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SUMMARY

The results of Marc Culler and Peter Shalen for 2, 3 or 4-free hyperbolic 3-manifolds are

contingent on properties specific to and special about rank two subgroups of a free group.

Here we determine what construction and algebraic information is required in order to make a

geometric statement about M a closed, orientable hyperbolic manifold with k-free fundamental

group for any value of k greater than four. Main results are both to show what the formulation

of the general statement should be, for which Culler and Shalen’s result is a special case, and

that it is true modulo a group-theoretic conjecture. A major result is in the k = 5 case of

the geometric statement. Specifically, I show that the required group-theoretic conjecture is in

fact true in this case, and so the proposed geometric statement when M is 5-free is indeed a

theorem. One can then use the existence of a point and knowledge about π1(M,P ) resulting

from this theorem to attempt to improve the known lower bound on the volume of M , which

is currently 3.44 (6, Theorem 1.5).
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CHAPTER 1

INTRODUCTION

The goal of this paper is to explore how the geometry of a closed, orientable hyperbolic

3-manifold and its topological properties, especially its fundamental group, interact to provide

new information about the manifold.

A hyperbolic n-manifold is a complete metric space that is locally isometric to the classical

non-euclidean space Hn in which the sum of the angles of a triangle is less than π, or, equiva-

lently, a complete Riemannian manifold of constant sectional curvature −1. Furthermore, one

can express a hyperbolic n-manifold as the quotient of hyperbolic n-space modulo a discrete

torsion-free group Γ of orientation-preserving isometries, in turn Γ is isomorphic to π1(M); it

is this vantage point that I take in this paper.

Definition 1.0.1. A group Γ is said to be k-free, where k is a given positive integer, if every

finitely generated subgroup of Γ of rank less than or equal to k is free. (Recall that the rank of

a finitely generated group G is the minimal cardinality of a generating set for G.)

A recurring theme here is the interplay between classical topological properties of a hyper-

bolic 3-manifold and its geometric invariants, such as volume. The property of having k-free

fundamental group bridges these ideas via the log(2k − 1)-Theorem (2, Main Theorem) which

uses geometric data about the manifold in regards to displacements of points under elements of

π1(M) in H3 and forms the basis for the ideas of Chapter 2. One connection with topology is
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given by the first homology groups of M with coefficients in Zp see (2). Also, by a theorem of

Jaco and Shalen (7), the fundamental group of a hyperbolic 3-manifold M is 2-free. If π1(M)

is not 2-free, then M has a finite cover, M̃ , with the rank of π1(M̃) equal to 2.

Note that a closed hyperbolic manifold with k-free fundamental group, for k ≥ 2, is in

particular k − 1, k − 2, k − 3, . . . , 2- free. So, in particular, the results of Culler and Shalen in

(6) in conjunction with those here show that for a closed, orientable, hyperbolic 3-manifold M

with 5-free fundamental group, we have vol M ≥ 3.44. A long range goal of the present work

is to improve this bound with the added topological and geometric information that is gotten

by virtue of the 5-free assumption.

To contextualize some previous results on the topic, we require a few definitions. We say

that a point P of a hyperbolic 3-manifold M is λ-thin, where λ is a given positive number, if

there exists a homotopically non-trivial loop of length less than or equal to λ with basepoint

P . A point which is not λ-thin is said to be λ-thick. If P ∈M is λ-thick, it is equivalently the

center of a hyperbolic ball in M of radius λ/2. Further, a point P ∈M is λ-doubly thin if there

are two non-commuting loops that represent elements of π1(M,P ) of length less than λ. If P

is not λ-doubly thin, we say that it is λ-semithick.

It has been shown that if π1(M) is 2-free, M contains a point whose injectivity radius is at

least (log 3)/2, and by (1, Corollary 9.3), if π1(M) is 3-free, M contains a point of injectivity

radius (log 5)/2. That is to say if M is closed, orientable, and π1(M) is 3-free, M contains

a log 5-thick point. By (6, Theorem 1.4) with the additional hypothesis that M has 4-free

fundamental group, they show the existence of a log 7-semithick point of M .
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It appears then that a naive guess might be to say that if M is a closed, orientable hyper-

bolic 3-manifold with k-free fundamental group, there exists a point of M that is log(2k − 1)

“partly”-thick, and some of the exercise is in determining what“partly” should be in this new

context. However, while all of the arguments showing this in the 2, 3, and 4-free cases involve

the log(2k − 1) Theorem (6, Main Theorem), they use different subtle topological arguments

involving coverings of H3 by tubes. In the 4-free case, while the proof begins with the same

viewpoint as in (1, Corollary 9.3), the topological and geometric arguments following from the

assumption that M contains no log 7-semithick point to derive a contradiction, are much deeper.

I began with the viewpoint of (6) and as I tried to determine what topological arguments and

group-theoretic statements were needed to show, if possible, that a closed, orientable hyperbolic

3-manifold M with 5-free fundamental group contains a log 9-“thickish” point, I also attempted

to see what assumptions were required in general, to show how if π1(M) were to be k-free, under

what conditions one might expect M to contain a log(2k − 1)-point of a yet-to-be-quantified

thickness. But, because many of Culler and Shalen’s results depended on Kent’s result (8) that

a rank two subgroup of a free group has rank two join, and more specifically that a rank two

subgroup cannot be generated from a cyclic group, these results do not extend. For example,

a rank three subgroup can of course be contained in a two or three generator group, and so it

was clear that additional group-theoretic assumptions might be required.

I now proceed to state some requisite preliminaries followed by my main result, whose proof

is contained in Chapter 5.
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Remark 1.0.2. Given M a closed, orientable hyperbolic 3-manifold, we may write M as the

quotient H3/Γ, where Γ is a discrete group of orientation-preserving isometries of H3 that is

torsion-free. Every isometry of Γ is loxodromic since M is closed (and so cannot be parabolic

or elliptic). Every non-trivial element γ of Γ is contained in a unique maximal cyclic subgroup

C(γ) of Γ which is the centralizer of γ in Γ, which means that non-trivial elements of distinct

maximal cyclic subgroups do not commute.

Definition 1.0.3. Supposing M = H3/Γ is given as above, let C(Γ) be the set of maximal

cyclic subgroups of Γ. After fixing a positive real number λ, let Cλ(Γ) denote the set of maximal

cyclic subgroups C = C(γ) of Γ having at least one (loxodromic) generator of C with translation

length less than λ (see Definition 2.0.13). For each maximal cyclic subgroup C ∈ Cλ(Γ), we

consider the hyperbolic cylinder Zλ(C) of points in H3 that are displaced by a distance less

than λ by some non-trivial element of C.

Definition 1.0.4. Given a point P ∈ H3, let CP (λ) denote the set of all C in Cλ(Γ) for which

P is an element of Zλ(C). We then associate to each point P in H3 a group, GP (λ), which is

defined by GP (λ) = 〈C : C ∈ CP (λ)〉. If CP (λ) = ∅, then set GP (λ) = 〈1〉, and define rank

GP (λ) = 0. Also, if the value of λ is understood to be fixed, we may refer to GP (λ) simply as

GP .

Definition 1.0.5. Suppose H is a subgroup of a group G. Then we define the minimum

enveloping rank of H, or rH to be the smallest rank among the ranks of groups for which H is a

subgroup, if such a number exists. If H is not contained in a finitely generated subgroup of G,
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then we define rH to be∞. More formally, when H is contained in a finitely gerenated subgroup

of G, we may define rH as the smallest positive integer among the set {rank K : H ≤ K ≤ G}.

1.0.6. Note that if H is non-trivial and non-cyclic, rH ≥ 2. Furthermore, if h denotes the rank

of H, since H is in particular a subgroup of itself, by definition we have rH ≤ h.

Definition 1.0.7. Suppose M = H3/Γ is a closed, orientable, hyperbolic 3-manifold (Γ ≤

Isom+(H3) is discrete and purely loxodromic). Given a number λ > 0, we define the number

rM (λ) ∈ N∪{0} to be the infinum of the set {rGP (λ) : P ∈ H3}. If the value of λ is understood

to be fixed, we may refer to rM (λ) simply as rM .

A main goal was the formulation of the following geometric statement:

Conjecture 1.0.8. Suppose M is a closed, orientable, hyperbolic 3-manifold such that π1(M)

is k-free with k ≥ 5. Then when λ = log (2k − 1), we have rM ≤ k − 3.

1.0.9. Simply stated, this says that if M is a closed, orientable, hyperbolic 3-manifold such

that π1(M) is k-free with k ≥ 5, then when λ = log(2k − 1), there exists a point P in M

such that the class of all homotopically non-trivial loops of π1(M,P ) of length less than λ is

contained in a subgroup of Γ of rank ≤ k − 3.

In retrospect, Culler and Shalen’s work established the truth of Conjecture 1.0.8 for values

of k equal to 2, 3 and 4, but it was not at all obvious what the generalization should be.

Notice that the manifold M does not contain a λ-thick point (i.e. a point where the injectivity

radius is at least λ/2) if and only if the family of cylinders Z = Zλ(C) form an open cover

of H3. A locally finite family Z of cylinders has a natural association to the set of maximal
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cyclic subgroups of Γ, and it is how this family of cylinders covers H3 that is of particular

importance, and we encode this information in the nerve. New challenges and many refinements,

for instance determining “connectedness” arguments for certain skeleta of the nerve in order to

show homotopy-equivalence to H3 (and therefore contractibility), were involved in extending the

4-free arguments to the k-free arguments, and are detailed in Chapter 3. To prove Conjecture

1.0.8, I have shown that we require a group-theoretic conjecture that gives a bound on the rank

of the join of two rank-m subgroups of a free group for m = k − 2:

Conjecture 1.0.10. Given two rank m subgroups of a free group whose intersection has rank

greater than or equal to m, their join must have rank less than or equal to m (m ≥ 2).

This statement is the subject of Chapter 4 and was motivated by combining known results

in the area as proved by Kent (8), Louder, and McReynolds (9). As noted previously, Culler and

Shalen used Kent’s result that if two rank-2 subgroups of a free group have rank-2 intersection

then they have a rank-2 join (8), but there were many details required to extend it. For

m = 3, following the suggestion of Marc Culler and using an argument in Kent’s paper (8), I

recently was able to show the group-theoretic Conjecture 1.0.10 is in fact valid for m = 3 which

establishes Conjecture 1.0.8 for the value of k = 5; this is the topic of Chapter 6. Therefore,

the statement of Conjecture 1.0.8 when k = 5 gives the following Theorem:

Theorem 1.0.11. Suppose M is a closed, orientable, hyperbolic 3-manifold such that π1(M)

is k-free with k = 5. Then when λ = log 9, we have rM ≤ 2.
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Furthermore, the work in Chapter 5 establishes that Conjecture 1.0.8 is true modulo Con-

jecture 1.0.10 and we have the following theorem:

Theorem 1.0.12. Conjecture 1.0.10 with m = k − 2 implies Conjecture 1.0.8.

The proof of Theorem 1.0.12 is contained in Chapter 5. In the proof we consider the action

of Γ on the sets of components of two disjoint subsets Xi, Xj of a simplicial complex K, and

using (6, Lemma 5.12) and (6, Lemma 5.13), we show by way of contradiction that Γ ≤ Isom+H3

admits a simplicial action without inversions on a tree T = G(Xi, Xj) with the property that

the stabilizer in π1(M) of every vertex of T is a locally free subgroup of π1(M).

As corollaries, I state some geometric properties for particular values of rM in Chapter 5.

As a special case, the Theorem of Culler and Shalen that if M is a closed, orientable hyperbolic

3-manifold with 4-free fundamental group then M must contain a log 7-semithick point (6,

Theorem 1.4), is precisely the k = 4 case of Conjecture 1.0.8; hence the conclusion can be

reinterpreted from the present notation as saying rM (log 7) is less than or equal to one, which

by definition implies the existence of a point P of M such that the rank of the group Gp(log 7)

is less than or equal to one. One can then give lower bounds for the nearby volume, i.e. the

volume of the log (7)/2 neighborhood of P and for the distant volume, i.e. the volume of

the complement of this neighborhood. Culler and Shalen applied their result to studying the

relationship between homology and volume by estimating the nearby volume. My result shows

that in the 5-free case, rM ≤ 2 and so M contains a point P for which Gp(log 9) has minimum

enveloping rank less than or equal to two. I am now investigating the problem of estimating

the nearby and global volume of the manifold M in this situation.



CHAPTER 2

PRELIMINARIES AND DEFINITIONS

Definitions 2.0.13. Suppose we are given a positive real number λ > 0 and that the subgroup

Γ ≤ Isom+(H3) is discrete and cocompact. For γ ∈ Γ we define the hyperbolic cylinder Zλ(γ)

to be the set of points P ∈ H3 such that d(P, γ · P ) < λ. Recall that since γ is loxodromic,

there is a γ-invariant line, A(γ) ⊂ H3, called the axis of γ, such that γ acts on the points of

A(γ) as a translation by a distance l > 0, called the translation length of γ. For any point

P ∈ H3, we have d(P, γ · P ) ≥ l with equality only when P ∈ A(γ). Then as long as l < λ, the

cylinder Zλ(γ) is non-empty (the radius of this cylinder is computed by a simple application

of the hyperbolic law of cosines and is a monotonically increasing function for λ in the interval

(l,∞); see, for example, (5) for further details).

Given a cyclic subgroup C of Γ, we define the cylinder Zλ(C) =
⋃

16=γ∈C Zλ(γ). Recall the

definitions of C(Γ) and Cλ(Γ) of 1.0.3. Then for each maximal cyclic subgroup C ∈ Cλ(Γ),

there is a non-trivial element γ ∈ C such that Zλ(C) = Zλ(γ). Notice that if C ∈ C(Γ)−Cλ(Γ),

we have Zλ(C) = ∅.

Note that the family of cylinders (Zλ(γ))16=γ∈Γ is locally finite as Γ is discrete; i.e. for every

point P in H3, there is a neighborhood of P which has non-empty intersection with only finitely

many of the subsets Zλ(γ). Further, because the family (Zλ(γ))1 6=γ∈Γ is locally finite, so then

is the family (Zλ(C))C∈Cλ(Γ).

8
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The following Lemma is an application of the log(2k − 1) Theorem (2, Main Theorem).

Lemma 2.0.14. Suppose Γ ≤ Isom+(H3) is discrete, loxodromic, k-free (k ≥ 2) and torsion-

free. If there exists a point P ∈ Zlog (2k−1)(C1)∩· · ·∩Zlog (2k−1)(Cn), then the rank of 〈C1, . . . , Cn〉

is ≤ k − 1.

Proof. (by induction on n)

Base case: If n = 1, then P ∈ Zlog (2k−1)(C). Because rank C = 1 and k ≥ 2, rank C ≤ k−1

is satisfied.

Induction assumption: If n = q then Xq = 〈C1, . . . , Cq〉, and so we assume that rank Xq ≤

k − 1.

Induction step: Notice that Xq+1 = 〈Xq, Cq+1〉 = 〈C1, . . . , Cq, Cq+1〉. We must show

that rank Xq+1 ≤ k − 1. To simplify notation, let r = rank Xq. First, consider when

rank 〈Xq, Cq+1〉 = r. Since r ≤ k − 1 by our induction assumption, we are done.

Next, consider the case when rank 〈Xq, Cq+1〉 > rank Xq = r.

Remark 2.0.15. Now Xq ≤ Γ which is k-free, rank Xq < k, Cq+1 = 〈t〉 is cyclic, and

rank (Xq ∨ Cq+1) > rank Xq = r, so (Xq ∨ Cq+1) is the free product of Xq and Cq+1 by (6,

Lemma 4.3).

By the remark and our induction assumption, rank 〈Xq, Cq+1〉 = r + 1 ≤ (k − 1) + 1 = k.

Therefore rank 〈Xq, Cq+1〉 ≤ k, leaving two subcases to consider. First, if r < k − 1, then

rank 〈Xq, Cq+1〉 < k and we are done.
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In the second subcase, suppose r = k − 1. The remark then gives that rank 〈Xq, Cq+1〉 =

r + 1 = k; we proceed to prove that rank 〈Xq, Cq+1〉 ≤ k − 1 by way of contradiction.

Since n = q + 1, by hypothesis P ∈ Zlog (2k−1)(C1) ∩ · · · ∩ Zlog (2k−1)(Cq+1). Choose a

generator γi for each Ci, where 1 ≤ i ≤ q + 1. For each i, there exists a number mi ∈ N with

d(P, γmii · P ) < log(2k − 1) by definition of the cylinders; denote this property (*).

Now the rank of 〈γ1, . . . , γq+1〉 is k, and so this group is free (being a subgroup of Γ)

which is k-free. In particular, {γ1, . . . , γq+1} is a generating set of a free group of rank k,

and so it must contain a subset S of k independent elements whose span has rank k. So let

S = {γi1 , . . . , γik} ⊆ {γ1, . . . , γq+1} be as described. Furthermore, the set S′ = {γmi1i1
, . . . , γ

mik
ik
}

is also a set of k independent elements whose span has rank k. Then as S′ ⊆ Isom+(H3) is a

set of k freely-generating (loxodromic) generators with rank 〈S′〉 = k, the log (2k − 1) Theorem

of (2) applies here to give that max1≤j≤k d(P, γ
mij
ij
· P ) ≥ log (2k − 1), thereby contradicting

property (*) above. Therefore, rank 〈Xq, Cq+1〉 ≤ k − 1 as required, and in particular is equal

to k − 1 in this subcase.

Now recall from the Introduction the Definitions 1.0.4 and 1.0.7 of GP (λ) and rM (λ), re-

spectively.

Corollary 2.0.16. Given Γ ≤ Isom+(H3) is discrete, purely loxodromic, and k-free with k ≥ 2,

then for any point P ∈ H3, we have rk GP (log (2k − 1)) ≤ k − 1.

Proof. This result is a direct consequence of Lemma 2.0.14 along with the preceding definitions.
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Given M = H3/Γ a closed, orientable, hyperbolic 3-manifold, we now make a few observa-

tions regarding the number rM :

2.0.17. Given a point P in H3, it follows from the definitions that rM ≤ rGP (λ) ≤ rank GP (λ).

2.0.18. When λ = log (2k − 1), as a direct consequence of Corollary 2.0.16 and (2.0.17), we

have rM ≤ k − 1.

When rM ≥ 1, we claim:

2.0.19. H3 =
⋃
C1,...,CrM∈Cλ(Γ)Zλ(C1) ∩ · · · ∩ Zλ(CrM ).

Proof. Suppose P is a point of H3. As (2.0.17) says that rank GP ≥ rM , there exist maximal

cyclic subgroups CP1 , . . . , C
P
rM

of Γ such that 〈CP1 , . . . , CPrM 〉 ≤ GP with P ∈ Zλ(CP1 ) ∩ · · · ∩

Zλ(CPrM ) (keeping in mind that P may be in additional cylinders). The statement follows.



CHAPTER 3

CONTRACTIBILITY ARGUMENTS AND Γ-LABELED COMPLEXES

Definition 3.0.20. An indexed covering U = (Ui)i∈I of a topological space by non-empty

open sets defines an abstract simplicial complex, the nerve of U , whose vertices are in bijec-

tive correspondence with the elements of the index set I and whose simplices {vi0 , . . . , vin}

correspond to the non-empty intersections Ui0 ∩ · · · ∩ Uin of sets of U . In particular, if

Z(λ) = (Zλ(Ci))i∈I,Ci∈Cλ(Γ) is a cover of H3 by cylinders, then the family Z(λ) defines a

Γ-labeled complex, namely a pair (K, (Cv)v) where K is the nerve of Z(λ) and the maximal

cyclic subgroup Cv corresponds to the element Zλ(Cv) of Z(λ) as indexed by the vertex v of

K. For purposes of notation, we may refer to this vertex v by vC .

Definition 3.0.21. Given a group Γ and (K, (Cv)v) a Γ-labeled complex, we say the labeling

defines a labeling-compatible Γ-action on (K, (Cv)v) if for every vertex v of K, the action defined

by Cγ·v = γCvγ
−1 is simplicial.

Remark 3.0.22. Note that if Γ ≤ Isom+H3 is discrete and torsion-free, if the family Z(λ) =

(Zλ(C))C∈Cλ(Γ) covers H3, and if K is the nerve of Z(λ), then the Γ-labeled complex (K, (Cv)v)

admits a labeling-compatible Γ-action. Let V = {v0, . . . , vn} be the set of vertices of an n-

simplex of K; by definition ∩0≤i≤nZλ(Cvi) 6= ∅. Given 1 6= γ ∈ Γ and vi ∈ V , let wi = γ · vi.

First, note that wi is well-defined as a vertex of K, as wi corresponds to the maximal cyclic

subgroup Cwi of Γ as given by Cwi = γ · Cvi , and so we have wi ∈ V . Furthermore notice

12
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Cγ−1·wi = γ−1Cwiγ = γ−1γCviγ
−1γ = Cvi . Now we only need to show that the set W =

{w0, . . . , wn} of vertices of K is in fact the vertex set of an n-simplex of K; this is equivalent to

showing that ∩0≤i≤nZλ(Cwi) is non-empty. Observe that ∩0≤i≤nZλ(Cwi) = ∩0≤i≤nZλ(Cγ·vi) =

∩0≤i≤nZλ(γCviγ
−1) = ∩0≤i≤nZλ(Cvi) 6= ∅.

Definition 3.0.23. Given a Γ-labeled complex (K, (Cv)v) and σ an open simplex in K, define

the subgroup Θ(σ) of Γ to be the group 〈Cv : v ∈ σ〉.

3.0.24. Suppose K is given to be the nerve of a family Z(λ) = (Zλ(Ci))i∈I,Ci∈Cλ(Γ) which is a

cover of H3 by cylinders. If there exists a point P ∈ H3 in the intersection Zλ(C0)∩· · ·∩Zλ(Cn),

it follows that {vC0 , . . . , vCn} is an n-simplex σ of K, and by the Definitions 1.0.4 and 3.0.23,

we have θ(σ) ≤ GP (λ).

Definitions 3.0.25. Suppose (K, (Cv)v) is a Γ-labeled complex. Given an open simplex σ in K,

the minimum enveloping rank of σ will denote the minimum enveloping rank of the associated

subgroup Θ(σ) in Γ. Notice that if τ ∈ K is a face of σ ∈ K, then we have rθ(τ) ≤ rθ(σ); i.e. the

minimum enveloping rank of a face of σ is less than or equal to that of σ. We may then define

a subcomplex K(n) of K to be the subcomplex that consists of the non-trivial open simplices σ

for which rθ(σ) ≤ n.

Lemma 3.0.26. Let M = H3/Γ. Suppose Z(λ) = (Zλ(Ci))i∈I,Ci∈Cλ(Γ) is a cover of H3 by

cylinders and that rM ≥ k − 2.

Let |K| denote the geometric realization of the nerve of Z(λ). Then |K| − |K(k−3)| is

homotopy-equivalent to H3 and therefore contractible.
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Proof. The family (Zλ(Ci))i∈I,Ci∈Cλ(Γ) covers H3 and has the property that every finite inter-

section of (open) cylinders is contractible, as any such intersection is either empty or convex.

Thus Borsuk’s Nerve Theorem (3) applies, and we have |K| is homotopy-equivalent to H3. It is

only left to show that |K| − |K(k−3)| is homotopy-equivalent to |K|. Suppose σ is a non-trivial

open simplex of |K(k−3)|, which by definition is to say that the minimum enveloping rank of

θ(σ) is ≤ k − 3. Let vσi0 , ..., v
σ
il

be the vertices of σ, and set Iσ = {i ∈ I : vi ∈ σ}.

Let Ui for i ∈ I denote the cylinder Zλ(Ci) associated with the vertex vi as defined by the

nerve of the cover Z(λ). In particular Uim will denote the cylinder Zλ(Cvim ) associated with

the vertex vσim of K for 0 ≤ m ≤ l. Define the intersection Uσ to then be Ui0 ∩ · · · ∩ Uil . Let

Jσ = {j ∈ I − Iσ : Uj ∩ Uσ 6= ∅}. Define the set Vj,σ = {Uj ∩ Uσ : j ∈ Jσ} and the family

Vσ = (Vj,σ)j∈Jσ .

We proceed to show that:

3.0.26.1. Vσ is a cover for Uσ.

Proof. Suppose on the contrary that Vσ is in fact not a cover for Uσ. Then there exists a

point P of Uσ such that P 6∈ Ui for any i ∈ I − Iσ. In particular, GP (λ) ≤ θ(σ). However by

3.0.24 we also have θ(σ) ≤ GP (λ), and so θ(σ) = GP (λ). Then because rθ(σ) ≤ k − 3, we have

rGP (λ) ≤ k − 3. But, the minimum enveloping rank of GP (λ) is ≥ k − 2 as rM ≥ k − 2 by

hypothesis, providing a contradiction. Therefore, Vσ covers Uσ as claimed.

So Vσ is in fact a cover of Uσ which inherits the subspace topology, and so it follows from the

definitions that the nerve of Vσ is simplicially isomorphic to the link of σ in K. Note that two
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different indices in Jσ may define the same set in Vσ but they will define different sets in Z(λ);

this is why it is essential to define the nerve of Vσ using Jσ: so that the map from the vertex set

of the nerve of Vσ to the vertex set of the link of σ in K is not only simplicial but bijective; that

the inverse of this map is simplicial is straightforward. To see this, suppose vj is a vertex in the

nerve of Vσ, then by definition Uj ∩Uσ 6= ∅, i.e. (Ui0 ∩· · ·∩Uil)∩Uj is non-empty. In particular,

Ui0 ∩Uj , Ui1 ∩Uj , . . . , Uil ∩Uj are all non-empty, so that {vi0 , vj}, {vi1 , vj}, . . . , {vil , vj} are all

edges of K (vj is distinct from the vertices of σ), and vj is in the link of σ in K. The reverse

inclusion is similar.

Applying Borsuk’s Nerve Theorem to Vσ in place of Z, we see the underlying space of the

nerve of Vσ is homotopy-equivalent to Uσ. Since Uσ is a finite, non-empty intersection of convex

open sets, it is contractible. We conclude that the link in K of every simplex of minimum

enveloping rank m with 0 ≤ m ≤ k − 3 is contractible and non-empty.

We now show that the inclusion |K| − |K(k−3)| → |K| is a homotopy equivalence.

By local finiteness of the cover Z from which its nerve |K| is defined, we may index the

vertices of |K(k−3)|, and therefore we may index the simplices of |K(k−3)| and partially order

them in the following way: if σi, σj are such that σi is a proper face of σj , then j < i.

Define Fn = σ1∪· · ·∪σn. We may regard |K|−|K(k−3)| as the topological direct limit of the

subspaces |K|− |K(k−3)| ∪Fn. Thus it suffices to show that the inclusion |K|− |K(k−3)| ∪Fn →

(|K| − |K(k−3)|) ∪ Fn+1 is a homotopy equivalence, where Fn+1 = Fn ∪ {σn+1}.

Let S denote the open star of σn+1 in K. By how we’ve listed the simplices in |K(k−3)|, we

have S ⊂ KFn+1 . Then KFn+1−S ∼= KFn since KFn+1−S is a deformation retract of KFn . And
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KFn+1 − S ∼= KFn+1 because the link of σn+1 in K is contractible by our work above. Hence

the inclusion KFn → KFn+1 is a homotopy equivalence as required.



CHAPTER 4

GROUP-THEORETIC PRELIMINARIES

We will say that W is a saturated subset of the geometric realization |K| of a simplicial

complex K, if W (endowed with the subspace topology) is a union of open simplices of |K|

(endowed with the weak topology).

Given a Γ-labeled complex (K, (Cv)v) and saturated subsetW ⊆ |K|, we define the subgroup

Θ(W ) of Γ to be the group 〈Cv : v ∈ σ, σ ⊂W 〉.

We now restate Conjecture 1.0.10 from the Introduction which is necessary to prove Propo-

sition 4.0.29, which is an essential ingredient in the proof of 1.0.8. Let H ∨K = 〈H,K〉.

Conjecture 4.0.27. Suppose H,K are two rank h subgroups of a free group with h ≥ 3. If the

rank of H ∩K is greater than or equal to h, then the rank of H ∨K must be less than or equal

to h.

Definition 4.0.28. We say a group Γ has local rank ≤ k where k is a positive integer, if every

finitely generated subgroup of Γ is contained in a subgroup of Γ which has rank less than or

equal to k. The local rank of Γ is the smallest k with this property. If there does not exist such

a k then we define the local rank of Γ to be ∞. Note that if Γ is finitely generated, its local

rank is simply its rank.

17
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Proposition 4.0.29. Assume Conjecture 4.0.27. Let k, r ∈ Z+ with k > r ≥ 3 and k ≥ 5.

Suppose Γ is a k-free group, (K, (Cv)v) a Γ-labeled complex, and W a saturated, connected

subset of |K| such that rank Θ(σ) = r for all σ ⊂W . Assume additionally that either

(i) there exists a positive integer n such that for all open simplices σ in W , the dimension of

σ is n or n− 1, or

(ii) r = k − 2 and σ ∈ |K(k−1)| − |K(k−3)| for all σ ∈W .

Then the local rank of Θ(W ) is at most r.

Proof. By definition, we are required to show that every finitely generated subgroup of Θ(W ) is

contained in a finitely generated subgroup of Θ(W ) which has rank less than or equal to r. So

suppose that E ≤ Θ(W ) is a finitely generated subgroup of Θ(W ). Then E ≤ Θ(V0) for some

saturated subset V0 of W that contains finitely many open simplices. Because W is connected

and V0 contains only finitely many open simplices, there is a smallest connected subset V of W

that is a union of finitely many open simplices such that V0 ⊆ V ; clearly E ≤ Θ(V ) and V is

finitely generated. We will show by induction on the number of simplices in V that Θ(V ) has

rank at most r.

Proceeding as in (6, Proposition 4.4), by connectedness we may list the (finitely many) open

simplices of V in the following way: σ0, . . . , σm, (m ≥ 0 since V is non-empty) where for any i

with 0 ≤ i ≤ m, there is an index l with 0 ≤ l < i such that σl is a proper face of σi or σi is a

proper face of σl. Define the saturated subset Vi = σ0 ∪ · · · ∪ σi for 0 ≤ i ≤ m; by induction

on i, we will show rank Θ(Vi) ≤ r. The base case is straightforward as Θ(V0) = Θ(σ0) and
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σ0 is an open simplex of W , and so has rank r by hypothesis. For the induction step assume

rank Θ(Vi−1) = r; we want to show that rank Θ(Vi) = r. By how we have arranged the list of

simplices in V , there is an index l with 0 ≤ l < i such that σl is a proper face of σi or σi is a

proper face of σl.

Case (i): First consider the case when σi is a proper face of σl. Then Θ(Vi) = Θ(Vi−1) as

σi < σl ∈ Vi−1. By our induction assumption, rank Θ(Vi−1) ≤ r, and so rank Θ(Vi) ≤ r as

required.

Case (ii): Next, consider the case when σl is a proper face of σi. Let P = Θ(Vi−1), Q = Θ(σi)

and R = Θ(σl). Then rank P ≤ k−2 by the induction hypothesis and rank Q = rank R = k−2

by assumption. We want to show Θ(Vi) = P ∨Q has rank less than or equal to r.

Subcase (i): Assume first that property (i) holds. Then since σl is a proper face of σi, we

must have dimσi = n and dimσl = dimσi − 1 = n− 1. Let v denote the vertex of σi such that

span{σl, v} = σi and let C = Cv. Then Q = R ∨ C, and P ∨ C = P ∨ Q. So we proceed to

show that rank(P ∨ C) ≤ r.

By way of contradiction, assume rank(P ∨ C) > r. Then since C is infinite cyclic, P ∨ C

has rank at most rank P + 1 = r + 1 and so P ∨ C has rank exactly r + 1. As Γ is k-free and

r < k (and hence r+ 1 ≤ k), it follows that P ∨C is free as a subgroup of Γ and in particular is

the free product of the subgroups P and C ((6, Lemma 4.3)). But, since R ≤ P , in particular

Q = R∨C is the free product of R and C, and so has rank equal to rank R+1 = r+1, which is

a contradiction as the rank of Q is exactly r. We conclude that P ∨C has rank ≤ r as required

for this subcase.
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Subcase (ii): Next we assume property (ii). Then r = rank Q = rank R = k − 2 (rank P ≤

k − 2 by induction assumption). As r = rk Q = rank R = k − 2, both dimσl and dimσi are at

least k− 3. Also σl, σi ∈ K(k−1), so both dimσl and dimσi are ≤ k− 1. Finally, since our Case

(ii)-assumption is that σl is a proper face of σi, possible pairs (dimσl, dimσi) are (k− 3, k− 2),

(k − 2, k − 1), and (k − 3, k − 1). Let C ≤ Γ denote the subgroup of Q such that Q = R ∨ C;

then P ∨Q = P ∨ C since R ≤ P .

4.0.30. First, we look at the rank of P . A priori we know that rank P ≥ 2 (i.e. P cannot be

cyclic and is non-trivial) since P contains the rank-(k − 2) subgroup R.

In particular, as R = Θ(σl) is a subgroup of P , and as σl is an element of K(k−1) −K(k−3),

we know that the minimum enveloping rank of R is strictly greater than k − 3. Along with

our induction assumption that rank P ≤ k − 2, we conclude the rank of P is exactly k − 2.

(Note that for this reason in the case when k = 4, it is enough only to say in (ii) that r = 2,

since what is required for the rest of the argument is that P have rank exactly 2 = k − 2 in

this case, an immediate consequence of P containing the rank 2 subgroup R. Specifically, in

the k = 4 case, we see that a group containing a rank two subgroup certainly cannot have rank

one; whereas in cases for k ≥ 5, one observes that a group that contains a rank three (or more)

subgroup can have rank two or more, and so that rθ(σ) ≥ k − 2 is required in the statement of

(ii)). Next observe that we must have rank C = 1 or 2 as demonstrated by the possible pairs

(dimσl,dimσi) above. All together, this gives that rank(P ∨ C) ≤ k and so P ∨ C is free as a

subgroup of Γ.
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4.0.31. Next, notice that because Q ≤ P ∨ Q and Q has minimum enveloping rank ≥ k − 2,

P ∨ Q cannot have rank less than k − 2. Along with the bound rank(P ∨ C) ≤ k of (4.0.30),

we conclude there are only three possibilities for the rank of the group P ∨Q(= P ∨C): these

are k, k − 1, and k − 2.

4.0.32. As we have R ≤ P , R ≤ Q, and R ≤ P ∩ Q, then for the same reason as outlined in

(4.0.30) with P ∩ Q taking the place of P , we conclude rank(P ∩ Q) > k − 3. Therefore, we

may apply Conjecture (4.0.27) which gives that rank(P ∨Q) ≤ k − 2, and so must be equal to

k − 2 by (4.0.31), completing this final Subcase and proving the Proposition.

As a sidenote, after performing some computations with known bounds on the ranks of

intersections and joins of free groups, we have the following refinement of Conjecture 4.0.27:

Conjecture 4.0.33. Suppose P,Q are two rank (k − 2) subgroups of a free group with k ≥ 5.

If k − 2 ≤ rank (P ∩Q) ≤ (k − 4)(k − 3) + 1, then rank (P ∨Q) is ≤ k − 2.

For reference, we will show how to compute the positive integer c = (k − 4)(k − 3) + 1 of

Conjecture 4.0.33.

Computing c = (k − 4)(k − 3) + 1:

To provide an outline for what follows, a priori we assume the lower bound l = k− 2 on the

rank of P ∩Q in Conjecture 4.0.27; we then use Burns’ inequality (4) to give an upper bound

u on the rank of P ∩ Q; and finally we consider for which subintervals of [l, u] we can deduce
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that rank (P ∨ Q) is ≤ k − 2 by using the strong form of Burns’ inequality (8, Theorem 2),

which relates the rank of the intersection to the rank of the join.

4.0.34. Burns’ inequality (4) (see also (10)) gives rank (P ∩Q)− 1 ≤ 2(rank P − 1)(rank Q−

1)−min(rank P −1, rank Q−1), so that rank (P ∩Q) ≤ 2(k−3)2−(k−3)+1 = 2k2−13k+22.

As the hypotheisis of Conjecture 4.0.27 is that rank (P ∩Q) ≥ k−2, we have that rank (P ∩Q)

can take values between k − 2 and 2(k − 3)2 − (k − 3) + 1.

Using the strong form of Burns’ inequality proved in (8, Theorem 2), since P,Q are sub-

groups of a free group with the rank of P less than or equal to the rank of Q (here they are

both equal to k − 2), then the following inequality holds:

4.0.35. rank (P ∩Q)− 1 ≤ 2(rank P − 1)(rank Q− 1)− (rank P − 1)(rank (P ∨Q)− 1). This

gives an upper bound on the rank of P ∨ Q: rank (P ∨ Q) ≤ 2(k − 3) + 1 − rank (P∩Q)−1
k−3 =

2k − 5− rank (P∩Q)−1
k−3 .

Let y = d rank (P∩Q)−1
k−3 e (because rank (P ∨Q) must be an integer). In light of the previous

inequality and the possible rank-values of P ∨ Q given in (4.0.31) of the last Proposition for

which the Conjecture will be applied, it is helpful to know for what values of y we have 2k−5−y

equal to k, k− 1, and k− 2 (for if rank (P ∨Q) ≤ k− 2 we are done); these are the cases when

y is equal to k − 5, k − 4, and k − 3 respectively.

First, if y = k − 5, the definition of y implies that rank (P ∩Q) must be an integer in the

half-open interval ((k − 6)(k − 3) + 1, (k − 5)(k − 3) + 1]. Setting a = (k − 6)(k − 3) + 1 and

b = (k−5)(k−3)+1, then as a < rank (P ∩Q) ≤ b, we have by (4.0.35) that rank (P ∨Q) ≤ k.
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Next, if y = k − 4, then (k − 5)(k − 3) + 1 < rank (P ∩ Q) ≤ (k − 4)(k − 3) + 1. Letting

c = (k−4)(k−3)+1, (4.0.35) shows that when b < rank (P∩Q) ≤ c, we have rank (P∨Q) ≤ k−1.

Finally, when y = k − 3, then (k − 4)(k − 3) + 1 < rank (P ∩ Q) ≤ (k − 3)2 + 1. Let

d = (k − 3)2 + 1. Now (4.0.35) gives that in particular that if c < rank (P ∩ Q) ≤ d, then

rank (P ∨Q) ≤ k − 2.

Therefore in the case when y = k − 3, the conclusion of Conjecture 4.0.27 holds, and so

we only need appeal to the conclusion of Conjecture 4.0.27 in the last Proposition to assert

that rank (P ∨ Q) ≤ k − 2 in the cases when y = k − 5 and y = k − 4; this is to say that

we apply Conjecture 4.0.27 to prove Proposition 4.0.29 only when rank (P ∩ Q) is an integer

∈ (a, b] ∪ (b, c] = (a, c] = ( (k − 6)(k − 3) + 1, (k − 4)(k − 3) + 1 ].

Moreover, if rank (P ∩ Q) > c then (4.0.35) shows that rank (P ∨ Q) ≤ k − 2, and so we

have the following result:

4.0.35.1. If P,Q are two rank (k − 2) subgroups of a free group with k ≥ 5 and if the rank of

P ∩Q is greater than (k − 4)(k − 3) + 1, then the rank of the join of P and Q is less than or

equal to k − 2.



CHAPTER 5

THEOREM AND GENERAL BOUND ON RM

We now restate formally and prove the implicative statement of 1.0.12 given in the Intro-

duction. For the proof we require a few basic definitions about graphs.

Definitions 5.0.36. We say that G is a graph if G is at most a one-dimensional simplicial

complex (and so G has no loops or multiple edges). A tree T is a connected graph with no

cycles; i.e. T is a graph which is simply connected. Further, if Xi and Xj are disjoint, saturated

subsets of a simplicial complex |K|, we will make use of the concept of an abstract bipartite

graph G = G(Xi, Xj) constructed in the following way. Let Wi, Wj be the sets of connected

components of Xi and Xj respectively. Then the vertices of G are the elements of Wi ∪ Wj ,

and a pair {vWi , vWj} is an edge if there exist simplices σ ∈Wi and τ ∈Wj for which σ ≤ τ or

τ ≤ σ. Finally, we say that the simplicial action of a group Γ on a graph G is without inversions

if for every γ ∈ Γ that stabilizes an edge e = {v1, v2} ∈ G, we have γ · v1 = v1 and γ · v2 = v2.

The following two Lemmas taken directly from (6) will provide the contradiction necessary

to prove Theorem 1.0.12:

Lemma 5.0.37. Suppose that K is a simplicial complex and that Xi and Xj are saturated

subsets of |K|. Then |G(Xi, Xj)| is a homotopy-retract of the saturated subset Xi ∪Xj of |K|.

Proof. This is (6, Lemma 5.12).

24
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Lemma 5.0.38. Let M be a closed, orientable, aspherical 3-manifold. Then π1(M) does not

admit a simplicial action without inversions on a tree T with the property that the stabilizer in

π1(M) of every vertex of T is a locally free subgroup of π1(M).

Proof. This is (6, Lemma 5.13)

Finally, we will appeal to the property stated in the next Remark in the proof of Theorem

5.0.40.

Remark 5.0.39. Suppose a group Γ admits a labeling-compatible action on a Γ-labeled com-

plex (K, (Cv))v, as is defined in 3.0.21. If W is a saturated subset of |K| and γ is any element

of Γ, it follows that Θ(γ ·W ) = γΘ(W )γ−1. (Since by the definitions, Θ(γ ·W ) = 〈Cv : v ∈

γ ·W 〉 = 〈Cγ·v : v ∈ W 〉 = 〈γCvγ−1 : v ∈ W 〉 = γ〈Cv : v ∈ W 〉γ−1 = γΘ(W )γ−1). So if an

element γ of Γ is invariant on W , then it is in the normalizer of Θ(W ). More generally, the

stabilizer in Γ of W is a subgroup of the normalizer of Θ(W ).

The following Theorem is stated as Theorem 1.0.12 in the Introduction.

Theorem 5.0.40. Suppose M is a closed, orientable, hyperbolic 3-manifold such that π1(M)

is k-free with k ≥ 5. Then if one assumes the Conjecture of 1.0.10 with m = k − 2, setting

λ = log (2k − 1) we have rM ≤ k − 3.

Proof. We have M = H3/Γ, where Γ ≤ Isom+(H3) is discrete, compact, and torsion-free.

We will assume that rM ≥ k−2 and proceed by way of contradiction. Equivalently, suppose

that for all points P in H3, the minimum enveloping rank of GP is ≥ k − 2. Then in particu-
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lar, H3 =
⋃
CP1 ,...,C

P
k−2∈Clog (2k−1)(Γ),P∈H3 Zlog (2k−1)(C

P
1 ) ∩ · · · ∩ Zlog (2k−1)(C

P
k−2) as described in

(2.0.19). Without loss of generality we write

H3 =
⋃
C1,...,Ck−2∈Clog (2k−1)(Γ) Zlog (2k−1)(C1) ∩ · · · ∩ Zlog (2k−1)(Ck−2), and define the family

Z = (Zlog (2k−1)(Ci))Ci∈Clog (2k−1)(Γ),1≤i≤k−2.

We have that Z is an open cover of H3 which satisfies the hypothesis of Lemma 3.0.26.

Then if K denotes the nerve of Z, the result gives that |K|− |K(k−3)| ∼= H3. Since the inclusion

|K(n)| − |K(k−3)| → |K| − |K(k−3)| induces isomorphisms on π0 and π1 for n ≥ k − 1 (see (6,

Lemma 5.6)), it follows that |K(k−1)| − |K(k−3)| is connected and simply connected.

Let σ be an open simplex in |K(k−1)| − |K(k−3)|. Applying Lemma (2.0.14) with n =

dim(σ) + 1 (i.e. n is the number of vertices of σ and therefore the number of associated

maximal cyclic subgroups of Γ whose associated cylinders have nonempty intersection, as is

determined by the nerve), we have that the rank of Θ(σ) is less than or equal to k − 1. Now

since σ is in |K(k−1)| − |K(k−3)|, by definition the minimum enveloping rank of Θ(σ) is at least

k − 2. In particular, the rank of Θ(σ) is at least k − 2 by (1.0.6).

5.0.41. All together, we conclude that for any open simplex σ in |K(k−1)| − |K(k−3)|, the rank

of Θ(σ) is k−2 or k−1. So, we may write |K(k−1)|−|K(k−3)| as a disjoint union of the saturated

subsets Xk−2 and Xk−1, where Xi for i = k − 2, k − 1 is the union of all open simplices σ of

K(k−1) for which Θ(σ) has rank i.

We claim the following:
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5.0.42. For i ∈ {k − 2, k − 1} and for any component W of Xi, the local rank of Θ(W ) is at

most i.

Proof. First we consider the case when i = k−2. Then W is a component of Xk−2, and for any

open simplex σ of Xk−2, rank Θ(σ) is exactly k − 2. Taking r = k − 2 in Proposition (4.0.29),

specifically in item (ii), we have that the local rank of Θ(W ) is at most k− 2. The proof in the

case of (ii) shows that the local rank of Θ(W ) is exactly k − 2.

Suppose next that i = k−1. Then W is a component of Xk−1, and so for each open simplex

σ of Xk−1, we have rank Θ(σ) is exactly k − 1. If d denotes the dimension of σ, then the

subgroup Θ(σ) is generated by d+ 1 cyclic groups which are elements of Clog (2k−1)(Γ). Hence

rank Θ(σ) ≤ d + 1 and in particular d ≥ rank Θ(σ) − 1. As rank Θ(σ) = k − 1, we have

d ≥ k− 2. But because σ is a simplex contained in K(k−1), d is less than or equal to k− 1, and

so we must have d = k− 2 or k− 1. Letting r = k− 1 and n = k− 1 in item (i) of Proposition

(4.0.29), we satisfy the hypotheses and the conclusion gives that Θ(W ) has local rank at most

r = k − 1 as desired.

Next, we claim:

5.0.43. The local rank of Θ(W ) is exactly k − 2 or k − 1.

Proof. Let lW be the local rank of Θ(W ). Our previous claim shows that lW ≤ k − 1. If in

fact lW ≤ k − 3, then by definition any finitely generated subgroup of Θ(W ) is contained in a

finitely generated subgroup of rank less than or equal to k − 3. As Θ(σ) ≤ Θ(W ), this says

that Θ(σ) is contained in a subgroup of rank less than or equal to k − 3 and so the minimum
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enveloping rank of Θ(σ) would be ≤ k− 3 in this situation. However, given an open simplex σ

in W , in particular σ is a simplex of |K(k−1)| − |K(k−3)| and so Θ(σ) has minimum enveloping

rank ≥ k − 2, providing a contradiction. Therefore, lW is k − 2 or k − 1.

5.0.44. (The analogue of (6, Claim 5.13.2)) If W is a component of Xk−2 or Xk−1, the nor-

malizer of Θ(W ) in Γ has local rank at most k − 1.

Proof. As a subgroup of Γ, the normalizer of Θ(W ) is k-free. Clearly Θ(W ) is a normal subgroup

of its normalizer, and since by the result of (5.0.43) we have lW = k − 2 or k − 1 which are

strictly less than k, it follows by (6, Proposition 4.5) that the normalizer of Θ(W ) has local

rank at most lW .

Set T = G(Xk−2, Xk−1) (see Definitions 5.0.36). By Lemma 5.0.37, T is a homotopy-retract

of Xk−2∪̇Xk−1, which is equal to |K(k−1)| − |K(k−3)| by (5.0.41). Since |K(k−1)| − |K(k−3)| is

connected and simply connected, T is a tree.

By Definition 3.0.21 of the Γ-labeling compatible action of Γ on K, we see that for any

γ ∈ Γ and σ in K(k−1), Θ(σ) and Θ(γ ·σ) are conjugates in Γ (see Remark 5.0.39), and so have

equal rank. Consequently, Xk−2 and Xk−1 are invariant under the action of Γ. Note that if w

is a vertex of T , the stabilizer Γw of w in Γ is really the stabilizer of the associated component

W in Xk−2 or Xk−1, and so by Remark 5.0.39, Γw ≤ normalizer Θ(W ).

5.0.45. By our work above in (5.0.44), the local rank of normalizer Θ(W ) is at most k−1, and

given that it contains Γw as a subgroup, Γw must also have local rank at most k − 1, and, in

particular, is locally free being a subgroup of Γ which is k-free.
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Therefore we have constructed an induced action by Γ on the tree T without inversions. Since

the stabilizer of any vertex of T is locally free as a subgroup of Γ by (5.0.45), our construction

admits a contradiction to Lemma 5.0.38.

The following Propositions and Definitions will be used to explain the geometry of the cases

when rM (λ) = 0 and 1, and in particular will be used when π1(M) is 5-free and λ = log 9 in

Corollary 6.0.56.

Proposition 5.0.46. Suppose λ > 0 and M = H3/Γ is a closed, orientable hyperbolic 3-

manifold with Γ discrete and purely loxodromic. If rM = 0, then M contains an embedded ball

of radius λ/2.

Proof. As rM = 0, rank GP ≥ 0 for all P ∈ H3, and in particular, the choice of rM means

there is a point P0 ∈ H3 with rank GP0 = 0. Then P0 6∈ Zλ(C) for any C ∈ Cλ(Γ), and so

d(P0, γ · P0) ≥ λ for all γ ∈ Γ − {1}, and more generally, H3 6=
⋃
C∈Cλ(Γ) Zλ(C). If BP0(λ/2)

denotes the hyperbolic open ball of radius λ/2 with center P0, in particular this says that the

injectivity radius of BP0(λ/2) in M is λ/2; namely BP0(λ)∩γ ·BP0(λ) = ∅. To see this, consider

a point P ′ in BP0(λ). If in fact it was true that γ(P ′) is also in BP0(λ), it would then follow

that d(P0, γ · P0) ≤ d(P0, γ · P ′) + d(γ · P ′, γ · P0) < λ/2 + λ/2 = λ, giving a contradiction.

Therefore if q : H3 → M is the projection map, q|B : B → M is injective and the conclusion

follows.

Definitions 5.0.47. Let XM be the set of points P in M such that if lP denotes the length of

the shortest, homotopically non-trivial loop based at P , then there is a maximal cyclic subgroup
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DP of π(M,P ) such that for every homotopically non-trivial loop c based at P of length lP , we

have [c] ∈ DP . Note that the loop c of length lP may represent a proper power of a generator

of DP . Let sM (P ) be the smallest length of any loop c based at P such that [c] 6∈ DP .

Proposition 5.0.48. Suppose λ > 0 and M = H3/Γ is a closed, orientable hyperbolic 3-

manifold with Γ discrete and torsion-free. If rM = 1, then there exists a point P ∗ ∈ H3 with

P∗ ∈ XM and sm(P∗) = λ.

Proof. As rM = 1, the definition of rM gives that rk GP ≥ 1 for all P ∈ H3 (more generally that

H3 =
⋃
C∈Cλ(γ) Zλ(C)) and that there is a point P0 ∈ H3 with rk GP0 = 1. Hence P0 ∈ Zλ(C0)

for some C0 ∈ Cλ(Γ) and P0 6∈ Zλ(C) for any other C ∈ Cλ(Γ) − C0, namely GP0 = 〈C0〉.

Set Z0 = Zλ(C0) and Y =
⋃
C∈Cλ(Γ)−C0

Zλ(C). Then H3 = Y ∪ Z0. Since H3 is connected,

(Zλ(C))C∈Cλ(Γ) is an open cover, and Γ is discrete, we must have the intersection Y ∩ Z0 is

nonempty and open. Notice P0 6∈ Y means Z0 6⊆ Y . As Z0 is connected, we conclude that

the frontier of the set Y ∩ Z0 relative to Z0 is nonempty; let F denote this set. Let us choose

a point P ∗ in F . In particular, this says that (i) P ∗ ∈ Z0 and (ii) P ∗ is in the frontier of Y

(relative to H3)). (In concluding (ii), recall that the collection of cylinders in Y comprises a

locally finite collection because Γ is discrete, and so P ∗, a limit point of Y , does not belong

to this open collection). If γ0 is a generator for C0, (i) implies that d(P ∗, γm0 · P ∗) < λ for

some integer m ≥ 1. By (ii), we know that d(P ∗, γ1 · P ∗) = λ for some γ1 ∈ Γ − γ0 and that

d(P ∗, γ · P ∗) ≥ λ for all γ ∈ Γ − C0. Using the base point P ∗ ∈ H3 to identify π(M, q(P ∗))

with Γ, we have that γm0 is represented by a loop of length less than λ based at q(P ∗), and

any other homotopically non-trivial loop of length less than λ based at q(P ∗) is identified with
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an element of C0. Therefore, we have shown the existence of a point P ∗ ∈ XM for which the

smallest length of any loop represented by [c] in M based at P ∗ with the property that [c] is

not in DP ∗ , is exactly λ.



CHAPTER 6

MATRICES AND THEOREM FOR THE CASE K=5

We will now restate some of Kent’s constuction and results regarding joins and intersections

of free groups; in particular, we incorporate the background (6.0.49 and 6.0.50) as discussed in

(8) which is needed to apply (8, Lemma 7) and (8, Lemma 8) to prove Proposition 6.0.52 that

follows. Subsequently, Conjecture 1.0.10 for rank-3 subgroups H and K is affirmed in Corollary

6.0.53.

6.0.49. Given a free group F free on the set {a, b}, we associate with F the wedge W of two

circles based at the wedge point, and we orient the (two) edges of W . Then for any subgroup

H of F there is a unique choice of basepoint ∗ in the covering space W̃H such that π1(W̃H , ∗)

is exactly H. Then ΓH will denote the smallest subgraph containing ∗ of W̃H that carries H.

By this construction, ΓH inherits a natural oriented labeling, i.e. each edge is labeled with

one of {a, b} and initial and terminal vertices (not necessarily distinct) are determined by the

orientation. Hence rankπ1(ΓH) = rank H. Also by this construction, any vertex of ΓH is at

most 4-valent. Define a 3- or more valent vertex of ΓH to be a branch vertex. We will from

here on assume that all graphs in our duscussion are normalized so that all branch vertices are

3-valent (see the beginning of (8, Section 3) for this explanation).

6.0.50. If Γ is a graph, let b(Γ) denote the number of branch vertices in Γ. Note that if Γ is

3-regular, i.e. all branch vertices are 3-valent, then we have χ(Γ) = rank(π1(Γ))− 1 = b(Γ)/2.

32
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By 6.0.49 this says that if H,K are subgroups of F , then rank(π1(ΓH∨K))−1 = rank(H∨K)−1.

If V (ΓH) and V (ΓK) denote the vertex sets of ΓH and ΓK respectively, then we can define the

graph GH∩K whose vertex set is the product V (ΓH) × V (ΓK) and for which {(a, b), (c, d)} is

an edge if there are edges e1 = {a, c} in ΓH and e2 = {b, d} in ΓK for which e1 and e2 have

the same label, and e1 is oriented from a to c and e2 is oriented from b to d. The graph GH∩K

is the pullback of the maps ΓH → W and ΓK → W in the category of oriented graphs, and

ΓH∩K is a subgraph of GH∩K that carries the fundamental group. We then have the projections

ΠH : GH∩K → ΓH and ΠK : GH∩K → ΓK . Let the graph T denote the topological pushout

of the maps ΓH∩K → ΓH and ΓH∩K → ΓK in the category of not properly labeled oriented

graphs. Hence the graph T is defined as the quotient of the disjoint union ΓH ∪ΓK modulo ∼R

where x ∈ H is equivalent to y ∈ K if x ∈ ΠH(Π−1
K (y)) or y ∈ ΠK(Π−1

H (x))ΠH . Now since the

map T → ΓH∨K factors into a series of folds (which is surjective at the level of π1), it follows

that χ(T ) ≤ χ(ΓH∨K). Equivalently χ(ΓH∨K) ≤ χ(T ).

6.0.51. As outlined in Kent’s Section 3.2 (8), we consider the (2h− 2)× (2k− 2) matrix, M =

(f(xi, yj)), where f : X × Y → {0, 1} is the function defined on the sets X = {x1, . . . , x2h−2}

and Y = {y1, . . . , y2k−2} of branch vertices of ΓH and ΓK , respectively, by letting f(xi, yj) = 1

if (xi, yj) is a branch vertex of ΓH∩K and 0 otherwise. Then the number of ones in M is equal

to the number of valence-3 vertices in ΓH∩K ; i.e. b(ΓH∩K) = Σi,jf(xi, yj). From 6.0.50, we

have χ(ΓH∩K) = b(ΓH∩K)/2. By (8, Lemma 8), after permuting rows and columns of M , we

may write M in the block form: (M1, . . . ,Ml, O(p×q)) where O(p×q) is the p × q zero matrix,

every row and every column of each of the Mi has a 1. Here, every block Mi of M represents a
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unique equivalence class of ∼R with representatives in ΓH and ΓK ; all-zero rows represent the

≤ p equivalence class(es) of ΓH which do not have representatives in ΓK ; and all-zero column(s)

represent the ≤ q equivalence class(es) of ΓK which do not have representatives in ΓH .

Proposition 6.0.52. rank(H ∨K) ≤ 1 + 1
2(l + p+ q).

Proof. Note that 2h − 2 ≥ l + p and 2k − 2 ≥ l + q as 2h − 2 is #{rows of M} and 2k − 2 is

#{columns of M} where M is the block matrix of (6.0.51), and so l is bounded above by the

positive integer min((2h−2)−p, (2k−2)− q). We have rank(H ∪K)−1 ≤ χ(T ) ≤ 1
2(l+p+ q)

by combining 6.0.50 and 6.0.49 along with (8, Lemma 7) for the first inequality and (8, Lemma

8) for the second. In particular, rank(H ∨K) ≤ 1 + 1
2(l + p+ q) as required.

Corollary 6.0.53. Suppose h = k = 3 and rank(H ∩K) ≥ 3. Then rank(H ∨K) ≤ 3.

Proof. As h = k = 3, we consider the 4× 4 block matrix M of 6.0.51 where each row and each

column of each of the Mi has a 1. So the number of ones, which is the number of valence-3

vertices in ΓH∩K , is ≥ 4.

6.0.54. Note that l is bounded above by min(4− p, 4− q) by the proof of Proposition 6.0.52,

and so in particular, l + p ≤ 4 and l + q ≤ 4. Thus we may rewrite Proposition 6.0.52 to read

rank(H ∨K) ≤ 1 + min(2 + p
2 , 2 + q

2). Using this formula, we see that rank(H ∨K) ≤ 3 unless

p and q are ≥ 2, and so we need only consider the following cases:

Case p = 4 or q = 4: This case is an impossibility, as this would imply M = O4×4, and

hence the number of branch vertices of ΓH∩K is zero, a contradiction, and so we must have

p, q ≤ 3.



35

Case p = 3 or q = 3: Suppose first that p = 3. Then (6.0.54) says that l ≤ 1, implying that

l = 1 and the top row of M has 4 ones, and so q = 0. In this case, the inequality of (6.0.54)

gives rank(H ∨K) ≤ 1 + min(2 + 3
2 , 2), and so rank(H ∨K) ≤ 3. When q = 3 the argument is

symmetric, and so the conclusion is satisfied.

Case p = 2 or q = 2: By symmetry assume p = 2. This gives l ≤ 2 by the bound on l of

(6.0.54). Now if l ≤ 1, then q must be equal to 3 to satisfy the requirement on the number of ones

in M (i.e. the valence-3 vertices in ΓH∩K), which is the previous case. Next, if l = 2, then as

l ≤ min(4−p, 4−q), we have q ≤ 2. First, if p = q = 2, then the requirement that the number of

ones in M is ≥ 4 fails as the values of p, q, and l would force M to have the form (M1,M2, O2×2)

where M1 = M2 = (1), and so M would only contain two ones. Next, if q = 1, then again we

apply (6.0.54) to give rank(H ∨K) ≤ 1 + min(2 + 2
2 , 2 + 1

2) = 1 + min(3, 2.5) = 3.5. Of course,

this says that rank(H ∨K) ≤ 3 as ranks must be integral and the conclusion is established.

We now restate Theorem 1.0.11 from the Introduction:

Theorem 6.0.55. Suppose M is a closed, orientable, hyperbolic 3-manifold such that π1(M)

is k-free with k = 5. Then when λ = log 9, we have rM ≤ 2.

Proof. This is a direct result of Corollary 6.0.53 along with Theorem 5.0.40.

For the final Corollary recall Definitions 5.0.47.

Corollary 6.0.56. Suppose M = H3/Γ is a closed, orientable hyperbolic 3-manifold with Γ ≤

Isom+(H3) discrete, purely loxodromic and 5-free. Then when λ = log 9, one of the following

three alternatives holds:
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(i) M contains an embedded ball of radius log (9/2),

(ii) There exists a point P ∗ ∈ H3 with P ∗ ∈ XM such that sm(P ∗), is equal to log 9, or

(iii) H3 =
⋃
C1,C2∈Clog 9(Γ)Zlog 9(C1) ∩ Zlog 9(C2) (i.e. rank G

P̃
≥ 2 for all P̃ ∈ H3), and there

exists a point P̃ ∈ H3 such that rk G
P̃

= 2.

Let q : H3 → H3/Γ be the projection map. As M = H3/Γ, we have Γ ∼= π1(M). We may

then equivalently restate (iii) to say there exists a point P = q(P̃ ) in M such that the

class of all homotopically non-trivial loops of π1(M,P ) of length ≤ log 9 is contained in a

rank-2 subgroup of Γ.

Proof. The result of Theorem 6.0.55 is that rM ≤ 2; so the only possible values for rM are 0, 1

and 2.

Case (i) follows when rM = 0 and is the result of Proposition 5.0.46, and Case (ii) follows

when rM = 1 and is the result of Proposition 5.0.48. Case (iii) occurs when rM = 2 and is

merely restating that definition.
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