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SUMMARY

The web contains huge amount of semi-structured data in the form of tables and spreadsheets

that are pertinent for various statistical data analysis or visualization. Manual processing of

these tabular data is tedious because of their heterogeneity in structure, concept and metadata.

Further, much of the information present in them do not have explicit metadata introducing

difficulties in understanding the table semantics which is critical to automatically process these

data and to leverage the data integration process. In this thesis, we (a) study in-depth about

semi-structured (tabular) data on the web; (b) discuss the complexities in processing them; (c)

propose automatic methods to abstract their semantics by annotating various features inside

the tables; (d) introduce algorithms to construct a semantic graph by resolving different levels

of heterogeneities. We evaluate our approach on a set of highly complex tables retrieved from

different domains and also discuss about the impact of our work in practical scenarios and in

the field of Semantic Web.
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CHAPTER 1

INTRODUCTION

Web tables are considered to be one of the most prominent form that contain semi-structured

data mainly due to its huge availability on the web. As of 2008, there were 14.1 billion HTML

tables out of which 154 million contained high quality relational data [1]. Besides these tables,

we also notice that several government organizations share a diverse range of reports and

statistics in the form of spreadsheets, tables in PDF documents, XMLs and CSVs that add up

further to the quantity of useful semi-structured data on the web. Few examples include census

report from U.S. Census Bureau1, weather and water flow related information from National

Oceanic and Atmospheric Administration (NOAA)2, and several locally administered websites

for large cities such as Chicago Data Portal (CDP)3 and New York City Open Data4. Some

of these web sites provide specific ways to query and visualize their data independently. For

instance, CDP provides facilities to visualize certain categories of data on map and to add

multiple map layers to create an overlay effect for analysis. This is a major obstacle for any

interdisciplinary research that demands the interactions between the data available in various

1https://www.census.gov/

2http://www.noaa.gov/ocean.html

3https://data.cityofchicago.org/

4https://nycopendata.socrata.com/
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heterogeneous domains and sources for data analysis. For instance, a public health scientist

would be interested in data from Census Bureau and also the National Weather Service (NWS)

for, say, analyzing the effect of weather on a subset of population in an area. Thus, a platform

for data integration has to be be laid out. But, the performance of data integration depends

on the way the data will be extracted and represented.

In most cases, the data present within these tables may be a mere integration of several

(possibly) structured data sources [2] with a motive to make them understandable by the

humans. For example, the web table shown in Figure 1 could be built by extracting data from

structured sources on Water, Precipitation and River. In some scenarios such as government

reports, spreadsheet applications are used for data entry which vary in structures. Because

the conversion of spreadsheets to HTML tables is simple, the same level of heterogeneity gets

transferred to the web.

Firstly, manual extraction of such data is time-intensive and becomes nearly impossible when

dealing with large number of heterogeneous data. Current automatic techniques only perform

blind data extraction that does not understand the content and that can only be applied on

tables that have clear headers and data similar to that of a relational table in RDBMS. However,

we notice that this is not sufficient. For instance, it is necessary to identify the semantics of a

column header like Average rainfall (mm) from 2010-2013 as a header that (1) contain data

about Rainfall ; (2) the data in that column are Average amounts; (3) the units of measurement

is millimeters; (4) the data is valid or applicable only for the temporal range 2010 to 2013.

Apart from this, there is the problem of representing the extracted data which relies extensively
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Figure 1. Semi-structured data in a HTML table.

on the original structure. We see that most of these data have complex and fuzzy schema with

variety of information embedded in it. The table shown in Figure 1 with nested headers and

heterogeneous metadata illustrates these issues. Thus, in order to perform a meaningful search

over these tables and to integrate them, special techniques needs to be developed.

In this thesis, we will study intensively on the semi-structured data present in tables and

propose automatic methods to extract and represent them in a format that retains the semantics

such that no tiny information is lost.

The rest of this thesis is organized as follows: Chapter 2 introduces semi-structured data

and their heterogeneity. Chapter 3 describes the preliminary data structure to represent a

complex table. Chapter 4 and 5 explains the several annotation components and introduces an
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algorithm to develop an Annotation Profile. Chapter 6 introduces an algorithm to create the

semantic graph and also discusses possible applications in real-life scenario. Chapter 8 describes

the experimental setup, creation of test data and experimental results of various components.

Chapter 9 discusses the previous work on extraction. We conclude and discuss the future work

in Chapters 11 and 10 respectively.



CHAPTER 2

SEMI-STRUCTURED DATA

The electronic data on the web can be broadly classified into three main categories having

specific characteristics:

Unstructured data. Data that has no defined schema is called unstructured data. They are

mostly raw text data which may, sometimes, include certain objects such as images and

videos.

Structured data. Data that conforms to a well defined schema and other data descriptions is

generally referred to as structured data. A well known example is the table in a relational

database.

Semi-Structured data. Data that combines the characteristics of structured and unstruc-

tured is called semi-structured data. They are neither structured nor entirely unstruc-

tured. The data representation is thus very flexible such that no single schema or structure

could represent the entire data. Examples include the data created using HTML or XML

tags, and BibTex file.

Several main aspects and various forms of semi-structured data are explained by Abite-

boul [2]. In this section, we discuss only about the data that are present in web tables and

spreadsheets.

5
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Figure 2. Web page containing a complex table.

2.1 Web Table

Web Tables are constructed for several purposes mainly because of its ability to structure

the information in many different ways such as HTML forms, Calendar, relational data, reports

and many more. Hyper Text Markup Language (HTML) is a universally understood language

to the web browsers to publish information over the World Wide Web [3]. It contains a set of

markup tags that are used to create an HTML document (herein referred to as a web page).

A sample template of a web page containing a table shown in Table I and brief description of

some important markup tags relevant to this research are given below:
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TABLE I

USAGE OF COLSPAN AND ROWSPAN IN A HTML TABLE

Location
Water level (ft)
Avg Max

Des Plaines 12.5 30

1 <html>
2 <head>
3 <t i t l e > This i s a t i t l e </ t i t l e >
4 <meta name=‘ de s c r i p t i on ’ content=‘Thesis ’>
5 <s t y l e> tab le , th { c o l o r : red ;} </s ty l e>
6 <s c r i p t s r c=‘ t e s t . j s ’>
7 </head>
8 <body>
9 <tab le>

10 <tr>
11 <th rowspan=‘2’>Location</th>
12 <th co l span=‘2’>Water l e v e l ( f t )</th>
13 </tr>
14 <tr>
15 <td>Avg</td>
16 <td>Max</td>
17 </tr>
18 <tr>
19 <td>Des Pla ines</td>
20 <td>12.5</td>
21 <td>30</td>
22 </tr>
23 </table>
24 </body>
25 </html>

The <head> block contains markup tags that provide metadata and other basic resources

to the main document such as <title> for web page title, <meta> to provide the metadata,

<style> to apply style information (sometimes<link> is used to attach a Cascaded Style Sheet),
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and <script> to apply a JavaScript or a VBScript. The <body> block contains markup tags

that help in the representation of information on the web page as shown in Figure 2. The tables

constructed using HTML markup tags are referred to as Web Tables. A few important HTML

tags used to construct a table are: (1) <table> as a wrapper tag; (2) <tr> to define a row; (3)

<th> to define a table header for a column; (4) <td> to define a column. Besides these tags,

there are (a) positional attributes such as width, height and valign; (b) cell merging attributes

such as colspan and rowspan; (c) style attributes such as style, bgcolor, border, cellpadding and

cell spacing. The flexibility of using the combination of these tags and attributes can make the

table very complex yet visually pleasing to human eyes. Thus, these tables are generally said

to have a self-describing structure and metadata.

2.2 Spreadsheet

Spreadsheets are worksheets with rows and columns that are created using softwares such

as Microsoft
TM

Excel R© or OpenOffice.org
TM

. Unlike the HTML tags, these softwares provide

the functionality to apply mathematical functions and to design the table through a GUI. This

assists in easy report generation. Some of these tools can even convert such reports in to a

web table for publishing over the web. Majority of government organizations and corporate

companies use spreadsheets to create different reports and other forms of statistical data. See

Figure 3. In the field of On-Line Analytical Processing (OLAP), these types of data are referred

to as multi-dimensional data. [4]

2.3 Heterogeneity

We categorize the heterogeneity of these semi-structured data (tables) as described below:
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Figure 3. A spreadsheet showing poverty statistics.

2.3.1 Structural

Structural heterogeneity arise due to the merging of cells. This process is technically referred

to as cell spanning. For instance, we can clearly note this in Table I where Location spans

across two rows and Water level (ft) spans across two columns. We refer to these differences

as structural heterogeneities. From a high-level view, this may be intuitively considered as a

simple hierarchical structure. However, we find that it is not the case for several reasons which

we explain in Chapter 6. Tables that do not have any such cell spanning and those that contain

clean header structure (single row) can be compared to that of a structure maintained in a

relational table.
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2.3.2 Conceptual

One of the important characteristics of semi-structured data is that their data elements

are eclectic [2]. This introduces the heterogeneity in concepts present in them. For instance,

a table describing the climate of different U.S. cities may have information about different

concepts such as Temperature, Rainfall and Snowfall. The generation of such data could be the

result of database queries executed on three different relational tables.

2.3.3 Metadata

Metadata is the data that describes data. In tables, it could be the table caption that

summarizes the table or it can be some implicit information present within the table headers or

data rows. For example, following our previous example from Section 2.3.2, the table on climate

may contain headers such as Average temperature (F), Maximum rainfall (mm) and Average

snowfall (in). If we look at the first header, we note that there are different features in it such as

Average (modifier), Temperature (concept) and F referring to Fahrenheit (unit). These features

constitute the metadata. The identification of this metadata is one of the important process

in understanding the data. Chapter 4 and Chapter 5 further describes this heterogeneity and

introduces methods to identify these metadata.



CHAPTER 3

TABLE REPRESENTATION

Tables have a grid structure with rows and columns. Each individual unit is referred to as

a cell. Within a table, there are two categories of rows as described in the following sections:

3.1 Header rows

Table headers (created generally using <th> tag) contain a schema that may describe the

table. They are usually present in the first row (in a simple table) or first two to three rows

(in a complex table where row spanning occurs). These rows are called header rows. The cells

present within these rows are referred to as header cells. In a table that is aligned horizontally

(called as horizontal tables), headers may be present in the first column and termed as header

columns. However, in this thesis we only focus on vertically structured tables.

3.2 Data rows

These rows appear after the header rows and contain data that belong to the appropriate

header cells. However, this distinction between header rows and data rows is not always ex-

plicit because of improper web table construction (not using <th> tags) or unclear layouts (in

spreadsheet applications). There have been many techniques presented to handle this issue of

separating the schema (header cells) and the data (data cells) [5, 6, 7]. However, these methods

work under an assumption that schema is present only in header cells (which is not the case in

many scenarios). For instance, as shown in Figure 1, the data cells may contain schema related

information such as units or even a timestamp. This demands an alternate model that would

11
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allow the modification of a data cell (or a feature of a data cell) to a header cell in such a way

it gets attributed to the main schema.

H H H H

H H H H H

Figure 4. Table Representation for the complex web table shown in Figure 1.

3.3 Model

Although several representations are possible for various kinds of table [8, 6], in this thesis,

we mainly focus on simple tables and tables with nested header structures. We use a special

type of tree Ts with number of nodes n equivalent to the number of initial header cells. See

Figure 4. We say them ‘initial’ as the tree may change at a later point of time which is described

in Chapter 6. The leaf nodes of this tree has a list Li where i = 1, 2, 3 . . . k (k being the number

of columns in the data rows). This representation allows easy transformation between a tree

and a matrix whenever required. This is because each node n in this tree has the ability to
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convert the data rows into a matrix M. For instance, in Figure 4, the second node that has

three child nodes contain three independent lists. These lists can be merged to form a matrix

M2. This is useful in certain cases which requires merging of cells such as combining apartment

number, street name and city to perform Geocoding [9] to identify their geographic coordinates.



CHAPTER 4

TABLE ANNOTATION

In order to automatically identify various features of the table, we develop an annotation

pipeline with different components that apply Natural Language Processing (NLP) and Named

Entity Recognition (NER) techniques. The performance of this process is highly critical to

semantically model the data. In this chapter, we first provide a brief overview of NLP and

NER following which we explain in-depth the different features of a table that are available for

extraction and also discuss our annotation algorithm.

4.1 Natural Language Processing

Natural Language Processing (NLP) has been proved critical to various research applica-

tions involving unstructured textual data that come under the category of Open Information

Extraction (Open IE) [11, 12, 13, 14]. Given a well phrased English sentence, NLP parsers such

as Stanford Core NLP1 or Apache OpenNLP2 provide complete grammatical analysis for them.

These analysis may be in the form of Part-of-Speech (POS) information or typed dependency

tree [15]. The performance of these parsers depend on “models” that are trained over a high

quality text corpus such as news articles and Wikipedia content. Unfortunately, this makes

Acknowledgement: The work in this chapter is an improved version of a paper presented else-
where [10].

1http://nlp.stanford.edu/software/corenlp.shtml

2https://opennlp.apache.org/
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them work detrimentally on badly phrased sentences such as tweets that require special parser

such as CMU Tweet NLP1. In both of the cases, the availability of homogeneous data format

(grammatical text as in natural language corpus or tweets as in Twitter) makes it possible to

build a training model which is often not the case with semi-structured data that is heteroge-

neous in different ways as discussed in previous sections. However, we take advantage of these

parsers with different pre-processing and post-processing steps to use them on a semi-structured

data. After analysing large number of tabular data (See Chapter 8), we created a subset of

POS (out of 48 tags based on Penn Tree bank [16] tagset) that occur widely in them. These

are listed in Table II along with their descriptions.

4.2 Named Entity Recognition

Named Entity Recognition (NER) is the process of identifying (annotating) entities auto-

matically such as a name of a person, an organization or other custom entities from unstructured

text data. Named entity recognition is an important process that works in parallel with NLP

techniques in the field of Information Extraction (IE) [11, 17, 18]. Research on NER is well

established with state-of-the-art techniques producing near-human accuracies in entity recog-

nition [19]. Based on the nature of the text content, techniques that use maximum entropy

[20], conditional random fields [21] or gazetteer [18] are used to annotate text. Ambiguities

are internally handled by these methods that involve the processing of context information

that are available in the text content. In tabular data, for instance, a cell with the content

1http://www.ark.cs.cmu.edu/TweetNLP/
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TABLE II

WIDELY OCCURRING POS TAGS IN TABULAR DATA

POS Tag Description

NN Noun (singular)

NNS Noun (plural)

NNP Proper noun (singular)

NNPS Proper noun (plural)

RB Adverb

RBR Adverb (comparative)

RBS Adverb (superlative)

JJ Adjective

JJR Adjective (comparative)

JJS Adjective (superlative)

TO to

IN Preposition or subordinating conjuction

VB* All forms of verbs

Washington may be recognized as a Location and also a Person. While the context informa-

tion would be available in an unstrcutured text such has Washington is the 13th populous state

in United States., the same context may be present in data columns, table caption or even

in other metadata that may be present outside a table. Obtaining this information is highly

challenging especially for the tables that contain statistical data. To apply NER on tables, we

combine traditional NER (Stanford NER1) with custom dictionaries to annotate entities within

the tables.

1http://nlp.stanford.edu/software/CRF-NER.shtml
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Figure 5. Table annotation pipeline

4.3 Annotation Pipeline

In this section, we describe different components of annotation pipeline (See Figure 5) that

can automatically identify several features by leveraging NLP and NER techniques. A feature

is defined as the smallest information unit that is present within the cells. Because of the

heterogeneity (as discussed in Chapter 2), one cell may contain more than one feature creating a

fuzzy metadata. The annotation pipeline consits of a pre-processing unit, a set of feature taggers

and a post-processing unit. We will use our running example shown in Table III throughout

this section to explain different components. In the following subsections, we describe various

features, provide a methodological overview to identify them and introduce our annotation

algorithm.
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TABLE III

TABLE A: WATER INFORMATION RECORDED AT WATER STATIONS IN THE U.S.

Water Temperature Average
Precipita-
tion

Maximum
water level

Recent (F) Oct 16-31,
2013

Nov, 2013
(F)

Mar-Nov
(in), 2013

Reedy Point, DE 34.3
(01/31/2014
20:54 UTC)

59 F 52 38.6 12 ft

Annapolis, MD 30.7
(01/31/2014
20:54 UTC)

60 F – 33.65 14

La Grange N/A 58 57 13.2 ft

Talcony-Palmyra
Bridgy NJ

32.1
(01/31/2014
20:54 UTC)

62 57 42.6 12.3

4.3.1 Preprocessing

Every cell content is preprocessed before it is sent to other components. We perform basic

string cleaning such as the removal of :,’s, “,‘ and non ASCII characters. We retain characters

such as (, ), ˆ to be used with NER and other components in the pipeline. For instance,

Acronym Tagger uses () to identify the acronyms. We also split the node content using , and ;.

The split content behaves as a new node content throughout the pipelien. For instance, a node

content New York, NY will be split into two different strings New York and NY. However,
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provenance information is retained that will be used while constructing the annotation graph

(discussed in Section 6). We apply Stanford CoreNLP parser on the cell content to collect

parser information such as POS tags. From this component, all noun phrases will be passed on

to rest of the components.

4.3.2 Feature Taggers

Feature Taggers are an important set of taggers in the annotation pipeline. They handle

several NLP and NER techniques to identify the features. The input to these taggers are the

preprocessed tokens which are noun phrases (NP). In this section, we will discuss in detail each

tagger, its corresponding dictionary (as applicable) and its role in the tabular data.

4.3.2.1 Concept

A concept forms the leading entity or talking entity in the entire table or a subset of the

table. In our example, there are three different concepts Water Temperature, Precipitation and

Water Level. These concepts doesn’t necessarily need to appear within a table. In certain cases,

a concept will be available only in only one of the header cell. However, this concept may be

applicable to the entire table. This situation often exists in tabular data such as annual report

and other forms of statistical data. For example, in Table IV, the only concept present in the

entire table is Merchandise Shipments. Other header cells such as Total, Exports and Imports

come under (or describe further) about Merchandise Shipments but they do not directly add

any meaning to their corresponding columns.

While the presence of these concepts are more common only in header cells, there are

scenarios where the concepts are present in the table caption (See Section 5). Almost, all of
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TABLE IV

SINGLE CONCEPT FOR THE ENTIRE TABLE

Merchandise Shipments Total Exports Imports

Canada 67,810 21,095 46,715

Mexico 85,604 25,348 60,256

these concepts are noun phrases whose constituents may be a noun singulars (NN) or noun

plurals (NNS) along with some type of modifiers as described in the next section.

4.3.2.2 Modifier

Modifier, as defined in English grammar1, is a word or set of words that add further meaning

to a concept. In order to identify them from tabular data, we look for some important POS tags

namely the adverbs (RB[RS]) and the adjectives (JJ[RS]). In our running example, the word

Recent is a modifier to the concept Water Temperature. Under the pretext of unstrcutured data,

the addition of adverbs to this list may seem irrelevant for describing a concept (a noun group).

However, this has been found valid for the tabular data. For instance, consider a header cell

labeled Frequently flying jets. The POS tags assigned for this caption is shown in Table V. We

now notice that the label Flying Jets is a concept that contain the modifier Frequently which

after stemming becomes Frequent.

1http://www.oxforddictionaries.com/us/words/grammar-a-z#modifier
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TABLE V

ADVERBS AS A MODIFIER TO THE CONCEPT

Frequently flying jets

RB VBG NNS

However, identifying these modifiers may not be accurate in several cases because of the

nature of the text content and the inability of a standard NLP parser to perform well on

tabular data. For instance, a cell content such as Water Temperature in Great lakes would

have the word Great tagged as an adjective (JJ). This is completely misleading. To resolve

such ambiguities, we give priority to entity recognition along with certain preprocessing in our

annotation algorithm (Refer Section 4.4).

4.3.2.3 Measurement Units and Symbols

This tagger is composed of a suite of dictionaries and pattern matching techniques. Standard

units such as mm, ft and celsius are annotated by creating a custom dictionary that is based on

the dictionary of units of measurements [22]. However, there are other symbolic representations

that define a meaning to the data such as > for greater than, < for less than and so on. To

deal with this, various matching mechanisms are used to identify units that go with values such

as Export (in billion dollars), (in dollars) and 12.4 (inches). The tagger will automatically

convert the values based on the described units. For example, a data cell with value 1.2 whose
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unit is identified as million dollars will convert the data cell to 1200000 and tag the unit as

dollars to it. For every unit/symbol annotation, appropriate description will be retained from

the dictionary. We compiled manually many such representations that are listed in Table VI.

Further, these units or symbols does not necessarily appear in the header cells. However,

because of the characteristics of a table, units that appear in a few of data cells in a column

may be applied to all cells of that column. Initial dictionary is created using the dictionary of

measurement units [22] as said earlier. The two main futuristic goals of annotating these units

and symbols is (a) to enable the conversion between different units using the semantic graph

that we will discuss in 6; (b) to semantically abstract the statistical data of a column.

TABLE VI

SYMBOLIC REPRESENTATIONS AND THEIR DESCRIPTIONS

Symbol template Description Presence

< Less than Header or Data cell

> Greater than Header or Data cell

+/- Approximately Data cell

+/- {value} Error of Header cell

(-) Has negative value Header cell

% Percentage Anywhere

$ Dollars Anywhere

in million multiply column values Header cell

in billion multiple column values Header cell

{value1}-{value2} Range Anywhere
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4.3.2.4 Uncertainty

Uncertainty or missing data is an issue in almost every table. Some data cells may be

empty that should not be misrepresented with a value of 0. It is important to recognize such

cell content to abstract its accurate meaning automatically. Some commonly occurring content

are NA, –, 0, * and Not available. In certain special situations, it is also possible to predict the

missing data. For example, if all of the cells in a data column has the a timestamp A except

one (which is empty), then there is more probability that the same timestamp A can be used

for the empty column. But, this assumption may not be valid for other types of data columns

(such as Average rainfall) and we mark them as NULL by default.

4.3.2.5 Spatial and Temporal

Any information available on the web are described using three important dimensions –

Spatial, Temporal and Thematic [23]. In this section, we will discuss about the techniques

involved in the identification and representation of spatial and temporal information present in

the tables. We will also discuss about pattern matching and other NER techniques that are to

identify and curate such information.

4.3.3 Spatial

Tables may contain geographic information in a data column that may or may not have

appropriate header in its header cell. For instance, in our running example, Reedy Point, DE,

Annapolis, MD are locations. However, they don’t have a proper header that describes them

(1) as locations; (2) as location of type Water station. Thus, we see that there are two im-

portant issues to focus on – identification of spatial data in a table and recognizing the type
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Figure 6. Disambiguation in Geocoding

of spatial data. The former can be further extended to the assignment of spatial coordinates

such as Latitude and Longitude. This process of assigning the apposite geographic coordinates

is referred to as geocoding [9]. Geocoding is also called as GeoTagging when dealing with media

inputs such as images, videos or audios [24].

4.3.3.1 Spatial Identification.

The challenges in spatial identification arises when multiple spatial context are present in

a single cell as shown in our running example (the first column containing two types of spatial
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information – city and state). In order to identify a spatial column, we first preprocess the cell

content and perform named entity recognition on the header cells using a custom dictionary.

This dictionary is created using the description of feature codes from GeoNames1. They also

contain words such as territory, bay, aqueduct, lakes and battlefield. If the headers are as clear

as these words, we finalize the type of spatial data in that column. Unfortunately, such clear

headers are not so common. To resolve this, we use the complete GeoNames Gazetteer Data2

to perform entity recognition on randomly sampled data cells. We do this entire process only

on proper nouns (NNP[S]). While it is in fact true, as claimed earlier, that parser performs well

only on a well phrased sentence, these less accurate POS tags still helps us to separate location

data from the rest. For example, a flight status table may contain a Status column with words

such as “Delayed” or “On time” in the data cells. This column can be easily eliminated as it

would be annotated as a verb tense (VBP) and a preposition followed by a noun (PP NN),

respectively.

4.3.3.2 Geocoding.

While spatial identification helps to confirm that a particular text content is indeed a loca-

tion (place name), geocoding helps to identify the geographic coordinates (latitude/longitude)

of it after considering ambiguous place names. For instance, there are more than fifteen places

with the name “Lincoln Park”. Some are parks, some are cities and some are small neigh-

1http://www.geonames.org/export/codes.html

2http://download.geonames.org/export/dump/
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Algorithm 1: SpatialDisambiguationMatcher

begin
G←− List of GeoContext for each ambiguous place name (la)
t←− TableContext with unambiguous place name (lu), if available
D1 ←− Custom geo dictionary
D2 ←− WordNet
L←− φ (disambiguated place name)
Θ←−Similarity threshold
Update G and t with definitions from D1 and D2 after removing stopwords
for i = 1 to sizeOf(G) do

Compute sim(Gli, t)

if t contains lu then
ld ←− closest location to lu
if sim(Gli=ld , t)>Θ then

L←− ld
if L == φ then

L←− location in max(sim(G, t))

borhoods within cities. Thus, in a table containing list of parks in Chicago, a data cell with

the value “Lincoln Park” must be identified as the location of type “Park” and that park is

in fact the one in Chicago. Geocoding is a wide research area that is still open for improve-

ments [25, 26, 27, 28]. In this thesis, we propose a hybrid disambiguation approach using the

Euclidean distance as well as the context information.

Approach. As Tobler’s first law states that “Everything is related to everything else, but

near things are more related than distant things” [29], distance becomes an important metric in

disambiguation. Further, in order to get additional evidence to disambiguate, context informa-

tion is necessary. We produce two different kinds of context – GeoContext and TableContext.

We use the complete GeoNames Gazetteer Data as discussed in the previous section. For each
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location, we obtain the latitude/longitude coordinates along with the corresponding feature

class (e.g., park, county, neighborhood or mountain), which forms the Geo-Context.

TableContext is a list of concepts so far identified. For better performance, geocoding is

always performed as a last step. We build a custom matching algorithm called SpatialDis-

ambiguationMatcher (SpatialDM) (See Algorithm 1) into AgreementMaker ontology matching

system, which is extensible [30]. This algorithm combines the modified version of Base Simi-

larity Matcher [31] and the Distance Metric. An example disambiguation process for “Lincoln

Park” is illustrated in Figure 6. In a distance metric, the blue point indicates the unambiguous

location and the thick red line indicates the shortest distance.

Algorithm 2: BuildAnnotationProfile

Data: Ts
Result: T ′s
begin

forall the data of Ts do
content←− Content(data)
annotate content using annotation pipeline
update T ′s with annotations (Ac, Am, At, Au, Av, An)

for L ∈ annotated lists in leafnodes do
Ul ←− RandomSample(L)
annotate Ul using annotation pipeline
update Ul with annotations (Ac, Am, At, Au, Av, An)
for Ax ∈ {Au, At,Al} do

let li be an annotated element in set Ul

Ax(L) = arg maxAx
Pr { l1,l2,. . . ,ln|Ax}

update T ′s
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4.3.4 Temporal

Temporal tagger is responsible for the identification of temporal information represented in

complex ways. We build a custom dictionary to identify and translate such text into a temporal

data. Because of the nature of semi-structured data, we do not employ temporal normalization

techniques [32] that are applied for unstructured text. For instance, it is rare to find relative

temporal phrases such as tomorrow or last week. However, we use custom templates to identify

ranges (e.g., Oct 15-26), time formats (e.g., UTC, GMT) and other commonly occuring phrases

in tables. Besides the table, multiple temporal information may be present in other places such

as table caption. In such cases, we retain both of them without resolving conflicts. This is

further discussed in Chapter 5.

4.4 Annotation Profile

In this section we will discuss an algorithm to build an annotation profile using the anno-

tation pipeline. Algorithm 2 is performed on the tree Ts. In the first phase, the entire tabular

data is sent through the annotation pipeline to identify the appropriate annotations. Then, a

set of randomly sampled element in the annotated lists (the data cells) of each leaf node in

T ′s is used to further update the nodes with the most probable annotation that may apply to

entire list. For instance, in our running example, we see that the units are present only in

some elements in the lists although that can be applied to all the elements. This second phase

of the algorithm updates the origin leaf node with the annotation Au (a unit) along with the

respective unit information. However, we limit this update only for Au and Al and At.
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Figure 7. Annotation Profile

The complete annotation profile (T ′s ) for our running example is shown in Figure 7. The

annotations in bold are those identified using the data cells. We also find two Location anno-

tations – state and city – in the first column. Further, each annotation will retain the original

content of the cell as well as the annotation description. These will be used for the construction

of the semantic graph (See Chapter 6).



CHAPTER 5

CAPTION ANNOTATION

Table captions contain critical metadata that describes a table in its entirety. Sometimes,

the table may become meaningless without a caption. For instance, consider an example shown

in Table VII that contain some important information related to water levels and water stations.

But when the table alone is isolated from other metadata, we find that the terms Station and

Level are completely obscure. Unless the system understands the caption Table A: Water levels

measured at water stations in Illinois, the data within it is only comprehensible by humans.

TABLE VII

TABLE A: WATER LEVELS MEASURED AT WATER STATIONS IN ILLINOIS

Station Level (ft)

Brook, IL 23.4

Niles, IL 19.8

5.1 Characteristics

Table caption contain short phrases thereby making every word important. Unfortunately,

they may not be a well phrased English sentences that can take a complete advantage of an

NLP parser. However, we still use it mainly to identify its constituents and later resolve their

30
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types in different ways. Another biggest challenge is present in the handling of table captions

presented in title case (first letter of every word capitalized) similar to that of news headlines.

This is a major obstacle to the NLP parser which does not allow proper identification of POS

tags. The result of parsing such caption is shown in Table Table VIII. We see that the any

word that starts with an upper case has been identified as Proper Noun (NNP) except for some

unambiguous words such as At and In. Changing the complete string in to lower case will not

work if it has a proper noun such as Illinois. Besides, the caption may also contain unwanted

phrases such as This table is about or Table A:. To abstract semantics from these phrases,

careful preprocessing is necessary before it can be sent to a parser.

TABLE VIII

EFFECT OF TITLE CASE IN TABLE CAPTION

Water Levels Measured At Water Stations In Illinois
NNP NNP VBN IN NNP NNPS IN NNP

Water levels measured at water stations in Illinois
NNP NNS VBN IN NN NNS IN NNP

5.2 Preprocessing

In this section, we will look into some important preprocessing methods applied to table

captions.
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5.2.1 Title case

The preliminary focus was on finding a fix to the title case (placement of initial capital

letters in all words of a title). We first perform an initial parse to classify the title of this type.

After identifying a title case content, we use WordNet vocabulary (only nouns and verbs) to

change the case except for the word that is present in the beginning and the word that appear

after semi-colons (;). This process helps in correcting most of the common words. A similar

fix was also presented for correcting the news headlines [33, 34].

5.2.2 Case refinement

Like the news headlines, most of the table captions contain one or more proper nouns (place

names or organizations). However, some words may still be in an improper case thus taggers

that use models (such as Stanford NER) do not perform accurately. To fix this, we perform

gazetteer based NER to identify them at different levels:

Location. Locations are annotated using the spatial tagger used for the table annotations

(Refer 4.3.2). Once a location has been identified, the caption is replaced with the case

specific place name with proper case.

Ohter proper nouns. We use a dictionary of rdf:labels created using DBpedia [35] filtered by

the rdf:type as dbpedia-owl:Person and dbpedia-owl:Organisation. This dictionary would

also retain DBpedia resource URI for future use in entity linking (6). The annotated

entities are replaced with their exact label.
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The table caption after this stage free from ambiguous words. This will be used for the

caption annotation (Section 5.3) and semantic graph construction (Chapter 6).

5.3 Caption Annotation

The caption is annotated using the pipeline discussed in 4.3. Along with those six types

of annotations, we also retain POS tags as another layer of annotation to the entire caption.

However, the identified annotation at this stage need not be accurate because of the nature of

the content. For example, consider the caption discussed already in Table VIII. Our annotation

pipeline detects “NN[S]” as concepts. Thus, from this caption, we will get levels, water and

stations as captions whereas the correct concept hierarchy should link water stations and levels.

We will see this process of meaningfully extracting and linking concepts in the next chapter.



CHAPTER 6

SEMANTIC GRAPH

Previous chapters covered various methods to identify complex metadata and data within

the tables. However, in order to use them, the data needs to be semantically organized and

modeled such that the resulting representation is able to provide a semantic description to

them. In this chapter, we will introduce semantic graph and explain the methods to build it

from the tabular data (Section 6.1). We will then discuss about an example graph created out

of a table (Section 6.2) and about various other practical scenarios in the field of semantic web

(Section Chapter 7.2.5).

6.1 Semantic Graph

We describe a graph as a semantic graph if it has the ability to provide semantic information

about any tiny piece of data. For example, let us consider a fully annotated table and caption

for our running example on Table III as discussed earlier. If we take out one single data cell from

it, say the cell containing 60 F, then the graph should assist in creating a description such as

“The water temperature at Annapolis water station in the state of Maryland for the time period

10-16-2013 to 10-31-2013 is 60 Fahrenheit.”. This is possible by creating a simple ontology

that has hasA relationships between every pair of nodes as shown in Figure 8. However, more

complex ontology can be created depending on the purpose. Thus, we focus on creating a

generic triple representation for each cell of a table as described below.

34
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Spatial

Concept

Modifier Value

Temporal

Unit

Temporal
Range

Figure 8. A simple ontology with hasA relationships

6.1.1 Triple Representation

In semantic web terminology, a triple is a subject-predicate-object expression that helps in

the creation of statements. Subject denotes a resource (a “thing”), predicate may describe some

property of the resource and create a relationship between a subject and an object, and object

containing a value for the subject that may in turn be another resource. Thus, an object in one

triple may become a subject for another thereby creating links between the resources. This can

be realized from the illustration shown in Figure 9. These triples can be represented in Resource

Description Framework (RDF), a widely used semantic web format. Other applications of these

formats are discussed in Chapter 7.2.5.
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dbpedia:owl:River   rdfs:subClassOf     dbpedia-owl:Stream
dbpedia:owl:Canal   rdfs:subClassOf     dbpedia-owl:Stream

dbpedia:owl:Stream   rdfs:subClassOf     dbpedia-owl:BodyOfWater

River

Canal

Stream BodyOfWater

subClassOf

subClassOf

subClassOf

Figure 9. Triples as a graph

6.1.2 Construction

In this section, we will explain methods to construct a semantic graph from the annotated

table graph profile T ′s and from the annotated table caption.

6.1.2.1 Table Graph

We describe two important steps in order to construct a semantic graph from the annotation

profile of a table graph – Hierarchy Extraction and Linkage.

Hierarchy Extraction. The refined header cells of the graph T ′s holds important metadata

while retaining the original organization of the table. This allows us to extract the initial

hierarchy. This hierarchy does not necessarily have to provide a meaningful ontology. For

example, we cannot blindly create a sub class relationship between the parent and the child

nodes of the graph. This can be realized by looking again at the annotation profile shown
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TABLE IX

TABLE GRAPH - LINKAGE

No. Rule Triple

1 ConceptP −→ ConceptC ConceptC typeOf ConceptP
2 Concept ←→ Unit Concept hasUnit Unit

3 Concept ←→ Temporal Concept hasTemporal Temporal

4 Concept ←→ TemporalRange Concept hasTemporalRange TemporalRange

5 Concept ←→ Modifier Concept hasModifier Modifier

6 ConceptP −→ SpatialC SpatialC hasConcept ConceptP
7 ConceptC −→ SpatialP SpatialP hasConcept ConceptC
8# SpatialP −→ SpatialC SpatialC hasConcept Concept

9# TemporalP −→ TemporalC Concept hasTemporal TemporalC+TemporalP
10# Spatial ←→ Concept Spatial isA Concept

11 Value ←→ * Concept hasV alue Value
# The concept will be extracted from the table caption (See 6.1.2.2)

in Figure 7 where we notice that the concept Water Temperature cannot make a sub class

relationship with either the modifier Recent or the unit Fahrenheit. However, we can create

a HasA relationship. We refer to this process of creating a proper semantic relationship as

Linkage which is described below.

Linkage. After analyzing a considerable number of complex tables, we created a list of co-

occurrence rules as shown in Table IX. The −→ indicates the parent to child connection between

two nodes and the ←→ represents simple co-occurrence which can occur even within a single

node. The subscripts P and C indicates parent and child, respectively. Let us take a look at an

example that satisfies rule 9 as shown in Figure 10. If we assume that a concept Rainfall has
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1994

Jan Feb Mar

Figure 10. Structural Linkage

been identified from a table caption, this rule will create three triples as Rainfall hasTemporal

<T1>, Rainfall hasTemporal <T2> and Rainfall hasTemporal <T3>. The < and > indicates

that the resources T1, T2 and T3 contain the integrated information with the month and year.

For instance, T1 will contain data from both parent and child node – 1994 (year) and January

(month) – respectively. Further, if there was a value in the data cell, then that value will be

linked to the corresponding triple as per rule 11.

6.1.2.2 Table Caption

In this section, we will look into the construction of the hierarchy from the table caption.

Using the methods discussed in Chapter 5, we obtain an annotated table caption containing

different semantic components. We will refine them further in three different steps. In the first

step, we focus on extracting the concept (AC) information from the caption. To do this, we

parse the content with the Stanford parser to extract the parse tree. Then, we separate NPs

that only contain the following POS tags: NN, NNS or NNP. These separate units will then

become a concept. Let us look at an example parse tree for a caption as shown below:

(ROOT
(S
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(NP (NNP Water ) (NNS l e v e l s ) )
(VP (VBD measured )

(PP ( IN at )
(NP (NN water ) (NNS s t a t i o n s ) ) )

(PP ( IN in )
(NP (NNP I l l i n o i s ) ) ) )

( . . ) ) )

From this tree, we obtain two noun phrases – Water levels and water stations – as potential

concepts. The next two important steps are Linkage and Hierarchy Extraction similar to the

one discussed in Section 6.1.2.1. Unlike the table graph where the initial structure is available,

table caption doesn’t maintain any structure. Thus, we we first perform linkage to semantically

reduce the number of independent units and then apply methods to construct an ontology.

TABLE X

TABLE CAPTION - LINKAGE

No Rule Triple/Method

1 AM ⇒ AC AC hasModifier AM

2 AM → AV ⇒ AC AM hasV alue CD/{*}
AC hasModifier AM

3 AM1 → AM2 → AC AC hasModifier AM1

AC hasModifier AM2

4 AT1 ⇒ TO/{to} → AT2 Create TemporalRange
between AT1 and AT2

5 AM1 ⇒ AM2 Merge AM1 and AM2

→ is followed by; ⇒ is immediately followed by; POS Tag/{word}
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TABLE XI

EXAMPLE - TABLE CAPTION LINKAGE

Caption Daily river reports for central and lower north coasts

Annotations AM AC IN AM CC AM AC

Position 1 2 3 4 5 6 7

Linkage. We perform linkage by defining cooccurrence rules between POS tags and the anno-

tations. The list of rules is given in Table X. Let us look at an example caption Daily river

reports: central and lower north coasts. The annotation we obtain is shown in Table XI. Using

rule 1, we can combine the annotations at position 1 and 2. Using rule 3, we can combine the

modifiers at position 4 and 6 with the concept at position 7.

TABLE XII

TABLE CAPTION - HIERARCHY

No Rule Triple/Method

1 AC1 ⇒ CC/* ⇒ AC2 TABLE hasConcept AC1 ; TABLE hasConcept AC2

2 AC1 → IN/{in,for,at} → AC2 AC2 hasConcept AC1

3 AC1 → IN/{with} → AC2 Create description for AC1 with AC2

4 AC1 → IN/of → AC2 AC1 7→ AC2

→ is followed by; ⇒ is immediately followed by; 7→ simple directed edge; POS Tag/{word}
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Hierarchy Extraction. We use a similar set of rules to extract the hierarchy from the

caption. The list of rules is listed in Table XII. The rules are based on frequently occuring POS

tag/word pair in table captions. Let use the same table caption used for demonstrating Link-

age here. Since hierarchy extraction uses the output of Linkage, we have two concepts namely

“River reports” (linked with Daily) and “North coasts” (linked with central and lower). The

resulting caption would now satisfy rule 2 which places “North coasts” (AC2) as a parent node

linking to “River reports” (AC1).

The end result of this process is visualized in Figure 11. We can see the parent concept is

River Reports which is known to describe the entire table. For uncertain or unknown header

cell, this concept would be used as a predicted value. Further, the methods discussed above

would be, sometimes, suitable for the content of a data cell. For instance, a typical census data

would contain columns such as Total families with own children or Number of people who are

16+ years old and these cell values may be seen as a table caption.

6.2 Example

We will discuss the semantic graph (See Figure 12) created automatically for our running

example shown in Table III. The subgraph containing thick ovals indicates that they are ex-

tracted from the table caption. The hierarchy is generated using the rules discussed previously.

From this generic graph, we notice that each node is capable of providing a self description.

The main reason to keep this graph generic is to allow flexible semantic modelling using seman-

tic web formats such as RDF. For instance, one might be interested to create a new semantic
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Figure 11. Table Caption - Semantic Graph

connection between Water stations and Water level by introducing a new class named SubCon-

cept that may hold several useful axioms1. In fact, there are different methods to create such

semantic connections automatically by using open data stores such as DBpedia2 and Wikipedia

[36]. Other potential uses are discussed in the next chapter.

1Axioms are formulas used in creating predicate logics that helps in reasoning. RDF/S vocabulary
contains several axioms to help in this process. Refer http://www.w3.org/TR/rdf-schema/

2http://dbpedia.org/
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CHAPTER 7

APPLICATIONS

The field of semantic web has shown an enormous growth in the recent years spanning over

different areas such as biomedical [38], geospatial [37], information extraction [39] and even for

publishing web content [40]. This is made possible mainly because of some of the powerful

semantic web format such as RDF that contain rich vocabulary to semantically represent data

from almost every domain. As discussed earlier, RDF data can easily be represented as triples.

These triples can be stored in triple stores such as Virtuoso[41] or Sesame[42] and can be

queried using the RDF query language called SPARQL[43]. In this chapter we will discuss

about the potential application of our semantic graph on a semantic web format named Data

Cube and on a semantic framework for Geospatial and temporal data Integration, Visualization

and Analytics (GIVA).

7.1 Data Cube

Several semantic web formats are being creating based on the RDF vocabulary to satisfy

specific domain needs. For instance, Data Cube1 is a semantic web format to represent a multi-

dimensional data. Similarly, stRDF and stSPARQL have been created to represent geospatial

Acknowledgement: Part of the work in this chapter is presented elsewhere [37].

1http://www.w3.org/TR/vocab-data-cube/
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data [44]. In this section, we will discuss Data Cube vocabulary because of its high relevancy

to the tabular data.

In the field of on-line analytical processing (OLAP), multi-dimensional data model is defined

as “a variation of the relational model that uses multidimensional structures to organize data

and express the relationships between data” [45]. Thus, we notice a close connection between the

data in our semantic graph and multi-dimensional data. This can be realized by visualizing our

running example (Table III) as a datacube having multiple spatial and temporal dimensions for

a single concept. However, for the representation of semantic relationships and the meaningful

hierarchy of our output graph, special vocabulary is necessary. Data Cube is one such RDF

vocabulary that has been added into the W3C recommendation. It has rich vocabulary such that

the statistical (multi-dimensional) data can be linked to other related data sets. Further, this

model is compatible with the ISO standard cube model for sharing and exchaning statistical

data called Statistical Data and Metadata eXchange (SDMX)1 that is widely used in many

organizations. The semantic graph can be used to create datasets using Data Cube in any

manner as required. Because the Data Cube has an extensive vocabulary, we will only look

into a few important features shown in Figure 13 to illustrate the usage of the graph.

qb:Observation A class to represent a single observation in the data cube.

1http://sdmx.org/

1http://www.w3.org/TR/vocab-data-cube
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Figure 13. Data Cube Key Features1

qb:measureType A property this is a generic measure dimension and indicates the type of

measure for a given observation (qb:Observation).

qb:MeasureProperty A class that holds the component properties which represent a value

in an observation (qb:Observation).

qb:concept A property to hold the concept that is being measured.

One could clearly observe terms such as qb:concept and qb:measureType to be same as a

concept and unit of the semantic graph, respectively. qb:MeasureProperty can be a Concept



47

 

Visualization & Analytics 

Application 

Spatio-Temporal 
Matching 

Ontology Extraction 

Data Translation 

 

H
yb

ri
d

 Q
u

er
y 

A
P

I 

Spatial 

DBMS 

Triple 

Store 

Data Extraction M
ac

h
in

e 
Le

ar
n

in
g 

Syntactic & Semantic 

Matching 

Figure 14. GIVA framework

combined with its modifier. Similarly, qb:Observation would be the value along with other

information linked to it.

7.2 GIVA

GIVA is the acronym for Geospatial and temporal data Integration, Visualization, and

Analytics. It is a semantic framework layered with different multifunctionality components.

See Figure 14. The key feature of GIVA is its capability to deal with the the heterogeneity

in geospatial data and their metadata. Some of the primary issues are (1) heterogeneous file

formats, both standardized (e.g., Shapefile, KML, MapInfo TAB) and non-standardized (e.g.,

semi-structured data and flat files); (2) lack of metadata and structural heterogeneity, which

stems from non-standardized file formats; (3) heterogeneity in spatial and temporal resolutions.



48

 

GIS Data 

Without Geographic Component 

Standardized Format Non-Standardized Format 

With Geographic Component 

 GML  SHP  KML  CSV  Table  ASC 

Figure 15. Hierarchy of spatial data types.

7.2.1 Data Extraction

Geospatial data is available on the web in a wide variety of formats, which can be system-

atically categorized as shown in Figure 15.

Standardized formats are those that are approved by OGC1 and implement its standards. A

geographic component present in these formats uses geodetic systems such as WGS84 that rep-

resent the geometric objects as, for example, polygons or polylines. Non-standardized formats

include structured data (e.g., flat-files), semi-structured data (e.g., HTML tables, spreadsheets)

and unstructured data (e.g., natural language content). The geographic component in these for-

mats appear as raw text that requires the application of geocoding as discussed in 4.3.3 in

order to uncover the geometric information. This Data Extraction component applies auto-

matic methods tailored for these data formats and extracts the data in a unified format to be

available for further processing by the components present in other layers.

1http://www.opengeospatial.org/standards/is
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7.2.2 Data Translation

The process of translating data from one file format to another is referred to as Data Trans-

lation. Proper abstraction of data formats is necessary for effective data integration [46]. In

order to create geospatial mappings between these geospatial data, they need to be translated

into a common spatial data format. One important issue with non-standardized formats, espe-

cially in semi-structured data, is to identify metadata such as column headers containing spatial

coordinates or time stamps. The annotation methods discussed in Chapter 4 and Chapter 5 has

the potential to assist in this process. For instance, it ensures that an unclear column header

(e.g., coord) that contains geospatial coordinates (e.g., -82.16, 37.49) will be correctly identified

as the column containing spatial coordinates and not mere numbers.

7.2.3 Ontology Extraction

The hierarchical characteristics of geospatial classification schemes can be modeled using a

part-of or is-a relationship [31]. This component would also assist in extracting ontologies from

relational tables, semi-structured data and structured data present in various sources. The

work presented in this thesis plays a major role towards developing this component.

7.2.4 Matching

The semantic integration of geospatial data requires the identification of relations among

concepts, properties, and data instances. This process, called ontology matching, uses syntactic

and semantic characteristics of the ontologies to produce a list of mappings. Because of the

organization of GIVA, this process also considers the spatial and temporal information while

identifying a mapping. Two components present in this layer are described below:
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7.2.4.1 Semantic Matching

One of the prominent characteristics of ontologies is the presence of heterogeneity in their

concept and structure. The mapping of such concepts among different ontologies requires

specialized mechanisms that considers both syntactic and semantic information. We use Agree-

mentMaker [30], a proven ontology matching system, that is capable of handling ontologies

extracted from XML and RDF sources. Query expansion is performed by using the mappings

produced by this tool [47]. Further, AgreementMaker uses machine learning techniques to assist

in automatically adjusting the mapping configuration for better precision and recall [48].

7.2.4.2 Spatio-Temporal Matching

Different geospatial data acquisition techniques introduce heterogeneity in spatial and tem-

poral resolution. For example, data about the statistics of people affected by influenza may be

recorded at a county level or at a city level. This problem is commonly referred to as Modifiable

Arial Unit Problem (MAUP) [49]. GIVA deals with this problem by partitioning the spatial

resolution into equal sized grids and by computing a weighted average. The size of a grid is

automatically selected using machine learning techniques which also takes uncertainty into ac-

count. Heterogeneity in temporal resolution is also solved in a similar fasion using the Hybrid

Query API. This spatio-temporal matching technique can be used for datasets about the same

concept, for example rainfall or about different concepts, GIVA also allows the user to define

a new dataset starting from datasets about different concepts. Suppose, for instance, that the

user wants to build a dataset about precipitation starting from two datasets about rainfall and
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snowfall. This can be achieved by adding the values of the two datasets and also by introducing

an uncertainty value.

7.2.5 Storage Systems and Application

The framework has two different types of storage systems. In order to store and index the

geographic information, a Spatial DBMS such as PostGIS1 can be used. A Triple Store is used

to store semantic information present in RDF or other semantic web formats. Virtuoso[50],

OWLIM [51] are few examples of triple store. In order to facilitate a semantic geospatial query,

a Hybrid Query API is used. The Application layer allows the installation of either web or

stand-alone application to communicate with other framework components for enhanced user

interaction. A sample web application based on GIVA framwork is shown in Figure 16.

To summarize, GIVA enables the following functionality:

• The Data Extraction and Data Translation components handle the heterogeneity problems

in geospatial file formats – standardized (e.g., GML, KML, SHP) and non-standardized

(flat files, spreadsheets and HTML tables).

• The Ontology Extraction works along the two components below it in order to create a

semantic web representation of data.

• Various spatial, temporal and metadata heterogeneities are handle by the two matching

components.

1http://postgis.net/



52

Figure 16. GIVA Application.

• The framework contains a hybrid data store and query API to coordinate between the

semantic data and geospatial data.

• An Application assists in querying the processed data and to perform Visualization and

Analytics.



CHAPTER 8

EXPERIMENTS

In this chapter, we discuss the datasets, experimental setup and evaluation of our approach

on complex tables.

8.1 Datasets

Since our focus is mainly on complex tables, we had to implement special techniques in

order to retrieve them from the web. This is because the previous work were focussed on

the extraction of tables that contain simple headers (See Chapter 9). Further, table search

applications such as Google Tables (See 8.1.3.1) do not provide complex tables. In this section,

we describe our approach to extract the complex tables from the web and also other test datasets

for comprehensive evaluation.

8.1.1 Complex Tables

A minimal list of web sites used for evaluation is listed in Appendix A. Among those sources,

we picked randomly 250 tables in such a way that each table originate from different domain.

Most of them contain statistical data or data that are published by government organizations.

Our first goal was to filter out unwanted tables from the web pages such as those discussed

in Section 2.1. To do this, we describe below a decision tree classifier incorporating different

features that are necessary to identify feature-rich tables.

53
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8.1.1.1 Decision Tree

We use 10 different table features as listed in Table XIII. The training data for this decision

tree model come form 100 heterogeneous sources that also include simple tables from Wikipedia1

and Google Fusion contributing to a total of 1000 tables. Complex tables for training data

include the spreadsheets that are converted to HTML. Since we focus on nested headers, we

use the number of colspan as a feature instead of rowspan. However, during manual labeling

of training data, the value for Presence of rowspan will always be false for a valid complex

table. Type similarity is measured to identify the similarity among the data present in different

columns. We do this by picking 10 rows through random sampling and dividing into two sets

of rows A and B. For each set, we concatenate the content present in the columns. Thus, each

set would contain a vector where index i contains the concatenated string corresponding to the

column index i. The similarity index Isim is computed as

Isim =
1

n

n∑
i=1

Ai.Bi

‖ Ai ‖‖ Bi ‖
, where n is the number of columns in a table.

We determine that the type similarity do exist (value is true) if the index is greater than 0.8

and does not exist (value is false) otherwise. All other features are straight forward analysis

on the tables.

8.1.2 Wikipedia tables

Wikipedia contains over a million relational tables that maintain clean structure, that is

tables with headers in the first row and data in the rest. According to Venetis et al. [52],

1http://www.wikipedia.org/
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TABLE XIII

DECISION TREE FEATURES FOR TABLE EXTRACTION.

Feature Value
Number of Columns Integer
Number of Rows Integer
Number of colspan Integer
Presence of <th> in first two rows True, False
Presence of rowspan True, False
Existence of type similarity on randomly sampled data rows True, False
Background color difference between the rows True, False
Font weight difference between the rows True, False
Number of <img> or <object> tags in tables cells S(1-3), M(4-10), L(>10)
Average number of characters in <th> rows S(5-10), M(11-20), L(>20)

S, M, L = Small, Medium, Large

67% of information from these tables has a corresponding resource in YAGO [53] ontology

thereby facilitating the process of linking open data more accurate. This is largely attributed

to the quality of information present in the tables. Further, because of Wikipedia’s wider

reception and participation in its crowdsourcing functionality, most of the information is up to

date which is also well organized. While it was required to use a machine learning technique for

extracting complex tables as discussed in 8.1.1, extracting tables from Wikipedia requires simple

parsing as their HTML layout and their style information is uniform in every page containing

table1. Thus tools such as Google Tables (Refer 8.1.3.1) would assist in fetching these tables.

Nevertheless, our machine learning model will also detect these tables without feeding any such

1As of 2014, Wikipedia’s table tag uses the class wikitable and the schema row contains th tag.
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layout information because of the way the model is trained. We extract 250 different Wikipedia

tables by searching keywords such as city, population, area etc..

8.1.3 Captions

Table captions are extracted using a HTML tag priority based method. First, the feature-

rich table location in a web page is identified using the machine learning method described in

previous section. Then, a reverse parsing is performed from the marked location to identify the

following prioritized HTML tags on first-come-first-serve basis:

1. <h1>

2. <h2>

3. <h3>

4. <b>

Since evaluation of table caption annotation and ontology modeling can be done independently

from tables (except during the existence of uncertainty in table headers), we create a separate

dataset for table caption using Google Tables for a comprehensive analysis on the performance

of our annotation approach.

8.1.3.1 Google Tables

Google Tables1 is an experimental research product that facilitate table searching. Users

enter keywords (similar to Google web search) and it delivers the list of web pages that contain

1https://research.google.com/tables
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related tables. However, these tables have simple and clear headers, that is, the tables have

single row with th tags. Because of this limitation, we use these results only to extract table

captions. We compile a list of keywords (See Table XIV) and extract 250 captions from the

tables reported by this tool.

TABLE XIV

KEYWORDS FOR TABLE SEARCH.

climate export list

water properties

temperature water flow

population rivers

sports animals

teams hazard list

list of cities plants

8.2 Evaluation

We evaluate our approach using the datasets described in previous section. For better

clarity, we evaluate each component independently and discuss their results.
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8.2.1 Table Annotation

Our table annotation approach using our annotation pipeline is evaluated on two datasets–

Complex tables and Wikipedia tables. Each dataset (250 tables) contained approximately 1200

– 1800 features (data cells and header cells).

TABLE XV

FEATURE DISTRIBUTION IN DATASETS.

Dataset Concept Modifier Temporal Unit Value Location Total

Complex
Tables

215 122 3324 266 655 145 1727

Wikipedia
Tables

128 60 458 40 389 216 1291

Gold standard. We create gold standard by manually annotating features on both of the

datasets. A detailed feature distribution is shown in Table XV.

Baseline. We use exact matching (ExMatch) as the baseline method for annotations. This

method extracts the entire content within a cell (data or header) and uses the taggers from our

annotation pipeline for entity recognition without using our algorithm. This method, however,

does basic preprocessing such as removal of citations ([a]).
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Metric. We use percentage accuracy of individual feature annotations to determine the quality

of our annotation method. A correct annotation is defined as the annotation exactly defined

by the gold standard. No partial score is given even in the case of combined annotations (e.g.,

Abraham Lincoln as two annotations – Abraham and Lincoln). This measure, thus, gives a

complete picture of the annotation quality.

TABLE XVI

PERCENTAGE ACCURACY OF TABLE ANNOTATION.

Dataset Approach Concept Modifier Temporal Unit Value Location

Complex
Tables

AnnPipe 86.5 95.9 69.75 94.7 100 85.5
ExMatch 30.2 11.4 38.7 48.8 52.6 57.9

Wikipedia
Tables

AnnPipe 97.6 93.3 97.3 85.0 98.9 96.3
ExMatch 76.5 90.0 89.5 45.0 93.8 91.6

The percentage accuracies of our annotation algorithm (Algorithm 2) and the baseline

method are reported in Table XVI. We clearly notice that the baseline method performs poorly

on complex tables but not on Wikipedia tables. The real challenge in Complex tables is the low

quality content and poor organization. However, we notice our algorithm performing better

in identifying most of the features. For example, Modifier, Unit and Value have an accuracy

greater than 95%. The low performance in identification of Location is attributed to several
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unwanted information present along with it. For instance, a table with only three data cells

contained a non-standard abbreviation of cities such as Alb, Chi and Temp (referring to Albany,

Chicago and Tempe). The same approach when applied on Wikipedia tables, performed well

in identifying almost every features. This is mainly because of the quality of these tables as

discussed in 8.1.2. The Temporal feature identification remained low in both approach because

of its complex representations [54].

8.2.2 Caption Annotation

The test data containing 250 captions are used to evaluate the caption annotation and its

ontology construction method. Table XVII reports the number of correct features identified

along with its accuracy (recall). The drop in the accuracy is because of the natural language

content. Although this evaluation used the same annotation pipeline used for Table Annotation,

the absence of algorithm such as BuildAnnotationProfile reduces the accuracy of Location,

Temporal and Value identification. Most of the errors in Location identification is attributed

to our limited size of gazetteer data used for Named Entity Recognition. If the dictionary is

refined further, the accuracy shall improve. Unit identification performed well in the captions.

However, out of the 250 captions, there were only 15 units mentioned in the captions such

as Water temperature in celsius. Values also remained less in captions. We often found the

performance being affected by the presence of values and temporal information. For instance,

dates being identified as values and vice-versa. We believe that refining the rules for identifying

temporal information would improve accuracies of both temporal and value identification.



61

TABLE XVII

PERCENTAGE ACCURACY OF CAPTION ANNOTATION.

Annotation Correct/Total Accuracy (%)

Concept 260/273 95.238

Modifier 175/180 97.222

Temporal 81/112 72.321

Unit 14/15 93.333

Value 70/80 87.5

Location 123/180 68.333

8.2.3 Semantic Graph

The ontology construction is evaluated by manually looking at the hierarchy created by our

methods. Rules discussed in Chapter 6 are taken as the base line. The application of these

rules by the system is manually checked against the 250 captions. The system applied 378

rules out of which 312 rules were correct giving us an accuracy of 82.53%. Similarly, using the

table structure and Annotation profile, we achieved 91%. We find this improvement is due to

the presence of the table structure. The annotation graph and few links identified are shown

in Figure 17.
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Figure 17. Annotation graph.



CHAPTER 9

RELATED WORK

Considerable work has been performed on the extraction of semantics from the tables [55,

56, 57, 58, 36, 59, 52] with a focus on generating semantic data. Venetis et al. [52] presented a

method to recover the semantics from tables using isA relationship and proposed methods to

assign appropriate labels for the table column headers. Knoblock et al. [56] propose a method

to publish linked open data by looking at the semantics of a well structured table (KEGG

pathway1 data sources) and allowing users to modify the model to further refine its semantic

description. Mulwad et al. [36] propose a framework to identify the type of a column header in

such a way that the entire table (matrix) is involved in resolving a label and type of a single cell

using a markov network. The semantic relevancy is computed using string matching algorithms

such as Levenstein edit distance.

All of these research have been performed on simple tables and those that contain single

feature per cell. These tables are equivalent to a table from a relational database. In such

cases, there always exists a isA relationship between the data present in one column and its

corresponding header. For instance, in a simple table shown in Figure 18, every cell has only

one feature and the relations can be directly extracted between a data cell and a header cell

using isA relations. Further, we also notice that the content of a header cell has a single fea-

ture (e.g., name or age as shown in Figure 18). This allows easy mapping of a header cell

1www.genome.jp/kegg/pathway.html
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to a concept in a linked open data such as DBpedia [35] or YAGO [53]. For instance, Viren-

dar Sehwag maps to the DBpedia resource http://dbpedia.org/page/Virender Sehwag, Batting

Style to the property http://dbpedia.org/property/batting and Bowling Style to the property

http://dbpedia.org/property/bowling. Even if a property doesn’t exist, defining labels is found

relatively easy such as creating a property for age. Automatic tools such as Triplify [55] and

D2R [57] have been developed to perform these operations. Unfortunately, not all tables, espe-

cially those that contain statistical data, are known to have simple and clean structures which

has been discussed in previous chapters.

Figure 18. Web Table with relational data.



CHAPTER 10

FUTURE WORK

Our approach towards representing highly complex tables creates a foundation for several

future improvements and functionality.

Semantic table search engine. Major search engines such as Google or Bing fail to search

within the tables as they are keyword based. While it has been reported in mid 2013 that

Google has implemented a hybrid search (Google Hummingbird algorithm) by combining

keyword and semantic techniques, they still work only on raw text data and not on

tables.1 Our semantic graph can be used in building up a semantic search engine on

tables. Applications on sophisticated question-answering systems such as IBM Watson

[38] can be developed using this semantic graph.

Semantic web format. While our work constructs a generic graph, it creates numerous pos-

sibilities to have it represented in a standard semantic web format that uses RDF/OWL.

For instance, Data Cube (discussed in 7.1) is an appropriate RDF vocabulary to represent

the generic graph with more properties and types. This enriches the semantics of table

which can further assist in advanced semantic web uses such as reasoning [60]. Because of

our modular annotation pipeline, additional features and taggers can be added to identify

more types.

1http://en.wikipedia.org/wiki/Google Hummingbird
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Annotation Quality. The quality of annotation is another important area to focus on. This

not only improves the annotation accuracy but also enhances the quality of semantic

graph indirectly. To achieve this, more tables from different domains should be analyzed

in order to add appropriate entries to the gazetteer for better functioning of NER built

within the Annotation Pipeline. Further, more dictionaries can be easily added to the

architecture to identify more features from the table. For instance, a new pattern can be

added to identify a new temporal imformation such as last week or this week.

Outside metadata. Metadata present around the tables may sometimes assist in better un-

derstanding of the table. For example, a column header may have a pinned or footnote

information, which can be present outside the table or at the end of the web page. While

we did not come across tables like this more often, this functionality would definitely help

in improving the table semantics.

Linking Open Data. The data represented in these semantic web formats can be linked to

data present in a different dataset such as DBpedia [35]. This process linking the semantic

data is commonly referred to as linking open data (LOD)1. While linking data from simple

tables are well studied [36, 59, 52], there are several challenges in linking statistical data

or data from complex tables to the concepts on the DBpedia or YAGO. For instance, a

whole column containing numeric values with its corresponding column header as a year

(such as 2009) will not have sufficient information to link to a concept from LOD database

1http://www.w3.org/wiki/SweoIG/TaskForces/CommunityProjects/LinkingOpenData
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using the approach described by Mulwad et al. [36] or Venetis et al. [52]. However, since

our approach has the ability to connect that column to a concept within the table, linking

can be done using our semantic graph.

Other related work that could further improve this research include the extraction of tables

[6, 61, 62], table processing [63, 64] and identification of the schema (header rows or columns)

from the tables [5].



CHAPTER 11

CONCLUSIONS

We introduced a novel approach to identifying different metadata present in semi-structured

(tabular) data by resolving three important heterogeneity (structural, conceptual and meta-

data). First, we introduced our Table annotation and Caption annotation methodologies that

can automatically identify different features present in a table. These methods use our Anno-

tation Pipeline to accurately annotate the features using various NER and NLP techniques. In

order to construct a semantic graph, we introduced an Annotation Profile and a list of ontology

construction rules based on it. We evaluated our annotation approach and semantic graph

construction rules on complex tables and Wikipedia extracted from the web using machine

learning techniques. We achieved an average accuracy of 89% on annotation approach and an

average accuracy of 86% on the construction of semantic graph. We also discussed the practical

application of the constructed semantic graph on Data Cube vocabulary and its appropriate fit

into our GIVA framework. We find that this approach towards processing semi-structured data

to assist in semantic data integration and also as a foundation for creating a semantic tabular

search engine.
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Appendix A

TABLE SOURCES

1. http://www.bls.gov/news.release/ximpim.nr0.htm

2. http://codex.wordpress.org/Backing Up Your Database

3. http://data.worldbank.org/indicator/IC.EXP.DOCS

4. http://en.wikipedia.org/wiki/Foreign trade of Argentina

5. http://export.farnell.com/

6. http://export.gov/

7. http://www.adobe.com/legal/compliance/export.html

8. http://www.bls.gov/news.release/archives/ximpim 02142014.htm

9. http://www.daff.gov.au//export/meat//meat-commodity-export-permit-requireme

10. http://www.deadiversion.usdoj.gov/imp exp/doc/

11. http://www.eia.gov/country/cab.cfm?fips=IR

12. http://www.geonames.org/export/codes.html

13. http://www.infoplease.com/ipa/A0104811.html

14. http://www.law.cornell.edu/uscode/text/22/chapter-39

15. http://www.metal-pages.com/resources/chinese-export-tariffs/

16. http://www.nirsoft.net/utils/dll export viewer.html
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Appendix A (Continued)

17. http://www.sba.gov/about-offices-content/1/2889/resources/14315

18. http://www.sba.gov/content/state-trade-and-export-promotion-step-fact-sheet

19. http://www.theguardian.com/news/datablog/2010/feb/24/uk-trade-exports-imports

20. http://www.unzco.com/basicguide/c11.html

21. https://groups.drupal.org/node/21338

22. http://apps.fas.usda.gov/export-sales/esrd1.html

23. http://www.nrc.gov/reading-rm/doc-collections/cfr/part110/full-text.html

24. https://www.federalregister.gov//revisions-to-the-export-administration-regulations

25. http://www.eia.gov/country/cab.cfm?fips=IR

26. https://www.ecb.europa.eu/mopo/eaec/trade/html/index.en.html

27. http://data.worldbank.org/indicator/LP.EXP.DURS.MD

28. https://www.library.ca.gov/CRB/97/10/crb97010.html

29. https://www.federalregister.gov//revisions-to-the-export-administration-regulations

30. http://endnote.com/en/online-databases

31. http://www.eia.gov/dnav/pet/pet move exp dc nus-z00 mbblpd a.htm

32. http://www.vandyke.com/download/export.html

33. http://www.for.gov.bc.ca/het/export.htm
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Appendix B

TABLE CAPTION

• Climate of 100 Selected U.S. Cities

• Water Levels

• U.S. ARMY CORPS OF ENGINEERS, ST. LOUIS DISTRICT, RIVER & RESERVOIR

DAILY REPORT

• Monitored Water Supply Reservoirs

• Index of Sites - Tides, Currents, and Water Levels

• All State Park Current Conditions

• List of Contaminants and their (MCLs)

• Daily Reservoir Storage Summary

• Table 1. Physical properties for solid cylinder unkowns.

• Lake dimensions

• Freshwater sources (top 15 countries)

• Perth dam locations

• White River Reservoir

• Short term and periodic changes

• Water levels
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Appendix B (Continued)

• Aquatic Life Criteria Table

• Table with minimum depths on the Maritime Danube

• Daily river reports: Central and Lower North Coasts

• Chronological Listing of Hudson River School Painters

• RB1: Embankment - Woolwich Arsenal

• RB2: Bankside - Embankment - Millbank - St George Wharf (Tate to Tate and St George

Wharf)

• RB3: London Bridge - Canary Wharf (for fares see route RB1)

• Oregon River Flows
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