
Power-efficient Distributed Computing and Data Processing in Wireless

Sensor Networks

by

Xi Xu
B.S. Jilin University, China, 2009

Thesis submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Electrical and Computer Engineering

in the Graduate College of the
University of Illinois at Chicago, 2015

Chicago, Illinois

Defense Committee:
Rashid Ansari, Co-Chair and Advisor
Milos Zefran
Ajay Kshemkalyani, Computer Science
Hulya Seferoglu
Ashfaq Khokhar, Co-Chair and Advisor, Illinois Institute of Technology

Copyright by

Xi Xu

2015

TABLE OF CONTENTS

CHAPTER PAGE

1 INTRODUCTION . 1
1.1 Introduction . 1
1.2 Dissertation Organization and Contributions 2

2 PARALLEL NONUNIFORM DISCRETE FOURIER TRANS-
FORM (P-NDFT) OVER RANDOM WIRELESS SENSOR NET-
WORKS . 7
2.1 Introduction . 7
2.2 Preliminaries . 10
2.2.1 Nonequispaced Discrete Fourier Transform 10
2.3 Parallel NDFT (P-NDFT) . 13
2.3.1 Network Architecture . 14
2.3.2 Local Interpolation Step of NDFT algorithm 14
2.3.3 Global FFT Implementation . 15
2.3.3.1 Prerequisite Step 1: First Stage of Decimation In Frequency

(DIF) FFT . 16
2.3.3.2 Prerequisite Step 2: Data Reorganization For Decimation In

Time (DIT) FFT . 18
2.3.3.3 Proposed Power Efficient FFT (PE-FFT) 19
2.4 P-NDFT Analysis . 22
2.5 Performance Appraisement . 30
2.5.1 Simulation Settings . 30
2.5.2 The Accuracy of Fourier Components 32
2.5.3 Energy Consumption . 33

3 POWER-EFFICIENT HIERARCHICAL DATA AGGREGATION
USING COMPRESSIVE SENSING IN WSNS 39
3.1 Introduction . 39
3.2 Related Work . 43
3.3 Preliminaries . 45
3.3.1 Compressive Sensing . 45
3.4 Proposed Data Aggregation Architecture 47
3.4.1 Model and Aggregation Process 47
3.5 Parameters Analysis . 53
3.5.1 The Amount of Data That Needs To Be Transmitted At One

Level . 53
3.5.2 The Total Amount of Data Transmitted 55

iii

TABLE OF CONTENTS (Continued)

CHAPTER PAGE

3.5.3 Data Compression Ratio . 57
3.5.4 Energy Consumption Model . 59
3.5.4.1 Single Node Energy Consumption Model 59
3.5.4.2 Data Processing Cost Analysis 60
3.5.4.3 Communication Cost Analysis 61
3.5.4.4 Total Energy in the Hierarchy 65
3.5.4.5 Energy Model Applied in the Hardware 68
3.6 Performance Evaluations . 70
3.6.1 Data Field . 70
3.6.2 Signal Sparse Basis . 70
3.6.3 Sensing Matrix . 71
3.6.4 CS Recovery Algorithm . 72
3.6.5 Simulation Settings . 74
3.6.6 Simulation Results . 76
3.6.6.1 Signal Recovery Performance . 76
3.6.6.2 Energy Consumption . 79
3.6.6.3 Other Related Issues Discussion 80

4 POWER-EFFICIENT NONUNIFORM 2-D FOURIER ANAL-
YSIS USING COMPRESSIVE SENSING IN WSNS 82
4.1 Introduction . 82
4.2 Related Work . 84
4.2.1 NDFT algorithm . 84
4.2.2 Global Separable 2D FFT Formulation 84
4.3 Proposed Power-efficient NDFT Implementation Design . . . 85
4.3.1 Initial Data Reduction Operation 86
4.3.2 Initial Data Shuffling Operation 86
4.3.3 Global Computation Operation 87
4.4 Comparison of Related Work and Current Work 90
4.4.1 Theoretical Analysis . 90
4.4.1.1 Data transmitted . 90
4.4.1.2 Energy consumption . 91
4.4.2 Performance Evaluation . 93

5 ADAPTIVE HIERARCHICAL DATA AGGREGATION USING
COMPRESSIVE SENSING (A-HDACS) FOR NON-SMOOTH
DATA FIELD . 98
5.1 Introduction . 98
5.2 Proposed Adaptive HDACS (A-HDACS) Scheme 100
5.3 Analysis of Data Field Sparsity 102
5.4 Performance Evaluation . 104
5.4.1 Simulation Settings . 104

iv

TABLE OF CONTENTS (Continued)

CHAPTER PAGE

5.4.2 The Nodes Distribution . 106
5.4.3 Data Recovery Fidelity . 108
5.4.4 Energy Consumption . 112

6 SPATIO-TEMPORAL HIERARCHICAL DATA AGGREGATION
USING COMPRESSIVE SENSING (ST-HDACS) 113
6.1 Introduction . 113
6.2 Spatio-Temporal Hierarchical Data Aggregation using Com-

pressive Sensing . 115
6.2.1 Problem Formulation . 115
6.2.1.1 Single-instant Data Collection 115
6.2.1.2 Data Collections Over A Period 116
6.2.2 Data Recovery . 119
6.2.2.1 Instantaneous Compressive Sensing Recovery 119
6.2.2.2 Latent Matrix Completion Recovery 120
6.3 Performance Evaluation . 121
6.3.1 Data Field . 121
6.3.2 Simulation Settings . 122
6.3.3 Simulation Results . 124
6.3.3.1 Data Collection Fidelity . 124
6.3.3.2 Energy Consumption . 127

7 CONCLUSION AND FUTURE WORK 129
7.1 Conclusion . 129
7.2 Future Work . 131

CITED LITERATURE . 133

VITA . 142

v

LIST OF TABLES

TABLE PAGE

I SIMULATION PARAMETERS . 31

II GLOBAL PARAMETERS DEFINITION 47

III CLUSTER-SPECIFIED && PARAMETERS DEFINITION 48

IV LEVEL-SPECIFIED PARAMETERS DEFINITION 48

V PARAMETERS DEFINITION . 100

vi

LIST OF FIGURES

FIGURE PAGE

1 An example of 32-point DIF FFT for the first 16 outputs at the first
stage, where the red dash line shows the data communication and black
dash line defines the area where the data owned by one sensor 17

2 Data reorganization follows 16 points structure in Figure 1(b), where
the red dash line shows the data communication 19

3 An example of 16 points FFT with different implementing structures:
where solid black lines represent butterfly communication and red dash
lines show data shuffling. 22

4 An example of the network hierarchy evolution from local interpolation
step of NDFT algorithm to global FFT implementation with 500 sensors 35

5 SNR . 36

6 Histogram of energy consumption for three FFT implementation schemes 37

7 Total energy consumption for all the nodes for three FFT implementa-
tion schemes . 38

8 Example of Different Data Aggregation Mechanisms 44

9 CS Random Projection . 46

10 CS Data Aggregation Architecture . 49

11 Theoretical results of energy consumptions in terms of communication
and computation cost . 69

12 Surface temperature data across the Pacific Ocean from 137 E to 95 W,
8N to 8S on April 22, 2014 . 74

13 Hierarchical Structure for Network Size 400 on SIDnet-SWANS platform 75

14 Signal Recovery Results for Real Datasets 76

vii

LIST OF FIGURES (Continued)

FIGURE PAGE

15 Signal Recovery Results for the Synthetic Datasets 77

16 Signal Recovery Results from Each Level 78

17 Transmission Energy Cost Distribution for Different Network Sizes . . . 78

18 Total Energy Consumption for Different Network Size 79

19 Transmission Energy Consumption Comparison 92

20 Simulated Execution Time Comparison 93

21 Distribution of transmission energy consumption comparison for 400
nodes with cluster size 4 . 95

22 Signal-to-noise ratio results . 96

23 Packet collision ratio comparison for 400 nodes 97

24 An example of a smooth data field with fluctuations and its correspond-
ing logical tree in HDACS and A-HDACS 105

25 Data Fields and their corresponding DCT Domain 107

26 The SIDnet simulation results of A-HDACS and HDACS with network
size 400: black nodes denote CS-enabled nodes, gray nodes denote CS-
disabled nodes, white nodes are the leaf nodes at level one, and red node
denotes the sink. 109

27 MSE versus DCT truncation threshold with network size 400 110

28 Data recovery mean square error (MSE) results 111

29 Total Transmission Energy Cost versus Different Network Sizes 112

30 Data Model . 116

31 The Sea Surface Temperature Data Field 122

32 Synthetic Data Fields . 123

33 Data Collection Fidelity . 125

viii

LIST OF FIGURES (Continued)

FIGURE PAGE

34 Total Amount of Energy Consumption versus Network Sizes For Differ-
ent Data Fields . 126

35 The Energy Consumption Ratio of Different Choices of λ < 1 over λ = 1
for Each Node in a 300-node Networks . 127

ix

LIST OF ABBREVIATIONS

WSNs Wireless Sensor Networks

NDFT Nonuniform Discrete Fourier Transform

CS Compressive Sensing

HDACS Hierarchical Data Aggregation using Compressive

Sensing

A-HDACS Adaptive Hierarchical Data Aggregation using Com-

pressive Sensing

ST-HDACS Spatial-Temporal Hierarchical Data Aggregation

using Compressive Sensing

x

SUMMARY

The concept of ubiquitous or pervasive computing (1) has exerted a tremendous influence

on the development of novel networks that incorporate a new paradigm of interactions be-

tween humans and the physical world. Wireless Sensor Networks (WSNs) (2) (3) enable such

interactions that are broadly applicable in many areas including: measurements of physical

phenomena (temperature, pressure, humidity, hazardous material); transportation (traffic con-

gestion, bridge structure) ; industrial control, assembly line control and diagnostics; and military

applications (task tracking, event detection). The sensors used in WSNs are usually severely

constrained in available energy while they may participate in energy-consuming tasks of data

communication, aggregation, and interpretation. Power efficiency is one of the key objective

that all data gathering and distributed computing tasks aim to achieve.

On the other hand, advances in semiconductor technology enables ever more computing

power for sensors. Clever utilization of the computational capability of sensors for in-network

processing is essential for reducing the communication cost caused by data transmission redun-

dancy in most WSN applications. It should be noted that compared with communication cost,

the cost of the computation is almost negligible. The objective in most applications hence is to

balance tradeoffs between computation and communication efficiency and the attendant power

dissipation. Recognizing this, our research targets strategies to achieve the valuable information

or data of interest over WSNs in a distributed fashion by factoring in the power efficiency.

xi

SUMMARY (Continued)

Towards this end, the focus of this thesis is mainly on the investigation of fundamental dis-

tributed computing and data processing tasks in WSNs. In particular we explore power efficient

solutions for well-known signal processing tasks such as data gathering and Fourier analysis.

We further investigate the adaptive use of compressive sensing to achieve better computation

and communication performance in such tasks. We first investigate efficient Fourier analysis of

data field based on the randomly distributed sensors in a network and propose to implement

Nonuniform DFT (NDFT) algorithm for the data measured from the field. We present a novel

structure to realize NDFT implemented on WSNs and also propose an original algorithm with

judicious design of computation and communication to reduce the required energy consumption

along the data routing path. In our next study, we investigate a power-aware data collection

scheme — Hierarchical Data Aggregation using Compressive Sensing (HDACS) for large scale

dense wireless sensor networks. We incorporate compressive sensing (CS) in a multi-level data

aggregation hierarchy to shrink data volume for transmission and demonstrate how it works

more efficiently and effectively when it is implemented in the hierarchical data gathering struc-

ture. We also explore the use of CS and HDACS for efficient and distributed/collaborative

computing of NDFT in WSNs. In contrast to the existing state of the art, the methods investi-

gated in this dissertation show significant improvement in terms of execution time, transmission

power efficiency, SNR and packet collision phenomenon. Most of the existing CS-based data

aggregation schemes for WSNs rely on the ideal assumption that data field are globally smooth,

thus they fail to work if the data field is non-smooth. We present an adaptive data aggregation

scheme referred to as Adaptive Hierarchical Data Aggregation using Compressive Sensing (A-

xii

SUMMARY (Continued)

HDACS) to perform data aggregation in non-smooth multimodal data fields. Finally, for the

spatio-temporal data fields, we observe that the existing power-efficient CS-based data aggre-

gation schemes for WSNs either remove data communication redundancy in the routing path

or remove the temporal data redundancy by lowering the sampling rate at each sensor. We

introduce Spatio-Temporal Hierarchical Data Aggregation scheme using Compressive Sensing

(ST-HDACS) to overcome these shortcomings. ST-HDACS simultaneously incorporates the

spatial and temporal data redundancies, and formulates the solution by taking advantage of

HDACS-based scheme as well as MC.

xiii

CHAPTER 1

INTRODUCTION

1.1 Introduction

Wireless sensor networks (2) (3) consisting of a large number of small, low-power, wireless

devices with sensing, computation, and communication capabilities offer an array of powerful

functionalities to sense the environment, and provide unprecedented opportunities for many

scientific disciplines to observe the physical world. Typical applications (e.g., environmental

monitoring, surveillance, tracking), usually result in very different network requirements and

communication patterns compared to other types of ad hoc network scenarios. The area of

communications and protocol design for sensor networks has been widely investigated and a

large body of work exists that aims to improve the protocols performance.

The limited availability of battery power in sensors and difficulty that exists in the re-

plenishment of the power resource has spurred research to design power-aware protocols and

algorithms for wireless sensor networks. The power consumption in a sensor node is mainly

attributed to sensing, communication, and data processing tasks. Numerous studies (4) (5)

have shown that transmission cost is significantly higher than computation cost. Developing

power-efficient solutions to reduce the required communication cost is therefore highly desirable.

Besides, although some work has been presented from the perspective of power efficient

WSN applications mainly dealing with the application layer of the network stack, there are still

1

2

many unexplored areas (2) (3). A key area that needs additional attention is the power-efficient

implementation of some fundamental tasks which are repeatedly performed within the sensor

networks, dealing with data aggregation, data analysis and processing, data implementation

and so on, etc. Since power efficiency as a critical index essentially determines the lifetime

of the network and has a huge impact on the performance of the application, it is important

to study WSN in implementing common processing tasks in a power-efficient manner for a

variety of applications and economize their required energy consumption. Based on all these

considerations, this dissertation studies power-efficient solutions for key data gathering and

analysis tasks and presents power efficient distributed/collaborative implementations of these

tasks in WSNs.

1.2 Dissertation Organization and Contributions

Chapter 2 addresses the problem of performing in-network distributed Fourier analysis of

non uniformly sensed field. Fourier analysis, an exemplar of distributed data communication

and processing task, is widely used in the signal processing field. Past work has presented

some energy-efficient in-network Fourier transform computation algorithms devised only for

uniformly sampled one-dimensional (1D) sensor data, which may not be directly extendable to

2D uniformly sampled grids. However, sensors are usually randomly distributed over a 2D plane

in practice. So the conventional two- dimensional Fast Fourier Transform (2D FFT) defined for

data sampled on uniform grids is not directly applicable in such environments. We address this

problem by designing a distributed hybrid structure consisting of local Nonequispaced Discrete

Fourier Transform (NDFT) and global FFT computation. First, NDFT method is applied in a

3

suitable choice of clusters to get the initial uniform Fourier coefficients with allowable estimation

error bounds. We investigated both classical linear and generalized interpolation methods to

compute NDFT coefficients within each cluster. A separable 2D FFT is performed over all

these clusters by employing our proposed energy-efficient 1D FFT computation that reduces

communication costs using a novel bit index mapping strategy for data exchanges between

sensors. The proposed techniques are implemented in a SIDnet-SWANS platform to investigate

the communication costs, execution time, and energy consumption. Our results demonstrate

reduced execution time and improved energy consumption when compared with existing work.

Recent research on energy-efficient data gathering in WSNs has explored the use of the

Compressive Sensing (CS) to parsimoniously represent the data. However, the performance of

CS-based data gathering methods has been limited since the approaches failed to take advantage

of judicious network configurations and effective CS-based data aggregation procedures. In

chapter 3, a novel Hierarchical Data Aggregation method using Compressive Sensing (HDACS)

is presented, which combines a hierarchical network configuration with CS. Our key idea is

to set multiple compression thresholds adaptively based on cluster sizes at different levels of

the data aggregation tree to optimize the amount of data transmitted. The advantages of

the proposed model in terms of the total amount of data transmitted and data compression

ratio are analytically verified. Moreover, we formulate a new energy model by factoring in

both processor and radio energy consumption into the cost, especially the computation cost

incurred in relatively complex algorithms. We also show that communication cost remains

dominant in data aggregation in the practical applications of large-scale networks. We use both

4

the real-world data and synthetic datasets to test CS-based data aggregation schemes on the

SIDnet-SWANS simulation platform. The simulation results demonstrate that the proposed

HDACS model guarantees accurate signal recovery performance. It also provides substantial

energy savings compared with existing methods.

Chapter 4 readdresses the problem of distributed computing of NDFT algorithm on WSNs

this time using compressive sensing. We leverage compressive sensing (CS) to reduce the amount

of data and global communication, thus allowing the use of a few random measurements to

adequately represent sparse signal. Our main idea is to organize 2D random deployment of

sensors into a hierarchy of clusters. A local interpolation step is performed in the clusters at

the lowest level to convert a nonuniform grid into a uniform grid. The global 2D Fast Fourier

Transform (FFT) is then implemented using a multi-resolution data aggregation architecture

and exploiting CS to reduce data transmission. Theoretical analysis as well as SIDnet-SWANS

based simulations demonstrate significant advantages of the proposed method over existing

state of the art, in terms of execution time, transmission energy efficiency, signal-to-noise ratio

and communication overhead.

Previous work in WSN has used CS under the assumption that data field is smooth with

negligible white Gaussian noise. In these schemes signal sparsity is estimated globally based

on the entire data field, which is then used to determine the CS parameters. In more realistic

scenarios, where data field may have regional fluctuations or it is piecewise smooth, existing

CS based data aggregation schemes yield poor compression efficiency. In order to take full

advantage of CS in WSNs, chapter 5 proposes an adaptive aggregation scheme referred to as

5

Adaptive Hierarchical Data Aggregation using Compressive Sensing (A- HDACS). The proposed

schemes dynamically determines sparsity values based on signal variations in local regions. We

prove that A-HDACS enables more sensor nodes to employ CS compared to the schemes that

do not adapt to the changing field. Also, the simulation results demonstrate improvement in

energy efficiency and accuracy in signal recovery.

In chapter 6, we observe that existing CS-based data aggregation methods can be catego-

rized as either those that apply CS spatially along the routing path to minimize the amount of

data to be communicated from multiple sensors, or those that seek to minimize the amount of

data by applying CS temporally at each sensor. A recently reported scheme that is described

as a Spatio-Temporal CS scheme randomly selects a subset of data but does not apply com-

pression in the routing path. In this chapter, we formulate a spatio-temporal data collection

model in WSNs and refer to it as Spatio-Temporal Hierarchical Data Aggregation using Com-

pressive Sensing (ST-HDACS).In the spatial domain, a multi-level hierarchy of several clusters

is formulated. At different levels of the data aggregation tree, multiple compression thresholds

are applied adaptively based on cluster sizes to compress the spatial data to be communicated

in the routing path, aiming at removing spatial data transmission redundancy. Additionally,

for each time snapshot of data collected in the network, a subset of nodes are randomly selected

and designated for data sensing and transmission. After performing data collection over a des-

ignated time period, a Matrix Completion (MC) problem is executed to recover the data for

the entire network over the full data collection period. As only a subset of nodes participate

the data aggregation for each data collection instance, the redundancy inherent in the tem-

6

poral data transmission is eliminated. The performance of the proposed method is evaluated

and it is demonstrated that ST-HDACS scheme reduces the amount of data for transmission

and improves the associated energy consumption more effectively than existing CS-based data

aggregation schemes.

CHAPTER 2

PARALLEL NONUNIFORM DISCRETE FOURIER TRANSFORM

(P-NDFT) OVER RANDOM WIRELESS SENSOR NETWORKS

2.1 Introduction

Fourier analysis is one of the most fundamental and essential data analysis method for ex-

tracting key features of data field. Since such operations may be performed repeatedly and

power efficiency is crucial for sensor network, it is imperative to economize on the energy dissi-

pated on such tasks. Chiasserini et al. (6) firstly investigated Fourier analysis on WSNs using

one-dimensional (1D) Fast Fourier Transform (FFT) implemented on sensors equally placed

and introduced a two-sensor redundancy-free butterfly computation pattern to remove compu-

tation redundancy. Based on his work, Cani et al. (7) presented a bit permutation function

on the binary representation of each sensor in the middle phase of FFT to reduce the total

distance for data communication. Although those techniques suggest a way of tackling FFT

implementation on WSNs, equispaced sensor placement on a straight line is not realistic in most

practical applications. In this chapter, we consider a more practical scenario: a large area is

monitored by arbitrary placed sensors and the information of interest is the data measured by

the sensors projected in the Fourier space. The effort represents the first attempt to investigate

the following problems.

1). How to implement Fourier analysis based on the observations from two-dimensional ran-

7

8

domly distributed sensor networks?

2). How to minimize the energy consumption especially in terms of communication cost?

A vast amount of research has been done to investigate Nonuniform DFT (NDFT) (8)

(9)(10) (11) as a fast implementation of multivariate DFT for nonequispaced data in the applied

and numerical mathematics. However it has never been examined in any application on WSNs.

According to the nonequispaced characteristic of data captured by sensors, we believe this study

is the first one presented to utilize NDFT algorithm to implement Fourier analysis on WSNs.

The key idea behind NDFT is to use interpolation to get an enlarged over-sampled uniform

data set from a given nonuniform data set and then compute the regular DFT. Note that for a

particular position needed to be interpolated, a limited amount of data nearby involved will be

enough to obtain Fourier components. This property motivates us to develop a novel hierarchical

approach to realize NDFT algorithm combining local interpolation in a predefined cluster with

global uniform DFT among clusters. Since global uniform DFT can be implemented in parallel

in a row-wise and column-wise fashion, we call our scheme as Parallel-NDFT (P-NDFT).

In the meantime, considering energy efficiency as the most crucial indicator of sensor net-

works especially in terms of the long-haul data communication cost, a power-efficient implemen-

tation of global uniform DFT computation is essentially important. Whereas some strategies

were presented in previous work (6) (7) these methods contribute very little for power saving

purpose. We notice that bit permutation function introduced in paper (7) to reduce the data

transmission distance only for one stage of FFT. This observation drives us to explore bit per-

9

ambulation function and we thereby propose a novel Power-efficient FFT (PE-FFT) for the

global uniform DFT implementation to optimize the data communication distance at the stage

level.

In summary, our contributions are multifold:

1. We formulate general framework for a realistic randomly placed sensor networks and

address collaborative in-network Fourier analysis on sensor networks.

2. Our work is the first effort to employ NDFT algorithm to implement Fourier analysis in

two-dimensional random distributed sensor networks with focus on communication.

3. We designed a original Parallel NDFT (P-NDFT) scheme, a hybrid structure consisting

of local interpolation step within a predefined cluster and global Fast Fourier Transform

(FFT), to implement NDFT algorithm in a distributed fashion.

4. In terms of global Fast Fourier Transform steps, based on the conventional FFT structure

and previous work in paper (7), we propose an effective and novel algorithm working on

the binary index of each sensors. With a little extra data shuffling cost, we essentially

reduce the required communication distance as well as its associated energy consumption.

We refer to this scheme as Power-efficient FFT (PE-FFT).

10

2.2 Preliminaries

2.2.1 Nonequispaced Discrete Fourier Transform

For a d dimension space, we define
∏d := [−1

2 ,
1
2)d, IN := {(N

∏⋂
Z)d}. For xk ∈

∏d, vj ∈

(N
∏

)d and fk ∈ C, a generalized discrete Fourier transform for a collection of nonequispaced

data (NDFT) is expressed as (8)(12)(13):

f(vj) =
∑
k∈IN

fke
−2πixkvj (j ∈ IM) (2.2.1)

For arbitrary nodes, the direct evaluations complexity is O(NdMd). If data is sampled

uniformly in both time and frequency space, i.e. xk := k
N (k ∈ IN) and vj := j(j ∈ IN), the

well-known Fast Fourier transform (FFT) can be employed to speed up the computation of

f(vj) and it reduces the arithmetical operations to O(Nd logN).

In this work, our major interest focuses on how to obtain uniform frequency components

from non-uniform time or spatial data, i.e. we need to find an effective way to implement the

formula:

h(k) :=
∑
j∈IN

fje
−2πikvj/N (k ∈ IM) (2.2.2)

Among several research results (9) (10) (11), various algorithms have been investigated

in paper (8) to compute formula (Equation 2.2.1), Let us first start with gridding algorithm.

11

Let g(x) :=
∑

j∈IN fjϕ(x + ωj), where ϕ is a one-periodic function with uniformly convergent

Fourier series. By taking Fourier coefficients on both sides, we obtain:

ck(g) =

∫
∏d

∑
j∈IN

fjϕ(x+ ωj)e
2πikxdx

=
∑
j∈IN

fje
−2πikwj

∫
∏d

ϕ(x+ ωj)e
2πik(x+ωj)dx

=
∑
j∈IN

fje
−2πikwjck(ϕ)

= h(k)ck(ϕ)

Where ck(ϕ) =
∫∏d ϕ(x)e2πikxdx. Therefore, h(k) can be obtained from ck(g) and ck(ϕ).

For computing ck(g),

ck(g) =

∫
∏d

∑
j∈IN

fjϕ(x+ ωj)e
2πikxdx

=
1

nd

∑
j∈IN

fj

∫
l∈{(n

∏
)d}
ϕ(ωj −

l

n
)e−2πikl/ndl

≈ 1

nd

∑
j∈IN

∑
l∈In

fjϕ(ωj −
l

n
)e−2πikl/n

In this formulation, an aliasing error is introduced from the step of applying discrete sum-

mation to approximate the integral. Furthermore, we replace ϕ by its truncated version ψ,

which introduces a truncation error. In summary, we approximate the Fourier coefficients of f

as:

h(k) =
1

ndck(ϕ)

∑
j∈IN

dωjne−m∑
l=bωjnc+m

fjψ(ωj −
l

n
)e−2πikl/n (2.2.3)

12

where m ∈ Z and it determines the truncation size. Comparing equation (Equation 2.2.2) with

equation (Equation 2.2.3), we get:

e−2πikvj/N ≈ 1

ndck(ϕ)

dωjne−m∑
l=bωjnc+m

ψ(ωj −
l

n
)e−2πikl/n (2.2.4)

The basic idea behind NDFT algorithm is that n equispaced samples, where n > N are first

obtained from N nonequispaced samples, and then uniform d-variate N−point Discrete Fourier

Transform (DFT) is computed from n equispaced data. Lastly, the outcome ck(g) is scaled by

the Fourier coefficients of the window function. The detailed steps are shown in Algorithm 1.

Algorithm 1 NDFT algorithm

Input: N ∈ N, δ > 1, n := δN,wj ∈
∏d, fk ∈ C (j, k ∈ IN). Define Jm,n(l) := {j ∈ IN : l − m ≤ nwj ≤

l +m} (m ∈ Z).
Step 1. Choose suitable window function ψ(.). Precompute its Fourier coefficients ck(ψ) (k ∈ IN).
Step 2. Set

g̃l :=
∑

j∈Jn,m(l)

fjψ(wj −
l

n
) (l ∈ In)

Step 3. Compute by d-variate FFT

c̃k(g) := n−d
∑
l∈In

g̃le
−2πikl/n (k ∈ IN)

Step 4. Compute

h̃(k) :=
ck(g)

ck(ψ)
(k ∈ IN)

.
Output: h̃(k) is the approximate Fourier coefficients of h(k).

13

Notice that step 2 of NDFT algorithm can be interpreted as an interpolation process, where

the application of a truncated window function localizes the associated given points for the

interpolated positions. This fact leads us to perform it in a local fashion so as to avoid the

long distance communication in WSNs. Besides, step 3 involves Discrete Fourier Transform

(DFT) for uniformly sampled data, which drives us to utilize FFT to speed up the computation

speed and in the meantime reduce the related data communication across the clusters. Based

on these observations, we design a novel distributed NDFT implementation scheme to realize

NDFT algorithm in WSNs, which is presented in the following sections.

2.3 Parallel NDFT (P-NDFT)

Based on the facts that 1). Our major attention is focused on improving power efficiency

especially for global implementation in terms of long distance communication, which consumes

the largest percentage of battery energy; 2). global implementation with respect to 2D FFT is

implemented in parallel in a row-wise and a column-wise 1D FFT separately, we refer to this

scheme as Parallel NDFT, abbreviated as P-NDFT, to implement NDFT algorithm in WSNs.

P-NDFT is designed on the basis of a novel hybrid structure consisting of local processing and

global fast Fourier implementation. Additionally, an original power-efficient FFT (PE-FFT)

structure is devised in the global FFT implementation step, which aims to shorten the total

global communication distance so as to reduce the related power consumption. We prove that

PE-FFT outperforms the traditional and other FFT configurations with the same target of

power efficiency shown in paper (7).

14

2.3.1 Network Architecture

In the local processing of P-NDFT, network architecture consists of one-layer clusters, which

are configured in a way that nodes within a pre-defined square space belong to one cluster. The

identical square space for each cluster ensures the whole coverage of the entire data field and no

overlap between any two clusters. In addition, each node within a cluster is assumed to be able

to communicate with each other directly, that is, all the nodes in the same cluster are within a

one-hop communication distance. Cluster heads can exchange information with cluster heads

in other clusters and its slave nodes talk to the other nodes beyond its cluster via the cluster

head.

During the global implementation, in order to balance the computation and communication

cost and to make sufficient usage of network computation capability, we define tile, a direct

division of a cluster with finer area, targeting at distributing the computation task among

nodes as many as possible. Each tile is required to include at least one sensor and we call it as

FFT node. FFT node will participate data communication in the global area.

In order to satisfy network architecture requirement and computation of N∗N points Fourier

coefficients, we need to place at least one node within tile, which is 1/N2 of the whole field.

This constraint can be realized when the sensors are deployed in the first place.

2.3.2 Local Interpolation Step of NDFT algorithm

Since an interpolation step in the NDFT algorithm involves a small amount of data located

in a limited area, it leads us to perform this step within a cluster. In the local processing,

cluster head takes charge in collecting data from its own descendent nodes. It is important to

15

note that data from neighboring clusters is also needed in order to improve the interpolation

accuracy and especially for the interpolated points close to the boundary of two cluster heads.

The interpolation step of NDFT algorithm expands the number of the data and maps them

to a uniform grid from a given smaller set of nonuniform data, in which a suitable choice of

window function plays a critical role in the control of associated errors.

The choice of window function: As we mentioned above, NDFT algorithm produces

aliasing error and truncation error. In order to keep them small, a periodic window function

ϕ should be well localized in time/spatial domain and frequency domain respectively. Several

window functions, such as Gaussian window, B-spline window, Sinc window, Kaiser-Bessel win-

dow are discussed and shown to have their aliasing error and truncation error in an acceptable

range under certain circumstances. In P-NDFT, we choose the Gaussian function as the most

fundamental and simple window function with desirable accuracy, as shown in paper (12) (14).

2.3.3 Global FFT Implementation

After uniform data are obtained from the local processing step, the problem has been

turned into the computation of a regular 2D DFT. Since 2D DFT can be implemented as a

separable row-wise and column-wise 1D FFT, we will only consider 1D FFT problem: n data

derived from interpolation step of NDFT algorithm to compute N -point FFT. In the following

implementation, we only consider the scenario when the length of a sequence of data for the

DFT computation is a power of 2 and α = 2, i.e. n = 2N .

Note that the numbers of the input and output data samples are different, FFT cannot be

directly utilized as the butterfly structure requires both data with the same sequence length.

16

Besides, we should consider how to retrieve Fourier coefficients when the entire distributed

computation task is finished. It is desirable that users can get the output in a sequential order

without struggling to figure the order of Fourier coefficients. Based on these considerations, we

propose a hybrid structure to tackle this problem by combining the first stage of Decimation

In Frequency (DIF) FFT with the entire Decimation In Time (DIT) FFT.

2.3.3.1 Prerequisite Step 1: First Stage of Decimation In Frequency (DIF) FFT

One property of DIF FFT is that after the first stage of the DFT computation, one half

of outputs contribute to computing the even components and the other half are for computing

the odd components of the Fourier coefficients, which are reflected in Formula (Equation 2.3.1)

and (Equation 2.3.2) . Here W tl
N = e−2πtl/N , W t

n = e−2πt/n and n = 2N :

X[2l] =

N−1∑
t=0

(x[t] + x[N + t])W tl
N (0 ≤ l ≤ N − 1) (2.3.1)

X[2l + 1] =
N−1∑
t=0

(x[t]− x[N + t])W t
nW

tl
N (0 ≤ l ≤ N − 1) (2.3.2)

We observe that the even and odd frequency components in the following stages of DIF

FFT can be independently computed. It is feasible to reduce the data size from n = 2N to N

and retrieve the partial Fourier coefficients from the original data. Suppose we want to get N

even frequency components of n original data. (Odd frequency components can be obtained

in the same way.) Directly applying DIF FFT structure into P-NDFT will narrow down the

following computation of FFT in a limited area involving only a small friction of sensors, which

17

(a) A traditional DIF FFT structure

(b) A proposed data transmission structure

Figure 1. An example of 32-point DIF FFT for the first 16 outputs at the first stage, where
the red dash line shows the data communication and black dash line defines the area where

the data owned by one sensor

fails to take full advantage of network computation capability. Therefore, we propose a new

data transmission structure to implement the first stage of DIF FFT. For n data, samples used

in computing the first step of DIF FFT, the newly designed structure transmits the data with

odd index l, where 0 ≤ l ≤ N − 1, to its butterfly partner. This is different from the first

stage of regular DIF FFT structure where each data sample with index l, where 0 ≤ l ≤ N − 1,

receives data from its butterfly parter with index m, where N ≤ m ≤ n. Figure 1(a) gives an

example of a 32-point traditional butterfly structure for the first 16 outputs at the first stage of

DIF FFT, where the red dash line shows the data communication and black dash line defines

the data owned by one sensor. The proposed data transmission structure is shown in Figure

1(b). As we can see, one sensor only owns one data, which we refer to them as FFT nodes and

all FFT nodes are evenly spread in the entire field.

18

In this step, cluster heads can work as proxy to shuffle data for FFT nodes. As cluster

heads own all the data from the interpolation step of NDFT algorithm and the destination of

data transmission is pre-designated, it is easier and more energy-efficient to bundle up all the

data that needs to be transmitted from one sensor than multiple sensors, After cluster heads

distribute the data to FFT nodes, the network hierarchy evolves from clusters into tile, in which

FFT nodes will participate to perform the global DIT FFT step.

2.3.3.2 Prerequisite Step 2: Data Reorganization For Decimation In Time (DIT)

FFT

When the network finishes the computation task, it is critical to examine how to build a

suitable channel for users to query frequency components outputs in a certain range. An ideal

scenario could be one in which each FFT node holds one 2D frequency component placed in

a sequential order. Recall that each data according to its location in FFT structure can be

represented as a binary representation < b1b2 . . . bT > with each bit in an ascending order,

where T = log2N is the total amount of stages for computing N -point DIT FFT. At the

final stage, the binary representation will be reversed, i. e. < bT . . . b2b1 > with each bit in a

descending order (15). It means that the input location is in bit-reversed order from that of

the original input. Therefore, to assure the sequential order of outputs, input data needs to be

reorganized in the first place to satisfy bit-reversed order condition between input and output

Figure 2 shows the data reorganization follows 16 points structure shown in Figure 1(b).

19

Figure 2. Data reorganization follows 16 points structure in Figure 1(b), where the red dash
line shows the data communication

2.3.3.3 Proposed Power Efficient FFT (PE-FFT)

Conventional FFT structure involves a great deal of long distance communication especially

when the total amount of stages increases and data transmission consumes the vast majority

of energy for a sensor than any other factors. To facilitate the power efficiency of FFT, we

propose a Power Efficient FFT (PE-FFT) by reducing the required total transmission cost, or

equivalently, reducing the total amount of transmission distance required in FFT.

Two permutation functions are introduced to work on the binary representation of each

node at each FFT stage. The basic idea is that by updating binary representation and data

shuffling at each stage, PE-FTT brings butterfly partners closer to each other. We know that

in the jth stage, where 1 ≤ j ≤ T , one complex multiplication is needed if bj = 1, and none

if bj = 0. Besides, we also define each FFT node with physical ID and logical ID, where

physical ID =< b1b2 . . . bT > is fixed and used to identify physical location of FFT node and

logical ID changes with stage j determined by permutation functions. After prerequisite steps,

it starts with initial assignment logical ID1 =< bT bT−1 . . . b2b1 >. Let k = T/2 represent the

middle stage. (If T is odd, k could be either (T − 1)/2 or (T + 1)/2).

20

Definition 1. Q < . > is defined as a right circular shift function performed at stage j, j 6= k.

If stage 1 ≤ j < k, the leftmost first to (j + 1)th bits right circular shift one bit and the other

bits are kept unchanged, i.e., if 1 ≤ j < k, Q < bT−jbT−j+1 . . . bT bT−j−1 . . . bk+1bk . . . b2b1 >=<

bT−j−1bT−j . . . bT bT−j−2 . . . bk+1bk . . . b2b1 >; on the other hand, if k < j < T , the leftmost

(k+1)th to (j+1)th bits right circular shift one bit and the other bits are kept unchanged, i.e, if

k < j < T , Q < b1b2 . . . bkbT−(j−k) . . . bT−1bT bT−(j+1−k) . . . bk+2bk+1 >=< b1b2 . . . bkbT−(j+1−k)

bT−(j−k) . . . bT−1bT . . . bk+2bk+1 >.

Definition 2. P < . > is defined as an inverse function performed at the middle stage j =

k. In P < . >, each bit bj is replaced as bT−j, i.e., P < bk+1 . . . bT bkbk−1 . . . b2b1 >=<

b1b2 . . . bk−1bkbT . . . bk+1 >.

We design PE-FFT in a way that FFT butterfly communication and computation alter-

nates with data shuffling based on permutation functions with progression of stages. Ac-

cording to DIT FFT, butterfly communication and computation should be performed be-

tween two neighboring FFT nodes at stage j = 1. After this, Q< . > works on the left-

most two bits of logical ID, and the binary index representation of a FFT node changes from

logical ID1 =< bT bT−1 . . . bk+1bk . . . b2b1 > to logical ID2 =< bT−1bT . . . bk+1bk . . . b2b1 >. Data

is shuffled among nodes for its newly updated logical ID and it proceeds to stage j = 2. At

stage two, FFT butterfly computation continues and we will show in Proposition 1 that it still

take place between the same neighboring node pairs as stage one. And then Q< . > oper-

ates the leftmost three bits of its binary representation and it changes from logical ID2 =<

bT−1bT bT2 . . . bk+1bk . . . b2b1 > to logical ID3 =< bT−2bT−1bT . . . bk+1bk . . . b2b1 >. Nodes com-

21

municate to update their data for their newly designated logical ID. This procedure iteratively

proceeds until it comes to the middle stage j = k, where the binary representation should be

logical IDk−1 =< bk+1bk+2....bT bkbk−1 . . . b2b1 >. After FFT butterfly computation, P < . >

works on the binary index and inverses it into logical IDk =< b1b2 . . . bk−1bkbT . . . bk+2bk+1 >.

At stage k < j < T , PE-FFT proceeds the same way as stage 0 < j < k and Q< . > keep

playing a key role for data shuffling until the stage reaches to j = T − 1, logical IDT−1 =<

b1b2 . . . bkbk+1 . . . bT−1bT >. At the final stage j = T , only butterfly communication and com-

putation is needed and we get N Fourier coefficient outputs.

Figure 3 shows an example of 16 points FFT with different implementing structures, where

solid black lines represent butterfly communication and red dash lines show data shuffling.

Conventional FFT structure depicted in Figure 3(a) shows the distance between two butterfly

pairs increases exponentially over the stage. Canli et al. proposed a power-efficient FFT

structure in the paper (7), which we call it as Canli-FFT for subsequent reference. Canli-FFT

incorporated a new inverse-shuffle complement function for binary representation of each node

at the middle stage to reduce related transmission distance. To be specific, at stage j = k, if a

node with binary index < b1b2 . . . bT−1bT >, inver-shuffle complement function changes it into

< b′T b
′
T−1 . . . b

′
2b
′
1 >. Figure 3(b) shows a 16-point FFT implementation structure presented in

his work. Note that it only optimizes the communication in the middle stage. 16 points FFT

implementation structure of PE-FFT algorithm is given in Figure 3(c). We notice that plenty

of FFT nodes is actually not necessary to shuffle data as Q < . > does not change their logical

22

(a) Conventional FFT structure (b) Canli’s FFT structure

(c) PE-FFT structure

Figure 3. An example of 16 points FFT with different implementing structures: where solid
black lines represent butterfly communication and red dash lines show data shuffling.

ID. By adding extra data shuffling cost, Figure 3 visualizes an effective overall transmission

distance reduction.

In the following section, we give a theoretical analysis comparing the transmission distance

for different FFT implementation schemes.

2.4 P-NDFT Analysis

Proposition 1. In PE-FFT, binary permutation functions Q < . > and P < . > guarantee

that FFT butterfly computation pairs always are physical neighbors of each other for any stage

j, where 0 < j < T .

23

Proof. At stage j and 0 < j < T , one butterfly pair is two nodes with only one bit difference at

the jth leftmost position and all the other bits the same. At stage one, all butterfly pairs deter-

mined by the first leftmost bit bT are physically neighboring each other. With the progression of

stage, Q < . > and P < . > both guarantee that the jth leftmost bit of binary expression is bT .

In the meantime they do not change the values of any bits. Therefore, it proves that Q < . >

and P < . > guarantee FFT butterfly computation pairs are always physically neighboring each

other at any stage j.

Proposition 2. At the final stage T , Fourier coefficients in PE-FFT comes in the same order

of the inputs.

Proof. For a node with binary representation < b1b2, . . . bT >, after prerequisite step 2, binary

index becomes into < bT bT−1, . . . b1 >. At each stage 0 < j < T , Q < . > function and P < . >

function shift the order of bits in binary index in a way that it eventually turns out to be

< b1b2, . . . bT > at the final stage T , which is exactly the same order of the inputs. Therefore,

Fourier outputs in PE-FFT comes in a sequential order.

Notice that transmission cost is closely related to the volume of data communicated and

related transmission distance. And during a FFT implementation, each communication only

involves a constant unit of data. Therefore, the related transmission distance is the most

important indicator for energy efficiency in this work and we claim that the proposed PE-

FFT involves the least total communication distance compare with other FFT implementation

schemes.

24

Proposition 3. Compare with FFT and Canli-FFT, PE-FFT involves the least total data

transmission distance.

Proof. We assume the distance between two neighboring FFT nodes as a unit and start to look

at 1D case firstly.

1). For PE-FFT, we first look at the distance associated with FFT butterfly computation.

Based on Proposition 1, there are logN stages of butterfly computation and at each stage,

where each node transmits one data to its butterfly parter with unit distance. Therefore, we

get the distance for butterfly computation over the whole process as: DPE−FFT,b = N logN .

With regard to the distance of data shuffling, symmetric property of PE-FFT structure

enables us to look at stage 0 < j < k. Given an arbitrary node p with logical ID p.logicalID =<

bT bT−1 . . . b2b1 > and physical ID p.physicalID =< b1b2 . . . bT >. Note that at each stage, the

transmission distance of data shuffling is the physical distance between a node with logical ID

at stage j and another node with the same logical ID at stage j+1. At stage j, p.logicalIDj =<

bT−(j−1)bT−(j−2) . . . bT bT−j . . . b2b1 >. Suppose node q is the designated node for exchanging

data with node p at stage j. Therefore, we get p.logicalIDj = q.logicalIDj+1. The physical ID

of node q is obtained by reversing the leftmost j + 1 bits of q.logicalIDj+1 and then reversing

the entire binary index, i.e. q.physicalID =< b1b2 . . . bT−j−1bT−(j−1)bT−(j−2) . . . bT bT−j >. We

define Dj
PE−FFT,p,q as the distance before node p and node q at stage j for data exchanging

25

operation. Note that the binary indexes of node p and node q have the difference only for the

leftmost T − j − 1 bits.

Dp,q,jPE−FFT,d = |p.physicalID − q.physicalID|

= | < b1b2 . . . bT−j−1bT−jbT−j+1 . . . bT >

− < b1b2 . . . bT−j−1bT−(j−1)bT−(j−2)

. . . bT bT−j > |

= | < bT−jbT−j+1 . . . bT >

− < bT−(j−1)bT−(j−2) . . . bT bT−j > |

= |bT−j ∗ 2j+ < bT−j+1 . . . bT >

− (< bT−j+1 . . . bT > ∗2 + bT−j)|

= |bT−j(2j − 1)− < bT−j+1 . . . bT > |

Hence we get:

Dp,q,j
PE−FFT,d =


< bT−j+1 . . . bT > if bT−j = 0

2j − 1− < bT−j+1 . . . bT > if bT−j = 1

26

Define Ω as a collection of FFT nodes and ω as a collection of stages in FFT. Since node

p ∈ Ω if bT−j = 1, we can always find a node p′ ∈ Ω, with bT−j = 0 and the same bits

< bT−j+1 . . . bT >. Therefore, we obtain:

∑
p,q∈Ω

Dp,q,j
PE−FFT,d =

N

2
(2j − 1)

And transmission distance over all stages except middle stage is:

D
j∈ω\{k}
PE−FFT,d = 2

k−1∑
j=1

∑
p,q∈Ω

Dp,q,jPE−FFT,d =
1

2
N1.5 −

1

2
N logN

For the middle stage j = k, logical ID of node p at stage k is p.logicalIDk =< bk+1bk+2 . . . bT bk

bk−1 . . . b2b1 >. Again, if node q is the target node for node p to forward its current data, it

satisfies q.logicalIDk+1 = p.logicalIDk. The physical ID of node p is obtained by firstly reversing

its binary representation q.logicalIDk+1, then reversing the leftmost k bits and finally reversing

the entire binary index again. Therefore, we get q.physicalID =< bk+1 . . . bT b1 . . . bk >.

27

Hence, the total transmission distance at stage j = k is:

Dp,q,j=k
PE−FFT,d = | < b1b2 . . . bkbk+1 . . . bT >

− < bk+1 . . . bT b1 . . . bk > |

= | < b1b2 . . . bk > ∗2k+ < bk+1 . . . bT >

− (< bk+1 . . . bT > ∗2k+ < b1b2 . . . bk >)|

= |(< b1b2 . . . bk > − < bk+1 . . . bT >)

(2k − 1)|

Let t =< bk+1 . . . bT > and t′ =< b1b2 . . . bk >, and t, t′ ∈ {0, 1, 2, . . . 2k − 1}.

∑
p,q∈Ω

Dp,q,j=kPE−FFT,d =
∑
p,q∈Ω

Dp:t
′>t,q,j=k

PE−FFT,d +
∑
p,q∈Ω

Dp:t
′<t,q,j=k

PE−FFT,d

= 2

2k−2∑
t=0

2k−1∑
t′=t+1

(t′ − t)(2k − 1)

=
1

3
2k(2k − 1)(22k − 1)

=
1

3
(N2 −N

√
N −N +

√
N)

Hence the transmission distance associated with data shuffling is: DPE−FFT,d = 1
3N

2 +

1
6N
√
N − 1

3N +
√
N − 1

2N logN

In summary, the total transmission distance in PE-FFT is: DPE−FFT = DPE−FFT,b +

DPE−FFT,d = 1
3N

2 + 1
6N

1.5 − 1
3N +N0.5 + 1

2N logN .

2). For conventional FFT, the total transmission distance is easily derived as DFFT =

N2 −N .

28

3). For Canli-FFT, paper (7) shows the total transmission distance: DCanli−FFT = 2N1.5−

2N + IEC(N), where IEC(N) is defined as the number of transmissions required to realize

the inverse-shuffle complement phase in the middle phase and a precise close expression is

not provided. It’s easy to conclude that for the transmission distances over all stages except

the middle phase D
j∈ω\{k}
PE−FFT,d < 2N1.5 − 2N . Following the definition of inverse permutation

complement function, for any node p ∈ Ω with binary representation < b1b2 . . . bT−1bT >, its

data shuffling partner q is the node with binary representation < b′T b
′
T−1 . . . b

′
2b
′
1 >. Therefore,

we get:

IEC(N) =
∑
p,q∈Ω

| < b1b2 . . . bT−1bT > − < b′T b
′
T−1 . . . b

′
2b
′
1 > |

For binary subtraction, we use the two’s-complement representation of the negative number

(15) and let t =< b1b2 . . . bT−1bT > and t′ =< bT bT−1 . . . b2b1 >. Therefore,

IEC(N) =
∑
p,q∈Ω

| < b1b2 . . . bT−1bT > − < b′T b
′
T−1 . . . b

′
2b
′
1 > |

=
∑
p,q∈Ω

|(b1 − b′T) ∗ 2T−1 + (b2 − b′T−1) ∗ 2T−2 + · · ·+ (bT − b′1) ∗ 20|

=
∑
p,q∈Ω

|(b1 + bT − 1) ∗ 2T−1 + (b2 + bT−1 − 1) ∗ 2T−2 + · · ·+ (bT + b1 − 1) ∗ 20|

=
∑
p,q∈Ω

|(b1 + bT) ∗ 2T−1 + (b2 + bT−1) ∗ 2T−2 + · · ·+ (bT + b1) ∗ 20 − (N − 1)|

29

We now define a subset Ω′ ⊂ Ω where |Ω′| = 1/4|Ω| corresponding to b1 + bT = 2 and

another subset Ω′′ ⊂ Ω where |Ω′′| = 1/4|Ω| corresponding to b1 + bT = 0. The formula above

hence can be further expressed as:

IEC(N) =
∑

p,q∈Ω′
|2 ∗ 2T−1 + (b2 + bT−1) ∗ 2T−2 + · · ·+ 2 ∗ 20 − (N − 1)|

+
∑

p,q∈Ω′′
|0 ∗ 2T−1 + (b2 + bT−1) ∗ 2T−2 + · · ·+ 0 ∗ 20 − (N − 1)|

+
∑

p,q∈Ω\{Ω′,Ω′′}
|1 ∗ 2T−1 + (b2 + bT−1) ∗ 2T−2 + · · ·+ 20 − (N − 1)|

≥
∑

p,q∈Ω′
(2T−1 + 20) + (2T−1 + (b2 + bT−1) ∗ 2T−2 + · · ·+ 20 − (N − 1))

+
∑

p,q∈Ω′′
(N − 1)− (2T−1 + (b2 + bT−1) ∗ 2T−2 + · · ·+ 20)) + (2T−1 + 20)

=
∑

p,q∈{Ω′,Ω′′}
(2T−1 + 20)

= N/2(2T−1 + 20)

= N2/2 +N/2

>
∑
p,q∈Ω

Dp,q,j=kPE−FFT,d

This shows that PE-FFT requires a transmission distance that is lower than that of Canli-

FFT. For 2D case, comparison result does not changed as all three schemes execute the row-wise

and column-wise FFT separately.

In summary, it is clear that PE-FFT outperforms other schemes by reducing the total

amount of transmission distance.

30

2.5 Performance Appraisement

2.5.1 Simulation Settings

We evaluated Fourier analysis schemes on SIDnet-SWANS (16), (Simulator and Integrated

Development Platform for Sensor Networks Applications) to study their performance. SIDnet

is a Java-based visual tool designed to promote run-time interactions with the network and

JiST/SWANS (17) (18) (Java in Simulation Time), a discrete-event simulation engine, to

simulate all behaviors of a sensor for retrieving real-time parameter readings.

In the simulation, network size M2 (We use M2 for dimension transformation convenience,

and M2, N2, n2 ∈ Z) is set up in the range 300 to 800 with an increment of 50 each time. We

want to compute N2 = 16 ∗ 16 Fourier coefficients over the whole field from M2 nonuniform

samples measured by sensors, which are first expanded into n2 = 32 ∗ 32 uniformly spaced

samples.

In this setting, we establish the relationship for the number of Fourier coefficients, network

size and uniformed data size, which satisfies: N2 < M2 < n2. The field size is fixed as

4000∗4000m2, and average node distribution density increases from 18.75/km2 to 50/km2. The

communication system follows IEEE 802.15.4/4a standards for low data rate wireless personal

data networks and data transmission rate is set as 40000bps. Besides, the length of a standard

message for transmission is 133 bytes. Theoretically, it takes 133 ∗ 8/40000 = 26.6ms for one

message per hop. We neglect the noise interference from the channel and ignore the possibility

of random packet loss. For power consumption, it follows Mica2 Motes specs, where the radio

transmission cost is our major concern. The default unit cost of radio transmission is 81µJ/ms

31

TABLE I

SIMULATION PARAMETERS
Parameter Values

Sensor number 300 ∼ 800
Area 4000 ∗ 4000m2

Sensor density 18.75/km2 ∼ 50/km2

Radio frequency 2.4GHz
Bandwidth 4 ∗ 104bps
Antenna gain 4dB
Unit cost of radio transmission 81 µJ/ms

for one message. Table I lists the major parameter assignments in the simulations. Figure 4

shows evolution of the hierarchy of the network consisting of 500 sensors from local processing

into global data communication.

The interpolation in the NDFT algorithm is performed using a Gaussian window function

given by: ϕ(x, y) = 1
πb exp−(σN)2(x2+y2)/b, where (x, y) is the coordinate of given data f and

b = 2σ
2σ−1

m
π . Notice that NDFT algorithm requires access to data of size N , which is neither

practical nor efficient when it comes to the distributed execution. In P-NDFT, each interpolated

point is determined by the data within its own cluster. Therefore, the Gaussian function for

each cluster in P-NDFT is set up as: ϕ(x, y) = 1
πb exp−(σcNc)2(x2+y2)/bc , where Nc is the number

of data sensed in one cluster, σc = nc/Nc and bc = 2σc
2σc−1

mc
π . In the simulation, 8 ∗ 8 clusters

are set up across the whole plane initially. In each cluster, nc = 42 points are interpolated

uniformly.

32

2.5.2 The Accuracy of Fourier Components

Ground truth is considered as the scenario in which all the data is accurately collected at

sink and the sink implements a centralized NDFT algorithm for the whole data. To examine

the output accuracy, we define Signal to Noise Ratio (SNR) as ten times the decimal logarithm

of the ratio of P-NDFT outputs to the ground truth. The expression is as follows:

SNRdb = 10 log

∑N
m=0 ||Xm||2∑N

m=0 ||Xm − X̂m||2

where Xm denotes the mth Fourier coefficients ground truth and X̂m denotes the mth P-

NDFT outputs. Figure 5 shows the accuracy of outputs against different network sizes. With

the increase in network size, SNR performance improves steadily under different choices of

mc. However, we notice that enlarging the truncation parameter mc monotonously does not

necessarily improve SNR. The reason is that within one cluster, larger mc raises the value of

the variance parameter b of Gaussian function and consequently leads to reduced contribution

of each data for interpolation; on the other hand, the available data is limited within a cluster

and it affects interpolation accuracy severely. Figure 5 also reflects the fact that the overall

level of SNR is low. Data interpolation performed within one cluster compromises the output

fidelity. In order to improve output accuracy, the interpolation for a given cluster is performed

by including data from its eight closest neighboring clusters. In this scenario, Nc is the number

of nodes in a bigger cluster consisting of nine adjacent initial clusters, and nc expands into

122. With a little sacrifice of data transmission redundancy, Figure 5(b) shows the overall SNR

33

performance has been enhanced remarkably. In addition, we find that mc = 0.6
√
nc gives the

highest overall SNR for both cases. Therefore, the right choice of mc is essential to improving

SNR performance.

2.5.3 Energy Consumption

For energy consumption, our primary focus is on tasks that require global data communi-

cation. For comparison purpose, three FFT implementation schemes: our proposed PE-FFT,

conventional FFT, and Canli-FFT are evaluated for P-NDFT to illustrate the advantage of

proposed PE-FFT. After the local interpolation processing, all three schemes are executed

simultaneously. We plot the histograms of the three FFT schemes in Figure 6 to show the

distribution of the energy dissipated per node with two network sizes 400 and 600. In particu-

lar, equal communication distance per node at any stage of a conventional makes its histogram

smoother than that of other schemes. However, the overall level of energy consumption is much

higher than the other schemes. On the other hand, extra data shuffling in PE-FFT scheme

and Canli-FFT causes variations of power consumption in different nodes. There is a tradeoff

between the homogeneity in power consumption and energy efficiency. However, the objective

of this work is to minimize the total communication cost. Figure 6 shows that the overall

level of energy consumption of PE-FFT is much lower than other schemes and it validates

the effectiveness of PE-FFT in improving the energy efficiency. Moreover, Figure 7 plots the

total energy consumption for the whole network against its size for three schemes. Clearly,

PE-FFT scheme involves the least amount of energy consumption. In Figure 7, PE-FFT with

interpolation performed in one cluster saves 39.73% to 41.84% of the energy dissipated over

34

Canli-FFT and 50.95% to 57.34% of the energy consumed on the conventional FFT; PE-FFT

with interpolation performed including neighboring clusters saves 31.44% to 38.10% of the en-

ergy dissipated over Canli-FFT and 44.10% to 53.18% of the energy consumed compared with

the conventional FFT.

35

(a) Initial 8 ∗ 8 clusters for local processing

(b) 16 ∗ 16 subspaces for global implementation

Figure 4. An example of the network hierarchy evolution from local interpolation step of
NDFT algorithm to global FFT implementation with 500 sensors

36

(a) Interpolation step within one cluster

(b) Interpolation step including neighboring clusters

Figure 5. SNR

37

(a) Network size 400

(b) Network size 600

Figure 6. Histogram of energy consumption for three FFT implementation schemes

38

Figure 7. Total energy consumption for all the nodes for three FFT implementation schemes

CHAPTER 3

POWER-EFFICIENT HIERARCHICAL DATA AGGREGATION USING

COMPRESSIVE SENSING IN WSNS

3.1 Introduction

Data gathering is the most fundamental task performed within sensor networks. Many envi-

ronmental monitoring applications, such as monitoring of weather conditions in large parks, the

temperature conditions in the ocean, air quality in urban areas, terrain conditions for precision

agriculture, and so on, require data measured data sensed at nodes over the entire monitored

area to be collected at the fusion center. Most of the existing data collection approaches seek to

improve energy efficiency by introducing new protocols in terms of sleep scheduling (19) (20),

topology control (21) (22), and mobile data collectors (23) (24). In a conventional data collec-

tion scheme, a sensor may seek to transfer one data item to the sink with N−1 hops away along

a routing path. Each intermediate sensor combines data it receives with its own and forwards

it along the route. This data collection scheme without any processing usually entails O(N2)

data transmissions. However, if the monitored area is huge, the cost of direct data forwarding

in a large-scale network will be high. Note that the inherent data redundancy – a consequence

of the correlated smooth data fields – incurs unnecessary energy consumption in transmission.

Data aggregation transmits the data in a compact way by exploiting the spatial correlation in

data fields, which essentially extends the functionality of sensor networks as well as improves

39

40

the efficiency in terms of computation and communication. Therefore, it complements other

approaches by significantly reducing the amount of data to be transported in the routing path.

With the advancement of micro-controller technique, clever utilization of the computational

capability of sensors for in-network processing is a new prospect we should explore to overcome

the energy limitation in WSNs. Studies in (4) (5) (25) show that power consumed in com-

munication is significantly higher than that in computation. Although many applications for

sensor networks are defined and studied, there still remains a huge unexploited region in the

application layer of the network stack (2) (3) of sensors.

Compressive sensing (CS) (26) (27) (28), a recently developed signal processing technique,

has been under the spotlight in various scientific research communities. The basic principle

is that if signals are sparse or compressible in some domain, CS promises to deliver a full

recovery of signals with high probability from far fewer samples than the original data. Several

research efforts have been pursued to incorporate CS into data collection schemes in WSNs

(29) (30) and into spatio-temporal data collection (31) (32). However, the assumption common

to all these papers is that each sensor takes a sequence of samples, to which CS is applied

to remove temporal redundancy before data transmission starts, which more precisely should

be categorized as multi-signal gathering schemes. Luo and coworkers (33) firstly reported the

use of Compressive Sensing (CS) in data gathering scheme aiming to remove data redundancy

existing in the routing path. We denote their scheme as Plain CS (PCS) aggregation. PCS made

a reasonable assumption that the sparsity of the data field is a constant and each data collection

cycle gathers one unit of data from all the sensors. First of all, the tasks of sensing and data

41

propagation in most applications are executed periodically (34). It is easy and feasible to derive

the key features from the previous dataset and store them if the size of the key feature set is

not big and data field changes slowly within a short time period. In this scenario, the sparsity

K of the signal for the entire data field, which denotes the nonzero entries of data or of its

transformed version, can be claimed as a a priori information. Secondly, multi-signal gathering

task can be realized by integrating multiple data collections with different time stamps. PCS

requires each sensor to provide to the sink at least M = K logN measurements so as to fully

recover a total of N data samples for the whole field. It reduces the required transmission

complexity from O(N2) to O(NM) in a N -sensor network. However, in the initial phase of

PCS, leaf nodes unnecessarily transmit M measurements, which is in excess of their single

readings and therefore introduce redundancy in aggregated data. Recognizing this limitation,

a hybrid CS (HCS) aggregation scheme was proposed in (35)(36), which is an amalgam of

non-CS aggregation and PCS. It optimizes data aggregation cost by setting a global threshold

M and applying CS aggregation only at those nodes where the number of accumulated data

samples equals or exceeds M ; otherwise, it follows the conventional data gathering scheme.

Hence transmission waste was eliminated inherent in the initial data transmission. Note that in

HCS, only a small fraction of sensors actually can utilize CS because of the inefficient network

configuration, and the required amount of data that need to be transmitted for these nodes is

still large.

Observing these limitations, we propose an energy-efficient data aggregation technique based

on a multi-level hierarchical clustering architecture and hybrid compressive sensing. The central

42

idea is to configure sensor nodes so that instead of one sink node being targeted by all sensors,

several nodes, arranged in a way to yield a hierarchy of multi-level clusters, are designated for the

intermediate data collection. The amount of data that needs to be transmitted by each sensor

is determined by the local cluster size at different levels rather than the entire network. The

main reason for choosing the multi-level hierarchy for communication routing path is two-fold:

Firstly, the work in (37) demonstrated that for the common data transformed representation,

the power efficiency of data aggregation implemented in the hierarchy is generally better than

other data communication protocols. Secondly, multi-level hierarchy applies CS in a way that it

enables the amount of CS random measurements to adapt to the size of the clusters at different

levels. We refer to our method as Hierarchical Data Aggregation using Compressive Sensing

(HDACS).

The main contributions of this work are summarized as follows:

• We formulate a novel data aggregation scheme by incorporating Compressive Sensing

(CS) in a multi-level hierarchy for large-scale sensor networks.

• We prove HDACS essentially reduces data volume in transmission compared with other

CS-based data aggregation schemes with an upper bound of O(K logN) and it also

achieves the highest data compression ratio.

• We construct a new energy model by delving into the cost in processor and radio, espe-

cially for computation cost incurred in relatively complex algorithms, such as CS data

recovery. We establish that communication is still a dominant concern in HDACS with

the supporting specs from real sensor datasheets.

43

• We choose a suitable signal model for data field and design a customized DCT-based CS

recovery algorithm to adapt to the chosen domain by factoring in computation complexity,

speed and accuracy.

• We use the surface temperature dataset from Nation Data Buoy Center as well as synthetic

dataset to evaluate the performance of different CS-based data aggregation schemes on

SIDnet-SWANS simulation platform. The superiority of the proposed HDACS in terms

of data reconstruction quality and power efficiency is effectively validated.

3.2 Related Work

Power efficiency is a key objective for data aggregation scheme in wireless sensor networks.

Plain CS (PCS) (33) is a novel CS data aggregation scheme to reduce the amount of data

need to be transmitted by integrating CS as a compressing technique and thereby to improve

communication power efficiency. CS data aggregation requires each sensor to transmit M =

K logN units of data for a N -sensor network, where K is the signal sparsity of the data

field.Transmission of equal amount of data for each sensor regardless of its position and its

role in the aggregation routing path introduces redundancy and entails unnecessary energy

consumption. In order to solve this problem, a hybrid CS (HCS) aggregation scheme (35) (36)

was proposed where sensors apply CS only when the number of data items collected exceeds

M ; otherwise, sensors combine the received data with their own data and send them directly,

which is the same as conventional data aggregation scheme.

Figure 8 shows a simple example of three different data aggregation mechanisms in which

nodes i = 1, 2, 3, 4 send data di to node 5. In a conventional or non-CS (NCS) data aggregation,

44

(a) NCS (b) PCS

(c) HCS

Figure 8. Example of Different Data Aggregation Mechanisms

45

shown in Figure 8(a), node 1 to 4 send their data to node 5 and node 5 combines data it receives

with its own data d5, forms a new data set A = {d1, d2, d3, d4, d5} and sends A to the next

node. In PCS, Figure 8(b) shows each node i = 1, 2, 3, 4 takes M randoms CS measurements

by multiplying its data with corresponding ith column of sensing matrix Φ to obtain encoded

data vector Di = [di ∗ Φ1i di ∗ Φ2i . . . di ∗ ΦMi]
T and then sends them to node 5. Node 5

adds all data received to its own encoded data vector and obtain a new one B =
∑5

i=1Di for

transmitting to the next node. For HCS, Figure 8(c) depicts that each node i = 1, 2, 3, 4 sends

its data di to node 5. But whether or not data being encoded for transmission depends on

the global threshold M . If M > 5, node 5 transmits data set A; otherwise, it transmits B.

Compared with NCS and PCS, HCS optimizes the amount of data for transmission by utilizing

CS in a selected manner.

3.3 Preliminaries

3.3.1 Compressive Sensing

If a data set α or a suitable unitary transformed version x = Ψα with length N has K

nonzero entries, we call it a K-sparse signal or K-sparse data. Compressive Sensing (CS) theory

demonstrates that only O(M) random measurements are enough to represent the transformed

data x (38) (28) (39) (40), where K < M << N , if the random measurements taken from the

sensing matrix Φ with size M ×N follows Uniform Uncertainty Principle (UUP) (41) (42):

0.8
M

N
||x||22 ≤ ||Φx||22 ≤ 1.2

M

N
||x||22.

46

(a) Sparse Data α (b) Sparse Signal x

Figure 9. CS Random Projection

If it is K-sparse data, then by replacing x with α, the bounds above dictated by UUP still

apply. Figure 9 shows these two types of CS random measurements processes. This property

is very appealing as it reduces data representation from original length N to M , which could

be significant when N is large.

The condition of for accurately recovering a signal from CS random measurements is M >=

Cµ2(Φ,Ψ)K logN , where C is a small number and µ2(Φ,Ψ) is a defined function to measure

the mutual coherence between the transformation matrix Ψ and the sensing matrix Φ. Under a

certain situation, such as sampling ultra-wideband but spectrally sparse signal, µ2(Φ,Ψ) is equal

or close to one, then on the order of K logN samples suffice (26). Since our work focuses on

the relationship between the amount of data transmitted and the scalability of the network, the

assumption of C = 1 will not alter the comparison results. We hence assert that M = K logN

is a necessary number for delivering data without losing its fidelity in the following paragraph.

Figure 9(a) shows one way of taking CS random measurements, where the data field is itself

assumed to be sparse. This applies for various event detection fields, such as fire, traffic, and

47

TABLE II

GLOBAL PARAMETERS DEFINITION
Global parameters

N Total number of nodes in the network
n The degree of logical tree
s Area associated with level one cluster
S The whole area monitored by sensor networks
T Number of levels in data collection hierarchical tree

smoke, etc. For some other types of data fields which are smooth and slowly varying, such as

temperature, sound, pressure fields, Figure 9(b) shows another way to solve the problem. It

projects data into a suitable unitary transformation space to firstly obtain sparse data repre-

sentation and then applies the projected data onto a sensing matrix. Therefore, CS-based data

aggregation is applicable in both cases. We focus our study on the second scenario, which is a

representative of various environment monitoring applications in sensor networks.

3.4 Proposed Data Aggregation Architecture

In this section, the data aggregation architecture based on compressive sensing is presented.

We mainly focus on examining and solving two key problems: 1) How to configure sensors to

construct a hierarchical network architecture? 2) How to implement data aggregation on this

architecture so that power efficiency can be enhanced?

3.4.1 Model and Aggregation Process

Assume the hierarchy is constructed based on the geographical location and area. At level

one, all the clusters are defined by identical regions each with area s. With the increase in

48

TABLE III

CLUSTER-SPECIFIED && PARAMETERS DEFINITION
Local parameters in cluster l at level i

s
(l)
i Cluster area

c
(l)
i Cluster head node

v
(l)
i Collection of children cluster heads

N
(l)
i Cluster size including all the nodes in this cluster

M
(l)
i Amount of data that need to be transmitted after performing CS from cluster head

d
j(l)
i Distances between cluster head c

(l)
i and its children cluster head j(l), where j(l) ∈ v(l)

i

γ
(l)
i Data compression ratio at cluster head c

(l)
i

E
(l)
i Total transmission cost from all its children nodes to c

(l)
i

TABLE IV

LEVEL-SPECIFIED PARAMETERS DEFINITION
Global parameters at level i

Ci Collection of cluster heads, where Ci = {c(1)
i , c

(2)
i , · · · , c(|Ci|)

i }
|Ci| Number of cluster heads

Mi Total amount of data units for transmission, where Mi =
∑|Ci|

l=1 M
(l)
i

Ei Total energy cost for transmission, where Ei =
∑|Ci|

l=1 E
(l)
i

49

Figure 10. CS Data Aggregation Architecture

level i, where i > 2, cluster l is configured by merging the areas of n clusters at level i − 1,

i.e. it satisfies: s
(l)
i = ns

(l)
i−1 = ni−1s. This construction process guarantees the same area for

all the clusters at the same level. Follow this procedure, we get the relation between the entire

monitored area S and the initial cluster area s: that is S = nT−1s. Let |Ci| represent the

number of clusters at level i and we get the relation between the number of clusters and the

whole area: s
(l)
i |Ci| = ni−1s|Ci| = S. so, the number of clusters at level i is |Ci| = S

s n
1−i =

nT−1n1−i = nT−i. For convenience, the definitions of the parameters in our formulation are

listed in Table II, Table III, and Table IV.

Figure 10 gives an instance of a hierarchical tree to show the logical relationship among

clusters at multiple levels in the hierarchy. The hierarchy consists of n nodes at level i for i ≥ 2,

50

or in another words, the degree of the hierarchical tree is n. We also assume the number of leaf

nodes N
(l)
1 ≥ n for any cluster l at level one.

The distribution of a N -node network, where N = N ′+nT , in our formulation is constrained

by the following rule.

• There are at least n nodes in each cluster at level one. Accordingly, at least n ∗ |C1| =

n ∗ nT−1 = nT associated nodes will be randomly placed in a constrained manner.

• The remaining N − nT sensors are allowed to be randomly distributed following uniform

distribution within the entire region.

The main advantage of this network deployment is that it is practically realizable and it

also addresses issues when the total number of nodes N does not satisfy the condition N = nT .

Besides, we get the number of cluster heads in the hierarchy at most nT−1 (If a node plays

cluster head role at more than two levels, the number of cluster heads should be less than nT−1).

And the number of leaf nodes is N − nT−1 ≥ nT − nT−1 = (n− 1)nT−1. If n > 2, as a result,

N − nT−1 > nT−1. It implies that the number of leaf nodes is much more than the number of

cluster heads. The rules also ensures that the number of node in one cluster at level i satisfies

N
(l)
i ∈ {ni, ni + 1, . . . , ni+1− 1}. In the following sections, we will use these initial settings and

conclusions to analyze different parameters of interest.

Algorithms 2, 3, and 4 are the pseudo codes for the behaviors of nodes playing different roles

in the hierarchy and they shows the explicit steps of HDACS. Algorithm 2 shows that in phase

one, a leaf node sends one unit of data it measures from the environment to its cluster head

51

c
(l)
1 , which follows the same step as HCS (35) (36) and then its task in this data aggregation

is done. Algorithm 3 shows cluster head c
(l)
1 collects all the data from N

(l)
1 − 1 children nodes,

projects them to a suitable space to get a sparse signal representation, and then derives CS

random measurements from the sparse signal, which compresses the number of data from N
(l)
1

into M1 = K ∗ logN
(l)
1 . Algorithm 4 describes the general behaviors of cluster heads at level

higher than one. When cluster head c
(l)
i at the level i higher than 2 receives M

(j(l))
i−1 CS random

measurements from its children cluster j(l), where j(l) ∈ v
(l)
i and v

(l)
i is a defined collection

consisting of all its children nodes, it executes the CS recovery algorithm to first estimate the

transformed signal and then retrieve the original data through inverse transformation. After it

recovers all the data from the lower level, a cluster head takes M
(l)
i = K logN

(l)
i CS random

measurements based on N
(l)
i units of data. The compressed data will thereby be sent to its

parent cluster head at level i+ 1. Following this procedure, the data flows from the bottom of

the hierarchical tree, gets assembled with other data from the cluster heads at different levels

all the way up util it arrives at the cluster head in the top level. And data aggregation is finally

accomplished.

In the following section, we will provide the analysis of key parameters of interest for the

proposed HDACS as well as other state-of-the-art CS-based data aggregation schemes(33) (35)

(36).

52

Algorithm 2 Pseudo Code For Leaf Nodes At Level 1

1: Initial: level i = 1, sensedData
2: Send sensedData to myClusterHead1;

Algorithm 3 Pseudo Code For Cluster Heads At Level 1

1: Initial: level i = 1, sensedData
2: Save sensedData ;
3: Receive data from children nodes;

4: if the data received from N
(l)
1 nodes then

5: Get sparse signal representation from the entire data;
6: Take CS random measurements from the sparse signal;
7: i+ +;
8: if myNode is my cluster head at level 2 then
9: Save CS random measurements;
10: else
11: Send CS random measurements to cluster head at level 2;
12: end if
13: end if

53

Algorithm 4 Pseudo Code For Cluster Heads At Level i For i > 1

1: Receive data from all children nodes, perform CS recovery algorithm and inverse transfor-
mation to obtain original data;

2: if the data received from n nodes then
3: i+ +;
4: if i == (T+1) then
5: Store all the data for the entire data field;
6: Break;
7: else
8: Get sparse signal representation for the entire data;
9: Take CS random measurements from the sparse signal;
10: if myNode is my cluster head at level i then
11: Save CS random measurements;
12: else
13: Send CS random measurements to my cluster head at level i;
14: end if
15: end if
16: end if

3.5 Parameters Analysis

3.5.1 The Amount of Data That Needs To Be Transmitted At One Level

In the initial network configuration, we assume the number of nodes N
(l)
i in the cluster l at

the level i should satisfy the condition that N
(l)
i ∈ {ni, ni + 1, . . . , ni+1 − 1}. Accordingly, CS

random measurements or the amount of data that needs to be transmitted for a cluster head

in HDACS is: M
(l)
i = K logNi

(l) ∈ [iK log n, (i+ 1)K log n].

The required amount of data that needs to be transmitted for each node in PCS (33) is a

constant: M
(l)
i,PCS = K logN . When PCS is implemented in a multi-level hierarchy, this amount

M
(l)
i,PCS will still be the same for all the cluster heads and M

(l)
i,PCS ∈ [TK log n, (T + 1)K log n].

54

For HCS (35) (36), the required amount of data that needs to be transmitted for each node

for a cluster head at level i in cluster l is:

M
(l)
i,HCS =


N

(l)
i if N

(l)
i < K logN,

K logN otherwise.

Proposition 4. The amount of data that needs to be transmitted at any given level i for any

cluster l for PCS and HCS in a multi-level data aggregation hierarchy is lower bounded by the

amount of data that needs to be transmitted in HDACS.

Proof. The upper bound for the amount of data that needs to be transmitted for cluster

heads at any level in HDACS is O(M
(l)
i,HDACS) = M

(l)
i,PCS = K logN . It therefore follows

that M
(l)
i,HDACS ≤M

(l)
i,PCS .

Besides, at level i > 1


M

(l)
i,HDACS = K logNi < M

(l)
i,HCS = N

(l)
i if N

(l)
i < K logN,

M
(l)
i,HDACS = K logNi < M

(l)
i,HCS = K logN otherwise.

and at level i = 1, M
(l)
i,HDACS = M

(l)
i,HCS = N

(l)
i . As a result, the inequalityM

(l)
i,HDACS ≤M

(l)
i,HCS

is true at any level.

In summary, HDACS requires less amount of data that need to be transmitted than PCS

and HCS at any level in a multi-level data aggregation hierarchy.

55

3.5.2 The Total Amount of Data Transmitted

For convenience, we denote [f(i)]ba =
∑b

i=a f(i) in the following analysis.

Proposition 5. In a multi-level hierarchy with T levels, the total amount of data transmitted

in PCS is: Mtotal,PCS = NK logN , and the space complexities of the total amount of data

transmitted in HDACS and HCS are: Mtotal,HDACS = Θ(N) and Mtotal,HCS = Θ(N logN) re-

spectively. Consequently, HDACS requires the lowest amount of data that need to be transmitted

compared with the other two CS-based data aggregation schemes.

Proof. 1. For HDACS, the total amount of data that needs to be transmitted is:

Mtotal,HDACS =
T∑
i=1

Mi =
T∑
i=1

|Ci|∑
l=1

M
(l)
i

=

|C1|∑
l=1

(N
(l)
1 − 1) +

T∑
i=2

|Ci|∑
l=1

(n− 1)M
(l)
i−1.

As we assume N
(l)
i ∈ {ni, ni + 1, . . . , ni+1 − 1}, the lower bound of Mtotal,HDACS is:

Ω(Mtotal,HDACS) = N − nT−1 +K(n− 1)nT−1 log n[in−i]T−1
1

and its upper bound is

O(Mtotal,HDACS) = N − nT−1 +K(n− 1)nT−1 log n[(i+ 1)n−i]T−1
1 ,

56

where [in−i]T−1
1 = 1/n(1−1/nT−1)

(1−1/n)2 − T−1
nT (1−1/n)

< 1/n
(1−1/n)2 and [(i+ 1)n−i]T−1

1 = [in−i]T−1
1 +

[n−i]T−1
1 = 1/n(1−1/nT−1)

(1−1/n)2 − T−1
nT (1−1/n)

+ 1/n∗(1−1/nT−1)
1−1/n < 1/n

(1−1/n)2 + 1
n−1 are both constant

scalars determined by the initial logical cluster size n. In the initial setting, we get

(n− 1)nT−1 ≈ N . Therefore, the space complexity of Mtotal,HDACS is Θ(N).

2. For PCS, the total amount of data that needs to be transmitted is: Mtotal,PCS =

NK logN .

3. For HCS, the decision of performing CS in cluster heads depends on the value of cluster

size N
(l)
i and the global threshold K logN .

Suppose at level i = t, the condition N
(l)
t ≤ K logN ≤ N

(l′)
t+1 is satisfied for any

particular cluster l, which implies that the application of CS will be feasible afterwards.

We can easily derive the the following inequality:

log (K logN)

logn
− 2 ≤ t <

log (K logN)

logn
.

Note that the above inequality shows t is roughly proportional to log (logN). It implies

t grows very slowly with the increase of network size N . Therefore, we can consider it as

a negligible number and use a fix constant to represent it.

57

Consequently, the total amount of data that needs to be transmitted in HCS can be

expressed as:

Mtotal,HCS =

t∑
i=1

|Ci|∑
l=1

(N
(l)
i − 1) +

T∑
i=t

|Ci|∑
l=1

(n− 1)K logN

=
t∑

i=1

(N − nT−i) +
T∑
i=t

nT−i(n− 1)K logN

= Nt−
t∑

i=1

nT−i +K(n− 1) logN
T∑
i=t

nT−i.

Therefore, Mtotal,HCS = Nt−nT [n−i]t1+K(n−1)nT logN [n−i]Tt . In this formula,

[n−i]t1 and [n−i]Tt = [n−i]T1 − [n−i]t−1
1 are both scalar constants. Note that the

dominant component of Mtotal,HCS is K(n − 1)nT logN [n−i]Tt , therefore its space

complexity is Θ(N logN).

In summary, the space complexity of the total amount of data that needs to be transmitted

required in HDACS is Θ(N), whereas it is Θ(N logN) in the case of both PCS and HCS. Hence,

it proves that HDACS requires the least amount of data that needs to be transmitted compared

with other CS-based data aggregation schemes examined in this work.

3.5.3 Data Compression Ratio

Data compression ratio serves as an important indicator of measuring the reduction in data

volume and saving of power spent on data transmission. The data compression ratio γ
(l)
i for a

given cluster l at level i is defined as the ratio of the amount of data available at cluster head

c
(l)
i to the amount of data that needs to be transmitted.

58

Proposition 6. Compared with PCS and HCS, HDACS achieves the highest data compression

ratio.

Proof. 1. For HDACS, the expression of γ
(l)
i is:

γ
(l)
i,HDACS =


N

(l)
1

M
(l)
1

=
N

(l)
1

K logN
(l)
1

if i = 1,∑
j(l)∈v(l)

i

M
j(l)
i−1

M
(l)
i

if i ≥ 2.

From the above formula, we note that the compression ratio γ
(l)
i,HDACS lies in the range:

[n
K logn ,

n2

2K logn] if i = 1 and [nT−1
T+1 , n] if i ≥ 2. It implies the amount of data that needs

to be transmitted can be significantly compressed to about 1
n of the amount of the data

contained within cluster heads.

2. For PCS, γ
(l)
i,PCS = 1 for any level i, and it shows PCS provides no compression at all.

3. For HCS,

γ
(l)
i,HCS =



N
(l)
i

M
(l)
i

=
N

(l)
i

K logN
(l)
i

when N
(l)
i > K logN,

satisfied for the first time

1 otherwise.

HCS yields compression ratio greater than 1 only when condition N
(l)
i > K logN is met

for the first time, otherwise there is no data reduction.

Therefore, we conclude that, for transmission at each level of the hierarchy, HDACS com-

presses the data more than the other two CS-based data aggregation schemes.

59

3.5.4 Energy Consumption Model

In this model, two critical components — processor and radio energy needs — have been

considered as the major drains of power consumed in the data aggregation task. Processor

energy consumption is incurred in the task of node control, data processing, communication

protocol. And radio energy consumption is incurred in the task of receiving and transmitting

data package. Other operations such as sensing, I/O, can been considered to be negligible in

this scenario.

3.5.4.1 Single Node Energy Consumption Model

For a single node, its energy consumption model is expressed as:

1. Processor:

EP = Ep,comm + Ep,comp + Cp,

where Ep,comm indicates the energy consumed within a processor for buffering data re-

ceived and to be transmitted. On the other hand, Ep,comp reflects the energy consumed

in data processing. We also use Cp for other power consumptions.

2. Radio:

ER = Er,rx + Er,tx + Cr,

where Er,rx and Er,tx indicate the energy consumed in the packet receiving and transmit-

ting respectively. And other costs in radio are summed into a constant Cr.

60

Therefore, the total power consumption for a single node as a cluster head at one level of

the hierarchy is:

E = Ep,comm + Ep,comp + Er,rx + Er,tx + (Cp + Cr).

Furthermore, since power in general is calculated as a product of current, voltage and execu-

tion time, therefore, we can further express the factors in the above formulate as: Ep,comm =

IpUTp,comm, Ep,comp = IpUTp,comp, Er,rx = Ir,rxUTr,rx and Er,tx = Ir,txUTr,tx. Since the values

of voltage and current for processor and radio can be found in its datasheet for a particular type

of a sensor, the relation between execution time and the volume of data becomes our major

concern in the following analysis.

3.5.4.2 Data Processing Cost Analysis

In HDACS, each cluster head involves two key data processing tasks: CS random mea-

surements encoding process and CS recovery process. For a general CS encoding process, the

multiplication of a M×N matrix and a N×1 vector requires (M×N+N+M) working storage

and MN multiplications and (N − 1)M additions for computation operations. Therefore, data

encoding cost is bounded by O(NM). Besides, CoSaMP is adopted in HDACS to recover CS

random measurements, which will be covered in Section 3.6.4. It has been proved that CoSaMP

recovers N samples of data from M random measurements using O(N) working storage and

O(N logN) operations for each iteration(43). Therefore, for a cluster head located at cluster l

at level i with the cluster size N
(l)
i in the hierarchy, we formulate the data processing time as a

linear function of the volume of the processed data: Tp,comp = tp(k1N
(l)
i M

(l)
i + k2N

(l)
i logN

(l)
i),

where k1 and k2 are scalars and tp is the unit data processing time.

61

3.5.4.3 Communication Cost Analysis

The communication cost for processor is formulated as a linear function of the amount of

data it receives and it sends. To be more specific, data here includes the readings measured

from the sensors and the necessary information, such as the indexes of the randomly selected

rows of the sensing matrix. We hence formulate it as: Tp,comm = tp(
∑

j(l)∈v(l)
i

M
j(l)
i−1 + M

(l)
i),

where tp is the unit data processing time for processor and M
(j(l))
i−1 are the amount of data

cluster head c
(l)
i receives from its child node j(l) and M

(l)
i is the volume of data it sends out.

On the other hand, as the packet transmission latency for radio should also be proportional to

the amount of data in transmission, we formulate it as: Tr = tr,rx
∑

j(l)∈v(l)
i

M
j(l)
i−1 + tr,txM

(l)
i ,

where tr,rx is the radio receiving time for unit data and tr,tx is the radio transmitting time for

unit data.

Let Wp = IpUtp, Wr,rx = Ir,rxUtr,rx, Wr,tx = Ir,txUtr,tx , C = Cp+Cr, and these parameters

are deemed as constants in the following analysis. When the single node energy model is

incorporated into the hierarchy, the energy consumption for a cluster head at level i within

cluster l is:

E
(l)
i = Wp(k1N

(l)
i M

(l)
i + k2N

(l)
i logN

(l)
i) + (Wr,rx +Wp)

∑
j(l)∈v(l)

i

M
j(l)
i−1 + (Wr,tx +Wp)M

(l)
i + C.

Note that a large-scale network will inevitably involve a long haul data transmission, i.e.

cost in a number of relay nodes along the routing path should be taken into account and it

involves communication cost in processor as well as radio. As the communication cost for relays

62

is positively correlated with distance, it is reasonable to model it as a linear function of dαi ,

where di is the distance between the sender and receiver and α is a power loss exponent (44),

where we use α = 2 in our case. The total energy consumption for a cluster head c
(l)
i at level i

in the hierarchy is adjusted as:

E
(l)
i = cr(k1N

(l)
i M

(l)
i + k2N

(l)
i logN

(l)
i) + c

∑
j(l)∈v(l)

i

(d
j(l)
i)2M

j(l)
i−1 + cs,

where we define cr = Wp, c = Wr,rx +Wr,tx +Wp and cs = C.

Define the distance d
j(l)
i between the cluster head c

(l)
i and its children cluster head j(l) for

j(l) ∈ v(l)
i as: d

j(l)
i = ((xj − xi)2 + (yj − yi)2)1/2, where (xi, yi) and (xj , yj) are the coordinates

of cluster head c
(l)
i and children node j(l) respectively. For brevity, we denote the locations

of cluster head (xci , yci) and children nodes (xj(l), yj(l)) with (xi, yi) and (xj , yj) respectively.

The sum of squared distances between a cluster head and its children cluster heads needs to

be estimated to compute energy consumption. We will model the sensor locations as randomly

distributed and use the expected value Di of the sum of squared distances as an estimate for

use in computing energy costs. Let Di =
∑
E[(Xj −Xi)

2 + (Yj − Yi)2], where the coordinates

Xj , Xi, Yi, Yj are assumed to be uniformly distributed. Since all children nodes are identically

distributed, Di = (n− 1)E[(Xj −Xi)
2 + (Yj − Yi)2] for any j.

Proposition 7. The sum of squared distance Di between the cluster head c
(l)
i and all its children

cluster heads j(l) ∈ v(l)
i is in the range of [(n− 1)sni−1/6, 2(n− 1)sni−1/3].

63

Proof. For randomly distributed sensors, Di can be expressed as:

Di = (n− 1)E[(Xj −Xi)
2 + (Yj − Yi)2]

= (n− 1)

∫ ∫ ∫ ∫
((xj − xi)2 + (yj − yi)2)f(xi, yi)f(xj , yj)dxidyidxjdyj

.

Let g(xi, yi) =
∫ ∫

((xj − xi)2 + (yj − yi)2)f(xj , yj)dxjdyj denote the expected value of the

sum of the squared distance between cluster head and its children nodes when the location of

cluster head is given. Partial derivative in terms of xi is ∂g(xi,yi)
∂xi

= 2
∫ ∫

(xi−xj)f(xj , yj)dxjdyj .

We conclude: if xi > E[xj], then ∂g(xi,yi)
∂xi

> 0 ; if xi < E[xj], then ∂g(xi,yi)
∂xi

< 0 ; if xi = E[xj],

then ∂g(xi,yi)
∂xi

= 0. The same result applies for yi. Clearly, it suffices to say the function g(xi, yi)

has paraboloid shape and it obtains its minimum value when xi = E[xj] and yi = E[yj],

which is exactly the centroid of a cluster. This function achieves its maximum value when

the coordinates of the cluster head are at any of the four corners, where the average distance

between the cluster head and its children nodes is the greatest.

Let bi denote half the side length of a square region at level i , i.e. bi = 1/2s
1/2
i =

1/2(sni−1)1/2, where si is the area of cluster i and s is the unit area defined at level one.

The density function is f(xi, yi) = f(xj , yj) = 1
si

= 1
sni−1 .

64

1. When the cluster head is the centroid, we get the lower bound:

∑
j(l)∈v(l)

i

(xj − xi)2 + (yj − yi)2

= 4

∫ bi

0

∫ bi

0
(x2
j + y2

j)f(xj , yj)dxjdyj

= 8
n− 1

sni−1

∫ π/4

0

∫ bi sec θ

0
µ2µdµdθ

= 8
n− 1

sni−1

∫ π/4

0

1

4
b4i sec4 θdθ

= 2
n− 1

sni−1
(1/2(sni−1)1/2)4(

1

3
tan θ2 +

2

3
tan θ)|π/40

=
(n− 1)sni−1

6
.

2. When the cluster head is located at one of the four corners, we get the upper bound:

∑
j(l)∈v(l)

i

(xj − xi)2 + (yj − yi)2

=

∫ 2bi

0

∫ 2bi

0
(x2
j + y2

j)f(xj , yj)dxjdyj

= 2
n− 1

sni−1

∫ π/4

0

∫ 2bi sec θ

0
µ2µdµdθ

=
2(n− 1)sni−1

3
.

In summary, the sum of the squared distance
∑

j(l)∈v(l)
i

(d
j(l)
i)2 between cluster head c

(l)
i and

all its children cluster heads is in the range of [(n− 1)sni−1/6, 2(n− 1)sni−1/3].

Based on Proposition 7, we let cDi = A(n−1)ni−1, where A is a communication cost related

constant and A ∈ [cs/6, 2cs/3].

65

3.5.4.4 Total Energy in the Hierarchy

The total amount of energy consumed for data aggregation from the bottom to the top of

the hierarchy in HDACS is therefore:

Etotal,HDACS =
T∑
i=1

|Ci|∑
l=1

E
(l)
i =

|C1|∑
l=1

cs +A(N
(l)
1 − 1)

+

T∑
i=2

|Ci|∑
l=1

cr(k1N
(l)
i M

(l)
i + k2N

(l)
i logN

(l)
i) +AM

(l)
i−1(n− 1)n(i−1) + cs

It is worth noting that when the level i is greater than 2, two key components: the commu-

nication cost and the computation cost are reflected in the term
∑T

i=2

∑|Ci|
l=1 AM

(l)
i−1(n−1)n(i−1)

and the term
∑T

i=2

∑|Ci|
l=1 cr(k1N

(l)
i M

(l)
i + k2N

(l)
i logN

(l)
i) respectively. In the following propo-

sition, we prove that under certain circumstance, the amount of energy consumed in HDACS

is less than that consumed in PCS and HCS.

Proposition 8. Define

cdif,HDACS,PCS(N) =

∑|C1|
l=1 A(N

(l)
1 − 1)(K logN − 1) +

∑T
i=2

∑|Ci|
l=1 A(n− 1)n(i−1)(K logN −M(l)

i−1)∑T
i=2

∑|Ci|
l=1 k1N

(l)
i M

(l)
i + k2N

(l)
i logN

(l)
i − k1K logN

and

cdif,HDACS,HCS(N) =

∑t
i=2

∑|Ci|
l=1 A(n− 1)ni−1(N

(l)
i−1 −M

(l)
i−1) +

∑T
i=t

∑|Ci|
l=1 A(n− 1)n(i−1)(K logN −M(l)

i−1)∑t
i=2

∑|Ci|
l=1 k1N

(l)
i (M

(l)
i − 1) + k2N

(l)
i logN

(l)
i +

∑T
i=t

∑|Ci|
l=1 k1N

(l)
i M

(l)
i + k2N

(l)
i logN

(l)
i − k1K logN

66

. If cr < min{cdif,HDACS,PCS} the total energy consumed in HDACS is less than that of PCS;

if cr < min{cdif,HDACS,HCS}, the total energy consumed in HDACS is less than that of HCS.

Proof. 1. In PCS, data processing involves encoding a fixed amount of CS random mea-

surements with size K logN , which will be communicated between nodes. Therefore, the

total energy consumption of PCS is easily obtained as:

Etotal,PCS =

|C1|∑
l=1

cs +AK logN(N
(l)
1 − 1)

+

T∑
i=2

|Ci|∑
l=1

cs +AK logN(n− 1)n(i−1) + crk1K logN.

In order to compare the energy consumption of HDACS and that of PCS, we compute

the difference between Etotal,HDACS and Etotal,PCS :

Etotal,PCS − Etotal,HDACS =

|C1|∑
l=1

A(N
(l)
1 − 1)(K logN − 1)

+
T∑
i=2

|Ci|∑
l=1

A(n− 1)n(i−1)(K logN −M (l)
i−1)

−
T∑
i=2

|Ci|∑
l=1

cr(k1N
(l)
i M

(l)
i + k2N

(l)
i logN

(l)
i − k1K logN).

Observe that the term
∑|C1|

l=1 A(N
(l)
1 −1)(K logN−1)+

∑T
i=2

∑|Ci|
l=1 A(n−1)n(i−1)(K logN−

M
(l)
i−1) actually shows the communication cost comparison between two data aggregation

67

schemes and
∑T

i=2

∑|Ci|
l=1 cr(k1N

(l)
i M

(l)
i + k2N

(l)
i logN

(l)
i − k1K logN) represents the com-

putation cost comparison.When cr < min{cdif,HDACS,PCS}, Etotal,PCS−Etotal,HDACS > 0

will always be true.

2. In HCS, communication cost for a cluster head at level i in cluster l is proportional to

N
(l)
i amount of data when data volume is smaller than a global threshold and K logN

thereafter. The data processing cost can be computed in an analogous manner. Therefore,

the total energy consumed in HCS is summarized as follows:

Etotal,HCS =

|C1|∑
l=1

cs +A(N
(l)
1 − 1)

+
t∑
i=2

|Ci|∑
l=1

cs +AN
(l)
i−1(n− 1)n(i−1) + crk1N

(l)
i

+

T∑
i=t

|Ci|∑
l=1

cs +AK logN(n− 1)n(i−1) + crk1K logN.

And the difference between Etotal,HDACS and Etotal,PCS is:

Etotal,HCS − Etotal,HDACS =

t∑
i=2

|Ci|∑
l=1

A(n− 1)n(i−1)(N
(l)
i−1 −M

(l)
i−1)

−cr(k1N
(l)
i (M

(l)
i − 1) + k2N

(l)
i logN

(l)
i)

+
T∑
i=t

|Ci|∑
l=1

(n− 1)n(i−1)A(K logN −M (l)
i−1)

−cr(k1N
(l)
i M

(l)
i + k2N

(l)
i logN

(l)
i − k1K logN).

68

When cr < min{cdif,HDACS,HCS}, Etotal,HCS − Etotal,HDACS > 0 will always be true.

In summary, if cr < min{cdif,HDACS,PCS}, the total energy consumed in HDACS is less

than that of PCS; if cr < min{cdif,HDACS,HCS}, the total energy consumed in HDACS is less

than that of HCS.

Additionally, if we divide the second integral term of denominator and numerator in cdif,HDACS,PCS

into two parts at the point i = t, we can easily conclude that cdif,HDACS,PCS ≥ cdif,HDACS,HCS

is true according to the condition that Ni < K logN when i < t. Note that the values of

cr, cdif,HDACS,PCS and cdif,HDACS,HCS are determined by the hardware, we incorporate the

hardware specs in the following section to demonstrate that cr < min{cdif,HDACS,HCS} always

holds in the real applications and the data aggregation in HDACS is more power-efficient than

that of PCS and HCS.

3.5.4.5 Energy Model Applied in the Hardware

In this section, we choose Mica2 as a typical example. We use the specs from Mica2 (45)

with power supply U = 3(V), CPU active current Ip = 8(mA), message receiving current Ir,rx =

7(mA), and message transmitting current Ir,tx = 17.4(mA). Additionally, Mica2 uses 7.3MHz

Atmel Microcontroller (46) gives us the single instruction processing time: tp = 0.137(µs).

Consistent with IEEE 802.15.4 for low-rate wireless personal area networks, channel bandwidth

is set as 38.4 Kbps and thereby tr,rx = 26(µs), and tr,tx = 26(µs). With the suitable choice of

the values of the constant parameters, min{cr,HCS} is computed to be on the order of -2, which

is significantly larger than of cr, which is computed to be on the order of -9. Figure 11(a) plots

the results derived from the energy model in terms of the communication and computation

69

(a) communication and computation cost (b) computation cost

Figure 11. Theoretical results of energy consumptions in terms of communication and
computation cost

cost for different CS-based data aggregation schemes. Observe that the communication cost

for three schemes are in the order of 5 compared with computation cost in the order of −3.

It proves that computation cost is insignificant in these practical applications compared with

the communication cost. Note that the number in this graph may not reflect the real value

because of the unknown values of the parameters, but our major attention focuses on the

trending results. Among the three CS-based data aggregation communication cost, the results

demonstrate the superiority of HDACS in energy efficiency even though HDACS requires a

bit higher computation cost showed in Figure 11(b). Furthermore, we notice a big jump in

communication cost when network scales up to a value, which is between 1000 and 1200. This

phenomenon may be attributed to an increase of the network volume to a size that leads to an

increment in the total number of levels in the hierarchy.

70

3.6 Performance Evaluations

In order to perform a comprehensive evaluation, we have used the real-world dataset mea-

suring the sea surface temperature from the Nation Data Buoy Center as well as synthetic

data to test our proposed scheme by using the Java-based SIDnet-SWANS(16) simulator and

compare the performance with other CS-based data aggregation schemes.

3.6.1 Data Field

We have collected sea surface temperature data from the Nation Data Buoy Center mea-

sured by 25 nodes across the Pacific Ocean from 137 E to 95 W, 8N to 8S on April 22, 2014.

Figure 12 shows the temperature field after Delaunay triangulation, in which the data is in

the range of 27 to 31, which serves as a underlying data field for surveillance. Data value for

each monitoring node is obtained by averaging the nearest three data values from the dataset.

Considering the limited scale of sensor networks in the real-world applications, we also have

tested all the schemes on the synthetic data fields, in which each node observes a constant value

corrupted with two types of additive noises: one follows uniformly distribution with zero mean

and variance 1/3, and the other is Gaussian noise with zero mean and unit variance.

3.6.2 Signal Sparse Basis

As we target the applications of sensor networks at data fields with smooth and slowly

varying property that are densely sampled, such as temperature, humidity, chemical substance,

etc, Discrete Cosine Transform (DCT) should be a suitable choice for sparse signal represen-

tation. It not only yields fast vanishing moments for signal representation, but also avoids

complex coefficients like those in Discrete Fourier Transform (DFT) representations. Complex

71

computations inevitably increase the algorithm complexity and unnecessarily introduce extra

computation cost. Furthermore, many traditional transformations require that the cardinality

of data set has to be a power of 2 such as Discrete Wavelet Transform (DWT); otherwise, they

need to append more samples i.e. zeros to meet this condition. But DCT does not have such

restriction.

Many real-world signals have power-law decline property in coefficients instead of the exact

K-sparsity representation (47). In other words, the coefficients decay rapidly as K goes to

infinity. To be more precise, such signals are compressible but not K-sparse. Considering this

fact, we introduce the signal truncation process so as to obtain K-sparse signals within an

allowable error bound to satisfy the prerequisite of compressive sensing. In the simulation, we

forced the magnitudes of DCT coefficients smaller than 10% of the first dominant magnitude

to zero.

3.6.3 Sensing Matrix

Noiselets(48) known as ”noise-like”, or in particular, totally un-compressible, is deemed

to be incoherent with the most conventional transformations. Its entries are constructed via a

multi-scale iteration in a way the same as orthogonal wavelets and wavelet package methods.The

self-productive and scalable property make Noiselets as a good candidate as the sensing matrix

in the data aggregation hierarchy, which avoids the sensing matrix transmission for assisting CS

recovery process. Instead, only the indexes of the randomly elected row of the sensing matrix

need to be sent, which may incur an extra Θ(M) space depending on how they are packed in

the message and the size is less than or equal to the scale of data measurements.

72

3.6.4 CS Recovery Algorithm

In a multi-scale hierarchy, the errors from inaccurate results will be propagated and amplified

in the routing path from the bottom to the top of the hierarchical tree, therefore, the accuracy of

reconstructed data at each level plays a key role for a robust and effective CS data aggregation

scheme. Besides, for an electronic device with limited computation capability, a simple and

efficient algorithm is always desirable. All these constraints propel us to find a suitable CS

recovery algorithm with high recovery accuracy and low computation cost.

CoSaMP algorithm (47) (43), a convex optimization-based approach, has been proved to

have fewer iteration steps than the other Orthogonal Matching Pursuit (OMP) (49) (50)

algorithms. Inspired by Uniform Uncertainty Principle (UUP), CoSaMP utilizes the proxy

y = Φ ∗ Φx, which preserves the energy of K largest components of signal x, to approximate

the K-sparse signal x.

CoSaMP can identify the location of the largest K nonzero entries of signal x with a very

high probability. Model-based Compressive Sensing (MCS) (47) incorporates signal structural

information into CoSaMP and it significantly improves the recovery accuracy. With the aid

of the signal structural information, the algorithm shrinks the search space and identifies the

location of the largest K nonzero entries in a faster way and essentially reduces the computa-

tional complexity. Adopting the same concept as MCS, we design a customized CS recovery

algorithm by investigating the characteristics of DCT signal structure to speed up the algorithm

to converge to the solution.

73

Algorithm 5 shows the pseudo code of DCT-based CoSaMP. In each iteration, the algorithm

first identifies the maximal 2K components, and then uses DCT signal structure information

to remove the incorrect identification.The residual in each iteration is preserved as an unsolved

part and is utilized to obtain the remaining magnitude in the next iteration. Note that ΦTu in

Algorithm 5 on line 9 is a product of pseudo inverse of matrix Φ and u. The iteration repeats

until it meets either one of termination criteria: the energy of the residue is within a certain

bound or the algorithm goes beyond the maximum allowed iterations.

Algorithm 5 DCT-based CoSaMP

1: Input: Sensing matrix Φ, CS random measurements u, sparsity K
2: Output: A K sparse approximation x̂ of the target signal x
3: x̂0 ← 0, v ← u, k ← 0 . Initialization
4: repeat
5: i← i+ 1
6: y ← Φ ∗ v . Form signal proxy
7: W ← supp(y2K) . Identify large components
8: T ←W

⋃
supp(x̂i−1) . Merge supports

9: b|T ← ΦTu . Signal estimation
10: b|T c ← 0
11: x̂i ← DCT (bK) . Using DCT structure to prune signal
12: v ← u− Φx̂i . Update current samples
13: until halting criterion true

74

Figure 12. Surface temperature data across the Pacific Ocean from 137 E to 95 W, 8N to 8S
on April 22, 2014

3.6.5 Simulation Settings

We have implemented all CS-based data gathering schemes on SIDnet-SWANS (16), (Sim-

ulator and Integrated Development Platform for Sensor Networks Applications) to study their

performance. JiST/SWANS (Java in Simulation Time) (17) (18),is a Java-based discrete-event

simulation engine, where all behaviors of a sensor are simulated and their relevant information

can be obtained. Meanwhile, we use SIDnet, a Java-based visual tool, to observe the run-time

behaviors of the sensors. A snapshot of user interface of CS-based data aggregation hierarchy

on SIDnet-SWANS for 400 sensors network is shown in Figure 13.

In the simulation, the field size is set as 4000 ∗ 4000m2, the sensors deployed in the field

is in the range of 300 to 800 with 50 nodes as an increments each time, therefore, the average

node density increases from 18.75/km2 to 50/km2. We also set the degree of the cluster n

as 4. Moreover, the leaf nodes in the first level are assumed to be one hop distance within

75

Figure 13. Hierarchical Structure for Network Size 400 on SIDnet-SWANS platform

their cluster. Additionally, the bandwidth is set as 40000bps, which follows IEEE 802.15.4/4a

for the low data rate wireless personal data networks and a standard length of one message is

133 bytes (88 bytes for the payload and 45 bytes for control information). Theoretically, the

transmission delay is 133 ∗ 8/40000 = 26.6ms. For simplicity, we neglect the noise interference

from the channel and also ignore the possibility of random packet loss. For the setting of

the power consumption parameters, we adopt the Mica2 Motes specs again. The default unit

transmission cost is set 81µJ/ms per message. We use the same parameter assignments as

listed in Table I.

76

Figure 14. Signal Recovery Results for Real Datasets

3.6.6 Simulation Results

3.6.6.1 Signal Recovery Performance

We define the Signal to Noise Ratio (SNR) as the decimal logarithm of the ratio of the sum

of data energy sensed by each sensor over the data recovery error power in the cluster head at

the top level. The expression is as follows:

SNRdb = 10 log

∑N
m=0 ||Xm||2∑N

m=0 ||Xm − X̂m||2
,

where Xm is the value sensed by the sensor m and X̂m is the ultimate value collected in the

cluster head on the top of the hierarchy.

Figure 14 and Figure 15 show data recovery results for the real datasets and the synthetic

datasets versus different CS-based data aggregation schemes, respectively. Both figures show

HDACS achieves higher SNR than other schemes. The overall SNR of synthetic dataset (Fig-

ure 5) is higher than that of the real datasets (Figure 14). And the overall SNR of data field

77

(a) Constant Data Field with Uniformly Dis-
tributed Noise

(b) Constant Data Field with Gaussian Noise

Figure 15. Signal Recovery Results for the Synthetic Datasets

with uniform random noise (Figure 15(a)) is higher than that of the data field with Gaussian

noise (Figure 15(b)). We conjecture that this difference is due to data fluctuations in real-world

dataset exceeding those in synthetic data. Besides, PCS and HCS tend to have very similar val-

ues, which may be the outcome of their similar CS random measurements encoding procedure

and the same centralized CS recovery process. Furthermore, signal truncation in PCS and HCS

in a cluster at each level is taken based on the whole network size N , which inevitably intro-

duces much higher quantization errors than the decentralized CS recovery algorithm performed

in HDACS.

The extra bonus from the hierarchy is that data can be queried locally, i.e. the cluster head

at the top level is not the only node where we can query data. Cluster heads at different levels

own the entire data from sensors within their area. Therefore, the global data field can also be

represented by the union of data obtained from all the cluster heads at any level. Figure 16

shows the data recovery results for two synthetic data fields at different levels, and the graphs

78

(a) Constant Data Field with Uniformly Dis-
tributed Noise

(b) Constant Data Field with Gaussian Noise

Figure 16. Signal Recovery Results from Each Level

(a) Network Size 400 (b) Network Size 600

Figure 17. Transmission Energy Cost Distribution for Different Network Sizes

demonstrate the data recovery performance deteriorates as the level goes up in the hierarchy.

(The results of the real datasets shows the same trend.) The reason we proffer is that the errors

from signal truncation as well as CS recovery algorithm introduced at each level propagate and

are amplified in the hierarchical routing path.

79

Figure 18. Total Energy Consumption for Different Network Size

3.6.6.2 Energy Consumption

Figure 17 shows the energy consumption for each sensor in a 400-node and 600-node network

respectively. Compared to PCS, HDACS saves 34.4% to 80% energy for individual sensors,

depending on their roles in the hierarchy. Similarly, for a 600-node network, HDACS saves the

energy for nodes approximately 44.5% to 80%. Compared to HCS, HDACS saves at most 55%

of energy for nodes in both networks. This result demonstrates the superiority of HDACS in

energy efficiency for an individual sensor.

The total energy consumption versus network sizes is shown in Figure 18. Among three

CS-based schemes, PCS consumes the most energy. Fixed amount of CS random measure-

ments in transmission for each sensor, regardless of the roles of nodes in the hierarchy severely

deteriorates the performance and contributes to the waste of energy. When the network size

expands, this problem becomes more pronounced. We also find that HDACS outperforms HCS

and energy saving is around 17.88% percentage of HCS. The simulation results shown in Fig-

80

ure 17 and Figure 18 also demonstrate the effectiveness of the energy model we built in the

previous section.

3.6.6.3 Other Related Issues Discussion

Overheads In HDACS, the multi-level clusters are constructed in a way that nodes register

themselves to their immediate ancestor nodes from bottom to top following a tree with

degree n. This registration overheads come at each level of the hierarchy configuration

stage. In the meantime, we assume the hierarchy is built in a static manner and will be

utilized for multiple data collections purpose. In this case, the registration overheads for

each data collection will be insignificant when the energy expenditure is averaged over all

the data collection rounds.

Delay Delay is a common issue in all data collection schemes. In a wireless environment,

a nonhierarchical scheme may add O(N) delay due to channel collision issues. In a

hierarchical routing scheme, data aggregation starts from the leaf nodes and proceeds

toward the sink level by level. Suppose data collection time at each level is a constant

D, delay is determined by the product of D and the number of levels T = logNn of the

hierarchy. It implies the delay is bounded by O(logNn), which performs generally better

than other routing protocols with delay O(N).

Energy Consumption Unfairness The unfairness in energy consumption among nodes is

another important issue, which drives a lot of research investigations (51) (52) (53). In

order to handle this issue in WSNs, we pursue a simple and efficient localized solution. In

our solution the cluster heads with battery charge below a certain level, (e.g., 50 percent-

81

age) are replaced by the geographically nearest leaf nodes within each cluster. Besides,

the cluster head node also need to notify its immediate parent node and immediate chil-

dren nodes about this update. No further communication is required. Each cluster head

replacement is performed in such a way that it minimizes the number of nodes involved

and so does the related overheads. The proposed solution does not require reorganization

of the entire network.

CHAPTER 4

POWER-EFFICIENT NONUNIFORM 2-D FOURIER ANALYSIS USING

COMPRESSIVE SENSING IN WSNS

4.1 Introduction

In chapter 2, we (54) proposed a power-efficient Fourier analysis in a 2D random wire-

less sensor network by adopting the methodology of Nonuniform Discrete Fourier Transform

(NDFT) (55) (56)(57)(13). It addressed the problem by designing a distributed hybrid struc-

ture consisting of local interpolation step of NDFT algorithm and global FFT computation. A

suitable choice of clusters is formed to achieve the initial Fourier coefficients within allowable

estimation error bounds. Then separable global 2D FFT is performed along rows and columns

to get the final Fourier coefficients. We note that the ratio of the cost of data communication to

computation is high, of the order 20:1. Therefore, communication efficiency is a major concern

when designing power-efficient algorithms to implement distributed applications in WSNs. In

our earlier work (54), we find that energy spent in global communication during FFT domi-

nates the overall energy costs. Traditional separable 2D FFT for computing DFT holds a lot

of benefits as it reduces the computation complexity from O(N3) to O(N2 logN) for N ∗ N

points. However, when 2D DFT computation is mapped as a distributed computing tasks on

WSNs, the key consideration is shifted from computation complexity to communication cost.

82

83

In this chapter, an efficient NDFT algorithm is proposed for implementing the in-network

Fourier analysis in WSNs on the HDACS model shown in the chapter 3 aimed at minimizing

communication overhead, reducing execution time, and improving power efficiency. We exploit

CS to realize a highly efficient NDFT algorithm in WSNs.

The salient steps of the CS-based NDFT are as follows:

1. Divide the sensing field into a hierarchy of clusters.

2. Collect data from randomly placed sensors at their corresponding cluster heads.

3. Perform the interpolation step of NDFT algorithm to obtain the expanded uniform data,

and perform 2D Block FFT inside each cluster head.

4. At each cluster head, take sparse random measurements of the Fouler coefficients using

CS. and then forward them to the cluster heads in the next level.

5. After receiving the data, perform CS recovery algorithm and 2D block FFT algorithm

inside each cluster head to obtain the Fourier coefficients in this level.

6. Repeat step 4 and step 5 until the nodes at the highest level of the cluster hierarchy have

the final Fourier coefficients for the entire data field.

Using theoretical analysis as well as simulations on a Java based SIDnet-SWANS sensor net-

work simulating platform, we demonstrate that the proposed method has significant advantages

over the previous work (54), in terms of execution time, energy consumption, signal-to-noise

ratio (SNR), and communication overhead.

84

4.2 Related Work

For Fourier analysis in randomly deployed wireless sensor networks, NDFT has been con-

sidered a suitable tool to obtain frequency components of spatial irregularly sampled data.

However, direct computation of NDFT requires the use of all samples. It is a energy-consuming

task due to complex local computations and global communication patterns. In our previous

work (54), we have addressed this problem by presenting a novel hybrid structure consisting

of local interpolation step of NDFT algorithm and a new global FFT formulation to optimize

the data communication pattern and therefore improve the power efficiency. For the sake of

completeness, the main idea in (54) is summarized below.

4.2.1 NDFT algorithm

The basic idea behind computing Fourier coefficients of NDFT is to find n equispaced data

based on M given nonequispaced data (56), where n > M . For a d dimensional space, let∏d := [−1
2 ,

1
2]d, IN := {(N

∏
)d
⋂

Zd}, IM := {(M
∏

)d
⋂
Zd}, set V denotes the time or

spatial location and set X represents the frequency location. For nonequispaced data samples

f(vj),where vj ∈ V, j ∈ IM . Algorithm 6 shows fast computation of Fourier coefficients of M

nonuniform data given in the time or spatial domain when d = 1.

4.2.2 Global Separable 2D FFT Formulation

N points FFT computation needs K = log(N) phases. Assume each sensor node is repre-

sented with a binary index < bKbK−1....b1 >. Two operations has been defined in one phase.

In phase i, butterfly communication and computation are implemented as the first operation,

85

Algorithm 6 NDFT algorithm

Step 1. Choose window function ψ̃(x),where x ∈ X. Precompute its Fourier series Ck(ψ̃),where k ∈ IN . (When

it comes to the d dimension case, the window function will be ψ̃(x) =
d∏
t=1

ψ̃(xt) for x ∈ Rd instead.)

Step 2. Set up

gl :=

vjn+m∑
l=vjn−m

f(vj)ψ̃(vj −
l

n
)

where m is the size of window function.
Step 3. Compute N points DFT of gl

ĝk :=

n/2∑
l=−n/2

gle
−2πikl/n

Step 4. Compute

h̃k :=
ĝk

nCk(ψ̃)

h̃k is the approximate frequency component of the data field.

which is the same as traditional FFT computation. In the second operation, binary index

shuffling function has been defined and works on the last i+ 1 bits of binary index representa-

tion. The sensors exchange data according to the change of index in each phase, so that every

sensor contains the data of newly shuffled binary index representation. Algorithm 7 shows the

binary index shuffling function which enables all the butterfly computation only between two

physical neighboring sensors. This property shortens transmission distance and thereby reduces

transmission power. For additional details we refer to (54)

4.3 Proposed Power-efficient NDFT Implementation Design

The power-efficient NDFT implementation investigated is based on a novel compressive

sensing (CS) data aggregation architecture, which consists of a hierarchy of clusters. The CS

data aggregation architecture adopts the compressive sensing method as a compression tool to

86

Algorithm 7 The binary index shuffling function

if Phase i < K/2 then
Circular left shift the rightmost i + 1 bits of binary index one bit from <
bKbK−1 · · · bK/2+1bK/2 · · · bj+1b1 · · · bj−1bj > to < bKbK−1 · · · bK/2+1bK/2 · · · b1b2 · · · bjbj+1 >.
else if i = K/2 then
Binary index is flipped entirely from < bKbK−1 · · · bK/2+1b1b2 · · · bK/2−1bK/2 > to <
bK/2bK/2−1 · · · b2b1bK/2+1 · · · bK−1bK >.
else if i > K/2 then
Circular left shift one bit from (K/2 + 1)th bit to (i−K/2 + 1)th bit of binary index and keep the rightmost
K/2 bits unchanged, i.e., binary index changes from < bK/2bK/2−1 · · · bjb1 · · · bj−2bj−1bK/2+1 · · · bK−1bK > to
< bK/2bK/2−1 · · · b1b2 · · · bj−1bjbK/2+1 · · · bK−1bK >.
end if

reduce the amount of data transmitted, and therefore achieves power efficiency. The following

subsections introduce the main techniques involved in the NDFT task.

4.3.1 Initial Data Reduction Operation

The interpolation step of the NDFT algorithm expands the sampled data and represents it

on a regular uniform grid to compute N ×N global FFT. The traditional method extracts the

first N×N data samples, removes the remaining data and then performs the FFT computation.

This method is not directly applicable in sensor network, since it inevitably causes unbalanced

sensing task distribution among clusters and renders data sensed from some clusters useless. In

order to solve this problem we adopt a new data truncation method. Since the redundant data

is distributed evenly over all clusters, we remove the same fraction of them within each cluster

to shrink the data size.

4.3.2 Initial Data Shuffling Operation

The decimation-in-time (DIT) radix-l FFT algorithm is applied in the following global FFT

computation task, which requires data reorganization before starting butterfly computation.

87

The new data groups have been set up based on the same remainder when their indexes are

divided by radix l along row-wise and column-wise directions. We find it convenient to introduce

the notation JN = {0, 1, · · · , N − 1}, where N is a positive integer.

Suppose a N ×N nodes network with A× A data in each cluster can be divided as L× L

clusters, where L = N/A. Assume unit transmission distance between any neighboring clusters.

For any data with index (x, y) ∈ J2
N , the transmission distance for each data is |x%L−bx/Ac|+

|y%L− by/Ac|, where % is modulo operator and b c is floor operator.

4.3.3 Global Computation Operation

After cluster heads finish the aforementioned operations in the first level, DFT is calculated

to obtain the initial Fourier coefficients. Random measurements are taken for CS and trans-

mitted to their parent cluster heads at the next level. For consistency as model set in (58), we

adopt the same 2D uniformly random network deployment and use the same parameters and

notations in the following analysis.

In a N -sensor hierarchical structure with T levels, suppose N
(l)
i is the number of sensors in

cluster l at level i, n is the number consisting of one parent cluster head and its children cluster

heads in two consecutive levels, M
(l)
i is the measurements after performing CS or the amount of

data for transmission. Signal sparsity factor of data field is assumed as K. In level i(i ≥ 2), each

cluster head has n − 1 children nodes. (Note: n,N are defined as model parameters different

from previous notation.) The following operations are performed sequentially at each cluster

head.

(a) Receive (n− 1)Mi−1 measurements from its children nodes.

88

(b) Perform CS recovery algorithm to get Fourier coefficients Fi for each children node.

(c) Calculate DFT according to the following 2D block DIT radix-l FFT algorithm with n ∗Fi

Fourier coefficients to obtain Fourier coefficients Fi+1.

(d) Use CS to compress the data size of Fi+1 into random measurements Mi+1 and then send

them to its parent cluster head Ci+1.

2D Block decimation-in-time radix-l FFT theorem. 2D FFT formula can be expressed

in the following way:

F (u, v) =

M−1∑
m=0

N−1∑
n=0

X[m,n]e−j2π(mu
M

+nv
N

)1

Let

X =



X00 X01 · · · X0(l−1)

X10 X11 · · · X1(l−1)

...
. . .

...

X(l−1)0 · · · X(l−1)(l−1)



1m, n, M, N are only dummy variables in the theorem.

89

Where Xqp = X[lm + q, ln + p] for m ∈ JM , n ∈ JN and q, p ∈ Jl. Assume X̂qp is the M ∗N

points Fourier transform of sequence Xqp.

F (u, v) =

lM−1∑
m=0

lN−1∑
n=0

X[m,n]e−j2π(mu
lM

+ nv
lN

)

=

M−1∑
m=0

N−1∑
n=0

X[lm, ln]e−j2π(lmu
lM

+ lnv
lN

)

+ X[lm, ln+ 1]e−j2π(lmu
lM

+
(ln+1)v

lN
) + · · ·

+ X[lm+ 1, ln]e−j2π(
(lm+1)u

lM
+ lnv

lN
) + · · ·

+ X[lm+ 1, ln+ 1]e−j2π(
(lm+1)u

lM
+

(ln+1)v
lN

) + · · ·

+ X[lm+ l − 1, ln+ l − 1]e−j2π(
(lm+l−1)u

lM
+

(ln+l−1)v
lN

)

= X̂00 + X̂01e
−j2π v

lN + · · ·

+ X̂10e
−j2π u

lM + · · ·+ X̂11e
−j2π(u

lM
+ v

lN
) + · · ·

+ X̂(l−1)(l−1)e
−j2π(

(l−1)u
lM

+
(l−1)v

lN
)

It can also be expressed as:

F (u, v) =

l−1∑
q=0

l−1∑
p=0

X̂qpe
−j2π(qu

lM
+ pv

lN
) (4.3.1)

where u ∈ JM , v ∈ JN . For a, b ∈ Jl,

F (u+ aM, v + bN) = e−j2π(a
l

+ b
l
)F (u, v) (4.3.2)

Equation (Equation 4.3.1) and (Equation 4.3.2) are utilized to achieve the Fourier coeffi-

cients in each level. 2D block FFT algorithm guarantees the sparse signal representation, and

therefore enables the feasibility of CS. Fewer and fewer nodes participate in the task with the

increasing levels, but Fourier coefficient size grows exponentially at the same time. CS reduces

the amount of data for transmission to grow on a logarithmic scale. We will show in the fol-

90

lowing section that for the global FFT algorithm, 2D block FFT algorithm implemented on CS

data aggregation architecture works much better than the existing state of the art.

4.4 Comparison of Related Work and Current Work

Since the local interpolation step of the NDFT algorithm is same as in previous work

(54) in the initial phase, we mainly focus on the energy consumption with respect to global

FFT algorithm. Previous work initialized the data shuffling operation to shorten transmission

distance and therefore improved power efficiency. The data aggregation mechanism followed

separable 2D FFT algorithm. The method in this work implements DFT task on multi-scale

data aggregation architecture, and adopts a 2D block FFT algorithm to obtain the Fourier

coefficients. Therefore, power efficiency comparison is essentially the comparison of two types

of 2D FFT algorithms.

4.4.1 Theoretical Analysis

Energy efficiency has been evaluated theoretically from the perspective of amount of data

transmitted and associated energy consumption.

4.4.1.1 Data transmitted

Let us assume that after performing the local interpolation step of the NDFT algorithm,

cluster heads at level one have the uniform data with identical size Mu. We get N
(l)
i =

ni−1Mu,M
(l)
i = K logN

(l)
i = K log (ni−1Mu). The amount of data M for the whole task

is:

M =

|C1|∑
l=1

(N
(l)
1 − 1) +

T∑
i=2

|Ci|∑
l=1

(n− 1)M
(l)
i−1

= N − nT−1 + (n− 1)nT−1K(lognS1 + logMuS2)

91

where S1 =
∑T−1

i=1
i
ni

= n−1(1−n−(T−1))
(1−1/n)2 − T−1

nT (1−1/n)
and S2 =

∑T−1
i=1

1
ni

= n−1(1−n−(T−1))
1−1/n . We get

an exact energy consumption value rather than an approximate range because the interpolation

step of NDFT algorithm converts irregular sampling into a uniform one.

4.4.1.2 Energy consumption

We assume that the cost of transmission of a single bit over a distance E
(l)
i is a function of

transmission distance and data size. E
(l)
i is modeled as E

(l)
i = cs +

∑
j∈v(l)

i

c(d
(j)
i)αM

(l)
i , where

v
(l)
i is the collection of children nodes, cs is a constant startup energy consumption for each

data transmission task, c is a constant transmission cost for unit data size per unit distance,

and α is the power loss exponent. The number of c, cs and α depend on the hardware and

algorithms for various application tasks.

In a large dense uniformly and randomly distributed sensor network,
∑

j∈v(l)
i

(d
(j)
i)α ≈

4 (n−1)
si

∫ bi
0

∫ bi
0 (x2+y2)α/2dxdy, where bi = 1

2s
1/2
i when i ≥ 2. And

∑
j∈v(l)

i

(d
(j)
i)α ≈ 4

(N
(l)
1 −1)
si

∫ bi
0

∫ bi
0 (x2+

y2)α/2dxdy when i = 1.

Therefore, the total transmission energy cost is:

E =

|C1|∑
l=1

cs +A1(N
(l)
1 − 1)

+
T∑
i=2

|Ci|∑
l=1

cs +A1M
(l)
i (n− 1)n(i−1)(α−1)/2

= nT−1cs(1 + S2) +A1(N − nT−1)

+ A1K(n− 1)nT−1[S3 logn+ S4 logMu]

Where we define A1 = c
1+α2−απs(α−1)/2, S3 =

∑T−1
i=1 ini(α−3)/2 = n(α−3)/2(1−n(α−3)(T−1)/2)

(1−n(α−3)/2)2 −

(T−1)n(α−3)T/2

1−n(α−3)/2 and S4 =
∑T−1

i=1 ni(α−3)/2 = n(α−3)/2(1−n(α−3)(T−1)/2)

1−n(α−3)/2 .

92

Figure 19. Transmission Energy Consumption Comparison

Data size Mu for each transmission is constant in paper (54). Therefore, transmission

distance pays a key role for energy consumption. In the case of 1D seperarable row and column

FFT, H1D = N
3/2
1 −N1−1/2N1 logN1+PC(N1) for N1 nodes. If N = N2

1 nodes constitute a 2D

network, H1D = N3/4−N1/2−1/4N1/2 logN +PC(
√
N). Therefore, transmission distance for

the whole data aggregation task is H2D = 2N1H1D = 2N5/4−2N−1/2N logN+2N1/2PC(
√
N)

and its corresponding energy consumption is evaluated as E2D = cs + cdαMuH2D, where d is

unit distance between two neighbor finest clusters.

Figure 19 shows the quantitive results of the energy consumption, where constant parameters

cs, c,K, s are assumed as unity and α as 2. The proposed NDFT implementation method

requires much less energy for transmission. The advantage is much more obvious with the

increase of network size. Besides, more power efficiency will also be achieved by increasing

the cluster size. The theoretical result gives a simple energy consumption comparison without

considering the external inferences from the realistic network, such as packet collision, network

93

Figure 20. Simulated Execution Time Comparison

travel congestion, synchronism, etc. In the following section, we investigate performance based

on implementations on a simulation platform.

4.4.2 Performance Evaluation

The simulation of the NDFT task is conducted on SIDnet-SWANS (16), a simulator and

integrated development platform for sensor networks of various exploratory-design applications.

We tested multiple network sizes from 300 to 700 nodes. The field size is fixed as 4000∗4000m2,

and average nodes distribution density increases from 18.75/km2 to 43.75/km2. The cluster

size n is set as 4, the communication system follows IEEE 802.15.4/4a standards for low data

rate Wireless Personal Data Networks, and the data transmission rate is set as 40000bps.

The following results show the advantage of current work with respect to execution time

for the whole task, distribution of transmission energy consumption, SNR evaluation, and

communication overhead with respect to packet collision.

1. Execution time

94

Compared with computation time, communication time is the dominant execution time

for the whole task. We compare the execution time starting from the point where cluster

heads finish local interpolation step of NDFT algorithm so as to remove the interferences

from different startup overheads for building up the connectivity of networks and different

network hierarchy construction mechanisms. Figure 20 shows the comparison of execution

time of previous algorithm and the proposed NDFT implementation on CS data aggrega-

tion architecture in terms of global FFT computation. The proposed algorithm shortens

the execution period by almost 50%. The main reasons that lead to significantly reduced

execution time are explained as follows: During the process of practical simulation, sep-

arable 2D global FFT algorithm applied in paper (54) introduces extra communication

overhead. This operation is to solve the problem that arises for the instance when the

network size is approximate 300 to 800 nodes, in which case at least 16*16 nodes are

required to participate in the global FFT computation. The initial 8*8 clusters in the

first level cannot provide enough nodes for global computation. We solved this problem in

(54) by dividing the space into 2*2 subspaces to include more nodes. But this operation

inevitably introduces the backward data aggregation and increases the global execution

time. Another important reason is that the data shuffling operation aimed at reducing

the butterfly communication distance also brings the extra time delay. Since this delay

is in each phase, it explains the phenomenon that it takes at almost two times of execu-

tion time for the whole task. However, these two problems don’t exist in the multi-scale

hierarchical data gathering architecture.

95

Figure 21. Distribution of transmission energy consumption comparison for 400 nodes with
cluster size 4

2. Energy consumption distribution for transmission

The comparison of the distribution of energy consumption for transmission among 400

sensors is given in Figure 21. The result verifies the proposed method outperforms the

previous work significantly. There are some reasons which explain this great power effi-

ciency improvement. In the previous algorithm (54), more nodes are required for global

FFT computation. For computing 16*16 points FFT in a 400 sensor network, 256 nodes

are required for row-wise and column-wise FFT computation. However, the task mainly

rests on the cluster heads at higher levels in the hierarchical data gathering architecture.

Leaf nodes at the first level are more than the cluster heads. After forwarding the sensed

data to the cluster heads, they are in idle mode. On the other hand, CS applied as

compression method reduces the amount of data size for transmission, and therefore its

transmission cost is low.

3. SNR evaluation

96

Figure 22. Signal-to-noise ratio results

We compare the Fourier coefficients computed using the proposed distributed algorithm

with Fourier coefficients computed using a centralized NDFT algorithm in the sink node

where all the data is available. Figure 22 shows the SNR results for the constant data

field with uniform noise. The proposed algorithm preserves the accuracy regardless of the

network size.

Our simulation results shows that SNR is relatively independent of the network size.

Therefore, for communication efficiency this observation favors global FFT step on smaller

size networks. We can improve the SNR performance if the local interpolation step con-

siders neighboring clusters, which has been showed in previous work (54).

4. Communication overhead: packet collision

Additional advantage of the proposed algorithm is that it reduces the packet collision

phenomenon substantially. If data aggregation is mainly performed on a linear array (1D)

topology, it is inevitable that the two neighboring sensors will send their data concurrently

and cause packet collision. Previous work (54) has this problem and it is especially severe

97

Figure 23. Packet collision ratio comparison for 400 nodes

in the middle stage when it involves a large number of nodes to send data over a long

distance. Completely avoiding the collision is not easy by designing scheduling algorithm

in the application layer. But this problem can be mitigated in the hierarchical data

structure to a great extent. Clustering mechanism enables all the transmission only

within the restricted clustering area. Since the cluster heads generate the data from

their children nodes, it is easy to design the scheduling algorithm to arrange children

nodes to transmit their data individually in a dedicated time slot. At the upper levels

of the cluster hierarchy, increase in the spatial distance further reduces the possibility of

collisions. This property also improves the power efficiency by reducing the retransmission

rates. The simulation result in Figure 23 verifies the theoretical analysis.

CHAPTER 5

ADAPTIVE HIERARCHICAL DATA AGGREGATION USING

COMPRESSIVE SENSING (A-HDACS) FOR NON-SMOOTH DATA

FIELD

5.1 Introduction

In chapter 3, we improved CS-based data aggregation by proposing a Hierarchical Data

Aggregation using Compressive Sensing (HDACS) (59) that introduced a hierarchy of clusters

into CS data aggregation model and achieved significant energy efficiency. However, most of

the previous works used CS under the assumption that data field is smooth with negligible

white Gaussian noise. In these schemes, signal sparsity is calculated globally based on the

entire data field. In more realistic scenarios, where data field may have regional fluctuations or

it is piecewise smooth, existing CS based data aggregation schemes will yield poor compression

efficiency. The sparsity constant K is usually a big number, with large probability, when the

field consists of bursts or bumps. In such cases, the number of CS measurements M = K logN

is bigger than N , where N is the local cluster size. In order to take full advantage of CS for

its great compression capability, we propose an Adaptive Hierarchical Data Aggregation using

Compressive Sensing (A-HDACS) scheme.The proposed scheme adaptively chooses sparsity

values based on signal variations in local regions.

98

99

Our solution is based on the observation that the number of CS random measurements

from any region (spatial or temporal) should correspond to the local sparsity of the data field,

instead of global sparsity. Intuitively, it should work well because the nodes are more correlated

with each other in a local area than the entire global area. Also, it is easy to compute the local

sparsity, particularly when a data aggregation scheme is based on a hierarchical clustering

scheme. Also, in order to compute global sparsity, apriori knowledge of the data field is

required. We show that the proposed A-HDACS scheme enables more sensor nodes to utilize

compressive sensing compared to the HDACS scheme (59) that employs global sparsity based

compressive sensing. Two types of data fields: smooth data field with multiple Gaussian bumps

and piecewise smooth data field are chosen for performance evaluations. Smooth data field with

multiple Gaussian bumps represents some typical environment monitoring applications, such

as radioactive waste treatment, air pollution monitoring, chemistry release monitoring, etc.

(60). And piecewise smooth data field manifests a type characteristic of two flat measurement

surfaces connected by a sharp segmentation in many applications, such as indoor VS. outdoor

temperature monitoring. The effectiveness of the proposed scheme has been demonstrated by

using SIDnet-SWANS (16) sensor simulation platform. For the smooth data field with multiple

Gaussian bumps, A-HDACS reduces energy consumption by ≈ 6% to 10%, depending on the

network size. Similarly, for the piecewise smooth data field, it reduces energy consumption by

≈ 23.36% to 30.17% depending on the network size. We observe higher gains in larger network

sizes. The experimental results are consistent with our theoretical analysis.

100

TABLE V

PARAMETERS DEFINITION
N The network size
T The total level of the hierarchy

N
(l)
i The cluster size at level i in cluster l

M
(l)
i The amount of data transmitted after performing CS at level i in cluster l

Ci The collection of clusters at level i
|Ci| The number of cluster at level i in cluster l

where |Ci| = nT−i

5.2 Proposed Adaptive HDACS (A-HDACS) Scheme

The basic idea behind A-HDACS is that CS random measurements for each sensor that

need to be communicated are determined by the sparsity of data field within each cluster at

different levels of the data aggregation tree.

For consistency, we adopt the same notations as chapter 3 shown in (59), showed in Table V.

In order to capture varying sparsity of the data field based on local regions, we also define

the following variables.

• KT : the whole data field sparsity

• Ki T : threshold defined as Ki T = maxl∈Ci{
N

(l)
i

logN
(l)
i

} at level i

• K(l)
i : sparsity of the data field in cluster l at level i

101

Besides, we also define two types of nodes: CS-enabled nodes and CS-disable nodes. In

CS-enabled nodes the data collected is large and sparse enough that CS pays off. On the other

hand, in CS-disabled nodes the data collected is small and/or not sparse enough to yield the

benefits of CS.

The salient steps of A-HDACS implemented on the multi-resolution data collection hierarchy

are as follows:

1. At level one, each leaf node sends its sensed data to its cluster head without applying

CS. The cluster head receives the data from all its member nodes and performs the

conventional transformation to obtain the signal representation and its sparsity factor

K
(l)
1 . Then it compares K

(l)
1 to

N
(l)
1

logN
(l)
1

. If K
(l)
1 <

N
(l)
1

logN
(l)
1

, it becomes a CS-enabled sensor

and computes the CS random measurements. The amount of data that needs to be

transmitted is M
(l)
1 = K

(l)
1 logN

(l)
1 ; otherwise, it disables itself as a CS-disabled node and

transmits N
(l)
1 data directly to its parent clusters.

2. At level i (i ≥ 2), cluster head receives packets from its member nodes. If it receives CS

random measurements, the CS recovery algorithm is performed to recover all the data.

After cluster head gets all the data from the children nodes, it projects the whole data

into a transform domain to obtain the signal representation and its sparsity factor K
(l)
i .

If K
(l)
i <

N
(l)
i

logN
(l)
i

, cluster head turns itself as a CS-enabled node and computes CS random

measurements with length M
(l)
i = K

(l)
i logN

(l)
i ; otherwise, it becomes a CS-disabled node

and sends raw data directly.

3. Repeat step 2) until cluster head at the top level, T , obtains and recovers the entire data.

102

5.3 Analysis of Data Field Sparsity

Proposition 1. In HDACS, if KT > Ki T , all the nodes at the level equal to and below i are

all CS-disabled nodes.

Proof. Define: f(x) = x
log x . since f ′(x) =

log x− 1
ln 2

(log x)2 > 0 when x > 3. Therefore, f(x) is a

monotonous increasing function when x > 3.

1. At level i, if KT > Ki T then KT >
N

(l)
i

logN
(l)
i

. In HDACS, CS requires the amount of data

to be transmitted M
(l)
i = KT logN

(l)
i . Therefore, M

(l)
i > N

(l)
i for ∀j ∈ Ci. Thus clusters

at level i are all CS-disabled nodes.

2. At level j and j < i, since N
(l)
j < N

(p)
i for ∀l ∈ Cj and ∀p ∈ Ci, Ki T > Kj T . So

KT > Kj T >
N

(l)
j

logN
(l)
j

and M
(l)
j = KT logN

(l)
j > N

(l)
j . Thus the nodes at levels below i

are also all CS-disabled nodes.

On the other hand, if ∃l ∈ Ci s.t. KT > Ki T >
N

(l)
i

logN
(l)
i

> K
(l)
i at level i. In A-HDACS,

since M
(l)
i = K

(l)
i logN

(l)
i < N

(l)
i , CS can be utilized.

Let’s define C ′i a set consisting of all clusters whose cluster heads are CS-disabled nodes at

level i, and ρi CS-disabled clusters percentage. In cluster l, σ
(l)
i is defined as the percentage of

the CS-disabled children clusters in a CS-disabled cluster at level i, where σ
(l)
i ∈ {

1
n ,

2
n , · · · ,

n
n}.

We get ρi =
|C′i|
|Ci| at level i; and ρi−1 =

∑|C′i|
l=1 nσ

(l)
i

|Ci−1| at level i− 1.

Proposition 2. If KT > Ki T , the CS-disabled nodes of A-HDACS at the level equal to and

below i are only ζ percentage of that of HDACS and ζ < 1.

103

Proof. Let’s define σi = 1
|C′i|
∑|C′i|

l=1 σ
(l)
i , which shows the average ratio of CS-disabled children

clusters to their parent clusters. Therefore, we get ρi−1 =
n|C′i|σi
|Ci−1| =

|C′i|σi
|Ci| = ρiσi. Follow the

same derivation, ρi−2 = ρiσiσi−1, ρi−3 = ρiσiσi−1σi−2, · · · , ρ1 = ρiσiσi−1 · · ·σ2. In summary,

the ratio of CS-disabled clusters in HDACS at level i and below level i is:

ζ =

∑i
j=1 |Cj |ρj∑i
j=1 |Cj |

=

∑i
j=1 |Cj |ρi(σiσi−1 · · ·σj+1)∑i

j=1 |Cj |

Since ρi and σi are equal to or less than 1, ζ is strictly less than 1. Therefore, it proves that only

ζ percent of the nodes at the level equal to and below i are CS-disabled nodes for A-HDACS.

When it comes to the level higher than i, i.e. i < t < T , the results are diversified. We

summarize them as follows:

1. If
N

(l)
t

logN
(l)
t

> K
(l)
t > KT , CS is enabled in both HDACS and A-HDACS. HDACS requires

fewer measurements than A-HDACS. But it comes another problem that whether or not

HDACS can guarantee the recovery accuracy when a local area has significantly more

data variations compared to the global area.

2. If K
(l)
t >

N
(l)
t

logN
(l)
t

> KT , HDACS enables CS but A-HDACS not. But it also has the same

problem as scenario 1).

3. If KT >
N

(l)
t

logN
(l)
t

> K
(l)
t , A-HDACS enables CS but HDACS does not.

4. If
N

(l)
t

logN
(l)
t

> KT > K
(l)
t , both HDACS and A-HDACS enable CS. A-HDACS requires fewer

measurements than that in HDACS.

104

5. In the remaining conditions, CS is disabled for both schemes.

To better understand this analysis, Figure 24 gives an example of a smooth data field with

a few local fluctuations and its corresponding logical tree in both HDACS and A-HDACS. In

Figure 24(b), the local variations causes the large global sparsity KT , and therefore leads to

plenty of nodes to be classified as CS-disabled nodes in HDACS. In the meanwhile, since in

A-HDACS sparsity constants Ki are derived based on local variations in each cluster i, there

is bigger percentage of CS-enabled nodes in A-HDACS than that in HDACS.

5.4 Performance Evaluation

5.4.1 Simulation Settings

We evaluate the performance of the proposed A-HDACS scheme using SIDnet-SWANS (16),

a JAVA based sensor network simulation platform. In our experiments we tested multiple net-

work sizes, ranging from 300 to 800 sensor nodes, populated in a fixed field size of 4000∗4000m2

area. The average nodes distribution density varies from 18.75/km2 to 50/km2. Additionally,

the communication system follows IEEE 802.15.4/4a standards for low data rate wireless per-

sonal data networks. In the simulation, the data transmission rate is set as 40000bps, and the

length of a standard message for transmission is 133 bytes (88 bytes for the payload of interest

from application layer and 45 bytes for side control information from other layers of the network

stack). Theoretically, it takes 133 ∗ 8/40000 = 26.6ms for one message per transmission per

hop. Furthermore, we neglect the noise interference from the channel and ignore the possibility

of random packet loss. For power consumption parameters, it follows Mica2 Motes specs, where

the radio transmission cost is our major concern. The default unit cost of radio transmission

105

(a) A smooth data field with fluctuations

(b) HDACS logical tree

(c) A-HDACS logical tree

Figure 24. An example of a smooth data field with fluctuations and its corresponding logical
tree in HDACS and A-HDACS

106

is 81µJ/ms for one message. We use Table I for the major parameters assignments in the

simulations.

Figure 25(a) shows a constant data field filled with randomly located Gaussian bumps. Its

maximum height is 10 units and decays with exponential rate of 0.01. Figure 25(b) depicts a

smooth data field with a discontinuity along the line x = y, where the readings from smooth

area are either 10 or 20 plus independent Gaussian noise with zero mean and 0.01 variance.

Besides, we make use of Discrete Cosine Transform (DCT) to capture the sparsity of data

field. DCT is a suboptimal transformation for sparse signal representation and approaches

the ideal optimal transform when the correlation coefficient between adjacent data elements

approaches unity (61). Figure 25(c) and Figure 25(d) plot the coefficients distributions when

two data fields are projected into DCT space. As we can see, only a few coefficients with large

magnitudes capture the most signal energy and the rest coefficients decay rapidly.

5.4.2 The Nodes Distribution

Figure 26 shows the SIDnet simulation results of A-HDACS and HDACS for two types of

data fields with network size 400, where black nodes denote CS-enabled nodes, gray nodes denote

CS-disabled nodes, and white nodes are the leaf nodes at level one. The scattered fluctuations

in data field with Gaussian bumps cause less percentage of CS-enabled nodes shown in Figure

26(a) than that in piecewise smooth data field shown in Figure 26(b). In piecewise data field,

CS-disabled nodes are mainly placed around the discontinuity of two flat surfaces in the line

x = y. And the clusters away from this line can fully utilize CS. Figure 26(c) and Figure

26(d) depict the node distributions for both data fields in HDACS. And almost no CS can be

107

(a) Smooth data field filled with Gaussian
bumps

(b) Piecewise data field

(c) DCT domain of smooth data field filled
with Gaussian bumps

(d) DCT domain of piecewise data field

Figure 25. Data Fields and their corresponding DCT Domain

108

performed at the lower level except a few nodes at the top levels. It demonstrates the significant

improvement of CS usage efficiency in A-HDACS and it is consistent with theoretical analysis

in Section 5.3.

5.4.3 Data Recovery Fidelity

Common signals are usually K-compressive – K entries with significant magnitudes and the

other entries rapidly decaying to zero. We perform signal truncation process to get K-sparse

signal. In the simulation, we tested different signal truncation thresholds so as to get as many

CS-enabled nodes as possible without compromising signal recovery fidelity. The percentage of

the first dominant magnitude is set up as truncation threshold.

In the evaluation, Mean Square Error (MSE) of recovered signal in the root node (sink)

is defined as the average difference between recovered data and actual reading values for all

the sensors. Figure 27 depicts MSE versus DCT truncation threshold for two types of data

field with network size 400. Since small truncation threshold filters out fewer significant entries

than larger thresholds, it reduces the overall average square error. Figure 27 shows that MSE

of the smooth data field with Gaussian bumps is below 0.066 when DCT threshold is smaller

than 0.0225, and it increases dramatically when DCT threshold becomes larger. In the case

of the smooth data field with Gaussian bumps, fluctuations in the signal cause the increase in

the number of DCT coefficients that have significant magnitudes, therefore truncation process

becomes less effective. Relatively, piecewise field has more smooth clustering area with only a

few significant entries. Its MSE is controlled under a negligible range when DCT threshold is

in the [0.005, 0.03] interval.

109

(a) A-HDACS: smooth data field filled with
Gaussian bumps

(b) A-HDACS: piecewise data field

(c) HDACS: smooth data field filled with
Gaussian bumps

(d) HDACS: piecewise data field

Figure 26. The SIDnet simulation results of A-HDACS and HDACS with network size 400:
black nodes denote CS-enabled nodes, gray nodes denote CS-disabled nodes, white nodes are

the leaf nodes at level one, and red node denotes the sink.

110

Figure 27. MSE versus DCT truncation threshold with network size 400

In the simulation results presented here onwards, DCT magnitudes bigger than 1% of the

first dominant coefficient are preserved. Figure 28 shows data recovery results for different data

aggregation schemes measured under two data fields with different levels. In both data fields,

MSE results deteriorate with increase in the number of levels in the data collection tree, owing

to the errors propagation of the signal truncation in the hierarchy. In the meantime, although

HDACS scheme outperforms AC-HDACS at the lower level for both data fields, its data recovery

results are significantly worse than those of A-HDACS, when it comes to the top level. It is

due to the fact that raw data transmission without processing ensures zero data distortion but

it fails to make a good use of CS for a broad area owning to local data fluctuations. It further

proves HDACS cannot be applied to non-smooth because it sacrifices the data recovery fidelity.

Moreover, comparing Figure 28(a) with Figure 28(c), overall piecewise data field has smaller

errors than the smooth data field with Gaussian bumps. It is due to relatively fewer scattered

fluctuations in the piecewise smooth data field.

111

(a) A-HDACS: smooth data field filled with
Gaussian bumps

(b) HDACS: smooth data field filled with
Gaussian bumps

(c) A-HDACS: piecewise data field (d) HDACS: piecewise data field

Figure 28. Data recovery mean square error (MSE) results

112

(a) Smooth data field filled with Gaussian
bumps

(b) Piecewise data field

Figure 29. Total Transmission Energy Cost versus Different Network Sizes

5.4.4 Energy Consumption

Figure 29(a) and Figure 29(b) show energy consumption versus networks size for two types

of data field. A-HDACS consumes only 90.1% ∼ 94.20% energy of HDACS for different network

sizes. Although plenty of fluctuations in the data field affects A-HDACS to apply CS to a certain

degree, it still captures the sparsity feature within a few cluster area. But HDACS is insensitive

to the local area. When the data field slightly change, it loses its data compression capability.

This advantage is obvious, when it comes to the piecewise data field. Figure 29(b) shows that

A-HDACS can save around 23.36% ∼ 30.17% battery power, compared to HDACS. The results

demonstrate that significant energy efficiency can be obtained by the proposed technique.

CHAPTER 6

SPATIO-TEMPORAL HIERARCHICAL DATA AGGREGATION USING

COMPRESSIVE SENSING (ST-HDACS)

6.1 Introduction

Considering the real-world applications especially for environment monitoring, data collec-

tion is usually periodically performed over an extended time period (34). The temporal data

model is a natural topic of interest for CS-based data aggregation schemes. Distributed Com-

pressive Sensing (DCS) (62) exploits both intra- and inter-signal sparsity to lower sampling rate

for each sensor, which purely relates to compressing the data volume in temporal domain. The

application-oriented method in (63) refers to the use of spatio-temporal compressive sensing but

its focus is primarily on how to obtain a network feature metric rather than data aggregation.

They refer to the idea of CS to investigate the sparsity of the data field to justify reduction of

samples but actually do not implement the CS technique in their work.

Motivated by all the previous data gathering schemes aimed at reducing data redundancy

in the spatial or temporal domain, we investigate an energy-efficient CS-based data collec-

tion scheme that targets to reduce spatial as well temporal redundancy using an integrated

framework with focus on reducing the cost of data transmission. We refer to the approach as:

Spatio-Temporal Hierarchical Data Aggregation using Compressive Sensing (ST-HDACS). The

main idea of ST-HDACS consists of three key components:

113

114

• Firstly, for each instance of data collection, only a random subset of sensors in the network

is selected to participate in the data aggregation.

• Secondly, our earlier work on Adaptive Hierarchical Data Aggregation using Compressive

Sensing (A-HDACS) scheme (64) is incorporated for data transmission along the routing

paths in the aggregation tree.

• Lastly, Matrix Completion (MC) (65) approach at the fusion node is adopted to recover

all the data instances for the entire network sensed during the data collection time.

Since the MC problem tends to require complex recovery algorithm, extensive studies (65) (63)

(66) have offered feasible and effective solutions. We believe it is a suitable choice for large data

recovery with guaranteed accuracy.

In summary, the advantages of ST-HDACS are multifold:

• The fact that only a randomly selected subset of nodes representing the whole network

participate in any given communication round saves the battery power and prolongs the

network life time;

• For any given instance of data collection, the use of A-HDACS scheme removes the spatial

data redundancy and reduces the transmission time.

• Furthermore, ST-HDACS is also well suited for practical applications. It offers an imme-

diate answer to user query at any time with latest data. At any particular time tn, if the

data query is about some unselected sensors for which the fusion center has no immediate

data, it can still answer the query by interpolation from nearest spatial and/or temporal

115

data. On the other hand, for a data query over the entire network for all the collections,

Matrix Completion (MC) provides an accurate and effective solution for the large data

recovery problem.

6.2 Spatio-Temporal Hierarchical Data Aggregation using Compressive Sensing

In this section, the details of ST-HDACS schemes are elaborated. Our goal is to reduce

the amount of the data that is necessary for transmission under a guaranteed data recovery

accuracy. The main idea is that at each data collection instant, a subset of randomly selected

nodes implement A-HDACS and collect the corresponding subset of the data; in the end, the

fusion center utilizes Matrix Completion (MC) algorithm to recover all the data for the entire

network over the whole data collection period.

6.2.1 Problem Formulation

In ST-HDACS, at any time tn, the network is configured into a hierarchy consisting of multi-

level clusters of sensors and the data collection follows the same routing model as HDACS.

Figure 30(a) illustrates the data propagation path for a single-instant data collection. Figure

30(b) shows a conceptual data model of interest, where each square represents one snapshot of

observed data field.

6.2.1.1 Single-instant Data Collection

For a network consisting of N nodes, the cluster head at the top level (sometimes referred

as fusion center) in HDACS-based schemes collects the CS random measurements as:

Y = ΦΨα (6.2.1)

116

(a) Data Field Snapshot (b) Conceptual Temporal Data: Each Square
Representing One Snapshot of Observed
Data Field

Figure 30. Data Model

where Φ is a M ∗N sensing matrix, M = K logN and K is the sparsity of data representation

on the entire field, Ψ is a N ×N transformation basis which sparsifies the data field and α is

a N × 1 vector with entries representing data collected by each sensor.

6.2.1.2 Data Collections Over A Period

Over a time period {t0, t1, t2, . . . , tT−1}, where T is an integer and T ≥ 1, the fusion center

collects the data:

Ỹ =

[
Yt0 Yt1 Yt2 . . . YtT−1

]
= ΦΨ

[
αt0 αt1 αt2 . . . αtT−1

]
.

117

Therefore, CS random measurements collected in the fusion center over a period are:

Ỹ = ΦΨα̃,

where Ỹ ∈ RM × RT , M = K logN and α̃ =

[
αt0 αt1 αt2 . . . αtT−1

]
∈ RN × RT .

In addition, we specify A(.) as a N × T matrix Q, where

Q(i, j) =


0 if the entry is missing,

1 otherwise.

.

In ST-HDACS scheme, we apply A(.) operator into α̃ to represent the nodes which do not

participate in this data collection. It implies that

Ỹ ′ = ΦΨA(α̃).

Or put another way, A(α̃) = Q. ∗ α̃, where .∗ is an element-wise product.

Note that A(Ỹ) is not equal to ΦΨA(α̃), as the dimensionality of Ỹ and of α̃ are different.

And A(.) or Q contains the network topology information: the entries 1 in each column of Q

represent the selected nodes and the entries 0 for nonselected nodes at each data collection.

Consider Nλ ∈ Z, such that 1 ≤ Nλ ≤ N . Define λ = Nλ/N , which represents the

percentage of nodes selected for each data collection. We define Ȧ(λ)(.) as a condensed version

of A(.), which removes all nonzero entries. To be more specific, Ȧ(λ)(.) condenses the operand

118

into a Nλ × T matrix. In summary, the measurements collected at the fusion center over a

period in ST-HDACS is defined as:

Ỹ (λ) = Φ(λ)Ψ(λ)Ȧ(λ)(α̃),

where Ỹ (λ) ∈ RdK logNλe × RT , Φ(λ) ∈ RdK logNλe × RNλ and Ψ(λ) ∈ RNλ × RNλ .

It is shown in (65) that if m entries are selected uniformly at random from a matrix M ,

where m obeys

m ≥ Cn1.2r log n

for some positive numerical constant C and n = max{n1, n2} for n1 ∗ n2 matrices of rank

r, then with very high probability, they can be perfectly recovered by solving a simple convex

optimization problem. In this work, we assume the network size is larger than the data collection

time, that is N > T . Therefore, in order to guarantee the signal recovery fidelity, the condition

λ =
Nλ

N
=
Nλ × T
N × T

≥ CN1.2r logN

N × T
= CN0.2r logN/T

has to be satisfied. (In some other cases, when the data collection number is larger than the

network size, the condition λ ≥ CT 0.2r log T/N has to be satisfied and it does not affect the

results in our case.)

119

6.2.2 Data Recovery

Data recovery involves two algorithms: Compressive Sensing (CS) and Matrix Completion

(MC). In ST-HDACS, CS recovery algorithm is implemented to get a subset of data field

immediately after each data collection. In the end, MC is utilized in the fusion center to

recover the data for the entire network over the whole period.

6.2.2.1 Instantaneous Compressive Sensing Recovery

For instantaneous Compressive Sensing (CS) recovery, we re-visit Equation 6.2.1. We aim

to solve:

minimize ‖ Ψα ‖l0

subject to Y = ΦΨα,

where we use l1 norm to replace l0 norm (67) (38) (39). Among numerous CS recovery algo-

rithms (49) (50), a convex optimization-based approach — CoSaMP algorithm (43), utilizes

the proxy (43) y = Ψ ∗ Ψα, which preserves the energy of K largest components of signal α,

to approximate the K-sparse signal α. It has been proved to have fewer iteration steps than

the other Orthogonal Matching Pursuit (OMP) algorithms, which we will exploit and utilize in

our scheme.

Repeating this procedure iteratively for each data collection instant, we can recover the

data Ȧ(λ)(α̃) from CS measurements Ỹ (λ). By adopting the structural information from A(.),

120

we can retrieve α̃, in which zero entries show the missing data that we are going to recover as

follows.

6.2.2.2 Latent Matrix Completion Recovery

As the matrix obtained from the previous step contains only a subset of data with entries

missing, that is: A(α̃). We let X̃ = A(α̃) and strive to find a low-rank solution for the following

optimization problem:

minimize rank(α̃)

subject to A(α̃) = X̃

We first decompose α̃ into three elements, i.e. α̃ = UΣV T , where U is a N × N unitary

matrix and V is a T × T unitary matrix. Σ is a N × T diagonal matrix containing the singular

values. We can the factorize matrix α̃ = UΣV T = LRT , where L = UΣ1/2 and R = V Σ1/2.

We seek L and R with the smallest sum of their Frobenius norms:

minimize ‖ L ‖2F + ‖ R ‖2F

subject to A(LRT) = X̃

In practice, matrix α̃may not be exactly low-rank, and the data to be recovered may contain

errors itself. We therefore solve the following optimization problem instead:

minimize ‖ A(LRT)− X̃ ‖2F + ‖ L ‖2F + ‖ R ‖2F

121

This is a convex optimization problem and many research efforts (65) (63) (66) have been

made to offer effective solutions. We briefly introduce one that balances the computational

complexity and the accuracies of results. A method of using alternative projection was intro-

duced in (63). At the beginning of the procedure, randomly initialize L and R. Fix L as a

constant and optimize R with linear least square method and then fix R as a constant and

optimize L with least square method. After a moderate number of iterations, it will converge

to the optimal solution for matrix L and R.

6.3 Performance Evaluation

6.3.1 Data Field

We use the real-world data as well as synthetic data to test the effectiveness and robustness

of our approach. For the real-world data, we use the data from the National Data Buoy Center

(http://tao.ndbc.noaa.gov/tao/data download/search map.shtml). We collected the daily sea

surface temperature data measured by 52 nodes across the Pacific Ocean from 165 E to 95

W, 8N to 8S from December 21 to December 31, 2014, which serves as an underlying data

field for surveillance. Figure 31 illustrates the sea surface temperature field on Dec 21, Dec

26, Dec 31. As we observe, each data field is globally smooth with a few boundaries marked

by abrupt changes in values. And during this period, the data field does not have significant

change temporally.

Considering the limitation of the scale from the real-world data, we also tested our scheme

on two types of synthetic data fields: a smooth data field with discontinuity along the line x = y

and a smooth data field with randomly placed Gaussian bumps. For the piecewise constant

122

Figure 31. The Sea Surface Temperature Data Field

data field, the values are a constant number corrupted by identical independent Gaussian noise

and the data field evolves in a way that the Gaussian noise starts from the standard deviation

σ = 0.1 in the first data collection phase to σ = 1 at the last phase. And for the smooth data

field with Gaussian bumps, we set up the initial exponential rate σ = 1/48 and the last one as

σ = 1/24. Figure 32 shows these two types of the data fields and at the starting phase and the

last phase.

6.3.2 Simulation Settings

We implement the data gathering schemes on SIDnet-SWANS (16). In the network con-

figuration settings, we deployed 300 to 800 sensors with 50 nodes as an increment each time.

Each simulation contains ten data collection iterations, i.e. T = 10. For the real-world data set

simulation, we use the ten days sea surface temperature data for each data collection. The data

measured by each sensor are simulated by spatial interpolation. For the synthetic data, the

123

(a) Piecewise Constant Data Field Corrupted
by Gaussian Noise with Initial σ = 0.1

(b) Piecewise Constant Data Field Cor-
rupted by Gaussian Noise with Final σ = 1

(c) Smooth Data Field with Gaussian Bumps
with Initial σ = 1/48

(d) Smooth Data Field with Gaussian Bumps
with Final σ = 1/24

Figure 32. Synthetic Data Fields

124

data grid has higher resolution. At data collection instant tn, we simulate the value of the data

field as the temporal interpolation from the initial data field and the final one. Furthermore,

in the initial phase, all the nodes are set up as active and participate in the data collection so

as to construct the hierarchy. In the following nine iterations, λ percent of sensor nodes will be

selected at each data collection. Furthermore, in order to keep the integrity of the hierarchy,

only leaf nodes have rights to decide for themselves whether or not to sleep. We obtain this

goal by generating a random number which follows the uniform distribution. If the random

number is larger than λ, the leaf node is set to sleep. A suitable choice of λ is also very critical

for the data collection accuracy. In the simulation, we choose the values of λ as 0.25, 0.50, 0.75

and 1 respectively.

6.3.3 Simulation Results

6.3.3.1 Data Collection Fidelity

We measure the fidelity of the data collected in the fusion center using the Normalized Mean

Absolute Error (NMAE)(63):

NMAE =

∑T−1
i=0 |αti − α̂ti |∑T−1

i=0 |αti |
,

where αti is a N × 1 data vector sensed by all the sensors at data collection ti and α̂ti is the

final data stored at the fusion center.

Figure 33 indicates the data collection fidelity evaluated by NMAE for the real-world data

and two synthetic data fields. Comparing Figure 33(a) with Figure 33(b) and Figure 33(c),

125

(a) Sea Surface Temperature Data (b) Piecewise Constant Data Field Cor-
rupted by Gaussian Noise

(c) Constant Data Field with Gaussian
Bumps

Figure 33. Data Collection Fidelity

we observe that the result from real-world data set is less smooth than that of synthetic data

fields, which is within our expectation. Also observe that all the figures show similar trends

in terms of NMAE versus λ. When λ = 1, in other words, all the nodes are active for all the

data collections, then the scheme is equivalent to independently implementing the A-HDACS

scheme ten times. In this scenario, the minimum NMAE is achieved. As λ is decreased, more

and more nodes are entitled to sleep and the data collection fidelity decreases accordingly. Note

126

(a) Sea Surface Temperature Data (b) Piecewise Constant Data Field Cor-
rupted by Gaussian Noise

(c) Constant Data Field with Gaussian
Bumps

Figure 34. Total Amount of Energy Consumption versus Network Sizes For Different Data
Fields

that when λ = 0.75, NMAEs are controlled in the limited range which the results are as good

as the case when λ = 1. Although when λ < 0.75, we observed a few results in the simulations

where the NMAE is large, Figure 33 demonstrates the data recovery accuracy is still controlled

within a certain acceptable range which is independent of network sizes.

127

Figure 35. The Energy Consumption Ratio of Different Choices of λ < 1 over λ = 1 for Each
Node in a 300-node Networks

6.3.3.2 Energy Consumption

Figure 34 plots the trends in the total amount of energy consumed versus the network size

for the real world datasets as well as the synthetic data fields. We notice that there is no

significant difference in the total energy consumption for different data fields, which implies

that the contribution due to the variation inherent in the data field is relatively small when it

comes to multiple data collections over a period. In the meantime, all figures show that with the

decrease of λ, the amount of total energy consumption drops drastically. The results coincide

with our expectation that smaller percentage of the nodes selected for each data collection

improve the energy efficiency effectively. In the case of λ = 1, it is equivalent to the regular A-

HDACS scheme applied successively, which further demonstrates the superiority of ST-HDACS

scheme compared to repeated A-HDACS at different time instants for the case of the multiple

data collections in WSNs.

Figure 35 shows the distribution of energy consumption ratio of λ < 1 over λ = 1 for each

node in terms of network size 300. Since different data field types show the same distribution

128

pattern, we only show one figure here. It is noteworthy that in this implementation, when

λ = 0.25, node energy consumption saving is up to 54.3% ; when λ = 0.5, the energy saving for

some nodes is uppermost 42.7%; when λ = 0.75, the maximum energy saving for some nodes is

32.9%. The result manifests the energy efficiency of ST-HDACS scheme for individual nodes.

CHAPTER 7

CONCLUSION AND FUTURE WORK

7.1 Conclusion

In this dissertation, we have investigated distributed computing and data processing tasks

on the WSNs and in the meanwhile proposed novel algorithms to obtain the power efficiency.

Implementing data processing task in a distributed fashion by factoring in energy efficiency

is an important problem on wireless sensor networks. In chapter 2 we presented a solution to

realize Fourier analysis in randomly distributed networks through implementing Nonuniform

DFT (NDFT) algorithm. We proposed a hybrid structure consisting of local clustering inter-

polation step of NDFT and global FFT implementation. Interpolation step of NDFT within

clusters avoids long-haul distance data transmission without compromising the fidelity of ex-

panded uniformed data. In the meantime, Power-efficient FFT (PE-FFT) is formulated by

introducing data shuffling at each stage of FFT to save energy cost with respect to global data

communication. From the theoretical analysis and computer simulation in SIDnet-SWANS

platform, we demonstrate that our method improve energy consumption efficiency effectively.

In chapter 3, we have investigated a novel power-aware data collection scheme — Hierarchi-

cal Data Aggregation using Compressive Sensing (HDACS) for large scale dense wireless sensor

networks. We addressed this problem by incorporating Compressive Sensing (CS) in a multi-

level data aggregation hierarchy. Cluster heads at different levels encode the propagated data as

129

130

CS random measurements, which substantially reduce data volume for transmission and there-

fore improve energy efficiency. We proved theoretically the advantages of the proposed HDACS

over the existing work, in terms of the amount of data communicated in each cluster head,

the total data volume for transmission, data compression ratio. Furthermore, we constructed

a novel energy model by taking the computation cost in processor into account and we showed

that computation cost is insignificant compared to communication cost with the aid of the real

hardware specs. In order to demonstrate its effectiveness and feasibility, we have implemented

different CS-based data aggregation schemes using the real datasets as well as synthetic data on

SIDnet-SWANS sensor simulation platform to evaluate the performance. The signal recovery

results measured by SNR and energy consumption have validated the superiority of the HDACS

schemes over the existing state of the art.

Another novel power-efficient implementation of nonuniform 2D Fourier analysis over wire-

less sensor network has been presented in chapter 4. In this work, we implemented the task

on the HDACS model showed in chapter 3. We adopt a multi-resolution strategy to realize a

local interpolation step of NDFT algorithm at the first level followed by a global 2D block FFT

algorithm at the high levels. In contrast to previous work in chapter 2, the proposed method

shows significant advantages from theoretical analysis as well as in simulation results in terms

of execution time, transmission power efficiency, SNR and packet collision phenomenon.

In chapter 5, adaptive data aggregation scheme referred to as Adaptive Hierarchical Data

Aggregation using Compressive Sensing (A-HDACS) has been presented to perform data aggre-

gation in non-smooth multimodal data fields. Existing CS based data aggregation schemes for

131

WSNs are inefficient for such data fields, in terms of energy consumed and amount of data trans-

mitted. The A-HDACS solution is based on computing sparsity coefficients using signal sparsity

of data gathered within local clusters. We analytically prove that A-HDACS enables more clus-

ters to use CS compared to conventional HDACS. The simulation evaluated on SINnet-SWANS

also demonstrates the feasibility and robustness of A-HDACS and its significant improvement

of energy efficiency as well as accurate data recovery results.

In Chapter 6, Spatio-Temporal Hierarchical Data Aggregation scheme using Compressive

Sensing (ST-HDACS) has been developed to improve power efficiency for the data collection

problem with multiple data collection phases. We addressed the limitation of the existing

CS-based data aggregation schemes for WSNs by removing the spatial data redundancy in

the routing path using A-HDACS and removing the temporal data redundancy by choosing a

subset of sensor nodes at any given instance and using MC at the fusion node to interpolate

the missing data. The simulation results demonstrate significant energy savings compared to

repeated use of A-HDACS. It also shows that with a suitable choice of the subset size, the data

fidelity is limited in an acceptable range.

7.2 Future Work

There are numerous open issues that will be further explored in the context of our work in

progress.

• In the HDACS-based schemes, cluster size is predefined assuming ideal deployment set-

tings. In real applications, it may not fit all different scenario of the sensor field. It’s

inevitable to offer a suitable solution to adapt to the observed environment. Crucial fac-

132

tors in the deployment of the networks, such as adaptive and non-uniform cluster sizes

need to be further investigated.

• We have assumed that the sensor readings are perfect and reflect the data field accu-

rately; however, the in real deployments, the sensor readings may be corrupted by noise.

A good estimation method to recover the data and reflect the true information is desir-

able. Furthermore, its impact on the data gathering and data analysis in WSNs shall be

explored.

• Since Compressive Sensing (CS) is the key factor in the proposed HDACS model, the

recovery accuracy and complexity play an important role as well. Different CS recovery

algorithms shall be investigated in the HDACS-based scheme. For example, Distributed

Compressed Sensing (DCS) (62), that takes the data spatial correlation into account,

seems to be a very promising CS recovery algorithm. Its impact on computation and

communication efficiency in WSNs shall be investigated.

• Other distributed computing tasks, such as Discrete Wavelet Transform(DWT), can be

explored to fully utilize the advantage of the HDACS model to improve power efficiency.

CITED LITERATURE

1. Abowd, G. D. and Mynatt, E. D.: Charting past, present, and future research in ubiquitous
computing. ACM Trans. Comput.-Hum. Interact., 7(1):29–58, March 2000.

2. Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., and Cayirci, E.: A Survey on Sensor
Networks. IEEE Communication Magazine, pages 102–114, August 2002.

3. Culler, D., Estrin, D., and Srivastava, M.: Overview of Sensor Networks. IEEE Computer
Society, August 2004.

4. Sinha and Amitabha: JouleTrack-a Web based tool for software energy profiling. Design
Automation Conference, 2001. Proceedings, 2001.

5. Heinzelman, W. R., Chandrakasan, A., and Balakrishnan, H.: Energy-Efficient Com-
munication Protocol for Wireless Microsensor Networks. Proceedings of the 33rd
Hawaii International Conference on System Sciences, 2000.

6. Chiasserini, C. F. and Rao, R. R.: On the concept of distributed digital signal processing
in wireless sensor networks. page 260. IEEE MILCOM, October 2002.

7. Canli, T., Cupta, A., and Khokhar, A.: Power Efficient Algorithm for Computing Fast
Fourier Transform over Wireless Sensor Networks. pages 549–556. International
Conference on Computer Systems and Applications, March 8 2006.

8. Potts, D., Steidl, G., and Tasche, M.: Fast Fourier transforms for nonequispaced data:
A tutorial. Modern Sampling Theory Mathematics and Applications, pages 1–23,
2001.

9. Beylkin, G.: On the fast fourier transform of functions with singularities. Applied and
Computational Harmonic Analysis, 2(4):363 – 381, 1995.

10. Brandt, A.: Multilevel computations of integral transforms and particle interactions with
oscillatory kernels. Computer Physics Communications, 65(1–3):24 – 38, 1991.

11. Dutt, A. and Rokhlin, V.: Fast fourier transforms for nonequispaced data, {II}. Applied
and Computational Harmonic Analysis, 2(1):85 – 100, 1995.

133

CITED LITERATURE (Continued)

12. Kunis, S.: Nonequispaced FFT - Generalisation and InversionT: Generalisation and
Inversion. Shaker Verlag GmbH, Germany (February 9, 2007), 2007.

13. Dutt, A. and Rokhlin, V.: Fast Fourier transforms for nonequispaced data. volume 14,
pages 1368–1393. SIAM J. Sci. Comput., 1993.

14. Dutt, A.: Fast Fourier Transform for Nonequispaced Data. SIAM Journal on Scientific
Computing, 14(6):1368–1393, 1993.

15. Mitra, S.: Digital Signal Processing: A Computer-Based Approach. McGraw-Hill Sci-
ence/Engineering/Math, 2010.

16. Ghica, O. C.: SIDnet-SWANS Manual. Technical report, Northwestern University, March
3 2010.

17. JiST / SWANS Java in Simulation Time / Scalable Wireless Ad hoc Network Simulator.
http://jist.ece.cornell.edu.

18. Barr, R.: Jist-Java in Simulation Time User Guide. http://jist.ece.cornell.edu/docs.html.

19. Han, K., Liu, Y., and Luo, J.: Duty-cycle-aware minimum-energy multicasting in wireless
sensor networks. In IEEE/ACM TRANSACTIONS ON NETWORKING, June
2013.

20. Subramanian, R. and Fekri, F.: Sleep scheduling and lifetime maximization in sensor
networks: Fundamental limits and optimal solutions. In 5th ACM IPSN, number
218-225, 2006.

21. Han, K., Xiang, L., Luo, J., and Liu, Y.: Minimum-energy connected coverage in wireless
sensor networks with omni-directional and directional features. In ACM MobiHoc,
number 85-94, 2012.

22. Li, X.-Y., Song, W.-Z., and Wang, W.: A unified energy-efficient topology for unicast and
broadcast. In ACM MobiCom, pages 1–15, 2005.

23. Luo, J. and Hubaux, J.-P.: Joint sink mobility and routing to increase the lifetime
of wireless sensor networks: The case of constrained mobility. In IEEE/ACM
TRANSACTIONS ON NETWORKING Networking, volume 18, pages 871–884,
2010.

134

CITED LITERATURE (Continued)

24. Xing, G., Wang, T., Jia, W., and Li, M.: Rendezvous design algorithms for wireless sensor
networks with a mobile base station. In 9th ACM MobiHoc, pages 231–240, 2008.

25. Polastre, J., Hill, J., and Culler, D.: Versatile low power media access for wireless sen-
sor networks. In Proceedings of the 2Nd International Conference on Embedded
Networked Sensor Systems, SenSys ’04, pages 95–107, New York, NY, USA, 2004.
ACM.

26. Candes, E. and Wakin, M.: An Introduction To Compressive Sampling. Signal Processing
Magazine, IEEE, 25(2):21–30, March 2008.

27. Baraniuk, R. G.: Compressive Sensing [lecture notes]. Signal Processing Magazine, IEEE,
24(4):118–121, 2007.

28. Romberg, J. and Wakin, M.: Compressed Sensing: A Tutorial.
http://users.ece.gatech.edu/justin/ssp2007, August 26 2007.

29. Kong, L., Xia, M., Liu, X., Wu, M.-Y., and Liu, X.: Data loss and reconstruction in
sensor networks. In IEEE INFOCOM, 2013.

30. Liu, G., Tan, R., Zhou, R., Xing, G., Song, W.-Z., and Lees, J. M.: Volcanic Earthquake
Timing using Wireless Sensor Networks. In ACM/IEEE IPSN, 2013.

31. Roughan, M., Zhang, Y., Willinger, W., and Qiu, L.: Spatio-Temporal Compressive Sens-
ing and Internet Traffic Matrices (Extended Version). Networking, IEEE/ACM
Transactions on, 20(3):662–676, June 2012.

32. Cheng, J., Ye, Q., Jiang, H., Wang, D., and Wang, C.: An efficient data gathering algo-
rithm based on matrix completion for wireless sensor networks. IEEE Transactions
on Wireless Communications, 12(2), 2013.

33. Luo, C., Wu, F., Sun, J., and Chen, C. W.: Compressive Data Gathering for Large-Scale
Wireless Sensor Networks. Beijing, China, September 20-25 2009. MobiCom.

34. Artiola, J., Pepper, I., and Brusseau, M.: Environmental Monitoring and
Characterization. Elsevier Science, June 2004.

35. Luo, J., Xiang, L., and Rosenberg, C.: Does compressed sensing improve the throughput
of Wireless Sensor Networks? Number 1-6, Cape Town, South Africa, May 2010.
In Proceedings of the IEEE International Conference on Communications.

135

CITED LITERATURE (Continued)

36. Xiang, L., Luo, J., and Vasilakos, A. V.: Compressed Data Aggregation for Energy
Efficient Wireless Sensor Networks. Number 46. the 8th IEEE SECON, 2011.

37. Chen, Y., Liestman, A., and Liu, J.: Energy-efficient data aggregation hierarchy for
wireless sensor networks. In Quality of Service in Heterogeneous Wired/Wireless
Networks, 2005. Second International Conference on, pages 7–7, August 2005.

38. Donoho, D. L.: Compressed Sensing. IEEE Trans. Inf. Theory, 52(4), 2006.

39. Romberg, J.: Imaging via Compressive Sampling. IEEE Signal Processing Magazine,
March 2008.

40. Candes, E., Romberg, J., and Tao, T.: Robust uncertainty principles: Exact signal
reconstruction from highly incomplete frequency information. IEEE Trans. Inf.
Theory, 52(2):489–509, Feb 2006.

41. Candes, E.J., and Tao, T.: Near-Optimal Signal Recovery From Random Projections:
Universal Encoding Strategies? IEEE Trans. Inf. Theory, 52(12):5406–5425, Dec
2006.

42. Needell, Deanna, and Vershynin, R.: Uniform uncertainty principle and signal recov-
ery via regularized orthogonal matching pursuit. Foundations of computational
mathematics, 9(3):317–334, 2009.

43. Needell, D. and Tropp, J.: Cosamp: Iterative signal recovery from incomplete and inac-
curate samples. Applied and Computational Harmonic Analysis, 26(3):301–321,
May 2009.

44. Ciullo, Delia, Celik, G. D., and Modiano, E.: Minimizing transmission energy in sensor
networks via trajectory control. pages 132–141. Modeling and Optimization in
Mobile, Ad Hoc and Wireless Networks (WiOpt), 2010 Proceedings of the 8th
International Symposium on., Institute of Electrical and Electronics Engineers,
2010.

45. Shnayder, V., Hempstead, M., Chen, B.-r., Allen, G. W., and Welsh, M.: Simulating the
power consumption of large-scale sensor network applications. In Proceedings of
the 2Nd International Conference on Embedded Networked Sensor Systems, Sen-
Sys ’04, pages 188–200, New York, NY, USA, 2004. ACM.

46. Atmel: http://www.atmel.com/images/doc2467.pdf. 2011.

136

CITED LITERATURE (Continued)

47. Baraniuk, R. G., Cevher, V., Duarte, M. F., and Hegde, C.: Model-Based Compressive
Sensing. IEEE Trans. Inf. Theory, 56(4), April 2010.

48. Coifman, R., Geshwind, F., and Meyer, Y.: Noiselets. Applied and Computational
Harmonic Analysis, 10:27–44, 2001.

49. Tropp, J. A. and Gilbert., A. C.: Signal recovery from random measurements via orthogo-
nal matching pursuit orthogonal matching pursuit. IEEE Trans. Inf. Theory, pages
4655–4666, 2007.

50. Donoho, D. L., Tsaig, Y., Drori, I., and Starck, J.-L.: Sparse solution of underdeter-
mined linear equations by stagewise Orthogonal Matching Pursuit (StOMP). IEEE
Trans. Inf. Theory, 2007.

51. Heinzelman, W. R., Chandrakasan, A., and Balakrishnan, H.: Energy-efficient com-
munication protocol for wireless microsensor networks. In Proceedings of the
33rd Hawaii International Conference on System Sciences-Volume 8 - Volume 8,
HICSS ’00, Washington, DC, USA, 2000. IEEE Computer Society.

52. Bandyopadhyay, S. and Coyle, E.: An energy efficient hierarchical clustering algorithm
for wireless sensor networks. In INFOCOM 2003. Twenty-Second Annual
Joint Conference of the IEEE Computer and Communications. IEEE Societies,
volume 3, pages 1713–1723, March 2003.

53. Ali, S. and Khokhar, A.: Distributed center location algorithm for fault-tolerant multi-
cast in wide-area networks. In Reliable Distributed Systems, 1998. Proceedings.
Seventeenth IEEE Symposium on, pages 324–329, October 1998.

54. Xu, X., Ansari, R., and Khokhar, A.: Power-efficient algorithms for Fourier analysis over
random wireless sensor network. pages 109–115. 8th IEEE DCOSS, May 16-18
2012.

55. Kunis, S., Keiner, J., and Potts, D.: The nonequspaced FFT.
www-user.tu-chemnitz.de/ skunis/paper/lecturenfft.pdf.

56. Potts, D., Steidl, G., and Tasche, M.: Fast fourier transforms for nonequispaced data:
A tutorial. Modern Sampling Theory Mathematics and Applications, pages 1–23,
2001.

137

CITED LITERATURE (Continued)

57. Kunis, S.: Nonequispaced FFT - Generalisation and Inversion. Shaker Verlag GmbH,
2007.

58. Xu, X., Ansari, R., and Khokhar, A.: Power-efficient Hierarchical Data Aggregation using
Compressive Sensing in WSN. IEEE ICC, June 2013. Preprint.

59. Xu, X., Ansari, R., and Khorkhar, A.: Power-efficient Hierarchical Data Aggrega-
tion using Compressive Sensing in WSNs. In IEEE International Conference on
Communications (ICC), Budapest, Hungary, June 9-13 2013.

60. Artiola, J., Pepper, I., and Brusseau, M.: Environmental Monitoring and
Characterization. Academic Press, 2004.

61. Clarke, R.: Relation between the karhunen loeve and cosine transforms. Communications,
Radar and Signal Processing, IEE Proceedings F, 128(6):359 – 360, Nov 1981.

62. Baron, D., Wakin, M. B., Duarte, M. F., Sarvotham, S., and Baraniuk, R. G.: Distributed
Compressed Sensing. Technical report, Electrical and Computer Engineering De-
partment, Rice University, 2006.

63. Zhang, Y., Roughan, M., Willinger, W., and Qiu, L.: Spatio-Temporal Compressive
Sensing and Internet Traffic Matrices (Extended Version). In SIGCOMM, pages
267–278, New York, NY, USA, 2009. ACM.

64. Xu, X., Ansari, R., and Khorkhar, A.: Adaptive Hierarchical Data Aggregation us-
ing Compressive Sensing (A-HDACS) for Non-smooth Data Field. In IEEE
International Conference on Communications (ICC), pages 65–70, June 2014.

65. Candès, E. J. and Recht, B.: Exact matrix completion via convex optimization.
Foundations of Computational Mathematics, 9(6), 2009.

66. Vuran, M. C., Akan, O. B., and Akyildiz, I. F.: Spatio-temporal correlation: Theory and
applications for wireless sensor networks. Comput. Netw., 45(3):245–259, June
2004.

67. Compressive sensing. http://en.wikipedia.org/wiki/Compressed sensing.

68. W.R., H., A., C., and H., B.: Energy-efficient communication protocol for wireless mi-
crosensor networks. Jan 2000.

138

CITED LITERATURE (Continued)

69. IEEE 802.15.4. http://www.ieee802.org/15/pub/TG4.html, 2014.

70. Cheng, J., Ye, Q., Jiang, H., Wang, D., and Wang, C.: STCDG: An Efficient Data
Gathering Algorithm Based on Matrix Completion for Wireless Sensor Networks.
IEEE Transactions on Wireless Communications, 12(2), 2013.

71. The Reduction Formula. www.math.niu.edu/ richard/Math230/reduction.pdf.

72. Candès, E. and Romberg, J.: Sparsity and incoherence in compressive sampling. Inverse
probability, 23(3):969–985, 2007.

73. National Data Buoy Center. http://tao.noaa.gov/tao/data download/search map.shtml,
2014.

74. Figueiredo, M. A. T., Nowak, R. D., and Wright., S. J.: Gradient
projection for sparse reconstruction:application to compressed sensing and
other inverse problems application to compressed sensing and other inverse
problems. IEEE J. Selected Topics in Signal Processing:Special Issue on Convex
Optimization Methods for Signal Processing, 1(4):586–598, 2007.

75. Chiasserini, C. F. and Rao, R. R.: On the concept of distributed digital signal processing
in wireless sensor networks. page 260. IEEE MILCOM, October, 2002.

76. Culler, D., Estrin, D., and Srivastava, M.: Overview of Sensor Networks. IEEE Computer
Society, August 2004.

77. Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., and Cayirci, E.: A Survey on Sensor
Networks. IEEE Communication Magazine, pages 102–114, August 2002.

78. Kwon, S.: Analysis of Shortest Path Routing for Large Multi-Hop Wireless Networks.
IEEE/ACM transaction of networking, 17(3), June 2009.

79. Xu, X., Ansari, R., and Khokhar, A.: Power-efficient hierarchical data aggregation using
compressive sensing in wsns. In Communications (ICC), 2013 IEEE International
Conference on, pages 1769–1773, June 2013.

80. Xu, X., Ansari, R., and Khokhar, A.: Power-efficient algorithms for Fourier analysis over
random wireless sensor network. pages 109–115. 8th IEEE DCOSS, May 16-18
2012.

139

CITED LITERATURE (Continued)

81. Xu, X., Ansari, R., and Khokhar, A.: Power-efficient Hierarchical Data Aggregation
using Compressive Sensing in WSN. In Wireless Communications and Networking
Conference (WCNC), 2013 IEEE, pages 4381–4386, Oct 2013. Preprint.

82. Gilbert, A., Strauss, M., Tropp, J., and Vershynin, R.: One sketch for all: Fast algo-
rithms for compressed sensing. San Diego, June 2007. 39th ACM Symp. Theory
of Computing.

83. Cheng, J., Ye, Q., Jiang, H., Wang, D., and Wang, C.: STCDG: An Efficient Data
Gathering Algorithm Based on Matrix Completion for Wireless Sensor Networks.
IEEE Transactions on Wireless Communications, pages 850–861, 2013.

84. Kong, L., Xia, M., Liu, X.-Y., Wu, M.-Y., and Liu, X.: Data loss and reconstruction in
sensor networks. In INFOCOM, 2013 Proceedings IEEE, April 2013.

85. Goldenberg, D. K., Lin, J., Morse, A. S., Rosen, B. E., and Yang, Y. R.: Towards mobility
as a network control primitive. Roppongi, Japan, May 24-26 2004. Mobihoc.

86. Haar wavelet. http://en.wikipedia.org/wiki/Haar wavelet.

87. Xu, X., Ansari, R., Khorkhar, A., and Vasilakos, A.: Hierarchical Data Aggregation using
Compressive Sensing (HDACS) in WSNs. ACM Transactions on Sensor Networks,
11(3), August 2015.

88. Merry, R.: Wavelet Theory and Applications: A literature study. Technical report,
Technical report, Eindhoven University of Technology, 2005.

89. Gilbert, A., M. Strauss, J. T., and Vershynin, R.: Algorithmic linear dimension reduction
in the l1 norm for sparse vectors. 44th Annu. Allerton Conf. Communication,
Control, Computing, August 2006.

90. Daubechies, I., Defrise, M., and Mol, C. D.: An iterative thresholding algorithm for linear
inverse problems with a sparsity constraint. Comm. Pure Appl. Math., 57:1413–
1457, 2004.

91. Tang, X. and Xu, J.: Optimizing Lifetime for Continuous Data Aggregation With Preci-
sion Guarantees in Wireless Sensor Networks. IEEE Transactions on networking,
16(4):904–917, August 2008.

140

CITED LITERATURE (Continued)

92. Zhang, H. and Shen, H.: Balancing Energy Consumption to Maximize Network Lifetime in
Data-Gathering Sensor Networks. IEEE Transactions on Parallel and Distributed
Systems, 20(10):1526–1539, October 2009.

93. Jiang, H., Jin, S., and Wang, C.: Prediction or Not? An Energy-Efficient Framework for
Clustering-Based Data Collection in Wireless Sensor Networks. IEEE Transactions
on Parallel and Distributed Systems, 22(6):1064–1071, June 2011.

94. Canli, T., Cupta, A., and Khokhar, A.: Power Efficient Algorithm for Computing Fast
Fourier Transform over Wireless Sensor Networks. pages 549–556. IEEE Computer
Systems and Applications, March 8, 2006.

95. Bientinesi, P., Pitsianis, N., and Sun., X.: Parallel 2D FFTs on the Cell Broadband
Engine. April 2007.

96. Rajagopalan, R. and Varshney, P. K.: Data aggregation techniques in sensor networks: A
survey. IEEE Communications Surveys and Tutorials, 8(4), 2006.

97. Dutt, A.: Fast Fourier Transform for Nonequispaced Data. SIAM Journal on Scientific
Computing, 14(6):1368–1393, 1993.

98. Nealen, A.: An As-Short-As-Possible Introduction to the Least Squares, Weighted Least
Squares and Moving Least Squares Methods for Scattered Data Approximation and
Interpolation. Computer Methods in Applied Mechanics and Engineering, 2003.

99. Potts, D., Steidl, G., and Tasche, M.: Fast Fourier transforms for nonequispaced data:
A tutorial. Modern Sampling Theory Mathematics and Applications, pages 1–23,
2001.

100. P.Thévenaz, T. B. and Unser, M.: Image Interpolation and Resampling, pages 393–420.
Academic Press, 2000.

101. Kunis, S., Keiner, J., and Potts, D.: The nonequspaced FFT.
www-user.tu-chemnitz.de/ skunis/paper/lecture nfft.pdf.

102. Kunis, S.: Nonequispaced FFT - Generalisation and Inversion. Shaker Verlag GmbH,
Germany, Feb 9 2007.

141

142

VITA

NAME: Xi Xu

EDUCATION: B.A.,Electrical and Computer Engineering, Jilin University, Changchun,

China, 2005

Ph.D., Electrical and Computer Engineering, University of Illinois at

Chicago (UIC), Chicago, Illinois, 2005

EXPERIENCE: Research Assistant, Multimedia Systems Lab, ECE Department, UIC,

2010

Image Research Intern, Advanced Technology Group Division at Dolby

Laboratories, Inc., Sunnyvale, California, 2013

PUBLICATIONS: X. Xu, R. Ansari, A. Khokhar, ”Power-efficient Spatio-Temporal Hi-

erarchical Data Aggregation using Compressive Sensing in WSNs ”, on

submitting, ACM Transactions on Sensor Networks.

X. Xu, R. Ansari, A. Khokhar, ”Parallel Nonuniform Discrete Fourier

Transform (P-NDFT) Over Random Wireless Sensor Networks”, on sub-

mitting, IEEE Transactions Parallel and Distributed Systems.

X. Xu, R. Ansari, A. Khokhar, and Athanasios Vasilakos ”Hierarchi-

cal Data Aggregation using Compressive Sensing (HDACS) in WSNs”,

ACM Transactions on Sensor Networks 11, 3 August, 2015

X. Xu, R. Ansari, and A. Khokhar, Spatio-Temporal Hierarchical Data

143

Aggregation using Compressive Sensing (ST-HDACS). June 10-12, IEEE

DCOSS, 2015

X. Xu, R. Ansari, and A. Khokhar, ”Adaptive Hierarchical Data Ag-

gregation using Compressive Sensing (A-HDACS) for non-smooth data

field”, IEEE ICC, 2014

X. Xu, R. Ansari, and A. Khokhar, Power-efficient algorithm for Fourier

analysis over random wireless sensor networks. May 16-18, IEEE DCOSS,

2012, pp 109-115

X. Xu, R. Ansari, and A. Khokhar, Power-efficient Nonuniform 2-D

Fourier Analysis using Compressive Sensing in WSN, April 7-10, IEEE

WCNC, 2013, pp 4381-4386.

X. Xu, R. Ansari, and A. Khokhar, Power-efficient Hierarchical Data Ag-

gregation using Compressive Sensing in WSN, June 10-12, IEEE ICC,

2013.

