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SUMMARY 
 

Rotating machines are widely used in various industrial applications. It is necessary to implement the 

condition based maintenance for rotating machines to prevent failures, increase reliability and decrease 

maintenance cost.  Fault detection and diagnosis are critical in rotating machinery condition-based 

maintenance. Traditionally, the most critical issue in developing rotating machine fault detection and 

diagnosis methods is to extract and quantify the complicated signal processing-based fault features. With the 

combination of data mining techniques, faults can be diagnosed accurately using previously extracted 

features. However, nowadays there are challenges in using existing methods for rotating machinery fault 

diagnosis. In the age of Internet of Things and Industrial 4.0, massive real-time data were collected from 

health monitoring systems for fault diagnosis. The traditional methods to extract features from monitoring 

data manually with expertise in signal processing and prior knowledge in fault diagnosis is rarely 

accomplishable on a machinery big data platform. Therefore, a novel methodology that can automatically 

extract the adaptive fault features from monitoring data and, diagnose the fault pattern intelligently, is 

expected to realize rotating machinery fault detection and diagnosis on machinery big data platform.  

With its deep architecture, deep learning can automatically extract features from the data and hence 

eliminate the process of handcrafting features from the data. Though there is a growing interest in using deep 

learning for machinery fault detection and diagnosis, some challenges still exist. The most reported 

applications of deep learning on fault diagnosis of rotating machinery include convolutional neural network 

(CNN) (Janssens et al., 2016), deep neural network (DNN) (Jia et al., 2016), and deep belief network (Gan 

et al., 2016).  However, the raw monitoring data were processed with complicated signal processing 

algorithms such as wavelet-package transform (WPT) (Gan et al., 2016), or pre-processed to obtain features 

such as RMS and kurtosis (Janssens et al., 2016). The complicated signal processing is still required in many 

reported deep learning based fault diagnosis applications in literature. Besides, DNN based bearing fault 

diagnosis depends greatly on supervised fine-tuning process to ensure a satisfactory classification accuracy 
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(Jia et al., 2016). As Jia et al. (2016) mentioned, the current selection of DNN architecture is trial and error 

based. The selection of deep learning architecture has not been well investigated yet. Until now, only the 

vibration condition monitoring data was studied with the application of deep learning based approaches. 

Other monitoring data such as acoustic emission (AE) data and piezoelectric (PE) data have yet to be 

processed with deep learning based approaches. 

In this research, novel deep learning based methodologies that can automatically extract the adaptive 

fault features from monitoring data and intelligently diagnose the faults with machinery big data is developed 

to address the issues stated above. Specifically, the following new effective and efficient rotating machine 

fault diagnosis are presented: a deep learning  based approach for bearing fault diagnosis using AE signals, 

a deep learning based approach for simultaneous bearing fault diagnosis and fault severity detection using 

vibration signals, a deep learning based approach for planetary gear box (PGB) fault diagnosis, a signal 

processing integrated deep learning  approach for bearing fault diagnosis using vibration signals.  Initially, a 

large memory storage and retrieval (LAMSTAR) neural network based approach for rotating machinery fault 

diagnosis and severity detection is investigated. The LAMSTAR neural network based method pre-processes 

the monitoring signals by using short time Fourier transform (STFT). With simply processed data, an 

optimized LAMSTAR neural network is used to simultaneously diagnose faults and detect severity. Inspired 

by sparse coding, a novel sparse coding and LAMSTAR combined neural network with deep architecture is 

proposed. The combination of sparse coding and LAMSTAR neural network results in sparse feature 

extraction with adaptive property. The realization of adaptive feature extraction and learning can reduce the 

ratio of training samples to testing samples. Furthermore, a novel signal processing integrated deep learning 

method is proposed to capture the hidden time and frequency features in the monitoring data. The introduction 

of signal processing into deep learning method provides a view of effective deep learning method on time 

series monitoring signals. To validate the proposed methodology on rotating machinery fault diagnosis, data 

collected from a bearing test rig and a planetary gear box (PGB) test rig were used. The data was collected 
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from the runs on bearings and gears with seeded typical faults. Vibration and AE data were collected at the 

bearing test rig, while vibration, AE, and PE data were collected on the PGB test rig. 

The potential contributions of this research include: 

(1) Development of effective deep learning based methodology on bearing fault diagnosis using AE 

signals. This methodology is developed by using LAMSTAR network to obtain the self-learned 

fault features and it requires only simple pre-processing methods such as FFT and STFT.  

(2) Validation of the developed deep learning based bearing fault diagnosis method with AE signals 

using steel bearing tested at low (2-10 Hz) and high (greater than 10 Hz) applications. The 

diagnosis performance on all 4 bearing fault types in the low shaft rotating speed outstands the 

previously reported results. 

(3) Development of effective deep learning based methodology on simultaneous bearing fault 

diagnosis and fault severity detection. The LAMSTAR network is employed to capture the fault 

features from time-frequency spectra of raw signal through unsupervised learning. Then the self-

learned features are used to locate the bearing faults and detect fault severity simultaneously. 

(4) Validation of the developed deep learning based simultaneous bearing fault diagnosis and severity 

detection methodology using seeded fault tests on a bearing test rig with vibration signals. The 

diagnosis performance outstands the previously reported results. 

(5) Development of effective deep learning based methodology for PGB fault diagnosis using 

vibration signals. This methodology is developed by integrating sparse coding and LAMSTAR 

network to obtain optimized deep architecture as LAMSTAR-DL. Then the fault features are 

extracted through LAMSTAR-DL and used for PGB fault diagnosis. 

(6) Validation of the developed deep learning based diagnostic method using seeded fault tests on a 

PGB test rig in laboratory. 
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(7) Development of a hybrid deep signal processing approach for bearing fault diagnosis using 

vibration signals. This methodology is developed by mimicking the procedure of time 

synchronous resampling method in aspect of signal processing techniques. 

(8) Validation of the developed hybrid deep signal processing approach using seeded fault tests on a 

bearing test rig.  

(9) The developed hybrid signal processing approach is extended to extract fault features from simply 

processed monitoring signals for gearbox prognostics. 

(10) Validation of the hybrid signal processing approach on monitoring signals from run-to-failure 

experiments on a spear gearbox test rig. 
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1. INTRODUCTION 
 

1.1 Rotating Machinery – A Brief Introduction 

Rotating machinery plays a critical part in various industrial applications. The common rotating 

machinery includes multiple widely used components, such as rolling element bearings, gear box and 

planetary gear box (PGB). The rotating machinery operates in tough working conditions, which tends to 

cause faults and produce dysfunctional parts. The rotating machinery faults may decrease the machinery 

service performance in many ways such as reducing manufacturing quality, reducing manufacturing speed 

and operation safety, and even resulting in total breakdown. Such faults will significantly affect the 

manufacturing process efficiency and commercial benefits to the manufacturer. The rotating machinery in 

modern industry develops with more critical requirements on maintenance, machinery dimension, 

automation and precise performance. Therefore, there is a growing interest on increasing the reliability of 

rotating machinery. One common fault diagnosis strategy is using appropriate signal processing techniques 

to reveal the characteristics of faults from the monitoring signals (Fan et al., 2008; Lei et al., 2008). However, 

there is the limitation of such traditional methodology on automatic fault diagnosis and discovering critical 

fault information for adaptive fault diagnosis. Particularly, rolling element bearings and PGBs are studied for 

development of automatic and intelligent fault diagnosis methodology. Figure 1.1 and Figure 1.2 show the 

basic components of a rolling bearing and a PGB, respectively.  
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Figure 1.1.  Components of a rolling bearing 

 

 

Figure 1.2. Components of a planetary gearbox 

 

Rolling element bearings are designed in various dimensions, load capacity, weight, etc. They are 

used with an advantage of a balanced performance with considerations including cost, size, weight, friction, 

and carrying capacity. As shown in Figure 1.1, rolling element bearings are composed of rolling elements 

and two bearing rings, namely inner raceway (race) and outer raceway (race). The rolling element, regarded 

as balls or rollers, between two bearing rings, bears the external loading applied on bearing. Faults or damages 

commonly occur on both inner and outer raceways, rollers, and cage structure (Mathew and Alfredson, 1983). 
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PGBs are normally used in applications requiring high power density, such as wind turbine drivetrain 

systems and motor transmission systems. The rising deployment of commercial wind energy projects 

increases the demands of a more proactive maintenance strategy and a more intelligent methodology so that 

the wind energy can be more competitive to the traditional energy forms. The modern wind industry has 

experienced a higher wind turbine gearbox failure due to the various reasons such as: unexpected overloading 

caused by rare operating conditions, defective gearbox design, and ineffective maintenance.  The gearbox 

failure is the most critical contributor to the total down time of wind turbines (Sheng et al., 2011). The main 

faults of PGBs occur on sun gear and ring gear tooth cut. Due to the complicated structure of PGBs, the 

traditional vibration signals are incapable of revealing the characteristic of faults for diagnosis.  

 

1.2 Fault Diagnosis and Condition-Based Maintenance on Rotating Machinery 

A general fault diagnosis system should be functional in two tasks, fault detection and fault diagnosis 

(Simani et al., 2000). Fault detection is to determine if fault occurred on the target machine. The health 

monitoring data of the target machine will be collected and processed to detect if there are any changes 

compared with the one obtained under normal machinery condition. With positive fault detection on the 

target machine, the specific fault can be located and determined. To an issue as rotating machinery, the fault 

could be originated from basic defunctive on critical component, such as rolling element bearing and gear 

box. To increase the operational reliability of rotating machines, it is necessary to keep monitoring critical 

components. Typically, accelerometers are widely used for collecting vibration data from the target machine. 

However, the theoretical amplitude modulation (AM) effect in vibration signal complicated the fault 

diagnosis problem on rotating machinery. Particularly in PGB fault diagnosis with vibration signals, AM 

effect caused by time variant vibration transfer paths of planet gear due to the unique dynamic structure of 

PGB makes it difficult to diagnosis faults on PGB. Such effect also existed in rolling element bearing 
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monitoring data. As bearing faults develop, the AM effect has an increasing impact on bearing monitoring 

data. Also, the fact that accelerometers can only be mounted on the housing or frame of rotating components 

directly brings extra noise into the collected raw data. Various signal processing techniques have been 

developed and implemented to extract fault information from raw signals. Widely studied signal processing 

techniques include Hilbert Huang transform (HHT), wavelet transform (WT), wavelet package transform 

(WPT), time synchronous average (TSA) and so on. 

Apart from vibration signals being studied in this research, other types of machine monitoring data 

will also be studied using deep learning based approaches. Signals collected by acoustic emission (AE) is 

commonly studied alternative monitoring signal resources. AE signals have been proven to be effective in 

investigating material behavior under mechanical stress. AE is defined as transient elastic waves within 

material that caused by localized stress energy. These waves are transient burst of energy generated by sudden 

change in material state. As a physical property, all materials have their specific elastic properties. In 

comparison with vibration signals, AE signals have certain advantages, one of which is the capability of 

incipient fault detection (Van Hecke et al., 2014). Since AE signals are sensitive to fault location, they are 

more suitable than vibration signals to locate faults. Moreover, the information in frequencies higher than the 

sampling frequencies of vibration signals can be retrieved by AE signals. 

With rapid development of measurement and data storage techniques, an amount of data-driven based 

fault detection and diagnosis methodologies have been studied to determine fault condition using extracted 

fault features. Data-driven methods such as typical data mining techniques and artificial neural networks 

(ANN) have been proven effective on condition identification (He et al., 2011). However, as one 

characteristic of data-driven methods, a significant amount of training data is required to achieve a good 

performance with a satisfactory accuracy. Though the data-driven methods show the promising results on 

fault diagnosis, it should be noticed that such results are dependent greatly on signal processing procedure to 

extract effective features carrying fault information. So far, most of rotating machinery fault diagnosis 
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systems are designed for using vibration signals. As explained previously, the theoretical AM effect of 

vibration signal will affect the fault diagnosis greatly. Besides, only vibration signals have been reported in 

the references as validation of rotating machinery fault diagnosis using deep learning. There is a necessity to 

study the adaptive deep learning based automatic rotating fault diagnosis methodologies using AE signals. 

The performance of appropriately designed deep learning based methodologies for AE and PE signals still 

needs to be validated and evaluated. 

1.3 Deep Learning Based Machinery Fault Diagnosis Methodology 

Most recently, deep learning as a new trending tool set has risen to attract interests in various research 

fields, including machinery fault diagnosis. With the complicated structure and ability to dig out hidden non-

linear relationship between items of deep learning, it has great potential to diagnose fault without great 

dependency on feature extraction. 

As an extension to the ANN, deep learning can be regarded as a branch of machine learning methods 

which are complicated ANNs with multiple hidden layers. Deep learning attempts to model high level 

abstractions in data by using the structure with multiple hidden layers. The multiple hidden layers can be 

composed of multiple linear or non-linear transformation. It has been reported that one promising outstanding 

contribution of deep learning is the elimination on manually feature extraction with unsupervised or semi-

supervised automatically feature extraction using efficient algorithm (Song and Lee, 2013). Initially, deep 

architecture as the architecture with multiple hidden layer was developed for high level abstractions 

representation, such as in vision, language, etc. (Bengio, 2009). The advantage of automatically feature 

extraction in models with deep architecture has drawn attention from scholars in prognostic and health 

monitoring field. The fault diagnosis system can possibly be realized without solid support from complicated 

signal processing and feature extraction. Furthermore, feature extraction and learning without handcraft 

procedure enable the model to process large volume of data generated rapidly. Successful cases of 
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implementation deep learning based methods on big data set include Alpha Go player developed by google, 

intelligent translation system by google (Wu et al., 2016), and the developing automatic driving technique.  

Commonly used deep learning based methods include deep belief network (DBN), convolutional 

neural network (CNN), stacked autoencoder (SAE), and other optimized models based on these basic 

structures. It should be noticed that DBN is composed by stacking restricted Boltzmann machine (RBM). 

RBM and autoencoder share the similar structure that there are only three layers in each of them, namely one 

input layer, one hidden layer and one output layer. The output variables from output layer share the same 

value as input variables into input layer. Thus, the operating function of hidden layer is to adjust weight by 

training procedure, so that output variables from model can retrieve the input variables after processing input 

data through the model. In such case, the layer structure in both RBM and autoencoder can also be presented 

as composition of two layers, which is input layer and hidden layer with dual direction connection. 

RBM/autoencoder can be stacked by using hidden layer of previous RBM/autoencoder as input layer to the 

following RBM/autoencoder, to obtain the neural networks with deep architecture. Different from typical 

layer-by-layer greedy searching deep learning based methods as DBN or stacked autoencoder, large memory 

storage and retrieval (LAMSTAR) neural network is composed by multiple parallel self-organizing-map 

(SOM) layers. Taking the multiple SOM modules as multiple hidden layers, LAMSTAR network can also 

be regarded as the network with deep architecture. The connection between each SOM layer and output layer 

is constructed in LAMSTAR network, and will be used for feature extraction and classification along with 

input data. In the case of typical deep learning based models, the models are composed by neural networks 

with deep architecture for feature extraction and a simple classifier to identify the extracted features. In 

LAMSTAR network based models, the feature extraction is accomplished in SOM models. More detailed 

explanation is provided in Section 4. 

In recent years, deep learning based signal processing methods for bearing fault diagnosis have been 

developed.  Unlike vibration analysis based techniques such as time synchronous average algorithm which 
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requires much human expertise on signal processing, one major benefit of deep learning based approaches is 

the adaptive learning capability of deep learning for automatic signal processing and feature extraction. With 

the deep structures, deep learning related methods can dig the hidden non-linear complicated relationship in 

the original signal without using complicated signal processing techniques.  When applied to the rotating 

machine fault diagnosis, the reported deep learning related studies have shown the outstand performance in 

comparison with traditional data-driven fault diagnosis methods (Jia et al., 2016; Gan et al., 2016). A detailed 

literature review of deep learning based fault diagnosis is provided in Section 2. 

1.4 Objective 

The objectives of this research include: (1) developing optimized deep learning based rotating 

machinery fault diagnosis methodologies which are suitable for various types of sensors and, (2) validating 

the proposed methods with experiments. Moreover, with potential ability of fast processing data, the 

developed deep learning based methodology are developed with the goal of efficiently processing industrial 

big data platform for accurate monitoring and fault diagnosis. 

To achieve these goals, the deep learning and related machinery fault diagnosis will be studied. 

Different deep learning algorithms will be compared and LAMSTAR network will be used mainly to 

construct the optimized deep learning based rotating machinery fault diagnosis methodology. Then, the 

LAMSTAR based bearing fault diagnosis method is extended to simultaneously diagnose bearing fault and 

fault severity. Next, LAMSTAR and sparse coding are combined for both bearing and PGB fault diagnosis. 

Furthermore, a hybrid deep signal processing method is developed for bearing fault diagnosis using vibration 

data. Additionally, the hybrid deep signal processing method is extended to extract features for PGB 

prognostics. Given that a bearing test rig and a PGB test rig have been constructed, validation and evaluation 

will be performed on monitoring data from both test rigs. Specifically, vibration and AE signals were 

collected from the bearing test rig and vibration, AE and PE signals were collected from PGB test rig. Two 

data acquisition systems were designed and set up for bearing and PGB test rig, respectively. Both tested 
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bearings and gears were seeded with multiple single-point faults. There is only one certain fault on every 

specific tested bearing and gear for individual fault data collection. The location and dimension of seeded 

fault have been observed and studied both in prior research and industrial frame. The bearings were seeded 

with inner race, outer race, ball, and cage faults separately for data collection.  The outcome of this research 

is a effective and efficient deep learning based fault diagnosis methodology that can automatically extract 

the effective features from simple pre-processed signals with satisfied classification accuracy. Additionally, 

this research provides theoretical foundation to optimize the deep structure based on the characteristics of 

monitoring data rather than typical trial-and-error method.  Particularly for the study of hybrid deep signal 

processing method on gear prognostics, the monitoring vibration data provided by NASA Glenn Spiral Bevel 

Gear Fatigue Rig is used for validation. The outcome of this extended research is effective methodology and 

tool that can extract features showing clear degradation trend of damages on gears that can be used for gear 

prognostics.  

1.5 Outline 

The remaining part of the proposal is outlined as follows. Section 2 provides a detailed literature 

review on the current state of rotating machinery fault detection and diagnosis. The techniques used in 

rotating machinery fault diagnosis are also introduced in Section 2, as well as the literature related with deep 

learning and implementations of deep learning in fault diagnosis and gear prognostics. Section 3 presents the 

limitation of current deep learning based rotating machinery fault diagnosis and motivation as to the necessity 

of this research.  In Section 4, the proposed methodology is explained in detail.  Section 5 presents the 

experimental setup and explanation of the collected data. Then, Section 6 presents the validation results. 

Lastly, Section 7 concludes the dissertation.    
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2. LITERATURE REVIEW 

2.1 Rotating Machinery Fault Diagnosis  
 

(Parts of the literature review in this chapter were previously published as (1) He, M., He, D., 2018, “Wind 

turbine planetary gearbox feature extraction and fault diagnosis using a deep learning based approach”, 

Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, © 2018 

(SAGE Publications), Reprinted by permission of SAGE Publications. DOI: 10.1177/1748006X18768701; 

(2) He, M., He, D., 2018, “Simultaneous bearing fault diagnosis and severity detection using a LAMSTAR 

network-based approach”, IET Science, Measurement & Technology, DOI: 10.1049/iet-smt.2017.0528; (3) 

He, M and He, D., 2017, “A deep learning based approach for bearing fault diagnosis”, IEEE Transactions 

on Industrial Application, Vol. 53, No. 3, pp. 1-9, DOI: 10.1109/TIA.2017.2661250) 

2.1.1 Rotating bearing fault diagnosis 
As a typical mechanical component, rotating machinery is widely used as vital component in auto-

manufacturing, heavy duty machinery, etc. Possible occurrence of faults on rotating machinery potentially 

leads to fatal breakdown of machines and further develops into significant economic loss as result.  To 

completely inspect health conditions of rotating machinery, real-time data from machines is collected through 

condition monitoring system and ended with massive data collection after long time operation. Commonly 

used condition monitoring techniques include vibration, AE, temperature measurement, oil debris, 

electrostatic and ultrasound. Among all various studied condition monitoring techniques, vibration and AE 

are most commonly used techniques for mechanical fault diagnosis in time domain analysis, frequency 

domain analysis, time and frequency domain analysis (Shah and Patel, 2014). In the studies reported recently, 

many advanced signal processing techniques have been developed for rotating machinery fault diagnosis. 

Advanced signal processing techniques such as HHT, empirical mode decomposition (EMD), wavelet 

transform (WT), and fuzzy entropy were well studied in rolling bearing fault diagnosis on both vibration and 

AE signals. Pandya et al. (2013) processed the AE signals with HHT and used a k-nearest neighbor (KNN) 

based classifier for the rolling bearing fault pattern recognition. Chacon et al. (2015) used AE signals 
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collected from the bearing with outer race defunctive and processed by WT method to detect and identify the 

fault location at early stage. With development of data collection and storage technique, it is beyond the 

capability of existed traditional diagnosis methods to process large amount of data with accurate results 

(Wang and Peter, 2015).  

A group of intelligent fault diagnosis methods that can effectively analyze the monitoring data with 

accurate diagnosis results were presented in the literatures for machinery health diagnosis, mainly including 

ANNs, SVM, fuzzy inferences, gene expression programming, etc. (Lei et al., 2007; Wang et al., 2010; 

Widodo and Yang., 2007; Ning et al., 2012; Dong and Zhu, 2012). Combined with various vibration signal 

processing and feature extraction methods, the intelligent fault diagnosis methods were used widely in the 

field of fault diagnosis of rotating machinery (Yu et al., 2006; Smantha and Al-Blushi, 2003; Al-Raheem et 

al., 2007). Yu et al. (2006) extracted energy entropy features from EMD components as input vector into 

ANN to identify roller bearing fault patterns with accurate and effective result. Samantha et al. (2003) 

selected time-frequency domain features to recognize different bearing health pattern with application of 

ANN and SVM.  Tran et al. (2009) used statistic features to identify the health conditions of induction motor 

and then imported the features into adaptive neuro-fuzzy inference systems (ANFIS) to distinguish.  Lei et 

al. (2007) proposed two features from multiple sensors signal fusion result to identify heath conditions of 

complex PGBs and ANFIS was applied to recognize various health patterns.  

There are two stages required for the application of intelligent fault diagnosis methods on rotating 

machinery, feature extraction from monitoring signals involving time series signal processing procedure and 

fault classification using extracted features with implementation of artificial intelligence methods. It can be 

observed from previously reported literatures on intelligent rotating machinery fault diagnosis that ANN is 

one of the most commonly used techniques to classify and recognize rotating machinery health conditions. 

Most reported ANNs implemented in intelligent rotating machinery fault diagnosis are back propagation 

(BP) networks. However, BP networks have the potential danger of being captured by local minima (Graupe, 
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2007). Also, in comparison to other ANNs, BP network takes more computation time to train the fitted model. 

In addition, the disadvantage of being a network with shallow structure limits BP networks to seek hidden 

relationship and pattern among input feature vector (Bin et al., 2012, Kankar et al., 2011). Moreover, the 

features imported into network are extracted and selected from the collected data ahead of being classified. 

The manually extracted features largely depend on diagnosis scenarios and unique to the specific issues. With 

development of artificial intelligence technique, the limitation of traditional fault diagnosis using neural 

networks with shallow structure can be recovered by introducing deep learning method. 

2.1.2 Planetary Gearbox Fault Diagnosis 
The rising deployment of commercial wind energy projects increases the demands of a more proactive 

maintenance strategy and a more intelligent methodology so that the wind energy can be more competitive 

to the traditional energy forms. The modern wind industry has experienced a higher wind turbine gearbox 

failure due to the various reasons such as: unexpected overloading caused by rare operating conditions, 

defective gearbox design, and ineffective maintenance (Feng et al., 2012).  

With benefit from their compressive dynamic structure and unique ability to distribute the input 

torque in parallel, the planetary gearboxes (PGBs) are widely used in the design of wind turbine drivetrain 

systems. As reported by Sheng et al. (2011), the gearbox failure is the first leading cause (22%) to total wind 

turbine downtime. Furthermore, the gear failure constitutes 26 and 25% of total gearbox failures recorded in 

year 2013 and 2014, respectively (Sheng, 2014). Condition monitoring for wind turbine has been studied 

over the past decade (Zaher et al., 2009). Condition monitoring data of wind turbines is increasingly 

important as the dimension and remote locations of wind turbines used nowadays lead to crucial technical 

availability of wind turbines (Zhang and Wang, 2014). Most wind turbines are installed with supervisory 

control and data acquisition (SCADA) system monitoring critical components such as PGB.  The effective 

formats of measurement are collected and stored via SCADA systems (Becker and Poste, 2006). Though 

SCADA has been reported as cost-efficient and beneficial for irregular component behavior, it is difficult to 

be applied due to the large volume of SCADA data generated in the monitoring process (Dao et al., 2017).  
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The monitoring data can rapidly accumulate to create large and unmanageable volumes that can potentially 

lead critical faults to be undetectable.  These massive real-time data are characterized with large volume, 

diversity, and high velocity.  Typically, there are two categories of fault diagnosis methods, namely model-

based methods and data-driven methods. The comprehensive physical and mathematical model of studied 

system is essential to model-based methods and normally is not available for the wind turbine PGB. With 

continuously monitoring and regularly stored monitoring data, data-driven methods are preferred (Laouti et 

al., 2011).  Different methods have been developed for gearbox condition monitoring and fault diagnosis. A 

general procedure of successful fault diagnosis normally constitutes by three stages: selecting a measurement 

to reflect machinery information, extracting the fault sensitive features, and categorizing the health 

conditions. Various formats of measurement have been proven effective in fault diagnosis, including 

vibration signals (Chen and Feng, 2016), oil debris (Li et al., 2014), acoustic emission signals (Yoon and He, 

2015; Zhang et al., 2017), thermal signals (Wong et al., 2010), and strain signals (Yoon et al., 2015).  

Most available condition monitoring relies on vibration signals analysis using accelerators, combined 

with complicated signal processing in both time and frequency domain (Lei et al., 2014).  As pointed out by 

McName (2002), continuous-time Fourier analysis explains the natural occurrence of asymmetry in the 

spectrum that should not alarm the fault.  The estimation of local scaling exponent of monitoring vibration 

data has been successfully used to identify faulty PGB with cracks (Loutridis, 2008). Time synchronously 

averaged vibration data from helicopter gearbox triaxial vibration data has been proved carrying 

supplementary information in frequency domain and dynamics of the vibration (Tumer et al. 2003). The 

effects of unequal planet gear spacing on PGB vibration systems have been studied to enhance the 

understanding of vibration characteristics of PGBs (Patrick et al., 2012). The results have shown the potential 

of using relative size of the nondominant sidebands magnitude to the dominant sidebands magnitude as the 

feature to detect carrier-plate crack fault in PGB. The different features sensitive to fault detection have been 

proposed and applied by researchers. The features extracted from vibration signals are generally located in 

the time domain, frequency domain, and time-frequency domain. A new time domain feature was introduced 



 
 

13 
 

to monitor PGBs in time-varying working conditions (Bartelmus and Zimroz, 2009). Cyclostationarity was 

applied as condition indicator to diagnose gear faults in the time domain. Information in frequency domain 

can be very sensitive to the fault patterns (Raad and Sidahmed, 2008). Morlet wavelet was introduced as a 

filter to effectively remove the noise in the vibration signals by Lin and Zuo (Lin and Zuo, 2004). The period 

impulse of the filtered signals was then obtained by the degree of cyclostationary as the feature to diagnose 

a gear fault.  In the study reported by Lu et al. (2015), the detection of weak nonstationary signal in the 

monitoring vibration signal was enhanced by introducing time-delayed feedback into stochastic resonance. 

Such detection can be extensively used in gearbox fault diagnosis.  As pointed out (Randall et al., 2011), 

spectral kurtosis is one of the most used frequency domain fault features. Compared to the features extracted 

only from time domain or frequency domain, the features from time-frequency domain have attracted much 

attention in recent researches. It was shown in the research that the features extracted based on second order 

transient analysis with particle swarm optimized adaptive band filtering were more sensitive to the initial 

fault development (Hussain, 2017).  Complicated signal processing techniques including continuous wavelet 

transform (Zuo et al., 2015), discrete wavelet transform (Bairis et al., 2016), wavelet packet transform (Shen 

et al., 2013), Hilbert-Huang transform (Yoon et al., 2016), adaptive optimal kernel time-frequency analysis 

(Feng & Liang, 2014), empirical wavelet transform (Chen et al., 2016) and other time-frequency tools have 

been successfully applied to extract fault features from monitoring signals. The combination of various signal 

processing methods has been applied on wind turbine PGB fault diagnosis. Study has shown the effectiveness 

of ensemble intrinsic time-scale decomposition, wavelet packet transform, and correlation dimension 

combination on PGB fault diagnosis (Hu et al., 2015). However, the application results can only identify the 

faults on the high-speed shaft gear.  Furthermore, the researchers have studied the performance of combined 

features extracted from multiple domains in application of fault diagnosis. Two diagnosis parameters 

generated from the features extracted in both time and frequency domains were applied as condition indicator 

to diagnose PGB faults (Lei et al., 2012).  
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After the features are extracted from the monitoring signals, a variety of classifiers can be used to 

categorize the health conditions. The most reported algorithms used as health condition classifiers include 

support vector machines (SVMs) and artificial neural networks (ANNs).  The wind turbine blade damage 

classification abilities of SVMs and logistic regression as two typical supervised learning methods have been 

studied (Regan et al., 2017). Both two methods can identify the wind turbine blade faults with minimal 

overfitting.  An intelligent fault diagnosis method combined with envelope spectrum and SVM was proposed 

for fault diagnosis (Guo et al., 2009). An intelligent model for gearbox fault diagnosis based on SVM and 

immune genetic algorithm (IGA) was generated (Chen et al., 2013). The IGA was applied to select the 

optimal parameters for SVM used in the proposed model for better classification accuracy. It has been 

reported that a dynamic neural network was applied for intelligent fault diagnosis with success (Tayarani-

Bathaie et al., 2014).  An ANN was applied with the features extracted from empirical mode decomposition 

of vibration signals to accomplish automatic fault diagnosis (Ali et al., 2015). Manifold learning and Shannon 

wavelet SVM was combined to recognize the faults in wind turbine transmission system (Tang et al., 2014).  

A strategy was proposed to detect and isolate faults for wind turbine benchmark (de Bessa et al., 2016). The 

strategy detects the change in the monitoring time series data and applies fuzzy Bayesian network to generate 

the possibility of potential faults.  

The above-mentioned condition monitoring and fault diagnosis methods face three challenges in the 

age of big data. Firstly, the features used for classification are manually extracted. This feature extracting 

process depends greatly on complicated signal processing techniques and fault diagnosis expertise. Such 

characteristic constrained the extensibility and capability of the existing methods on large volume of data, 

since human intervention is required to accomplish the intelligent process. Secondly, though the manually 

selected and extracted features have been proven effective to express fault information, the features are 

selected on specific operational condition or components. Thus, the feature extraction and selection process 

need to be adjusted regarding each fault diagnosis system with different components and environment, 

requiring the experienced professional to accomplish. The third challenge is that widely used ANNs in the 



 
 

15 
 

existing studies were constituted by shallow structure of single hidden layer. Such shallow structure limits 

the capacity of ANNs to adaptively self-learn and mine the hidden information regarding the fault diagnosis 

issues. In the age of Internet of Things and Industrial 4.0, massive data will be generated by condition 

monitoring systems. There is an urgent need to develop an intelligent condition monitoring and fault 

diagnosis being capable of automatic feature extraction and fault diagnosis. 

2.2 Deep Learning Based Methodology and Application in Fault Diagnosis  
 

2.2.1 Deep Learning – A Brief Introduction 
Deep learning has been widely studied in various fields for its unique capability of adaptively 

capturing the representative information from raw data through multiple non-linear transformations and 

approximating complex non-linear functions with a small error (Schmidhuber,2015). Deep learning refers to 

a class of machine learning techniques where many layers of information processing stages in deep 

architectures are exploited for pattern classification and other tasks (Deng, 2014). Development of deep 

learning based approaches for mechanical fault diagnosis has been reported (Tamilselvam and Wang, 2013; 

Tran et al., 2014; Ma et al., 2014; Lv et al., 2016; Jia et al.,2016; Gan et al., 2016). Tamilselvan and Wang 

(2013) reported a multi-sensor method using DBN for chemical benchmark classification, aircraft engine 

health diagnosis, and electric power transformer health diagnosis. Tran et al. (2014) implemented DBN on 

two-stage reciprocating compressor fault diagnosis under different valve conditions. The validation results 

showed the efficiency of the reported method with high accuracy on diagnosis. Ma et al. (2014) implemented 

a deep learning based approach in a multi-sourced big data environment. The validation results obtained from 

power transformer and circuit breaker showed the capability of deep learning on accurate classification. Lv 

et al. (2016) applied a deep learning based approach on distributed control system fault detection. The 

validation results showed that the proposed method can capture the features that could not be obtained by 

statistic techniques.  
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Recently, several studies on rotating machinery fault diagnosis using deep learning based methods 

have been reported. Jia et al. (2016) proposed an intelligent diagnosis method by using deep neural networks 

(DNN) on vibration bearing monitoring data along with simple signal processing technique as fast Fourier 

transfer (FFT). DNN is composed by stacking multiple autoencoders. The validation results showed that the 

DNN can extract fault features from monitoring signals that led to a satisfactory diagnosis accuracy. The 

method reported by Jia et al. (2016) relies heavily on supervised fine tuning to determine the appropriate 

parameters of designed DNN, including the number of hidden layers and the number of neurons in each layer.  

Gan et al. (2016) constructed a hierarchical diagnosis network (HDN) by stacking DBN for bearing fault 

diagnosis. The first DBM was employed to identify the fault locations, the then second DBN was employed 

to identify the fault severity for the specific fault location. However, features that were manually extracted 

from the monitoring signals by using wavelet packet energy method were required. Besides, the reported 

HDN is trained independently and sequentially for fault diagnosis and severity detection, which will 

potentially reduce the reliability of the diagnosis and detection results. Though DNN and DBN based deep 

learning approaches have been implemented in rotating machine fault diagnosis successfully, determination 

of significant parameters of designed model depends greatly on trial-and-error in precisely supervised fine-

tuning procedure. Both time and experience on fine tuning procedure is required to achieve the goal as 

satisfied accurate performance. A method that does not require supervised fine tuning to determine model 

structure is needed for automated intelligent fault diagnosis with big data.  

A deep learning based intelligent rotating machinery fault diagnosis methodology is needed to 

simultaneously perform fault location and severity diagnosis without great dependency on complicated signal 

processing or supervised fine tuning. Large memory storage retrieval (LAMSTAR) neural network is selected 

as deep architecture in this research.  The LAMSTAR neural network can be regarded as an ANN with deep 

architecture for the composition of multiple parallel SOM modules. With the similar structure to the typical 

deep learning, LAMSTAR neural network is potential to overcome the deficiencies in current intelligent 

diagnosis methods. LAMSTAR neural network has been implemented in multiple fields including image 
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recognition (Girado, 2013), biomedical diagnosis (Nigam and Graupe, 2004; Sivaramakrishna and Graupe, 

2004; Waxman et al., 2010; Isola et al., 2012), finance analysis (Dong et al., 2012), with solid results showing 

the capability of LAMSTAR network for rapidly processing large volume of data with less error than regular 

machine learning algorithms. By introducing the forgetting, rewarding and punishing features into a 

traditional neural network, LAMSTAR network works on a closer level of mimicking the working process 

of a natural brain. LAMSTAR network can grow and shrink in dimension without changing the original 

structure and maintain fast training speed due to the operation of parallel SOM modules. The standard 

perceptron-like neurons are employed in LAMSTAR network, arranging in SOM modules. The SOM 

modules in LAMSTAR network are governed by winner-taking-all (WTA) strategy and the memories of 

those neurons in SOM are stored in bidirectional associative memory function. The optimization of a 

LAMSTAR network is to determine the link weights that store relation message between various input SOM 

modules and between neurons in input SOM modules and decision SOM module. The link weights contribute 

along with information stored in winner neuron from each individual input SOM module to decision SOM 

module. With all the characteristics discussed above, a LAMSTAR network can learn and understand system 

information more systemically and intelligently. Yoon et al. (2013) have successfully applied a LAMSTAR 

network on vibration signals for full ceramic bearing fault diagnosis. In that study, vibration signals were 

pre-processed by using HHT to extract conditional indicators as inputs to BP neural network, LAMSTAR 

network, and KNN model, respectively. The classification results from that study showed faster learning 

speed and higher accuracy obtained by the LAMTAR network.  

The proposed LAMSTAR network based rotating machinery fault diagnosis and severity detection 

approach pre-processes monitoring signals using the simple short-term Fourier-transform (STFT) method 

rather than computationally complicated signal processing and feature extraction algorithms such as wavelet 

transform and HHT. After transforming the raw vibration signals to generate a time spectrum matrix using 

STFT, sub-patterns are then generated from the time spectrum matrix and used to obtain the optimized 

LAMSTAR network for bearing fault diagnosis and severity detection simultaneously. 
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2.2.2 Sparse Coding and Application in Fault Diagnosis 
There is a growing interest in implementation of sparse coding in signal processing field. Initially, 

the idea of redundancy reduction was raised by Barlow (1961) as the fundamental principle underlying the 

primary processing in mammalian neural circuits for perception.  Based on the extension of redundancy 

reduction to sparse coding by Foldiak (1990), Olshausen and Field (1996) declared that basic functions 

sharing similar properties with the neurons in the primary visual cortex of mammals were learned out from 

natural images. The basic model suggests that natural signals can be represented, or efficiently approximated, 

by a linear combination of pre-learned atom signals with sparse linear coefficients, meaning most of linear 

coefficients are zero. With the capability of high level abstract presentation, the sparse coding is becoming 

widely studied in many fundamental signal and image processing tasks (Long et al., 2016; Hu et al., 2016; 

Elad and Aharon, 2006; Potter and Elad, 2009; Zibulevsky and Pearlmutter, 2001; Chen et al., 2014; Liao 

and Sapiro, 2008; Wrights, et al., 2009).  Generally, given 𝑥 ∈ 𝑅) as a column signal, where N represents 

the number of data points in column signal, and arranging the atom signals as the columns of the dictionary 

𝐷 ∈ 𝑅)×, , the sparsity assumption is described by the following sparse approximation problem. Assume that 

a sparse solution exists such that 

�̂� = Arg	min
7
‖𝑠‖99   Subject to ‖𝑥 − 𝐷𝑠‖; < 𝜖 (2.1) 

 

In Eq. (2.1), �̂� is the sparse representation of x and γ the error tolerance. The function ‖∗‖99 is referred 

to as the 𝑙9 − 𝑛𝑜𝑟𝑚 that counts the nonzero entries of a vector. Though known to be an NP-hard problem in 

general (Davis et al., 1997), there are a variety of methods to provide approximation on this problem (Donoho 

et al.; 2012, Sardy et al., 2000).  

A critical issue in using sparse coding model for signal processing is the selection and generation of 

dictionary D. Two major methods were reported in the literature, namely the analytic method and the machine 

learning based method. For the analytic approach, a mathematical model of the data is formulated, and an 
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analytic construction is generated to efficiently represent the model. Dictionaries developed using the analytic 

approach are refereed as implicit dictionaries due to how they are described by algorithm. Typical analytical 

approach based dictionaries include curvelets (Gorodnitsky and Rao, 1997), shearlets (Labate et al., 2005), 

wavelets (Mallat, 2009), complex wavelets (Selesnick, et al., 2005) and so on. For the machine learning 

based approach, the dictionaries are generated using machine learning technique from a set of examples. 

Different from analytical approach based dictionaries, machine learning based dictionaries are represented 

as an explicit matrix, and a training algorithm is required to adapt the matrix coefficients to the examples. 

Typical machine learning algorithms have been combined into sparse coding models for dictionaries 

generation, including principal component analysis (Jolliffe, 2002), method of optimal directions (Engan et 

al., 1999), and K-SVD (Aharon et al., 2006). Though the fine-tuned dictionaries from machine learning based 

methods provide significantly better performance in sparse coding model application, the production of 

unstructured dictionaries leads to more cost for application. Also, the complexity of typical machine learning 

methods limits the size of dictionaries and the dimension of signals to be processed (Rubinsein et al., 2010). 

Though many sparse coding based signal processing studies have been reported, only a few are 

investigated for machinery fault diagnosis. Martin-del-Campo and Snadin (2015) studied the possibility to 

automate the condition monitoring process by continuously learning a dictionary of optimized shift-invariant 

feature vector. The features extracted from vibration signals carrying ball bearing condition information show 

the obvious difference in shape and frequency in different bearing condition signals under various operation 

conditions. Such features can be useful for identify the bearing conditions. Liu et al. (2011) extracted features 

from bearing vibration signals by using shift-invariant sparse coding method, and classified the bearing 

condition through a linear discriminant analysis classifier. The classification error rates from validation 

results ranges between 0% to 77.31%. Li et al. (2015) presented a rolling bearing fault diagnosis method 

based on locality-constrained sparse coding. The basic time domain features, including mean, median, 

variance, skewness, min value, max value, kurtosis value, and other frequently used time domain features, 

were extracted and used for dictionary generation and training. A support vector machine classifier is selected 
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to classify the bearing conditions with extracted sparse features obtained from sparse coding model. The 

vibration signals under 0 hp load was selected for validation. The validation results showed good 

classification performance with highest classification error as 2.54%. Li et al. (2014) presented the bearing 

fault diagnosis using Fisher discrimination sparse coding methods. The feature extraction method added the 

Fisher discriminant criterion into sparse coding framework to extract more discriminative and conductive 

features for classification. The validation results involving vibration signals carrying different bearing faults 

with mixed loading showed classification error ranging from 0% to 3.63%.  It should be noted that analytical 

approach was selected for dictionary learning process in this reference to realize sparse coding based 

methodology on machinery fault diagnosis. Also, only seeded vibration bearing fault monitoring data was 

used for validation.  

Given the limitation of current machine learning based dictionary learning approach and its 

significant computational effort, a LAMSTAR neural network can be introduced into sparse coding frame as 

well as classification stage. It is expected that such combination will increase the classification accuracy and 

reduce the computational effort. 

It is also observed that only shallow classifiers were employed on the extracted sparse features for 

bearing fault diagnosis (Liu et al., 2011; Li et al., 2015; Li et al., 2014). Classifiers including support vector 

machine (SVM) (Liu et al., 2011; Li et al., 2014) and linear discriminate analysis (LDA) (Li et al., 2015) 

were reported with classification error rate in range of 0% to 6%, when training dataset and testing dataset 

were formed under same operation condition. The training datasets were designed as half of testing datasets 

in the above literatures. Such design requires large ratio of labeled data for satisfied classification results 

when applying the sparse coding based models. However, the reported sparse feature extracted using sparse 

coding based method did not give a good adaptive performance. The classification error in the model with 

training and testing datasets obtained under different operation conditions can be as high as 77%. The 

capability of deep learning based methods on obtaining connection between various input dataset and digging 
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hidden information in the pattern is a potential solution to the adaptive characteristics on sparse feature 

application. More specifically, the connection between faults and their severity will be generated and 

gathered in LAMSTAR neural network through extracted sparse features under various operation conditions, 

and lead to accurate classification results. It has been proven shown that the application of sparse coding as 

a deep learning method efficiently increased the robustness and adaptiveness of the models (Xavier, et al., 

2011; Ranzato, et al., 2008; Lee, et al., 2008). Similarly, it can be expected to introduce sparse coding method 

into LAMSTAR neural network with low risk of overfitting. The amount of labeled data required in 

supervised training procedure can be reduced. Thus, with small portion of labeled data, the accurate 

machinery fault diagnosis can be achieved automatically.  

2.3 Signal Processing Techniques on Rotating Machinery Fault Diagnosis  
 

2.3.1 Signal Processing Techniques on Bearing Fault Diagnosis 
Signal processing is an important task for machine fault diagnosis.  Over the years, many vibration 

signal processing methods have been developed for bearing fault diagnosis.  In general, they can be classified 

into two major categories: vibration analysis based and deep learning based.  vibration analysis based signal 

processing techniques includes: time-domain analysis, frequency-domain analysis, and time-frequency 

domain analysis (Jardine, et al., 2016).  

Since the vibration signals are collected as time series data, time-domain analysis is applied to the 

time waveform directly. Typical time-domain analysis calculates the statistical condition indicators from the 

time waveform signals that can describe the uniqueness of the signals. Commonly used descriptive statistics 

include mean, peak, peak-to-peak interval, standard deviation. Simple condition indicators such as root-

mean-square (RMS) and crest factor have been applied for the detection of localized bearing defects (Miyachi 

and Seki, 1986; Tandon, 1994), with limited success. Some high-order statistical parameters such as 

probability density and kurtosis have been used for bearing defect detection (Cikkacittm, 1977, Dyer and 

Stewart, 1978). Apart from the condition indicators calculated directly from the time-domain, display of 
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waveform data on oscilloscope or on a chart recorder for periodic peaks observation can locate the bearing 

local defects (Igarashi and Hamada, 1982; Igrashi and Kato, 1985). The shock pulse method detecting the 

structural resonances exited in the high frequency zone has been widely studied for the bearing fault detection 

(Butler, 1973; Li et al., 2007). Another popular studied time-domain analysis approach is time synchronous 

average (TSA). TSA can extract the periodic waveform information from the noisy data by the ensemble 

average of the raw signal over multiple evolutions. TSA has been successfully applied to bearing local faults 

diagnosis (Siegel et al., 2012; McFadden and Toozhy, 2000; Christian et al., 2007). Other time-domain 

waveform vibration analysis methods for bearing fault diagnosis are briefly mentioned as the followings: 

time series model application (Polyhonen et al., 2004), modified least mean square for non-stationary signals 

(Zhuge and Lu, 1991), principle component analysis (PCA) (Baydar et al., 2001).  

Frequency-domain analysis is the most widely used methods on machinery fault, including the 

bearing fault diagnosis (Tandon and Chouldhury, 1999). As the frequency-domain analysis can easily isolate 

and identify certain interested frequency components it has certain advantages over regular time-domain 

analysis. The typical spectrum analysis is the fast Fourier transform (FFT).  FFT can obtain narrowband 

spectra more efficiently. In case of bearing fault diagnosis, both the high and low ranges of frequency spectra 

components are useful.  Particularly, the defect in rolling element bearing produces short duration pulse 

during operation, resulting in the high energy in a specific range of frequency band. TSA in frequency domain 

has been applied to extract bearing fault features (Van Hecke et al., 2014; Van Hecke et al., 2016).  Power 

spectrum using the result of FFT is a commonly used tool for bearing fault diagnosis. Other efficient 

supplementary tools to analyze the spectrum include visualization of spectrum, frequency filters, envelope 

analysis, side band analysis (Ho and Randall, 2000; Randall et al., 2001; Stack et al., 2004; Blankenship and 

Singh, 1995). Cepstrum analysis related methods that have some advantages over the FFT based methods on 

certain cases include: power cepstrum (Van der Mervwe and Hoffman, 2002), bispectrum (Yang et al., 2002), 

and holospectrum (Qu et al., 1996). Even the application of cepstrum analysis related methods have been 
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successfully applied to diagnosing bearing faults, the estimation of power spectrum is complicated with 

certain degrees of inaccuracies (Haves, 1996; Slami et al., 2002).  

Time-frequency domain analysis is used to extend the capability of frequency domain analysis on 

non-stationary waveform signals. Time-frequency analysis methods such as short-term Fourier transform 

(STFT) (Wang and McFadden, 1993; Andrade et al., 1999), Wigner-Ville distribution (Meng and Qu, 1991), 

and wavelet transform (WT) (Luo et al., 2003) can process the non-stationary signals for machinery fault 

diagnosis. Other widely studied time-frequency analysis methods based on WT have shown their 

effectiveness on identifying bearing faults (Yan et al., 2014). However, the non-reachable simultaneous best 

time and frequency resolution of STFT, the cross-term interface of Wigner-Ville distribution, the energy 

leakage issue and precise base function selection of wavelet transform (Yan et al., 2014; Peng et al., 2005) 

limit their application to bearing fault diagnosis with better results. As a powerful time-frequency analysis 

method applied to rotating machinery fault diagnosis, empirical mode decomposition (EMD) of Hilbert-

Huang transform (HHT) decomposes the signal without base function like wavelet transform and can be 

applied to both stationary and nonstationary signals (Lei et al., 2013). Though HHT related methods have 

been implemented with solid results, it suffers from the computational expense and complicated results with 

changing working conditions (Liu et al., 2014; Tse et al., 2001; Yam et al., 2009; Peng et al., 2005).  

2.3.2 Signal Processing Techniques on Gear Fault Diagnosis 
As a critical component in the modern manufacturing systems, prediction of remaining useful life 

(RUL) has been used to make condition-based maintenance decision to avoid disastrous events and extend 

machine life (Sikorska et al., 2011; Wang and Shen, 2016).  In comparison with traditional physical-model 

based top-down modeling, the data-driven machine health monitoring methods provide the bottom-up 

solution for both fault diagnosis and prognostics to be easily accessed without degradation model describing 

the nature of failure (Jardine et al., 2006).   The conventional data-driven prognostic methods include three 

main stages: design of effective condition indicators (CI), CIs extraction and selection, and prognostics using 

manually extracted features. The satisfactory prediction of machine future working condition relies heavily 
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on the effective CIs and appropriate CIs selection (Javd, 2014). Over the years, many vibration signal 

processing methods have been developed and applied on effective CIs extraction for machine health 

monitoring, mainly include time-domain analysis, frequency-domain analysis, and time-frequency-domain 

analysis (Jardine et al., 2016).  Since the vibration signals are collected as time series data, time-domain 

analysis is applied to the time waveform directly. Typical time-domain analysis calculates the statistical 

condition indicators from the time waveform signals that can describe the uniqueness of the signals. 

Commonly used descriptive statistics include mean, peak, peak-to-peak interval, standard deviation. Another 

popular studied time-domain analysis method is time synchronous average (TSA). By the ensemble average 

of the raw signal over multiple revolutions, TSA can extract the periodic waveform information from the 

noisy data. TSA has been proved effective on locating gear faults (Qu et al., 2014; Yoon et al., 2015; Dapliaz 

et al., 2000). Frequency-domain analysis is the most widely used methods on machinery fault, including the 

bearing fault diagnosis (Tandon and Chouldhurv, 1999). The typical spectrum analysis is the fast Fourier 

transform (FFT). As the frequency-domain analysis can easily isolate and identify certain interested 

frequency components it has certain advantages over regular time-domain analysis. Bispectrum as the Fourier 

transform of the third statistics of the time waveform has been studied in locating gear faults (Xiong et al, 

2002; Zhang et al., 2003). Time-frequency domain analysis is used to extend the capability of frequency 

domain analysis on non-stationary waveform signals. Time-frequency analysis methods such as short-term 

Fourier transform (STFT) (Wang and McFadden, 1993; Andrade et al., 1999), Wigner-Ville distribution 

(Meng and Qu, 1991), and wavelet transform (WT) (Luo et al., 2003) can process the non-stationary signals 

for machinery fault diagnosis. The processes of designing, extracting and selecting appropriate CIs for the 

prediction of target machine working condition require human labor and expertise on both signal processing 

and prognostics. They have been proved effective on gear prognostics successfully but still with limitations 

on certain constrains and complicated designed signal processing procedures. Besides, the improvement of 

gear prognostics performance using the manually extracted features yields to a higher computational cost 
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(Heydarzadeh et al., 2016; Sharma and Parey, 2015). Therefore, it is difficult to apply the conventional data-

driven methods to automatically process machine big data.  

 

  



 
 

26 
 

3. Limitations of the Current Deep Learning Based Fault Diagnosis Methods 
 

(Parts of the literature review in this chapter were previously published as (1) He, M., He, D., 2018, “Wind 

turbine planetary gearbox feature extraction and fault diagnosis using a deep learning based approach”, 

Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, © 2018 

(SAGE Publications), Reprinted by permission of SAGE Publications. DOI: 10.1177/1748006X18768701; 

(2) He, M., He, D., 2018, “Simultaneous bearing fault diagnosis and severity detection using a LAMSTAR 

network-based approach”, IET Science, Measurement & Technology, DOI: 10.1049/iet-smt.2017.0528;) 

Even with the success of deep learning for bearing fault diagnosis, deep learning based approaches suffer 

the following limitations.  

(1). The structure of developed neural network cannot be explained with signal related physical meaning 

to the date. Most of deep learning based machinery fault diagnosis design the structure by trail-and-error test 

without explicit instruction. The commonly used constrain in neural network such as weight decay and 

sparsity coefficient cannot force the network to learn the unique properties of signal. The connection stated 

by Lei et al. (2016) is concluded by observing the trained filter and Gabor filter without detailed explanation. 

The orthonormality constraint introduced by Jia et al. (2018) lacks the explicit physical explanation. Thus, a 

deep structure guided with vibration analysis techniques will be useful.   

(2). Most of the deep learning based approach cannot be used directly on the periodic input. As a typical 

rotating machinery component, bearing signals contain shift variant information. The features learnt by the 

reported deep learning based approach with shift variant properties could lead to the misclassification.  

(3). For the deep learning based prognostics methods, the features are pre-extracted from raw data to be 

used in the following deep learning model for prognostics. Thus, the final performance of the deep learning 

based models still relies on the signal processing technique and features selection. The mechanism of using 

deep learning algorithms to express the monitoring data abstractly has not been explored yet.  
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4. METHODOLOGY 
 

(The majority of the content in this chapter is composed of previously published work as (1) He, M., He, D., 

2018, “Wind turbine planetary gearbox feature extraction and fault diagnosis using a deep learning based 

approach”, Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, 

© 2018 (SAGE Publications), Reprinted by permission of SAGE Publications. DOI: 

10.1177/1748006X18768701; (2) He, M., He, D., 2018, “Simultaneous bearing fault diagnosis and severity 

detection using a LAMSTAR network-based approach”, IET Science, Measurement & Technology, DOI: 

10.1049/iet-smt.2017.0528; (3) He, M and He, D., 2017, “A deep learning based approach for bearing fault 

diagnosis”, IEEE Transactions on Industrial Application, Vol. 53, No. 3, pp. 1-9, DOI: 

10.1109/TIA.2017.2661250) 

4.1 Overview of the LAMSTAR Neural Network Based Rotating Machinery Fault Diagnosis 
Methodology 
 

The general procedure of the LAMSTAR neural network based approach for rotating machinery fault 

diagnosis and severity detection is shown in Figure 4.1. As shown in Figure 4.1, the presented method 

includes three major steps. The first step is to obtain a time-spectrum matrix S using STFT to pre-process the 

monitoring raw data.  The motivation behind such pre-processing is that frequency spectrum of rotating 

machinery shows how their constitutive components are distributed with discrete frequencies and potentially 

provide valuable information about machinery health conditions (Jia et al., 2016). The second step is to 

import the obtained time-spectrum matrix S into a LAMSTAR network structure to obtain optimized deep 

learning model for fault diagnosis. Specially, sub-patterns are generated from the time-spectrum matrix S and 

channeled into the optimal LAMSTAR network model for rotating machinery fault diagnosis. The final step 

is to employ the optimized LAMSTAR network model to diagnose the bearing faults and detect the fault 

severity. The basic LAMSTAR network structure and specific design of the LAMSTAR network model are 

explained next. 
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4.2 Basic LAMSTAR Network Structure 
 

LAMSTAR network is specifically designed for retrieval, classification, prediction and decision 

making problems, especially those involving large amount of data. The LAMSAR network is built with one 

input layer, multiple input SOM modules and one decision SOM module. Two types of SOM modules are 

employed with different purposes, including multiple input SOM modules as hidden layers and one decision 

SOM module as output layer. With advantages of SOM-based network and statistical decision tools, 

LAMSTAR network is capable of pattern storage and retrieval. The information in the network is 

continuously being ranked for each data sample through learning and correlation, to make LAMSTAR 

network an intelligent system. 

The decision-making principle in a LAMSTAR network is the same as the classical neural networks. 

If n denotes the number of inputs fed into 𝑗DE  neuron as	F𝑣HI, 𝑖 = 1, 2,… , 𝑛N, then output 𝑦Iof the 𝑗DE  neuron 

can be expressed as: 

 

Figure 4.1. General structure of the LAMSTAR based method for bearing fault 

diagnosis and severity detection 

Data acquisition

Raw data Time frequency matrix S

Optimized 
LAMSTAR 

neural 
network

STFT
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𝑦I = 𝑓) QR𝑤HI𝑣HI

T

HUV

W (4.1) 

 

where fY(∙)  represents nonlinear activation function. Variable 𝑤HI	w^_ are the weights assigned to the 

i`ainputs of j`aneuron and whose setting is the learning action of the LAMSTAR network. The information 

in LAMSTAR network is saved and then processed through correlation links between individual neurons in 

separate SOM modules. Given a coded real matrix 𝑿 as input pattern: 

 

𝑿 = [𝒙Vf, 𝒙;f, 𝒙gf,… , 𝒙)f] (4.2) 

 

where 𝒙Hf stands for transpose of sub-pattern 𝒙H. Each sub-pattern 𝒙H is transported to a corresponding ith 

input SOM module storing the corresponding data of the ith category in the input pattern. A general structure 

of LAMSTAR network is presented in Figure 4.2. In Figure 4.2, input pattern represents each signal to be 

diagnosed, containing all sub-patterns generated from the spectrum matrix S. LAMSTAR network does not 

create neurons for an input pattern. Instead, only individual sub-patterns are stored in input SOM modules, 

and correlations between sub-patterns are stored as link weights (Graupe, 2013). The sub-pattern construction 

is explained in detail in Section 4.3. The procedure for generating and adjusting the link weights in the 

LAMSTAR network is explained next.  
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Figure 4.2. General tructure of the LAMSTAR network 

 

When a new input pattern is loaded into a LAMSTAR network, it checks all the storage-weight 𝒘H in 

the ith input SOM module corresponding to the ith sub-pattern to be stored. A neuron will be claimed as the 

winning nueron for this particular input sub-pattern if it can mache the input subpattern within a pre-defined 

error tolerence.  

For most of the applications with storage of purely numerical input sub-patterns, the storage of such 

sub-patterns into an input SOM module can be simplified by directly mapping each SOM module into a pre-

defined range of value. For example, the sub-pattern with a value of 0.6 will be stored in an input neuron 

representing range from 0.5 to 0.75. The searching procedure and decision of winning neuron in each module 

for SOM dynamic weights construction is explained in Section 4.3. 

The correlation between sub-patterns is stored in link weights that connect neurons in different input 

SOM modules. Thus, the link weights become fundamental to allow interpolation and exploration of sub-

patterns. The link weights are updated as for a given input pattern with the determined winning kth neuron in 

the ith input SOM module and the winning mth neuron in the jth input SOM module. A winning neuron is 

determined for each input sub-pattern according to how similar the input sub-pattern and a weight vector 
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w(stored information). For a given sub-pattern 	𝒙H , the winning neuron is determined by minimizing the 

distance norm	‖∗‖ as below: 

𝑑(𝑖, 𝑗) = k𝒙H − 𝒘Ik ≤ ‖𝒙H − 𝒘m‖, ∀𝑘 ≠ 𝑗 (4.3) 

 

The vector 	𝒙H will be stored in weights 𝑤HI  of vector 𝒘I relating to the jth neuron when the distance satisfies 

Eq.(4.3). The representing link weight L^,_
r,sis calculated by adding a pre-defined reward. Meanwhile, all other 

link weights will be decreased with a predefined punishment. The link weights update can be expressed as 

followings: 

𝐿H,I
m,u(𝑡 + 1) = 𝐿H,I

m,u(𝑡) + ∆𝑅 (4.4) 

𝐿H,I
m,u(𝑡 + 1) = 𝐿H,I

m,u(𝑡) − ∆𝑃 (4.5) 

𝐿(0) = 0 (4.6) 

 

where, in Eq.(4.4) and Eq.(4.5), 𝐿H,I
m,u	donates link weights between the ith  in the kth input SOM module and 

jth winning neuron  in the mth input SOM module, ∆𝑅 and ∆𝑃 are pre-defined reward and punishment values, 

and t represents the number of the iterations that the link weights are updated. The initial link weight is set 

as 0. The output that matches with target input will be rewarded by a non-zero increment; otherwise it will 

be punished by a non-zero decrement. 

The decision at the decision SOM module is made based on the collected link weights between 

neurons in the decision SOM module and neurons in all input SOM modules. To make such a decision, the 

LAMSTAR network produces a winning decision neuron n from the set of neurons 𝐽 in the decision SOM 

module by searching for the neuron in the decision SOM module with the highest cumulative value of link 

weights connecting to the selected winning neurons in each input SOM modules. The equations to make such 

a decision for the decision SOM module are given as follows: 
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𝐸(𝑗) = R𝐿}∗
I

)

}∗

, ∀𝑗 ∈ 𝐽 (4.7) 

𝐸(𝑛) ≥ 𝐸(𝑗), ∀𝑗 ∈ 𝐽 (4.8) 

 

 

where 𝑘∗ donates the winning neuron in every 𝑘th input SOM module; N is the total number of input SOM 

modules, 𝐿m∗
I  stands for link weight between the winning neuron in 𝜅DE input SOM module and neuron j in 

decision SOM module, J is set of neurons in decision SOM module, and 𝑛 donates the selected winning 

neuron in the decision SOM module. Thus, 𝐸(𝑗) represents the sum of link weights connecting to the jth 

neuron in decision SOM module from each winning neuron 𝑘∗  in 𝑘 th input SOM module, and 𝐸(𝑛) 

represents the sum of link weights connecting to the winning neuron 𝑛 in the decision SOM from each 

winning neuron 𝑘∗ in the 𝑘th input SOM module. 

In the LAMSTAR network based rotating machinery fault diagnosis method, the training data will be 

used firstly to update the link weights. More specifically, it will find the winning neuron in each input SOM 

module and use WTA principle to update the link weights. In testing procedure, the LAMSTAR network will 

calculate the winning neuron in the decision SOM module serving as the label information. In the end, the 

accuracy of the fault diagnosis is defined as ratio of the number of successful classifications over the total 

number of tested data points.  

4.3 The Design of the LAMSTAR Network for Rotating Machinery Fault Diagnosis 
 

The design of the LAMSTAR network for rotating machinery fault diagnosis involves the following 

tasks: sub-pattern generation, input data normalization, dynamic formation of neurons in SOM, determination 

of the link weights, and neural network test. They are explained detailed in the next sections. 
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4.3.1 Sub-pattern Generation 
The basic storage modules of the LAMSTAR network are SOM modules as discussed previously in 

Section 4.2. Since the decisions were made based on the link weights existed in both input SOM modules 

and the ones between input SOM modules and decision module, LAMSTAR network focused on correlation 

between patterns rather than the patterns themselves..  

The collected raw data are firstly pre-processed by STFT. The STFT pre-processing result is a 

spectrum 2-D matrix with a size of		𝑙 × 𝑛 l × n. Given a real-time monitoring signal s(t), the spectrum matrix 

can be written as S�×�with a size of		𝑙 × 𝑛	l × n, where l denotes row number and n denotes column number. 

Each signal sample is viewed as one input pattern in this case. By considering the spectrum matrix as a 

spectrum plot with known elements inside, the sub-sampling method used in the LAMSTAR network based 

image recognition application (Girado, 2013; Graupe, 2013) can be used to generate sub-patterns. Sub-

patterns are generated by taking samples from previously generated spectrum matrix.  

For each pattern, data subsets are sampled using a sliding box with a size of		𝑑	 × 𝑑 by sliding the 

spectrum matrix from left to right, then top to bottom, sequentially. Every subset obtained from the sliding 

box will be transformed column by column into a 1-D vector, taken as one sub-pattern in an input SOM 

module. The procedure for obtaining sub-patterns from spectrum matrix is presented in Figure 4.3. 
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Figure 4.3. The procedure for obtaining each sub-pattern from spectrum matrix as input to LAMSTAR 

network. 

 

With a defined size of sliding box as	𝐵�	×�	, the total number of generated sub-patterns 𝑁 is decided 

as: 

𝑁 = (𝑙/𝑑) × (𝑛/𝑑)		 (4.9) 

 

For each sub-pattern, the number of elements is	𝑑;	. Since each spectrum matrix 𝑆�×T is considered as one 

pattern, then one can define a sub-pattern as	Ω�, 𝜐 = 1,2,… ,𝑁. Thus, a sub-pattern can be written as: 

Ω�(𝑓, 𝑔) = 𝑆�×T ��
𝑁
𝑛
𝑑
� × 𝑓,𝑚𝑜𝑑 �

𝑙
𝑧� × 𝑔� , ∀𝑓, 𝑔 < 𝑑 (4.10) 

   

The data sampled from the spectrum matrix is stored in sub-patterns, and each sub-pattern will be 

modeled as one input SOM module. Thus, the number of input SOM modules is the same as the number of 

...
Sliding 
Box 1

Sub-sample

Sub-pattern 1 Sub-pattern 2  Sub-pattern N .... {

NInput SO
M

 m
odule 1

Input SO
M

 m
odule 2

Input SO
M

 m
odule N

.... 

Neuron 1

Winner neuron
Winner neuron

Winner neuron

Sliding 
Box 2

Sliding 
Box N

Sliding 
Box 
n/d  

Sliding 
Box

N-n/d+1

...

...

Link weights

Link 
weights

....
Neuron 2

Sliding 
Box

 n/d +1

Decision 
SOM 

module

Link weights

...



 
 

35 
 

generated sub-patterns. The goal of determining an appropriate sliding box dimension is to select a sub-

pattern that contains as much variant information as possible and thus can be used as a feature. Therefore, 

the entropy of elements per sliding box can be used as one criterion when selecting the appropriate sliding 

box dimension.  In rotating machinery fault diagnosis, each fault will be represented by an output neuron 

firing sequence in the decision SOM module. Hence, the decision SOM module should contain enough 

number of output neurons such that a complete permutation of the output neuron firing sequences can be 

used to represent the rotating machine conditions to be classified. 

4.3.2 Input Normalization 
For each sub-pattern	𝒙H = �𝑥V, 𝑥;,⋯𝑥I,… �, the normalization of x^𝒙H is computed as: 

𝒙HT��u = 	 𝒙�

�∑  ¡¢¡

 = [  £

�∑  ¡¢¡

,  ¢

�∑  ¡¢¡

, … ,  ¡

�∑  ¡¢¡

,] (4.11) 

 

Thus, the input sub-pattern is normalized between 0 and 1. 

4.3.3 Fundamental Principles Used in Dynamic SOM Module Design 
A SOM module is a learning algorithm that was originally proposed by Kohonen (1982) and the SOM 

modules were designed to learn to cluster groups of similar input patterns in a high dimensional input space 

using a non-linear function (Kohonen, 2001). The physical arrangement of neurons in the output layer is 

taken into consideration in the SOM modules. The neurons physically located close to each other in the output 

layer of the SOM have similar input patterns.  The SOM layer employs WTA strategy, in which the output 

neurons compete among themselves to be a winning neuron, with the result that only one winning neuron is 

generated at one time. Such competition ends up with the neurons being forced to organize themselves. The 

main advantages of SOM modules are that it is non-linear and it can preserve the topological structure of 

dataset (Corn et al., 1999). In general, the SOM modules cluster the input patterns into classes with 

meaningful maps.  The neurons in Kohonen SOM module are connected to every neuron in the input layer 
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through adjustable weights or network parameters. The weight vectors in the Kohonen SOM module give a 

representation of the distribution of the input vectors in an ordered fashion. 

Let 𝐱 = [𝑥V, 𝑥;,… , 𝑥u	]𝑻  be the input vector to the Kohonen SOM neuron and 𝐰I =

[𝑤VI, 𝑤;I, … ,𝑤uI	]𝑻 be the weight vector assigned to the Kohonen SOM neuron. Then the net output of a 

Kohonen SOM neuron 𝑘I can be defined as: 

 (4.12) 

 

where j=1,2, ..., p, with p being the number of different classes considered and m the dimension of the input 

vector. 

Subsequently, for the hth neuron (𝑗 ≠ ℎ), if 𝑘E > 𝑘I then weight vector 𝐰I is updated such that: 

 (4.13) 

 

With the normalized input vector, the winning neuron can be decided by searching for the highest 

value as: . After the winning neuron is decided, the weights of winning neuron can be 

adjusted to yield a unity output 𝑘∗E = 1, that is 𝑘∗E = (𝒙HT��u)𝑻𝐰E = 1. And since the input vector is 

normalized, the following equation can be obtained: 

(𝒙HT��u)𝑻𝒙HT��u = 1 (4.14) 

 

Thus, the normalized input vector can be updated as: 

𝒙HT��u = 𝐰E (4.15) 
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Eq.(4.15) shows the weight vector of the winning neuron in a SOM module equals to the normalized 

input vector. Starting with the weights of the winning neuron to be the ones that best approximates the input 

vector, the weights can be updated closer to input vector as: 

 (4.16) 

 

where learning constant 𝛼 is set between 0 and 1 and normally as 0.8 and 𝐱 denotes sub-patterns, n the 

iteration times. 

4.3.4 Dynamic Formation of Neurons and Weights in SOM Module  
In this paper, the neurons in the SOM models are built dynamically instead of setting a fixed number 

of neurons arbitrarily. The network is built to have neurons depending on the class to which a given input to 

a sub-pattern might belong. Such designed network produces less number of neurons and the time required 

to fire a neuron at the classification stage is reduced considerably. 

The first neurons in all the SOM modules are constructed as Kohonen neurons. One neuron is built 

with input sub-pattern and randomly initialized weights to start with, and the initial weights are normalized 

following the same equation for input sub-patterns. Then the weights are updated until the output of the 

neuron is made equal to 1 with pre-defined error tolerance. Let w(n) and w(n + 1) be the weight at iteration 

n and n+1, then the weight is updated as Eq. (4.16) stated above. 

The output value of a neuron is computed as: 

 (4.17) 

 

[ ]( 1) ( ) ( )n n na+ = + -w w x w

Tz = *w x
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In the dynamic SOM weight construction process, all incoming sub-patterns are checked to see if they 

are zero sub-patterns (i.e. zero vectors). The trained output weight is set to be zero and the searching 

procedure for winning neuron step is skipped if a zero sub-pattern exists. Otherwise, any incoming sub-

pattern searches among the previously constructed neurons and corresponding weights if any neuron 

generates output 𝑧  that equals to 1 with the pre-defined error tolerance. The neuron satisfies with the 

condition that the output equals to 1 with pre-defined error tolerance is claimed as the winning neuron. If the 

searching for winning neuron fails, another neuron and corresponding weight set are constructed additionally 

with the pre-defined error tolerance. After all the sub-patterns are imported into the respective input SOM 

modules, the output at any of the previously built neuron is compared to 1 with the pre-defined error tolerance. 

The neuron that satisfies the condition will be rewarded with a non-zero increment otherwise punished with 

a small non-zero decrement.  
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Figure 4.4. Flow chart of training procedure using dynamic neurons in the input SOM 
modules starting from the second training input pattern 
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As explained previously, the first neurons in all the input SOM modules are constructed as Kohonen 

neurons. When the first training input pattern is imported to the network, one neuron is built with inputs and 

randomly determined input weights. The initial input weights are normalized the same way as the input sub-

patterns. Then the input weights are adjusted such that the output of the first neuron is equal to 1 (with pre-

defined tolerance) using Eq.(4.16) and Eq.(4.17). The dynamic formation of neurons and their weights in the 

input SOM modules after the first training pattern in the training procedure is displayed in Figure 4.4. The 

testing procedure using the dynamic formation of neuron sin the input SOM modules is displayed in Figure 

4.5.  
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As shown in Figure 4.4 and Figure 4.5, k represents index of input patterns, K the total number of 

training input patterns, M the total number of testing input patterns, i the index of sub-patterns of an input 

pattern, and N the total number of sub-patterns of an input pattern. 

Figure 4.5. Flow chart of testing procedure using dynamic neurons in the input 
SOM modules 
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4.3.5 Determination of the Link Weights 
Link weights are the weights of links connecting the winning neuron at every input SOM module to 

the decision SOM module. The value of link weight will be changed in every iteration based on reward/punish 

policy. In a modified version of the LAMSTAR network, the link weight L^,_(m, k) that represent correlation 

between mth neuron in the kth input SOM module to jth neuron in the ith decision SOM module is normalized 

as: 

 (4.18) 

 

where n(m,k) denotes the number of times that neuron m is the winning neuron in the kth input SOM module.  

4.4 LAMSTAR Network Based Bearing Fault Diagnosis 
 

The scheme of the LAMSTAR network based rotating machinery fault diagnosis scheme involves 5 

steps as follows: (1) A LAMSTAR network with N input SOM modules is created as a start of the training 

procedure. The value of N is decided accordingly to the sub-pattern generation process. (2) Import the training 

dataset of patterns constructed by sub-patterns into the LAMSTAR network. Dynamic SOM weights and link 

weights are optimized using normalized sub-patterns. (3) Store the generated dynamic SOM weights and link 

weights. (4). Import the testing dataset into the LAMSTAR network. With storage of SOM weights and link 

weights, the winning neuron in each SOM module for testing data is calculated, and the winning neuron in 

decision SOM module is decided. (5) Achieve the machinery fault diagnosis with information of winning 

neuron in decision SOM module. 

  

4.5 Sparse Coding and Combination with LAMSTAR Network on Rotating Machinery Fault 
Diagnosis 
 

,
, ,( , ) / ( , )norm k m
i j i jL m k L n m k=
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4.5.1 Sparse Coding Model 
Sparse coding means to represent a signal as a linear combination of a few atoms of a given dictionary. 

Given an input signal as 𝐱 = [𝑥V, 𝑥;,… , 𝑥T]f , the input signal can be expressed as a linear weighted 

combination of basic functions plus additive noise: 

𝐱 = 𝐃𝐬 + 	𝜀 = R𝒅m𝑠m

¯

mUV

+ 𝜀 (4.19) 

 

where 𝐃 ∈ ℝT×¯  is the dictionary matrix, with each column as the basic function 𝒅m  also known as atoms in 

dictionary learning model, 𝐬 = [𝑠V, 𝑠;, … , 𝑠m]f as the sparse representation of input signal 𝐱, n as the number 

of data points in vector x, and 𝜖 as assumed Gaussian white noise. 

The goal of sparse coding is to find sparse representation coefficients 𝑠m based on given input data 

and dictionary. Normally, the number of basic functions is greater than the dimension of input signal, which 

means 𝑛 < 𝐾 for most of cases. Thus, the over-complete set of basic functions can be obtained. Sparse coding 

expects a succinct sparse representation of each input signal with most of its coefficients 𝑠m are zero or nearly. 

In such case, there would not be infinite number of solutions for sparse coefficients vector with full-ranked 

matrix D. The formal expression of sparse coding model can be written as: 

𝐱min
7
‖𝑠‖9		subject	to	‖𝐱 − 𝐃𝐬‖; ≤ 𝛾 (4.20) 

 

where function ‖∙‖9 is referred to as the 𝑙9 − 𝑛𝑜𝑟𝑚 that counts the nonzero entries of a vector, as a sparsity 

measurement; the approximation accuracy accessed by the 𝑙; − 𝑛𝑜𝑟𝑚 , ‖∙‖;; and 𝛾 as the approximation 

error tolerance.  

Basic functions of dictionary matrix D can be either manually extracted or automatically learned from 

the input data. As mentioned previously, the manually extracted basic functions are simple and will lead to 

fast algorithms, however with poor performance on matching the structure in the analyzed data. An adaptive 
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dictionary should be learned from input data through machine learning based methods, with basic functions 

capturing a maximal amount of structures of the data. Several potential options include RBM, autoencoder 

and LAMSTAR neural network due to the characteristics of automatically feature extraction. Particularly for 

the LAMSTAR neural network, the winning neurons in each self-organized map (SOM) module can be taken 

as basic function.  

To get the exact determination of the sparse coefficients of a signal using a generic dictionary has 

been proven to be a NP-hard problem (Davis et al., 1997). Instead, an approximate algorithm for inferring s 

is to find a maximum a posterior (MAP) estimation (Lewiski and Sejnowski, 2000) as following: 

ş = max
7
𝑃(𝐬|𝐱, 𝐃) =max

7
𝑃(𝐱|𝐃, 𝐬)𝑃(𝐬) (4.21) 

 

where 𝑃(𝐬|𝐱, 𝐃) represents the posterior distribution of 𝐬, 𝑃(𝐱|𝐃, 𝐬) as the likelihood of a signal for a given 

state of the coefficients, and 𝑃(𝐬) represents the prior probability distribution over the basic coefficients with 

assumption that s is independent to D. With Gaussian white noise assumed in Eq. (4.20), the likelihood can 

be obtained by Eq. (4.22) as following:  

log𝑃(𝐬|𝐱,𝐃) ∝ −
1
2𝜎;

‖𝐱 − 𝐃𝐬‖; (4.22) 

 

where 𝜎; represents the noise variance. With consideration of forcing sparsity of sparse representations, 

𝑃(𝑠m) is defined as Laplace distribution as 𝑃(𝑠m) ∝ exp	(−𝜃|𝑠m|), on the assumption of independent sparse 

coefficients 𝑃(𝐬) = ∏ 𝑃(𝑠m)m  .Then the MAP estimation can be written as: 

ş = max
7
𝑃(𝐬|𝐱,𝐃) =min

7
[− log𝑃(𝐬|𝐱, 𝐃) − log𝑃(𝐬)] = min

7
(
1
2𝜎;

‖𝐱 − 𝐃𝐬‖; + 𝜃f‖𝐬‖V) (4.23) 

 

It is common to replace 𝑙9 − 𝑛𝑜𝑟𝑚 with 𝑙V − 𝑛𝑜𝑟𝑚 (Aharon et al., 2006).  
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4.5.2 Sparse Coding and Dictionary Learning From Time Series Data 
Machinery monitoring data is usually collected as time series data type. A time series data can always 

be partitioned into smaller blocks for signal processing. Thus, the characteristic patterns can be shifted in any 

time location due to various block length in partition. Moreover, the periodical defective impulse can be 

captured in monitoring data for bearing fault diagnosis. Shift-invariant sparse coding can effectively remove 

the periodical defective impulse effects, by representing the same defective impulse at different time location 

with only one basic function. 

Thus, additional parameters need to be introduced for shift-invariant sparse coding as: 

𝐱 =R𝐓�(𝒅m)𝑠m,�

m

mUV

+ 𝜀 (4.24) 

 

where 𝐓� is a shift operator shifting an atom for 𝑙 ∈ [−𝐿, 𝐿] offsets relatively; 𝑠m,� the coefficient associated 

with the dictionary 𝒅m  shifted for l offsets; 𝜀 still the assumed Gaussian white noise.  

Both the dictionary learning and sparse coefficients solutions in shift-invariant sparse coding are different 

from original sparse coding. The models for finding the sparse coefficients proposed by Lee et al. (2007) can 

be used in this research and can be briefly expressed as Eq. (4.25) below. Given a dataset containing N signals 

as 𝐗 = {𝐱V, 𝐱;,… , 𝐱)	}: 

min
�,7

RÄÅ𝑥H −R𝒅m ∗ 𝒔m,H

m

mUV

Å
;

+ 𝛽Rk𝒔m,HkV

m

mUV

È
)

HUV

 (4.25) 

Subject to 𝐶 ≜ {‖𝒅m‖; ≤ 𝑐, 1 ≤ 𝑘 ≤ 𝐾} (4.26) 

 

where ∗ represents the convolutional operator replacing the shift operator 𝐓� in Eq. (4.24); 𝒔m,H ∈ ℝTÌ¯ÍV the 

sparse activation of 𝒅m  for signal 𝐱H; and 𝐶 represents a convex set of matrices as a constraint for preventing 

the situation with either too large 𝐝m or too small 𝒔m,H. Given a fixed set of bases	𝒅, the optimization problem 
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in Eq. (4.27) over sparse coefficients 𝒔  decomposes over 𝒊 = 𝟏, … ,𝑵  into N independent optimization 

problems. Thus, the coefficient 𝒔𝒌𝒊𝒍  corresponding to input signal 𝒙𝒊 and dictionary 𝒅𝒌 with temporal offset l 

can be solved independently of the coefficients corresponding to other input signals. Therefore, the 

optimization problem becomes finding the appropriate coefficients 𝒔 corresponding to a single input	𝒙𝒊: 

min
𝒔
Rk𝒔mH� k9

¯

mUV

		 (4.27) 

Subject	to:	 Å𝒙H −R𝒅m ∗ 𝒔mH�
¯

mUV

Å
;

≤ 𝛾, 𝑙 ∈ 𝐿 (4.28) 

 
Still, the variable 𝛾 represents the approximation error tolerance as before. In such way, the sparse 

coefficients can be solved independently for each input signal with the obtained dictionary. Similar to the 

standard sparse coding, Eq. (4.21)-Eq. (4.23) can be employed for solving sparse coefficients. 
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4.5.3 LAMSTAR-DL Based PGB Feature Extraction and Fault Diagnosis 
The LAMSTAR-DL based PGB feature extraction and fault diagnosis framework is presented in 

Figure 4.6.  As presented in Figure 4.6, the LAMSTAR-DL based approach is divided into two main stages: 

feature extraction, and fault diagnosis.  The feature extraction stage involves two steps: dictionary learning 

and obtaining sparse representation.  In the dictionary learning step, the randomly selected raw vibration 

signals are processed through LAMSTAR to obtain the basis functions as atoms. A dictionary is generated 

by arranging the obtained atoms together column by column into one matrix. Then, in the sparse 

representation generation step, the sparse representation the raw vibration testing data is obtained by shift-

invariant sparse coding with the learnt dictionary. Finally, a LAMSTAR classifier network is trained with 

generated sparse representation of the vibration signals to diagnose the PGB faults.  A significant advantage 

of the LAMSTAR-DL based approach is that it can extract effective fault features from raw vibration data 

without supervision, which can be further used for fault identification. 

4.5.3.1 Dictionary learning using LAMSTAR  
In using a LAMSTAR network for dictionary learning, the winning neuron in each input SOM module 

of the LAMSTAR network can be viewed as a self-learnt atom in the dictionary. Given a segment of 

monitoring data as	𝒙, then a matrix 𝑿 containing n number of segments of data can be written as	𝑿 =

[𝒙V, 𝒙;, 𝒙g,… , 𝒈𝒙T]. Thus, the atom obtained from multiple segments of monitoring signals can be expressed 

as	𝒂 = [𝜿V, 𝜿;, 𝜿g, … , 𝜿u]. For each individual segment of monitoring data, the sub-patterns are generated 

for dictionary learning. With the inspiration of LAMSTAR application for image recognition, a sliding 

window approach is applied to generate sub-patterns. For each pattern, the sub-patterns were generated by 

sampling the pattern using a sliding window with a length of	𝑑. Each sub-pattern sampled by the sliding 

window will be imported as a 1-D vector into an input SOM module. Thus, the number of input SOM modules 

and the number of the generated sub-patterns remain same. The procedure to obtain sub-patterns from one 

pattern is presented in Figure 4.7. 
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Figure 4.7. The scheme to obtain the sub-patterns from raw signal as input to LAMSTAR-DL network for 
dictionary learning. 

 

With a sliding window 𝑊V×� whose size has been pre-defined, the total number of generated sub-

patterns N can be calculated as	𝑁 = 𝑛/𝑑. Since each segment of the raw signal is regarded as one pattern, 

the sub-pattern can be defined as	Ω�, 𝜐 = 1,2,… ,𝑁. Then,	Ω� is written as: 

Ω�(𝑖) = 𝒙V×T[(𝜐 − 1) × 𝑖] (4.29) 

 

To determine an appropriate sliding window dimension, a sampled sub-pattern should contain as 

much variant information as possible for features extraction. Therefore, a selection criterion can be designed 

as to choose a sliding window of size 𝑑 such that the sum of the Von Neumann entropy of all the sliding 

windows is maximized as: 

argmax
�

R
𝐻(Ω�)
𝑑;

)

�UV
		 (4.30) 
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where 𝐻(	Φ�) represents the Von Neumann entropy of each sliding window Φ�, 𝜐 = 1,2,… , 𝑁.  The detailed 

theory of Von Neumann entropy can be found in (Bengtsson and Zyczkowski, 2006).  Since the number of 

input SOM modules equals to the number of generated sub-patterns, the LAMSTAR-DL network can be 

established with dynamic neurons in each input SOM module. 

To generate the sparse representation of the vibration signals using shift-invariant sparse coding, Eq. 

(4.27) and Eq. (4.28) will be solved with the dictionary  𝒅m  learnt by the LAMSTAR-DL network.  Since the 

LAMSTAR-DL network learns the dictionary with the resampled sub-patterns, the temporal offset 𝑙 can be 

defined as	𝑙 ∈ 𝑁. Thus, the number of possible offsets is decided by the number of sub-patterns, which is 

selected based on the criterion in Eq.(4.31).  

 

4.5.3.2 Designed LAMSTAR network for PGB fault diagnosis on sparse representation  
With the dictionary learnt through LMASTAR-DL network, the sparse representation of a segment 

of the raw data can be obtained by shift-invariant sparse coding explained in Section 4.5.3.1. The obtained 

sparse representations of the original vibration signals will be used for PGB fault diagnosis in the next stage.  

A LAMSTAR network will be used as the classifier in this study for the advantage of fast processing massive 

data. Besides, the dimension of LAMSTAR classifier network can be adjusted easily by arranging the number 

of SOM modules matching with the dimension of sparse representations. The sparse representations of 

original vibration signals can be imported into the LAMSTAR classifier network for PGB fault diagnosis 

without other feature extraction process. The LAMSTAR network was applied to acoustic emission signals 

with much higher diagnosis accuracy on PGB fault diagnosis in comparison with other common classifiers 

including k-nearest neighbors (KNN) and backpropagation (BP) network (Yoon et al., 2015). The obtained 

sparse representation of the original raw vibration signal will be channeled row by row into the LAMSTAR 

classifier network for PGB fault diagnosis. For each row of the sparse representation, an input SOM module 

will be constructed. The row number of the sparse representation remains the same as number of basis 

functions in the learnt dictionary, which is equal to the number of the input SOM modules in the LAMSTAR-
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DL network. Therefore, the number of input SOM modules in the LAMSTAR classifier network is equal to 

the number of SOM modules in LAMSTAR-DL network. PGB health conditions will be represented by the 

neurons firing sequence in the decision SOM module. Thus, the PGB faults can be diagnosed. Therefore, the 

LAMSTAR-DL network based PGB feature extraction and fault diagnosis are performed by two stacked 

LAMSTAR networks. The first LAMSTAR network was used for dictionary learning and the second one for 

PGB fault diagnosis by using the sparse representations of the original vibration signals.  

4.6 Hybrid Deep Signal Processing Approach for Bearing Fault Diagnosis Using Vibration 
Signals 
 

The framework of the hybrid deep signal processing approach for bearing fault diagnosis is shown in 

Figure. 4.8.   

 

4.6.1. Signal Segment 
To integrate vibration analysis techniques such TSA/TSR into deep learning to process vibration 

signals, it is important for bearing fault diagnosis to select the correct number of data points in each revolution 

of the shaft rotation, i.e., signal segmentation. The number of data point in each revolution can be extracted 

by calculating zero crossing times in tachometer signal. However, in many machine health monitoring and 

fault diagnosis applications, obtaining tachometer signal is almost impossible. For example, in some aircraft 
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Figure. 4.8 Framework of the hybrid deep signal processing approach for bearing fault 
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engine, the high-speed turbine shaft is not accessible for a tachometer. Therefore, an alternative way to 

estimate the appropriate length of segment is needed. According to the study by Luo et al. [49], a tachometer 

signal can be synthesized from shaft speed profile.  The relation between the shaft speed profile and the 

synthesized tachometer signal is provided in Figure. 4.9.  

 

Figure. 4.9. Synthesized tachometer generation from speed profile 

The shaft speed profile can be generated using the instantaneous frequency of the vibration signals, 

which is obtained from the derivative of the unwrapped phase signal. Given the original vibration signal as 

𝑥(𝑡), then the phase information 𝜓(𝑡) of the vibration signal can be expressed as: 

𝜓(𝑡) = arctan	(𝑧(𝑡)/𝑥(𝑡)) (4.31) 

𝑧(𝑡) =
1
𝜋 𝑃

Ü
𝑥(𝜏)
𝑡 − 𝜏 𝑑𝜏

Þ

ÌÞ
 (4.32) 

 

where 𝑧(𝑡) represents the Hilbert transform of the original vibration signal, as the time domain convolution 

result between1/(𝜋𝑡) and 𝑥(𝑡). The tachometer synthesizing procedure is provided next.  

Step 1. Given the shaft speed profile as shown in Figure. 4.9, initially assume a synchrophaser pulse 

at time zero. 

Step 2. Once the 𝑖DE synchrophaser pulse is located, at 𝑡H, assume the (𝑖 + 1)`a pulse is located at 

𝑡HÍV.  
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Step 3. Calculate the average shaft speed 𝑛(𝑡HÍV) from the given shaft speed profile 𝑆(𝑡) as a function 

of 𝑡HÍV: 

𝑛(𝑡HÍV) =
1

𝑡HÍV − 𝑡H
Ü 𝑆(𝑡)𝑑𝑡
D�ß£

D�
 (4.33) 

 

Step 4. The time difference between tH and tHÍV is written as: 

															∆𝑡V = 𝑡HÍV − 𝑡H (4.34) 

 

The time elapsed by one rotation can be written based on Eq. (4.31): 

														∆𝑡; =
60

𝑛(𝑡HÍV)
 (4.35) 

 

Step 5. The target 𝑡HÍV can be solved as: 

													min
D�ß£

|∆𝑡V − ∆𝑡;|	 (4.36) 

 

As one can see from the tachometer synthesizing procedure, the location of possible impulse can only 

be determined when the closest previous impulse is certain. By considering the tachometer in each revolution, 

the synthesized tachometer is proved to be accurate with small error. However, for automatic vibration signal 

processing and fault diagnosis, an automated tachometer synthesizer that can generate synthesized 

tachometer signals from the vibration signals is needed.  Assuming the equal length of the signal segments, 

then the length of a signal segment will be the number of data points between two continuous impulses in 

shaft speed profile, ∆𝑡V in Eq. (4.34) and Eq. (4.36) stay stable. Hence, the objective function of searching 

for the impulse times can be set as: 
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min
`£,`¢,…,`á

âM∆tV − R
60

n(t^ÍV)

äÌV

^UV

â (4.37) 

 

where M represents the total number of segments and 𝑡H the occurrence time of the 𝑖DE impulse. The form of 

segments in a continuous time series signal is similar to the sliding window or filter, but with varying size. 

The objective of the designed neural network is to find the optimized filter size that can meet Eq. (4.37). 

Inspired by the adjustable filter size in a convolutional neural network (Han et al., 2016), a simple linear 1-

D convolutional layer with adjustable filter size is employed to find the optimal length of segment. Given an 

input 1-D signal denoted by 𝐱 with length as N, then the activation of 𝐱 denoted as 𝐲, calculated as inner 

product of 𝐱  and convolutional filter can be written as: 

𝐲H(𝑘) = 𝒘(𝑘)𝐱I(𝑘) + 𝐛H, 𝑖 = 1,2, … , 𝑓; 	𝑗 = (𝑖 − 1)𝑘 + 1 (4.38) 

 

where 𝒘(𝑘) is the convolutional filter with size as 1 × 𝑘,	𝐲H(𝑘) the output of the ith filter with filter size as k, 

f the total number of required filters, 𝐱I(𝑘) the input with a receptive field of length k starting at the jth data 

point in vector 𝐱, 𝐛H the bias to be added. Normally, the filter size k is a predefined integer and constant 

throughout the training and testing procedure. Here 𝑘 ∈ ℝÍ is defined as a continuous variable that can be 

adjusted throughout the training procedure. Based the concept of using filter as sliding window to cover the 

two neighboring impulses, the filter slides from the beginning of speed profile with stride as the length of the 

filter. Thus, the number of filters required in the convolutional layer can be decided as: 

𝑓 =
𝑁 − 𝑘 + 2𝑃

𝑘 + 1 (4.39) 

 

where f represents the number of required filters, P the amount of zero padding on the border of the original 

input. It is possible that Eq. (4.39) yields to a non-integer result for the number of filters, indicating that the 

neurons in the input layer can fit into filter size properly. In the designed network, the extra zeros are padded 
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on the boarder of the original input vector to make it fit. The structure of the convolutional layer is shown in 

Figure. 4.10.  

 

To establish the relationship between activation and the adjustable filter size, an upper-bounded filter 

𝒘(𝑘è)  and a lower-bounded filter 𝒘(𝑘�)  are defined, respectively. Specifically, the size of the upper-

bounded filter 𝑘è is the smallest odd number bigger than k and the size of the lower-bounded filter  𝑘� is the 

largest odd number smaller or equal to k. The definition of these filter sizes can be expressed as: 

𝑘è = ⌊(𝑘 + 1)/2⌋ ∗ 2 + 1, , 𝑘� = ⌊(𝑘 + 1)/2⌋ ∗ 2 − 1 (4.40) 

𝛼 = (𝑘 − 𝑘�)/2 (4.41) 

Therefore, the activation 𝐲H can be calculated as a linear combination of the upper-bounded filter and 

lower-bounded filter as: 

𝐲H(𝑘) = 𝛼𝐲H(𝑘è) + (1 − 𝛼)𝐲H(𝑘�) (4.42) 
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where 𝐲H(𝑘è) and 𝐲H(𝑘�) represent the activation of the upper-bounded filter and the lower-bounded filter, 

respectively and 𝛼 the linear combination weight. The activations are calculated as in Eq. (4.38) with the 

same bias. Eq.(4.41) can be easily rewritten as: 

𝑘 = 𝑘� + 2𝛼 (4.43) 

 

Thus, the optimal filter size k is a weight related filter size in the defined boundary. Additionally, the 

relationship between filters with different sizes can be expressed as: 

𝒘(𝑘) = 𝛼∆𝒘(𝑘è) + 𝒘(𝑘�) (4.44) 

 

where ∆𝒘(𝑘è)  represents the unique part of upper-bounded filter subtract the shared part with lower-

bounded filter. The relationship described in Eq. (4.44) can be illustrated in Figure 4.11. In Figure 4.11, the 

yellow area represents the elements shared by upper and lower-bounded filters. The unique part of upper-

bounded filter ∆𝒘(𝑘) is shown as the blue area with zeros inside in Figure 4.11. The weight of upper-

bounded filter 𝛼 is defined in Eq. (4.41). 

 

𝑤V 𝑤; … 𝑤TÌV 𝑤T − 𝑤; … 𝑤TÌV = 𝑤V 0 … 0 𝑤T 
𝒘(𝑘è)  𝒘(𝑘�)  ∆𝒘(𝑘è) 

𝑤V 0 … 0 𝑤T ∗ 𝛼 + 𝑤; … 𝑤TÌV = 𝛼𝑤V 𝑤; … 𝑤TÌV 𝛼𝑤T 
∆𝒘(𝑘è)  𝒘(𝑘�) 𝒘(𝑘) 

 

 

 

With Eq. (4.38), Eq.(4.40) can be deduced as: 

 

 

Figure 4.11. Illustration definition of an adjustable filter size k 
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𝐲H(𝑘) = 𝛼𝒘(𝑘è)𝐱I(𝑘è) + (1 − 𝛼)𝒘(𝑘�)𝐱I(𝑘�) + 𝐛H (4.45) 

 

Note that after padding zeros into 𝒘(𝑘�), 𝒘(𝑘�)𝐱I(𝑘�) equals to 𝒘(𝑘�)𝐱I(𝑘è). Thus, Eq. 

(4.44) can be derived as: 

𝐲H(𝑘) = 𝛼𝒘(𝑘è)𝐱I(𝑘è) + (1 − 𝛼)𝒘(𝑘�)𝐱I(𝑘�) + 𝐛H  

(4.46) 			= [𝛼𝒘(𝑘è) + (1 − 𝛼)𝒘(𝑘�)	]𝐱I(𝑘è) + 𝐛H 

                                              = [𝛼∆𝒘(𝑘è) + 𝒘(𝑘�)	]𝐱I(𝑘è) + 𝐛H 

 

Substitute Eq. (4.44) into Eq. (4.46) to obtain the simplified result as: 

𝐲H(𝑘) = 𝒘(𝑘)𝐱I(𝑘è) + 𝐛H (4.47) 

 

Thus, the partial derivative of the activation with respect to the filter size can be calculated as: 

∂𝐲H(𝑘)
∂𝑘 =

𝐲H(𝑘è) − 𝐲H(𝑘�)
𝑘è − 𝑘�

 (4.48) 

 

With relationship stated in Eq. (4.36) and padding zeros into 𝑘�, Eq. (4.48) can be simplified as: 

∂𝐲H(𝑘)
∂𝑘 =

∆𝒘(𝑘è)𝐱I(𝑘è)
𝑘è − 𝑘�

 (4.49) 

 

Based on Eq. (4.49), the partial derivative of loss L with respect to filter size k can be 

calculated as: 

∗ 𝛼 + 
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𝜕𝐿
𝜕𝑘 =R

𝜕𝐿
𝜕𝒚H

𝜕𝒚H
𝜕𝑘

H

 (4.50) 

 

Therefore, the filter size k can be updated as: 

𝑘DÍV = 𝑘D − γ
𝜕𝐿
𝜕𝑘 (4.51) 

 

where t represents the iteration number. 

Similarly, the partial derivative of the activation with respect to the upper-bounded filter 

can be expressed as: 

𝜕𝒚HD

𝜕𝒘D(𝑘èD )
= 𝐱I(𝑘èD ) + 𝛼D∆𝐱I(𝑘èD ) (4.52) 

 

The derivative of loss L with respect to upper-bounded filter can be calculated as: 

𝜕𝐿
𝜕𝒘D(𝑘èD )

=R
𝜕𝐿
𝜕𝒚DHH

𝜕𝒚HD

𝜕𝒘D(𝑘èD )
 (4.53) 

 

After each iteration, the filter size 𝑘DÍV is possible to be greater than the upper-bounded 

filter size or smaller than the lower bounded filter size. Thus, both the sizes of the upper-bounded 

and lower-bounded filters should be updated. Next, two processes are defined to manage the 

boundary filter size update process, namely expanding and shrinking procedures. 
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Expanding: When the updated filter size is greater than the previous upper-bounded filter 

size, i.e., 𝑘DÍV > 𝑘è
D, both the upper-bounded filter and lower-bounded filter should be expanded 

as: 

wDÍV(𝑘èDÍV) = 𝑒𝑥𝑝𝑎𝑛𝑑[wDÍV(𝑘èDÍV)] (4.54) 
wDÍV(𝑘�DÍV) = wDÍV(𝑘èDÍV) 

 

where 𝑒𝑥𝑝𝑎𝑛𝑑(∙) denotes a function to increase the filter size by padding values from the nearest 

neighbors of the original filter. 

Shrinking: When the updated filter size is smaller than the previous lower-bounded filter 

size, i.e., 𝑘DÍV < 𝑘�
D, both the upper-bounded filter and lower-bounded filter will be shrunk as: 

wDÍV(𝑘èDÍV) = wDÍV(𝑘�DÍV) (4.55) 
wDÍV(𝑘�DÍV) = 𝑠ℎ𝑟𝑖𝑛𝑘[wDÍV(𝑘�DÍV)] 

 

where 𝑠ℎ𝑟𝑖𝑛𝑘(∙) denotes a function to decrease the filter size by filling the first and the end unit 

as zero. The process of expanding and shrinking is illustrated in Figure. 4.12 . 

𝑤V 𝑤V 𝑤; … 𝑤TÌV 𝑤T 𝑤T 
     Expand  
 𝑤V 𝑤; … 𝑤TÌV 𝑤T  
     Shrink  
 0 𝑤; … 𝑤TÌV 0  

Figure. 4.12. Illustration of the expanding and shrinking process 
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4.6.2 The DFT-IDFT autoencoder 
Inspired by the fact that the extraordinary impulses are easier to identify in frequency 

domain, a neural network that can automatically learn the characteristics of vibration signals in the 

frequency domain is developed. Let the general mapping function f() be the relationship between 

a D-dimensional vector and a scalar, then a conventional L-layer feed-forward neural network can 

be written as the function as: 

𝑓(𝒙) = 𝑔, òR𝑾,ÌVm[…𝑔V(R𝑾VH𝒙H
H

)]
m

ô (4.56) 

 

where	𝑾�(𝑙 = 1,2, … 𝐿) denotes the weights matrix of the lth layer, 𝑔�(𝑙 = 1,2,… 𝐿) the activation 

function of the lth layer, and 𝑓(𝒙) the output scalar value. Given the special condition where L=1, 

then Eq. (4.56) can be written as: 

𝑓(𝒙) = 𝑔(R𝑾H𝒙H
H

) (4.57) 

 

Let 𝒙T be a time series signal and consider the discrete Fourier transform (DFT) of 𝒙T as: 

𝑿m = R𝒙T ∙ 𝑒
ÌImT;õ)

)ÌV

TU9

, 𝑘 = 0,1,… ,𝑁 − 1 (4.58) 

 

where 𝑿m represents the 𝑘DE spectral line of 𝒙T. It can be observed that by taking 𝒙 as the input 

vector,  𝑒ÌImT
¢ö
÷  the connecting weights between input layer and the output layer, activation 
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function as linear function, the 𝑘DE spectral line of a discrete time series signal can be calculated 

by implementing a single layered neural network. 

As described by Velik (2008), with the weight matrix initialized as the discrete Fourier 

transform (DFT) coefficients 𝑒ÌImT
¢ö
÷ , the DFT of a time series vibration signal can be performed 

in a single layered neural network without training process. Furthermore, the DFT coefficient can 

be learned with the calculated DFT as the target in a single layered neural network. In such case, 

the weights are randomly initialized and are learned through back propagation process with an 

approximation solution.  The frequency component of the DFT can be used to reconstruct the 

original signal by taking the inverse discrete Fourier transform (IDFT). The IDFT can be expressed 

as: 

𝒙øT =
1
𝑁R𝑿m ∙ 𝑒

ÌImT;õ)

)ÌV

TU9

, 𝑘 = 0,1,… ,𝑁 − 1 (4.59) 

 

where 𝒙øT represents the nth data point of the reconstructed signal.  
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By viewing the DFT and IDFT of the segmented vibration signals as an encoding and 

decoding process, respectively, then the vibration signal processing can be performed by an 

autoencoder structure embedded with vibration analysis techniques.  The DFT-IDFT autoencoder 

is shown in Figure 4.13. 

 

As shown in Figure 4.13, the DFT-IDFT autoencoder can learn the DFT and IDFT 

coefficients by mimicking encoding and decoding procedures of an autoencoder through 

unsupervised learning. The DFT and IDFT coefficients are complex values as Eq. (28) and Eq. 

(29) indicate. To handle the complex values in an autoencoder, the DFT-IDFT autoencoder with 

dual input layers is constructed. In Figure 4.13, the solid line block and dashed line block represent 

the structure for learning the real part and imaginary part of the transformation coefficients, 

respectively. Thus, the dual input layers represent the real part and imaginary part of the DFT 

 

𝑥V 

𝑥; 

𝑋V 

𝑋; 

𝑋m 

𝑥m 

Real input layer 

Hidden 
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Figure 4.13. The structure of DFT-IDFT autoencoder with 
dual inputs layers 
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coefficients so that both the real and imaginary parts can be learnt through the network. According 

to the Euler’s formula, Eq. (4.58) and Eq.(4.59) can be rewritten as: 

𝑿m = R𝒙T ∙ {cos[𝑘𝑛(2𝜋/𝑁)] + 𝑗sin[𝑘𝑛(2𝜋/𝑁)]}
)ÌV

TU9

, 𝑘 = 0,1,… , 𝑁 − 1 (4.60) 

𝒙øT =
1
𝑁R𝑿m ∙ {cos[𝑘𝑛(2𝜋/𝑁)] + 𝑗sin[𝑘𝑛(2𝜋/𝑁)]}
)ÌV

TU9

, 𝑘 = 0,1,… , 𝑁 − 1 (4.61) 

 

where 𝑗 = √−1 represents the imaginary unit. Thus, the real part and imaginary part of DFT 

coefficients can be calculated.  A full connection is constructed between the real input layer and 

the hidden layer, and the connection weights represent the real parts of the DFT coefficients. In 

the imaginary input layer, double-connected neurons will be used.  In each double-connected 

neuron, one neuron takes the real value from the input vibration signal.  This neuron is connected 

to an imaginary neuron with a constant weight of 1 in order to convert the real value into an 

imaginary value.  Thus, Eq. (4.58) is calculated as the output of hidden layer. Similarly, the real 

part and the imaginary part will calculate the output layer, through the real output layer and the 

imaginary output layer, respectively. In the end, the outputs from the real output layer and the 

imaginary output layer are simply added up to form the final output layer. The result from the final 

output layer is the construction of the original vibration signals, expressed by Eq. (4.61).  

According to Eq. (4.60), the weights between real input layer and the hidden layer can be expressed 

as: 

𝑾H_�ú = cos[𝑘𝑛(2𝜋/𝑁)] (4.62) 
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Note that the imaginary part of the DFT coefficients is updated by adjusting the weight 

matrix with constant imaginary unit. Therefore, the weight matrix between the imaginary input 

layer and the hidden layer can be simply expressed as: 

𝑾H_Hu = sin[𝑘𝑛(2𝜋/𝑁)] (4.63) 

 

Furthermore, 𝑾H_Hu can be rewritten according to the trigonometric functions as: 

𝑾H_Hu = �1 −𝑾H_�ú
; (4.64) 

 

By observing Eq. (4.58) – Eq.(4.64), the IDFT coefficients are the transpose of the DFT 

coefficients for the same input signal. Thus, the weights between the hidden layer and the real 

output layer, and the weights between the hidden layer and the imaginary output layer can be 

written as: 

𝑾�_Hu = 𝑾H_Hu
f (4.65) 

𝑾�_�ú = 𝑾H_�ú
f (4.66) 

 

The connections between real output layer and final output layer, and between imaginary 

output layer and the final output layer are kept constant as 1/N to obtain the reconstruction result 

of original signals. Therefore, the complete cost function of the DFT-IDFT autoencoder can be 

expressed as: 
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𝐽(𝑊) =
1
𝑁R

‖𝑥T − 𝑟𝑒𝑎𝑙(�̧�T)‖;
)

TUV

+
𝜆
2RR þÿ𝑾H_�ú

Tm !; +	ÿ𝑾H_Hu
Tm !; + ÿ𝑾�_�ú

Tm !; + ÿ𝑾�_Hu
Tm !;"

)ÌV

mU9

)

TUV

 

(4.67) 

 

Thus, DFT and IDFT coefficients of the input vibration signals can be learnt through the 

unsupervised training method. The constraints between four different weight sets expressed as Eq. 

(4.62) – Eq.(4.66) enforce the autoencoder to accomplish the DFT and IDFT procedures through 

one iteration. The training procedure is completed by using backpropagation algorithm to 

minimize the cost function. The weights are updated after one iteration through the gradient 

descent method. Once the weights 𝑾H_�ú are determined, the other weights  𝑾H_Hu, 𝑾�_Hu, and 

𝑾�_�ú can be determined by Eq. (4.63) and Eq. (4.65). Therefore, only 𝑾H_�ú needs to be updated 

after one iteration. The updating equation can be written as: 

𝑾H_�ú = 𝑾H_�ú − 𝜆
𝜕𝐽(𝑾)
𝜕𝑾  (4.68) 
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where λ  represents the predefined learning rate. Once the DFT autoencoder is trained with 

sufficient weight sets to accomplish the DFT and IDFT procedures, a maxpooling layer can be 

added after the hidden layer. The maxpooling layer will keep the maximum value in the pooling 

window and replace the rest with zero. Hence, by keeping the maximum value in the spectrum of 

one revolution, the optimized neural network can compute the time synchronous average (TSA) 

of the original vibration signal. The designed TSA embedded neural network can be illustrated in 

Figure. 4.14. 

To validate the DFT-IDFT autoencoder, a sample signal with random noise was used to 

train the autoencoder and the TSA result was obtained at the final output layer. The original signal 

with sample was expressed as 𝑠 = sin $2π12𝑡 + õ
&
'+ ω(0,1). As shown in Figure. 4.15, the 

signal to noise ratio of sample signal was -2.1544. As displayed in Figure. 4.15, the plot of result 

from final output layer is close to the plot of theoretical TSA calculation result. The root mean 
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Figure. 4.14 The DFT-IDFT autoencoder to compute the TSA 
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squared error (RMSE) between the results of DFT-IDFT autoencoder and the theoretical TSA is 

as low as 0.012 for the plots shown in Figure. 4.15. 

 

Figure. 4.15. Validation result using TSA embedded neural network on sample signal 

 

4.6.3 TSR and reconstructed vibration signals 
With the TSA embedded neural network, signal processing techniques based on TSA 

methods can be carried out in the neural network like structure. Inspired by the successful 

applications of TSA based gear pitting diagnosis, Van Hecke et al. (2014) used time synchronous 

resampling (TSR) on acoustic emission (AE) signals for bearing fault diagnosis. The diagnosis 

results have shown the effectiveness of the TSR on noise remove. However, the TSA/TSR based 

method requires shaft zero crossing times (ZCT) for calculation of a TSA. Usually, the ZCTs are 

defined by a tachometer signal, or an angular reference to estimate the one per revolution.  Besides, 

the data points in each revolution need to be interpolated so that the length of each revolution 

segment stays constant for TSA calculation. To address these critical challenges during 

implementation of the TSA related method, the neural network embedded with TSA is developed. 

The objective of using TSA embedded neural network for signal processing is to eliminate the 

complexity of TSA related methods and resampling process. Generally, the raw data will be 

resampled by a convolutional kernel to obtain the periodograms. Then, the average of the 
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periodograms for all the resampled segments are calculated. Finally, time domain expression of 

the averaged periodograms are obtained through the IDFT layer. The designed structure of TSA 

embedded neural network for TSR can be illustrated in Figure 4.16. 

 

As shown in Figure 4.16, the original data series are resampled by the sliding window into 

k segments. Each segment is processed through the pre-trained DFT dual layers (real layer and 

imaginary layer) to obtain the expression in frequency domain. Let 𝑥(𝑗), for	𝑗 = 1,2, . . , 𝑁 be a 

collected signal sample, then the segments can be expressed as: 

𝑥m(𝑖) = 𝑥[𝑖 + (ℎ − 1)𝑀], 𝑓𝑜𝑟	𝑖 = 1,2,… , 𝑘; ℎ = 1,2,… , 𝐻 (4.69) 

 

where h represents the ℎ`a segment sampled from the original signal, M the number of data points 

in the overlapping area between two continuous segments, 𝑘 the length of each segment obtained 
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Figure 4.16. The DFT-IDFT autoencoder to compute the TSR and reconstructed vibration 
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from the optimized filter size, 𝐻 the total number of sampled segments. Particularly, M can be 

selected as 0. 

Here in Figure 4.16, the DFT dual layers and the frequency domain output layer are 

displayed as DFT kernel to filter the original signal. The magnitude of frequency components is 

calculated following the output layer of the DFT kernel. By plugging Eq. (4.60) and Eq. (4.61) 

into Eq. (4.58)., the result after the DFT kernel as frequency domain expression can be written as: 

𝑋E(𝑖) =R𝑾H_�ú𝑥E(𝑖) + 𝑗𝑾H�,𝑥E(𝑖)
,

HU9

 (4.70) 

 

where 𝑋E(𝑖)  represents the 𝑖`a  frequency component of the ℎ`a  segment. Then the spectral 

average of H number of segments frequency domain expressions can be obtained as: 

𝑆𝐴(𝑖) =
1
𝐻R(𝑋E(𝑖));

.

E

, for	𝑖 = 1,2, . . , 𝑘 (4.71) 

 

Through the averaging layer, the spectral average can be obtained from the frequency 

magnitude of all segments. With the spectral average, the expression in time domain can be 

reconstructed through the pre-trained IDFT layer. Note that the weight sets in both DFT kernel 

and the IDFT kernel are obtained through unsupervised learning using the TSA embedded neural 

network. Finally, the TSR result in time domain from neural network can be expressed as: 

�̧�(𝑖) =
1
𝑘R𝑾�_�ú𝑆𝐴(𝑖) + 𝑗𝑾�_Hu𝑆𝐴(𝑖)

m

HU9

 (4.72) 
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Furthermore, the supervised learning can be added in the TSR embedded neural network 

to reduce the influence of segment length selection. In the supervised learning procedure, the 

theoretic calculation results using the method by Van Hecke et al. (2014) can be regarded as the 

target. Let 𝑥D7û be the theoretical calculation result of TSR, and 𝑥TT be the result obtained from 

neural network, then the cost function of TSR embedded neural network supervised learning can 

be written as: 

𝐽(𝑊) =
1
𝑁R

‖𝑥TT − 𝑥D7û)‖;
)

TUV

+
𝜆
2RR þÿ𝑾H_�ú

Tm !; + ÿ𝑾H_Hu
Tm !; + ÿ𝑾�_�ú

Tm !; + ÿ𝑾�_Hu
Tm !;"

)ÌV

mU9

)

TUV

 

(4.73) 

 

The supervised learning procedure forces the neural network to learn a more generous 

solution to remove the noise with less influences of rotating speed. Therefore, length of segment 

can be estimated without neither accurate calculation nor tachometer signal.  

To validate the developed TSR embedded neural network, the AE signals acquired from 

the bearing test rig were used. Initially, the length of segment was determined according to the 

equation: 

𝑘 = 2/úH�HT0[��0;(�)] (4.74) 

 

where k is length of segment and r the average number of points between shaft crossings.  Once 

the length of segment was determined, 50 segments were randomly selected from the bearing 

signal with outer race fault, with k continuous data points in each segment. Then these segments 
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were used to train the DFT-IDFT autoencoder to obtain the TSR, spectral average, and the 

reconstructed signal. After the completion of TSA embedded neural network training, the complete 

bearing signal with outer race fault was introduced into the DFT-IDFT autoencoder. The 

reconstructed time domain expression of spectral average was calculated as the final output of the 

neural network. The real parts of the reconstructed signals obtained by the theoretical TSR and the 

DFT-IDFT autoencoder are provided in Figure. 4.17. 

 

 

Figure. 4.17. Reconstructed signals using theoretic TSR result and DFT-IDFT autoencoder result 
with outer race fault bearing signal 

The comparison results in Figure. 4.17 show the effectiveness of the DFT-IDFT 

autoencoder in computing the TSR and reconstructing the vibration signals. The RMSE between 

the results of the DFT-IDFT autoencoder and theoretical calculation is as low as 0.0004 for the 

plots shown in Figure. 4.17.  

To diagnose the bearing health conditions using the reconstructed vibration signals, a 

classifier layer using softmax function is constructed right after the DFT-IDFT autoencoder. The 

output of DFT-IDFT autoencoder as the reconstructed vibration signals are fed into the softmax 
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classifier as the input, and the representative labels of bearing health conditions as the output. 

Therefore, the number of neurons in the softmax classifier remains the same as number of bearing 

health conditions. 
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5 EXPERIMENTAL SETUP 
 

(The majority of the content in this chapter is composed of previously published work as (1) He, 

M., He, D., 2018, “Wind turbine planetary gearbox feature extraction and fault diagnosis using a 

deep learning based approach”, Proceedings of the Institution of Mechanical Engineers, Part O: 

Journal of Risk and Reliability, © 2018 (SAGE Publications), Reprinted by permission of SAGE 

Publications. DOI: 10.1177/1748006X18768701; (2) He, M., He, D., 2018, “Simultaneous bearing 

fault diagnosis and severity detection using a LAMSTAR network-based approach”, IET Science, 

Measurement & Technology, DOI: 10.1049/iet-smt.2017.0528; (3) He, M and He, D., 2017, “A 

deep learning based approach for bearing fault diagnosis”, IEEE Transactions on Industrial 

Application, Vol. 53, No. 3, pp. 1-9, DOI: 10.1109/TIA.2017.2661250) 

This section presents the experimental setup used to validate the proposed deep learning 

base rotating machinery fault diagnosis methodology. Specifically, there are two separate test rigs 

setup for validation, the bearing test rig for bearing fault diagnosis validation and the PGB test rig 

for gear fault diagnosis, respectively.  

5.1 Introduction of the Bearing Test rig 
 

This section presents the experimental setup used to validate the proposed AE based 

bearing fault diagnostic methodology.  Figure 5.1 shows the experimental bearing test rig used for 

data collection along with indication of its main components.  The motor controls the shaft which 

rotates the bearing located in the bearing housing.  The AE sensor provides the input signal that 

allows the calculation of the AE envelope signal and the tachometer provides the trigger signal 

required for the synchronous average of the AE envelope signal. The rig also contains a hydraulic 

loading mechanism that affords the ability to apply a lateral load to the bearing housing if needed.  
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Figure 5.1.  The bearing test rig 
 

Type 6205-2RS steel ball bearing was selected for the experiment to collect validation AE 

data. Four single-point faults were seeded on the previously mentioned ball steel bearing, namely 

inner race fault, outer race fault, ball (rolling element) fault and cage fault (Van Hecke et al., 2016). 

Location and shape of all four different faults are presented in Figure 5.2 as below. The test rig 

stays the same as reported by Van Hecke et al.(2016). According to Van Hecke et al. (2016): 

“Bearing inner race fault and outer race fault were generated by scratching the inner and outer steel 

race surfaces with a diamond tip grinding wheel bit to cover the ball contact surface. The 

dimension of seeded faults on both inner and outer race is approximately 1/16 inch in width and 

1/250 inch in depth. The damage on rolling element was generated by cutting the steel cage in one 

of the ball positions, and then creating a dent with around 20% of volume of one steel ball using 

the diamond tip grinding machine.” The steel cage was cut in between two rolling ball still position 

to generate the cage fault, with size of about 50% of volume of one rolling ball. In the procedure 

of all seeded faults generation, the bearing seals and grease were removed and replaced following 

the implementation of the fault.  
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Figure 5.2. The steel bearing with seeded faults 
 

It should be notified that the defects were intentionally seeded with sizes that were as small 

as possible to simulate the growing fault in propagation state, which is more frequently observed 

in practical industrial applications. In the propagation state, the defective fault size is likely be 

small and grows significantly over running time. Though the defective size in the experiment 

seeded faults is not that small to the incipient fault, it has been widely reported and studied in 

bearing fault diagnosis literature that one significant advantage of using an AE sensor is the 

capability of detect incipient faults in the early damage progression state.  

 

Figure 5.3. Data acquisition system: demodulation board, sampling board, and function generator 
 

Data acquisition was accomplished via NI LabVIEW SignalExpress.  All signals were 

sampled at 100kHz at varying durations throughout the experiment.  Figure 5.3 shows the AE data 
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acquisition system consisting of a demodulation board, power supply, along with the function 

generator and sampling device. According to Van Hecke et al. (2016), “The demodulation board 

performs the multiplication of the AE sensor signal with the reference signal output from the 

function generator which allows a sampling frequency reduction technique to be implemented.” 

Two signals are imported into the demodulation board with one signal as output result. The output 

signal in lower frequency range as the result of down shifting the original signal is then imported 

into the sampling board while filtering out the high frequency component. The carrier frequency 

of the original AE signal needs to be determined for down shifting procedure. Thus, the goal was 

to determine the central AE carrier frequency and set the reference signal frequency as close to it 

as possible. A sweep function, created by the function generator, was used to record the output of 

the system. After examining the energy envelope at different frequencies, an estimate of the 

frequency range of the output was found. The central carrier frequency of original AE signal was 

determined as 400 kHz as well as the demodulation reference frequency. The sampling device is 

can handle a sampling frequency up to 250kS/s. For data acquisition, NI Labview signal express 

was employed to collect continuous AE signals with a sampling rate as 100 kHz. AE signals of the 

healthy bearing and the seeded faulty bearings were collected at various shaft speeds, including 2 

Hz, 4 Hz, 6 Hz, 8 Hz, 10Hz, 30 Hz, and 45 Hz. At each rotating speed, there are 5 samples collected 

for each bearing type, leading to 35 samples in total for each bearing type. For consistency, the AE 

sensor was placed in the same axial location for all data acquisitions. 

For the experiment with each studied shat speed, 5 samples were collected yielding to a 

total of 35 samples for each bearing condition. Table 5.1 presents the shaft speed (Hz) and number 

of samples for each of bearing conditions.  The lowest shaft speed tested was 2 Hz and no loading 
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was applied during the entire experiment procedure. Additionally, for each fault, all data sets were 

recorded continuously as the shaft frequency was increased. 

  

Table 5.1.  Shaft speed and number of samples collected for all bearing conditions 
Shaft Speeds (Hz) Number of Samples/bearing condition 

2 5 
4 5 
6 5 
8 5 
10 5 
30 5 
45 5 

Total 35 
 

5.2 Introduction of the PGB Test rig 
 

A PGB test rig and a corresponding data acquisition were designed and set up for validation 

in the laboratory.  Figure 5.4 shows the designed PGB test rig composed by 4 main parts, namely 

(1) a data acquisition (DAQ) system, (2) an AC motor, (3) the PGB, (4) and the load generator.  
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Figure 5.4. The PGB test rig for wind turbine simulator 

 

The DAQ system contains a local data collector (LDC) (Turbine PhD produced by 

renewable NRG systems), two high speed accelerometers, and a tachometer. A Hall effect sensor 

and a toothed wheel mounted on the motor shaft were paired to record the real-time shaft rotating 

remarks. The detailed information of DAQ system is provided in Table 5.2. A 3-phase induction 

motor with 10 HP maximum loading is selected as driving motor with a motor controller. The 

output shaft of the gearbox is connected to a generator which serves as a load generator. The 

structure of the PGB test rig is like those used in a wind turbine. During the test, commercially 

available single stage PGB with a 5:1 speed reduction ratio was used. 

 

Close view of the PGB area 
Output 
shaft 

Input shaft 



 
 

78 
 

Table 5.2. Vibration DAQ settings 

 Vibration sensor 1 Vibration sensor 2 Tachometer 

Sensor High speed 
accelerometer 

High speed 
accelerometer 

Hall effect 
sensor 

Manufacturer NRG systems NRG systems Sensoronix 
Sampling 

rate 6104 (Hz) 24414 (Hz) 1000 (Hz) 

 

For the seeded gear fault experiment, three typical PGB gear faults were seeded on the 

gears. Figure. 5.5 below displays the details of seeded faults, including partial tooth cut on the sun 

gear, partial tooth cut on the planet gear and ring gear, separately. Both healthy and faulty 

gearboxes were tested under 20 various working conditions combining of 4 varying loading 

conditions, including 0% loading, 25% loading, 50% loading and 75% loading out of the rated 

torque of the PGB, and 5 varying shaft speeds including10, 20, 30, 40 and 50 r/sec. Vibration 

signals were collected from each gearbox with different seeded faults sequentially. After switching 

one gearbox to another, the vibration sensors were mounted in the same locations on the PGB to 

ensure the experimental consistency. 

 

Figure. 5.5. Seeded faults: (a) sun gear fault, (b) planet gear fault, (c) ring gear fault 
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6 VALIDATION RESULTS 
 

(The majority of the content in this chapter is composed of previously published work as (1) He, 

M., He, D., 2018, “Wind turbine planetary gearbox feature extraction and fault diagnosis using a 

deep learning based approach”, Proceedings of the Institution of Mechanical Engineers, Part O: 

Journal of Risk and Reliability, © 2018 (SAGE Publications), Reprinted by permission of SAGE 

Publications. DOI: 10.1177/1748006X18768701; (2) He, M., He, D., 2018, “Simultaneous bearing 

fault diagnosis and severity detection using a LAMSTAR network-based approach”, IET Science, 

Measurement & Technology, DOI: 10.1049/iet-smt.2017.0528; (3) He, M and He, D., 2017, “A 

deep learning based approach for bearing fault diagnosis”, IEEE Transactions on Industrial 

Application, Vol. 53, No. 3, pp. 1-9, DOI: 10.1109/TIA.2017.2661250) 

6.1 The Validation Results of Bearing Fault Diagnosis Using AE signals 
 

6.1.1 The Designed LAMSTAR Neural Network for the Validation Test 
Each of the AE signal dataset was transformed into a 2-D spectrum matrix as explained in 

Section 4.1. 10 patterns from each of the 5 bearing conditions: inner race fault, outer race fault, 

cage fault, ball fault and healthy condition were generated. Therefore, there were a total of 450 

patterns generated for 5 bearing conditions at 9 different shaft speeds. Table 6.1 shows the detailed 

description of samples and patterns obtained at different shaft speeds. 

 

Table 6.1 Detailed description of samples and generated patterns 

Shaft speed (r/sec) Number of 
samples 

Number of generated 
patterns 

60 5 50 
45 5 50 
30 5 50 
15 5 50 
10 5 50 
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8 5 50 
6 5 50 
4 5 50 
2 5 50 

Over all 45 450 
Training patterns (60% of 450) 270 
Testing patterns (40% of 450) 180 

 

In the implementation of the LAMSTAR network, each spectrum matrix representing one 

pattern has a dimension of 250 × 4000. A sliding box with size of 50 ×	50 was selected. Thus, 40 

input SOM modules were generated for 40 sub-patterns sampled from each spectrum matrix. In 

each input SOM module, the dynamic neurons were constructed for storing representative value 

of cell in matrix. Thus, the number of neurons in each input SOM module varied from 0 to 2500.  

Considering there are 5 bearing conditions in this study: inner race fault, outer race fault, cage 

fault, ball fault and healthy condition, three LAMSTAR network output neurons were used to give 

a complete permutation of 6 firing sequences with each sequence representing a condition. Recall 

Eq. (4.1), output value of neurons in the decision SOM module can be obtained by Eq. (4.1). Let 

𝑦H be the output value of each neuron in the decision SOM module, then one can assign a label of 

either 1 or 0 to each of neurons using the following equation: 

𝐿H = 	 1
1		𝑖𝑓	𝑦H ≥ 0	
0	𝑖𝑓	𝑦H < 0  (6.1) 

 

where 𝐿H represents the label of the ith neuron in the decision SOM module. Therefore, the firing 

sequence can be represented using the labels shown in Table 6.2 below. Table 6.2 shows the 

bearing conditions and their LAMSTAR network output neuron firing sequence representations.  

The error tolerance was set to be 10-9; and learning rate alpha was set to be 0.8 as a constant, and 

error tolerance for winning neuron decision in dynamic SOM weights construction was set to be 
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10-7. Based on the principle of neural network application, the collected dataset was divided into 

training and validation groups for training and validating generated network. In this paper, the ratio 

of training to testing dataset was 60% to 40% against total. 

 

Table 6.2 Bearing conditions and LAMSTAR network output neuron firing sequence 
representations 

Bearing condition Output 
neuron 1 

Output 
neuron 2 

Output 
neuron 3 

Inner race fault 0 0 1 
Outer race fault 0 1 0 

Cage fault 1 0 0 
Ball fault 1 0 1 
Healthy 1 1 0 

 
6.1.2 The Validation Results 

Using the AE signals collected during the bearing seeded fault tests, 270 patterns were used 

to train the LAMSTAR network, 10 for each bearing condition. Table 6.1 has shown the number 

of patterns used for training and testing procedure, separately. The dynamically built neurons in 

SOM modules enable a large reduction on training time as the search time to find the winning 

neuron was reduced to a small number of neurons in many cases. The neural network learns as it 

goes even if untrained.  In addition to LAMSTAR network, another deep learning algorithm, CNN 

was used to perform the bearing fault diagnosis using the same datasets for comparison. Table 6.3 

shows the bearing fault diagnosis results obtained by LAMSTAR and CNN at different shaft 

speeds. 

 
Table 6.3 Overall accuracy at different shaft speeds 

Shaft speed 
(r/sec) 

LAMSTAR overall 
accuracy (%) 

CNN overall 
accuracy (%) 

60 100 (100/100/100/100/100) 92(100/90/90/90/90) 
45 98(100/100/100/100/90) 92(100/90/90/90/90) 
30 98(100/100/100/100/90) 90(100/80/90/90/90) 
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15 98(100/100/100/100/90) 88(100/80/90/90/80) 
10 98(100/100/100/100/90) 88(100/90/90/80/`80) 
8 98(100/100/100/100/90) 88(100/90/90/80/80) 
6 96(100/90/100/100/90) 84(100/80/80/80/80) 
4 96(100/90/100/100/90) 84(100/80/80/80/80) 
2 96(100/100/90/100/90) 80(80/80/80/80/80) 

Note: in (a/b/c/d/e), a, b, c, d, and e represent diagnostic accuracy for healthy condition, inner 
race fault, outer race fault, cage fault, and ball fault, respectively. 

 

From overall accuracy at different shaft speeds in Table 6.3, it can be observed that the 

performance of the LAMSTAR network remains almost the same when the shaft speed decreases, 

with a slight decrease from 100% to 96%.  However, accuracy obtained by CNN drops from 92% 

to 80% when the shaft speeds decreases.  

From columns of shaft speeds as 60, 45, 30 and 15 r/sec in Table 6.3, it can be observed 

that under the normal speeds, LAMSTAR network gives more accurate diagnosis performance 

than CNN. In addition, the time used to train a LAMSTAR network was 10 times less than CNN. 

As the shaft speed reduces from 60 r/sec to 15 r/sec, the diagnostic performance of the LAMSTAR 

network remains the same while the diagnostic performance of CNN gets worse.  

As pointed out by Van Hecke et al. (2016), it is normally difficult to diagnose the bearing 

faults at low speeds in the range of 0.5 r/sec and 10 r/sec. Using a spectral averaging based 

approach, they only showed significant fault diagnosis results for rotating speeds over 30 r/sec. 

Table III also shows the diagnosis results obtained by the LAMSTAR network and CNN at 

relatively low speeds. As shown in the columns of shaft speeds as 10, 8, 6, 4, and 2 r/sec in Table 

6.3, the LAMSTAR network shows more steady performance than CNN on fault diagnosis with 

decreasing rotating speeds. The classification accuracy from LAMSTAR network application 

decreases from 98% to 96 %, while the one from CNN drops from 88% to 80%. The results 
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presented in Table 6.3 show the powerful diagnostic performance of deep learning based approach 

for even relatively low speeds. 

To show the effectiveness of using LAMSTAR network to extract AE features for bearing 

fault diagnosis, the AE features extracted using the LAMSTAR network were compared with the 

specialized AE signal processing and feature extraction techniques reported in the literature.  Note 

that the outputs of each wining neuro of the decision SOM module in the LAMSTAR network 

represent the AE features similar to those condition indicators extracted using specialized signal 

processing techniques such as spectral averaging reported (Van Hecke et al., 2014).  Therefore, 

these outputs were used as the features extracted by the LAMSTAR network.  Figure 6.1. 

represents average output values of winning neuron at the decision SOM module.  The results in  

Figure 6.1 show the clear separation of the bearing conditions at all relatively low speeds from 2 

r/sec to 10 r/sec.  

  

 

Figure 6.1.  Average output values of the winning neurons at different shaft speeds. 
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In comparison with the fault diagnosis result on low rotating shaft speeds by using 

traditional signal processing and feature extraction method by Van Hecke et al. (2014) the deep 

learning based method has the advantage of requiring no specialized signal and feature extraction 

techniques. Due to the simplified signal processing, the large amount of monitoring data can be 

processed intelligently and rapidly with accurate diagnosis result. 

 

 

6.2 The Validation Results of Bearing Fault Diagnosis Using Vibration Signals 
 

6.2.1 Experimental Data Sets Used for Validation of the Methodology 

 

Figure 6.2. The seeded bearing test rig from Case Western University 
 

Other than the AE signals collected on the seeded fault bearing test rig were used, the 

vibration signals provided by Case Western Reserve University Bearing Data Center (CWRU) 

were also used for validation and comparison with reported researches from other scholars. Figure 

6.2. shows the seeded bearing test rig in CWRU. The main components of the experimental 

apparatus employed in conducting the experiments include a 2 hp motor, a torque transducer, a 

dynamometer, and a load motor. Three different single point faults, including outer raceway fault 
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(OR), inner raceway fault (IR) and ball fault (BF), with various dimension of 0.007 in, 0.014 in 

and 0.021 in are separately seeded on the testing drive-end bearings, respectively. SKF deep-

groove ball bearing type 6205-2RS was used on test rig. Accelerometer was used to collect 

vibration data from test rig. During each test, accelerometer measures the acceleration on bearing 

housing at drive-end in the vertical direction. Relevant bearing details and fault frequencies are 

displayed in Table 6.4 as below. 

 

Table 6.4. Bearing details and fault frequencies (CWRU) 
Position on the 

rig Model number Fault frequencies (multiple of shaft speed) 
BPFI BPFO FTF BSF 

Drive-end SKF 6205-2RS 5.415 3.585 0.3983 2.357 
 

In Table 6.4, bearing details and respective fault frequencies for each fault is displayed, 

where BPFI as ball pass frequency of inner race, BPFO as ball pass frequency of outer race, FT as 

fundamental train frequency (cage speed), and BSF as ball (roller) spin frequency. 

Two different sampling frequencies were selected for vibration data collection separately, 

namely 12 kHz and 48 kHz.  Also, bearing data in health state was collected under different loading 

of 0, 1,2, and 3 hp. The sampling frequency of health state bearing data was not stated. In sum, 

one health state and three defective conditions, with three defective dimensions for each of 

defective condition, compose the validation data set for the proposed deep learning based method.  

The bearing data sets collected using vibration signal is from CWRU bearing test rig. Three 

defective, including outer race fault (OF), inner race fault (IF), ball fault (BF) were seeded on the 

tested drive-end bearing with three different sizes of 0.007, 0.014, and 0.021 inches in diameter, 
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respectively. A normal condition (N) dataset was also provided as the base line. Vibration data 

were recorded with two different sampling rates: 12 kHz and 48 kHz. For each sampling rate, 

vibration signals were collected under 4 different loadings: 0, 1, 2, and 3 hp.  Correspondingly, the 

shaft rotating speed ranged from 1797 to 1720 rpm. Datasets with different sampling rates were 

tested separately. For each sampling rate, 100 samples were randomly selected for each bearing 

condition under one specific load. Thus, with various loads from 1 to 3 hp, 300 samples were 

selected for each bearing condition, and each sample contained 2500 data points. Detailed 

description of dataset is presented in Table 6.5 

Table 6.5. Detailed description of vibration data sets for validation 

Sampling rate Load 
(hp) 

Number of 
samples Fault 

Fault 
severity 

(in) 

Index of neuron 
triggered in decision 

SOM module 

12 kHz 1-3 

300 N 0 1 
300 BF 0.007 2 
300 BF 0.014 3 
300 BF 0.021 4 
300 IF 0.007 5 
300 IF 0.014 6 
300 IF 0.021 7 
300 OF 0.007 8 
300 OF 0.014 9 
300 OF 0.021 10 

48 kHz 1-3 

300 N 0 1 
300 BF 0.007 2 
300 BF 0.014 3 
300 BF 0.021 4 
300 IF 0.007 5 
300 IF 0.014 6 
300 IF 0.021 7 
300 OF 0.007 8 
300 OF 0.014 9 
300 OF 0.021 10 

48 kHz 0 

100 N 0 1 
100 BF 0.007 2 
100 BF 0.014 3 
100 BF 0.021 4 
100 IF 0.007 5 
100 IF 0.014 6 
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100 IF 0.021 7 
100 OF 0.007 8 
100 OF 0.014 9 
100 OF 0.021 10 

 

6.2.2 The Validation Results 
The dimension of the time-frequency matrix processed with STFT was 1025 by 100. A 

sliding box with a size of 25 by 25 was computed using Eq. (4.30). Thus, 164 sub-patterns were 

generated for each time-frequency matrix.  Accordingly, 164 input SOM modules were generated 

to construct the LAMSTAR network. 10 neurons were constructed in the decision SOM module 

represent 10 different bearing conditions to be diagnosed.  60% of data were used for training and 

40% for testing.  Initially, the data collected with the sampling rate of 48 kHz under 0 hp were 

tested.  The LAMSTAR network based mode was run with MATLAB 2015B on a PC: Intel Core 

i7-3770 CPU, 1T hard drive, 8G memory.  The test results are provided in Table 6.6. 

Table 6.6. Diagnostic results with constant loading of 0 Hp and sampling rate as 48 kHz 

Fault type Fault 
severity (in) 

Classification 
accuracy (%) 

N 0 98 
BF 0.007 98 
BF 0.014 100 
BF 0.021 99 
IF 0.007 99 
IF 0.014 100 
IF 0.021 98 
OF 0.007 100 
OF 0.014 100 
OF 0.021 100 

Over all 99.2 
 

The classification accuracy 𝜑 is computed as: 

𝜑 =
𝐼
𝐽 × 100%		 

(6.2) 
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where I represents the number of successfully classified data points and J the total number of data 

points. 

The test results in Table 6.6 show the capability of the LAMSTAR network on classifying 

various bearing faults under different severity situations.  In comparison with the fault 

classification results by Gan et al. (2016), the classification accuracy obtained using the 

LAMSTAR network based method is at the same level as the one obtained using combined wavelet 

transformation and HDN.  However, the HDN was implemented with manually extracted features 

using wavelet transform. Furthermore, the fault diagnosis and fault severity detection were trained 

in two separate stages.  Since such hierarchical structure needs human intervention to train the 

network by stage, fault diagnosis and severity detection cannot be completed automatically.  

Constant loading rarely happens in the practical industrial applications.  Thus, mixed 

loading datasets were tested.  Table 6.7 and Table 6.8 present the diagnostic results with sampling 

rate as 12 kHz and 48 kHz, respectively. The test results in Table 6.7 and Table 6.7 show the 

capability of the LAMSTAR network based method on classifying various bearing faults at 

different levels of severity.  The overall classification accuracy reached as high as 99.23% with 

the sampling rate of 48 kHz, similar to the results obtained from the same dataset by using DNN 

(Jia et al., 2016).  The classification accuracy obtained with the sampling rate of 12 kHz is slightly 

lower than the one with the sampling rate of 48 kHz.  This is reasonable as the data collected with 

a higher sampling rate normally contain more information.  Comparing with the results reported 

by Jia et al. (2016), the diagnostic and detection accuracy presented in Table 6.8 is compatible.  

Furthermore, the DNN method (Jia et al., 2016) relies greatly on the supervised fine-tuning process 

using classical backpropagation algorithm to get satisfactory results.  The proposed LAMSTAR 

based approach can achieve the same level of accuracy without extra fine-tuning requirement and 
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time.  In the age of big data, LAMSTAR based approach can provide more efficient solutions for 

bearing fault diagnosis and severity detection.  

As stated by Smith and Randall (2015), the vibration signals collected at CWRU have 

degrees of diagnosable varying easily diagnosable to impossibly diagnosable with different applied 

methods. The studied diagnosis methods included classical vibration signal analysis methods such 

as envelope analysis, cepstrum analysis, and benchmark model. The validation results showed that 

these classical signal analysis methods cannot identify fault location and severity effectively. 

Furthermore, their study only focused on fault diagnosis while this study conducted simultaneous 

fault diagnosis and severity detection without manual features extraction using deep learning based 

approaches. In comparison, the results reported by Smith and Randall (2015) showed that all the 

BF signals and small portion of IF and OF signals cannot be diagnosed by using traditional signal 

processing method.  The presented LAMSTAR based approach shows more competitive 

performance on fault diagnosis and severity detection.  

In comparison of the results obtained with constant loading of 0 hp in Table 6.6 with those 

obtained with the mixed loadings ranging from 1 to 3 hp in Table 6.8, one can observe that the 

diagnostic and detection accuracy obtained by the LAMSTAR network remains stable regardless 

of the working conditions.  This comparison result shows the robustness of the LAMSTAR 

network based approach for simultaneous bearing fault diagnosis and severity detection.  

In the data used in this paper, each fault severity is defined with a specific size, say 0.007, 

0.014, and 0.021 inches in diameter.  In real industrial applications, the fault severity is normally 

specified with different levels, for example, light damage with size in the interval [0, 0.007], 

medium damage [0.007, 0.014], heavy damage [0.014, 0.021], and broken (> 0.021).   In the case 
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when the training is composed just with light damage level and heavy damage level, and the 

medium damage level is presented during the test, then the diagnostic result will depend on how 

much the testing data is close to the training data.  If more testing data is closer to the light damage 

level, then the testing data will be diagnosed as light damage level.  Otherwise, the testing data 

will be diagnosed as heavy damage level.  To make accurate diagnosis, the LAMSTAR network 

needs to be designed to process the temporal information in the data to keep tracking the 

degradation level of the fault over time.  In other words, prognostic capability should be embedded 

into the LAMSTAR network.  This will be a research topic for further investigation. 

Table 6.7. Diagnostic results with mixed loading conditions and a sampling rate of 12 kHz 

Fault type Fault 
severity (in) 

Classification 
accuracy (%) 

N 0 100 
BF 0.007 97 
BF 0.014 98 
BF 0.021 97 
IF 0.007 98 
IF 0.014 96 
IF 0.021 98 
OF 0.007 96 
OF 0.014 97 
OF 0.021 95 

Over all 97.2 
 

Table 6.8. Diagnostic results with mixed loading condition and a sampling rate of 48 kHz 

Fault type Fault 
severity (in) 

Classification 
accuracy (%) 

N 100 100 
BF 99 97 
BF 98.67 98 
BF 98.67 97 
IF 99.67 98 
IF 99.33 96 
IF 99.33 98 
OF 99.67 96 
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OF 98.67 97 
OF 99.33 95 

Over all 99.23 
 

Note that the outputs of the winning neurons in the input SOM modules were fed into the 

output layer to diagnose the bearing faults and detect fault severity simultaneously. Thus, the 

outputs of the winning neurons in the input SOM models represent the bearing health condition 

features from the vibration signals extracted by the LAMSTAR network.  Principle components 

obtained from the outputs of the winning neurons were extracted using the principle component 

analysis (PCA) method and are plotted in Figure 6.3 and Figure 6.4.  Note that since there are 

many principle components can be obtained by PCA, here only the first three principle components 

that account for more than 97% of the total variation were used to make the plots. 

 

 
(a) 

 
(b) 

Figure 6.3. Plots of the principal components of the winning neuron outputs using data collected 
at sampling rate of:(a) 12 kHz and (b) 48 kHz 
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Figure 6.3 (a) and Figure 6.3 (b) show the plots of the first three principal components of 

the winning neuron outputs in the input SOM modules in a 3-D space using the data collected with 

the sampling rate of 12 kHz and 48 kHz, respectively. From Figure 6.3 (a) and Figure 6.3 (b), one 

can see that clusters are formed according to the bearing conditions regardless the sampling rate 

used in collecting the data.  However, with a higher sampling rate, clusters of the bearing 

conditions are more distinct. 

 
(a) 

 
(b) 

Figure 6.4. Plots of the principal components of the winning neuron outputs using the data 
collected at the sampling rate of:(a)12 kHz and (b) 48 kHz. 

 

Figure 6.4 (a) and Figure 6.4 (b) show the plots of the first two principal components of 

the winning neuron outputs in the input SOM modules in a 2-D space using the data collected with 

the sampling rate of 12 kHz and 48 kHz, respectively.  The results in Figure 6.4 (a) and Figure 6.4 

(b) show that clusters are formed according to the bearing conditions regardless the sampling rate 
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used in collecting the data.  Moreover, it can be observed that the same bearing fault with 

increasing fault size distributed increasingly along PC 1 axis.  It can be concluded that the first 

principle component represents the feature of the bearing fault severity. To show the percentage 

of the variances in the original feature sets captured by the principle components, the accumulated 

variance of the ith principle component can be calculated as: 

𝑐H =
∑ var(𝒑H)H
V

∑ var(𝒑H))
V

		 (6.3) 

 

where 𝑐H  represents the accumulated variance of the 𝑖`a  principle component 𝒑H , var(𝒑H)  the 

variance of the 𝑖`a  principle component 𝒑H , 𝑁  the total number of principle components. The 

accumulated variance of the first three principle components is shown in Table 6.9.  It can be 

observed that the first three components account for more than 97% of the variance of the original 

dataset.  

 

Table 6.9. Accumulated variance of the first three principle components 
Sampling 

rate 
Accumulated variance 

1st PC 2nd PC 3rd PC 
12 kHz 0.64 0.89 0.97 
48 kHz 0.79 0.94 0.99 

 

One key aspect in determining whether a fault severity detection method is effective is to 

check to see if the extracted features can represent the monoatomic trend of the degradation 

process.  To show that, the average output value of the wining neurons belonging to different 

bearing fault severity levels were calculated and are presented in Figure 6.5 (a) and Figure 6.5 (b) 

with the sampling rate of 12 kHz and 48 kHz, respectively.  Note that the value of 0 fault severity 

represents the normal bearing condition. 
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(a) 

 
(b) 

Figure 6.5. Average output value of the winning neurons using data collected at the sampling 
rate of:(a)12 kHz and (b) 48 kHz. 

 

As shown in Figure 6.5 (a) and Figure 6.5 (b), as the bearing fault severity increases, the 

average value of the output neurons increases.  The results shown in Figure 6.5 (a) and Figure 6.5 

(b) indicate that the features extracted using the LAMSTAR neural network can be used as a good 

indicator of bearing fault severity.  Also, the magnitudes of the average output values have shown 

a distinct difference for different type of faults.  It is interesting to see that the average output value 

of the normal bearing condition is close to that of BF 0.007, using both 12 kHz and 48 kHz 

sampling rates.  This could lead to the misclassification of the two bearing conditions in the 
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LAMSTAR neural network.  Note that no ability to capture the trending characteristic of the 

bearing degradation by the features extracted with deep learning based approaches was reported 

in references (Gan et al., 2016; Jia et al.,2016) and in the literature.  The results presented in Figure 

6.5 (a) and Figure 6.5 (b) have shown the significant advantage of the presented method in 

representing the characteristic trend of the bearing degradation process over the existing deep 

learning based approaches reported in the literature. 

To demonstrate the robustness of the proposed method on simultaneous bearing fault 

diagnosis and severity detection, more experiments have been conducted with various 

hyperparameters of the LAMSTAR network. Firstly, the experiments to investigate the effects of 

window size on diagnosis results have been conducted with mixed loading conditions and at a 

sampling rate of 48 kHz. The investigated window size was selected in the range from 5 to 50, 

with a step length of 5.  For each selected window size, 5 experiments were performed.  The 

diagnosis accuracies using the testing dataset are plotted in Figure 6.6. Note that the diagnosis 

accuracy Figure 6.6 was computed as the average of the accuracies obtained from 5 experiments.  

It can be observed from Figure 6.6 that the highest diagnosis accuracy was obtained at the window 

size of 25. This window size of 25 is the optimized window size determined by Eq. (4.30).  Starting 

with window size of 5, diagnosis accuracy climbs up from 95.47% to 99.91% as the window size 

approaches to 25. The diagnosis accuracy drops slightly with a fluctuation as the window size 

continues to increase beyond the optimized window size.  Figure 6.6 shows that LAMSTAR 

network can achieve the best diagnosis results using the optimized window size. The diagnosis 

performance of the LAMSTAR network becomes relatively stable with a window size greater than 

the optimized one.   
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Figure 6.6. Diagnosis results comparison of different window sizes 

.  
Figure 6.7. Diagnosis results comparison with different percentages of samples for training. 

 

Furthermore, considering that insufficient labelled training data is a critical issue on data-

driven fault diagnosis methods, the experiments with different percentages of training samples 

were also conducted. Similarly, for each training data percentage ranging from 20% to 80%, 5 

experiments were performed. The diagnosis accuracies with the testing dataset are plotted in 

Figure 6.7. An obvious increase can be observed with increasing percentage of training samples. 

The diagnosis accuracies remain 100% as the training percentage reaches over 60%. Note that 

even with 20% training samples, the diagnosis accuracy can still reach at satisfactory level of 

96.34%. It shows that the LAMSTR network can automatically learn the fault features from 
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relatively small amount of training data and gives accurate diagnosis results. In general, the 

proposed LAMSTAR network shows good performance robustness with slight changes on both 

the hyperparameter and percentage of the training samples. 

6.2.3 Discussion 
Based on the results presented in the previous section, a few points can be made as follows: 

(1) Different from model based bearing fault diagnosis methods, the presented method does not 

require model-based signal processing techniques to reveal the characteristics of the bearing 

faults.  As reported by Smith and Randall (2015) the traditional vibration signal analysis 

methods including envelope analysis, cepstrum analysis and benchmark model cannot 

diagnose all the signals with BF and small portion of signals with IF and OF using the same 

dataset from CWRU. In a comparative study by Boudiaf et al. (2016), multiple vibration signal 

processing techniques, including FFT, cepstrum analysis, envelope analysis and wavelet 

transform, were implemented on the same data set for bearing fault diagnosis.  It has drawn a 

similar conclusion that these traditional vibration signal processing techniques cannot diagnose 

the faults accurately. Besides, envelope analysis and wavelet transform require expertise 

knowledge of suitable selection of critical parameters such as filtering band and mother 

wavelet.  Furthermore, their study only focused on fault diagnosis while this paper emphasized 

on simultaneous fault diagnosis and severity detection using deep learning based approaches.  

(2) The results presented in Figure 6.5 (a) and Figure 6.5 (b) have shown the ability to capture the 

trending characteristic of the bearing degradation with the features extracted using the method 

presented in this paper.  As the fault severity increases, the average value of the wining neuron 

outputs increases. It is the first time that the monotonic features are extracted and presented to 

characterize the bearing degradation trending using deep learning based approach.   
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(3) The results in Figure 6.6 and Figure 6.7 have shown that the proposed method can reach 

satisfactory diagnosis accuracies with even slight changes on both the hyperparameter and the 

percentage of the training samples. The maximum change in diagnosis accuracy is within 4% 

with the changes on window size and percentage of training samples. 

(4) In addition, in comparison with the deep learning based approaches applied to the same data 

set (Gan et al., 2016; Jia et al., 2016), the method presented in this paper can provide the same 

level of accuracy for simultaneous fault diagnosis and severity detection but requires no 

supervised fine tuning and trial and error experiment on setting the network structure 

parameters.  This feature of the presented method adds significant advantages over the other 

method as it can provide more efficient solutions for bearing fault diagnosis and severity 

detection in the age of big data 

6.3 The Validation Results of PGB Fault Diagnosis Using Vibration Signals 
 

6.3.1 The Designed LAMSTAR Network and LAMSTAR-DL Network for the Validation Test 
To compare the proposed LAMSTAR-DL based approach with the original LAMSTAR 

network based approach for PGB feature extraction and fault diagnosis, the vibration data collected 

from PGB seeded fault tests were used. The vibration signals were collected at sampling frequency 

of 24 kHz, under 5 various shaft speeds including 10, 20, 30, 40, and 50 r/sec. In addition to the 

shaft speeds variation, varying loading conditions were applied at the output shaft of the gearbox, 

namely 0%, 25%, 50%, and 75% of the maximum torque of the PGB. The faults were seeded 

artificially on different locations, including planet gear, sun gear, and ring bear, separately. Thus, 

4 PGB health conditions were studied in total for classification, namely healthy, planet gear fault, 

sun gear fault and ring gear fault. For each health condition, 5 samples were collected under each 

specific shaft speed and specific loading. Given 5 different shaft speeds and 4 different loadings, 
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100 samples were collected in total for each specific PGB health condition. With length of 1024 

data points in each pattern, 5 patterns were generated from each sample by random data segments. 

Thus, for 4 health conditions at 5 different shaft speeds and 4 different loading conditions, 2000 

patterns were generated for validation. Table 6.10 shows the detailed description of samples and 

patterns obtained for validation. 

 

Table 6.10. Detailed description of collected samples and generated patterns 

  Number of samples at various loadings  

  0% max 
torque 

25% 
max 

torque 

50% 
max 

torque 

75% max 
torque 

Number of 
generated 
patterns 

Shaft 
speeds 
(r/sec) 

10 20 20 20 20 400 
20 20 20 20 20 400 
30 20 20 20 20 400 
40 20 20 20 20 400 
50 20 20 20 20 400 

Total 100 100 100 100 2000 
Number of training patterns (55% of total patterns) 1100 
Number of testing patterns (45% of total patterns) 900 

 

In the implementation of the original LAMSTAR network based approach for PGB fault 

diagnosis, the collected raw vibration signals were pre-processed firstly to obtain the frequency 

spectrum matrixes by using STFT method.  The dimension of the generated spectrum matrix 

representing original raw vibration signals is 500 × 1000.   The dimension of sliding window for 

sub-pattern generation was decided as 100 ×	100, leading to that 50 sub-patterns were sampled 

from one spectrum matrix in total. Correspondingly, 50 input SOM modules were designed in the 

LAMSTAR network in total.  The neurons were dynamically constructed in each of the input SOM 

module to store and process the representative sub-pattern sampled from matrix. Due to the 

employment of dynamic neurons, the number of neurons in each input SOM module as well as the 
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dimension of the input SOM module was varied in range of 0 to 10000.  The other learning 

parameters of LAMSTAR network were set as following: error tolerance of decision SOM module 

as 10-9, error tolerance for making decision of winning neuron in dynamically constructed SOM 

weights as 10-7, learning rate 𝛼 as 0.8. 

To implement the LAMSTAR-DL network based PGB fault diagnosis method on the same 

data set, the raw vibration signals of 500 generated patterns were applied directly without signal 

pre-processing procedure in the LAMSTAR-DL network. Thus, each pattern with length of 1024 

data points was used for both dictionary learning and PGB fault location diagnosis. Based on the 

selection criterion expressed in Eq. (4.30), the sliding window was selected with length as 100. 

Thus, 10 SOM input modules were constructed for 10 sub-patterns sampled from each raw data, 

leading to the 10 atoms in the dictionary for each PGB health condition class. Similarly, the 

neurons in each input SOM module were generated dynamically ranging from 1 to 100. 

Particularly, the input SOM module with only 1 neuron can be redundant. The sparse 

representations of original vibration signals were channeled into the classifier using LAMSTAR 

network row by row. Therefore, the number of SOM modules in the classifier LAMSTAR network 

were constructed the same as number of rows of original vibration signals sparse representations. 

Considering there are 4 different PGB health conditions in this paper, 2 neurons were designed in 

the output SOM module for both original LAMSTAR network and LAMSTAR-DL network 

classifier for a complete 4 firing sequences. Each firing sequence represents one health condition. 

The output value of neurons in the output SOM module can be calculated by using Eq. (4.1). Let 

𝑦H be the output value of the 𝑖`a neuron in the output SOM module, then firing condition of the 𝑖`a 

neuron can be obtained from Eq. (6.1).Thus, firing sequence and the corresponding PGB health 

condition can be defined in Table 6.11. 



 
 

101 
 

Table 6.11. PGB health conditions and LAMSTAR network based approaches firing sequence 
representations 

PGB health 
condition 

Output 
neuron 1 

Output 
neuron 2 

Healthy 0 0 
Planet gear 

fault 1 0 

Sun gear fault 0 1 
Ring gear fault 1 1 

 

6.3.2 The Validation Results 
The vibration signals collected from PGB test rig were processed using two methods: 

LAMSTAR based method and LAMSTAR-DL based method. To implement the LAMSTAR 

based PGB fault diagnosis method on the selected signals, the dimension of spectrum matrix 

processed with STFT was 500 × 1000. The sliding window was decided with size as 100 × 100, 

resulted in 50 sub-patterns sampled from each spectrum matrix. Therefore, 50 input SOM modules 

were designed in the LAMSTAR network. In the implementation of the proposed LAMSTAR-DL 

based PGB fault diagnosis method on the collected signals, the raw vibration signals were directly 

used for dictionary learning and sparse coding without other signal process procedures. The 

dimension of each pattern applied in the LAMSTAR-DL network is 1024. A sliding window with 

length of 100 was selected. Therefore, 10 input SOM modules were constructed corresponding to 

the 100 sub-patterns sampled from each pattern. There were 2 neurons designed in the output SOM 

module for both LAMSTAR and LAMSTAR-DL based approaches validation, representing 4 

different PGB health conditions.  

To show the effectiveness of the features extracted using LAMSTAR-DL network, the 

average value of winning neurons in each SOM module of LAMSTAR-DL network were obtained 

for each health condition.  Figure 6.8 and Figure 6.9 show the plots of winning neurons’ average 
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values in two different LAMSTAR based networks. In Figure 6.8 and Figure 6.9, each point and 

the vertical bar represent the averaged winning neuron values and the 95% confidence interval. 

 

Figure 6.8. Average value of winning neurons using LAMSTAR network 

 

Figure 6.9. Average value of winning neurons using LAMSTAR-DL network 

 

As one can observe in both Figure 6.8 and Figure 6.9, by calculating the average value of 

winning neurons in each SOM module of LAMSTAR based network, the 4 PGB health conditions 

can be separated with clear boundary. With the increasing loading, the division of gear health 

conditions is enhancing. The detectability of PGB faults gets better as loading increases. 

Furthermore, the average value of winning neurons stays in similar pattern within each loading, 

regardless changing shaft speeds. It indicates that the detection of PGB health conditions using the 

presented deep learning based methodologies is affected heavily by loading level of PGB. The 



 
 

103 
 

introduction of sparse coding into LAMSTAR shows more clear classification on PGB health 

conditions.  

The collected vibration signals were partitioned into training and testing datasets for 

training and testing, respectively. 55% of the collected vibration signals were used for training and 

the rest for testing. Classification experiments were executed 5 times to get average diagnosis 

accuracy results. The fault diagnosis results obtained by using both LAMSTAR network and 

LAMSTAR-DL network are shown in Table 6.12. 

 

Table 6.12. PGB fault diagnosis results using LAMSTAR and LAMSTAR-DL 
PGB Faults LAMSTAR LAMSTAR-DL 

Healthy 98.32 99.81 
Planet gear fault 96.81 99.75 
Ring gear fault 97.25 99.62 
Sun gear fault 97.82 99.24 

Over all 97.55 99.61 
 

It can be observed from Table 6.12 that fault diagnosis accuracy achieves 97.55% overall 

by using LAMSTAR network alone. Higher accuracy was achieved by using the proposed 

LAMSTAR-DL, which is high as 99.61%. It shows the capacity of LAMSTAR and sparse coding 

on fault information extraction without complicated signal processing techniques. Regarding the 

LAMSTAR network as a model closer to the vanilla SOM model, the better classification 

performance obtained by LAMSTAR-DL network shows the advantage of LAMSTAR-DL over 

the simple SOM model. With limited amount of studies on SOM based fault diagnosis, the simple 

SOM based methods suffer from the weaknesses including: (1) time consuming (Katunin et al., 

2015), (2) weak identification ability (Zhong et al., 2005), (3) dependence on faulty feature 

extraction and selection (German et al., 2014). 
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In comparison with diagnosis results obtained by using the reported tradition signal 

processing technique (Bajric et al., 2016), the presented method achieved higher accuracy without 

features extraction process. The presented method accomplishes simultaneous feature extraction 

and fault diagnosis process. Even in the comparison with other reported deep learning based PGB 

fault diagnosis (Chen et al., 2017; Jia et al, 2016), the presented method achieves higher diagnosis 

accuracy. Furthermore, both methods require extra supervised fine-tuning process (Chen et al., 

2017; Jia et al, 2016). In the environment of wind turbine monitoring big data, such extensive 

processes can greatly reduce the computational efficiency. The proposed LAMSTAR-DL method 

for PGB fault diagnosis does not require the extra supervised fine-tuning to achieve the satisfactory 

diagnosis accuracy. Therefore, the LAMSTAR-DL method is more applicable in practical.  

Additionally, the structure of LAMSTAR-DL network is designed according to the characteristics 

of signals as explained in Eq. (4.30). In comparison with the trail-and-error test reported in the 

deep learning based fault diagnosis methods (Chen et al., 2017; Jia et al, 2016), LAMSTAR-DL 

reduces the computational complexity with more steady performance. Also, the method presented 

by Chen et al. (2017) implements the deep learning network simply as a classifier using features 

extracted with complicated signal processing techniques. The performance of such method that 

combines deep learning based methods and complicated feature extraction relies greatly on the 

complicated signal processing techniques and expertise. 

In comparison with performance of features extracted from same vibration data sets using 

time synchronizing average (TSA) methodology (Yoon et al., 2016), the average value of winning 

neurons in LAMSTAR shows the similar detectability on PGB faults as TSA root mean square 

(RMS) condition indicator (CI). Among the effective CIs, i.e. TSA RMS, TSA peak to peak (P2P), 

residual RMS, residual P2P, TSA RMS show the best separation results. Other CIs show the good 
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diagnosis results with 25% and higher loading condition, but not as good results as TSA RMS with 

0% loading condition. Thus, it can be concluded that features learnt and extracted by using deep 

learning based method perform better on PGB fault diagnosis than CIs extracted by traditionally 

signal processing techniques.  

6.4 The Validation Results of Deep Hybrid Signal Processing Method on Bearing Fault 
Diagnosis using Vibration Signals 

6.4.1 Experimental Setup and Data Acquisition 
This section covers the experimental setup used to validate the hybrid deep signal 

processing approach for bearing fault diagnosis using vibration signals.  Figure 6.10 shows the 

bearing test rig used to conduct the steel bearing seeded fault tests.  A model 608A11 Industrial 

accelerometer was mounted on the bearing housing for vibration data acquisition (Van Hecke et 

al., 2014). 

 
Figure 6.10. The bearing test rig 

 

Type 6205-2RS steel FAG ball bearings were used for the testing.  Four fault types were 

simulated on steel bearings: inner and outer race faults, rolling element fault, and cage fault. The 

inner and outer race faults were generated by scratching the steel race surfaces with a diamond tip 

grinding wheel bit to cover the ball contact surface.  The scratches on both races were about 1/16 
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inch wide and 1/250 inch deep.  The ball fault damage was created by cutting the steel cage in one 

of the ball locations and then using the diamond tip grinding wheel bit to create a small dent in one 

of the steel balls.  The dent was about 20% of the ball volume.  For the cage fault, the steel cage 

was cut in between two ball locations.  The cut was about 50% of the ball diameter.  For all seeded 

fault tests, the bearing seal and grease was removed and replaced following the creation of the 

fault. 

For vibration acquisition, VibraQuest Pro by SpectraQuest, Inc. was used to digitize the 

continuous vibration signals at a sampling rate of 102.4 kHz (Van Hecke et al., 2014).  Vibration 

signals for the healthy bearing and the seeded fault bearings were recorded during the tests at four 

shaft speeds: 15 Hz, 30 Hz, 45 Hz, and 60 Hz.  No load was applied for the duration of the seeded 

fault tests.   

6.4.2. The Validation Results 
To validate the proposed hybrid deep signal processing method on bearing fault diagnosis, 

AE data signals were acquired from the bearing test rig and used in different experiments. The 

tested bearings were operated at 4 different shaft rotating speeds: 15 Hz (900 rpm), 30 Hz (1800 

rpm), 45 Hz (2700 rpm), and 60 Hz (3600 rpm). The loading condition can be regarded as 

nonstationary during the experiment. There were 5 bearing health conditions involved in the 

experiment: normal bearing, bearing with ball fault, bearing with cage fault, bearing with inner 

race fault, and bearing with outer race fault. The AE sensor amounted on the bearing housing 

collected the data with a sampling frequency of100 kHz. For each operation condition, 400 

samples were collected with a length of 10000 for each sample. Therefore, the bearing dataset 

contains 8000 samples under 4 different shaft rotating speeds for 5 bearing health conditions. Two 

different experiments were conducted. The deep structure used in the experiments was designed 

as: one input layer (10000 neurons), one convolutional layer with the optimal segment length, one 
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average pooling layer with optimal segment length, one IDFT layer optimal segment length, and 

one output layer (5 neurons). Note that layers including the convolutional layer, the average 

pooling layer and the IDFT kernel were built dynamically according to the signal with adjustable 

size. Initially, the samples collected under the same operation condition were used to carry the 

experiment. Then, the experiments were carried on the samples under the mixed operation 

conditions. For both experiments, 20% of the samples were randomly selected to obtain the 

segment length in the optimized length unit (OLU) and train the DFT encoder, the rest of samples 

were used for testing. Note that the classification accuracy of each experiment was obtained as 

average from 5 times conductions to reduce the effect of randomness. The experiments were 

carried out with MATLAB 2015B on a PC: Intel Core i7-3770 CPU, 1T hard drive, 8G memory. 

The classification results are presented in Table 6.13.  

 

Table 6.13 Classification results with different shaft rotating speeds 

Shaft speeds 
Theoretical 

segment 
length 

Optimized 
segment 
length 

Training 
accuracy 

(%) 

Testing 
accuracy 

(%) 

Computati
onal time 

(min) 
15 Hz 7056 6700 99.91 99.82 85.23 
30 Hz 3467 3200 99.97 99.92 44.16 
45 Hz 2301 2100 100 100 33.13 
60 Hz 1729 1800 100 100 20.67 
Mixed NA 3125 99.94 99.92 39.21 

 

It can be observed from Table 6.13 that optimized segment length from OLU is close to 

the theoretical calculation result. It shows the capability of OLU on selecting the properly 

optimized segment length. The training and testing accuracies shown in the Table 6.13 are high 

overall, without obvious observation of overfitting result. The classification accuracies have shown 

that the proposed hybrid deep signal processing method can robustly obtain the bearing health 
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conditions classification result. However, also as shown in the Table 1, the computational time for 

the proposed method is extremely high. This is caused by the large architecture in both OLU and 

DFT encoder, leading to the huge number of parameters to be updated during the training 

procedure. To evaluate the influence of segment length on the classification results, experiments 

with pre-defined segment length were conducted. During the experiments with pre-defined length 

of segment, training procedure starts with training the DFT encoder unit. The classification results 

are shown in  

Table 6.14. 

 
Table 6.14 Classification results with various pre-defined segment length 

Shaft 
speed 

Length of pre-defined segment 
(Testing accuracy (%) /computational time (min)) 

 500 1000 1500 2000 

15 Hz 97.14/ 
6.13 

98.97 / 
12.63 99.34 / 16.34 99.42 / 21.21 

30 Hz 96.82 / 
6.17 

99.23 / 
12.63 99.41 / 16.92 99.48 / 22.27 

45 Hz 98.96 / 
6.67 

99.15 / 
12.62 99.37 / 16.85 99.73/ 21.92 

60 Hz 99.45 / 
6.12 

99.89 / 
12.61 99.68 / 16.23 99.98 / 21.93 

Mixed 98.91 / 
6.78 

99.22 / 
12.78 99.59 / 16.54 99.88 / 22.06 

 
It can be observed that the computational time drops significantly when the segment length 

decreases. The testing accuracy of samples from 30 Hz decreases mostly with the minimum 

segment length. Segment length has relatively less impact on the samples with the mixed shaft 

rotating speeds. In comparison with the classic TSA related method, the proposed method can 

obtain the good classification results with little impact of selection on segment length.  



 
 

109 
 

To further evaluate the adaptive learning capability of the hybrid deep signal processing 

method, the experiments with signals under different operation conditions for training and testing 

procedures were also conducted. Since the network is constructed and applied on signals with 

different shaft speed, the optimal filter results of signals with mixed shaft speeds in Table 6.13 as 

3125 was selected. Experiments with two scenarios were conducted: (1) training with high shaft 

speed signal and testing with low shaft speed; (2) training with low shaft speed signal and testing 

with high shaft speed. With the acquiesced bearing data, 15 Hz was regarded as low shaft speed 

and 60 Hz as high shaft speed. The validation results obtained from 5 times of executions are 

presented in Table 6.15. 

 

Table 6.15 Classification results with different operation conditions for training and testing 
datasets 

Training condition Testing condition Training accuracy Testing accuracy 
Low shaft speed High shaft speed 99.89% 99.56% 
High shaft speed Low shaft speed 100% 99.98 

 

The classification results displayed in Table 6.15 show that the hybrid deep signal 

processing method can extract the faulty information from signals under different shaft speed other 

that the one used for training adaptively. The extracted information can be used to accurately 

classify the bearing health conditions.  

As introduced previously, the feature learning process in deep learning related machinery 

fault diagnosis topic remains ambiguous with attempted discussions. Recall Eq. (4.57), the value 

of the 𝑖`a output neuron is obtained by adding the inner product of the signal segment 𝑥E and the 

𝑖`a row vector 𝑾H_�ú
H, and signal segment 𝑥E and the 𝑖`a row vector 𝑾H_Hu

H. Therefore, both 𝑾H_�ú 

and 𝑾H_Hu can be viewed as a set of normal orthogonal bases. Thus, the encoding procedure can 
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be regarded as decomposing signal segment in the normal orthogonal systems. 9 rows of the 𝑾H_�ú 

trained with the mixed shaft speed signals are plotted in Figure 6.11 (a), along with the 

corresponding frequency spectra in Figure 6.11 (b). The local spikes can be observed in the time 

domain and the spectral spike in the frequency domain, showing the time-frequency properties of 

these weight vectors. The local spikes in the time domain have the specific patterns that can capture 

the various local characters of mechanical signals. Correspondingly, the narrow spectral band 

width observed in the frequency domain enables these weight vector to serve as good bandpass 

bases for the mechanical signals.  

 
(a) 

 
(b) 
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Figure 6.11. Visualization of randomly selected row vectors in 𝑊H_�ú trained by signals with 
mixed shaft speeds 

Also, the data used for classification in the softmax layer were investigated. By calculating 

the root mean square (RMS) of the features from each sample, the boxplots of RMS are plotted 

and grouped by shaft speed in Figure 6.12. 

 

Figure 6.12. RMS by shaft speed using hybrid signal processing method 

The RMS obtained after the hybrid deep signal processing method can distinguish the 

normal, inner race fault, outer race fault, cage fault and ball fault clearly. Furthermore, with 

increasing shaft speed, RMS of all bearing health conditions show the rising monotonic trend. 

Another frequently used condition indication (CI) peak value of the was also calculated on the 

signals being processed by the hybrid deep signal processing method. The peak CI of each bearing 

condition under different shaft speeds are plotted in Figure 6.13. The cluster of each bearing health 

condition can be observed clearly in Figure 6.13, with the rising monotonic trend along the 

increasing shaft speed. In comparison with the peak values extracted from reconstructed vibration 

signals using TSR method (Van Hecke et al., 2014), the peak value extracted by using hybrid deep 
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signal processing method distribute more clearly, showing better performance on identifying 

bearing conditions. 

 

Figure 6.13. Peak by shaft speed using hybrid signal processing method 

 

Other popularly used deep learning methods on machinery fault diagnosis have been 

reported with good performance, including deep neural network (DNN) (Jia et al., 2016), 

convolutional neural network (CNN) were also adapted in this paper for comparison. To reduce 

the computational complexity, the frequency spectra of original raw vibration data was used as 

input fed into DNN and CNN. The comparison results of testing accuracies from the proposed 

hybrid deep signal processing method, DNN, and CNN are shown in Table 6.16. 

 

Table 6.16 Comparison Results with Other Deep Learning Methods 
` Testing accuracy (%) 

Shaft speeds Hybrid deep signal 
processing DNN CNN 

15 99.82 90.21 82.12 
30 99.92 93.28 78.91 
45 100 93.19 83.18 
60 100 95.34 84.23 

Mixed 99.92 87.34 80.45 
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Comparison results presented in Table 6.16 show that the hybrid deep signal processing 

can diagnose bearing faults more accurately than both DNN and CNN, even with raw vibration 

signals. The outstanding performance is contributed to the physical embedded artificial 

intelligence that can capture the time-frequency characteristics of signals. 

6.5 The Validation Results of Deep Hybrid Signal Processing Method on Gear Prognostics 
Using Vibration Signals 

 

6.5.1 Description of the Validation Data Sets 
In preparation of the NASA Glenn Spiral Bevel Gear Fatigue Rig for upcoming tests of 46 

newly designed spiral bevel gear sets, several existing gears (36 tooth gear/12 tooth pinion) were 

ran on the test rig.  During these 8 checkout tests, vibration, oil debris, torque and speed data were 

collected once every minute with the NASA Glenn Labview based data acquisition system, MDSS. 

Figure 6.14 illustrates the setup of the sensors in the test rig.  The left gear set (pinion/gear) was 

referenced as left and the right gear set (pinion/gear) was referenced as right in the MDSS system.  

For the MDSS tests, the optical once per rev sensor is located on the left gear shaft and the TSA 

(Time Synchronous Average) is only calculated for the 36 tooth gear.  A second once per rev has 

been installed on the pinion shaft and will be used for pinion TSA calculations for future tests.   

The MDSS accelerometers are located on the right and left gearbox housing near the pinion.  The 
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accelerometer is mounted axially in a vertical position.   Photos of the accelerometer locations are 

also shown in Figure 6.14. 

Eight run-to-failure experiments were conducted. No damage was observed on the gear 

teeth during tests 1, 2, and 5.  During tests 3, 4, 6, 7 and 8, gears were inspected periodically and 

photos were taken of the damage to the gear teeth during testing.  Table 6.17 is a list of detailed 

information of experiments to be discussed. 

 
Table 6.17 Detailed information of carried out experiments 

Experiment` DAQMAX Gear 
Set Gear Set RDGS Occurred 

Filename Task Left Right Hours Failure 
NGB_CHK1 NGB_Bevel1 Set 49 Set 47 3517 

No damage  Archive 100% s/n pin:  
37 

s/n pin:  
30 59 

NGB_CHK2 NGB_Bevel1 Set 69 Set 47 3069 No damage 

Left Accelerator Right Accelerator 

 

Figure 6.14 Spiral Bevel Gear Fatigue Rig 
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 Archive 100%  s/n pin:  
30 51 

NGB_CHK3 NGB_Bevel1 Set 69 Set 1 979 Right pinion and 
gear teeth damage  Archive 100%  s/n pin:  

33 16 

NGB_CHK4 NGB_Bevel1 Set 69 Set 35 2578 Right pinion and 
gear teeth damage  Archive 30%   43 

NGB_CHK5 NGB_Bevel1 Set 43 Set 47 5366 No damage  Archive 30%   89 
NGB_CHK6 NGB_Bevel1 Set 43 Set 47 3302 

Left pinion 
scoring on three 

teeth 
 Archive 50%   55 

NGB_CHK7 NGB_Bevel2 Set 24 Set 47 1057 Left pinion pitting 
on three teeth.  
Right pinion 

pitting on four 
teeth 

 Archive 100%   18 

NGB_CHK8 NGB_Bevel2 Set 03 Set 14 1057 Left pinion pitting 
on two teeth  Archive 100%   18 

 

6.5.2 The Validation Results 
To demonstrate the effectiveness of the proposed method to extract gear fault features for 

gear prognostics and compare its performance with the traditional methods, vibration data sets 

collected from experiments 3, 4, 6 and 7 were used. For the collected data at every minute, a sample 

with length of 20000 data points was generated. In the data set obtained from each experiment, 

100 samples were randomly selected to train the DFT-IDFT autoencoder with 1000 iterations set 

as constant. The optimal filter size was decided by the shrinkable CNN as 5000. The number of 

samples used for deciding the optimal filter size was selected as 200 samples. The trained DFT 

kernel was then used to process each sample as convolutional kernel to obtain the expression of 

the original input in frequency domain. Then the average pooling layer sharing the same dimension 

of filter size was employed to obtain the averaged frequency domain expression. Next, the 

averaged frequency spectra were transformed into time domain through the trained IDFT kernel. 

Finally, the RMS was calculated from the reconstructed time domain expression as feature 
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indicating gear status. In comparison with the proposed method, commonly used features extracted 

by TSA method were also calculated and plotted in the following validation results. The 

comparison results obtained from data sets of experiments 3,4,6 and 7 are shown in Figures 6.16-

19. 

   

(a) (b) (c) 

Figure 6.15 The comparison results from experiment 3. (a) RMS extracted from output of the 
neural network; (b)RMS extracted from TSA calculation; (c) Other CIs extracted from TSA 

calculation 

   

(a) (b) (c) 

Figure 6.16 The comparison results from experiment 4. (a) RMS extracted from output of the 
neural network; (b)RMS extracted from TSA calculation; (c) Other CIs extracted from TSA 

calculation 
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(a) (b) (c) 

Figure 6.17 The comparison results from experiment 6. (a) RMS extracted from output of the 
neural network; (b)RMS extracted from TSA calculation; (c) Other CIs extracted from TSA 

calculation 

   

(a) (b) (c) 

Figure 6.18 The comparison results from experiment 7. (a) RMS extracted from output of the 
neural network; (b)RMS extracted from TSA calculation; (c) Other CIs extracted from TSA 

calculation 
 

It can be observed from Figure 5-8 that the RMS calculated from the output of the neural 

network shows obvious degradation trend in all the experiments with damage shown in the end. 

The features extracted from TSA results fail to reveal the degradation trends with damage 

developing on gears. The RMS of TSA results calculated from experiment 7 in Figure 6.18 shows 

the similar trend as in the RMS of outputs from neural network. It can be caused by that one tooth 

on the left pinion had pitting damage prior to the installation of the gears onto the rig. 
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7 CONCLUSIONS 
 

In this dissertation, effective and efficient deep learning based rotating machinery fault 

diagnostics methods and tools are developed. The proposed methods and tools are validated on 

both a set of seeded localized faults on rotating bearings and a set of seeded localized faults on all 

gears in one PGB, respectively. Specifically, the all bearing faults locations include rolling ball, 

inner race, outer race and cage. The localized PGB faults are seeded on all gears including sun 

gear, planetary gear and ring gear. The integration of deep learning methods enables the proposed 

tools to extract fault features from collected raw data or simply processed data through 

unsupervised learning. Thus, the critical challenges of feature extraction through appropriate signal 

processing algorithms and effective feature selection for satisfactory fault diagnosis performance. 

Furthermore, to overcome the known issue of the AM effect caused by rotating vibration transfer 

path in vibration signals, AE signals were used to validate the proposed methods and to enhance 

the bearing fault diagnosis performance. This was the first reported application of AE data in 

combination with deep learning algorithm that was validated to diagnose all bearing fault types at 

both high and low shaft speed ranges.  

This research has several significant contributions. First, a deep learning based bearing 

fault diagnosis method using AE sensors with big data has been proposed.  This allows the network 

to extract effective fault features from time-frequency spectra of AE signals after short term 

Fourier transfer without human interaction involved. Such automatic feature extraction enables the 

intelligent bearing fault diagnosis with big data sets. Additionally, even though the methodology 

was originally proposed for AE signals, it can be easily adopted to bearing fault diagnosis using 

vibration signals. Secondly, the fault features carrying both fault location and fault severity level 

information can be extracted from vibration signals through the proposed deep learning based 
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method. With needs of fault severity diagnosis in modern industrial application, the LAMSTAR 

network can be adopted in fault severity diagnosis. The LAMSTAR network outperforms the other 

typical deep learning network on extracting fault location and severity level features 

simultaneously. Thirdly, a hybrid deep signal processing method is proposed. Integrating physical 

fundamental of signal processing technique into deep learning related network transforms the 

typical deep learning network into a more applicable tool for fault diagnosis. Thus, the mechanism 

of deep learning related method digging time and frequency characteristics can be revealed. Note 

that the methods proposed in this research do not rely on the trial-and-error test to select 

hyperparameters of network. Moreover, the hybrid signal processing technique has been extended 

on effective feature extraction for gear fault prognostics. 

Through the seeded fault tests and runt-to-failure tests, the research contributions have been 

validated. The bearing fault diagnosis performance of the LAMSTAR network based approach 

was also compared with another deep learning method CNN.  The results have shown that the 

LAMSTAR network based method gives better performance at both the normal and relative low 

input shaft speeds.  In addition, the AE diagnostic features obtained using the LAMSTAR network 

were compared with those obtained by the specialized AE signal processing and feature extraction 

techniques reported in the literature.  The results have shown that the AE diagnostic features 

obtained using the LAMSTAR network are as effective as those obtained by the specialized AE 

signal processing techniques reported in the literature.  Additionally, integrating sparse coding into 

LAMSTAR network is extended easily on vibration signals for PGB fault diagnosis. The 

effectiveness of the presented methods was validated with vibration signals collected from seeded 

gear fault tests performed on a PGB test rig. The self-learnt features were extracted automatically 

from the raw vibration data by the presented approach. In comparison with the classical CIs for 
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PGB fault diagnosis (Yoon et al., 2016), the self-learnt features by the presented method have 

shown a better separation performance on PGB feature extraction and fault diagnosis. The 

presented method resulted in a better feature extraction and fault diagnosis performance on the 

same dataset than those reported. Fault diagnosis accuracy reaches as high as 99.61% by the 

presented LAMSTAR-DL based method.  

The hybrid deep signal processing method was validated with vibration signals collected 

from seeded bearing fault tests conducted in a bearing test rig.  The validation results have shown 

that the proposed method can diagnose the bearing fault using vibration signals through 

unsupervised learning with high accuracy. Also, the presented method can eliminate the impact of 

signal segmentation and operation conditions.  Furthermore, the RMS and peak values extracted 

from the reconstructed vibration signals show the monotonic trend along with the increasing shaft 

speed. The behavior of such statistical features agrees with the results reported by Van Hecke et 

al. [17]. Moreover, the peak value extracted by the presented method show better performance on 

distinguishing bearing health conditions. The introduction of TSR enables the deep learning 

structure to adaptively learn the time-frequency features from raw monitoring signals. The physical 

interpretation can be discovered to the weight vectors of both real and imaginary weights of the 

DFT-IDFT input layer. The weight vectors show the observable time-frequency properties as the 

bandpass bases for signal decomposing. Since the presented method uses a deep learning structure 

to achieve the function of TSR signal processing technique, the structure of deep learning network 

is designed with the principle of TSR signal processing. Thus, the optimal structure can be 

determined according to the characteristics of signals rather than trail-and-error test as typically 

adopted in the deep learning based fault diagnosis methods. The presented method fills in the gap 

between the traditional signal processing along with manual feature extraction and adaptive 
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features learning using deep learning techniques. The effectiveness of the proposed method was 

demonstrated with four gear run-to-failure teste datasets with different damages occurred. The 

RMS extracted from the output of neural network show the clear degradation trend of damages on 

gears. Moreover, multiple commonly used CIs were also calculated from the TSA results of the 

raw vibration signal for comparison. It can be concluded that for this case, the selected CIs 

calculated from TSA results fail to reveal the gear degradation trend. 

In summary, this research shows that deep learning related algorithms can be successfully 

applied in condition based maintenance, including fault diagnosis and prognostics aspects.  The 

designed LAMSTAR based network can extract fault features automatically for fault diagnosis, 

even simultaneous fault diagnosis and fault severity identification. Also, the novel deep learning 

structure integrated signal processing introduces the physical fundamental of application deep 

learning algorithm into rotating machinery fault diagnosis and prognostics. 
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