

Optimal Hydrophobic and Polar Interaction Models for

Protein Inverse Folding Problem

BY

Ying Wang
B.S. Beijing Jiaotong University, 2001
M.S. Beijing Jiaotong University, 2005

THESIS

Submitted as partial fulfillment of the requirements
for the degree of Master of Science in Bioengineering

in the Graduate College of the
University of Illinois at Chicago, 2011

Chicago, Illinois

Defense Committee:

 Jie Liang, Chair and Advisor
 Yang Dai
 Bhaskar DasGupta, Computer Science

ii

ACKNOWLEDGMENTS

I would like to thank my thesis advisor Dr. Jie Liang. He has provided precious guidance

and support for my research project. Without his help, I can not accomplish this thesis. I would

also like to thank Dr. Bhaskar DasGupta and Dr. Yang Dai for the aid and suggestions on my

thesis. At last, I also want to say “Thank You” to the members of Jie’s lab for helpful discussion.

iii

TABLE OF CONTENTS

CHAPTER PAGE

1. INTRODUCTION .. 1

1.1 Background ... 1
1.2 Statement of the problem .. 2
1.3 Literature review ... 3
1.4 Purpose of the study .. 5

2. THEORY AND METHOD ... 8

2.1 Energy fitness function.. 8
2.1.1 Grand Canonical Sequence Evolution algorithm .. 9
2.1.2 Definition of coarser Grand Canonical Sequence Evolution model...................... 10

2.2 Formulation based on Graph Theory... 11
2.2.1 Basic knowledge of Graph Theory.. 12
2.2.2 Establishment of the flow network optimization... 13

2.3 Our novel linear programming method for inverse folding problem 17
2.3.1 Transformation to linear programming from flow network 18
2.3.2 Our proposed linear programming fitness function... 20

3. EXPERIMENTS AND RESULTS.. 22

3.1 Protein structures for experiments... 22
3.2 Simulation results of flow network algorithm... 24
3.3 Results of our proposed linear programming model ... 27
3.4 Inverse folding with specified residue composition.. 33

4. DISCUSSION AND CONCLUSION ... 38

4.1 Some concerns about our linear programming.. 38
4.2 Future work ... 40

4.2.1 Parameter selection in our fitness function ... 40
4.2.2 Inverse binding problem.. 41

4.3 Conclusion .. 42

CITED LITERATURE.. 45

VITA ... 48

iv

LIST OF TABLES

TABLE PAGE

Ⅰ 23 PROTEIN STRUCTURES FOR EXPERIMENTS... 23

Ⅱ SIMULATION RESULTS OF KLEINBERG NETWORK FLOW ALGORITHM FOR 23 PDB STRUCTURES . 25

Ⅲ RESULTS OF OUR NETWORK LINEAR PROGRAMMING MODEL FOR 23 PDB STRUCTURES.............. 28

Ⅳ RESULTS OF DIFFERENT ALGORITHMS FOR 23 PDB STRUCTURES .. 31

Ⅴ RESULTS OF LINEAR PROGRAMMING WITH FIXED HP COMPOSITION FOR 23 PDB STRUCTURES . 36

v

LIST OF FIGURES

FIGURES PAGE

Ⅰ A SMALL EXAMPLE OF THE CONSTRUCTION OF A DIRECTED GRAPH FROM A TARGET STRUCTURE

WITH FOUR POSSIBLE CONTACTS ... 14

Ⅱ KLEINBERG’S NETWORK FLOW ALGORITHM’S RUNNING TIME... 26

Ⅲ OUR LINEAR PROGRAMMING METHOD RUNNING TIME... 29

Ⅳ THE AGREEMENT PERCENTAGE COMPARISON OF THREE DIFFERENT METHODS FOR 23 PDB

STRUCTURES.. 32

Ⅴ THE AGREEMENT PERCENTAGE COMPARISON BETWEEN NETWORK LINEAR PROGRAMMING AND

NETWORK LINEAR PROGRAMMING WITH THE FIXED HP COMPOSITION ... 37

vi

LIST OF ABBREVIATIONS

GCSE Grand Canonical Sequence Evolution

H Hydrophobic

LP Linear Programming

P Polar

PDB Protein Data Bank

vii

SUMMARY

Protein inverse folding problem is a natural inverse problem to protein structure

prediction: given a target structure in three dimensions, we desire to design an amino acid

sequence that is likely to fold to the given structure. However, for a structure of length N, there

will be a total of 20N possible sequences even without considering different orientations of the

side chains (“rotamer configuration”), since there are 20 amino acid types. Exhaustive

enumeration of all possible sequences and then selection of the best sequence for given structure

is beyond the scope of the computational power. Developing an appropriate model to study the

protein inverse folding problem is challenging.

The inverse folding problem is considered as an optimization problem based on a fitness

function. A model of Sun et al. (1995) casted this problem as an optimization problem on a space

of sequences of hydrophobic (H) and polar (P) monomers; the goal is to find a sequence which

achieves a dense hydrophobic core with few solvent-exposed hydrophobic residues without

guarantee of optimality or near-optimality (Sun et al., 1995); Kleinberg converted this problem to

an efficient flow network algorithm in order to construct optimal sequences (Kleinberg, 1999).

In this study, our tasks encompass finding out the optimal sequences for a given protein

three-dimensional structure. After simulating and verifying Kleinberg’s flow network algorithm,

we explore a new linear fitness function based on the GCSE model of Sun et al.(1995) and

viii

Kleinberg’s flow network transformation(1999), and we have solved this protein inverse folding

problem by providing a simple and efficient linear programming method to construct optimal

sequences. We demonstrate our model’s effectiveness by implementation on 23 structures drawn

from the Protein Data Bank. Furthermore, we also consider the extensions of this linear

programming method with specified residue composition in a sequence, as a way to overcome the

limitations that a sharp imbalance in the ratio of H to P residues prevents designed sequences

from having a high degree of agreement with the natural sequence in most cases.

The linear programming method for solving the inverse folding problem provides a general

model for studying a variety of problems in protein design, including the design of new proteins and

modification of existing proteins in order to alter their functions, structures, and folding properties. It

can be further extended to solve the inverse binding problem, namely, to seek to design protein

sequence for the optimal binding, which arises in many situations. This has significant importance in

protein design, protein engineering, and also in searching therapeutic agents.

 1

1. INTRODUCTION

1.1 Background

Protein sequence design is a natural inverse problem to protein structure prediction: given

a target structure in three dimensions, we desire to design an amino acid sequence that is likely to

fold to the given structure. A model of Sun et al. (1995) casted this problem as an optimization

problem on a space of sequences of hydrophobic (H) and polar (P) monomers; the goal is to find

a sequence which achieves a dense hydrophobic core with few solvent-exposed hydrophobic

residues, but Sun et al.’s heuristic method did not guarantee the optimality or near-optimality

(Sun et al., 1995); Hart subsequently raised the computational tractability of constructing an

optimal sequence in Sun et al.’s model as an open question (Hart, 1997); Kleinberg converted this

problem to an efficient flow network algorithm in order to construct optimal sequences

(Kleinberg, 1999). Here, we solve the protein inverse folding problem by developing a new

solution based on network linear programming, which provides a general model for studying a

variety of problems in protein design, instead of seeking to improve the computing time of the

algorithm for finding the optimal sequence. Solving the protein inverse folding problem is

important with applications in the design of new proteins and modification of existing proteins to

alter their functions, structures, and folding properties.

2

1.2 Statement of the problem

Understanding the principles of how proteins adopt their native three-dimensional

structures is a fundamental problem in biology. The intensively studied problem of protein

structure prediction begins with a given amino acid sequence and seeks to characterize, by

computational means, the structure or range of structures which this sequence will adopt under

physiological conditions (Merz and LeGrand, 1994). There exists a typical “inverse” version of

this structure prediction problem, which is determined the subject of several previous studies

(Banavar et al., 1998; Deutsch and Kurosky, 1996; Drexler, 1981; Hart, 1997; Ponder and

Richards, 1987; Sun et al., 1995; Shakhnovich and Gutin, 1993; Yue and Dill, 1992). In these

studies, a three-dimensional protein structure was given, and the goal is to identify the sequence

or collection of sequences most likely to fold to this structure. The protein inverse folding

problem can be regarded as a “bead coloring” problem (Sun et al., 1995), namely, the given

structure can be thought as a chain of “colorless beads” with coordinates on each atom, i.e.

generic amino acids that do not yet have side-chain structural identities. The design process then

“paints” each bead a “color”, representing each of the 20 amino acids.

 In view of the observation that proteins can adopt only a limited number of folds

(Chothia 1992; Banavar and Maritan 2003), efficient and robust algorithms to identify all possible

sequences for a given structure help to assign structures to a large, rapidly increasing number of

sequences in the databases. The protein sequence design problem, i.e. the protein inverse folding

3

problem, is also very important. For example, in addition to the design of new proteins that fold

to a desired conformation, solving the inverse folding problem can shed light on understanding

the principles underlying protein folding and the variability in the sequences of naturally

occurring proteins (Zou and Saven 2000).

However, for a structure of length N, there will be a total of 20N possible sequences even

without considering different orientations of the side chains (“rotamer configuration”), since there

are 20 amino acid types. Exhaustive enumeration of all possible sequences and then selection of

the best sequence for given structure is beyond the scope of the computational power. Developing

an appropriate model to study the protein inverse folding problem is challenging.

1.3 Literature review

In the recent studies, a lot of models and algorithms have been developed for solving the

protein inverse folding problem. These include stochastic and deterministic methods. For example,

Desmet et al. (1992) proposed a dead-end elimination algorithm to screen out improbable

sequences efficiently. Hellinga and Richards (1994) used Monte Carlo methods. Desjarlais and

Handel (1995) used genetic algorithms, and Deutsche and Kurosky (1996) used simulated

annealing. Saven and Wolynes (1997) used statistical mean field theory based methods to

determine site-specific probabilities for most probable amino acid types using deterministic

optimization algorithms. Sanjeev et al. (2001) used a graph spectral method, which ranks the sites

4

for amino acid types with very little computation and thereby designs a sequence. Raha et al.

(2000) used a combinational algorithm depending on filtering, sampling, and optimization

procedures, and a relatively straightforward scoring function.

For the aforesaid methods and algorithms, there is no commonly accepted criterion to

distinguish the folded structure from other conformation of a protein based on its amino acid

sequence. Usually, the criterions include minimum energy, maximum gap in energy from the

average energy of unfolded conformations, maximum entropy, etc. Based on the above criterions,

a set of related approaches were developed in the biophysics community (Sun et al., 1995;

Shakhnovich and Gutin, 1993; Deutsch and Kurosky, 1996; Gupta et al., 2005; Lippow and Tidor,

2007). These approaches regarded protein inverse folding problem as a global optimization

problem on the space of amino acid sequences. The optimization problem is to set up an objective

function, i.e. the fitness function, and select the solution as the optimal sequence for the inverse

folding problem. The simplest approach is to minimize the energy of the target structure by

varying sequence. Any of such design processes must solve two problems (Yue and Dill, 1992):

(1) positive design – the designed sequences should have low free energy (minimize the fitness

function) in the target structure; and (2) negative design – there should be very few other

“competing” structures in which the designed sequence has comparable free energy (fitness

function).

In their studies of inverse folding problem, often two types of residues are considered:

5

Hydrophobic (H) and Polar (P). This is supported by a widely accepted finding that the

hydrophobicity of some amino acid types is one of the principal driving forces for protein folding.

Kamtekar et al. (1993) used the burial algorithm to design protein sequence in H/P binary format

with a given structure. It assigns an H monomer to any solvent-inaccessible position in the given

structure, and P otherwise. Kamtekar et al. (1993) started with the natural coordinates of a known

biological four-helix bundle, and then designed sequences to fold to it. Their design strategy was

simply to bury H monomers and expose P monomers. This burial algorithm simply codified the

standard lore that hydrophobic residues should be buried. The “Grand Canonical Sequence

Evolution (GCSE)” method of Sun et al. (1995) is also based on the H/P binary model. Sun et al.

(1995) proposed an energy fitness function in the GCSE model for identifying search for folding

sequences by using genetic algorithms, and the designed sequences only include H and P. There is

no guarantee that this heuristic method will find sequences with optimality or near-optimality

(Sun et al., 1995). In addition, the GCSE model does not constrain the overall composition when

generating heteropolymeric sequences upon optimization. Kleinberg (1999) formulated the fitness

function in GCSE model with network flow with a polynomial running time (Kleinberg, 1999).

Through the development of an appropriate fitness function, these approaches attempt implicitly

to capture the competing requirements of positive design and negative design.

1.4 Purpose of the study

We consider the protein inverse folding problem as an optimization problem based on a

6

fitness function. There are three steps. First of all, identifying of the criterion of a fitness function,

i.e. the establishment of the objective function in optimization problem; secondly, searching a

sequence space to find the optimal sequences; and thirdly, testing and verifying the model’s

efficiency and robustness.

In this study, our tasks encompass finding out the optimal sequences for a given protein

three-dimensional structure. We explore a new fitness function based on the GCSE model of Sun

et al. and Kleinberg’s network flow transformation, and we have solved this protein inverse

folding problem by providing a simple and efficient linear programming method to construct

optimal sequences. We demonstrate our model’s effectiveness by implementation on 23 structures

drawn from the Protein Data Bank. Furthermore, we also consider the extensions of our network

linear programming method with specified residue composition in a sequence, as a way to

overcome the limitations that a sharp imbalance in the ratio of H to P residues prevents designed

sequences from having a high degree of agreement with the natural sequence in most cases.

The linear programming method for solving the inverse folding problem provides a

general model for studying a variety of problems in protein design, including the design of new

proteins and the prescribed modification of existing proteins in order to alter their functions,

structures, and folding properties. It can be further extended to solve the inverse binding problem,

namely, to seek to design protein sequence for the optimal binding, which arises in many

situations. Given a protein structure with a fixed binding region, how can we design an optimal

7

sequence that is most stable among all sequences encoding the fixed binding region? Alternatively,

given a combined structure of protein-ligand complex or protein-protein complex, if the sequence

of the ligand or the second protein is fixed, how to obtain the optimal sequence for the first

protein to achieve most stable complex structure? We can further allow both ligand and protein,

or the two proteins to be designed for optimal stability for the bounded complex structure.

Additionally, we can have the key positions in either or both proteins fixed to reduce the

degeneracy of the designed sequence. Finally, we can ask how we can design the sequence of a

tethering protein or peptide modulator that binds two proteins simultaneously. Our linear

programming method for inverse folding problem may be used in all of these problems. This has

significant importance in protein design, protein engineering, and also in searching therapeutic

agents.

 8

2. THEORY AND METHOD

The protein inverse folding problem is regarded as an optimization problem. We need to

set up the objective function and find the optimal solution.

2.1 Energy fitness function

We firstly study the fitness function in Sun et al.’s Grand Canonical Sequence Evolution (GCSE)

model (Sun et al., 1995). Given the coordinates of a desired target structure, the optimal

sequences are exported. This choice is because of the following advantages of Sun et al.’s GCSE

model (Sun et al., 1995). (1) Rather than using 20 amino acid types (Ponder and Richards, 1987;

Lee and Levitt, 1991; Shakhnovich, 1994), only two monomer types, hydrophobic (H) and polar

(P), are considered. The limited searching space allow the study of other possible foldable

polymers in addition to proteins could be explored; (2) The amino acid composition is not fixed.

It allows a variable composition of sequences and includes those obtained from bead painting and

all other possible H/P compositions. It does not converge to homo-polymer sequences because the

term of the hydrophobic residue-solvent interaction, encoding the avoidance of contacts between

solvent and the hydrophobic monomers, is incorporated into the fitness function; (3) Unlike the

lattice model methods (Yue and Dill, 1992; Shakhnovich, 1994; Gutin et al., 1995), Sun et al.’s

model allows real-space coordinates and can be applied to real molecules. Sun et al.’s GCSE

model has been applied to many theoretical model studies and has brought important insights on

9

practical protein sequences research and experiments.

2.1.1 Grand Canonical Sequence Evolution algorithm

Following the GCSE model, for a protein structure from the PDB, we define its natural

H/P sequence to be the one obtained by translating the protein’s true amino acid sequence into an

H/P sequence, according to a designation of each of the 20 amino acids as either hydrophobic or

polar. Respectively, hydrophobic (H) = A, C, I, L, M, F, W, Y and V; and polar (P) = R, N, D, E,

Q, G, H, K, P, S, and T in the one-letter code of amino acids (Sun et al., 1995).

The geometric representation of the target structure and the fitness function Φ on the set

of possible sequences need to be specified, in order to fully define the GCSE model. A simplified

geometric representation of such a structure is obtained by constructing a sphere of the

appropriate radius at the location of each non-hydrogen backbone atom, and replacing the side

chain of each residue with a single “side chain bead,” of radius 2 Å, at a distance of 3 Å from the

Cα along the Cα-Cβ bond vector. For the residue positions occupied by glycine in the target

structure, no native Cα-Cβ bond vector was available, so positioned the glycine side chain bead

at the location of the Cα (Kleinberg, 1999). In this way, the residues in the target structure are

made “uniform”. On the other hand, the fitness function Φ is formulated as follows,

∑∑
∈

−<
∈

+=Φ
HH Si

i

ji
Sji

ij sdgS βα
2

,

)()((1)

10

Here is denotes the area of the solvent-accessible contact surface of the side chain for residue i

(in Å2), and ijd denotes the distance between the side chain centers of residues i and j (in Å). g

is a sigmoid function that rewards small distances; in Sun et al. (1995), it is defined to be

)5.6exp(1
1

−+ ijd
 for

o

Adij 5.6< and 0 for
o

Adij 5.6> . Finally, 0<α and 0>β are

scaling parameters; they are given default values of α = −2 and 3/1=β (Kleinberg, 1999). To

design a sequence, we must specify which residues in the target structure will be H (hydrophobic),

and which will be P (polar); thus, a protein sequence S is a sequence of n symbols, each of which

is either H or P. We use SH to denote the set of numbers i such that the ith position in the sequence

S is equal to H; we define Sp analogously. Now, the fitness function Φ(S) of a sequence S, with

respect to the target structure, is a scoring function motivated by the following (partially

conflicting) requirements. The H residues in S would like to have low solvent-accessible surface

area; and H residues are expected to be close to one another in space, so as to form a compact

hydrophobic core.

2.1.2 Definition of coarser Grand Canonical Sequence Evolution model

We consider the simplified definitions of Φ. The contact surface areas 1=is , if residue i

is hydrophobic and contacts a solvent site; otherwise, 0=is . The sum of the second term in

Equation (1) is over solvent contacts. One solvent contact is defined as every 3 Å2 of surface

area exposed of a side chain bead, using the default 1.4 Å probe. g is assigned to be a step

11

function: g(dij) is equal to 1 if
o

Adij 5.6≤ ; and g(dij) is equal to 0, otherwise. This simplified

definition provides a “coarser” view of the set of sequences for the target structure (Kleinberg,

1999).

The objective function in the sequence design optimization problem is the given

structure’s energy fitness function. The goal of the GCSE model is to design a sequence whose

fitness value Φ is minimized (i.e. as negative as possible); we will call such a sequence optimal.

This corresponds to constructing a sequence with many close-range H-H contacts, and very few

solvent-exposed H residues.

2.2 Formulation based on Graph Theory

With the optimization function defined, searching for the optimal solution is the next step.

As there are 2n possible amino acid sequences in the binary H/P model, an exhaustive search is

not possible. Sun et al. developed a heuristic method to find sequences of good fitness based on a

genetic algorithm. However, their method did not provide any measure of how close the final

designed sequences are to the optimal sequence(s). For a given target structure, the problem of

designing sequence with lowest energy of the form of Equation (1) has been solved by Kleinberg

(1999) using techniques from combinatorial optimization of network flow (Kleinberg, 1999).

Kleinberg’s transformation of the original GCSE model to a network flow optimization problem

for the inverse folding problem allows efficient construction of optimal sequences.

12

A key observation of Kleinberg (1999) is that the structure of a protein can be represented

geometrically by a directed graph G, and any H/P sequence corresponds to a partition of the set of

nodes V in G into two sets. We now recall the basic knowledge of Graph Theory.

2.2.1 Basic knowledge of Graph Theory

A directed graph G consists of a pair of sets: V (the vertices) and E (the edges). Each

edge e ∈ E is an ordered pair of vertices e = (u, v); u is called as the tail of e and v the head. It is

also assumed that each edge has a given capacity ce, which is a positive number. Let s and t be

two vertices of G. An s-t cut in G is a partition of V into two sets, X and Y, so that Xs∈ and

Yt∈ ; such a cut is denoted by the pair (X, Y). An edge is defined as “crosses” a cut (X, Y), if it

has its tail in X and its head in Y. The capacity of a cut (X, Y) is equal to the sum of the capacities

of all edges that cross (X, Y); it is denoted as c(X, Y). The minimum s-t cut problem asks, for a

given graph G and vertices s and t, to find an s-t cut (X, Y) of minimum capacity (Ahuja et al.,

1993 and Cormen et al., 1990). The maximum flow problem is to find a feasible flow through a

single-source, single-sink flow network that is maximum. The max-flow min-cut theorem states

that in a flow network, the maximum amount of flow passing from the source to the sink is equal

to the minimum capacity which when removed in a specific way from the network causes the

situation that no flow can pass from the source to the sink. The minimum s-t cut / maximum flow

problem can be solved for an arbitrary directed graph with n vertices and m edges by algorithms

of running times bounded by)log(nmnΟ (Goldberg and Tarjan, 1988; Sleator and Tarjan,

13

1983), and efficient implementations exist for some of these algorithms (Cherkassky and

Goldberg, 1995).

2.2.2 Establishment of the flow network optimization

Now, let Φ be the fitness function corresponding to a given target structure of length n.

Recall that the target structure determines inter-residue distances dij and solvent-exposed surface

areas si; and that Φ is defined via a function g and parameters α < 0 and β > 0. Let B denote the

quantity ∑
−< 2

)(
ji

ijdgα . The following graph G based on Φ is defined by Kleinberg (Kleinberg,

1999). The vertex set V of G consists of s, t, a vertex vi for each of the residue positions i = 1,

2, . . . , n in the target structure, and a vertex uij for each pair of residue positions i, j for which

2−< ji and g(dij) > 0. The edge set E of G consists of an edge (s, uij) for each vertex uij, an

edge (vi, t) for each vertex vi which has a non-zero solvent-exposed contact surface area si, and

edges (uij, vi) and (uij, vj) for each vertex uij (Kleinberg, 1999). See Figure 1 for an example of the

directed graph constructed by this procedure from an artificial 9-residue structure. A capacity is

further assigned to each edge e in the graph. The edges of (s, uij) type are assigned a capacity of

|α|, the parameter for non-bonded contact interaction; the edges of (vi, t) type are assigned a

capacity of β , the solution parameter; and all edges connecting contact node to corresponding

residue nodes (uij, vi) and (uij, vj) are assigned a capacity of B+1, which is a large value,

∑>+
),(

||1
ijus

B α .

14

Figure 1. A small example of the construction of a directed graph from a target structure with four
possible contacts (1-6, 2-5, 5-8, 4-9) (Kleinberg, 1999).

A set X of vertices is closed if (i) X contains s but not t, and (ii) for each uij ∈ V , X

contains uij if and only if it contains both vi and vj. Then the fact below can be proved.

If (X, Y) is a minimum s-t cut in G, then X is a closed set.

Proof. First note that G has an s-t of capacity B; in particular, consider the cut ({s}, V −{s}).

Now, consider a minimum s-t cut (X, Y) in G. Suppose X contains a vertex uij but not the vertex vi

(the case of vj is the same). Then the edge (uij, vi) crosses (X, Y) and it capacity B + 1; this

uij

vi

15

contradicts the assumption that (X, Y) is a minimum cut. On the other hand, suppose that X

contains some pair of vertices vi and vj, but not the vertex uij. Then the s-t cut

}){},{(ijij uYuX −U would have smaller capacity than (X, Y), again a contradiction.

 █ (Kleinberg, 1999).

For an n-symbol H/P sequence S, Z is denoted to the set of all vertices vi for which

position i in S is labeled H. By the above “closed” fact, X(S) is denoted to the closed set

consisting of s, the vertices in Z, and all vertices uij for which vi, vj ∈ Z. Conversely, if X is a

closed set, S(X) is denoted to the H/P sequence in which position i is labeled H if vi belongs to X,

and is labeled P if vi does not belong to X. From these constructions, a one-to-one correspondence

between n-symbol H/P sequences and closed sets in G exists (Kleinberg, 1999). Consequently, a

crucial fact about G is stated.

Let X be a closed set and S(X) the corresponding H/P sequence. Then the capacity of the

s-t cut (X, V − X) is equal to B +Φ(S(X)).

Proof. From the definition of closed set, we know that the only edges crossing (X, Y) have the

form (vi, t), where vi ∈ X, or (s, uij), where one of vi or vj does not belong to X. Thus,

16

∑∑
∈

⊄
∈

+=−
Xv

i

Xvv
Vu

ij
i

ji
ij

sdgXVXc βα

},{

)(),(

∑∑
∈

⊆
∈

+−=
Xv

i

Xvv
Vu

ij
i

ji
ij

sdgB βα

},{

)(

∑∑
∈

∈
−<

++=
H

H

XSi
i

XSji
ji

ij sdgB
)(

)(,
2

)(βα

)].([XSB Φ+= █ (Kleinberg, 1999)

Thus the fitness of an H/P sequence for the target structure differs from capacity of the

corresponding cut in G simply by the fixed additive constant B. Consequently, if (X, Y) is a

minimum capacity s-t cut in G, then S(X) is an optimal sequence — so to find an optimal

sequence for the target structure, what is only needed is to construct the graph G and compute a

minimum capacity s-t cut in it (Kleinberg, 1999).

Through the above discussion and proof, we can draw the conclusion, to design an

optimal sequence under the energy fitness function of Equation (1), we need to mark each residue

either as member of the hydrophobic H set, or the polar set P. Any given sequence of the same

chain length can also be mapped to graph G by labeling of the appropriate nodes. We assign node

vi to be in set H if residue vi is an H residue, to be in set P if it is a P residue. We also assign node

Hs∈ and Pt∈ . Pair node uij is assigned to be in set H if and only if both of the

corresponding residues vi and vj are H residues. Pair node uij is assigned to set P if either vi and vj

is P. Conversely, given a graph G representing the geometry of the molecular structure, we can

17

label the residue nodes vi as either H or P, and label pair node uij as H if and only if both residues

vi and vj are H residues. Node uij otherwise is labeled as P. This labeling provides a mapping from

the labeled graph G to an H/P sequence. Pair node uij can be a member of set H if and only if both

of the corresponding residue nodes vi and vj are in H. Clearly, there is one-to-one correspondence

between an H/P sequence and a partition of the nodes in the directed graph that corresponds to a

closed set H.

To ensure that H is a closed set so the labeled graph corresponds to a sequence, we cannot

allow any cut on edges),(iij vu or),(jij vu . Namely, pair node iju and residue nodes {vi, vj}

must all have the same label. A cut on these edges will never occur because all such edges have

been assigned with a large capacity B+1, here B= ∑
−< 2

)(
ji

ijdgα , then B+1 is always greater than

∑
−< 2

)(
ji

ijdgα : the trivial cut of H = {s} and P = {all other nodes} will already have a lower cost

than B+1. Therefore, the minimum cut can only happen to the edges),(ijus or),(tvi .

2.3 Linear programming formulation for inverse folding problem

Kleinberg converted the protein inverse folding problem to the minimum cut problem in

a flow network. In this study, we provide a novel simple fitness function for the inverse folding

problem by reformulating Kleinberg’s flow network algorithm into a linear programming problem,

which provides a general model for studying a variety of problems in protein design. The key

observation is that the max-flow and min-cut theorem can be applied and the s-t cut problem can

18

be reformulated as the dual max-flow linear programming problem.

2.3.1 Transformation to linear programming from flow network

Recall the max-flow, min-cut theorem: the capacity of the smallest cut is exactly equal to

the maximum flow that can be pushed from s to t. Given a graph G (ctsEVG ,,),,(=) (here s is

start node; t is sink node; c is the capacity on each edge, for example, the capacity on edge (u, v)

is denoted as c(u, v)), the problem of finding the maximum flow in the network can be formulated

as a linear program by simply writing down the definition of feasible flow. We have one variable

),(vuf for every edge Evu ∈),(of the network, and the problem is:

Maximize ∑
∈Evsv

vsf
),(:

),((2)

Subject to ∑∑
∈∈

=
EwvwEvuu

wvfvuf
),(:),(:

),(),(},{ tsVv −∈∀

),(),(vucvuf ≤ Evu ∈∀),(

 0),(≥vuf Evu ∈∀),(

Let us see what the dual of (2) looks like. The dual of (2) has one variable for each vertex

v (except s and t), which we shall call)(vπ , corresponding to the conservation constraints, and

one variable for each edge, which we shall call),(vuγ , corresponding to the capacity

constraints.

19

Minimize ∑
∈Evu

vuvuc
),(

),(),(γ (3)

Subject to 1),()(≥+ usu γπ Eusv ∈∀),(:

 0),()()(≥+− vuuv γππ tvsuEvu ≠≠∈∀ ,,),(

 0),()(≥+− tvv γπ Etvu ∈∀),(:

This linear programming describes the min-cut problem. To see why, suppose that the

)(uπ variable is meant to be 1 if u is in the cut with s, and 0 otherwise, and similarly for v. Each

of the γ variables is to be 1 if the corresponding edge contributes to the cut capacity; and 0

otherwise. Then the constraints make sure that theses variables behave exactly as they should. For

example, the second constraint states that if u is with s and v is not [this is the only case in which

the sum)()(vu ππ +− becomes -1], then (u,v) must contribute to the cut. Although the π

and γ ’s are free to take values larger than one, they will be “slammed” by the minimization

down to 1 or 0.

By the max-flow min-cut theorem, the two Linear Programming’s Primal, (2), and Dual,

(3), above have the same optimum. In fact, this is true for general dual LP’s. This is the duality

theorem, which can be stated as follows:

If an LP has a bounded optimum, then so does its dual, and the two optimal values

coincide.

20

Until now, Kleinberg’s flow network problem has been transformed to a simple linear

programming problem.

2.3.2 Our proposed linear programming fitness function

The linear optimization problem (3) in Chapter 2.3.1 is min-cut problem as described.

When),(vuγ =1, the min-cut happens on the edge (u, v); when),(vuγ =0, the min-cut does not

happen on the edge (u, v). And when),(vuγ =1, then)(uπ =1 and)(vπ =0, i.e. vertex u

belongs to the set of s and vertex v belongs to the set of t; when),(vuγ =0, then)(uπ and

)(vπ both equal 1 or)(uπ and)(vπ both equl 0, i.e. vertex u and v are both in set of s or

they are both in set of t. Besides, 1)(=sπ and 0)(=tπ

Furthermore, we can apply this linear programming to our H/P sequence model. A

minimum s-t cut can be found by minimizing the sum of cost functions of all edges in the graph,

∑
∈Evu

vuvuc
),(

),(),(γ , namely, by selecting an optimal subset of edges. The edges can be either

residue edge, which corresponds to the solution term, or pair edge, which corresponds to contact

energy. All edges have fixed capacity associated with them, whose values depend on the edge

type. The solution of this linear programming leads to a closet set H and an optimal designed

sequence is obtained. As the above discussion,),(vuγ is the “cut” indicator, so we have

⎩
⎨
⎧ ∈∈

=
.,0

,,1
),(

otherwise
PandvHu

vuγ ;)(uπ and)(vπ are the “label” indicator:
⎩
⎨
⎧

∈
∈

=
.,0

,1
)(

Pu
Hu

uπ ,

21

so does)(vπ .

Combining the conclusion in Chapter 2.2.2, the minimum cut can only happen to the

edges),(ijus or),(tvi , the min-cut linear programming problem (3) can be rewritten as

Minimize ∑∑
∈∈

+
EtvEus

tvtvcususc
),(),(

),(),(),(),(γγ (4)

Subject to 1),()(≥+ usu γπ Eusu ∈∀),(:

 0),()(≥+− tvv γπ Etvv ∈∀),(:

We have ||),(α=usc , and β=),(tvc in Chapter 2.2.2, then the linear optimization

problem (4) becomes

Minimize ∑∑
∈∈

+
EtvEus

tvus
),(),(

),(),(|| γβγα (5)

Subject to 1),()(≥+ usu γπ Eusu ∈∀),(:

 0),()(≥+− tvv γπ Etvv ∈∀),(:

10)(),(),,(),,(orvutvus =ππγγ

The linear optimization problem (5) is our proposed fitness function for the protein inverse

folding problem. The values of α and β is assigned -2 and 1/3 in Kleinberg’s flow network

algorithm. In our following experiments, we also use -2, 1/3 as their values.

22

3. EXPERIMENTS AND RESULTS

3.1 Protein structures for experiments

We implemented the above flow network algorithm and our network linear programming

model on the 23 PDB structures drawn from the Protein Data Bank considered by Sun et al.

(1995). See Table 1.

An advantage of testing the algorithm on real proteins is that we can compare the

sequences we design to the true sequence of the proteins, as in Sun et al. (1995) and Kleinberg

(1999); this is a way to assess the biological relevance of the GCSE model, Kleinberg’s flow

network algorithm, and our network linear programming model. For a protein structure from the

PDB, let us define its natural H/P sequence to be the one obtained by translating the protein’s true

amino acid sequence into an H/P sequence, according to a designation of each of the 20 amino

acids as either hydrophobic or polar. As Sun et al. classified hydrophobic (H) = A, C, I, L, M, F,

W, Y and V; and polar (P) = R, N, D, E, Q, G, H, K, P, S, and T in the one-letter code of amino

acids (Sun et al., 1995). Since the fitness function Φ associated with the model is designed only

to approximate the factors favoring the natural sequence, the natural sequence is likely to be

sub-optimal when scored according to Φ with respect to its structure; correspondingly, the

optimal sequence under Φ may differ non-trivially from the natural sequence.

23

Table 1. 23 Protein structures for experiments

Protein(PDBcode) Sequence length
Number of

Hydrophobic (H)

Number of
Polar (P)

Ratio of H to P
residues

1aaj 105 48 57 0.8421

1aba 87 35 52 0.6731

1aps 98 34 64 0.5313

1arr(mon) 53 20 33 0.6061

1arr(dim) 106 40 66 0.6061

1bba 36 15 21 0.7143

1bbl 37 14 23 0.6087

1bov 69 26 43 0.6047

1brq 174 74 100 0.7400

1cis 66 30 36 0.8333

1cmb(mon) 104 38 66 0.5758

1cmb(dim) 208 76 132 0.5758

1hel 129 54 75 0.7200

1ifb 131 50 81 0.6173

1kba(mon) 66 26 40 0.6500

1kba(dim) 132 52 80 0.6500

2gb1 56 21 35 0.6000

2hpr 87 37 50 0.7400

2il8 71 28 43 0.6512

256b 106 41 65 0.6308

3cln 143 52 91 0.5714

3rn3 124 47 77 0.6104

3trx 105 47 58 0.8103

Note. “mon” means monomer and “dim” means dimer. They refer to sequence design calculations
performed using the monomer structure along as the target and the full dimmer structure as the target,
respectively.

24

3.2 Simulation results of flow network algorithm

We simulated Kleinberg’s flow network algorithm, repeated the sequence design process

and reproduced the optimal sequence for the flow network optimization problem. The aim of this

work is to verify and assess the ability of Kleinberg’s flow network algorithm to design protein

sequences from given protein structures. We tested the implementation of the Kleinberg’s flow

network algorithm on the above 23 PDB structures, in the part of searching the minimum cut /

maximum flow in a directed graph, making use of the Cherkassky and Goldberg’s push-relabel

method for the maximum flow/minimum cut problems (Cherkassky and Goldberg, 1995). In the

Table 2, we presented the simulation results of Kleinberg’s flow network algorithm, computed the

percentage agreement between the natural and optimal sequences for the 23 PDB structures.

25

Table 2. Simulation results of Kleinberg network flow algorithm for 23 PDB structures

Protein(PDBcode)
Sequence

length
Flow network

Alg.
Running time

1aaj 105 73.33 0.005000

1aba 87 74.71 0.003000

1aps 98 77.55 0.003000

1arr(mon) 53 62.26 0.001999

1arr(dim) 106 70.75 0.003000

1bba 36 58.33 0.000000

1bbl 37 56.76 0.001999

1bov 69 73.91 0.002000

1brq 174 74.14 0.010000

1cis 66 68.18 0.002000

1cmb(mon) 104 63.46 0.003000

1cmb(dim) 208 74.04 0.016997

1hel 129 79.07 0.007999

1ifb 131 68.7 0.006999

1kba(mon) 66 68.18 0.002000

1kba(dim) 132 77.27 0.005999

2gb1 56 78.57 0.001000

2hpr 87 78.16 0.003000

2il8 71 71.83 0.002997

256b 106 77.36 0.003000

3cln 143 72.03 0.007000

3rn3 124 69.35 0.006999

3trx 105 77.14 0.003999

Length-Weighted
average

 72.70

Note. In the column under “Flow network algorithm”, the values are the percentage agreement
between the optimal and natural sequences for the 23 structures from Sun et al. (1995).

26

The running time of the algorithm (in CPU seconds) on a cluster Intel(R) Core(TM)2

Duo CPU are depicted in Figure 2; for the structures of lengths 36—208 considered in Sun et

al.(1995), the running time ranged from 0.00000001 (the shortest sequence 1bba in the length of

36) to 0.016997 (the longest sequence 1cmb(dim) in the length of 208) seconds. And from Figure

2, we can see that the running time is kind of related with the sequences’ length.

running time as a function of sequence length

0.000000

0.002000

0.004000

0.006000

0.008000

0.010000

0.012000

0.014000

0.016000

0.018000

0 50 100 150 200 250

Number of residues

a
l
g
.

r
u
n
n
i
n
g

t
i
m
e
(
s
e
c
.
)

Figure 2. Kleinberg’s network flow algorithm’s running time. The running time is kind of related with
the sequence length. Generally, with the increasing of sequence length, the running time becomes
longer.

Running time is kind of related with the sequence length.

27

3.3 Results of linear programming model

Base on the statement in Chapter 2.3.2, we reformulate the protein inverse folding

problem to a linear programming. Furthermore, we notice that the linear programming problem is

also belonged to binary integer linear programming problem, because all the values of),(vuγ ,

)(uπ and)(vπ are equal to 0 or 1. Then we solve this binary integer linear programming

problem by the existing 0-1 linear programming algorithms (Wolsey, 1998; Nemhauser et al.,

1988; Hillier et al., 2001), and realized it on Matlab R2011a. Results of the application on the

above 23 PDB structures are presented in Table 3.

28

Table 3. Results of our network linear programming model for 23 PDB structures

Protein(PDBcode)
Sequence

length
Linear prog. Running time

1aaj 105 72.86 0.646189

1aba 87 74.51 0.527784

1aps 98 77.62 0.570127

1arr(mon) 53 62.31 0.353962

1arr(dim) 106 71.04 0.528745

1bba 36 58.33 0.160894

1bbl 37 56.92 0.214563

1bov 69 74.30 0.401179

1brq 174 72.59 1.796843

1cis 66 68.33 0.358479

1cmb(mon) 104 62.76 0.561255

1cmb(dim) 208 73.98 2.897239

1hel 129 78.91 1.100563

1ifb 131 68.87 1.367267

1kba(mon) 66 68.01 0.397716

1kba(dim) 132 77.29 1.474798

2gb1 56 79.02 0.313341

2hpr 87 77.69 0.358392

2il8 71 71.86 0.323597

256b 106 77.36 0.723121

3cln 143 69.59 2.089519

3rn3 124 68.52 1.012549

3trx 105 77.23 0.633199

Length-Weighted
average

 72.15

Note. In the column under “Linear prog.”, the values are the percentage agreement between the
optimal and natural sequences for the 23 structures from our network linear programming.

29

The running time of our linear programming algorithm (in CPU seconds) on a personal

IBM laptop are depicted in Figure 3; for the structures of lengths 36—208 considered in Sun et

al.(1995), the running time ranged from 0.160894 (the shortest sequence 1bba in the length of 36)

to 2.897239 (the longest sequence 1cmb(dim) in the length of 208) seconds. And from Figure 3,

we can see that the linear programming running time is also kind of related with the sequences’

length.

LP running time as a function of sequence length

0

0.5

1

1.5

2

2.5

3

3.5

0 50 100 150 200 250

Number of Residues

L
P

r
u
n
n
i
n
g

t
i
m
e

(
s
e
c
)

Figure 3. Our linear programming method running time. It is also kind of related with the sequence
length. Generally, with the increasing of sequence length, the running time becomes longer

LP running time is kind of related with the sequence length.

30

We also compare the results from Kleinberg’s flow network algorithm and our network

linear programming model, and quote the numbers of Sun et al. for the sake of comparison. From

Table 4, it is interesting to note that the percentages agreement between optimal and natural

sequences from the flow network algorithm and our network linear programming are almost equal.

The agreement percentages change with the markedly different structures, as we move from Sun

et al.’s designed sequences to flow network algorithm and our network linear programming. For

certain protein, the agreement percentage jumps considerably when the sequences are designed by

Kleinberg’s flow network algorithm and our network linear programming model, instead of the

Sun et al.’s model. For example, the agreement percentage for 1aaj increases from Sun et al.’s

value of 66% to 73% for flow network and our linear optimal algorithms. On the other hand,

certain structures, such as 1ifb, show significantly less agreement with the natural sequence when

solved by flow network algorithm and our linear programming algorithm, from 76% to 69%. So

does 3rn3, from 81% to 69%. The length-weighted average of percentage agreement between

optimal and natural sequences is 72.1% for Sun et al., 72.70% for Kleinberg’s flow network

algorithm, 72.15% for our network linear programming method, respectively. See Figure 4.

31

Table 4. Results of different algorithms for 23 PDB structures

Protein(PDBcode)
Sequence

length
Sun et al.’s alg.

Flow network
alg.

Our linear Prog.

1aaj 105 66 73.33 72.86

1aba 87 81 74.71 74.51

1aps 98 72 77.55 77.62

1arr(mon) 53 62 62.26 62.31

1arr(dim) 106 73 70.75 71.04

1bba 36 58 58.33 58.33

1bbl 37 68 56.76 56.92

1bov 69 74 73.91 74.30

1brq 174 68 74.14 72.59

1cis 66 64 68.18 68.33

1cmb(mon) 104 62 63.46 62.76

1cmb(dim) 208 70 74.04 73.98

1hel 129 74 79.07 78.91

1ifb 131 76 68.7 68.87

1kba(mon) 66 72 68.18 68.01

1kba(dim) 132 73 77.27 77.29

2gb1 56 80 78.57 79.02

2hpr 87 78 78.16 77.69

2il8 71 77 71.83 71.86

256b 106 81 77.36 77.36

3cln 143 62 72.03 69.59

3rn3 124 81 69.35 68.52

3trx 105 80 77.14 77.23

Length-Weighted average 72.1 72.70 72.15

Note. The agreement percentages from the flow network algorithm and our linear programming are
almost equal. The markedly varied way in which the percentages of overlap changes, for different
structures, as we move from Sun et al.’s designed sequences to flow network algorithm and our
network linear programming.

32

0

10

20

30

40

50

60

70

80

90

1a
aj

1a
ba

1a
ps

1a
rr
(m
on
)

1a
rr
(d
im
)

1b
ba

1b
bl

1b
ov

1b
rq

1c
is

1c
mb
(m
on
)

1c
mb
(d
im
)

1h
el

1i
fb

1k
ba
(m
on
)

1k
ba
(d
im
)

2g
b1

2h
pr

2i
l8

25
6b

3c
ln

3r
n3

3t
rx

PDB structures name

a
gr

e
e
me

n
t

pe

r
c
en

t
a
g
e

%

Sun et al. alg. network flow alg. Our Linear Prog.

Figure 4. The agreement percentage comparison of three different methods for 23 PDB structures.
The percentages agreement between optimal and natural sequences from the flow network algorithm
and our network linear programming are almost equal. The agreement percentages change with the
markedly varied way, for different structures, as we move from Sun et al.’s designed sequences to
flow network algorithm and our network linear programming. For certain of the proteins, the
agreement percentage jumps considerably when the sequences are designed by Kleinberg’s flow
network algorithm and our network linear programming model, instead of the Sun et al.’s model. For
example, the agreement percentage for 1aaj increases from Sun et al.’s value of 66% to 73% for flow
network and our linear optimal algorithms. On the other hand, certain structures, such as 1ifb, show
significantly less agreement with the natural sequence when solved by flow network algorithm and our
linear programming algorithm, from 76% to 69%. So does 3rn3, from 81% to 69%. The
length-weighted average of percentage agreement between optimal and natural sequences is 72.1% for
Sun et al., 72.70% for Kleinberg’s flow network algorithm, 72.15% for our network linear
programming method, respectively.

33

3.4 Inverse folding with specified residue composition

Our linear programming formulation allows the study of additional problems in sequence

design. An important consideration is that the designed sequence should have a large energy

difference with random sequence. It is thought that random sequences are not correlated, and their

energy depends only on the bulk property, namely, the residue composition, but not on the

specific sequences. Designing optimal sequences with a pre-specified fixed composition will

more likely result in sequences with large energy gaps. For a sequence with N residues, if there

are n residues to be H in the sequence, we can design such a sequence with optimal energy by

adding the following constraint to the linear programming problem:

∑
∈

=
RVv

nv)(π , where VesresiduenodVR ⊂= }{ , i.e., RV is the set of residue nodes.

Therefore, the network linear programming optimal function (5) in Chapter 2.3.2 could be

Minimize ∑∑
∈∈

+
EtvEus

tvus
),(),(

),(),(|| γβγα (6)

Subject to 1),()(≥+ usu γπ Eusu ∈∀),(:

 0),()(≥+− tvv γπ Etvv ∈∀),(:

10)(),(),,(),,(orvutvus =ππγγ

∑
∈

=
RVv

nv)(π , where VesresiduenodVR ⊂= }{

We now study the additional problems in sequence design—inverse folding problem with

specified residue composition. Here we attempt to construct a sequence in which the number of

residue H, n, is fixed. Following the existing research, the ratio of H and P residues in a sequence

34

is roughly 2/3, matching the relative frequencies of the corresponding amino acids in naturally

occurring polypeptide sequences (Creighton, 1993). Given the length of a sequence, we can

calculate the number of H residues in it. Based on the length of 23 PDB structures in Table 1, we

obtain the values of n for each sequence presented under the column of “Calculated number of H”

in Table 5. In Table 5 we compute the percentage agreement between the natural and optimal

sequences for the 23 PDB structures with the optimal function (6), presented in the column under

“LP with fixed HP composition”. We also reproduce the numbers of network linear programming

for the sake of comparison. It is interesting to find that for different PDB structures, the

percentages of the agreement vary as we add ∑
∈

=
RVv

nv)(π in the constraint expression. For

some of the proteins, the agreement percentage jumps considerably when the sequences are

designed by the method of network linear programming with the fixed HP composition. For

example, the agreement percentage of 1bbl increased from linear programming’s value of 56.92%

to 64.86% for linear programming with the fixed HP composition constraint; the agreement

percentage of 1kba monomer increases from linear programming’s value of 68.01% to 75.76% for

linear programming with the fixed HP composition constraint. On the other hand, certain

structures show significantly less agreement with the natural sequence when solved to the linear

programming’s optimality with the fixed HP composition constraint, such as 1aba, the agreement

percentage of 1aba decreases from linear programming’s value of 74.51% to 70.12% for linear

programming with the fixed HP composition constraint. Although in the above three cases, the

calculated numbers of hydrophobic residues are equal to the practical numbers of hydrophobic

residues in sequences, the linear programming with fixed HP composition constraint can not

35

make sure the increase of percentage agreement between optimal and natural sequences. And we

also notice that for the sequences whose calculated numbers of hydrophobic residues are not

equal to the practical numbers of hydrophobic residues, the agreement percentage has no

remarkable increase, and furthermore, for most cases in this situation, the agreement percentage

decreases, as we move from linear programming to linear programming with the fixed HP

composition constraint. See Figure 5.

36

Table 5. Results of Linear Programming with fixed HP composition for 23 PDB structures.

Protein
(PDBcode)

Sequence
length

Real Number
of H

Calculated
number of H

LP
LP with fixed HP

composition

1aaj 105 48 42 72.86 69.52
1aba 87 35 35 74.51 70.12

1aps 98 34 39 77.62 74.49

1arr(mon) 53 20 21 62.31 62.26

1arr(dim) 106 40 42 71.04 72.64

1bba 36 15 14 58.33 58.33

1bbl 37 14 15 56.92 64.86

1bov 69 26 28 74.30 71.01

1brq 174 74 70 72.59 71.84

1cis 66 30 26 68.33 62.12

1cmb(mon) 104 38 42 62.76 62.50

1cmb(dim) 208 76 83 73.98 72.60

1hel 129 54 52 78.91 77.52

1ifb 131 50 52 68.87 69.47

1kba(mon) 66 26 26 68.01 75.76

1kba(dim) 132 52 53 77.29 76.52

2gb1 56 21 22 79.02 75.00

2hpr 87 37 35 77.69 77.01

2il8 71 28 28 71.86 78.87

256b 106 41 42 77.36 76.42

3cln 143 52 57 69.59 70.63

3rn3 124 47 50 68.52 66.94

3trx 105 47 42 77.23 76.19

Length-Weighted

average
 72.15 71.74

Note. In the column under “Real number of H”, the values are the number of Hydrophobic residues in
practice; the values in the column “Calculated number of H” are the number of Hydrophobic residues
calculated by the sequence length multiplying 2/5. In the columns under “LP” and “LP with fixed HP
composition”, the values are the percentage agreement between the optimal and natural sequences
with the method network linear programming and network linear programming with the fixed HP
composition for the 23 PDB structures, respectively.

37

0

10

20

30

40

50

60

70

80

90

1
a
a
j

1
a
b
a

1
a
p
s

1
a
r
r
(
m
o
n
)

1
a
r
r
(
d
i
m
)

1
b
b
a

1
b
b
l

1
b
o
v

1
b
r
q

1
c
i
s

1
c
m
b
(
m
o
n
)

1
c
m
b
(
d
i
m
)

1
h
e
l

1
i
f
b

1
k
b
a
(
m
o
n
)

1
k
b
a
(
d
i
m
)

2
g
b
1

2
h
p
r

2
i
l
8

2
5
6
b

3
c
l
n

3
r
n
3

3
t
r
x

PDB structure name

a
g
r
e
e
m
e
n
t

p
e
r
c
e
n
t
a
g
e

%

LP LP with fixed HP composition

Figure 5. The agreement percentage comparison between network linear programming and network
linear programming with the fixed HP composition. For some of the proteins, the agreement
percentage jumps considerably when the sequence is designed by the method of network linear
programming with the fixed HP composition. For example, the agreement percentage of 1bbl
increases from linear programming’s value of 56.92% to 64.86% for linear programming with the
fixed HP composition constraint; the agreement percentage of 1kba monomer increases from linear
programming’s value of 68.01% to 75.76% for linear programming with the fixed HP composition
constraint. On the other hand, certain structures show significantly less agreement with the natural
sequence when solved to the linear programming’s optimality with the fixed HP composition
constraint, such as 1aba, the agreement percentage of 1aba decreases from linear programming’s value
of 74.51% to 70.12% for linear programming with the fixed HP composition constraint. Although in
the above three cases, the calculated numbers of hydrophobic residues are equal to the practical
numbers of hydrophobic residues in sequences, the linear programming with fixed HP composition
constraint can not make sure the increase of agreement percentage. And we also notice that for the
sequences whose calculated numbers of hydrophobic residues are not equal to the practical numbers of
hydrophobic residues, the agreement percentage has no remarkable increase, and furthermore, for
most cases in this situation, the agreement percentage decreases, as we move from linear programming
to linear programming with the fixed HP composition constraint.

38

4. DISCUSSION AND CONCLUSION

In this study, we simulate and verify the flow network algorithm, and resolve the protein

inverse folding problem by providing a novel linear programming method to construct optimal

sequences. We illustrate the effectiveness of our method through the application on 23 structures

drawn from the Protein Data Bank. Furthermore, we also consider the extensions of our network

linear programming method with specified residue composition in a sequence, as a way to

overcome the limitations that a sharp imbalance in the ratio of H to P residues prevents designed

sequences from having a high degree of agreement with the natural sequence in most cases.

4.1 Some concern about our linear programming

For linear programming problem, geometrically, the linear constraints define the feasible

region, which is a convex polyhedron. A linear function is a convex function, which implies that

every local minimum is a global minimum; similarly, a linear function is a concave function,

which implies that every local maximum is a global maximum. Optimal solution need not exist,

for two reasons. First, if two constraints are inconsistent, then no feasible solution exists: For

instance, the constraints x≥2 and x≤1 cannot be satisfied jointly; Second, when the polytope is

unbounded in the direction of the gradient of the objective function (where the gradient of the

39

objective function is the vector of the coefficients of the objective function), then no optimal

value is attained. Then will the infeasible situation happen to our network linear programming?

To answer this question, we need to recall the process of our network linear programming’s

formulation.

Our network linear optimization function is strictly dual problem of the primal

optimization problem (2) (discussed in Chapter 2.3.1) built up based on the physical description

of maximum flow in a directed graph, which is also the minimum cut optimization problem in a

directed graph. Its function is depicted in Chapter 2.3.1 as follows,

Minimize ∑
∈Evu

vuvuc
),(

),(),(γ (3)

Subject to 1),()(≥+ usu γπ Eusv ∈∀),(:

 0),()()(≥+− vuuv γππ tvsuEvu ≠≠∈∀ ,,),(

 0),()(≥+− tvv γπ Etvu ∈∀),(:

As discussed in Chapter 2.3.2, we always have one of the following three situations,

⎪
⎩

⎪
⎨

⎧

=
=
=

0)(
1)(

1),(

v
u

vu

π
π
γ

, or
⎪
⎩

⎪
⎨

⎧

=
=
=

1)(
1)(

0),(

v
u

vu

π
π
γ

, or
⎪
⎩

⎪
⎨

⎧

=
=
=

0)(
0)(

0),(

v
u

vu

π
π
γ

We can see that the constraint functions are satisfied in whichever situation of the above, so the

constraints are totally satisfied jointly. And the polytope is bounded. Therefore, comparing with

the above two reasons that no feasible solution exist, we conclude that our network linear

programming is feasible.

40

On the other hand, simply understand that our network linear programming describes the

minimum cut problem in a given directed graph with a capacity on each edge according to the

Graph Theory. The minimum cut always exists in a given graph, then the optimal solution for the

minimum cut optimization problem can always be found out, so our network linear programming

is always feasible.

4.2 Future work

4.2.1 Parameter selection in our fitness function

Our linear programming fitness function is defied in Chapter 2.3.2 as follows,

Minimize ∑∑
∈∈

+
EtvEus

tvus
),(),(

),(),(|| γβγα (5)

Subject to 1),()(≥+ usu γπ Eusu ∈∀),(:

 0),()(≥+− tvv γπ Etvv ∈∀),(:

10)(),(),,(),,(orvutvus =ππγγ

In our experiment on 23 PDB structures in Chapter 3.3, the parameter α is set to -2, and

β is set to 1/3. These two parameters α and β can be tracked from Sun et al.’s GCSE model.

As we known that the relative values of α and β in the GCSE fitness function control the

relative proportions of H and P residues in an optimal sequence. Qualitatively, if β is fixed,

there is an increasing reward for hydrophobic contacts, with the decreasing of α ’s value; if α

is fixed, there is an increasing penalty for solvent-exposed hydrophobic residues, with the

41

increasing of β ’s value. At more concrete level, the minimum number of H residues in an

optimal sequence increases monotonically as β is held fixed and α is made increasingly

negative (Kleinberg, 1999). Therefore, the adjustment of parameters α and β will bring the

different ratio of H to P in a sequence. Consequently, this will affect the component of optimal

sequences. Our linear programming’s objective function will change with the values changing of

α and β . Then the optimal solution for the linear programming could alter. In the process of

observing the effect on optimal sequences with the changing of α and β ’s values, we can hold

one of them as fixed, and wave the other, then look at the percentage of agreement between the

natural and optimal sequences for each set of α and β . Through this method, we could find

the set of α and β with the highest score in agreement percentage. Or according to the results

of α and β ’s values, the structures could be divided into several groups. For different group,

respectively, α and β are assigned different values to the optimal function. This will help us

to improve the performance of our network linear programming model.

4.2.2 Inverse binding problem

Protein folding and protein binding are two intimately related problems. Similarly,

protein inverse folding and protein inverse binding are closely related to each other. Inverse

binding problem is to seek to design protein sequence for optimal binding. Once residues in a

binding region are fixed, they will be withdrawn from the set of candidate residue nodes in the

graph and their labels do not need to be assigned during optimization. Furthermore, if two

42

contacting residues i and j are both labeled as H, they will not contribute to the cost of pairwise

contact energy. Edge node (s, uij) will have a label H and will not be subject for optimization. If

either one of the two contacting residues is a P residue, the contact node uij will have a label P by

definition, and edge (s, uij) will always contribute a constant α to the cost function, and is

therefore removed from optimization. In this case, the formulation of the linear programming is

exactly the same as our network linear programming (5) described in Chapter 2.3.2, the difference

is that the set of edges 'E is now smaller:

}|),{(' PPorvvusEE jiij ∈∈−=

}|),{(HHorvvus jiij ∈∈−

}|),{(HPorvvtv jii ∈∈−

Then what we need to do is to search the optimal solutions on the small set. The inverse binding

problem has important implications in protein design, protein engineering, and in searching

therapeutic agent.

4.3 Conclusion

In this study, we explore a new fitness function based on the Grand Canonical Sequence

Evolution model of Sun et al. and Kleinberg’s flow network transformation, and we have solved

this protein inverse folding problem by providing a novel simple and efficient linear

programming method to construct optimal sequences. Furthermore, we demonstrate our model’s

43

effectiveness by implementation on 23 structures drawn from the Protein Data Bank.

We prove the correctness of the linear programming method theoretically in Chapter 2.

And in Chapter 3 we apply our linear programming on 23 structures, and collate the designed

sequences by linear programming method with the known native sequences of biological proteins,

the agreement ranges from 58% to 79%. Furthermore, we compare the optimal sequences from

linear programming method with those from Sun et al.’s GCSE model and Kleinberg’s flow

network algorithm. The percentage agreement between natural and optimal sequences changes with

the markedly different structures, as we move among Sun et al.’s algorithm, flow network algorithm

and our linear programming. The length-weighted average of percentage agreement has no big

difference among these three methods, 72.1% for Sun et al.’s GCSE model, 72.70% for

Kleinberg’s flow network algorithm, and 72.15% for the linear programming, respectively. We

can see that the performance of the linear programming is as good as other algorithms’

performance. So we can conclude that the proposed linear programming method for solving

protein inverse folding problem is reliable and efficient, and it may be useful tools for designing

monomer sequences that will fold to specific target conformations of protein and other polymers.

In addition, the extension of the linear programming method—adding specified H/P

composition as a constraint in the linear programming problem—varies the percentage of

agreement between the natural and optimal sequences for different structures in different ways. If

the specified ratio of H to P in a sequence is equal to the natural ration of H to P, then the network

44

linear programming with fixed H/P composition constraint will increase the agreement percentage

in most cases; if the specified ratio of H to P is different from the natural ration of H to P in a

sequence, then the agreement percentage will be decreased in most cases, as we move from the

linear programming to the linear programming with fixed H/P composition constraint.

45

CITED LITERATURE

Ahuja, R., Magnanti, T., and Orlin, J. : Network Flows. Prentice-Hall, Englewood Cliffs, NJ,
1993.

Banavar, J., Cieplak, M., Maritan, A., Nadig, G., Seno, F., and Vishveshwara, S. : Structure-based

design of model proteins. Proteins: Struct. Funct. Genet. 31: 10-20, 1998.

Banavar, J.R., and Maritan, A.M. : Geometrical approach to protein folding: a tube picture.

Reviews of Modern Physics 75: 23-24, 2003.

Cherkassky, B., and Goldberg, A.V. : On implementing the push-relabel method for the maximum

flow problem. Proc. MPS Symp. On Int. Prog. And Comb. Optimization : 157-171, 1995.

Chothia, C. : One thousand families for the molecular biologist. Nature 357: 543-544, 1992.

Cormen, J., Leiserson, C., and Rivest, R. : Introduction to Algorithms. McGraw-Hill, New York,

1990.

Creighton, T.E. : Proteins: Structure and Molecular Properties. Freeman, San Francisco, 1993.

Desjarlais, J.R., and Handel, T.M. : De novo design of the hydrophobic cores of proteins. Protein

Science 4: 2006-2018, 1995.

Desmet, J., De Maeyer, M., Hazes, B., and Lasters, I. : The dead-end elimination theorem and its

use in protein side-chain positioning. Nature 356: 539-542, 1992.

Deutsche, J.M., and Kurosky, T. : New algorithm for protein design. Physical Review Letters

76(2): 323-326, 1996.

Drexler, K.E. : Molecular engineering: An approach to the development of general capabilities for

molecular manipulation. Proc. Natl. Acad. Sci. U.S.A. 78: 5275-5278, 1981.

Goldberg, A.V., and Tarjan, R.E. : Anew approach to the maximum flow problem. J. ACM 35:

921-940, 1988.

Gupta, Arvind, Manuch, Jan, and Stacho Ladislav : Structure-approximating inverse protein

folding problem in the 2D HP model. Journal of Computational Biology 12: 1328-1345,
2005.

46

Gutin, A.M., Abkevich, V.I., and Shakhnovich, E.I. : Is Burst Hydrophobic Collapse Necessary

for Protein Folding? Biochemistry 34 (9): 3066–3076, 1995.

Hart, W. : On the computational complexity of sequence design problems. Proc. RECOMB Conf.

Comput. Mol. Biol. :128-136.

Hellinga, H.W., and Richards, F.M. : Optimal selection of sequences f proteins of known structure

by simulated evolution. Proceedings of the National Academy of Sciences 91: 5803-5807,
1994.

Hillier, Frederick S. and Lieberman Gerald J. : Introduction to Operations Research,

McGraw-Hill, 2001.

Jon M. Kleinberg : Efficient algorithms for protein sequence design and the analysis of certain

evolutionary fitness landscapes. Journal of computational biology 6: 387-404, 1999.

Kamtekar, S., Schiffer, J.M., Xiong, H., Babik, J.M., and Hecht, M.H. : Protein design by binary

patterning of polar and nonpolar amino acids. Science 262: 1680-1685, 1993.

Lee, C., and Levitt, M. : Accurate prediction of the stability and activity effects of site-directed

mutagenesis on a protein core. Nature 352: 448-451, 1991.

Lippow, S.M., and Tidor, Bruce : Progress in computational protein design. Biotechnology 18:

305-311, 2007.

Merz, K., and LeGrand, S., eds. : The protein folding problem and tertiary structure prediction.

Birkhauser, Boston, 1994.

Nemhauser, George L., and Wolsey, Laurence A. : Integer and Combinatorial Optimization, John

Wiley & Sons, 1988.

Ponder, J., and Richards, F.M. : Tertiary templates for proteins. J. Mol. Biol. 193: 63-89, 1987.

Raha, Kaushik, Wollacott, A.M., Italia, Michael J., and Desjarlais, John R. : Prediction of amino

acid sequence from structure. Protein Science 9: 1106-1119, 2000.

Richmond, T.J., and Richards, F.M. : Packing of -helices: Geometrical constraints and contact

areas. J. Mol. Biol. 119: 537-555, 1978.

Sanjeev, B.S., Patra, S.M., and Vishveshwara, S. : Sequence design in lattice models by graph

47

theoretical methods. Journal of Chemical Physics 114(4): 1904-1914, 2001.

Saven, J.G., and Wolynes, P.G. : Statistical mechanics of the combinatorial synthesis and analysis

of folding macro-molecules. Journal of Physics and Chemistry B 101: 8375-8389, 1997.

Shakhnovich, E.I. : Proteins with selected sequences fold into unique native conformation.

Physical Review Letters 72: 3907-3910, 1994.

Shakhnovich, E.I., and Gutin, A.M. : Anew approach to the design of stable proteins. Protein Eng.

6:793-800, 1993.

Sleator, D., and Tarjan, R.E. : A data structure for dynamic trees. J. Comput. Syst. Sci. 26:

362-391, 1983.

Sun, B., Brem, R., Chan, H.S., and Dill, K.A. : Designing amino acid sequences to fold with good

hydrophobic cores. Protein Eng. 8: 1205-1213, 1995.

Wolsey, Laurence A. : Integer Programming, John Wiley & Sons, 1998.

Yue, K., and Dill, K.A. : Inverse protein folding problem: Designing polymer sequences. Proc.

Natl. Acad. Sci. U.S.A. 89: 4163-4167, 1992.

Zou, J., and Saven, J.G. : Statistical theory of combinatorial libraries of folding proteins: energetic

discrimination of a target structure. Journal of Molecular Biology 296: 281-294, 2000.

48

YING WANG

EDUCATION

Aug.07-present

Sep.02-Jun.05

Sep.97-Jul.01

Master Student in Bioinformatics, Department of Bioengineering,
University of Illinois at Chicago, IL, US

 GPA:3.8/4.0

Master of Management, major in Technical Economics and Management,
School of Economics and Management, Beijing Jiaotong University, Beijing,

China
Rank: 1/47, GPA(Overall): 3.87/4.0

Bachelor of Engineering, major in Mechanical Engineering and Automation,
School of Mechanical and Electronic Control Engineering,
Beijing Jiaotong University, Beijing, China

Rank: top5%, GPA(Overall): 3.54/4.0

Minor in Economics,
School of Economics and Management,
Beijing Jiaotong University, Beijing, China

CERTIFICATES

SAS® Certified Advanced Programmer for SAS®9 2010
SAS® Certified Base Programmer for SAS®9 2009

RESEARCH EXPERIENCE

·Molecular and Systems Computational Bioengineering Lab,
University of Illinois at Chicago, IL, US Sep.07-May.08
Constructed optimal hydrophobic and polar interaction models for protein inverse folding problem
using graph theory and linear programming;

·Engineering Design and Optimization Laboratory,
Clemson University, SC, US Aug.06-Jul.07
Researched on optimization design and structure design; Developed and programmed for different
optimal algorithms; Set the values of parameters with statistical methods to build mathematical

49

modeling and made simulations on Augmented Lagrangian Coordination for Decomposed Design
Problems;

·School of Economics and Management,
Beijing Jiaotong University, Beijing, China Oct.04-Jun.05
Created statistical models to analyze competitive strengths and forecasted growth trends, using
data acquisition, data mining and statistical inference with regression analysis and ANOVA in
SAS.

·Laboratory of Rail Traffic Control and Safety,
 Beijing Jiaotong University, Beijing, China Nov.00-Jun.01
Completed data collection, data cleansing; Built dynamic models to simulate the distribution of
passenger flow; Executed risk analysis for railway stations.

·Laboratory of Mechanical and Design,

Beijing Jiaotong University, Beijing, China Sep.00-Nov.00
Participated in the project of the Traffic Safe Information Simulation System by microcontroller;

TEACHING EXPERIENCE

·Department of Bioengineering,
University of Illinois at Chicago, IL, US Aug.08-Jan.09
Instructed the course of BIOE339 Biostatistics I

·Department of Bioengineering,
University of Illinois at Chicago, IL, US Jan.08-May.08
Instructed the course of BIOE580 Principles of Bioinformatics

·Department of Bioengineering,
University of Illinois at Chicago, IL, US Sep.07-Dec.08
Instructed the course of BIOE480 Introduction to Bioinformatics

·Department of Economics and Management,
Beijing Jiaotong University, Beijing, China Feb.03-Jul.03
Instructed the course of Applied Statistics for undergraduates

·School of Mechanical and Electronic Control Engineering,
Beijing Jiaotong University, Beijing, China Sep.98-Jul.99
Instructed the course of Engineering Mechanics for undergraduates

50

WORKING EXPERIENCE

·Quantitative Analyst, Hedge Fund Research Inc., Chicago, IL, US 2010-present
·Financial Analyst, Beijing Jianxin Assets Appraisal Co. Inc., Beijing, China 2005-2006

COMPUTER ABILITY

SAS, SAS Enterprise Guide, Excel, SPSS, PowerPoint, Matlab, Perl, R, SQL (SQL Server, MySql,
Access), Linux, Windows, C, Maple, Outlook, Photoshop, AutoCAD.

