-α,	was	no	longer	

significant.		However,	even	after	controlling	for	HbA1c,	the	relationship	between	number	of	arousals	

and	IL-6	at	awakening	remained	significant.		Thus,	it	is	possible	poor	glycemic	control	impacts	both	sleep	
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and	inflammation	in	young	adults	with	T1DM.		Glycemic	control	has	been	implicated	in	changes	in	sleep	

architecture	in	T1DM(86).		The	lack	of	a	control	group	in	our	study	does	not	allow	us	to	define	any	

changes	in	sleep	architecture	associated	with	T1DM	per	se.	However	sleep	parameters	derived	from	the	

PSG	were	not	different	from	those	expected	for	this	age	group	(154).		

In	addition	to	altered	sleep	architecture,	glycemic	control	has	been	previously	reported	to	be	

significantly	correlated	to	inflammatory	marker	levels	in	adolescents	and	adults	with	T1DM	

(158,159,173).	Here	we	extend	this	finding,	reporting	an	effect	of	glycemic	control	on	pre-post	sleep	

changes	in	inflammatory	markers	in	T1DM.		TNF-α	levels	were	significantly	higher	in	the	morning	in	the	

poor	glycemic	control	versus	the	good	glycemic	control	group.		Despite	the	fact	that	IL-6	levels	were	

lower	for	the	entire	group	after	sleep,	the	good	glycemic	control	group	drove	the	decrease.		The	poor	

glycemic	control	group	did	not	have	significantly	lower	IL-6	values	in	the	morning	and,	further,	had	

significantly	higher	levels	1	hour	post	awakening	as	compared	to	the	good	glycemic	control	group	

(Figure	XIV).		This	finding,	along	with	the	positive	correlation	between	number	of	arousals	and	morning	

values	of	IL-6,	suggests	that	both	glycemic	control	and	altered	sleep	architecture	play	a	role	in	increased	

inflammation	in	individuals	with	poor	glycemic	control.		

The	TNF-α	and	IL-6	values	reported	here	are	not	elevated	beyond	what	has	been	reported	for	

healthy	subjects	(77,168,170).		Further,	they	are	similar	to	those	reported	by	Mitrovic	and	colleagues	

(2014)	in	subjects	with	T1DM	without	complications	(173),	as	well	as	Schram	and	colleagues	(159).	We	

do	not	have	a	control	group	for	comparison	of	our	values,	however	our	IL-6	values	were	much	lower	

than	those	reported	in	youth	(mean	age	15	years)	in	Snell-Borgeon’s	study	(7.8	pg/ml)	(158).		They	

measured	serum	levels	of	IL-6	and	we	measured	plasma	levels;	however	large	differences	in	serum	and	

plasma	levels	are	not	expected.		It	has	been	reported	that	IL-6	values	are	higher	in	people	7-17	years	old	

as	compared	to	those	greater	than	18	(174),	which	may	contribute	to	the	differences	in	IL-6	levels	

observed	here,	versus	those	reported	by	Snell-Borgeon	et	alles	(158).		
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Cortisol,	as	expected,	was	elevated	in	the	morning	as	compared	to	pre	sleep	values.		It	is	well	

known	that	cortisol	exhibits	a	peak	plasma	level	in	the	early	morning	(175,176).		Further,	cortisol	levels	

have	been	reported	to	rise	in	the	first	hour	after	awakening,	known	as	the	cortisol	awakening	response	

(177–179).		Our	findings	support	these	reports,	as	cortisol	levels	were	highest	one	hour	after	awakening.		

Elevated	24	hour	urinary	secretion	of	cortisol	has	been	reported	in	people	with	T1DM	(65),	however	the	

plasma	values	for	our	sample	were	within	normal	limits	(180).		Interestingly,	awakening	cortisol	level	

was	positively	correlated	to	minutes	of	wake	after	sleep	onset	(WASO),	but	cortisol	1-hour	after	

awakening	was	negatively	correlated	to	number	of	arousals	and	HbA1c.		The	reasons	behind	these	

findings	are	unclear,	however	it	is	possible	that	individuals	with	longer	awakenings	through	the	night	

had	more	stress	upon	awakening	resulting	in	elevation	of	awakening	cortisol	levels.		In	contrast,	

individuals	whose	sleep	was	more	disrupted	by	arousals	(more	shifts	to	higher	EEG	frequencies	but	did	

not	lead	to	awakenings)	had	a	blunted	cortisol	awakening	response.		It	has	been	reported	that	sleep	

restriction	and	insomnia	result	in	lower	morning	levels	of	salivary	cortisol	(81,82).		A	recent	study	in	

children	with	T1DM	reported	that	children	with	high	HbA1c	had	significantly	higher	cortisol	levels	than	

those	with	low	HbA1c	(66).		Our	findings	suggest	the	opposite,	high	HbA1c	was	associated	with	lower	1-

hour	post	awakening	cortisol	levels.		It	is	not	clear	what	the	mechanism	behind	a	decrease	in	1-hour	

post	awakening	cortisol	levels	and	HbA1c	could	be,	however	it	may	be	due	to	the	relationship	between	

increased	arousals	and	lower	cortisol	levels	as	HbA1c	and	number	of	arousals	were	significantly	

correlated.		Our	findings	support	that	in	a	small	group	with	T1DM,	cortisol	secretion	follows	a	normal	

pattern.	

Our	study	has	notable	limitations.		The	sample	size	was	small	and	lacks	a	control	group,	it	was	a	

homogenous	group	of	subjects	with	T1DM	and	it	was	observational	in	nature.		Further,	sleep	was	

measured	in	a	laboratory	setting,	so	it	is	possible	that	the	relationships	reported	may	be	different	for	

sleep	in	the	home	environment.		Future	interventional	studies	with	larger	sample	sizes	and	control	
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groups	conducted	in	a	natural	setting	should	further	investigate	the	relationships	reported	in	the	

present	study.			

In	summary,	we	report	increases	in	inflammatory	marker	TNF-α	after	sleep	in	a	small	group	of	

young	adults	with	T1DM.		Further,	notable	differences	were	found	between	inflammatory	profiles	in	

those	with	good	glycemic	control	compared	to	those	with	poor	glycemic	control.		Arousals	during	the	

sleep	period	were	significantly	correlated	with	morning	IL-6	and	TNF-α,	and	morning	cortisol	levels	were	

lower	in	those	with	poor	glycemic	control	and	with	more	arousals	through	the	night.		Our	findings	

suggest	that	poor	glycemic	control	and	sleep	disruption	each	may	promote	inflammation	in	young	adults	

with	T1DM.	Understanding	the	relationships	between	sleep,	inflammation	and	glycemic	control	is	

important	to	inform	improved	clinical	management	strategies	that	could	decrease	CVD	development	

and	improve	quality	of	life	in	people	with	T1DM.
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VI.	DISCUSSION		

A.		 Overview	

The	first	aim	of	this	dissertation	study	was	to	define	sleep	architecture	and	its	relationship	to	

glucose	variability	in	young	adults	with	Type	1	Diabetes	Mellitus	(T1DM).	The	findings	detailed	in	

chapters	2	-	4	support	my	a	priori	hypothesis	that,	in	this	population,	changes	in	sleep	and	glucose	

exhibit	biologically	and	statistically	significant	coupling	that	is	both	bi-directional	and	time-varying.	

Because	it	is	a	joint	time-frequency	transformation,	Wavelet	Coherence	Analysis	(WCA)	is	a	powerful	

tool	to	identify	coupling	between	two	time	series	even	when	this	coupling	is	time-varying	and	depends	

upon	the	speed	of	fluctuations	in	the	underlying	waveforms.	WCA	demonstrated	that	sleep	and	glucose	

fluctuations	often	are	strongly	coupled,	but	that	this	coupling	varies	with	time	and	depends	on	

fluctuation	speed	when	sleep	is	measured	either	by	actigraphy	in	the	home	environment	(Chapter	2)	or	

by	PSG	in	the	laboratory	(Chapter	3).	Despite	its	strengths,	WCA	is	analogous	to	correlation	analysis	and	

does	not	provide	information	on	potential	causal	relationships	between	two	time	series.			

Using	Granger	analysis,	I	demonstrated	that	sleep	and	glucose	changes	are	causally	related	and	

this	is	bi-directional	(Chapter	4).		Here,	qEEG	analysis	was	employed	to	provide	a	quantitative	readout	

on	the	level	of	physiological	arousal,	including	sleep	depth,	during	the	overnight	PSG	recordings.	Delta	

Band	EEG	activity	is	characteristic	of	deep	sleep;	Theta	Band	activity	is	characteristic	of	light	sleep	or	

dreaming	sleep;	whereas	Alpha,	Beta	and	Gamma	Band	activities	reflect	wakefulness.	Across	all	5	of	

these	EEG	Bands,	70%	to	100%	of	all	subjects	demonstrated	a	causal	connection	with	glucose.		In	each	

Band,	more	subjects	demonstrated	significant	causality	with	EEG	driving	glucose	change	than	with	

glucose	driving	EEG	change.		However,	in	the	Alpha	and	Theta	EEG	Bands,	there	were	approximately	

equal	numbers	of	subjects	in	each	group.		A	small	number	of	subjects	demonstrated	simultaneous	

bidirectional	coupling	during	a	single	night	(5	subjects	for	Alpha	and	5	for	Theta).			
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When	assessing	the	sense	of	the	relationship	for	instances	of	significant	Granger	causality,	the	

VAR	coefficient	analysis	and	initial	impulse	response	function	analysis	showed	consistent	patterns	

(Chapter	4).		When	changes	in	Beta	or	Delta	Band	EEG	activity	were	driving	changes	in	glucose,	the	

relationship	was	positive	(increasing	EEG	activity	led	to	increasing	glucose)	and	the	converse	was	true	

for	the	Theta	Band	(increasing	Theta	EEG	activity	led	to	decreasing	glucose).		When	glucose	changes	

were	driving	EEG,	an	increase	in	glucose	led	to	decreased	Delta	and	Theta	Band	power	and	increased	

Alpha	Band	power.		Cross-Correlation	function	analysis	was	also	employed	to	identify	any	consistent	

time	lag	that	was	associated	with	the	causal	influences	of	glucose	on	EEG	power	or	vice	versa.		The	main	

finding	was	that	all	subjects	exhibited	a	peak	in	the	correlation	function	at	or	near	a	zero	lag.		In	subjects	

with	the	global	peak	correlation	observed	at	a	lag	of	0	±	10	minutes,	Alpha	activity	versus	glucose	

demonstrated	a	positive	correlation	and	Theta	activity	versus	glucose	demonstrated	a	negative	

correlation	(Chapter	4),	consistent	with	the	findings	from	the	VAR	coefficient	and	initial	impulse	

response	analyses.		Taken	collectively,	these	findings	support	the	view	that	increasing	glucose	can	drive	

changes	in	EEG	activity	consistent	with	arousal	or	awakening	from	sleep,	and	that	this	change	in	

behavioral	state	may,	in	turn,	drive	either	a	further	increase	or	a	corrective	decrease	in	glucose	level.		

This	further	supports	the	existence	of	both	positive	and	negative	feedback	loops	involving	both	glucose	

and	brain	activity	in	young	adults	with	T1DM.		

The	second	aim	of	this	dissertation	study	was	to	quantitatively	define	the	relationships	among	

sleep,	inflammatory	cytokines,	and	endocrine	stress	markers	measured	before	and	after	sleep	in	young	

adults	with	T1DM.		I	hypothesized	that	the	inflammatory	markers	IL-6	and	TNF-α,	as	well	as	cortisol	

would	be	elevated	after	sleep	as	compared	to	before	sleep.		The	findings	from	my	study	support	that	

TNF-α	is	elevated	and	IL-6	is	decreased	after	sleep	as	compared	to	before	sleep	in	a	small	group	of	

young	adults	with	T1DM.		Cortisol	was	elevated	in	the	morning	as	compared	to	before	sleep	in	this	

group	(Chapter	5).		When	comparing	subjects	with	good	(HbA1c	≤	7.0%)	versus	poor	(HbA1c	>	7.0%)	
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glycemic	control,	TNF-α	levels	were	significantly	higher	upon	awakening	and	one	hour	after	awakening	

in	those	with	poor	glycemic	control.		Further,	only	subjects	with	good	glycemic	control	demonstrated	

lower	IL-6	levels	after	sleep,	and	the	levels	of	IL-6	were	significantly	higher	in	those	with	poor	versus	

good	glycemic	control	one	hour	after	awakening.		Finally,	increasing	frequency	of	arousals	during	sleep	

was	associated	with	increased	morning	IL-6	level,	even	after	controlling	for	HbA1c.	These	findings	argue	

that	sleep	disruption	and	poor	glycemic	control	may	each	independently	contribute	to	the	increased	

inflammation	and	CVD	risk	seen	in	T1DM.			

B.	 Glucose	Variability	as	a	Driver	of	Sleep	Disruption	

The	findings	from	Granger	analysis	coupled	with	VAR	coefficient	and	initial	impulse	response	

function	analyses	support	the	conclusion	that	when	glucose	drives	EEG	changes	during	sleep,	increasing	

glucose	causes	a	shift	from	sleep	toward	arousal	or	awakening;	increasing	Alpha	and	decreasing	Delta	

and	Theta	Band	EEG	activity.		Results	from	cross-correlation	function	analysis	suggest	that	causal	

interactions	with	glucose	driving	brain	activity	during	sleep	most	often	occur	within	short	latencies	of	

≤10	minutes.	Further,	coherence	analysis	demonstrated	that	Rapid	fluctuations	in	glucose	and	EEG	

exhibited	multiple	intervals	of	significant	coupling	that	were	brief	in	duration,	consistent	with	arousals	

or	brief	awakenings	through	the	night.		Decreased	sleep	quality	has	been	reported	in	both	adults	and	

children	with	T1DM	(83–85)	and	altered	sleep	architecture,	specifically	less	slow	wave	sleep,	has	been	

reported	in	adults	and	adolescents	with	T1DM	(86,141).		My	findings	suggest	that	increases	in	glucose	

through	the	night	may	be	one	important	mechanism	contributing	to	disrupted	sleep	in	people	with	

T1DM.		The	number	of	nighttime	arousals	was	significantly	higher	in	subjects	who	had	significant	

causality	for	Glucose	driving	EEG	changes.		Stage	2	sleep	was	higher	and	Stage	3	sleep	was	lower	in	

these	subjects	as	well,	but	the	differences	were	not	significant;	mean	glucose	was	also	higher	(not	

significant)	in	this	group.	Notably,	no	differences	were	observed	for	traditional	measures	of	glucose	

variability	(standard	deviation	of	glucose	or	CONGA-1)	for	the	overnight	period	between	subjects	who	
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had	significant	causality	for	Glucose	driving	EEG	changes	in	the	Theta	or	Alpha	Bands	versus	those	who	

did	not.		Overall	variability	may	not	be	the	important	predictor	of	sleep	disruption,	it	may	be	the	rate	of	

change	in	glucose	during	the	night.		Rapid	decreases	in	glucose	(>25	mg/dl/hr)	were	associated	with	

increased	awakenings	from	sleep	in	children	with	T1DM	(105),	but	these	authors	did	not	assess	the	

temporal	relationship	between	rapid	increases	in	glucose	and	awakenings.	Thus,	it	is	plausible	that	the	

rate	of	change	in	glucose	during	a	sleep	period	may	be	an	important	factor	causing	sleep	disruption.			

Not	all	subjects	exhibited	significant	causal	coupling	of	glucose	driving	EEG	changes	throughout	

the	study	night.		This	may	be	due	to	the	fact	that	on	a	given	night,	not	all	subjects	experienced	rapid	

glucose	increases	(or	decreases)	which	could	lead	to	an	arousal	or	an	awakening.		In	future	studies,	

more	than	one	study	night	will	be	needed	to	fully	define	the	causal	impact	of	glucose	fluctuations	as	a	

source	of	awakenings	or	arousals	from	sleep	in	T1DM.		Further,	Granger	analysis	uses	the	glucose	and	

EEG	power	from	the	entire	night.		Wavelet	coherence	showed	that	glucose	and	EEG	changes	exhibit	

time-varying	coupling	and	this	coupling	is	different	for	different	fluctuation	speeds.		Thus,	it	may	that	at	

certain	points	during	the	night,	a	glucose	change	is	driving	a	change	in	EEG,	but	at	other	times	a	change	

in	EEG	is	driving	a	change	in	glucose	and	when	these	patterns	are	averaged	through	the	night,	the	

relationship	is	diminished.		Future	interventional	studies	in	which	either	sleep	or	glucose	are	controlled	

will	help	to	fully	define	the	mechanisms	coupling	glucose	changes	to	ensuing	EEG	changes.	

C.	 Sleep	as	a	Driver	of	Glucose	Variability	

In	this	study,	more	than	half	of	the	subjects	exhibited	instances	of	EEG	driving	glucose	changes	

during	normal	nocturnal	sleep	in	the	laboratory,	suggesting	that	the	sleep	process	may	play	an	

important	role	in	regulating	glucose	throughout	the	night	in	individuals	with	T1DM.		In	previous	studies,	

researchers	have	demonstrated	that	sleep	significantly	impacts	metabolic	control.		Reduced	insulin	

sensitivity	has	been	reported	in	healthy	subjects	following	one	week	of	sleep	restriction	(73)	or	a	single	

night	of	sleep	fragmentation	(increased	arousals)	(72).		Similar	findings	have	been	reported	in	adults	
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with	T1DM,	where	reduced	insulin	sensitivity	was	observed	following	a	single	night	of	sleep	restriction	

to	four	hours	(92).		These	previous	studies	examined	the	impact	of	experimental	manipulations	of	the	

sleep	process	on	glucose	control.	In	contrast,	this	dissertation	study	quantified	interactions	between	the	

spontaneous	fluctuations	of	physiological	arousal	characteristic	of	normal	sleep,	and	real	time	

fluctuations	in	interstitial	glucose	concentration.		Both	VAR	coefficient	analysis	and	initial	impulse	

response	analysis	identified	that	increasing	EEG	power	in	the	Beta	Band,	characteristic	of	wakefulness,	

or	in	the	Delta	Band,	observed	during	slow	wave	or	deep	sleep,	resulted	in	increasing	glucose	levels.		

Conversely,	increasing	EEG	power	in	the	Theta	Band,	which	is	associated	with	light	non-dreaming	sleep	

as	well	as	dreaming	(REM)	sleep,	resulted	in	decreasing	glucose.			

Although	the	mechanisms	underlying	these	causal	impacts	of	brain	activity	on	glucose	cannot	be	

determined	from	this	observational	study,	several	possibilities	are	supported	by	the	literature.		Brain	

metabolism	has	been	reported	to	increase	during	REM	sleep	and	decrease	during	NREM	sleep	

(181,182).		Thus,	it	is	possible	that	when	subjects	experienced	REM	sleep	in	my	study	(manifested	by	

increasing	Theta	Power),	glucose	levels	declined.		My	findings	are	consistent	with	a	previous	report	in	

which	REM	sleep	was	associated	with	decreased	glucose	measured	by	CGMS	in	healthy	men	(183).		

Growth	hormone	secretion	is	normally	increased	during	slow	wave	sleep	(increased	Delta	power)	(143).		

Growth	hormone	decreases	insulin	sensitivity	which	could	result	in	increasing	glucose	levels	(70),	

consistent	with	my	observation	that	increased	Delta	Band	power	was	causally	related	to	increasing	

glucose.		Results	from	Granger	Analysis	do	not	give	a	time	scale	to	the	relationships	noted.		During	

normal	sleep,	there	is	an	ultradian	cycling	between	periods	of	REM	and	non-REM	(NREM)	sleep,	

characteristically	progressing	from	onset	(stage	1,	light	sleep)	to	deep	slow	wave	sleep	(high	Delta	

power),	followed	by	REM	sleep	(high	Theta	power)	and	a	return	to	light	sleep	approximately	every	60-

120	minutes	throughout	the	night	(184).	Future	studies	which	control	either	sleep	or	glucose	levels	may	

help	to	provide	insight	on	the	time	course	by	which	these	changes	in	glucose	occur.			
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Increased	Beta	power,	associated	with	wakefulness,	resulted	in	increased	glucose	levels	in	my	

subjects.		Increasing	glucose	may	be	due	to	increased	sympathetic	activation,	e.g.	increased	epinephrine	

levels,	pursuant	to	awakening	or	arousal.		Awakening	from	sleep	causes	increased	epinephrine	levels	

(185)	and	epinephrine	elevates	glucose	(186).		Thus,	increased	awakening	through	the	night	may	drive	

increasing	glucose	secondary	to	elevated	epinephrine	levels.		It	is	also	interesting	to	note	that	glucose	

variability,	measured	by	CONGA-1,	was	significantly	associated	with	coherence	between	rapid	(Rapid	

Range)	fluctuations	of	glucose	and	EEG	power	in	the	Gamma	and	Beta	Bands.		Thus,	increasing	

awakenings	may	result	in	short-term	increases	in	glucose	level	that	contribute	to	elevated	glucose	

variability.			

Collectively,	these	findings	highlight	that	even	during	a	normal	night	of	sleep,	there	are	

physiologic	changes	that	can	have	potentially	important	impacts	on	glucose	levels	in	young	adults	with	

T1DM.				

D.	 Inflammation	Is	Altered	by	Sleep	Processes	and	Glycemic	Control	

	 As	reported	in	Chapter	5,	TNF-α	was	increased	in	subjects	post-sleep	as	compared	to	pre-sleep.			

There	was	also	a	significant	effect	of	glycemic	control;	people	with	poor	control	(HbA1c	>	7.0%)	had	

higher	levels	of	TNF-α	in	the	morning.		IL-6	levels	decreased	after	sleep,	however,	this	change	was	

completely	driven	by	the	good	glycemic	control	group.	IL-6	level	was	equivalent	before	and	after	sleep	

for	the	poor	glycemic	control	group	and	the	one-hour	post-awakening	values	of	IL-6	were	significantly	

higher	in	the	poor	control	versus	the	good	glycemic	control	group.		A	nadir	in	IL-6	secretion	during	the	

morning	hours	has	been	reported	(171),	but	TNF-α	has	not	been	reported	to	exhibit	a	circadian	pattern	

(169,170).	Thus,	my	findings	suggest	the	possibility	that	the	sleep	process	per	se	results	in	perturbation	

of	inflammation	and	this	effect	is	more	profound	in	people	with	poor	glycemic	control.		Other	

investigators	have	reported	associations	between	glycemic	control	and	both	TNF-α	and	IL-6	

(158,159,173).	However,	the	relationship	between	sleep	and	inflammation	has	not	been	systematically	
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investigated	in	young	adults	with	T1DM.		It	is	also	interesting	to	note	that	the	IL-6	level	upon	awakening	

was	significantly	associated	with	the	number	of	arousals	during	the	preceding	night,	even	after	adjusting	

for	HbA1c	level.		This	suggests	an	independent	effect	of	disrupted	sleep	leading	to	increased	

inflammation	the	next	day.		If,	over	time,	disrupted	sleep	leads	to	chronically	elevated	inflammatory	

processes,	this	could	represent	one	source	of	accelerated	CVD	development	in	T1DM.		It	must	be	noted	

that	the	observed	levels	of	IL-6	and	TNF-α	were	not	elevated	beyond	what	is	reported	in	the	literature	

for	healthy	controls	(169,171).		Future	studies	with	control	groups	and	interventions	controlling	sleep	or	

glucose	are	needed	to	determine	the	mechanisms	behind	the	observed	disruptions	to	inflammatory	

process.		Despite	this,	my	findings	highlight	the	importance	of	investigating	the	role	of	sleep	and	

interactions	between	sleep	and	glucose	control	in	inflammation	development	in	people	with	T1DM.	

	 Cortisol	was	significantly	elevated	after	sleep	as	compared	to	pre-sleep,	which	is	a	normal	

physiological	finding.		It	is	well	known	that	cortisol	secretion	peaks	in	the	early	morning	hours	(175,176).		

Cortisol	normally	increases	further	during	the	first	hour	after	awakening,	a	phenomenon	known	as	the	

cortisol	awakening	response	(177–179).		My	subjects	with	T1DM	demonstrated	an	apparently	normal	

cortisol	awakening	response,	with	the	highest	values	of	cortisol	seen	one	hour	after	awakening.	No	

differences	in	cortisol	were	noted	between	glycemic	control	groups.		However,	the	lack	of	a	control	

group	does	not	allow	a	determination	of	whether	the	morning	elevation	in	cortisol	is	abnormal	for	

people	with	T1DM.		Future	studies	with	control	groups	are	needed	to	determine	if	sleep	in	T1DM	may	

mediate	cortisol	levels.			

E.	 Sleep,	Glucose	Variability	and	Inflammation:	A	Vicious	Cycle?	

Figure	XV	provides	a	framework	for	synthesis	and	interpretation	of	all	dissertation	findings	

reported	above.	It	is	likely	that	the	patterns	of	physiological	arousal	and	the	associated	brain	activity	

characteristic	of	the	normal	sleep	process	impact	people	with	T1DM	differently	than	non-diabetic	

controls.		During	a	normal	night	of	sleep,	an	individual	will	cycle	between	NREM	and	REM	sleep.		A	bout	
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of	slow	wave	sleep	(high	Delta	power)	can	initiate	an	increase	in	glucose,	likely	through	increased	

growth	hormone	secretion,	which	decreases	insulin	sensitivity.		In	people	without	diabetes,	the	

pancreas	maintains	the	glucose	levels	within	normal	ranges	by	increasing	and	decreasing	insulin	

secretion	in	response	to	changes	in	glucose	due	to	normal	sleep.		However,	in	an	individual	with	T1DM	

who	does	not	sense	the	initial	increase	in	glucose	and	increase	insulin	secretion,	these	changes	in	

glucose	level	due	to	sleep	are	unmasked,	and	the	glucose	level	will	continue	to	rise.		As	the	sleep	

process	cycles	from	slow	wave	sleep	to	REM	sleep,	the	effects	of	brain	activity	on	glucose	will	shift:	

Delta	activity	will	decrease,	decreasing	growth	hormone	secretion,	improving	insulin	sensitivity	and	

allowing	glucose	level	to	drop;	simultaneously,	Theta	activity	will	increase,	brain	glucose	utilization	will	

increase,	and	again	glucose	will	drop.		Through	these	pathways,	as	supported	by	the	findings	of	this	

dissertation	study,	the	normal	cycling	of	NREM	and	REM	sleep	will	drive	larger	glucose	fluctuations	in	

individuals	with	T1DM	than	in	healthy	individuals	who	can	mount	effective	insulin	and	glucagon	

responses	to	control	glucose.	

Increasing	glucose	levels,	especially	ones	that	are	more	rapid	in	nature,	may	precipitate	an	

arousal	or	awakening,	manifested	as	increased	Alpha,	Beta	and	Gamma	power	and	decreased	Delta	and	

Theta	power.		The	arousal-related	shift	from	Theta	to	Alpha	and	Beta	power	can	result	in	positive	

feedback,	driving	a	further	increase	in	glucose.		The	arousal	also	decreases	Delta	power;	decreasing	

growth	hormone	secretion;	increasing	insulin	sensitivity;	and	initiating	a	corrective	decrease	of	glucose.	

The	net	effect	on	glucose	will	depend	on	the	relative	strength	of	these	parallel	and	offsetting	pathways	

at	any	given	time.		If	a	net	decrease	in	glucose	is	rapid	in	nature,	this	too	may	result	in	an	awakening	

from	sleep	(105)	and	that	awakening	(shift	to	higher	frequency	EEG)	may	result	in	an	increase	in	glucose,	

again	depending	on	the	relative	strength	of	the	parallel	negative	and	positive	feedback	loops.	Taken	

together,	these	factors	suggest	that	the	increased	variability	of	glucose	level	typically	observed	in	

individuals	with	T1DM	may	be	even	more	severe	during	sleep	than	during	wakefulness,	due	to	
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increasing	fluctuations	of	physiological	arousal	and	concomitant	brain	activity.		Simultaneously,	these	

wider	glucose	fluctuations	may	be	expected	to	drive	fragmentation	of	sleep	in	individuals	with	T1DM.		

One	additional	homeostatic	pathway	that	may	serve	to	dampen	wide	fluctuations	in	glucose	and	

attendant	sleep	fragmentation	in	T1DM	is	cortisol	secretion.		Cortisol	is	a	counter-regulatory	hormone	

secreted	when	glucose	level	drops.	Like	growth	hormone,	increasing	cortisol	levels	reduce	insulin	

sensitivity,	in	turn	initiating	a	corrective	increase	in	glucose	level.		The	level	of	physiological	arousal	also	

may	influence	cortisol	secretion.		I	observed	a	negative	association	between	morning	cortisol	levels	and	

the	number	of	arousals	during	the	previous	night	of	sleep;	suggesting	the	possibility	that	in	people	with	

T1DM,	when	increasing	glucose	initiates	an	arousal	from	sleep,	this	may	cause	decreased	cortisol	

secretion,	in	turn	helping	to	decrease	glucose	level.	The	efficacy	of	this	homeostatic	pathway,	again,	will	

likely	vary	among	individuals	and	even	from	night	to	night,	depending	on	the	balance	of	positive	and	

negative	feedback	effects	between	glucose	and	physiological	arousal.	

As	depicted	in	Figure	XV,	my	findings	also	support	the	view	that	both	poor	glycemic	control	and	

sleep	disruption	can	promote	inflammatory	processes,	thereby	increasing	risks	for	CVD	development	

(157).		Hyperglycemia	(158,173,187)	and	sleep	disruption	(77,170,171)	are	well	recognized	correlates	of	

elevated	inflammatory	cytokines	such	as	IL-6	and	TNF-α.		But	it	remains	unclear	to	what	extent	these	

two	factors	are	important	in	individuals	with	T1DM,	and	whether	sleep	fragmentation	may	serve	as	an	

important	mediator	of	inflammatory	responses	secondary	to	glycemic	variability.	Granger	analysis	

demonstrated	that	glucose	fluctuations	can	be	an	important	source	of	arousal/awakening	from	sleep	

and	that	sleep	fragmentation,	in	turn,	was	significantly	related	to	increased	morning	IL-6	levels,	

independent	of	average	glycemic	control	(HbA1c).		Moreover,	morning	IL-6	and	TNF-α	levels	were	

significantly	higher	among	individuals	with	poor	glycemic	control.	Together,	these	observations	argue	

that	sleep	fragmentation	may	be	an	important	mediator	of	elevated	inflammatory	responses	secondary	

to	poor	glycemic	control.			
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Figure	XV	illustrates	several	other	factors	that	may	also	play	significant	roles	in	disrupting	sleep	

and	glucose	in	individuals	with	T1DM.		I	identified	a	significant	circadian	pattern	to	the	coupling	

between	glucose	and	activity	in	my	subjects,	with	a	peak	coherence	observed	around	5	pm.		If	an	

individual	experiences	a	phase	delay	or	advance,	such	as	when	traveling	across	time	zones	or	staying	up	

late	and	sleeping	in	on	weekends,	this	may	result	in	alteration	of	normal	circadian	coupling	between	

activity	in	glucose,	potentially	exacerbating	derangements	of	nighttime	glucose	homeostasis	and	

disruptions	of	sleep.		Lifestyle	choices	including	daytime	food	and	alcohol	intake	as	well	as	physical	

activity	can	have	delayed	impacts	on	glucose	metabolism	that	can	later	occur	during	the	night,	resulting	

in	sleep	disturbances.	Further,	self-management	of	T1DM	may	include	setting	an	alarm	to	check	blood	

sugar	in	the	middle	of	the	night	(especially	if	the	individual	ate	or	drank	something	which	he	or	she	

knows	can	have	a	delayed	impact	on	glucose	level)	causing	planned	sleep	disruption,	with	potentially	

negative	attendant	effects	on	glucose	homeostasis	and	inflammatory	processes.			Thus,	common	

patterns	of	behavior	for	individuals	with	T1DM	may	further	exacerbate	the	sleep	disruptions	caused	by	

nighttime	glucose	variations	characteristic	of	this	disorder.		It	is	evident	that	there	is	a	need	to	

determine	the	clinical	implications	of	lifestyle	as	well	as	clinical	self-management	behaviors	on	sleep	in	

individuals	with	T1DM.		It	is	possible	that	these	behaviors	can	be	modified	to	ultimately	improve	sleep,	

glycemic	control	and	longevity	in	people	with	T1DM.			

F.	 Conclusions	and	Implications	

	 Findings	from	my	study	highlight	that	there	is	a	bi-directional	and	time	varying	relationship	

between	sleep	and	glucose	in	young	adults	with	T1DM.		Glucose	fluctuations	can	drive	changes	in	sleep	

and	sleep	disruption	can	drive	changes	in	glucose.		Further,	restriction	or	disruption	of	the	sleep	process	

may	exacerbate	inflammation	in	people	with	T1DM.		This	dissertation	provides	evidence	that	

interactions	between	sleep	and	glucose	fluctuations	are	regulated	by	multiple	nested	feedback	loops	

with	the	potential	to	exert	vicious	cycle	interactions	with	attendant	elevations	of	glycemic	variability	and	
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sleep	disruption.	In	turn,	these	disturbances	each	can	contribute	to	increased	inflammation,	potentially	

accelerating	the	incidence	or	progression	of	CVD	in	individuals	with	T1DM.			

	 Future	studies	aimed	at	delineating	the	mechanisms	behind	the	relationships	reported	in	this	

study	are	critical	to	guide	clinical	interventions	intended	to	improve	glycemic	control	and	further	

decrease	CVD	development	in	T1DM.		For	example,	if	we	can	understand	the	time	delay	by	which	

changes	in	the	sleep	process	result	in	increasing	or	decreasing	glucose,	we	can	optimize	insulin	delivery	

to	minimize	these	changes.		Studies	to	define	the	impact	of	lifestyle	and	self-management	related	sleep	

disruptions	are	needed,	because	these	behaviors	are	potentially	modifiable.		Modifying	behaviors	may	

result	in	improved	sleep	quality	through	less	sleep	disruption,	ultimately	improving	glycemic	control	and	

decreasing	inflammation.		

	 In	summary,	my	findings	highlight	an	important	role	for	sleep	in	both	glucose	homeostasis	and	

inflammation	in	young	adults	with	T1DM.		These	findings	lay	the	essential	foundation	to	develop	future	

mechanistic	studies	yielding	information	essential	to	improve	clinical	management	of	T1DM	and	

ultimately	quality	of	life	for	these	individuals.
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FIGURE	XV.	SCHWARZ	FARABI	FRAMEWORK	
• The	central	aspect	is	level	of	physiological	arousal,	specifically	during	sleep,	which	is	influenced	by	many	factors	for	those	with	T1DM,	including	circadian	influences,	

lifestyle	choices	and	self-management	decisions.	Level	of	arousal	is	reflected	in	brain	activity,	which	can	be	separated	into	Delta	(Δ),	Theta	(Θ),	Alpha	(α),	Beta	(β)	and	
gamma	(γ)	activity	using	qEEG	analysis.	Delta	and	Theta	activity	are	characteristic	of	sleep;	Delta	patterns	predominate	during	deep	sleep,	Theta	activity	is	higher	
during	REM,	or	dreaming	sleep.		Delta	and	Theta	activity	are	suppressed	by	heightened	levels	of	arousal	and	when	arousal	level	drops,	this	inhibition	dissipates	and	
sleep	begins.	Sleep	proceeds	with	an	orderly	ultradian	alternation	between	NREM	and	REM	sleep	until	arousal	again	suppresses	Delta	and	Theta	activity	while	
simultaneously	increasing	Alpha,	Beta	and	Gamma	activity.	My	data	support	that	increasing	Delta	activity	increases	glucose	levels	possibly	due	to	increasing	growth	
hormone	and	decreasing	insulin	sensitivity.		Conversely,	increased	Theta	activity	characteristic	of	REM	sleep	can	drive	a	decrease	in	glucose,	possibly	due	to	increased	
glucose	utilization	rate	seen	in	REM	sleep.		My	data	also	support	that	high	frequency	brain	activity	(Beta	and	Gamma)	associated	with	arousal	or	awakening	also	
increases	glucose	levels.			

• Each	of	these	influences	of	brain	activity	on	glucose	is	expected	to	manifest	more	clearly	in	individuals	with	T1DM,	because	the	normal	primary	homeostatic	systems	
responsible	for	maintaining	constant	glucose	levels,	insulin	and	glucagon	secretion	from	the	pancreas	are	absent	or	impaired.		This	leads	to	a	situation	where	
circulating	glucose	levels	become	much	more	variable,	as	is	characteristic	of	T1DM.	My	data	also	demonstrate	that	increasing	glucose	drives	increasing	arousal	level.		
This	lays	a	foundation	for	multiple	possible	feedback	loops	involving	glucose	and	arousal	state.		Delta	activity	provides	a	negative-feedback,	or	homeostatic	loop;	a	
spontaneous	increase	in	glucose	reduces	Delta	activity,	which	provides	a	decrease	of	glucose	back	toward	baseline	(“correcting”	the	increase).		The	same	increase	of	
glucose	(causing	an	arousal)	will	lead	to	a	parallel	decrease	of	Theta	activity	which	will	have	the	opposite	effect	–	a	further	increase	of	glucose,	providing	a	positive-
feedback.	Similarly,	increased	glucose	will	increase	high	frequency	EEG,	again	driving	a	further	increase	of	glucose.		So	there	exists	the	potential	for	both	“vicious	
cycles”	of	increasing	(or	decreasing)	glucose,	as	well	as	at	least	one	homeostatic	feedback	loop	involving	brain	activity.	The	net	effect	will	depend	on	the	relative	
strength	of	these	feedback	loops,	which	may	vary	as	a	function	of	time.	Another	important	feedback	loop	may	remain	active,	even	in	those	with	T1DM:	the	
counterregulatory	response	of	cortisol.	Hypoglycemia	triggers	secretion	of	cortisol,	impairing	insulin	sensitivity	and	allowing	glucose	level	to	rise,	or	“correct”.		Again,	
this	is	a	negative	feedback	homeostatic	loop	controlling	glucose,	which	may	complement	the	Delta	activity	homeostatic	feedback	loop.		My	data	also	support	that	
increasing	arousal	level	(number	of	arousals	during	sleep)	may	lead	to	reduced	cortisol	level.	The	net	effect	of	a	spontaneous	increase	of	glucose	would	be	a	
“corrective”	decrease	of	glucose	back	toward	baseline.		Thus,	again,	we	see	that	the	regulatory	interaction	between	physiological	arousal	and	glucose	encompasses	
multiple	positive	and	multiple	negative	nested	feedback	loops	–	and	the	strength	of	each	loops	may	be	time	varying.		

• A	central	hypothesis	of	this	work	is	that	disturbances	of	sleep	and	arousal	processes	represent	a	mediating	factor	linking	glucose	variability	to	elevated	inflammatory	
processes	in	T1DM.		My	data	in	fact,	support	this	hypothesis.		Not	only	do	glucose	variations	have	the	potential	to	perturb	sleep	and	arousal	state,	but	increased	
arousals	in	the	form	of	sleep	fragmentation	are	associated	with	elevated	IL-6	levels	even	after	controlling	for	glucose.		Thus,	part	of	the	impact	of	glucose	variability	on	
inflammation	may	be	exerted	indirectly	by	sleep	fragmentation	driving	elevated	biomarker	levels.		It	is	possible	this	is	due	to	increased	sympathetic	nerve	activation	
(sympathoexcitation)	which	has	been	reported	by	other	studies	of	sleep	fragmentation.			

• It	is	important	to	recognize	that	various	elements	of	this	system	may	be	operating	on	intrinsically	different	time	scales.		For	example,	HbA1c	provides	a	convenient	and	
accessible	measure	of	average	glucose	level	over	a	period	of	several	months.		Whereas	circadian	influences	occur	daily,	cyclical	alternations	of	NREM	and	REM	sleep	
occur	on	a	period	of	one	to	two	hours	and	arousals	from	sleep	may	last	only	seconds.		Also,	increases	of	glucose	(manifested	as	high	HbA1c)	also	are	associated	with	
increased	levels	of	inflammatory	markers,	and	this	interaction	probably	occurs	over	a	period	of	hours	to	days.	Conversely,	elevated	inflammatory	states	lead	to	
increased	risks	for	cardiovascular	disease	and	morbidity	that	may	play	out	over	a	period	of	years.
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Appendix	A	
Detailed	Methods	for	Statistical	Approach	of	Determining	Relationships	between	EEG	Power	and	

Glucose	during	PSG	Study	and	Activity	and	Glucose	over	60	hour	Study	Period	
Introduction:	

This	appendix	provides	additional	information	for	each	of	the	three	main	analyses	used	to	
determine	the	relationship	between	changes	in	EEG	and	glucose	variations	in	young	adults	with	T1DM.		
Three	complementary	analyses	were	used,	Granger	Analysis,	Cross-Correlation	Function	Analysis	and	
Wavelet	Coherence	Analysis.		Wavelet	coherence	was	also	applied	to	60-hours	of	continuous	glucose	
and	activity	data	collected	during	the	study.		Details	are	provided	for	this	analysis	in	the	wavelet	
coherence	section	as	well.	

	
Pre-processing	for	EEG	data	

Six	EEG	derivations	were	recorded:	two	frontal	(F3/A2	and	F4/A1),	two	central	(C3/A2	and	
C4/A1)	and	two	occipital	(O1/A2	and	O2/A1).	All	EEG	signals	were	bandpass	filtered	(0	to	200	Hz)	and	
digitized	500	times	per	second.		For	analysis	purposes,	EEG	data	collected	during	the	PSG	were	imported	
to	Matlab	utilizing	the	EEGlab	plugin	(130,131).		For	each	EEG	derivation,	we	determined	power	in	the	
Delta	(0.5	-	4.0	Hz),	Theta	(4.03	-	8.0	Hz),	Alpha	(8.03	-	15.0	Hz),	Beta	(15.03	-	30.0	Hz),	and	Gamma	
(30.03	-	80.0	Hz)	Bands	as	well	as	two	ratios	between	high	and	low	EEG	frequency	Bands:	[Alpha/(Delta	
+	Theta)	and	(Alpha	+	Beta	+	Gamma)/(Delta	+	Theta)]	as	follows.	For	each	30-second	EEG	epoch	the	
Fast	Fourier	Transform	(FFT)	periodogram	was	calculated	and	the	absolute	and	normalized	(%	total)	
power	as	well	as	the	standard	deviation	of	the	absolute	and	normalized	power	were	calculated	for	each	
Band.		For	each	Band,	these	values	were	averaged	over	10	consecutive	30-second	epochs	to	provide	a	
statistically	consistent	estimate	of	absolute	and	normalized	EEG	power	for	each	Band	every	5-minutes;	
allowing	for	temporal	alignment	with	the	simultaneous	interstitial	glucose	measurements	provided	by	
the	CGMS.	Temporal	alignment	between	EEG	and	glucose	signals	was	performed	using	high-resolution	
time	stamps	provided	by	both	the	Alice5	and	CGMS	devices.	
	
A.	 Wiener-Granger	Causality	Analysis	
	 	 Originally	described	in	1956	by	Norbert	Weiner	(188)	and	operationalized	by	Clive	Granger	in	
1969	(146),	Wiener-Granger	Causality	(WGC)	is	a	statistical	approach	of	causality	(189).		The	WGC	
coefficient	is	calculated	via	linear	vector	autoregressive	(VAR)	modeling	using	standard	linear	regression,	
such	as	ordinary	least	squares	regression	(189,190).			The	best	model	order	is	determined	using	
information	criteria,	such	as	the	Akaike	information	criteria	or	Bayesian	information	criteria	AIC	or	BIC,	
respectively).		The	WGC	coefficient	of	the	model	is	calculated	to	determine	statistical	significance.		A	
statistically	significant	WGC	means	that	variable	x,	“Wiener-Granger	Causes”	y;	in	other	words,	the	
variability	of	the	error	estimates	for	y	are	significantly	less	when	x	(at	the	specified	model	order)	is	
included	in	the	regression	as	compared	to	when	x	is	not	included.		The	WGC	coefficient	can	never	be	
negative	(190).		The	magnitude	of	the	WGC	coefficient	can	be	interpreted	as	the	rate	of	information	
transfer,	in	bits-per	unit-time;	in	other	words,	the	higher	the	WGC	coefficient,	the	faster	the	rate	of	
information	transfer	from	variable	x	to	variable	y	(189,191,192).	A	popular	model	in	econometric	
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analysis,	Wiener	Granger	Causality	has	been	used	in	neuroscience	and	neuroimaging	(191,193).				The	
WGC	coefficient	is	calculated	using	the	following	equations	(146,147):		
First	the	vector	autoregressive	model	of	order	p	is	calculated:	
	 	 	 	 	

𝑈! = 𝐴!

!

!!!

∗  𝑈!!! +  𝜀! + 𝐶	

	
U	is	the	universe	of	variables.	𝐴! 	is	the	n	x	n	matrix	of	the	regression	coefficients,	𝜀!	are	the	residuals		
covariance	matrix	and	C	is	a	constant	array	of	dimension	n.	
	
In	the	simplest	case,	and	assuming	that	we	wish	to	test	unconditional	G-causality,	U	is	split	into	two	
jointly	distributed	multivariate	processes,	X	and	Y:	
	 	 	 	 		

𝑈! =  
𝑋!
𝑌!

	

	
Considering	the	potential	G-causality	of	Y	on	X,	the	full	VAR	model	is:	
	 	

𝑋! =  𝐴!!,!

!

!!!

∗  𝑋!!! +  𝐴!",!

!

!!!

∗  𝑌!!! + 𝜀!,! + 𝐶	

Dependence	of	X	on	past	Y	values	is	summarized	by	the	coefficients	𝐴!",!.	
	
The	reduced	(autoregressive)	model	(if	𝐴!",!	=	𝐴!",!	=	𝐴!",…	=	0,	signifying	no	dependence	of	X	on	past	
values	of	Y)	include	only	past	values	of	X	to	predict	X:	
	

𝑋! =  𝐴′!!,!

!

!!!

∗  𝑋!!! + 𝜀!,! + 𝐶	

The	reduced	regression	coefficients	are	𝐴′!!,! 	
	 	 	 	 	

𝐹!→! =  ln
| ′!!|
|  !!|

	

𝐹!→!	is	the	G-causality	coefficient	from	Y	to	X.		 ′!!	and	  !!	are	the	residual	covariance	matrices	of	
the	VAR	models	from	the	full	and	restriced	models.		𝐹!→!	tells	us	if	the	full	model	(with	past	Y	included)	
is	a	better	model	than	the	reduced	regression.	
	 The	WGC	analysis	makes	the	assumptions	that	the	signals	assessed	are	stationary	and	stochastic;	
further,	the	data	needs	to	be	long	enough	to	model	the	AR	model	orders	specified	(146,194).		A	
stationary	process	is	one	in	which	the	mean,	variance	and	autocorrelation	of	the	process	are	constant	
throughout	time.		A	stochastic,	or	random,	process	is	one	in	which	the	collection	of	variables	within	the	
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process	evolves	randomly	over	time	(the	direction	of	the	evolution	of	the	process	is	random	over	
time)(194).			
	 The	MVGC	toolbox	for	MatLab	(147)	was	used	to	execute	the	Granger	Analysis	for	the	EEG	and	
glucose	data.			The	code	provided	with	the	toolbox	was	modified	for	use	with	the	glucose	and	EEG	data.		
Average	power	along	with	normalized	power	as	well	as	the	standard	deviation	of	these	powers	of	all	five	
Bands	as	well	as	the	activation	ratios	for	each	of	the	six	EEG	channels	was	calculated.		It	was	
hypothesized	that	there	was	a	bidirectional	relationship	between	glucose	changes	and	EEG	changes	
during	sleep.		Thus,	both	directions	of	WGC	were	assessed;	A	WGC	coefficient	was	calculated	for	the	
effect	of	a	change	in	glucose	on	EEG	power	in	each	Band	(termed	in	the	text	as	“G�E	causality”)	as	well	
as	the	effect	of	a	change	in	EEG	power	in	each	Band	on	a	change	in	glucose	(termed	“E�G	causality”	in	
the	text).		The	MVGC	toolbox	tests	for	strict	stationarity	of	the	data	by	checking	the	spectral	radius	of	
the	data.		If	the	spectral	radius	was	≥	1,	stationarity	was	rejected	and	causality	calculations	were	not	
performed.		The	regression	type	specified	for	the	VAR	modeling	was	ordinary	least	squares.		A	maximum	
order	of	20	was	used	for	each	calculation	and	the	AIC	was	used	to	determine	the	best	fitting	model.		A	
maximum	model	order	of	20	was	set	because	100	minutes	was	approximately	25%	of	the	total	recording	
time	and	the	temporal	relationship	between	glucose	and	EEG	changes	was	hypothesized	to	be	rapid	in	
nature.		Statistical	significance	of	the	WGC	coefficient	was	determined	using	the	chi-squared	analysis	
with	a	p-value	of	0.05.		The	glucose	and	EEG	power	time	series	of	only	the	models	with	a	statistically	
significant	WGC	were	imported	into	STATA.		Using	the	model	order	specified	by	the	significant	WGC,	
VAR	models	were	run	to	assess	the	net	sign	of	the	significant	coefficients	in	the	model	between	EEG	and	
glucose	(as	suggested	by	Barnett,	L.	in	personal	communication	2015).			

Below	is	the	Matlab	Code,	“SWAGEEGgcfinal.m”	used	to	run	the	WGC	analysis	for	each	subject.			
	

%% Multivariate Granger Causality 
% Last updated 10/5/15 by SS Farabi 
% 
% *_Note_*: Do _not_ pre-filter your data prior to GC estimation, _except_ 
% possibly to improve stationarity (e.g notch-filtering to eliminate line noise 
% or high-pass filtering to suppress low-frequency transients). Pre-filtering 
% (of stationary data) may seriously degrade Granger-causal inference! If you 
% want (time-domain) GC over a limited frequency range, rather calculate 
% "band-limited" GC; to do this, calculate frequency-domain GCs over the full 
% frequency range, then integrate over the desired frequency band [3]; see 
% <smvgc_to_mvgc.html |smvgc_to_mvgc|>. 
% 
%% References 
% 
% [1] L. Barnett and A. K. Seth, 
% <http://www.sciencedirect.com/science/article/pii/S0165027013003701 The MVGC 
%     Multivariate Granger Causality Toolbox: A New Approach to Granger-causal 
% Inference>, _J. Neurosci. Methods_ 223, 2014 
% [ <matlab:open('mvgc_preprint.pdf') preprint> ]. 
% 
% [2] A. B. Barrett, L. Barnett and A. K. Seth, "Multivariate Granger causality 
% and generalized variance", _Phys. Rev. E_ 81(4), 2010. 
% 
% [3] L. Barnett and A. K. Seth, "Behaviour of Granger causality under 
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% filtering: Theoretical invariance and practical application", _J. Neurosci. 
% Methods_ 201(2), 2011. 
% 
% (C) Lionel Barnett and Anil K. Seth, 2012. See file license.txt in 
% installation directory for licensing terms. 
% 
%% Parameters 
  
ntrials   = 1;     % number of trials 
nobs      = length(avpower(1,:));   % number of observations per trial 
  
regmode   = 'OLS';  % VAR model estimation regression mode ('OLS', 'LWR' or 
empty for default) 
icregmode = 'LWR';  % information criteria regression mode ('OLS', 'LWR' or 
empty for default) 
  
morder    = 'AIC';  % model order to use ('AIC', 'BIC' or supplied numerical 
value) 
momax     = 20;     % maximum model order for model order estimation 
ncondvars = 0;      %number of conditioning variables 
  
acmaxlags = [];   % maximum autocovariance lags (empty for automatic 
calculation) 
  
tstat     = 'chi2';     % statistical test for MVGC:  'F' for Granger's F-test 
(default) or 'chi2' for Geweke's chi2 test 
alpha     = 0.05;   % significance level for significance test 
mhtc      = 'None';  % multiple hypothesis test correction (see routine 
'significance') 
  
fs        = 1/300;    % sample rate (Hz) 
fres      = [];     % frequency resolution (empty for automatic calculation) 
  
seed      = 0;      % random seed (0 for unseeded) 
  
%% Input data into test variable |X| (see below and <mvgchelp.html#4 Common 
variable names and data structures>). 
  
  
%figfile = input('file header for figure output = ','s');  
%NOTE: uncomment line above if saved fig files are desired. 
  
clear mean; 
filename = input('Please enter the name of the stats output file ".gc" > ', 
's'); 
outfile = sprintf('%s.gc',filename); 
fmode = input('Do you want to append (enter "a") or overwrite (enter "w") data 
in these files? ','s'); 
if fmode ~= 'w' 
    if fmode ~= 'a' 
        display('Warning: invalid file mode specified; data will be appended to 
file %s\n', outfile); 
        fmode = 'a'; 
    end 
end 
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fout = fopen(outfile, fmode); 
if fmode == 'w' 
    
fprintf(fout,'sid\tch\tstat\tband\tfgcc\tfgcp\tfpsig\trgcc\trgcp\trpsig\torder\
n'); 
end 
  
% above code initializes file which will hold the EEG→Glucose and Glucose→EEG 
WGC 
% the model order and the significance of the coefficient 
  
startchan = input('Please input the starting channel number >'); 
endchan = input('Please input the ending channel number >'); 
% if ((endchan-startchan)>3) 
%     fprintf('Cannot process more than 4 channels. Resetting ending channel to 
%d\n',startchan+3); 
%     endchan = startchan+3; 
% end 
  
clear statistic; %%holds the statistic specified 
statistic(1,:) = 'AVP '; 
statistic(2,:) = 'nAVP'; 
statistic(3,:) = 'SDP '; 
statistic(4,:) = 'nSDP'; 
  
clear bands; %%holds the power bands specified 
bands(1,:) = 'Delta'; 
bands(2,:) = 'Theta'; 
bands(3,:) = 'Alpha'; 
bands(4,:) = 'Beta '; 
bands(5,:) = 'Gamma'; 
bands(6,:) = 'AR1  '; 
bands(7,:) = 'AR2  '; 
  
  
for chanidx = startchan:1:endchan %%indexes over channels 1-6 for AVP, nAVP, SD 
and nSD, respectively 
    for j = 1:1:4 
        if j==1 
            testpower = avpower; 
        end 
        if j==2 
            testpower = avnpower; 
        end 
        if j==3 
            testpower = sdpower; 
        end 
        if j==4 
            testpower = sdnpower; 
        end         
        for k = 1:1:7 
            X = testpower((chanidx-1)*7+k : (chanidx-1)*7+k,:); 
            X(2,:) = Sensor; 
            morder    = 'AIC';%%tests model order using AIC 
             



Appendix	A	(Continued)	

120	
	

	

  
            %% Model order estimation (<mvgc_schema.html#3 |A2|>) 
  
            % Calculate information criteria up to specified maximum model 
order. 
  
            ptic('\n*** tsdata_to_infocrit\n'); 
            [AIC,BIC,moAIC,moBIC] = tsdata_to_infocrit(X,momax,icregmode); 
            ptoc('*** tsdata_to_infocrit took '); 
  
            % Plot information criteria.  
            %(NOTE: Uncomment next 3 lines if plots desired) 
             
            %figure((chanidx-1)*2+1); clf; 
            %plot_tsdata([AIC BIC]',{'AIC','BIC'},1/fs); 
            %title('Model order estimation'); 
  
            fprintf('\nbest model order (AIC) = %d\n',moAIC); 
            fprintf('best model order (BIC) = %d\n',moBIC); 
  
            % Select model order. 
  
            if strcmpi(morder,'AIC') 
                morder = moAIC; 
                fprintf('\nusing AIC best model order = %d\n',morder); 
            elseif strcmpi(morder,'BIC') 
                morder = moBIC; 
                fprintf('\nusing BIC best model order = %d\n',morder); 
            else 
                fprintf('\nusing specified model order = %d\n',morder); 
            end 
  
            %% VAR model estimation (<mvgc_schema.html#3 |A2|>) 
  
            % Estimate VAR model of selected order from data. 
  
            ptic('\n*** tsdata_to_var... '); 
            [A,SIG] = tsdata_to_var(X,morder,regmode); 
            ptoc; 
  
            % Check for failed regression 
  
            if(isbad(A)) 
                fprintf('VAR estimation failed'); 
                fprintf(fout,'\n'); 
                continue; 
            end 
  
            % NOTE: at this point we have a model and are finished with the 
data! - all 
            % subsequent calculations work from the estimated VAR parameters A 
and SIG. 
  
            %% Autocovariance calculation (<mvgc_schema.html#3 |A5|>) 
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            % The autocovariance sequence drives many Granger causality 
calculations (see 
            % next section). Now we calculate the autocovariance sequence G 
according to the 
            % VAR model, to as many lags as it takes to decay to below the 
numerical 
            % tolerance level, or to acmaxlags lags if specified (i.e. non-
empty). 
  
            ptic('*** var_to_autocov... '); 
            [G,info] = var_to_autocov(A,SIG,acmaxlags); 
            ptoc; 
  
            % The above routine does a LOT of error checking and issues useful 
diagnostics. 
            % If there are problems with your data (e.g. non-stationarity, 
colinearity, 
            % etc.) there's a good chance it'll show up at this point - and the 
diagnostics 
            % may supply useful information as to what went wrong. It is thus 
essential to 
            % report and check for errors here. 
  
            var_info(info,false); % report results (but don't bail out on 
error) 
            if(info.rho>1) 
               fprintf(fout,'\n'); 
               continue; 
            end 
  
            %% Granger causality calculation: time domain  (<mvgc_schema.html#3 
|A13|>) 
  
            % Calculate time-domain pairwise-conditional causalities - this 
just requires 
            % the autocovariance sequence. 
  
            ptic('*** autocov_to_pwcgc... '); 
            F = autocov_to_pwcgc(G); 
            ptoc; 
  
            % Check for failed GC calculation 
  
            if(isbad(F,false)) 
                fprintf('GC calculation failed'); 
                fprintf(fout,'\n'); 
                continue; 
            end 
  
            % Significance test using theoretical null distribution, adjusting 
for multiple 
            % hypotheses. 
  
            pval = mvgc_pval(F,morder,nobs,ntrials,1,1,ncondvars,tstat); % take 
careful note of arguments! 
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            sig  = significance(pval,alpha,mhtc); 
  
            % Plot time-domain causal graph, p-values and significance. 
  
            % figh = figure((chanidx-1)*2+2); clf; 
            % subplot(1,3,1); 
            % plot_pw(F); 
            % title(['Pairwise-conditional GC; Subject = ' sid]); 
            % subplot(1,3,2); 
            % plot_pw(pval); 
            % title(['p-values; Channel = ' num2str(chan(chanidx))]); 
            % subplot(1,3,3); 
            % plot_pw(sig); 
            %title(['Significant at p = ' num2str(alpha)]); 
            %figout = sprintf('%s-%s',figfile,num2str(chan(chanidx))); 
            %savefig(figh,figout); 
  
            fpsig = (pval(2,1)<0.05); 
            rpsig = (pval(1,2)<0.05); 
            
fprintf(fout,'%s\t%d\t%s\t%s\t%5.4f\t%5.4f\t%d\t%5.4f\t%5.4f\t%d\t%d\n',sid,cha
n(chanidx),statistic(j,:),bands(k,:),F(2,1),pval(2,1),fpsig,F(1,2),pval(1,2),rp
sig,morder); 
            if fpsig+rpsig>0 
                datafile=sprintf('%s-%d-%d-%d.xdat',sid,chanidx,j,k); 
                fdout=fopen(datafile,'w'); 
                for dc = 1:1:length(X(1,:)) 
                    fprintf(fdout,'%5.4f\t%4.1f\t%d\n',X(1,dc),X(2,dc),dc); 
                end 
                fclose(fdout); 
            end 
  
            % For good measure we calculate Seth's causal density (cd) measure 
- the mean 
            % pairwise-conditional causality. We don't have a theoretical 
sampling 
            % distribution for this. 
  
            cd = mean(F(~isnan(F))); 
  
            fprintf('\ncausal density = %f\n',cd); 
  
            %% Granger causality calculation: frequency domain  
(<mvgc_schema.html#3 |A14|>) 
  
            % Calculate spectral pairwise-conditional causalities at given 
frequency 
            % resolution - again, this only requires the autocovariance 
sequence. 
  
            ptic('\n*** autocov_to_spwcgc... '); 
            f = autocov_to_spwcgc(G,fres); 
            ptoc; 
  
            % Check for failed spectral GC calculation 
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            if(isbad(f,false)) 
                fprintf('spectral GC calculation failed'); 
                fprintf(fout,'\n'); 
                continue; 
            end 
  
            % Plot spectral causal graph. 
  
            %figure(3); clf; 
            %plot_spw(f,fs); 
  
            %% Granger causality calculation: frequency domain -> time-domain  
(<mvgc_schema.html#3 |A15|>) 
  
            % Check that spectral causalities average (integrate) to time-
domain 
            % causalities, as they should according to theory. 
  
            fprintf('\nchecking that frequency-domain GC integrates to time-
domain GC... \n'); 
            Fint = smvgc_to_mvgc(f); % integrate spectral MVGCs 
            mad = maxabs(F-Fint); 
            madthreshold = 1e-5; 
            if mad < madthreshold 
                fprintf('maximum absolute difference OK: = %.2e (< 
%.2e)\n',mad,madthreshold); 
            else 
                fprintf(2,'WARNING: high maximum absolute difference = %e.2 (> 
%.2e)\n',mad,madthreshold); 
            end 
  
        end 
    end 
end 
fclose(fout); 
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B.	 Cross-Correlation	Function	Analysis	
	 The	cross-correlation	function	provides	the	correlation	coefficient	between	a	time	series,	x,	and	
shifted	(past	or	future)	values	of	time	series	y.		The	maximum	coefficient	is	found	at	the	positive	or	
negative	shift-value	(lag)	where	alignment	of	the	two	signals	provides	the	strongest	correlation	
(195,196).	Cross-Correlation	is	similar	to	WGC	analysis	in	that	it	can	be	applied	to	two	time	series	to	
assess	the	relationship	between	the	signals	at	various	lags.		It	also	assumes	that	the	signals	are	
stochastic	and	stationary.		The	sign	of	the	correlation	coefficient	at	each	lag	provides	information	about	
the	direction	of	the	association	between	the	two	time	series.		The	cross-correlation	coefficient	does	not	
determine	predictability	as	the	WGC	analysis	does,	however	it	can	provide	information	as	to	whether	
there	is	periodicity	in	the	relationship	between	two	signals.		Peaks	(or	troughs)	of	the	cross-correlation	
coefficient	at	multiple	lags	would	indicate	periodicity	within	the	two	signals.		The	cross-correlation	is	
calculated	by	first	determining	the	co-variance	function	of	two	time	series	using	the	following	equation	
(197,198):	
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N	is	the	series	length,	𝑥	and	𝑦	are	the	means	of	the	two	time	series,	xt	and	yt,	and	k	is	the	lag	applied	to	
one	of	the	time	series,	in	this	case	y.		The	function	is	then	determined	using	the	equation	(197,198):	
	 	 	

𝑟!" 𝑘 =  
𝑐!" (𝑘)

𝑐!! 0 𝑐!! (0)
	

cxx	(0)	and	cyy	(0)	are	the	sample	variances	of	the	time	series	xt	and	yt.	
Since	it	was	hypothesized	that	the	relationship	between	EEG	and	glucose	may	be	bidirectional	and	

periodic,	lags	of	-20	to	20	(-100	minutes	to	100	minutes)	applied	to	glucose	were	assessed.		An	upper	
limit	of	100	minutes	was	used	as	it	was	hypothesized	that	the	relationship	between	glucose	and	EEG	
during	sleep	would	be	rapid	in	nature.		The	cross-correlation	coefficients	were	determined	for	glucose	
with:	average	power,	normalized	average	power,	standard	deviation	of	average	power	and	standard	
deviation	of	normalized	average	power	for	each	of	the	power	Bands	as	well	as	the	two	activation	ratios	
for	all	6	channels	in	each	subject.			

Cross-correlation	coefficients	are	not	additive	and	cannot	be	added	to	determine	a	mean	or	
standard	error	(150).		Thus	as	suggested	by	Garcia,	(2010)	the	cross-correlation	coefficients	were	
transformed	to	Z	Fisher	statistics,	which	allow	for	determining	the	mean	of	the	coefficients	and	
comparison	among	subjects	as	well	as	comparison	to	zero	(150).			

Below	is	the	actual	Matlab	Code,	“SWAGEEGcorrfinal.m”	used	to	run	the	WGC	analysis	for	each	
subject.			
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%% last updated by S. Farabi 10/5/2015 
%%cross correlation coefficient determination for EEG and glucose 
  
sid = input('Please enter the subject ID> ','s'); 
filename = input('Please enter the name of the ".cor" and ".corstat" files for output> 
', 's'); 
fmode = input('Do you want to append (enter "a") or overwrite (enter "w") data in 
these files? ','s'); 
outfile = sprintf('%s.cor',filename); 
outfile2 = sprintf('%s.corstat',filename); 
if fmode ~= 'w' 
    if fmode ~= 'a' 
        display('Warning: invalid file mode specified; data will be appended to file 
%s\n', outfile); 
        fmode = 'a'; 
    end 
end 
fout10 = fopen(outfile,fmode); 
fout11 = fopen(outfile2,fmode); 
fprintf(fout10,'SID\tChan\tBand\tLag\tAV\tnAV\tSD\tnSD\n'); 
fprintf(fout11,'SID\tChan\tBand\tAV\tAVlag\tnAV\tnAVlag\tSD\tSDlag\tnSD\tnSDlag\n'); 
%.cor and .corstat will hold all of the correlations at each lag assessed 
%and then the best correlation and at what lag it occurs respectively 
  
mlag = input('Please enter maximum number of lags for analysis >'); 
%input how many correlation lags (pos and neg) you want to look at 
clear bands 
%holder for each of power bands 
bands(1,:) = 'Delta    '; 
bands(2,:) = 'Theta    '; 
bands(3,:) = 'Alpha    '; 
bands(4,:) = 'Beta     '; 
bands(5,:) = 'Gamma    '; 
bands(6,:) = 'AR1      '; 
bands(7,:) = 'AR2      '; 
  
  
clear xc nxc sdxc nsdxc; %clears holders for 4 statistics 
nchan = length(chan); %counter for how many channels 
xc = zeros(7*nchan,(mlag*2)+1); 
nxc = zeros(7*nchan,(mlag*2)+1); 
sdxc = zeros(7*nchan,(mlag*2)+1); 
nsdxc = zeros(7*nchan,(mlag*2)+1); 
  
if length(avpower(1,:)) < length(Sensor) %ensures that avpower will be the same length 
as Sensor 
    maxlength = length(avpower(1,:)); 
    glucose = Sensor([1:maxlength]); 
else 
    glucose = Sensor; 
end 
  
for chanidx = 1:1:nchan %%determines cross-correlation by channel for each statstic 
(av power, normalized av power and std. deviations) 
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    for i = 1:1:7 
        [xc(i+(chanidx-1)*7,:), lags] = xcorr(avpower(i+(chanidx-1)*7,:)-
mean(avpower(i+(chanidx-1)*7,:)),glucose-mean(glucose),mlag,'coeff'); 
        [sdxc(i+(chanidx-1)*7,:), lags] = xcorr(sdpower(i+(chanidx-1)*7,:)-
mean(sdpower(i+(chanidx-1)*7,:)),glucose-mean(glucose),mlag,'coeff'); 
        [nxc(i+(chanidx-1)*7,:), lags] = xcorr(avnpower(i+(chanidx-1)*7,:)-
mean(avnpower(i+(chanidx-1)*7,:)),glucose-mean(glucose),mlag,'coeff'); 
        [nsdxc(i+(chanidx-1)*7,:), lags] = xcorr(sdnpower(i+(chanidx-1)*7,:)-
mean(sdnpower(i+(chanidx-1)*7,:)),glucose-mean(glucose),mlag,'coeff'); 
        xcmax = 0; 
        nxcmax = 0; 
        sdxcmax = 0; 
        nsdxcmax = 0; 
        xcbestlag = 0; 
        nxcbestlag = 0; 
        sdxcbestlag = 0; 
        nsdxcbestlag = 0; 
        xcmaxs = 0; 
        nxcmaxs = 0; 
        sdxcmaxs = 0; 
        nsdxcmaxs = 0; 
        xcbestlags = 0; 
        nxcbestlags = 0; 
        sdxcbestlags = 0; 
        nsdxcbestlabs = 0; 
%this part will determine if correlation at current lag is higher than 
%previous lag by looking at absolute value of the correlation 
        for lagidx = 1:1:mlag*2+1 %will determine if correlation at current lag is 
higher than previous lag and will print to file if is 
            
fprintf(fout10,'%s\t%d\t%s\t%d\t%4.3f\t%4.3f\t%4.3f\t%4.3f\n',sid,chan(chanidx),bands(
i,:),lags(lagidx),xc(i+(chanidx-1)*7,lagidx),nxc(i+(chanidx-
1)*7,lagidx),sdxc(i+(chanidx-1)*7,lagidx),nsdxc(i+(chanidx-1)*7,lagidx)); 
            if abs(xc(i+(chanidx-1)*7,lagidx)) > xcmax 
                xcmax = abs(xc(i+(chanidx-1)*7,lagidx)); 
                xcmaxs = xc(i+(chanidx-1)*7,lagidx); 
                xcbestlag = lags(lagidx); 
            end 
            if abs(nxc(i+(chanidx-1)*7,lagidx)) > nxcmax 
                nxcmax = abs(nxc(i+(chanidx-1)*7,lagidx)); 
                nxcmaxs = nxc(i+(chanidx-1)*7,lagidx); 
                nxcbestlag = lags(lagidx); 
            end 
            if abs(sdxc(i+(chanidx-1)*7,lagidx)) > sdxcmax 
                sdxcmax = abs(sdxc(i+(chanidx-1)*7,lagidx)); 
                sdxcmaxs = sdxc(i+(chanidx-1)*7,lagidx); 
                sdxcbestlag = lags(lagidx); 
            end 
            if abs(nsdxc(i+(chanidx-1)*7,lagidx)) > nsdxcmax 
                nsdxcmax = abs(nsdxc(i+(chanidx-1)*7,lagidx)); 
                nsdxcmaxs = nsdxc(i+(chanidx-1)*7,lagidx); 
                nsdxcbestlag = lags(lagidx); 
            end 
        end 
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fprintf(fout11,'%s\t%d\t%s\t%4.3f\t%d\t%4.3f\t%d\t%4.3f\t%d\t%4.3f\t%d\n',sid,chan(cha
nidx),bands(i,:),xcmaxs,xcbestlag,nxcmaxs,nxcbestlag,sdxcmaxs,sdxcbestlag,nsdxcmaxs,ns
dxcbestlag); 
    end 
end 
%this part will plot the correlations at all lags specified and will save 
%the file under the filename provided  
for i = 1:1:nchan 
    %close all; 
    figh=figure('Position',[100,100,600,850]);  %plot compound figure for first 
analysis channel 
  
    chxc = xc([1+(i-1)*7:7*i],:); 
    chnxc = nxc([1+(i-1)*7:7*i],:); 
    chsdxc = sdxc([1+(i-1)*7:7*i],:); 
    chnsdxc = nsdxc([1+(i-1)*7:7*i],:); 
  
    subplot(4,1,1); 
    plot(lags,transpose(chxc)); 
    legend('delta','theta','alpha','beta','gamma','AR','AR2','Location','Northwest'); 
    title('Glucose vs EEG Absolute Power Cross-Correlation Function'); 
    xlabel('Lag (5-min increments)'); 
    ylabel('Correlation Coefficient'); 
  
    subplot(4,1,2); 
    plot(lags,transpose(chnxc)); 
    legend('delta','theta','alpha','beta','gamma','AR','AR2','Location','Northwest'); 
    title('Glucose vs EEG Relative Power Cross-Correlation Function'); 
    xlabel('Lag (5-min increments)'); 
    ylabel('Correlation Coefficient'); 
  
    subplot(4,1,3); 
    plot(lags,transpose(chsdxc)); 
    legend('delta','theta','alpha','beta','gamma','AR','AR2','Location','Northwest'); 
    title('Glucose vs EEG Absolute Power SD Cross-Correlation Function'); 
    xlabel('Lag (5-min increments)'); 
    ylabel('Correlation Coefficient'); 
  
    subplot(4,1,4); 
    plot(lags,transpose(chnsdxc)); 
    legend('delta','theta','alpha','beta','gamma','AR','AR2','Location','Northwest'); 
    title('Glucose vs EEG RElative Power SD Cross-Correlation Function'); 
    xlabel('Lag (5-min increments)'); 
    ylabel('Correlation Coefficient'); 
     
    figfile=sprintf('%s-%d-corr',sid,chan(i)); 
  
    savefig(figh,figfile); 
end  
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C.	 Wavelet	Coherence	
Wavelet	coherence	is	useful	for	identifying	time	varying	and	frequency	specific	coupling	

between	two	time	series	(signals).		Wavelet	coherence	analysis	relies	on	wavelet	transformation	of	
signals	from	the	time	domain	into	a	joint	time-frequency	domain.	This	approach	is	particularly	
advantageous	over	traditional	Fourier	transformation	when	the	underlying	time	series	is	not	stationary.	
Briefly,	wavelet	transformation	decomposes	a	signal	into	a	family	of	components,	each	having	the	same	
sampling	rate	as	the	original	signal	but	with	each	component	representing	a	different	time	scale.		This	
wavelet	decomposition	process	is	thus	analogous	to	applying	a	“filter	bank”	to	the	underlying	signal.	
Wavelet	coherence	involves	computing	the	time-varying	coupling,	or	coherence,	between	two	signals	
that	have	undergone	wavelet	decomposition.	The	result	is	a	matrix	providing	the	coherence	coefficient	
–	which	is	analogous	to	the	squared	correlation	coefficient	–	as	a	function	of	time	and	time	scale	(or	
equivalently,	frequency)	(132,199,200).				

Wavelet	transformation	requires	that	you	choose	a	specific	wavelet	function.		According	to	
Torrence	and	Compo	(1998),	there	are	four	components	of	the	wavelet	to	consider	when	picking	a	
wavelet	function:	1)	orthogonal	or	non-orthogonal,	2)	complex	or	real	3)	width	and	4)	shape	(127).		A	
frequently	recommended	wavelet	is	the	Morlet	wavelet	(115).		This	wavelet	is	non-orthogonal	(which	
provides	more	smooth	curves	to	the	wavelet)	and	complex	(provides	amplitude	and	phase),	has	a	width	
of	√2*scale	which	provides	a	balance	between	time	and	frequency	localization	of	the	wavelet	and	its	
shape	is	smooth	(127).		The	Morlet	wavelet	function	is	defined	as:	

					

ψ0 η =  π!!/!e!!!"! e –
!
!!

!
     (114)	

	
Where	η	is	time	(without	dimensions)	and	ω0	is	frequency	and	has	a	value	of	6	for	the	Morlet	

(114,127).		A	set	of	scales	needs	to	be	chosen	for	the	wavelet	transform	(127).		For	the	coherence	
between	EEG	power	and	glucose	in	the	overnight	PSG,	we	used	a	set	of	48	scales	that	ranged	from	2	to	
30.2040	(10	to	151.02	minutes).		Thus,	we	had	48	periods	ranging	from	2.06	to	31.20	(10.6	to	156.01	
minutes).		For	the	60	hour	analysis	of	coherence	between	glucose	and	activity,	we	used	a	set	of	84	
scales	that	ranged	from	2	to	241.632	(10	to	1208.16	minutes)	and	had	periods	ranging	from	2.06	to	
249.616	(10.6	to	1248.08	minutes).		Using	the	continuous	wavelet	transform,	the	wavelet	is	stretched	in	
time	by	varying	its	scale	and	is	used	to	determine	the	wavelet	power	in	a	time	series	using	the	following	
equations,	(114):	

𝑊!! 𝑠 =  
𝛿𝑡
𝑠

𝑥!!

!

!!!!

𝜑![ 𝑛! − 𝑛  
𝛿𝑡
𝑠
	

	
where	𝛿𝑡	specifies	uniform	time	steps,	s	is	the	scale	and	the	wavelet	power	is	defined	as	
	 	 	

|𝑊!! 𝑠 |!	
	
The	cross	wavelet	transform	can	then	be	determined	for	two	time	series,	xt	and	yt,	t.		The	

equation	to	determine	the	cross-wavelet	transform	is	defined	as	(114,127):		
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𝑊!" =  𝑊!𝑊!∗	
*	is	the	complex	conjugation	(equal	real	part	but	opposite	in	sign).		The	wavelet	power	from	the	

cross-wavelet	transform	is	defined	as:	
	

|𝑊!"|	
	
Wavelet	coherence	is	the	determination	of	the	areas	of	two	wavelets	with	common	power.			It	

can	be	thought	of	as	a	cross-correlation	between	two	wavelets	in	time	and	frequency.		The	equations	to	
derive	cross	wavelet	coherence	are	as	follows	(114,127):	

	

𝑅!! 𝑠 =
|𝑆 𝑠!!𝑊!!" 𝑠 |!

𝑆(𝑠!!|𝑊!! 𝑠 |!) ∗  𝑆(𝑠!!|𝑊!! 𝑠 |!)
	

	
S	is	the	smoothing	operator.		It	is	recommended	that	the	smoothing	operator	has	a	similar	track	to	the	
wavelet.		For	the	Morlet	wavelet	the	smoothing	operator	is	defined	as	(114,127):	
	

𝑆!"#$%  𝑊|! =  (𝑊! 𝑠 ∗ 𝑐! Π(0.6𝑠))|!	
	
c2	is	a	normalization	constant	and	Π	is	the	rectangular	function	(value	of	0	outside	of	[-0.5:0.5]	and	and	
value	of	1	between	[-0.5:0.5]).		0.6	is	the	scale	decorrelation	length	for	the	Morlet	(114,127).	
There	are	errors	at	the	beginning	and	end	of	the	spectrum	in	calculation	of	power	as	one	assumption	is	
that	the	data	are	cyclic	(periodic)	(127).		The	cone	of	influence	(COI)	is	calculated	to	provide	the	region	
of	the	wavelet	power	spectrum	which	has	values	which	cannot	be	trusted	due	to	these	circular	
convolution	effects.		This	is	calculated	at	each	period	by	taking	the	width	using	the	width	of	wavelet	
function	(√2*scale)-2	for	each	side	(127).		Only	wavelet	power	values	outside	the	COI	were	considered	
for	the	analysis.			

Wavelet	transformation	was	carried	out	on	the	average	power	and	normalized	average	power,	
standard	deviation	of	average	power	and	normalized	power	of	all	five	EEG	Bands	for	each	of	the	five	
channels	as	well	as	the	two	activation	ratios	and	on	the	glucose	for	the	entire	PSG	recording.		The	
wavelet	coherence	was	determined	between	glucose	and	each	Band	of	EEG	as	well	as	the	two	activation	
ratios.			

To	determine	statistical	significance	of	computed	coherence	values,	Monte	Carlo	Simulation	
(500	iterations)	was	performed	as	recommended	by	both	Grinsted	and	Torrence	and	Compo	(114,127).		
The	phase	angle	(in	degrees)	between	the	two	time	series	was	also	determined	as	a	function	of	time	and	
period	(114)	and	then	we	converted	these	for	reporting	to	a	phase	delay	in	minutes:	phase	delay	
(minutes)=	(period*phase	(in	degrees)*5	minutes)/360.			

We	utilized	the	wavelet	coherence	toolbox	for	Matlab	provided	by	Grinsted	and	colleagues	
(114)	to	carry	out	the	procedures.		The	wavelet	chosen	was	the	Morlet.		A	document	was	generated	to	
provide	the	period	and	phase	at	which	statistically	significant	coherence	occurred.		Another	document	
was	generated	for	the	epoch	number	onset	and	offset	of	statistically	significant	coherence	(intervals	of	
significance).			



Appendix	A	(Continued)	

130	
	

	

Below	is	the	Matlab	code,	titled	“SWAGEEGhere.m”	written	to	perform	the	analysis	for	the	PSG	
study	to	determine	coherence	between	EEG	Power	and	Glucose.	Following	that	is	the	code,	titled	
“rsq60hour.m”	for	the	60	hour	coherence	data.	
	

1.	SWAGEEGhere.m	
%last updated by S. Farabi 9/4/15 
  
sid = input('Please enter the subject ID> ','s'); 
  
filename = input('Output file name: ', 's'); 
fmode = input('Do you want to append (enter "a") or overwrite (enter "w") data 
in these files? ','s'); 
if fmode ~= 'w' 
    if fmode ~= 'a' 
        display('Warning: invalid file mode specified; data will be appended to 
file %s\n', outfile); 
        fmode = 'a'; 
    end 
end 
  
filename1 = sprintf('%s.coh',filename); 
filename2 = sprintf('%s.bcoh',filename); 
filename3 = sprintf('%s.drp',filename); 
[fout,errmsg] = fopen(filename1, fmode); 
[fout2,errmsg] = fopen(filename3, fmode); 
[fout10,errmsg] = fopen(filename2, fmode); 
%.coh will provide the stastically significant coherence by channel, power 
%band & coherence band,.bcoh file will provide average coherence in and out 
%of COI, mean phase by channel, power band & coherence band, .drp provides 
%the onset, offset and percent of COI that statistically significant drops 
%occur in each channel, power band and coherence band 
  
bw = input('Color (enter 0) or Black and White (enter 1) plot?>'); 
  
clear bands; % provides holder for each power band 
bands(1,:) = 'Delta        '; 
bands(2,:) = 'Theta        '; 
bands(3,:) = 'Alpha        '; 
bands(4,:) = 'Beta         '; 
bands(5,:) = 'Gamma        '; 
bands(6,:) = 'A/(D+T)      '; 
bands(7,:) = '(A+B+G)/(D+T)'; 
  
clear blabs;  %holder for naming of figures (i.e D=Delta, 6=AR1) 
blabs(1,:) = 'D'; 
blabs(2,:) = 'T'; 
blabs(3,:) = 'A'; 
blabs(4,:) = 'B'; 
blabs(5,:) = 'G'; 
blabs(6,:) = '1'; 
blabs(7,:) = '2'; 
  
clear statistic; % holds the four statistics from the power bands created 
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(average power, normalized average and standard deviations of averages 
statistic(1,:) = 'AVP '; 
statistic(2,:) = 'nAVP'; 
statistic(3,:) = 'SDP '; 
statistic(4,:) = 'nSDP'; 
  
cbands = [1 19 39 48]; %coherence band cut points (upper limits) 
nbands = 3; %how many bands you want to create 
  
clear mean; %prevents error message when calculating mean rsq 
  
nchan = length(chan); 
  
fprintf(fout,'SubID\tStatistic\tChannel\tBand\t Period\t Epoch\t Coher\t 
Sig95\t Phase\t COI\t Exclude?\n'); 
fprintf(fout2,'Subject\tStatistic\tChannel\tBand\tPeriod\tOnset\tOffset\tPercen
t COI\n'); 
fprintf(fout10,'Subject\tStatistic\tChannel\tBand\tCohBand\tAvRsq\tAvrsqnc\tAvP
hase\n'); 
     
for statidx = 1:1:4 
    if statidx == 1 
        poweract = avpower; 
    end 
    if statidx == 2 
        poweract = avnpower; 
    end 
    if statidx == 3 
        poweract = sdpower; 
    end 
    if statidx == 4 
        poweract = sdnpower; 
    end 
  
    for chanidx = 1:1:nchan  %will iterate through statistic in each powerband 
for each channel  
        for v = 1:1:7  
           figh=figure('Position',[100,100,600,850]); 
           subplot(2,1,1); %creates a plot with raw data  
           [ax,p1,p2]=plotyy(1:1:length(poweract((chanidx-
1)*7+v,:)),poweract((chanidx-1)*7+v,:),1:1:length(Sensor),Sensor); 
           xlim(ax(1),[0, length(poweract((chanidx-1)*7+v,:))]); 
           xlim(ax(2),[0, length(poweract((chanidx-1)*7+v,:))]); 
           ylabel(ax(1),bands(v,:)); 
           ylabel(ax(2),'Sensor Glucose'); 
  
            subplot(2,1,2); %creation of coherence plot; uses morlet function 
('db8') to create the plot; wtcnc is a .m file which provides the coherence 
plot without a color bar. wtcncp.m provides a plot without the phase arrows 
            [rsq,period,scale,coi,sig95,phase]=wtcnc(Sensor,poweract((chanidx-
1)*7+v,:),'MakeFigure',1,'BlackandWhite',bw); %creates variables with the mean 
coherence at every single point assessed at every frequency 
            phasedeg = phase*180/3.14159; 
  
            title(bands(v,:)); 
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            figfile = sprintf('%s-%s-%d-%s-
coh.fig',sid,statistic(statidx,:),chan(chanidx),blabs(v)); 
            figlabel = sprintf('Filename = %s',figfile); 
            text(0,730,figlabel,'Units','pixels'); 
            xlabel('Epoch Number (5-min increments)'); 
             
            savefig(figh,figfile); 
            close all; 
  
  
            dim = size(sig95); 
  
            for i=1:1:dim(1) 
                for j=1:1:dim(2) 
                   if(sig95(i,j)) >= 1 
                       fprintf(fout,'%s\t%s\t%d\t%s\t %5.3f\t %0.0f\t %5.4f\t 
%5.4f\t %5.2f\t %5.3f\t 
%0.0f\n',sid,statistic(statidx,:),chan(chanidx),bands(v,:), period(i), j, 
rsq(i,j), sig95(i,j), phasedeg(i,j), coi(j), (period(i)>coi(j))); 
                   end 
                end 
            end 
            fprintf(fout,'\n'); 
  
            %%% 
  
                mrsq = zeros(nbands,1); 
                mrsqnc = zeros(nbands,1); 
                mphase = zeros(nbands,1); 
                sumrsq = zeros(dim(1),1); 
                numrsq = zeros(dim(1),1); 
                numphase = zeros(dim(1),1); 
                sumphase = zeros(dim(1),1); 
                sumrsqnc = zeros(dim(1),1); 
                numrsqnc = zeros(dim(1),1); 
                avgphase = zeros(dim(1),1); 
                avgrsq = zeros(dim(1),1); 
                avgrsqnc = zeros(dim(1),1); 
                meanrsq = zeros(nbands,1); 
                meanphase = zeros(nbands,1); 
  
                for l=1:1:dim(1) 
                    for j=1:1:dim(2) 
  
                       if period (l) <= coi(j) 
                           sumrsq(l) = sumrsq(l) + rsq(l,j); 
                           numrsq(l) = numrsq(l) + 1; 
                           sumphase(l) = sumphase(l) + phase(l,j); 
                           numphase(l) = numphase(l) +1; 
         
                       else 
                           sumrsqnc(l) = sumrsqnc(l) + rsq(l,j); 
                           numrsqnc(l) = numrsqnc(l) + 1; 
                       end 
                    end 
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                end  
  
                for s=1:1:dim(1) 
                    avgrsq(s) = sumrsq(s)/numrsq(s); 
                    avgrsqnc(s) = sumrsqnc(s)/numrsqnc(s); 
                    avgphase(s) = sumphase(s)/numphase(s); 
                end 
     
     
                for h=1:1:nbands 
                    if h==1 
                        mrsq(h) = mean(avgrsq([cbands(h):cbands(h+1)])); 
                        mrsqnc(h) = mean(avgrsqnc([cbands(h):cbands(h+1)])); 
                        mphase(h) = mean(avgphase([cbands(h):cbands(h+1)])); 
                    end 
                    if h >1 
                        mrsq(h) = mean(avgrsq([(cbands(h)+1):cbands(h+1)])); 
                        mrsqnc(h) = 
mean(avgrsqnc([(cbands(h)+1):cbands(h+1)])); 
                        mphase(h) = 
mean(avgphase([(cbands(h)+1):cbands(h+1)])); 
                        endthe  
     
                
fprintf(fout10,'%s\t%s\t%d\t%s\t%d\t%4.3f\t%4.3f\t%4.3f\n',sid,statistic(statid
x),chan(chanidx),bands(v,:),h,mrsq(h),mrsqnc(h), mphase(h)); 
     
                end             
 %%%            
  
             
            newdrop = 0; 
            drpon = 0; 
            drpoff = 0; 
            for i=1:1:dim(2) 
                drpband = 'Low'; 
                if i > drpoff 
                    for j=1:1:19 
                        if sig95(j,i) >= 1 && period(j) <= coi(i) 
                            newdrop = 1; 
                            drpon = i; 
                                k = 1; 
                                while max(sig95(1:19,i+k)) >=1 && period(1) <= 
coi(i+k) 
                                    k = k+1; 
                                end 
                                if i+k-1 > drpoff 
                                    drpoff = i+k-1; 
                                end 
                        end 
                    end 
                end 
                    if newdrop == 1 
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fprintf(fout2,'%s\t%s\t%d\t%s\t%s\t%0.0f\t%0.0f\t%4.2f\n',sid,statistic(statidx
),chan(chanidx),bands(v,:),drpband,drpon,drpoff,100*(drpoff-
drpon+1)/(0.876*dim(2))); 
                        newdrop = 0; 
                    end 
            end 
  
            newdrop = 0; 
            drpon = 0; 
            drpoff = 0; 
            for i=1:1:dim(2) 
                drpband = 'Mid'; 
                if i > drpoff 
                    for j=20:1:39 
                        if sig95(j,i) >= 1 && period(j) <= coi(i) 
                            newdrop = 1; 
                            drpon = i; 
                            k = 1; 
                                while max(sig95(20:39,i+k)) >=1 && period(20) 
<= coi(i+k) 
                                 k = k+1; 
                                end 
                             if i+k-1 > drpoff 
                                 drpoff = i+k-1; 
                             end 
                        end 
                    end 
                    if newdrop == 1 
                        
fprintf(fout2,'%s\t%s\t%d\t%s\t%s\t%0.0f\t%0.0f\t%4.2f\n',sid,statistic(statidx
),chan(chanidx),bands(v,:),drpband,drpon,drpoff,100*(drpoff-
drpon+1)/(0.639*dim(2))); 
                        newdrop = 0; 
                    end 
                end         
            end 
  
            newdrop = 0; 
            drpon = 0; 
            drpoff = 0; 
            for i=1:1:dim(2) 
                drpband = 'High'; 
                if i > drpoff 
                    for j=40:1:48 
                        if sig95(j,i) >= 1 && period(j) <= coi(i) 
                            newdrop = 1; 
                            drpon = i; 
                            k = 1; 
                                while max(sig95(40:48,i+k)) >=1 && period(40) 
<= coi(i+k) 
                                 k = k+1; 
                                end 
                             if i+k-1 > drpoff 
                                 drpoff = i+k-1; 
                             end 
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                        end 
                    end 
                    if newdrop == 1 
                        
fprintf(fout2,'%s\t%s\t%d\t%s\t%s\t%0.0f\t%0.0f\t%4.2f\n',sid,statistic(statidx
),chan(chanidx),bands(v,:),drpband,drpon,drpoff,100*(drpoff-
drpon+1)/(0.227*dim(2))); 
                        newdrop = 0; 
                    end 
                end         
            end         
  
        end 
    end 
    end 
end 
  
  
clear poweract; 
clear bands; 

 

2.		rsq60hour.m	
 

filename = input('Please enter the name of the file for output> ', 's'); 
outfile = sprintf('%s.rsq',filename); 
fout10 = fopen(outfile,'w'); 
fout2 = fopen(outfile,'w'): 
fprintf(fout10,'Filename\tSleep-Wake Segment\tBand\tmean Rsq\tmean Rsqnc\tmean 
Phase(rad)\n'); 
fprintf(foutout2, 'Filename\tBand\tPeriod\tOnset\tOffset\tPercent 
COI\tMeanPhase\n') 
nbands = input('How many coherence bands to process? >'); 
  
cbands(1) = 1; 
cbands(nbands+1) = 84; 
for t=1:1:nbands-1 
    prompt = sprintf('Upper period limit for band %0.0f? >', t); 
    cbands(t+1) = input(prompt); 
end 
  
cbw = input('Color (enter 0) or Black and White (enter 1) plot?>'); 
  
  
names = ['RXF189 60 hour.mat';'SOD536 60 hour.mat';'LLJ307 60 hour.mat';'NTZ968 
60 hour.mat';'KPC574 60 hour.mat';'WLZ799 60 hour.mat';'VPY248 60 
hour.mat';'VTC498 60 hour.mat'; ... 
'NRW768 60 hour.mat';'WKG214 60 hour.mat';'QUP402 60 hour.mat';'MVE870 60 
hour.mat';'MIT332 60 hour.mat';'MAC543 60 hour.mat';'AOC293 60 
hour.mat';'HAF838 60 hour.mat';'YCE432 60 hour.mat'; ... 
'RRF836 60 hour.mat';'ROH279 60 hour.mat';'IPI440 60 hour.mat';'HGE607 60 
hour.mat';'FGB688 60 hour.mat';'XJM504 60 hour.mat']; 
  
stateon = [60 158 391 481 612;60 205 388 477 635;57 159 352 447 600;62 162 357 
451 618;79 201 386 466 636;69 187 379 458 631;50 182 354 441 628;68 143 361 486 
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643;112 216 377 491 635;... 
    74 210 355 497 631;46 157 350 452 630;49 139 329 438 634;52 190 362 490 
632;74 175 368 465 633;68 225 355 442 632;58 167 328 464 625;70 150 349 451 
623;42 164 328 450 639;... 
    73 162 350 454 625;68 172 355 458 621;71 177 330 436 619;58 136 352 442 
619;45 161 341 453 628]; 
  
  
for q=1:1:length(names) 
    load(names(q,:)); 
    fname = names(q,:); 
    display(fname); 
    subnum = q; 
  
     
   
    for l = 1:1:6 
        if l < 5 
            glusnip = Sensor([stateon(subnum,l):stateon(subnum,l+1)]); 
            actsnip = dsmtotact([stateon(subnum,l):stateon(subnum,l+1)]); 
            nbandaug = -2; 
        end 
        if l == 5 
            glusnip = Sensor([stateon(subnum,l):length(Sensor)]); 
            actsnip = dsmtotact([stateon(subnum,l):length(Sensor)]); 
            nbandaug = -2; 
        end 
        if l == 6 
            glusnip = Sensor; 
            actsnip = dsmtotact; 
            nbandaug = 0; 
        end 
         
        figh(v)=figure('Position',[100,100,700,1000]); 
        subplot(2,1,1); 
       [ax,p1,p2]=plotyy(1:1:length(actsnip),actsnip, 1:1:length(glusnip), 
glusnip); 
       xlim(ax(1),[0, length(actsnip)]); 
       xlim(ax(2),[0, length(actsnip)]); 
       ylabel(ax(1),'activity'); 
       ylabel(ax(2),'Sensor Glucose'); 
        
        subplot (2,1,2); 
        
[rsq,period,scale,coi,sig95,phase]=wtcncnp(glusnip,actsnip,'MakeFigure',1,'Blac
kandWhite',cbw); 
        phasedeg = phase*180/3.14159; 
        figname=sprintf('%s-%d',names(q,[1:6]),i); 
        savefig(figname); 
        close all; 
         
        for p = 1:1:1 
     
         dim = size(sig95); 
         cbands(nbands+1) = dim(1); 
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            mrsq = zeros(nbands+nbandaug,1); 
            mrsqnc = zeros(nbands+nbandaug,1); 
            mphase = zeros(nbands+nbandaug,1); 
            sumrsq = zeros(dim(1),1); 
            numrsq = zeros(dim(1),1); 
            numphase = zeros(dim(1),1); 
            sumphase = zeros(dim(1),1); 
            sumrsqnc = zeros(dim(1),1); 
            numrsqnc = zeros(dim(1),1); 
            avgphase = zeros(dim(1),1); 
            avgrsq = zeros(dim(1),1); 
            avgrsqnc = zeros(dim(1),1); 
            meanrsq = zeros(nbands+nbandaug,1); 
            meanphase = zeros(nbands+nbandaug,1); 
  
            for l=1:1:dim(1) 
                for j=1:1:dim(2) 
           
           if period (l) <= coi(j) 
               sumrsq(l) = sumrsq(l) + rsq(l,j); 
               numrsq(l) = numrsq(l) + 1; 
               sumphase(l) = sumphase(l) + phase(l,j); 
               numphase(l) = numphase(l) +1; 
                
           else 
               sumrsqnc(l) = sumrsqnc(l) + rsq(l,j); 
               numrsqnc(l) = numrsqnc(l) + 1; 
           end 
                end 
           
            end  
        end 
     
    for s=1:1:dim(1) 
        avgrsq(s) = sumrsq(s)/numrsq(s); 
        avgrsqnc(s) = sumrsqnc(s)/numrsqnc(s); 
        avgphase(s) = sumphase(s)/numphase(s); 
    end 
     
  
    for h=1:1:nbands+nbandaug 
        if h < nbands+nbandaug 
            mrsq(h) = mean(avgrsq([cbands(h),cbands(h+1)])); 
            mrsqnc(h) = mean(avgrsqnc([cbands(h),cbands(h+1)])); 
            mphase(h) = mean(avgphase([cbands(h),cbands(h+1)])); 
        else 
            mrsq(h) = mean(avgrsq([cbands(h),dim(1)])); 
            mrsqnc(h) = mean(avgrsqnc([cbands(h),dim(1)])); 
            mphase(h) = mean(avgphase([cbands(h),dim(1)])); 
        end 
  
  
    
fprintf(fout10,'%s\t%d\t%d\t%4.2f\t%4.3f\t%4.3f\n',fname,i,h,mrsq(h),mrsqnc(h), 
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mphase(h)); 
     
    end 
     
   
        
    dim = size(sig95); 
  
     
    newdrop = 0; 
    drpon = 0; 
    drpoff = 0; 
    for i=1:1:dim(2) 
        drpband = '1'; 
        if i > drpoff 
            for j=1:1:19 
                if sig95(j,i) >= 1 && period(j) <= coi(i) 
                    newdrop = 1; 
                    drpon = i; 
                        k = 1; 
                        while max(sig95(1:19,i+k)) >=1 && period(1) <= coi(i+k) 
                            k = k+1; 
                        end 
                        if i+k-1 > drpoff 
                            drpoff = i+k-1; 
                        end 
                end 
            end 
        end 
            if newdrop == 1 
                meanphase = 0; 
                for k = drpon:1:drpoff 
                    for l=1:1:19 
                        meanphase = (meanphase + phasedeg(l,k)); 
                    end 
                end 
                meanphase = (meanphase)/((drpoff-drpon+1)*12); 
                
fprintf(fout2,'%s\t%s\t%s\t%0.0f\t%0.0f\t%4.2f\t%5.2f\n',filename,bands(v,:),dr
pband,drpon,drpoff,100*(drpoff-drpon+1)/(0.8925*dim(2)),meanphase); 
                newdrop = 0; 
            end 
    end 
     
    newdrop = 0; 
    drpon = 0; 
    drpoff = 0; 
    for i=1:1:dim(2) 
        drpband = '2'; 
        if i > drpoff 
            for j=20:1:31 
                if sig95(j,i) >= 1 && period(j) <= coi(i) 
                    newdrop = 1; 
                    drpon = i; 
                    k = 1; 
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                        while max(sig95(20:31,i+k)) >=1 && period(20) <= 
coi(i+k) 
                         k = k+1; 
                        end 
                     if i+k-1 > drpoff 
                         drpoff = i+k-1; 
                     end 
                end 
            end 
            if newdrop == 1 
                meanphase = 0; 
                for k = drpon:1:drpoff 
                    for l=20:1:31 
                        meanphase = (meanphase + phasedeg(l,k)); 
                    end 
                end 
                meanphase = (meanphase)/((drpoff-drpon+1)*12); 
                
fprintf(fout2,'%s\t%s\t%s\t%0.0f\t%0.0f\t%4.2f\t%5.2f\n',filename,bands(v,:),dr
pband,drpon,drpoff,100*(drpoff-drpon+1)/(0.8065*dim(2)),meanphase); 
                newdrop = 0; 
            end 
        end         
    end 
     
    newdrop = 0; 
    drpon = 0; 
    drpoff = 0; 
    for i=1:1:dim(2) 
        drpband = '3'; 
        if i > drpoff 
            for j=32:1:43 
                if sig95(j,i) >= 1 && period(j) <= coi(i) 
                    newdrop = 1; 
                    drpon = i; 
                    k = 1; 
                        while max(sig95(32:43,i+k)) >=1 && period(32) <= 
coi(i+k) 
                         k = k+1; 
                        end 
                     if i+k-1 > drpoff 
                         drpoff = i+k-1; 
                     end 
                end 
            end 
            if newdrop == 1 
                meanphase = 0; 
                for k = drpon:1:drpoff 
                    for l=32:1:43 
                        meanphase = (meanphase + phasedeg(l,k)); 
                    end 
                end 
                meanphase = (meanphase)/((drpoff-drpon+1)*12); 
                
fprintf(fout2,'%s\t%s\t%s\t%0.0f\t%0.0f\t%4.2f\t%5.2f\n',filename,bands(v,:),dr
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pband,drpon,drpoff,100*(drpoff-drpon+1)/(0.5484*dim(2)),meanphase); 
                newdrop = 0; 
            end 
        end         
    end   
     
    newdrop = 0; 
    drpon = 0; 
    drpoff = 0; 
    for i=1:1:dim(2) 
        drpband = '4'; 
        if i > drpoff 
            for j=44:1:55 
                if sig95(j,i) >= 1 && period(j) <= coi(i) 
                    newdrop = 1; 
                    drpon = i; 
                    k = 1; 
                        while max(sig95(44:55,i+k)) >=1 && period(44) <= 
coi(i+k) 
                         k = k+1; 
                        end 
                     if i+k-1 > drpoff 
                         drpoff = i+k-1; 
                     end 
                end 
            end 
            if newdrop == 1 
                meanphase = 0; 
                for k = drpon:1:drpoff 
                    for l=44:1:55 
                        meanphase = (meanphase + phasedeg(l,k)); 
                    end 
                end 
                meanphase = (meanphase)/((drpoff-drpon+1)*(12)); 
                
fprintf(fout2,'%s\t%s\t%s\t%0.0f\t%0.0f\t%4.2f\t%5.2f\n',filename,bands(v,:),dr
pband,drpon,drpoff,100*(drpoff-drpon+1)/(0.526*dim(2)),meanphase); 
                newdrop = 0; 
            end 
        end         
    end         
     
    if l ==6 
           newdrop = 0; 
    drpon = 0; 
    drpoff = 0; 
    for i=1:1:dim(2) 
        drpband = '5'; 
        if i > drpoff 
            for j=56:1:67 
                if sig95(j,i) >= 1 && period(j) <= coi(i) 
                    newdrop = 1; 
                    drpon = i; 
                    k = 1; 
                        while max(sig95(56:67,i+k)) >=1 && period(56) <= 
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coi(i+k) 
                         k = k+1; 
                        end 
                     if i+k-1 > drpoff 
                         drpoff = i+k-1; 
                     end 
                end 
            end 
            if newdrop == 1 
                meanphase = 0; 
                for k = drpon:1:drpoff 
                    for l=56:1:67 
                        meanphase = (meanphase + phasedeg(l,k)); 
                    end 
                end 
                meanphase = (meanphase)/((drpoff-drpon+1)*12); 
                
fprintf(fout2,'%s\t%s\t%s\t%0.0f\t%0.0f\t%4.2f\t%5.2f\n',filename,bands(v,:),dr
pband,drpon,drpoff,100*(drpoff-drpon+1)/(0.5484*dim(2)),meanphase); 
                newdrop = 0; 
            end 
        end         
    end   
     
    newdrop = 0; 
    drpon = 0; 
    drpoff = 0; 
    for i=1:1:dim(2) 
        drpband = '6'; 
        if i > drpoff 
            for j=67:1:84 
                if sig95(j,i) >= 1 && period(j) <= coi(i) 
                    newdrop = 1; 
                    drpon = i; 
                    k = 1; 
                        while max(sig95(67:84,i+k)) >=1 && period(67) <= 
coi(i+k) 
                         k = k+1; 
                        end 
                     if i+k-1 > drpoff 
                         drpoff = i+k-1; 
                     end 
                end 
            end 
            if newdrop == 1 
                meanphase = 0; 
                for k = drpon:1:drpoff 
                    for l=44:1:84 
                        meanphase = (meanphase + phasedeg(l,k)); 
                    end 
                end 
                meanphase = (meanphase)/((drpoff-drpon+1)*(12)); 
                
fprintf(fout2,'%s\t%s\t%s\t%0.0f\t%0.0f\t%4.2f\t%5.2f\n',filename,bands(v,:),dr
pband,drpon,drpoff,100*(drpoff-drpon+1)/(0.526*dim(2)),meanphase); 
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                newdrop = 0;  
            end 
        end 
    end 
    end 
     
    end 
clear avgrsq; 
    clear mrsq; 
    clear avgrsqnc; 
    clear mrsqnc; 
    clear cvrsqnc; 
    clear cvrsq; 
    clear mean; 
  
    fprintf(fout10,'\n'); 
   
end
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Appendix	B	
Validation	of	Matlab	Code		

	
A.	 Validation	of	FFT-Based	Banded	Power	Computations:	SWAGFFT300bands.m	

1.		 Create	and	Plot	Simulated	EEG	Data:	testSWAGFFT300bands.m	
time=.002:.002:300; %create 500/s time base 
 
% create sinwave combinations for 5 simulated EEG channels, with one sine 
% component in each EEG band 
ch1 = 
sin(6.283*time*2)+sin(6.283*time*6)+sin(6.283*time*12)+sin(6.283*time*20)+sin(6
.283*time*40); 
ch2 = 
2*sin(6.283*time*2)+2*sin(6.283*time*6)+sin(6.283*time*12)+sin(6.283*time*20)+s
in(6.283*time*40); 
ch3 = 
3*sin(6.283*time*2)+3*sin(6.283*time*6)+sin(6.283*time*12)+sin(6.283*time*20)+s
in(6.283*time*40); 
ch4 = 
4*sin(6.283*time*2)+4*sin(6.283*time*6)+sin(6.283*time*12)+sin(6.283*time*20)+s
in(6.283*time*40); 
ch5 = 
5*sin(6.283*time*2)+5*sin(6.283*time*6)+sin(6.283*time*12)+sin(6.283*time*20)+s
in(6.283*time*40); 
 
% fill the EEG.data structure with simulated sinewave data in channels 1-5 
for i = 1:1:97 
EEG.data(1,:,i) = ch1(:); 
EEG.data(2,:,i) = ch2(:); 
EEG.data(3,:,i) = ch3(:); 
EEG.data(4,:,i) = ch4(:); 
EEG.data(5,:,i) = ch5(:); 
end 
 
% plot channels to verify waveforms 
figh=figure('Position',[100,100,600,850]); subplot(5,1,1); 
plot(time,EEG.data(1,:,1)); 
xlim([0 10]); 
title('Channel 1'); 
subplot(5,1,2); 
plot(time,EEG.data(2,:,1)); 
title('Channel 2'); 
xlim([0 10]); 
subplot(5,1,3); 
plot(time,EEG.data(3,:,1)); 
title('Channel 3'); 
xlim([0 10]); 
subplot(5,1,4); 
plot(time,EEG.data(4,:,1)); 
title('Channel 4'); 
xlim([0 10]); 
subplot(5,1,5); 
plot(time,EEG.data(5,:,1)); 
title('Channel 5'); 
xlim([0 10]); 
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xlabel('Time (seconds)'); 
 
% save plot 
savefig(figh,'Simulated EEG Test Plot');	
	
2.			 Run	SWAGFFT300bands	to	Verify	Output: 
>> SWAGFFT300bands 
Please enter the channel numbers or ranges for analysis >5 4 3 2 1 
Name of file to save graph for first specified analysis channel >Simulated EEG 
FFT Test Plot 
Please enter the first epoch for analysis >1 
Please enter number of epochs for analysis >97 
>> SWAGEEGcorr 
Please enter the subject ID> SimTest 
Please enter the name of the ".cor" and ".corstat" files for output> Simulated 
EEG Corr Test 
Do you want to append (enter "a") or overwrite (enter "w") data in these files? 
w 
Please enter maximum number of lags for analysis >20 
>> 

3.			 Confirm	Results	Generated	by	SWAGFFT300bands.m	
Ensure	graph	depicts	results	for	simulated	EEG	channel	#5,	as	it	was	entered	first.	
As	expected,	all	banded	power	values	and	their	ratios	are	constant	over	time.	
As	expected,	Delta	power	and	Theta	power	are	equal	(375	µV2)	and	Alpha,	Beta	and	

Gamma	power	are	equal	(15	µV2).	
Simulated	Delta	and	Theta	sine	waves	each	have	an	amplitude	of	5	versus	1	for	Alpha,	

Beta	and	Gamma.		Converting	from	amplitude	to	power	confirms	the	expected	ratio	of	25	(5-squared).	
	
For	normalized	power,	we	expect	the	value	of	Delta	and	Theta	to	be:	
	 375/(375+375+15+15+15)	=	0.471	
For	normalized	power,	we	expect	the	value	of	Alpha,	Beta	and	Gamma	to	be:	
	 15/(375+375+15+15+15)	=	0.019	
These	values	also	are	confirmed	by	the	plot	above.	
	
We	expect	the	activation	ratio	to	be:	
	 15+15+15//(375+375+15+15+15)	=	0.057	
Because	all	power	values	are	invariant	over	time,	we	expect	the	standard	deviation	of	

power	and	normalized	power	to	be	zero.	This	is	confirmed	by	the	plot	above,	which	demonstrates	that	
all	values	are	constant	with	a	value	of	less	than	10-7,	which	represents	rounding	error.	
	
B.	 Validation	of	EEG/Glucose	Cross	Correlation	Analysis:	SWAGEEGcorr.m	

1. Create	and	plot	simulated	average	and	sd	power;	absolute	and	normalized:		
testSWAGEEGcorr.m	

time=0:300:28800; %create 500/s time base 
clear glucose; 
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% create sinwave simulated EEG power and Glucose 
for i = 1:1:5 
    avpower((i-1)*7 + 1,:) = sin(6.28*time/1500); 
    avpower((i-1)*7 + 2,:) = sin(6.28*time/3000); 
    avpower((i-1)*7 + 3,:) = sin(6.28*time/4500); 
    avpower((i-1)*7 + 4,:) = sin(6.28*time/6000); 
    avpower((i-1)*7 + 5,:) = sin(6.28*time/7500); 
    avpower((i-1)*7 + 6,:) = sin(6.28*time/9000); 
    avpower((i-1)*7 + 7,:) = sin(6.28*time/10500); 
    avnpower((i-1)*7 + 1,:) = sin(6.28*time/1500); 
    avnpower((i-1)*7 + 2,:) = sin(6.28*time/3000); 
    avnpower((i-1)*7 + 3,:) = sin(6.28*time/4500); 
    avnpower((i-1)*7 + 4,:) = sin(6.28*time/6000); 
    avnpower((i-1)*7 + 5,:) = sin(6.28*time/7500); 
    avnpower((i-1)*7 + 6,:) = sin(6.28*time/9000); 
    avnpower((i-1)*7 + 7,:) = sin(6.28*time/10500); 
    sdpower((i-1)*7 + 1,:) = sin(6.28*time/1500); 
    sdpower((i-1)*7 + 2,:) = sin(6.28*time/3000); 
    sdpower((i-1)*7 + 3,:) = sin(6.28*time/4500); 
    sdpower((i-1)*7 + 4,:) = sin(6.28*time/6000); 
    sdpower((i-1)*7 + 5,:) = sin(6.28*time/7500); 
    sdpower((i-1)*7 + 6,:) = sin(6.28*time/9000); 
    sdpower((i-1)*7 + 7,:) = sin(6.28*time/10500); 
    sdnpower((i-1)*7 + 1,:) = sin(6.28*time/1500); 
    sdnpower((i-1)*7 + 2,:) = sin(6.28*time/3000); 
    sdnpower((i-1)*7 + 3,:) = sin(6.28*time/4500); 
    sdnpower((i-1)*7 + 4,:) = sin(6.28*time/6000); 
    sdnpower((i-1)*7 + 5,:) = sin(6.28*time/7500); 
    sdnpower((i-1)*7 + 6,:) = sin(6.28*time/9000); 
    sdnpower((i-1)*7 + 7,:) = sin(6.28*time/10500); 
    glucose(i,:) = sin(6.28*time/(1500*i)); 
end 
Sensor = sin(6.28*time/1500); 
 
% plot channels to verify waveforms 
figh=figure('Position',[100,100,600,850]);  
subplot(4,1,1); 
plot(time,transpose(avpower)); 
title('avpower'); 
subplot(4,1,2); 
plot(time,transpose(avnpower)); 
title('avnpower'); 
subplot(4,1,3); 
plot(time,transpose(sdpower)); 
title('sdpower'); 
subplot(4,1,4); 
plot(time,transpose(sdnpower)); 
title('sdnpower'); 
xlabel('Time (seconds)'); 
 
% save plot 
savefig(figh,'Simulated Power Correlation Test Plot'); 
 

2.			 Run	SWAGEEGcorr.m	to	verify	output	
>> SWAGEEGcorrTest 
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Please enter the subject ID> testsub 
Please enter the name of the ".cor" and ".corstat" files for output> 
EEGCorrTest 
Do you want to append (enter "a") or overwrite (enter "w") data in these files? 
w 
Please enter maximum number of lags for analysis >20 

3.			 Confirm	results	generated	by	SWAGEEGcorr.m	
Ascending	power	bands	for	avpower,	avnpower,	sdpower	and	sdnpower	(1	through	7)	

were	given	sine	wave	periods	of	5,	10,	15,	20,	25,	30	and	35	points	(at	1	per	5-min	sampling	frequency).	
For	correlations,	glucose	was	given	a	sine	wave	period	of	5*channel#	for	analysis	

purposes.	
Thus	plots	for	each	channel	(1	through	5)	should	reflect	sign	wave	oscillatory	correlation	

with	one	band	oscillating	between	+1	at	zero	lag	through	-1	at	period/2	lags	and	back	to	+1	with	a	
period	equal	to	the	underlying	sine	wave	period.	

All	other	bands	should	demonstrate	low	(near	zero)	correlation	oscillating	at	the	“beat	
frequency”	between	the	two	sine	waves.	

These	findings	are	confirmed	by	graphical	output.	
	

C.	 Validation	of	Wavelet	Coherence	Computations:	SWAGEEGhere.m	
1.	 Conceptual	Approach	

Consider	the	case	of	a	single-input	single-output	linear	time-invariant	system,	given	by:	
	
	
	 y(t)	=	βx(t)	+	N(t)	
	 	 Where:		 y(t)	is	the	output	
	 	 	 	 x(t)	is	the	input	
	 	 	 	 N(t)	is	additive	noise	
	
Then,	the	coherence	function	between	x	and	y	is	given	by:	
	 γ2(f)	=	1/(1+GNN(f)/GXX(f))	
	 	 Where:		 γ2	is	the	squared	coherence	
	 	 	 	 GNN(f)	is	the	power	spectral	density	of	N(t)	
	 	 	 	 GXX(f)	is	the	power	spectral	density	of	x(t)	
	 	 	 	 	
In	the	simplest	case:	
	 x(t)	=	βsin(2π*t*f0)	and	
	 GXX(f)	scales	as	β2	for	f	=	f0	and	
	 GXX(f)	=	for	all	f	≠	f0	
	
Thus,	by	adding	uniform	white	noise	to	the	sinusoidal	input	x(t)	we	can	achieve	a	

predictable	degradation	of	coherence,	ranging	from	
	 γ2(f)	=	1	for	GNN(f0)	=	0		to	
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	 γ2(f)	approaching	0	as	GNN(f0)	approaches	infinity	
	
2.			 Create	simulated	data	for	a	single	EEG	and	single	glucose	channel	as	above:		
 
randcoheretest.m 

time=0:300:28800; %create 1/300s time base with 97 values 
r1 = rand(1,97); %generates random variable between 0 and 1 with length of time 
base 
 
for i = 1:1:100 % generate 100 additional realizations of random noise to get 
mean and SD stats 
    rn=rand(1,97)-.5; 
    [rnpeeg,f]=periodogram(rn,[],97,1/300); 
    mrnpeeg(i)=mean(rnpeeg); 
end 
meanrnpeeg=mean(mrnpeeg); %mean power of simulated EEG 
sdrnpeeg=std(mrnpeeg); % SD of of mean power for simulated EEG realizations 
 
% create sinewave simulated EEG power and Glucose using r1 random noise to 
% degrade signal to noise ratio in simulated EEG realizations 
 
Sensor = sin(6.28*time/3000); 
 
for i = 1:1:1 
    avpower((i-1)*7 + 1,:) = sin(6.28*time/3000)+1*(r1-.5); 
    avpower((i-1)*7 + 2,:) = sin(6.28*time/3000)+5*(r1-.5); 
    avpower((i-1)*7 + 3,:) = sin(6.28*time/3000)+10*(r1-.5); 
    avpower((i-1)*7 + 4,:) = sin(6.28*time/3000)+15*(r1-.5); 
    avpower((i-1)*7 + 5,:) = sin(6.28*time/3000)+20*(r1-.5); 
    avpower((i-1)*7 + 6,:) = sin(6.28*time/3000)+25*(r1-.5);  
    avpower((i-1)*7 + 7,:) = sin(6.28*time/3000)+50*(r1-.5); 
end 
 
% plot channels to verify waveforms 
figh=figure('Position',[100,100,600,850]);  
plot(time,transpose(avpower)); 
title('simulated avpower'); 
hold 
plot(time,glucose); 
 
[r1peeg,f]=periodogram(rn,[],97,1/300); %get actual power density spectrum for 
random noise realization 
[Speeg,f]=periodogram(Sensor,[],97,1/300); %get actual power density spectrum 
for sinewave glucose 
ratio(1)=r1peeg(11)/Speeg(11); %get ratio of noise power to signal power at 
frequency of 1/3000 (point 11) 
ratio(2)=25*r1peeg(11)/Speeg(11);  
ratio(3)=100*r1peeg(11)/Speeg(11); 
ratio(4)=225*r1peeg(11)/Speeg(11); 
ratio(5)=400*r1peeg(11)/Speeg(11); 
ratio(6)=625*r1peeg(11)/Speeg(11); 
ratio(7)=2500*r1peeg(11)/Speeg(11); 
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for i = 1:1:7  %predicted coherence based on actual observed Sensor and 
simulated EEG power at f=1/3000 
    precoh(i)=1/(1+ratio(i));  
end 
 
savefig(figh,'SNR Simulation Data'); 
 

3.			 Run	SWAGEEGhere.m	to	confirm	output	
>> SWAGEEGhere 
Please enter the subject ID> foobar 
Output file name: foobar 
Do you want to append (enter "a") or overwrite (enter "w") data in these 

files? w 
Color (enter 0) or Black and White (enter 1) plot?>0 
>> 

	
Visual	inspection	confirms	that	for	low	levels	of	noise	(Delta	and	Theta	bands	above)	a	single	

band	of	high	and	significant	coherence	is	detected	over	the	full	recording	period.	
This	band	of	significant	coherence	is	centered	at	a	period	of	10,	or	3000	seconds,	which	is	

part	of	the	“middle”	bands	of	frequencies	used	for	droplet	and	mean	coherence	analyses.	This	also	confirms	
prediction,	because	the	period	of	the	sine	wave	used	for	simulations	was	3000s	(or	10	sample	points).	

As	expected,	with	increasing	noise	power	from	Delta	through	AR2	bands,	the	mean	
coherence	diminishes	even	at	a	period	of	10.		For	the	AR2	band,	into	which	noise	with	a	range	of	±50	was	
added	to	the	sine	wave	with	an	amplitude	of	1,	no	significant	coherence	is	observed	at	any	time	or	period.	

4.	 Quantify	relationship	between	predicted	and	observed	coherence	
Coheretest.m	

time=0:300:28800; %create 1/300s time base with 97 values 
r1 = rand(1,97); %generates random variable between 0 and 1 with length of time base 
 
for j = 1:1:500 % generate 500  realizations of random noise to get mean and SD 
stats 
    r1=rand(1,97)-.5; 
    [r1peeg,f]=periodogram(r1,[],97,1/300); %get actual power density spectrum for 
random noise realization 
    [Speeg,f]=periodogram(Sensor,[],97,1/300); %get actual power density spectrum 
for sinewave glucose 
     
    ratio(1)=r1peeg(11)/Speeg(11); %get ratio of noise power to signal power at 
frequency of 1/3000 (point 11) 
    ratio(2)=25*r1peeg(11)/Speeg(11);  
    ratio(3)=100*r1peeg(11)/Speeg(11); 
    ratio(4)=225*r1peeg(11)/Speeg(11); 
    ratio(5)=400*r1peeg(11)/Speeg(11); 
    ratio(6)=625*r1peeg(11)/Speeg(11); 
    ratio(7)=2500*r1peeg(11)/Speeg(11); 
 
    for i = 1:1:7  %predicted coherence based on actual observed Sensor and 
simulated EEG power at f=1/3000 
    precoh(i)=1/(1+ratio(i));  
    end 
    pred(j,:)=precoh; 
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    ratio(1)=0.005; %get ratio of average noise power to signal power at frequency 
of 1/3000 (point 11) 
    ratio(2)=0.125;  
    ratio(3)=0.5; 
    ratio(4)=1.125; 
    ratio(5)=2; 
    ratio(6)=3.125; 
    ratio(7)=12.5; 

 
Sensor = sin(6.28*time/3000); % create sinewave simulated Glucose with period of 10 
points 
 
% create simulated EEG power using r1 random noise to degrade signal to noise ratio 
in simulated EEG realizations 
    for i = 1:1:1  
        avpower((i-1)*7 + 1,:) = sin(6.28*time/3000)+1*(r1-.5); 
        avpower((i-1)*7 + 2,:) = sin(6.28*time/3000)+5*(r1-.5); 
        avpower((i-1)*7 + 3,:) = sin(6.28*time/3000)+10*(r1-.5); 
        avpower((i-1)*7 + 4,:) = sin(6.28*time/3000)+15*(r1-.5); 
        avpower((i-1)*7 + 5,:) = sin(6.28*time/3000)+20*(r1-.5); 
        avpower((i-1)*7 + 6,:) = sin(6.28*time/3000)+25*(r1-.5);  
        avpower((i-1)*7 + 7,:) = sin(6.28*time/3000)+50*(r1-.5); 
    end 
 
     
     
 
for v = 1:1:7  
            
[rsq,period,scale,coi,sig95,phase]=wtcncnp(Sensor,avpower(v,:),'MakeFigure',1,'Black
andWhite',bw);  
            mrsq28(v)=mean(rsq(28,[15:83])); 
    end 
    obs(j,:)=mrsq28; 
end 

 

The	relationship	between	predicted	and	observed	coherence	at	a	period	of	10	samples	(mid-
range	of	the	periods	computed)	displays	considerable	variability	across	500	realizations	of	uniform	white	
noise.	

Averaging	across	all	500	trials,	the	wct	algorithm	closely	approximated	predicted	coherence	
for	predicted	values	greater	than	0.5,	but	consistently	overestimated	predicted	values	below	0.5.	

Upper	and	lower	dashed	lines	depict	±1SD	among	the	500	trials.		Predicted	coherence	values	
do	not	deviate	from	observed	values	by	more	than	1SD	when	predicted	coherence	exceeds	0.3.		Therefore	
we	believe	we	can	rely	on	observed	coherence	values	in	the	range	of	0.3	to	1.0.	

5.	 Identify	Effect	of	Windowing	Choice	for	Periodogram	
time=0:300:28800; %create 1/300s time base with 97 values 
r1 = rand(1,97); %generates random variable between 0 and 1 with length of time base 
 
for j = 1:1:500 % generate 500  realizations of random noise to get mean and SD 
stats 
    r1=rand(1,97)-.5; 
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**    [r1peeg,f]=periodogram(r1,hamming(97),97,1/300); %get power density spectrum 
for random noise realization 
**    [Speeg,f]=periodogram(Sensor, hamming(97),,97,1/300); %get power density 
spectrum for sinewave glucose 
     
    ratio(1)=r1peeg(11)/Speeg(11); %get ratio of noise power to signal power at 
frequency of 1/3000 (point 11) 
    ratio(2)=25*r1peeg(11)/Speeg(11);  
    ratio(3)=100*r1peeg(11)/Speeg(11); 
    ratio(4)=225*r1peeg(11)/Speeg(11); 
    ratio(5)=400*r1peeg(11)/Speeg(11); 
    ratio(6)=625*r1peeg(11)/Speeg(11); 
    ratio(7)=2500*r1peeg(11)/Speeg(11); 
 
    for i = 1:1:7  %predicted coherence based on actual observed Sensor and 
simulated EEG power at f=1/3000 
    precoh(i)=1/(1+ratio(i));  
    end 
    pred(j,:)=precoh; 
     
    ratio(1)=0.005; %get ratio of average noise power to signal power at frequency 
of 1/3000 (point 11) 
    ratio(2)=0.125;  
    ratio(3)=0.5; 
    ratio(4)=1.125; 
    ratio(5)=2; 
    ratio(6)=3.125; 
    ratio(7)=12.5; 

 
Sensor = sin(6.28*time/3000); % create sinewave simulated Glucose with period of 10 
points 
 
% create simulated EEG power using r1 random noise to degrade signal to noise ratio 
in simulated EEG realizations 
    for i = 1:1:1  
        avpower((i-1)*7 + 1,:) = sin(6.28*time/3000)+1*(r1-.5); 
        avpower((i-1)*7 + 2,:) = sin(6.28*time/3000)+5*(r1-.5); 
        avpower((i-1)*7 + 3,:) = sin(6.28*time/3000)+10*(r1-.5); 
        avpower((i-1)*7 + 4,:) = sin(6.28*time/3000)+15*(r1-.5); 
        avpower((i-1)*7 + 5,:) = sin(6.28*time/3000)+20*(r1-.5); 
        avpower((i-1)*7 + 6,:) = sin(6.28*time/3000)+25*(r1-.5);  
        avpower((i-1)*7 + 7,:) = sin(6.28*time/3000)+50*(r1-.5); 
    end 

 
for v = 1:1:7  
            
[rsq,period,scale,coi,sig95,phase]=wtcncnp(Sensor,avpower(v,:),'MakeFigure',1,'Black
andWhite',bw);  
            mrsq28(v)=mean(rsq(28,[15:83])); 
    end 
    obs(j,:)=mrsq28; 
end 

The	relationship	of	computed	to	observed	coherence	was	not	significantly	affected	by	
windowing	choice	(rectangular	versus	Hamming).	
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6.	 Determine	the	Impact	of	Period	on	Relationship	Between	Observed	and	Predicted	Coherence	
As	demonstrated	above,	the	relationship	between	predicted	and	observed	coherence	is	

influenced	by	the	period	of	the	sine	wave	within	the	target	range	(2	to	35	samples;	or	10	to	175	minutes):	
•	For	a	period	of	5	samples	(25	minutes)	the	wct	algorithm	consistently	underestimates	
predicted	coherence	for	predicted	coherences	greater	than	~0.5	and	overestimating	
predicted	coherence	at	lower	values	

•	For	a	period	of	10	samples	(50	minutes)	the	wct	algorithm	accurately	estimates	predicted	
coherence	in	the	range	of	~0.5	to	1.0;	but	again	overestimates	predicted	coherence	in	the	
lower	range	

•	For	a	period	of	20	samples	(100	minutes)	the	wct	algorithm	consistently	overestimates	
predicted	coherence	throughout	the	range,	but	this	overestimation	increases	as	predicted	
coherence	decreases	

•	At	all	periods,	the	wct	coherence	estimates	appear	to	approach	a	plateau	in	the	range	of	
0.4	for	very	low	predicted	coherence	values	

7.	 Identify	the	Coherence	Computed	Between	Independent	Random	Samples:	noisersq.m	
groupmeanrsq = zeros(50,97); 
for v = 1:1:100 
    r1=rand(1,97)-.5; 
    r2=rand(1,97)-.5; 
    
[rsq,period,scale,coi,sig95,phase]=wtcncnp(r1,r2,'MakeFigure',1,'BlackandWhite',bw); 
 
    sumrsq = 0; 
    numrsq = 0; 
for i = 1:1:50 
        for j = 1:1:97 
            groupmeanrsq(i,j) = groupmeanrsq(i,j)+(rsq(i,j)/97); 
           if period (i) <= coi(j) 
               sumrsq = sumrsq + rsq(i,j); 
               numrsq = numrsq + 1; 
           end 
        end 
    end 
avnoisersq(v) = sumrsq/numrsq; 
end 
	

The	lower	plateau	observed	for	predicted	coherences	below	~0.5	may	relate	either	to	a	
limitation	of	the	wavelet	coherence	calculation	itself	or	of	a	lack	of	independence	in	the	random	process	
generator	of	matlab.	

Testing	100	realizations	of	random	noise:	r1	=	rand(1,	97)	vs	r2	=	rand(1,	97)	yielded	an	
average	calculated	coherence	value	of	0.3325±0.05	(SD)	(range	0.27	to	0.69)	across	the	samples	for	all	
periods	and	all	time	points	within	outside	the	COI.	

Although	the	average	computed	coherence	outside	the	COI	is	visibly	lower	than	the	
values	computed	within	the	COI,	the	mean	coherence	not	influenced	by	“end	effects”	remains	in	the	
range	of	0.3	to	0.35,	rather	than	approaching	zero.	
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This	does	not	appear	to	be	primarily	a	function	of	“data	length”	because	increasing	the	
length	of	the	random	noise	realizations	to	500	points	yielded	an	overall	average	computed	coherence	of	
0.3368	±	0.04	(SD)	with	a	range	of	0.25	to	0.44.	
	
D.	 Validation	of	Coherence	and	Correlation	for	Multiple	Channels	and	Statistics	with	Actual	Data	

1. Import	a	PSG	EDF	into	Matlab	
a. EDF	is	imported	into	Matlab	using	EEGlab	

i. Import	the	Channels	Desired	
1. 1,2,4,5,6,7	are	the	two	frontal	(F3/A2	and	F4/A1),	two	central	

(C3/A2	and	C4/A1)	and	two	occipital	(O1/A2	and	O2/A1)	leads	
a. They	become	channels	1-6	after	importing	

ii. Data	Range	should	start	at	the	second	corresponding	with	lights	out	from	
the	start	of	the	PSG	recording	

b. Define	Epochs-Creates	300	second	epochs	(5	minutes)	
i. Create	a	text	file	with	latency,	type	and	duration	as	header	
ii. Latency	begins	at	0	and	increases	at	each	row	by	300,	type	is	“deltaepoch”	

for	every	row,	duration	is	300	at	every	row	
iii. Import	the	text	file	using	the	“Import	Event	Information”	under	the	“File”	

menu	in	EEGlab	
c. Extract	epochs	using	“extract	epochs”	under	the	“Tools”	menu	

i. Tabs	are	latency	type	duration	
ii. One	line	of	header	
iii. Do	not	remove	baseline	

2. Import	glucose	values	from	excel	spreadsheet	into	Matlab	
a. Ensure	there	are	no	NaN	in	the	column	for	glucose	

3. Run	SWAGbands300FFT	to	determine	power	in	each	band	
a. Example:	

>> SWAGFFT300bands 
Please enter the channel numbers or ranges for 
analysis >1:6 
Name of file to save graph for first specified 
analysis channel >1 
Please enter the first epoch for analysis >1 
Please enter number of epochs for analysis >93 

b. Inspect	graph	to	ensure	no	obvious	abnormalities	in	power	graphs	
	
4. Run	SWAGEEGcorr.m	file	

a. Example	Input:	
>> SWAGEEGcorr 
Please enter the subject ID> 1 
Please enter the name of the ".cor" and ".corstat" 
files for output> test 
Do you want to append (enter "a") or overwrite (enter 
"w") data in these files? w 
Please enter maximum number of lags for analysis >20 

b. Inspect	graph	outputs	
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i. Expected	that	graphs	will	be	similar	for	each	EEG	band	but	slightly	different	
by	each	channel	

5. Run	SWAGEEGhere.m	
a. Example	Input:	

>> SWAGEEGhere 
Please enter the subject ID> 1 
Output file name: test 
Do you want to append (enter "a") or overwrite (enter 
"w") data in these files? w 
Color (enter 0) or Black and White (enter 1) plot?>0 

b. Expect	to	get	coherence	graphs	for	7	bands	for	4	statistics	for	6	channels	(168)	per	
subject	

6. Run	SWAGEEGgcfinal.m	file	for	subject	
a. Expected	input:	

>> SWAGEEGgcfinal 
Please enter the name of the stats output file ".gc" 
> test 
Do you want to append (enter "a") or overwrite (enter 
"w") data in these files? w 
Please input the starting channel number >1 
Please input the ending channel number >3 

b. Expected	output	(for	one	channel	and	one	statistic	and	one	band):	
*** tsdata_to_infocrit 
model order = 1 
model order = 2 
model order = 3 
model order = 4 
model order = 5 
model order = 6 
model order = 7 
model order = 8 
model order = 9 
model order = 10 
model order = 11 
model order = 12 
model order = 13 
model order = 14 
model order = 15 
model order = 16 
model order = 17 
model order = 18 
model order = 19 
model order = 20 
*** tsdata_to_infocrit took 0.466499 secs 
 
best model order (AIC) = 9 
best model order (BIC) = 20 
 
using AIC best model order = 9 
 
*** tsdata_to_var... 0.121453 secs 
*** var_to_autocov... 0.198131 secs 
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VAR info: 
    no errors 
    no warnings 
    spectral radius   : 0.974752 
    ac relative error : 7.89205e-13 
    minimum ac lags   : 721 
    actual  ac lags   : 721 
 
*** autocov_to_pwcgc... 0.297270 secs 
 
causal density = 0.088246 
 
*** autocov_to_spwcgc... 0.624719 secs 
 
checking that frequency-domain GC integrates to time-domain GC...  
maximum absolute difference OK: = 2.74e-12 (< 1.00e-05) 
 
*** tsdata_to_infocrit 
model order = 1 
model order = 2 
model order = 3 
model order = 4 
model order = 5 
model order = 6 
model order = 7 
model order = 8 
model order = 9 
model order = 10 
model order = 11 
model order = 12 
model order = 13 
model order = 14 
model order = 15 
model order = 16 
model order = 17 
model order = 18 
model order = 19 
model order = 20 
*** tsdata_to_infocrit took 0.025103 secs 
 
best model order (AIC) = 8 
best model order (BIC) = 20 
 
using AIC best model order = 8 
 
*** tsdata_to_var... 0.003158 secs 
*** var_to_autocov... 0.030785 secs 
 
VAR info: 
    no errors 
    no warnings 
    spectral radius   : 0.977766 
    ac relative error : 2.21642e-13 
    minimum ac lags   : 820 
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    actual  ac lags   : 820 
 
*** autocov_to_pwcgc... 0.265406 secs 
 
causal density = 0.110133 
 
*** autocov_to_spwcgc... 0.440382 secs 
 
checking that frequency-domain GC integrates to time-domain GC...  
maximum absolute difference OK: = 5.03e-14 (< 1.00e-05) 
 
*** tsdata_to_infocrit 
model order = 1 
model order = 2 
model order = 3 
model order = 4 
model order = 5 
model order = 6 
model order = 7 
model order = 8 
model order = 9 
model order = 10 
model order = 11 
model order = 12 
model order = 13 
model order = 14 
model order = 15 
model order = 16 
model order = 17 
model order = 18 
model order = 19 
model order = 20 
*** tsdata_to_infocrit took 0.006487 secs 
 
best model order (AIC) = 7 
best model order (BIC) = 7 
 
using AIC best model order = 7 
 
*** tsdata_to_var... 0.000285 secs 
*** var_to_autocov... 0.003442 secs 
 
VAR info: 
    no errors 
    no warnings 
    spectral radius   : 0.967330 
    ac relative error : 9.36279e-14 
    minimum ac lags   : 555 
    actual  ac lags   : 555 
 
*** autocov_to_pwcgc... 0.117003 secs 
 
causal density = 0.142482 
 
*** autocov_to_spwcgc... 0.229166 secs 



	
	

156	
	

Appendix	C		
Detailed	Methods	for	Measurement	of	Interleukin-6	(IL-6)	and	Tumor	Necrosis	Factor-alpha	(TNF-α),	

and	Cortisol	Using	Enzyme-Linked	Immunosorbent	Assay	(ELISA)	
	
A. Protocol	of	sample	Collection	and	Storage	

Blood	was	collected	from	each	subject	immediately	prior	(within	10	minutes)	to	lights	out,	
immediately	after	lights	on	(within	10	minutes)	and	an	hour	(within	five	minutes)	after	the	second	blood	
draw	occurred.		Each	sample	was	drawn	with	a	21-gauge	needle	from	an	antecubital	vein	while	subjects	
were	either	lying	in	bed	or	sitting	comfortably	in	a	chair.		The	samples	were	drawn	into	an	
Ethylenediaminetetraacetic	acid	(EDTA)	coated	10-ml	tube.		The	sample	was	labeled	with	subject	ID,	
date	and	time	of	collection	and	placed	in	a	2-4°	Celsius	refrigerator.		After	collection	of	all	the	samples,	
they	were	delivered	to	the	UIBiorepository	laboratory	in	the	Research	Resources	Center	at	UIC.		Trained	
lab	technicians	spun	each	sample	down	using	an	Eppendorf	5810	R	TM	centrifuge	at	1800	revolutions	per	
minute	for	12	minutes	at	4°	Celsius.		The	plasma	was	equally	aliquoted	using	a	pipette	into	four	tubes	
(400-800	µL	total	volume	per	aliquot).	Aliquots	were	labeled	with	subject	ID	number,	sample	number	
(time	point	of	collection)	and	stored	in	a	-80°	Celsius	freezer	until	the	completion	of	the	study.		Upon	
completion	of	the	study,	enzyme-linked	immunosorbent	assay	(ELISA)	was	used	to	measure	levels	of	IL-
6,	TNF-alpha	and	cortisol.			

The	ELISA	procedures	were	carried	out	at	the	University	of	Illinois	at	Chicago	in	the	lab	of	Giamilla	
Fantuzzi,	PhD,	in	the	Applied	Health	Sciences	Building.		Rand	Akaesh,	PhD	candidate,	carried	out	the	
protocols	with	the	assistance	of	Sarah	Farabi.			
B. Enzyme-Linked	Immunosorbent	Assay	(ELISA)	Method	

1. Background	on	ELISA	Method-Rationale	for	Selection	
ELISA,	a	heterogenous	enzyme	immunosassay,	was	invented	in	1971	Peter	Perlmann	and	Eva	

Engvall	as	an	alternative	way	to	measurement	of	antibodies	in	a	sample	by	radioimmunoassay	(RIA)	
which	required	radioactive	labeling	(201).		ELISA	is	widely	used	for	measurement	of	inflammatory	
cytokines	and	there	are	many	commercially	available	kits	for	measurement.		The	ELISA	method	
quantifies	presence	of	a	specific	antibody.		Four	types	of	heterogeneous	ELISAs,	direct,	indirect,	
sandwich	and	competitive	have	been	since	developed	(202).			Sandwich	ELISA	was	the	mechanism	used	
to	quantify	plasma	IL-6	and	TNF-α	and	competitive	ELISA	was	used	to	quantify	cortisol	levels	in	the	
plasma.	

Competititive	binding	ELISA	was	developed	in	1976	by	Yorde	and	colleagues	for	determination	
of	human	choriogonadotropin	(203).	There	are	several	types	of	competitive	binding	assays	(204),	
however,	in	the	type	used	for	this	study,	the	sample	antigen	competes	with	a	fixed	amount	of	labeled	
antigen	for	sites	on	an	antibody	which	the	binds	to	another	antibody	which	is	bound	to	the	wells	of	the	
plate.	After	washing	the	plate,	a	substrate	specific	to	the	enzyme	affixed	to	the	competing	antigen	is	
added	to	measure	the	amount	of	binding.		The	color	absorbance	(optical	density)	of	the	enzyme	
(reaction	is	a	color	change)	is	determined.		An	inverse	relationship	for	optical	and	level	of	substrate	for	
sample	is	expected:	higher	levels	of	color	(optical	density)	are	seen	for	lower	levels	of	the	antigen	of	
interest	present	in	the	sample	(202,204,205).		Competitive	binding	ELISAs	are	highly	sensitive	and	good	
for	use	for	soluble	hormone	detection	(202,203).		
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The	Sandwich	ELISA	is	highly	efficient	and	recommended	for	use	when	levels	of	the	protein	of	
interest	are	low	as	they	are	highly	sensitive	(202).		The	Sandwich	ELISA	technique	was	reported	by	Kato	
and	colleagues	in	1977	(206)	and	there	are	many	commercially	available	ELISA	kits	based	on	the	
sandwich	ELISA	technique	(207).		In	the	Sandwich	ELISA,	the	wells	are	coated	with	an	antibody	specific	
to	antigen	of	interest.		The	sample	is	added	to	the	wells	and	incubated.		After	washing,	an	antibody	
linked	with	an	enzyme	is	added	which	bind	to	the	antigen	of	interest.		Another	round	of	washing	occurs	
to	remove	any	unbound	antibody.		A	substrate	is	added	to	detect	the	level	of	enzyme	present	and	color	
absorbance	(optical	density)	is	detected	to	measure	the	amount	of	antigen	present.		The	optical	density	
of	the	color	is	directly	proportional	to	the	level	of	antigen	present	in	the	sample	(202,204,205).			

2. Steps	for	the	Competitive	Binding	ELISA	for	Cortisol	
Two	ParameterTM	Cortisol	96-well	plate	kits	(KGE008)	were	purchased	from	R&D	systems	

(Minneapolis,	MN).		As	per	manufacturer	instruction,	the	kits	were	kept	in	a	refrigerator,	between	2-4°	
Celsius,	until	used.		Microplates	with	96	polystyrene	wells	coated	with	a	goat-anti-mouse	polyclonal	
antibody	were	provided	in	the	kits	and	used	for	this	analysis.			

Masks	and	gloves	were	worn	during	the	entire	procedure.		The	protocol	provided	by	the	
company	with	the	kits	was	followed	(167).		A	standard	solution	was	created	for	reference	when	running	
the	cortisol	assay;	lyophilized	(free-dried)	buffered	cortisol	was	reconstituted	with	distilled	water.		7	
concentrations	were	created:	10	ng/mL,	5	ng/mL,	2.5	ng/mL,	1.25	ng/mL,	0.625	ng/mL,	0.313	ng/mL,	
0.156	ng/mL.			

The	plasma	samples	were	thawed	to	room	temperature	and	diluted	using	a	20-fold	dilution.		20	
µL	of	the	plasma	was	combined	with	280	µL	of	Diluent	(buffered	protein	base).		100	µL	of	the	diluted	
sample	was	added	to	the	microplate	wells	(each	sample	run	in	duplicate).	100	µL	of	each	concentration	
of	standard	were	added	to	2	wells,	making	14	standard	wells.		Each	sample	and	standard	was	run	in	
duplicate.			One	well	served	to	measure	non-specific	binding	(NSB-	no	primary	antibody	is	added),	one	
well	and	one	well	was	used	as	zero	standard	(diluent	with	no	sample	or	standard	is	added).		After	
addition	of	the	diluted	sample	or	standards	to	the	plate,	50	µL	of	a	mixture	of	Cortisol	conjugated	to	
horseradish	peroxidase	with	red	dye	was	added	to	all	wells.		Next,	50	µL	of	mouse	monoclonal	antibody	
(to	Cortisol)	with	blue	dye	was	added	to	the	wells,	except	to	the	well	measuring	NSB.		The	well-plates	
were	then	incubated	at	room	temperature	for	2	hours	on	a	horizontal	orbital	microplate	shaker	(set	at	
500	rpm).			

After	2	hours,	the	plates	were	aspirated	and	washed	with	440	µL	of	wash	buffer	four	times.		The	
buffer	was	a	500	mL	volume	mixture	of	20	mL	of	a	25-fold	concentrated	solution	of	buffered	surfactant	
and	480	mL	of	distilled	water.			

After	washing,	200	µL	of	substrate	solution	(50/50	mixture	of	hydrogen	peroxide	and	
chromogen)	was	added	to	each	well.		The	plate	was	covered	and	incubated	at	room	temperature	for	30	
minutes.		Next,	50	µL	of	sulfuric	acid	was	added	to	the	wells	to	stop	the	conversion	of	enzyme	and	color	
development.		A	microplate	reader	measured	the	spectral	density	of	each	well	at	a	wavelength	of	450,	a	
wavelength	of	550	nm	was	used	for	correction.		The	average	absorbencies	of	the	duplicates	of	each	
standard	and	sample	were	calculated	and	the	absorbency	of	the	NSB	was	subtracted	from	the	average.		
A	standard	curve	was	created	using	the	microplate	reader	software	from	the	standard	concentrations	
(x-axis)	and	the	optical	density	of	the	standards	(y-axis).		A	log-log	transformation	was	used	to	plot	the	
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OD	versus	absorbencies.		The	concentration	of	each	sample	of	cortisol	was	determined	using	the	curve.		
High	concentrations	corresponded	to	low	optical	density.		

The	mean	lower	limit	of	detection	for	the	cortisol	assay	was	reported	by	the	manufacturer	as	
0.071	ng/mL.	Average	intra-assay	precision	CV	was	6.97%	and	the	average	inter-assay	CV	was	13.6%	for	
the	cortisol	assay.			

The	mean	concentrations	for	Cortisol	were	determined	using	a	4	Parameter	Logistic	Regression	
with	the	following	equations	for	the	standard	curves:	

Plate	1:	
Abs	(Optical	Density)=(0.493	-	0.0566)/(1	+	(Conc	(ng/mL)/0.797	)1.19)	+	0.0566	
	

Plate	2:	
Abs	(Optical	Density)=(0.486	-	0.0405)/(1	+	(Conc	(ng/mL)/1.38	)1.27)	+	0.0405	
	

Mean	concentrations	derived	from	the	equation	were	multiplied	by	20	since	a	20-fold	dilution	
was	used	for	the	samples.		Data	are	reported	in	ng/mL	for	cortisol	concentrations.		Concentrations	that	
were	reported	as	below	the	detection	level,	above	the	range	of	the	standard	curve	or	below	the	range	
of	the	standard	curve	were	excluded	from	the	data	set.			

3. Sandwich	ELISA	for	TNF-α	
Two	Quantikine®	High	Sensitivity	ELISA	kits	for	Human	TNF-α	Immunoassay	were	purchased	

from	R&D	systems	(Minneapolis,	MN).		As	per	manufacturer	instruction,	the	kits	were	kept	in	a	
refrigerator,	between	2-4°	Celsius,	until	used.		Microplates	with	96	polystyrene	wells	coated	with	a	
monoclonal	antibody	specific	for	human	TNF-α	were	provided	in	the	kits	and	used	for	this	analysis.			

Masks	and	gloves	were	worn	during	the	entire	procedure.		The	protocol	provided	by	the	
manufacturer	was	followed	(165).		Plasma	samples	were	thawed	to	room	temperature.	A	standard	
solution	of	32	pg/mL	of	TNF-α		was	prepared	for	reference	(high	standard)	using	lyophilized	
recombinant	human	TNF-α		substrate	reconstituted	with	6.0	mL	of	a	diluent	(buffered	solution	with	
stabilizers).		Next	a	series	of	7	concentrations	(using	500	µL	of	calibrator	Diluent	RD6-13	(a	buffered	
protein	base))	of	standards	were	created	using	polypropylene	tubes:	16pg/mL,	8pg/mL,	4	pg/mL,	2	
pg/mL,	1	pg/mL	and	0.5	pg/mL;	0	pg/ml	(zero	standard,	Calibrater	diluent	only).			

50	µL	of	Assay	Diluent	RD15	(buffered	protein	base	with	preservative)	was	added	to	each	of	the	
96	wells	on	the	microplate.		200	µL	of	the	plasma	samples	(each	sample	run	in	duplicate)	were	added	
to	the	wells	of	the	plates.		On	each	plate,	there	were	16	wells	that	served	as	the	standard	wells	(2	wells	
per	standard	dilution	concentration).		After	addition	of	the	plasma	and	standards	to	the	wells,	the	plate	
was	incubated	for	3	hours	at	room	temperature.			

The	liquid	was	removed	from	the	wells	by	inverting	the	plate	and	rapping	the	plate	on	a	clean	
paper	towel.	Next,	400	µL	of	Wash	Buffer	(100	mL	of	concentrated	buffered	surfactant	combined	with	
900	mL	of	distilled	water)	was	added	to	each	well.		The	liquid	was	removed	from	the	wells	and	the	
steps	were	repeated	5times	for	a	total	of	6	washes.		Next,	200	µL	of	Human	TNF-α	HS	Conjugate	
(polyclonal	antibody	specific	for	human	TNF-α	and	conjugated	to	alkaline	phosphatase)	were	added	to	
each	well	on	the	plate.		The	plate	was	covered	and	incubated	at	room	temperature	for	2	hours.		The	
washing	steps	(stated	previously)	were	repeated.			
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Next	50	µL	of	Substrate	solution	(dehydrated	NADPH	reconstituted	with	Substrate	Diluent)	was	
added	to	each	well	and	incubated	for	1	hour	at	room	temperature.		After	one	hour,	50	µL	of	Amplifier	
solution	(lyophilized	amplifier	enzymes)	was	added	to	each	well	and	incubated	for	30	more	minutes.		
Finally,	50	µL	of	Stop	Solution	(2	N	sulfuric	acid)	was	added	to	each	of	the	wells.		The	optical	density	
(color	absorbance)	was	measured	by	a	microplate	reader	at	490	nm	and	a	correction	wavelength	of	650	
was	used.		The	average	absorbencies	of	the	duplicate	plasma	samples	and	standards	were	obtained	
and	subtracted	from	the	optical	density	for	the	zero	standard.		A	standard	curve	was	created	using	the	
microplate	reader	software	from	the	standard	concentrations	(x-axis)	and	the	optical	density	of	the	
standards	(y-axis).		A	log-log	transformation	was	used	to	plot	the	OD	versus	absorbencies.		The	
concentration	of	each	sample	of	TNF-α	was	determined	using	the	curve.		High	concentrations	
corresponded	to	high	optical	density.			

The	mean	lower	limit	of	detection	was	reported	by	the	manufacturer	to	be	0.106	pg/ml.		The	
average	intra-assay	coefficient	of	variation	(CV)	was	5.4%	for	TNF-α	and	average	inter-assay	CV	was	
8.3%.			

The	mean	concentrations	for	TNF-α	were	determined	using	a	4	Parameter	Logistic	Regression	
with	the	following	equations	for	the	standard	curves:	

Plate	1:	
Abs	(Optical	Density)	=	(0.0172	-	2.1)	/	(1	+	(Conc	(pg/mL)/	12.3)1.27)	+	2.1	

Plate	2:	
Abs	(Optical	Density)	=	(-0.00238	-	2.1)	/	(1	+	(Conc	(pg/mL)	/	12.7)1.3)	+	2.1	

Data	are	reported	in	picograms/milliliter	(pg/mL)	for	TNF-α	concentrations.		Concentrations	that	
were	reported	as	below	the	detection	level,	above	the	range	of	the	standard	curve	or	below	the	range	
of	the	standard	curve	were	excluded	from	the	data	set.			

4. Sandwich	ELISA	for	IL-6	
Two	Quantikine®	High	Sensitivity	ELISA	kits	for	Human	IL-6	Immunoassay	were	purchased	from	

R&D	systems	(Minneapolis,	MN).		As	per	manufacturer	instruction,	the	kits	were	kept	in	a	refrigerator,	
between	2-4°	Celsius,	until	used.		Microplates	with	96	polystyrene	wells	coated	with	a	monoclonal	
antibody	specific	for	human	IL-6	were	provided	in	the	kits	and	used	for	this	analysis.			

Masks	and	gloves	were	worn	during	the	entire	procedure	and	the	protocol	provided	by	the	
manufacturer	was	followed	(166).		Plasma	samples	were	thawed	to	room	temperature.		A	standard	
solution	of	10	pg/mL	of	IL-6	was	prepared	for	reference	(high	standard)	using	lyophilized	recombinant	
human	IL-6	reconstituted	with	Calibrator	Diluent	RD6-11	concentrate	(buffered	protein	base	with	
preservatives).		A	series	of	7	concentrations	(using	using	500	µL	of	calibrator	Diluent	RD6-11)	were	
created:	5pg/mL,	2.5	pg/mL,	1.25	pg/mL,	0.625	pg/mL,	0.313	pg/mL,	0.156	pg/mL	and	0	pg/mL	0	pg/ml	
(zero	standard,	Calibrater	diluent	only).			

100	µL	of	Assay	Diluent	RD1-75	(buffered	animal	serum	with	preservative)	were	added	to	each	
well	on	the	96	well-plate.		Next	100	µL	of	plasma	samples	(each	sample	run	in	duplicate)	were	added	to	
each	of	the	wells.		On	each	plate,	there	were	16	wells	that	served	as	the	standard	wells	(2	wells	per	
standard	dilution	concentration).		After	addition	of	the	plasma	and	standards	to	the	wells,	the	plate	
was	incubated	for	2	hours	at	room	temperature	on	a	horitzontal	orbital	microplate	shaker	(set	at	500	
rpm).			
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The	liquid	was	removed	from	the	wells	by	inverting	the	plate	and	rapping	the	plate	on	a	clean	
paper	towel.	Next,	400	µL	of	Wash	Buffer	(100	mL	of	concentrated	buffered	surfactant	combined	with	
900	mL	of	distilled	water)	was	added	to	each	well	and	allowed	to	sit	for	30	seconds.		The	liquid	was	
removed	from	the	wells	and	the	steps	were	repeated	5times	for	a	total	of	6	washes.		Next,	200	µL	of	
Human	IL-6	HS	Conjugate	(polyclonal	antibody	specific	for	human	IL-6	and	conjugated	to	alkaline	
phosphatase)	were	added	to	each	well	on	the	plate.		The	plate	was	covered	and	incubated	at	room	
temperature	for	2	hours	on	a	horitzontal	orbital	microplate	shaker	(set	at	500	rpm).		The	washing	steps	
(stated	previously)	were	repeated.			

Next	50	µL	of	Substrate	solution	(dehydrated	NADPH	reconstituted	with	Substrate	Diluent)	was	
added	to	each	well	and	incubated	for	1	hour	at	room	temperature.		After	one	hour,	50	µL	of	Amplifier	
solution	(lyophilized	amplifier	enzymes)	was	added	to	each	well	and	incubated	for	30	more	minutes.		
Finally,	50	µL	of	Stop	Solution	(2	N	sulfuric	acid)	was	added	to	each	of	the	wells.		The	optical	density	
(color	absorbance)	was	measured	by	a	microplate	reader	at	490	nm	and	a	correction	wavelength	of	650	
was	used.		The	average	absorbencies	of	the	duplicate	plasma	samples	and	standards	were	obtained	
and	subtracted	from	the	optical	density	for	the	zero	standard.		A	standard	curve	was	created	using	the	
microplate	reader	software	from	the	standard	concentrations	(x-axis)	and	the	optical	density	of	the	
standards	(y-axis).		A	log-log	transformation	was	used	to	plot	the	OD	versus	absorbencies.		The	
concentration	of	each	sample	of	TNF-α	was	determined	using	the	curve.		High	concentrations	
corresponded	to	high	optical	density.			

The	mean	lower	limit	of	detection	for	the	assay	was	reported	to	be	0.106	0.039	pg/ml.		The	
manufacturer	reported	average	intra-assay	coefficient	of	variation	(CV)	was	7.4%	and	average	inter-
assay	CV	was	7.8%	for	the	assay.	

		The	mean	concentrations	for	IL-6	were	determined	using	a	4	Parameter	Logistic	Regression	
with	the	following	equations	for	the	standard	curves:	

Plate	1:	
Abs	(Optical	Density)=	(0.0146	-	1.97)	/	(1	+	(Conc	(pg/mL)	/	4.3	)1.32)	+	1.97	

Plate	2:	
Abs	(Optical	Density)	=	(0.00521	-	2.08)	/	(1	+	(Conc	(pg/mL)	/	4.32)1.31)	+	2.08	

Data	are	reported	in	picograms/milliliter	(pg/mL)	for	IL-6	concentrations.		Concentrations	that	
were	reported	as	below	the	detection	level,	above	the	range	of	the	standard	curve	or	below	the	range	
of	the	standard	curve	were	excluded	from	the	data	set.			
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Approval Notice 	

Continuing Review 	
 	

February	6,	2015		

		
Sarah	Farabi,	BSN		

Department	of	Biobehavioral	Health	Science		

845	S.	Damen		

M/C	802		

Chicago,	IL	60612		

Phone:	(314)	556-4574	/	Fax:	(312)	996-7008		

		
RE:  Protocol # 2013-0030 	

“Sleep, Glucose Variability, CVD Risk and CV Stress in Young Adults with TIDM” 	
		
Dear	Dr.	Farabi:		

 	
Your	Continuing	Review	was	reviewed	and	approved	by	the	Convened	review	process	on	February	4,	
2015.		You	may	now	continue	your	research.				

		
Please	note	the	following	information	about	your	approved	research	protocol:		

		
Protocol Approval Period:			 		 February	20,	2015	-	February	20,	2016		

Approved Subject Enrollment  #:			 60	(21	Enrolled	to	date)		
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Additional Determinations for Research Involving Minors:	These	determinations	have	not	been	
made	for	this	study	since	it	has	not	been	approved	for	enrollment	of	minors.		

Performance Sites:			 		 		 UIC 	
Sponsor:		 		 		 		 		 Department	of	Biobehavioral	Health,	American		

Association	of	Diabetes	Educators	Research	Foundation		

PAF#:																																										 																		2015-01898,Not	available 	

Grant/Contract No:																																						Not	available,Not	available						

Grant/Contract Title:																																			Sleep,	Glucose,	Variability,	CVD	Risk	&	CV	Stress	in	Young	
Adults	with	T1DM,	Not	available	Research Protocol(s):		

a) Sleep,	glucose	variability,	CVD	risk	and	CV	stress	in	young	adults	with	TIDM,	Version	0011,	2/4/15		

Recruitment Material(s):		
a) Patient	Letter,	Version	004,	05/08/2014		

b) Protocol	2013-0030	Public	Flyer,	Version	003,	05/19/2014		

c) Flyer:	Research	at	UIC,	Research	Study	for	Young	Adults	with	Type	1	Diabetes,	Version		
003,	02/02/15		

d) Internet	Recruitment	Text,	Version	001,	6/30/2014		

e) Phone	Screen	Form	-	Sleep,	Glucose	Variability,	CVD	Risk	&	CV	Stress	in	Young	Adults	
with	T1DM;	Protocol	2013-0030;	Version	001,	05/21/14	Informed Consent(s): 	
a) Waiver	of	Informed	Consent	for	recruitment	purposes	granted	under	[45	CFR	46.116(d)]			

b) Sleep,	Glucose	Variability,	CVD	Risk	and	CV	Stress	in	Young	Adults	with	T1DM-	
Pharmacogenomic	Analysis	Consent,	Version	004,	05/09/2014		

c) Combined	Consent/Authorization:	Sleep,	Glucose	Variability,	CVD	Risk	and	CV	Stress	in		
Young	Adults	with	TIDM,	Version	010,	[09/10/2014]		

d) Alteration	of	Informed	Consent	for	Telephone	Screening	granted	under	45	CFR	46.116(d)		

e) Waiver	of	Documentation	of	Consent	for	Telephone	Screening	granted	under	45	CFR	46.117(c)		
HIPAA Authorization(s):		

a) Waiver	of	HIPAA	Authorization	granted	for	recruitment	purposes	under	[45	CFR	164.512(i)(1)(i)]		

		
Please note the Review History of this submission:		 		
Receipt	Date		 Submission	Type		 Review	Process		 Review	Date		 Review	Action		
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01/13/2015		 Continuing	Review		 Convened		 02/04/2015		 Approved		

		
Please	remember	to:		

		
! Use	your	research protocol number	(2013-0030)	on	any	documents	or	correspondence	with	the	IRB	

concerning	your	research	protocol.		
		
! Review	and	comply	with	all	requirements	on	the	enclosure,		

"UIC Investigator Responsibilities, Protection of Human Research Subjects"		
(http://tigger.uic.edu/depts/ovcr/research/protocolreview/irb/policies/0924.pdf)		

		
Please note that the UIC IRB has the prerogative and authority to ask further questions, seek 
additional information, require further modifications, or monitor the conduct of your research and 
the consent process. 	

		
Please be aware that if the scope of work in the grant/project changes, the protocol must be 
amended and approved by the UIC IRB before the initiation of the change.		

		
Page	3	of	3		

We	wish	you	the	best	as	you	conduct	your	research.	If	you	have	any	questions	or	need	further	help,	
please	contact	OPRS	at	(312)	996-1711	or	me	at	(312)	413-1835.		Please	send	any	correspondence	about	
this	protocol	to	OPRS	at	203	AOB,	M/C	672. 	

			
		

Sincerely,		

		
		
		
Jonathan	W.	Leigh,	MPH		

		 		 		 		 		 		 		 IRB	Coordinator,	IRB	#	1		

		 Office	for	the	Protection	of	Research	Subjects		

		 		 		 		 		 		
Enclosure(s):					
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1. Informed Consent Document(s): 	
a) Combined	Consent/Authorization:	Sleep,	Glucose	Variability,	CVD	Risk	and		

CV	Stress	in	Young	Adults	with	TIDM,	Version	010,	[09/10/2014]		

b) Sleep,	Glucose	Variability,	CVD	Risk	and	CV	Stress	in	Young	Adults	with	T1DM-
Pharmacogenomic	Analysis	Consent,	Version	004,	05/09/2014		

2. Recruiting Material(s): 	
a) Patient	Letter,	Version	004,	05/08/2014		
b) Protocol	2013-0030	Public	Flyer,	Version	003,	05/19/2014		
c) Flyer:	Research	at	UIC,	Research	Study	for	Young	Adults	with	Type	1		

Diabetes,	Version	003,	02/02/15		

d) Internet	Recruitment	Text,	Version	001,	6/30/2014		
e) Phone	Screen	Form	-	Sleep,	Glucose	Variability,	CVD	Risk	&	CV	Stress	in	Young	

Adults	with	T1DM;	Protocol	2013-0030;	Version	001,	05/21/14		
 	

		
cc:				 Mariann	R.	Piano,	Department	of	Biobehavioral	Health	Science,	M/C	802		

		 Lauretta	Quinn,	Faculty	Sponsor,	M/C	802		

		 OVCR	Administration,	M/C	672		

		 Privacy	Office,	Health	Information	Management	Department,	M/C	77
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