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SUMMARY 

 

Protein inverse folding problem is a natural inverse problem to protein structure 

prediction: given a target structure in three dimensions, we desire to design an amino acid 

sequence that is likely to fold to the given structure. However, for a structure of length N, there 

will be a total of 20N possible sequences even without considering different orientations of the 

side chains (“rotamer configuration”), since there are 20 amino acid types. Exhaustive 

enumeration of all possible sequences and then selection of the best sequence for given structure 

is beyond the scope of the computational power. Developing an appropriate model to study the 

protein inverse folding problem is challenging.  

 

The inverse folding problem is considered as an optimization problem based on a fitness 

function. A model of Sun et al. (1995) casted this problem as an optimization problem on a space 

of sequences of hydrophobic (H) and polar (P) monomers; the goal is to find a sequence which 

achieves a dense hydrophobic core with few solvent-exposed hydrophobic residues without 

guarantee of optimality or near-optimality (Sun et al., 1995); Kleinberg converted this problem to 

an efficient flow network algorithm in order to construct optimal sequences (Kleinberg, 1999).  

 

In this study, our tasks encompass finding out the optimal sequences for a given protein 

three-dimensional structure. After simulating and verifying Kleinberg’s flow network algorithm, 

we explore a new linear fitness function based on the GCSE model of Sun et al.(1995) and 
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Kleinberg’s flow network transformation(1999), and we have solved this protein inverse folding 

problem by providing a simple and efficient linear programming method to construct optimal 

sequences. We demonstrate our model’s effectiveness by implementation on 23 structures drawn 

from the Protein Data Bank. Furthermore, we also consider the extensions of this linear 

programming method with specified residue composition in a sequence, as a way to overcome the 

limitations that a sharp imbalance in the ratio of H to P residues prevents designed sequences 

from having a high degree of agreement with the natural sequence in most cases.  

 

The linear programming method for solving the inverse folding problem provides a general 

model for studying a variety of problems in protein design, including the design of new proteins and 

modification of existing proteins in order to alter their functions, structures, and folding properties. It 

can be further extended to solve the inverse binding problem, namely, to seek to design protein 

sequence for the optimal binding, which arises in many situations. This has significant importance in 

protein design, protein engineering, and also in searching therapeutic agents.  
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1. INTRODUCTION 

1.1 Background 

Protein sequence design is a natural inverse problem to protein structure prediction: given 

a target structure in three dimensions, we desire to design an amino acid sequence that is likely to 

fold to the given structure. A model of Sun et al. (1995) casted this problem as an optimization 

problem on a space of sequences of hydrophobic (H) and polar (P) monomers; the goal is to find 

a sequence which achieves a dense hydrophobic core with few solvent-exposed hydrophobic 

residues, but Sun et al.’s heuristic method did not guarantee the optimality or near-optimality 

(Sun et al., 1995); Hart subsequently raised the computational tractability of constructing an 

optimal sequence in Sun et al.’s model as an open question (Hart, 1997); Kleinberg converted this 

problem to an efficient flow network algorithm in order to construct optimal sequences 

(Kleinberg, 1999). Here, we solve the protein inverse folding problem by developing a new 

solution based on network linear programming, which provides a general model for studying a 

variety of problems in protein design, instead of seeking to improve the computing time of the 

algorithm for finding the optimal sequence. Solving the protein inverse folding problem is 

important with applications in the design of new proteins and modification of existing proteins to 

alter their functions, structures, and folding properties. 

 

 



 
 

2 

1.2 Statement of the problem 

Understanding the principles of how proteins adopt their native three-dimensional 

structures is a fundamental problem in biology. The intensively studied problem of protein 

structure prediction begins with a given amino acid sequence and seeks to characterize, by 

computational means, the structure or range of structures which this sequence will adopt under 

physiological conditions (Merz and LeGrand, 1994). There exists a typical “inverse” version of 

this structure prediction problem, which is determined the subject of several previous studies 

(Banavar et al., 1998; Deutsch and Kurosky, 1996; Drexler, 1981; Hart, 1997; Ponder and 

Richards, 1987; Sun et al., 1995; Shakhnovich and Gutin, 1993; Yue and Dill, 1992). In these 

studies, a three-dimensional protein structure was given, and the goal is to identify the sequence 

or collection of sequences most likely to fold to this structure. The protein inverse folding 

problem can be regarded as a “bead coloring” problem (Sun et al., 1995), namely, the given 

structure can be thought as a chain of “colorless beads” with coordinates on each atom, i.e. 

generic amino acids that do not yet have side-chain structural identities. The design process then 

“paints” each bead a “color”, representing each of the 20 amino acids.  

 

 In view of the observation that proteins can adopt only a limited number of folds 

(Chothia 1992; Banavar and Maritan 2003), efficient and robust algorithms to identify all possible 

sequences for a given structure help to assign structures to a large, rapidly increasing number of 

sequences in the databases. The protein sequence design problem, i.e. the protein inverse folding 
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problem, is also very important. For example, in addition to the design of new proteins that fold 

to a desired conformation, solving the inverse folding problem can shed light on understanding 

the principles underlying protein folding and the variability in the sequences of naturally 

occurring proteins (Zou and Saven 2000).  

 

However, for a structure of length N, there will be a total of 20N possible sequences even 

without considering different orientations of the side chains (“rotamer configuration”), since there 

are 20 amino acid types. Exhaustive enumeration of all possible sequences and then selection of 

the best sequence for given structure is beyond the scope of the computational power. Developing 

an appropriate model to study the protein inverse folding problem is challenging.  

 

1.3 Literature review 

In the recent studies, a lot of models and algorithms have been developed for solving the 

protein inverse folding problem. These include stochastic and deterministic methods. For example, 

Desmet et al. (1992) proposed a dead-end elimination algorithm to screen out improbable 

sequences efficiently. Hellinga and Richards (1994) used Monte Carlo methods. Desjarlais and 

Handel (1995) used genetic algorithms, and Deutsche and Kurosky (1996) used simulated 

annealing. Saven and Wolynes (1997) used statistical mean field theory based methods to 

determine site-specific probabilities for most probable amino acid types using deterministic 

optimization algorithms. Sanjeev et al. (2001) used a graph spectral method, which ranks the sites 
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for amino acid types with very little computation and thereby designs a sequence. Raha et al. 

(2000) used a combinational algorithm depending on filtering, sampling, and optimization 

procedures, and a relatively straightforward scoring function.  

 

For the aforesaid methods and algorithms, there is no commonly accepted criterion to 

distinguish the folded structure from other conformation of a protein based on its amino acid 

sequence. Usually, the criterions include minimum energy, maximum gap in energy from the 

average energy of unfolded conformations, maximum entropy, etc. Based on the above criterions, 

a set of related approaches were developed in the biophysics community (Sun et al., 1995; 

Shakhnovich and Gutin, 1993; Deutsch and Kurosky, 1996; Gupta et al., 2005; Lippow and Tidor, 

2007). These approaches regarded protein inverse folding problem as a global optimization 

problem on the space of amino acid sequences. The optimization problem is to set up an objective 

function, i.e. the fitness function, and select the solution as the optimal sequence for the inverse 

folding problem. The simplest approach is to minimize the energy of the target structure by 

varying sequence. Any of such design processes must solve two problems (Yue and Dill, 1992): 

(1) positive design – the designed sequences should have low free energy (minimize the fitness 

function) in the target structure; and (2) negative design – there should be very few other 

“competing” structures in which the designed sequence has comparable free energy (fitness 

function).  

 

In their studies of inverse folding problem, often two types of residues are considered: 
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Hydrophobic (H) and Polar (P). This is supported by a widely accepted finding that the 

hydrophobicity of some amino acid types is one of the principal driving forces for protein folding. 

Kamtekar et al. (1993) used the burial algorithm to design protein sequence in H/P binary format 

with a given structure. It assigns an H monomer to any solvent-inaccessible position in the given 

structure, and P otherwise. Kamtekar et al. (1993) started with the natural coordinates of a known 

biological four-helix bundle, and then designed sequences to fold to it. Their design strategy was 

simply to bury H monomers and expose P monomers. This burial algorithm simply codified the 

standard lore that hydrophobic residues should be buried. The “Grand Canonical Sequence 

Evolution (GCSE)” method of Sun et al. (1995) is also based on the H/P binary model. Sun et al. 

(1995) proposed an energy fitness function in the GCSE model for identifying search for folding 

sequences by using genetic algorithms, and the designed sequences only include H and P. There is 

no guarantee that this heuristic method will find sequences with optimality or near-optimality 

(Sun et al., 1995). In addition, the GCSE model does not constrain the overall composition when 

generating heteropolymeric sequences upon optimization. Kleinberg (1999) formulated the fitness 

function in GCSE model with network flow with a polynomial running time (Kleinberg, 1999). 

Through the development of an appropriate fitness function, these approaches attempt implicitly 

to capture the competing requirements of positive design and negative design. 

 

1.4 Purpose of the study 

We consider the protein inverse folding problem as an optimization problem based on a 
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fitness function. There are three steps. First of all, identifying of the criterion of a fitness function, 

i.e. the establishment of the objective function in optimization problem; secondly, searching a 

sequence space to find the optimal sequences; and thirdly, testing and verifying the model’s 

efficiency and robustness.  

 

In this study, our tasks encompass finding out the optimal sequences for a given protein 

three-dimensional structure. We explore a new fitness function based on the GCSE model of Sun 

et al. and Kleinberg’s network flow transformation, and we have solved this protein inverse 

folding problem by providing a simple and efficient linear programming method to construct 

optimal sequences. We demonstrate our model’s effectiveness by implementation on 23 structures 

drawn from the Protein Data Bank. Furthermore, we also consider the extensions of our network 

linear programming method with specified residue composition in a sequence, as a way to 

overcome the limitations that a sharp imbalance in the ratio of H to P residues prevents designed 

sequences from having a high degree of agreement with the natural sequence in most cases. 

 

The linear programming method for solving the inverse folding problem provides a 

general model for studying a variety of problems in protein design, including the design of new 

proteins and the prescribed modification of existing proteins in order to alter their functions, 

structures, and folding properties. It can be further extended to solve the inverse binding problem, 

namely, to seek to design protein sequence for the optimal binding, which arises in many 

situations. Given a protein structure with a fixed binding region, how can we design an optimal 
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sequence that is most stable among all sequences encoding the fixed binding region? Alternatively, 

given a combined structure of protein-ligand complex or protein-protein complex, if the sequence 

of the ligand or the second protein is fixed, how to obtain the optimal sequence for the first 

protein to achieve most stable complex structure? We can further allow both ligand and protein, 

or the two proteins to be designed for optimal stability for the bounded complex structure. 

Additionally, we can have the key positions in either or both proteins fixed to reduce the 

degeneracy of the designed sequence. Finally, we can ask how we can design the sequence of a 

tethering protein or peptide modulator that binds two proteins simultaneously. Our linear 

programming method for inverse folding problem may be used in all of these problems. This has 

significant importance in protein design, protein engineering, and also in searching therapeutic 

agents. 
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2. THEORY AND METHOD 

The protein inverse folding problem is regarded as an optimization problem. We need to 

set up the objective function and find the optimal solution. 

 

2.1 Energy fitness function 

We firstly study the fitness function in Sun et al.’s Grand Canonical Sequence Evolution (GCSE) 

model (Sun et al., 1995). Given the coordinates of a desired target structure, the optimal 

sequences are exported. This choice is because of the following advantages of Sun et al.’s GCSE 

model (Sun et al., 1995). (1) Rather than using 20 amino acid types (Ponder and Richards, 1987; 

Lee and Levitt, 1991; Shakhnovich, 1994), only two monomer types, hydrophobic (H) and polar 

(P), are considered. The limited searching space allow the study of other possible foldable 

polymers in addition to proteins could be explored; (2) The amino acid composition is not fixed. 

It allows a variable composition of sequences and includes those obtained from bead painting and 

all other possible H/P compositions. It does not converge to homo-polymer sequences because the 

term of the hydrophobic residue-solvent interaction, encoding the avoidance of contacts between 

solvent and the hydrophobic monomers, is incorporated into the fitness function; (3) Unlike the 

lattice model methods (Yue and Dill, 1992; Shakhnovich, 1994; Gutin et al., 1995), Sun et al.’s 

model allows real-space coordinates and can be applied to real molecules. Sun et al.’s GCSE 

model has been applied to many theoretical model studies and has brought important insights on 
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practical protein sequences research and experiments. 

 

2.1.1 Grand Canonical Sequence Evolution algorithm 

Following the GCSE model, for a protein structure from the PDB, we define its natural 

H/P sequence to be the one obtained by translating the protein’s true amino acid sequence into an 

H/P sequence, according to a designation of each of the 20 amino acids as either hydrophobic or 

polar. Respectively, hydrophobic (H) = A, C, I, L, M, F, W, Y and V; and polar (P) = R, N, D, E, 

Q, G, H, K, P, S, and T in the one-letter code of amino acids (Sun et al., 1995).  

 

The geometric representation of the target structure and the fitness function Φ on the set 

of possible sequences need to be specified, in order to fully define the GCSE model. A simplified 

geometric representation of such a structure is obtained by constructing a sphere of the 

appropriate radius at the location of each non-hydrogen backbone atom, and replacing the side 

chain of each residue with a single “side chain bead,” of radius 2 Å, at a distance of 3 Å from the 

Cα along the Cα-Cβ bond vector. For the residue positions occupied by glycine in the target 

structure, no native Cα-Cβ bond vector was available, so positioned the glycine side chain bead 

at the location of the Cα (Kleinberg, 1999). In this way, the residues in the target structure are 

made “uniform”. On the other hand, the fitness function Φ is formulated as follows, 

∑∑
∈

−<
∈

+=Φ
HH Si

i

ji
Sji

ij sdgS βα
2

,

)()(                     (1) 
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Here is  denotes the area of the solvent-accessible contact surface of the side chain for residue i  

(in Å2), and ijd  denotes the distance between the side chain centers of residues i and j (in Å). g 

is a sigmoid function that rewards small distances; in Sun et al. (1995), it is defined to be 

)5.6exp(1
1

−+ ijd
 for 

o

Adij 5.6<  and 0 for 
o

Adij 5.6> . Finally, 0<α  and 0>β  are 

scaling parameters; they are given default values of α = −2 and 3/1=β  (Kleinberg, 1999). To 

design a sequence, we must specify which residues in the target structure will be H (hydrophobic), 

and which will be P (polar); thus, a protein sequence S is a sequence of n symbols, each of which 

is either H or P. We use SH to denote the set of numbers i such that the ith position in the sequence 

S is equal to H; we define Sp analogously. Now, the fitness function Φ(S) of a sequence S, with 

respect to the target structure, is a scoring function motivated by the following (partially 

conflicting) requirements. The H residues in S would like to have low solvent-accessible surface 

area; and H residues are expected to be close to one another in space, so as to form a compact 

hydrophobic core. 

 

2.1.2 Definition of coarser Grand Canonical Sequence Evolution model 

We consider the simplified definitions of Φ. The contact surface areas 1=is , if residue i 

is hydrophobic and contacts a solvent site; otherwise, 0=is . The sum of the second term in 

Equation (1) is over solvent contacts. One solvent contact is defined as every 3 Å2  of surface 

area exposed of a side chain bead, using the default 1.4 Å probe. g is assigned to be a step 
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function: g(dij) is equal to 1 if 
o

Adij 5.6≤ ; and g(dij) is equal to 0, otherwise. This simplified 

definition provides a “coarser” view of the set of sequences for the target structure (Kleinberg, 

1999). 

 

The objective function in the sequence design optimization problem is the given 

structure’s energy fitness function. The goal of the GCSE model is to design a sequence whose 

fitness value Φ is minimized (i.e. as negative as possible); we will call such a sequence optimal. 

This corresponds to constructing a sequence with many close-range H-H contacts, and very few 

solvent-exposed H residues. 

 

2.2 Formulation based on Graph Theory 

With the optimization function defined, searching for the optimal solution is the next step. 

As there are 2n possible amino acid sequences in the binary H/P model, an exhaustive search is 

not possible. Sun et al. developed a heuristic method to find sequences of good fitness based on a 

genetic algorithm. However, their method did not provide any measure of how close the final 

designed sequences are to the optimal sequence(s). For a given target structure, the problem of 

designing sequence with lowest energy of the form of Equation (1) has been solved by Kleinberg 

(1999) using techniques from combinatorial optimization of network flow (Kleinberg, 1999). 

Kleinberg’s transformation of the original GCSE model to a network flow optimization problem 

for the inverse folding problem allows efficient construction of optimal sequences.  
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A key observation of Kleinberg (1999) is that the structure of a protein can be represented 

geometrically by a directed graph G, and any H/P sequence corresponds to a partition of the set of 

nodes V in G into two sets. We now recall the basic knowledge of Graph Theory. 

 

2.2.1 Basic knowledge of Graph Theory 

A directed graph G consists of a pair of sets: V (the vertices) and E (the edges). Each 

edge e  ∈ E is an ordered pair of vertices e = (u, v); u is called as the tail of e and v the head. It is 

also assumed that each edge has a given capacity ce, which is a positive number. Let s and t be 

two vertices of G. An s-t cut in G is a partition of V into two sets, X and Y, so that Xs∈  and 

Yt∈ ; such a cut is denoted by the pair (X, Y ). An edge is defined as “crosses” a cut (X, Y), if it 

has its tail in X and its head in Y. The capacity of a cut (X, Y) is equal to the sum of the capacities 

of all edges that cross (X, Y); it is denoted as c(X, Y). The minimum s-t cut problem asks, for a 

given graph G and vertices s and t, to find an s-t cut (X, Y) of minimum capacity (Ahuja et al., 

1993 and Cormen et al., 1990). The maximum flow problem is to find a feasible flow through a 

single-source, single-sink flow network that is maximum. The max-flow min-cut theorem states  

that in a flow network, the maximum amount of flow passing from the source to the sink is equal 

to the minimum capacity which when removed in a specific way from the network causes the 

situation that no flow can pass from the source to the sink. The minimum s-t cut / maximum flow 

problem can be solved for an arbitrary directed graph with n vertices and m edges by algorithms 

of running times bounded by )log( nmnΟ  (Goldberg and Tarjan, 1988; Sleator and Tarjan, 
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1983), and efficient implementations exist for some of these algorithms (Cherkassky and 

Goldberg, 1995).  

 

2.2.2 Establishment of the flow network optimization 

Now, let Φ be the fitness function corresponding to a given target structure of length n. 

Recall that the target structure determines inter-residue distances dij and solvent-exposed surface 

areas si; and that Φ is defined via a function g and parameters α < 0 and β > 0. Let B denote the 

quantity ∑
−< 2

)(
ji

ijdgα . The following graph G based on Φ is defined by Kleinberg (Kleinberg, 

1999). The vertex set V of G consists of s, t, a vertex vi for each of the residue positions i = 1, 

2, . . . , n in the target structure, and a vertex uij for each pair of residue positions i, j for which 

2−< ji  and g(dij) > 0. The edge set E of G consists of an edge (s, uij) for each vertex uij, an 

edge (vi, t) for each vertex vi which has a non-zero solvent-exposed contact surface area si, and 

edges (uij, vi) and (uij, vj) for each vertex uij (Kleinberg, 1999). See Figure 1 for an example of the 

directed graph constructed by this procedure from an artificial 9-residue structure. A capacity is 

further assigned to each edge e in the graph. The edges of (s, uij) type are assigned a capacity of 

|α|, the parameter for non-bonded contact interaction; the edges of (vi, t) type are assigned a 

capacity of β , the solution parameter; and all edges connecting contact node to corresponding 

residue nodes (uij, vi) and (uij, vj) are assigned a capacity of B+1, which is a large value, 

∑>+
),(

||1
ijus

B α . 
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Figure 1. A small example of the construction of a directed graph from a target structure with four 
possible contacts (1-6, 2-5, 5-8, 4-9) (Kleinberg, 1999). 
 
 
 
 
 
 

A set X of vertices is closed if (i) X contains s but not t, and (ii) for each uij  ∈ V , X 

contains uij if and only if it contains both vi and vj. Then the fact below can be proved. 

 

If (X, Y) is a minimum s-t cut in G, then X is a closed set. 

 

Proof. First note that G has an s-t of capacity B; in particular, consider the cut ({s}, V −{s}). 

Now, consider a minimum s-t cut (X, Y) in G. Suppose X contains a vertex uij but not the vertex vi 

(the case of vj is the same). Then the edge (uij, vi) crosses (X, Y) and it capacity B + 1; this 

uij 

vi 
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contradicts the assumption that (X, Y) is a minimum cut. On the other hand, suppose that X 

contains some pair of vertices vi and vj, but not the vertex uij. Then the s-t cut 

}){},{( ijij uYuX −U  would have smaller capacity than (X, Y), again a contradiction.     

   █ (Kleinberg, 1999). 

 

For an n-symbol H/P sequence S, Z is denoted to the set of all vertices vi for which 

position i in S is labeled H. By the above “closed” fact, X(S) is denoted to the closed set 

consisting of s, the vertices in Z, and all vertices uij for which vi, vj  ∈ Z. Conversely, if X is a 

closed set, S(X) is denoted to the H/P sequence in which position i is labeled H if vi belongs to X, 

and is labeled P if vi does not belong to X. From these constructions, a one-to-one correspondence 

between n-symbol H/P sequences and closed sets in G exists (Kleinberg, 1999). Consequently, a 

crucial fact about G is stated. 

Let X be a closed set and S(X) the corresponding H/P sequence. Then the capacity of the 

s-t cut (X, V − X) is equal to B +Φ(S(X)). 

 

Proof. From the definition of closed set, we know that the only edges crossing (X, Y) have the 

form (vi, t), where vi  ∈ X, or (s, uij), where one of vi or vj does not belong to X. Thus, 
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Thus the fitness of an H/P sequence for the target structure differs from capacity of the 

corresponding cut in G simply by the fixed additive constant B. Consequently, if (X, Y) is a 

minimum capacity s-t cut in G, then S(X) is an optimal sequence — so to find an optimal 

sequence for the target structure, what is only needed is to construct the graph G and compute a 

minimum capacity s-t cut in it (Kleinberg, 1999). 

 

Through the above discussion and proof, we can draw the conclusion, to design an 

optimal sequence under the energy fitness function of Equation (1), we need to mark each residue 

either as member of the hydrophobic H set, or the polar set P. Any given sequence of the same 

chain length can also be mapped to graph G by labeling of the appropriate nodes. We assign node 

vi to be in set H if residue vi is an H residue, to be in set P if it is a P residue. We also assign node 

Hs∈  and Pt∈ . Pair node uij is assigned to be in set H if and only if both of the 

corresponding residues vi and vj are H residues. Pair node uij is assigned to set P if either vi and vj 

is P. Conversely, given a graph G representing the geometry of the molecular structure, we can 
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label the residue nodes vi as either H or P, and label pair node uij as H if and only if both residues 

vi and vj are H residues. Node uij otherwise is labeled as P. This labeling provides a mapping from 

the labeled graph G to an H/P sequence. Pair node uij can be a member of set H if and only if both 

of the corresponding residue nodes vi and vj are in H. Clearly, there is one-to-one correspondence 

between an H/P sequence and a partition of the nodes in the directed graph that corresponds to a 

closed set H. 

 

To ensure that H is a closed set so the labeled graph corresponds to a sequence, we cannot 

allow any cut on edges ),( iij vu  or ),( jij vu . Namely, pair node iju  and residue nodes {vi, vj} 

must all have the same label. A cut on these edges will never occur because all such edges have 

been assigned with a large capacity B+1, here B= ∑
−< 2

)(
ji

ijdgα , then B+1 is always greater than 

∑
−< 2

)(
ji

ijdgα : the trivial cut of H = {s} and P = {all other nodes} will already have a lower cost 

than B+1. Therefore, the minimum cut can only happen to the edges ),( ijus  or ),( tvi . 

 

2.3 Linear programming formulation for inverse folding problem 

Kleinberg converted the protein inverse folding problem to the minimum cut problem in 

a flow network. In this study, we provide a novel simple fitness function for the inverse folding 

problem by reformulating Kleinberg’s flow network algorithm into a linear programming problem, 

which provides a general model for studying a variety of problems in protein design. The key 

observation is that the max-flow and min-cut theorem can be applied and the s-t cut problem can 
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be reformulated as the dual max-flow linear programming problem. 

 

2.3.1 Transformation to linear programming from flow network 

Recall the max-flow, min-cut theorem: the capacity of the smallest cut is exactly equal to 

the maximum flow that can be pushed from s to t. Given a graph G ( ctsEVG ,,),,(= ) (here s is 

start node; t is sink node; c is the capacity on each edge, for example, the capacity on edge (u, v) 

is denoted as c(u, v)), the problem of finding the maximum flow in the network can be formulated 

as a linear program by simply writing down the definition of feasible flow. We have one variable 

),( vuf  for every edge Evu ∈),(  of the network, and the problem is: 

 

Maximize  ∑
∈Evsv

vsf
),(:

),(                                         (2) 

Subject to  ∑∑
∈∈

=
EwvwEvuu

wvfvuf
),(:),(:

),(),(   },{ tsVv −∈∀  

    ),(),( vucvuf ≤      Evu ∈∀ ),(  

    0),( ≥vuf       Evu ∈∀ ),(  

 

Let us see what the dual of (2) looks like. The dual of (2) has one variable for each vertex 

v (except s and t), which we shall call )(vπ , corresponding to the conservation constraints, and 

one variable for each edge, which we shall call ),( vuγ , corresponding to the capacity 

constraints. 
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Minimize ∑
∈Evu

vuvuc
),(

),(),( γ                               (3) 

Subject to 1),()( ≥+ usu γπ   Eusv ∈∀ ),(:  

    0),()()( ≥+− vuuv γππ  tvsuEvu ≠≠∈∀ ,,),(  

    0),()( ≥+− tvv γπ   Etvu ∈∀ ),(:  

 

This linear programming describes the min-cut problem. To see why, suppose that the 

)(uπ  variable is meant to be 1 if u is in the cut with s, and 0 otherwise, and similarly for v. Each 

of the γ  variables is to be 1 if the corresponding edge contributes to the cut capacity; and 0 

otherwise. Then the constraints make sure that theses variables behave exactly as they should. For 

example, the second constraint states that if u is with s and v is not [this is the only case in which 

the sum )()( vu ππ +−  becomes -1], then (u,v) must contribute to the cut. Although the π  

and γ ’s are free to take values larger than one, they will be “slammed” by the minimization 

down to 1 or 0. 

 

By the max-flow min-cut theorem, the two Linear Programming’s Primal, (2), and Dual, 

(3), above have the same optimum. In fact, this is true for general dual LP’s. This is the duality 

theorem, which can be stated as follows: 

 

If an LP has a bounded optimum, then so does its dual, and the two optimal values 

coincide. 
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Until now, Kleinberg’s flow network problem has been transformed to a simple linear 

programming problem.  

 

2.3.2 Our proposed linear programming fitness function 

The linear optimization problem (3) in Chapter 2.3.1 is min-cut problem as described. 

When ),( vuγ =1, the min-cut happens on the edge (u, v); when ),( vuγ =0, the min-cut does not 

happen on the edge (u, v). And when ),( vuγ =1, then )(uπ =1 and )(vπ =0, i.e. vertex u 

belongs to the set of s and vertex v belongs to the set of t; when ),( vuγ =0, then )(uπ  and 

)(vπ  both equal 1 or )(uπ  and )(vπ  both equl 0, i.e. vertex u and v are both in set of s or 

they are both in set of t. Besides, 1)( =sπ  and 0)( =tπ  

 

Furthermore, we can apply this linear programming to our H/P sequence model. A 

minimum s-t cut can be found by minimizing the sum of cost functions of all edges in the graph, 

∑
∈Evu

vuvuc
),(

),(),( γ , namely, by selecting an optimal subset of edges. The edges can be either 

residue edge, which corresponds to the solution term, or pair edge, which corresponds to contact 

energy. All edges have fixed capacity associated with them, whose values depend on the edge 

type. The solution of this linear programming leads to a closet set H and an optimal designed 

sequence is obtained. As the above discussion, ),( vuγ  is the “cut” indicator, so we have 

⎩
⎨
⎧ ∈∈

=
.,0

,,1
),(

otherwise
PandvHu

vuγ ; )(uπ  and )(vπ  are the “label” indicator: 
⎩
⎨
⎧

∈
∈

=
.,0

,1
)(

Pu
Hu

uπ , 
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so does )(vπ . 

 

Combining the conclusion in Chapter 2.2.2, the minimum cut can only happen to the 

edges ),( ijus  or ),( tvi , the min-cut linear programming problem (3) can be rewritten as 

Minimize ∑∑
∈∈

+
EtvEus

tvtvcususc
),(),(

),(),(),(),( γγ              (4) 

Subject to 1),()( ≥+ usu γπ   Eusu ∈∀ ),(:  

    0),()( ≥+− tvv γπ   Etvv ∈∀ ),(:  

 

We have ||),( α=usc , and β=),( tvc  in Chapter 2.2.2, then the linear optimization 

problem (4) becomes 

Minimize ∑∑
∈∈

+
EtvEus

tvus
),(),(

),(),(|| γβγα                    (5) 

Subject to 1),()( ≥+ usu γπ   Eusu ∈∀ ),(:  

    0),()( ≥+− tvv γπ   Etvv ∈∀ ),(:  

10)(),(),,(),,( orvutvus =ππγγ  

 

The linear optimization problem (5) is our proposed fitness function for the protein inverse 

folding problem. The values of α  and β  is assigned -2 and 1/3 in Kleinberg’s flow network 

algorithm. In our following experiments, we also use -2, 1/3 as their values. 
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3. EXPERIMENTS AND RESULTS 

3.1 Protein structures for experiments 

We implemented the above flow network algorithm and our network linear programming 

model on the 23 PDB structures drawn from the Protein Data Bank considered by Sun et al. 

(1995). See Table 1. 

 

An advantage of testing the algorithm on real proteins is that we can compare the 

sequences we design to the true sequence of the proteins, as in Sun et al. (1995) and Kleinberg 

(1999); this is a way to assess the biological relevance of the GCSE model, Kleinberg’s flow 

network algorithm, and our network linear programming model. For a protein structure from the 

PDB, let us define its natural H/P sequence to be the one obtained by translating the protein’s true 

amino acid sequence into an H/P sequence, according to a designation of each of the 20 amino 

acids as either hydrophobic or polar. As Sun et al. classified hydrophobic (H) = A, C, I, L, M, F, 

W, Y and V; and polar (P) = R, N, D, E, Q, G, H, K, P, S, and T in the one-letter code of amino 

acids (Sun et al., 1995). Since the fitness function Φ  associated with the model is designed only 

to approximate the factors favoring the natural sequence, the natural sequence is likely to be 

sub-optimal when scored according to Φ  with respect to its structure; correspondingly, the 

optimal sequence under Φ  may differ non-trivially from the natural sequence. 
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Table 1. 23 Protein structures for experiments 
 

Protein(PDBcode) Sequence length
Number of 

Hydrophobic (H)

Number of 
Polar (P) 

Ratio of H to P 
residues 

1aaj 105 48 57 0.8421 

1aba 87 35 52 0.6731 

1aps 98 34 64 0.5313 

1arr(mon) 53 20 33 0.6061 

1arr(dim) 106 40 66 0.6061 

1bba 36 15 21 0.7143 

1bbl 37 14 23 0.6087 

1bov 69 26 43 0.6047 

1brq 174 74 100 0.7400 

1cis 66 30 36 0.8333 

1cmb(mon) 104 38 66 0.5758 

1cmb(dim) 208 76 132 0.5758 

1hel 129 54 75 0.7200 

1ifb 131 50 81 0.6173 

1kba(mon) 66 26 40 0.6500 

1kba(dim) 132 52 80 0.6500 

2gb1 56 21 35 0.6000 

2hpr 87 37 50 0.7400 

2il8 71 28 43 0.6512 

256b 106 41 65 0.6308 

3cln 143 52 91 0.5714 

3rn3 124 47 77 0.6104 

3trx 105 47 58 0.8103 

 
Note. “mon” means monomer and “dim” means dimer. They refer to sequence design calculations 
performed using the monomer structure along as the target and the full dimmer structure as the target, 
respectively. 
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3.2 Simulation results of flow network algorithm 

We simulated Kleinberg’s flow network algorithm, repeated the sequence design process 

and reproduced the optimal sequence for the flow network optimization problem. The aim of this 

work is to verify and assess the ability of Kleinberg’s flow network algorithm to design protein 

sequences from given protein structures. We tested the implementation of the Kleinberg’s flow 

network algorithm on the above 23 PDB structures, in the part of searching the minimum cut / 

maximum flow in a directed graph, making use of the Cherkassky and Goldberg’s push-relabel 

method for the maximum flow/minimum cut problems (Cherkassky and Goldberg, 1995). In the 

Table 2, we presented the simulation results of Kleinberg’s flow network algorithm, computed the 

percentage agreement between the natural and optimal sequences for the 23 PDB structures. 
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Table 2. Simulation results of Kleinberg network flow algorithm for 23 PDB structures 
 

Protein(PDBcode) 
Sequence 

length 
Flow network 

Alg. 
Running time 

1aaj 105 73.33 0.005000 

1aba 87 74.71 0.003000 

1aps 98 77.55 0.003000 

1arr(mon) 53 62.26 0.001999 

1arr(dim) 106 70.75 0.003000 

1bba 36 58.33 0.000000 

1bbl 37 56.76 0.001999 

1bov 69 73.91 0.002000 

1brq 174 74.14 0.010000 

1cis 66 68.18 0.002000 

1cmb(mon) 104 63.46 0.003000 

1cmb(dim) 208 74.04 0.016997 

1hel 129 79.07 0.007999 

1ifb 131 68.7 0.006999 

1kba(mon) 66 68.18 0.002000 

1kba(dim) 132 77.27 0.005999 

2gb1 56 78.57 0.001000 

2hpr 87 78.16 0.003000 

2il8 71 71.83 0.002997 

256b 106 77.36 0.003000 

3cln 143 72.03 0.007000 

3rn3 124 69.35 0.006999 

3trx 105 77.14 0.003999 

Length-Weighted 
average 

 72.70  

 
Note. In the column under “Flow network algorithm”, the values are the percentage agreement 
between the optimal and natural sequences for the 23 structures from Sun et al. (1995).  
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The running time of the algorithm (in CPU seconds) on a cluster Intel(R) Core(TM)2 

Duo CPU are depicted in Figure 2; for the structures of lengths 36—208 considered in Sun et 

al.(1995), the running time ranged from 0.00000001 (the shortest sequence 1bba in the length of 

36) to 0.016997 (the longest sequence 1cmb(dim) in the length of 208) seconds. And from Figure 

2, we can see that the running time is kind of related with the sequences’ length. 

 
 
 
 
 
 

running time as a function of sequence length
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Figure 2. Kleinberg’s network flow algorithm’s running time. The running time is kind of related with 
the sequence length. Generally, with the increasing of sequence length, the running time becomes 
longer. 
 

 
 
 
 

Running time is kind of related with the sequence length. 



 
 

27 

3.3 Results of linear programming model 

Base on the statement in Chapter 2.3.2, we reformulate the protein inverse folding 

problem to a linear programming. Furthermore, we notice that the linear programming problem is 

also belonged to binary integer linear programming problem, because all the values of ),( vuγ , 

)(uπ  and )(vπ  are equal to 0 or 1. Then we solve this binary integer linear programming 

problem by the existing 0-1 linear programming algorithms (Wolsey, 1998; Nemhauser et al., 

1988; Hillier et al., 2001), and realized it on Matlab R2011a. Results of the application on the 

above 23 PDB structures are presented in Table 3. 
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Table 3. Results of our network linear programming model for 23 PDB structures 
 

Protein(PDBcode) 
Sequence 

length 
Linear prog. Running time 

1aaj 105 72.86 0.646189 

1aba 87 74.51 0.527784 

1aps 98 77.62 0.570127 

1arr(mon) 53 62.31 0.353962 

1arr(dim) 106 71.04 0.528745 

1bba 36 58.33 0.160894 

1bbl 37 56.92 0.214563 

1bov 69 74.30 0.401179 

1brq 174 72.59 1.796843 

1cis 66 68.33 0.358479 

1cmb(mon) 104 62.76 0.561255 

1cmb(dim) 208 73.98 2.897239 

1hel 129 78.91 1.100563 

1ifb 131 68.87 1.367267 

1kba(mon) 66 68.01 0.397716 

1kba(dim) 132 77.29 1.474798 

2gb1 56 79.02 0.313341 

2hpr 87 77.69 0.358392 

2il8 71 71.86 0.323597 

256b 106 77.36 0.723121 

3cln 143 69.59 2.089519 

3rn3 124 68.52 1.012549 

3trx 105 77.23 0.633199 

Length-Weighted 
average 

 72.15 
 

 
Note. In the column under “Linear prog.”, the values are the percentage agreement between the 
optimal and natural sequences for the 23 structures from our network linear programming.  
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The running time of our linear programming algorithm (in CPU seconds) on a personal 

IBM laptop are depicted in Figure 3; for the structures of lengths 36—208 considered in Sun et 

al.(1995), the running time ranged from 0.160894 (the shortest sequence 1bba in the length of 36) 

to 2.897239 (the longest sequence 1cmb(dim) in the length of 208) seconds. And from Figure 3, 

we can see that the linear programming running time is also kind of related with the sequences’ 

length. 
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Figure 3. Our linear programming method running time. It is also kind of related with the sequence 
length. Generally, with the increasing of sequence length, the running time becomes longer 
 

 
 
 

LP running time is kind of related with the sequence length. 
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We also compare the results from Kleinberg’s flow network algorithm and our network 

linear programming model, and quote the numbers of Sun et al. for the sake of comparison. From 

Table 4, it is interesting to note that the percentages agreement between optimal and natural 

sequences from the flow network algorithm and our network linear programming are almost equal. 

The agreement percentages change with the markedly different structures, as we move from Sun 

et al.’s designed sequences to flow network algorithm and our network linear programming. For 

certain protein, the agreement percentage jumps considerably when the sequences are designed by 

Kleinberg’s flow network algorithm and our network linear programming model, instead of the 

Sun et al.’s model. For example, the agreement percentage for 1aaj increases from Sun et al.’s 

value of 66% to 73% for flow network and our linear optimal algorithms. On the other hand, 

certain structures, such as 1ifb, show significantly less agreement with the natural sequence when 

solved by flow network algorithm and our linear programming algorithm, from 76% to 69%. So 

does 3rn3, from 81% to 69%. The length-weighted average of percentage agreement between 

optimal and natural sequences is 72.1% for Sun et al., 72.70% for Kleinberg’s flow network 

algorithm, 72.15% for our network linear programming method, respectively. See Figure 4. 
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Table 4. Results of different algorithms for 23 PDB structures 
 

Protein(PDBcode) 
Sequence 

length 
Sun et al.’s alg. 

Flow network 
alg. 

Our linear Prog.

1aaj 105 66 73.33 72.86 

1aba 87 81 74.71 74.51 

1aps 98 72 77.55 77.62 

1arr(mon) 53 62 62.26 62.31 

1arr(dim) 106 73 70.75 71.04 

1bba 36 58 58.33 58.33 

1bbl 37 68 56.76 56.92 

1bov 69 74 73.91 74.30 

1brq 174 68 74.14 72.59 

1cis 66 64 68.18 68.33 

1cmb(mon) 104 62 63.46 62.76 

1cmb(dim) 208 70 74.04 73.98 

1hel 129 74 79.07 78.91 

1ifb 131 76 68.7 68.87 

1kba(mon) 66 72 68.18 68.01 

1kba(dim) 132 73 77.27 77.29 

2gb1 56 80 78.57 79.02 

2hpr 87 78 78.16 77.69 

2il8 71 77 71.83 71.86 

256b 106 81 77.36 77.36 

3cln 143 62 72.03 69.59 

3rn3 124 81 69.35 68.52 

3trx 105 80 77.14 77.23 

Length-Weighted average  72.1 72.70 72.15 

 
Note. The agreement percentages from the flow network algorithm and our linear programming are 
almost equal. The markedly varied way in which the percentages of overlap changes, for different 
structures, as we move from Sun et al.’s designed sequences to flow network algorithm and our 
network linear programming. 
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Figure 4. The agreement percentage comparison of three different methods for 23 PDB structures. 
The percentages agreement between optimal and natural sequences from the flow network algorithm 
and our network linear programming are almost equal. The agreement percentages change with the 
markedly varied way, for different structures, as we move from Sun et al.’s designed sequences to 
flow network algorithm and our network linear programming. For certain of the proteins, the 
agreement percentage jumps considerably when the sequences are designed by Kleinberg’s flow 
network algorithm and our network linear programming model, instead of the Sun et al.’s model. For 
example, the agreement percentage for 1aaj increases from Sun et al.’s value of 66% to 73% for flow 
network and our linear optimal algorithms. On the other hand, certain structures, such as 1ifb, show 
significantly less agreement with the natural sequence when solved by flow network algorithm and our 
linear programming algorithm, from 76% to 69%. So does 3rn3, from 81% to 69%. The 
length-weighted average of percentage agreement between optimal and natural sequences is 72.1% for 
Sun et al., 72.70% for Kleinberg’s flow network algorithm, 72.15% for our network linear 
programming method, respectively. 
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3.4 Inverse folding with specified residue composition 

Our linear programming formulation allows the study of additional problems in sequence 

design. An important consideration is that the designed sequence should have a large energy 

difference with random sequence. It is thought that random sequences are not correlated, and their 

energy depends only on the bulk property, namely, the residue composition, but not on the 

specific sequences. Designing optimal sequences with a pre-specified fixed composition will 

more likely result in sequences with large energy gaps. For a sequence with N residues, if there 

are n residues to be H in the sequence, we can design such a sequence with optimal energy by 

adding the following constraint to the linear programming problem: 

∑
∈

=
RVv

nv)(π , where VesresiduenodVR ⊂= }{ , i.e., RV  is the set of residue nodes. 

Therefore, the network linear programming optimal function (5) in Chapter 2.3.2 could be  

Minimize ∑∑
∈∈

+
EtvEus

tvus
),(),(

),(),(|| γβγα                    (6) 

Subject to 1),()( ≥+ usu γπ   Eusu ∈∀ ),(:  

    0),()( ≥+− tvv γπ   Etvv ∈∀ ),(:  

10)(),(),,(),,( orvutvus =ππγγ  

∑
∈

=
RVv

nv)(π , where VesresiduenodVR ⊂= }{  

 

We now study the additional problems in sequence design—inverse folding problem with 

specified residue composition. Here we attempt to construct a sequence in which the number of 

residue H, n, is fixed. Following the existing research, the ratio of H and P residues in a sequence 
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is roughly 2/3, matching the relative frequencies of the corresponding amino acids in naturally 

occurring polypeptide sequences (Creighton, 1993). Given the length of a sequence, we can 

calculate the number of H residues in it. Based on the length of 23 PDB structures in Table 1, we 

obtain the values of n for each sequence presented under the column of “Calculated number of H” 

in Table 5. In Table 5 we compute the percentage agreement between the natural and optimal 

sequences for the 23 PDB structures with the optimal function (6), presented in the column under 

“LP with fixed HP composition”. We also reproduce the numbers of network linear programming 

for the sake of comparison. It is interesting to find that for different PDB structures, the 

percentages of the agreement vary as we add ∑
∈

=
RVv

nv)(π  in the constraint expression. For 

some of the proteins, the agreement percentage jumps considerably when the sequences are 

designed by the method of network linear programming with the fixed HP composition. For 

example, the agreement percentage of 1bbl increased from linear programming’s value of 56.92% 

to 64.86% for linear programming with the fixed HP composition constraint; the agreement 

percentage of 1kba monomer increases from linear programming’s value of 68.01% to 75.76% for 

linear programming with the fixed HP composition constraint. On the other hand, certain 

structures show significantly less agreement with the natural sequence when solved to the linear 

programming’s optimality with the fixed HP composition constraint, such as 1aba, the agreement 

percentage of 1aba decreases from linear programming’s value of 74.51% to 70.12% for linear 

programming with the fixed HP composition constraint. Although in the above three cases, the 

calculated numbers of hydrophobic residues are equal to the practical numbers of hydrophobic 

residues in sequences, the linear programming with fixed HP composition constraint can not 
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make sure the increase of percentage agreement between optimal and natural sequences. And we 

also notice that for the sequences whose calculated numbers of hydrophobic residues are not 

equal to the practical numbers of hydrophobic residues, the agreement percentage has no 

remarkable increase, and furthermore, for most cases in this situation, the agreement percentage 

decreases, as we move from linear programming to linear programming with the fixed HP 

composition constraint. See Figure 5. 
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Table 5. Results of Linear Programming with fixed HP composition for 23 PDB structures. 
 

Protein 
(PDBcode) 

Sequence  
length 

Real Number 
of H  

Calculated 
number of H 

LP 
LP with fixed HP 

composition 

1aaj 105 48 42 72.86 69.52 
1aba 87 35 35 74.51 70.12 

1aps 98 34 39 77.62 74.49 

1arr(mon) 53 20 21 62.31 62.26 

1arr(dim) 106 40 42 71.04 72.64 

1bba 36 15 14 58.33 58.33 

1bbl 37 14 15 56.92 64.86 

1bov 69 26 28 74.30 71.01 

1brq 174 74 70 72.59 71.84 

1cis 66 30 26 68.33 62.12 

1cmb(mon) 104 38 42 62.76 62.50 

1cmb(dim) 208 76 83 73.98 72.60 

1hel 129 54 52 78.91 77.52 

1ifb 131 50 52 68.87 69.47 

1kba(mon) 66 26 26 68.01 75.76 

1kba(dim) 132 52 53 77.29 76.52 

2gb1 56 21 22 79.02 75.00 

2hpr 87 37 35 77.69 77.01 

2il8 71 28 28 71.86 78.87 

256b 106 41 42 77.36 76.42 

3cln 143 52 57 69.59 70.63 

3rn3 124 47 50 68.52 66.94 

3trx 105 47 42 77.23 76.19 

Length-Weighted 

average 
   72.15 71.74 

 
Note. In the column under “Real number of H”, the values are the number of Hydrophobic residues in 
practice; the values in the column “Calculated number of H” are the number of Hydrophobic residues 
calculated by the sequence length multiplying 2/5. In the columns under “LP” and “LP with fixed HP 
composition”, the values are the percentage agreement between the optimal and natural sequences 
with the method network linear programming and network linear programming with the fixed HP 
composition for the 23 PDB structures, respectively. 
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Figure 5. The agreement percentage comparison between network linear programming and network 
linear programming with the fixed HP composition. For some of the proteins, the agreement 
percentage jumps considerably when the sequence is designed by the method of network linear 
programming with the fixed HP composition. For example, the agreement percentage of 1bbl 
increases from linear programming’s value of 56.92% to 64.86% for linear programming with the 
fixed HP composition constraint; the agreement percentage of 1kba monomer increases from linear 
programming’s value of 68.01% to 75.76% for linear programming with the fixed HP composition 
constraint. On the other hand, certain structures show significantly less agreement with the natural 
sequence when solved to the linear programming’s optimality with the fixed HP composition 
constraint, such as 1aba, the agreement percentage of 1aba decreases from linear programming’s value 
of 74.51% to 70.12% for linear programming with the fixed HP composition constraint. Although in 
the above three cases, the calculated numbers of hydrophobic residues are equal to the practical 
numbers of hydrophobic residues in sequences, the linear programming with fixed HP composition 
constraint can not make sure the increase of agreement percentage. And we also notice that for the 
sequences whose calculated numbers of hydrophobic residues are not equal to the practical numbers of 
hydrophobic residues, the agreement percentage has no remarkable increase, and furthermore, for 
most cases in this situation, the agreement percentage decreases, as we move from linear programming 
to linear programming with the fixed HP composition constraint. 
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4. DISCUSSION AND CONCLUSION 

In this study, we simulate and verify the flow network algorithm, and resolve the protein 

inverse folding problem by providing a novel linear programming method to construct optimal 

sequences. We illustrate the effectiveness of our method through the application on 23 structures 

drawn from the Protein Data Bank. Furthermore, we also consider the extensions of our network 

linear programming method with specified residue composition in a sequence, as a way to 

overcome the limitations that a sharp imbalance in the ratio of H to P residues prevents designed 

sequences from having a high degree of agreement with the natural sequence in most cases. 

 

4.1 Some concern about our linear programming 

For linear programming problem, geometrically, the linear constraints define the feasible 

region, which is a convex polyhedron. A linear function is a convex function, which implies that 

every local minimum is a global minimum; similarly, a linear function is a concave function, 

which implies that every local maximum is a global maximum. Optimal solution need not exist, 

for two reasons. First, if two constraints are inconsistent, then no feasible solution exists: For 

instance, the constraints x≥2 and x≤1 cannot be satisfied jointly; Second, when the polytope is 

unbounded in the direction of the gradient of the objective function (where the gradient of the 
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objective function is the vector of the coefficients of the objective function), then no optimal 

value is attained. Then will the infeasible situation happen to our network linear programming? 

To answer this question, we need to recall the process of our network linear programming’s 

formulation. 

 

Our network linear optimization function is strictly dual problem of the primal 

optimization problem (2) (discussed in Chapter 2.3.1) built up based on the physical description 

of maximum flow in a directed graph, which is also the minimum cut optimization problem in a 

directed graph. Its function is depicted in Chapter 2.3.1 as follows, 
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We can see that the constraint functions are satisfied in whichever situation of the above, so the 

constraints are totally satisfied jointly. And the polytope is bounded. Therefore, comparing with 

the above two reasons that no feasible solution exist, we conclude that our network linear 

programming is feasible. 
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On the other hand, simply understand that our network linear programming describes the 

minimum cut problem in a given directed graph with a capacity on each edge according to the 

Graph Theory. The minimum cut always exists in a given graph, then the optimal solution for the 

minimum cut optimization problem can always be found out, so our network linear programming 

is always feasible. 

 

4.2 Future work 

4.2.1 Parameter selection in our fitness function 

Our linear programming fitness function is defied in Chapter 2.3.2 as follows, 

Minimize ∑∑
∈∈

+
EtvEus

tvus
),(),(

),(),(|| γβγα                        (5) 

Subject to 1),()( ≥+ usu γπ   Eusu ∈∀ ),(:  

    0),()( ≥+− tvv γπ   Etvv ∈∀ ),(:  

10)(),(),,(),,( orvutvus =ππγγ  

  

In our experiment on 23 PDB structures in Chapter 3.3, the parameter α is set to -2, and 

β  is set to 1/3. These two parameters α  and β  can be tracked from Sun et al.’s GCSE model. 

As we known that the relative values of α  and β  in the GCSE fitness function control the 

relative proportions of H and P residues in an optimal sequence. Qualitatively, if β  is fixed, 

there is an increasing reward for hydrophobic contacts, with the decreasing of α ’s value; if α  

is fixed, there is an increasing penalty for solvent-exposed hydrophobic residues, with the 
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increasing of β ’s value. At more concrete level, the minimum number of H residues in an 

optimal sequence increases monotonically as β  is held fixed and α  is made increasingly 

negative (Kleinberg, 1999). Therefore, the adjustment of parameters α  and β  will bring the 

different ratio of H to P in a sequence. Consequently, this will affect the component of optimal 

sequences. Our linear programming’s objective function will change with the values changing of 

α  and β . Then the optimal solution for the linear programming could alter. In the process of 

observing the effect on optimal sequences with the changing of α  and β ’s values, we can hold 

one of them as fixed, and wave the other, then look at the percentage of agreement between the 

natural and optimal sequences for each set of α  and β . Through this method, we could find 

the set of α  and β  with the highest score in agreement percentage. Or according to the results 

of α  and β ’s values, the structures could be divided into several groups. For different group, 

respectively, α  and β  are assigned different values to the optimal function. This will help us 

to improve the performance of our network linear programming model. 

 

4.2.2 Inverse binding problem 

Protein folding and protein binding are two intimately related problems. Similarly, 

protein inverse folding and protein inverse binding are closely related to each other. Inverse 

binding problem is to seek to design protein sequence for optimal binding. Once residues in a 

binding region are fixed, they will be withdrawn from the set of candidate residue nodes in the 

graph and their labels do not need to be assigned during optimization. Furthermore, if two 
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contacting residues i and j are both labeled as H, they will not contribute to the cost of pairwise 

contact energy. Edge node (s, uij) will have a label H and will not be subject for optimization. If 

either one of the two contacting residues is a P residue, the contact node uij will have a label P by 

definition, and edge (s, uij) will always contribute a constant α  to the cost function, and is 

therefore removed from optimization. In this case, the formulation of the linear programming is 

exactly the same as our network linear programming (5) described in Chapter 2.3.2, the difference 

is that the set of edges 'E  is now smaller: 

}|),{(' PPorvvusEE jiij ∈∈−=  

}|),{( HHorvvus jiij ∈∈−  

}|),{( HPorvvtv jii ∈∈−  

 

Then what we need to do is to search the optimal solutions on the small set. The inverse binding 

problem has important implications in protein design, protein engineering, and in searching 

therapeutic agent. 

 

4.3 Conclusion 

In this study, we explore a new fitness function based on the Grand Canonical Sequence 

Evolution model of Sun et al. and Kleinberg’s flow network transformation, and we have solved 

this protein inverse folding problem by providing a novel simple and efficient linear 

programming method to construct optimal sequences. Furthermore, we demonstrate our model’s 
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effectiveness by implementation on 23 structures drawn from the Protein Data Bank.  

 

We prove the correctness of the linear programming method theoretically in Chapter 2. 

And in Chapter 3 we apply our linear programming on 23 structures, and collate the designed 

sequences by linear programming method with the known native sequences of biological proteins, 

the agreement ranges from 58% to 79%. Furthermore, we compare the optimal sequences from 

linear programming method with those from Sun et al.’s GCSE model and Kleinberg’s flow 

network algorithm. The percentage agreement between natural and optimal sequences changes with 

the markedly different structures, as we move among Sun et al.’s algorithm, flow network algorithm 

and our linear programming. The length-weighted average of percentage agreement has no big 

difference among these three methods, 72.1% for Sun et al.’s GCSE model, 72.70% for 

Kleinberg’s flow network algorithm, and 72.15% for the linear programming, respectively. We 

can see that the performance of the linear programming is as good as other algorithms’ 

performance. So we can conclude that the proposed linear programming method for solving 

protein inverse folding problem is reliable and efficient, and it may be useful tools for designing 

monomer sequences that will fold to specific target conformations of protein and other polymers. 

 

In addition, the extension of the linear programming method—adding specified H/P 

composition as a constraint in the linear programming problem—varies the percentage of 

agreement between the natural and optimal sequences for different structures in different ways. If 

the specified ratio of H to P in a sequence is equal to the natural ration of H to P, then the network 
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linear programming with fixed H/P composition constraint will increase the agreement percentage 

in most cases; if the specified ratio of H to P is different from the natural ration of H to P in a 

sequence, then the agreement percentage will be decreased in most cases, as we move from the 

linear programming to the linear programming with fixed H/P composition constraint. 



 

45 

CITED LITERATURE 

Ahuja, R., Magnanti, T., and Orlin, J. : Network Flows. Prentice-Hall, Englewood Cliffs, NJ, 
1993. 

 
Banavar, J., Cieplak, M., Maritan, A., Nadig, G., Seno, F., and Vishveshwara, S. : Structure-based 

design of model proteins. Proteins: Struct. Funct. Genet. 31: 10-20, 1998. 
 
Banavar, J.R., and Maritan, A.M. : Geometrical approach to protein folding: a tube picture. 

Reviews of Modern Physics 75: 23-24, 2003. 
 
Cherkassky, B., and Goldberg, A.V. : On implementing the push-relabel method for the maximum 

flow problem. Proc. MPS Symp. On Int. Prog. And Comb. Optimization : 157-171, 1995. 
 
Chothia, C. : One thousand families for the molecular biologist. Nature 357: 543-544, 1992. 
 
Cormen, J., Leiserson, C., and Rivest, R. : Introduction to Algorithms. McGraw-Hill, New York, 

1990. 
 
Creighton, T.E. : Proteins: Structure and Molecular Properties. Freeman, San Francisco, 1993. 
 
Desjarlais, J.R., and Handel, T.M. : De novo design of the hydrophobic cores of proteins. Protein 

Science 4: 2006-2018, 1995. 
 
Desmet, J., De Maeyer, M., Hazes, B., and Lasters, I. : The dead-end elimination theorem and its 

use in protein side-chain positioning. Nature 356: 539-542, 1992. 
 
Deutsche, J.M., and Kurosky, T. : New algorithm for protein design. Physical Review Letters 

76(2): 323-326, 1996. 
 
Drexler, K.E. : Molecular engineering: An approach to the development of general capabilities for 

molecular manipulation. Proc. Natl. Acad. Sci. U.S.A. 78: 5275-5278, 1981. 
 
Goldberg, A.V., and Tarjan, R.E. : Anew approach to the maximum flow problem. J. ACM 35: 

921-940, 1988. 
 
Gupta, Arvind, Manuch, Jan, and Stacho Ladislav : Structure-approximating inverse protein 

folding problem in the 2D HP model. Journal of Computational Biology 12: 1328-1345, 
2005.



 
 

46 

 

 
Gutin, A.M., Abkevich, V.I., and Shakhnovich, E.I. : Is Burst Hydrophobic Collapse Necessary 

for Protein Folding? Biochemistry 34 (9): 3066–3076, 1995. 
 
Hart, W. : On the computational complexity of sequence design problems. Proc. RECOMB Conf. 

Comput. Mol. Biol. :128-136. 
 
Hellinga, H.W., and Richards, F.M. : Optimal selection of sequences f proteins of known structure 

by simulated evolution. Proceedings of the National Academy of Sciences 91: 5803-5807, 
1994. 

 
Hillier, Frederick S. and Lieberman Gerald J. : Introduction to Operations Research, 

McGraw-Hill, 2001.  
 
Jon M. Kleinberg : Efficient algorithms for protein sequence design and the analysis of certain 

evolutionary fitness landscapes. Journal of computational biology 6: 387-404, 1999. 
 
Kamtekar, S., Schiffer, J.M., Xiong, H., Babik, J.M., and Hecht, M.H. : Protein design by binary 

patterning of polar and nonpolar amino acids. Science 262: 1680-1685, 1993. 
 
Lee, C., and Levitt, M. : Accurate prediction of the stability and activity effects of site-directed 

mutagenesis on a protein core. Nature 352: 448-451, 1991. 
 
Lippow, S.M., and Tidor, Bruce : Progress in computational protein design. Biotechnology 18: 

305-311, 2007. 
 
Merz, K., and LeGrand, S., eds. : The protein folding problem and tertiary structure prediction. 

Birkhauser, Boston, 1994. 
 
Nemhauser, George L., and Wolsey, Laurence A. : Integer and Combinatorial Optimization, John 

Wiley & Sons, 1988.  
 
Ponder, J., and Richards, F.M. : Tertiary templates for proteins. J. Mol. Biol. 193: 63-89, 1987. 
 
Raha, Kaushik, Wollacott, A.M., Italia, Michael J., and Desjarlais, John R. : Prediction of amino 

acid sequence from structure. Protein Science 9: 1106-1119, 2000. 
 
Richmond, T.J., and Richards, F.M. : Packing of -helices: Geometrical constraints and contact 

areas. J. Mol. Biol. 119: 537-555, 1978. 
 
Sanjeev, B.S., Patra, S.M., and Vishveshwara, S. : Sequence design in lattice models by graph 



 
 

47 

theoretical methods. Journal of Chemical Physics 114(4): 1904-1914, 2001. 
 
Saven, J.G., and Wolynes, P.G. : Statistical mechanics of the combinatorial synthesis and analysis 

of folding macro-molecules. Journal of Physics and Chemistry B 101: 8375-8389, 1997. 
 
Shakhnovich, E.I. : Proteins with selected sequences fold into unique native conformation. 

Physical Review Letters 72: 3907-3910, 1994. 
 
Shakhnovich, E.I., and Gutin, A.M. : Anew approach to the design of stable proteins. Protein Eng. 

6:793-800, 1993. 
 
Sleator, D., and Tarjan, R.E. : A data structure for dynamic trees. J. Comput. Syst. Sci. 26: 

362-391, 1983. 
 
Sun, B., Brem, R., Chan, H.S., and Dill, K.A. : Designing amino acid sequences to fold with good 

hydrophobic cores. Protein Eng. 8: 1205-1213, 1995. 
 
Wolsey, Laurence A. : Integer Programming, John Wiley & Sons, 1998.  
 
Yue, K., and Dill, K.A. : Inverse protein folding problem: Designing polymer sequences. Proc. 

Natl. Acad. Sci. U.S.A. 89: 4163-4167, 1992. 
 
Zou, J., and Saven, J.G. : Statistical theory of combinatorial libraries of folding proteins: energetic 

discrimination of a target structure. Journal of Molecular Biology 296: 281-294, 2000. 



 
 

48 

YING WANG 
 

EDUCATION  

Aug.07-present 
 
 
 
Sep.02-Jun.05 
 
 
 
Sep.97-Jul.01 
 
 
 
 
 
 

 
 

Master Student in Bioinformatics, Department of Bioengineering,  
University of Illinois at Chicago, IL, US 

                             GPA:3.8/4.0 
 
Master of Management, major in Technical Economics and Management,  
School of Economics and Management, Beijing Jiaotong University, Beijing, 

China  
Rank: 1/47, GPA(Overall): 3.87/4.0

 
Bachelor of Engineering, major in Mechanical Engineering and Automation,  
School of Mechanical and Electronic Control Engineering, 
Beijing Jiaotong University, Beijing, China  

Rank: top5%, GPA(Overall): 3.54/4.0 

Minor in Economics,  
School of Economics and Management,  
Beijing Jiaotong University, Beijing, China 
 

CERTIFICATES 

SAS® Certified Advanced Programmer for SAS®9                                 2010 
SAS® Certified Base Programmer for SAS®9                                     2009 
 

RESEARCH EXPERIENCE 

·Molecular and Systems Computational Bioengineering Lab, 
University of Illinois at Chicago, IL, US                                  Sep.07-May.08 
Constructed optimal hydrophobic and polar interaction models for protein inverse folding problem 
using graph theory and linear programming;  

 

·Engineering Design and Optimization Laboratory, 
Clemson University, SC, US                                             Aug.06-Jul.07
Researched on optimization design and structure design; Developed and programmed for different 
optimal algorithms; Set the values of parameters with statistical methods to build mathematical 



 
49 

 

 

modeling and made simulations on Augmented Lagrangian Coordination for Decomposed Design 
Problems; 

·School of Economics and Management, 
Beijing Jiaotong University, Beijing, China                                Oct.04-Jun.05 
Created statistical models to analyze competitive strengths and forecasted growth trends, using 
data acquisition, data mining and statistical inference with regression analysis and ANOVA in 
SAS. 

·Laboratory of Rail Traffic Control and Safety, 
 Beijing Jiaotong University, Beijing, China                                Nov.00-Jun.01
Completed data collection, data cleansing; Built dynamic models to simulate the distribution of 
passenger flow; Executed risk analysis for railway stations. 

 
·Laboratory of Mechanical and Design, 

Beijing Jiaotong University, Beijing, China                                Sep.00-Nov.00
Participated in the project of the Traffic Safe Information Simulation System by microcontroller; 

 

TEACHING EXPERIENCE 

·Department of Bioengineering, 
University of Illinois at Chicago, IL, US                                  Aug.08-Jan.09 
Instructed the course of BIOE339 Biostatistics I  
 

·Department of Bioengineering, 
University of Illinois at Chicago, IL, US                                  Jan.08-May.08 
Instructed the course of BIOE580 Principles of Bioinformatics 
 

·Department of Bioengineering, 
University of Illinois at Chicago, IL, US                                  Sep.07-Dec.08 
Instructed the course of BIOE480 Introduction to Bioinformatics 
 

·Department of Economics and Management, 
Beijing Jiaotong University, Beijing, China                                 Feb.03-Jul.03
Instructed the course of Applied Statistics for undergraduates 
 

·School of Mechanical and Electronic Control Engineering,  
Beijing Jiaotong University, Beijing, China                                 Sep.98-Jul.99
Instructed the course of Engineering Mechanics for undergraduates 

 



 
50 

 

 

WORKING EXPERIENCE 

·Quantitative Analyst, Hedge Fund Research Inc., Chicago, IL, US                2010-present
·Financial Analyst, Beijing Jianxin Assets Appraisal Co. Inc., Beijing, China          2005-2006
 

COMPUTER ABILITY 

SAS, SAS Enterprise Guide, Excel, SPSS, PowerPoint, Matlab, Perl, R, SQL (SQL Server, MySql, 
Access), Linux, Windows, C, Maple, Outlook, Photoshop, AutoCAD. 

 




