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SUMMARY

�e microbiome plays a vital role in host-immune responses resulting in signi�cant e�ects on

host health. Dysbiosis of the microbiome has been linked to diseases including asthma, obesity,

diabetes, and in�ammatory bowel disease. Over the past decade, culture-independent sequencing

methods have revolutionized microbiome studies through identi�cation of the genetic content of

microbial communities in the form of millions to billions of short DNA sequences. �e sequences

derived from the microbiome originate from thousands of di�erent species that need to be iden-

ti�ed, quanti�ed, and compared over time among disease phenotypes. �ese analyses can detect

biomarkers that may be used for microbial reconstitution through bacteriotherapy, probiotics, or

antibiotics.

Current taxonomic identi�cation methods that achieve high precision can lack sensitivity

in some applications. Conversely, methods with high sensitivity can su�er from low precision

and require long computation time. �us, highly accurate and sensitive taxonomic identi�cation

methods are needed. Furthermore, in longitudinal studies, sample collection su�ers from all forms

of variability such as a di�erent number of subjects per phenotypic group, a di�erent number of

samples per subject, and samples not collected at consistent time points. �ese inconsistencies

make current analysis methods unsuitable and create opportunities for the development of new

methods. In addition, given the strong association between microbiome and disease, compu-

tational models can be built to predict disease status or prognosis using longitudinal microbial

pro�les.

xx



SUMMARY (Continued)

In this thesis, we discuss the computational methods and tools we have developed that im-

prove both the characterization and longitudinal analysis of the microbiome. �e �rst method,

WEVOTE, classi�es microbial sequences into taxonomic units with both high precision and high

sensitivity. �e second method, MetaLonDA, identi�es time intervals of di�erentially abundant

microbial features in longitudinal studies. �e third method is a computational framework to pre-

dict host clinical phenotype from longitudinal microbiome pro�les via deep learning approach.

Finally, using these methods and tools, we identi�ed microbiome dynamics suggestive of the de-

velopment of bronchiolitis obliterans syndrome in pediatric lung transplant recipients, insights

that can be leveraged to improve lung transplant outcomes across life span.

xxi



CHAPTER 1

INTRODUCTION

�e microbiome plays a vital role in a broad range of host-related processes and has a signif-

icant e�ect on host health, and its dysbiosis has been linked to various diseases such as asthma,

obesity, diabetes, in�ammatory bowel disease, etc. Over the past decade, culture-independent

sequencing has revolutionized microbiome studies by quickly deciphering the genetic content of

microbial communities in the form of millions to billions of short DNA sequences. Moreover,

the exponential decay in sequencing cost makes large-scale longitudinal studies a�ordable and

appealing. �ese sequences, originating from thousands of di�erent species, need to be iden-

ti�ed, quanti�ed, and compared over time between phenotypes in order to extract biomarkers,

which may be used for microbial reconstitution through bacteriotherapy, probiotics, or antibi-

otics. Given the strong association between microbiome and disease, computational models can

be built to predict diseases status or prognosis using longitudinal microbial pro�les.

1.1 Problem Identi�cation

One of the key steps in microbial data analysis is the taxonomic classi�cation of sequence

reads in a metagenomic dataset. Di�erent methods can generate variation in taxonomic output

pro�les for the same input dataset. Sample type, sequencing error, and read length are the main

factors that cause variation. �is variation in the predicted taxonomic annotations presents a

challenge to investigators in the selection of identi�cation methods and the interpretation of an-

1
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notations. Hence, developing a method that has a high precision of annotating the metagenome

shotgun sequencing (MGS) sequence reads is relevant and merits investigation. In this thesis,

we �rst studied the problem of taxonomic classi�cation of microbial sequences. We developed

WEVOTE (WEighted VOting Taxonomic idEnti�cation), a phylogenetic-based ensemble method

that classi�es MGS DNA sequence reads based on an ensemble of existing methods using k-mer-

based, marker-based, and naive-similarity based approaches.

�e recent advances in DNA sequencing technologies and rapid reduction in costs have fos-

tered longitudinal analyses, which include multiple samples per subject over time. �ese lon-

gitudinal studies provide increased insights into the underlying biological mechanisms of the

microbiome role in health and disease. In addition to identifying di�erentially abundant features,

detecting the time intervals where these features exhibit changes in their abundance between two

phenotypes in longitudinal studies adds insights into disease pathogenesis. �us, there is a need

to develop a method that can accurately identify the time intervals (start or end) of microbial

features (taxon, genes, or pathways) wherein they are di�erentially abundant between the two

phenotypes in a longitudinal study. �e method should also be able to handle the inconsistencies

of the sample collection process such as the number of samples per subject maybe unequal and ob-

tained at inconsistent time points. In this thesis, we study the problem of detection of di�erential

abundant microbial features and their signi�cant time intervals that are associated with pheno-

types. We developed a statistical method, MetaLonDA (Metagenomic Longitudinal Di�erential

Abundant), that is based on a semi-parametric Smoothing Spline ANOVA and negative binomial

distribution to model the time-course of the features between two phenotypes. �e method ac-
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curately identi�es the time intervals when the features are di�erentially abundant between two

phenotypic groups.

Another focus of the microbiome analysis is the classi�cation and prediction of host pheno-

type based on microbiome pro�les. Since the microbiome has been linked to various diseases,

there is an opportunity to develop novel methods that predict the host phenotype based on their

microbiome pro�les. Recently, multiple deep learning frameworks have been applied to the mi-

crobiome phenotype prediction; including Convolutional Neural Networks and Deep Belief Net-

works. Another deep learning architecture that is being used in time-series prediction applica-

tions is called Recurrent Neural Networks. It takes as its input, not only the current input, but also

what it perceived in the previous step in time, which is valuable in the analysis over time since it

is possible to express a change in the state of the network without having an explicit state. In this

thesis, we developed a deep learning framework to predict phenotypes from longitudinal micro-

biome taxonomic pro�les. �e method considers the dependency between adjacent longitudinal

microbiome pro�les.

Apotentail intersting application of these methods is to analyze the dynamics of microbiome

in cystic �brosis (CF) lung transplant recipients. CF is a rare genetic disease that is caused by

various mutations in the cystic �brosis transmembrane conductance regulator (CFTR) gene which

functions as a chloride transporter. It is uncommon for people with cystic �brosis to live into their

40s, 50s, or beyond. In an e�ort to improve survival and quality of life, lung transplantation has

become an e�ective therapeutic option and is the only de�nitive therapy for selected patients

with end-stage CF. Median survival in pediatric patients who undergo bilateral lung transplant
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is about 5.6 years. Bronchiolitis Obliterans Syndrome (BOS) is the most common cause of re-

transplantation and death. 50% of transplant recipients develop BOS in the �rst 5 years post

transplantation; however the etiology is unknown. Since transplant patients are treated with

immunosuppression and antibiotics, we hypothesized that the microbiome plays a role in BOS

development which is not clearly de�ned. Using methods developed in this thesis, we analyzed

the longitudinal microbiome pro�les of pediatric CF patients post-transplant to illuminate the

role of the microbiome in BOS development.

1.2 �esis Outline

�e focus of this thesis is the development of novel computational methods to analyze lon-

gitudinal microbiome pro�les for a be�er understanding of microbiome associated diseases. �e

research described in this dissertation is organized as follows:

In Chapter 2, we provide a background of microbiome research and diseases associated with

the microbiome, and covers recent major longitudinal microbiome projects. We also discuss the

current advances in computational methods that are being used to analyze microbiome data. �is

chapter is partially based on the following publications (�e necessary permissions are provided

in the appendices):

• Ranjan R, Rani R, Metwally AA, McGee H, Perkins DL. Analysis of the microbiome: Ad-

vantages of whole genome shotgun versus 16S amplicon sequencing. Biochemical and Bio-

physical Research Communications, 2016.
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• Reiman D, Metwally AA, Dai Y. PopPhy-CNN : A Phylogentic Tree Embedded Architecture

for Convolution Neural Networks for Metagenomic Data. bioRxiv, 2018.

In Chapter 3, we brie�y discuss taxonomic identi�cation methods including state of the art

of methods and their limitations. �en, we introduce WEVOTE, a phylogenetic based ensemble

method that classi�es microbial sequences with very high sensitivity and the highest precision

among state-of-the-art methods. Next, we introduce WEVOTE-web, a cloud-based version of the

WEVOTE algorithm. �is chapter is based on the following publications (�e necessary permis-

sions are provided in the appendices):

• Metwally AA, Dai Y, Finn PW, Perkins DL. WEVOTE: Weighted Voting Taxonomic Identi-

�cation Method of Microbial Sequences. PLoS ONE, 2016.

• Alaa A, Metwally AA. Cloud-based Solution for Improving Usability and Interactivity

of Metagenomic Ensemble Taxonomic Identi�cation Methods. IEEE EMBS Biomedical and

Health Informatics, 2018.

In Chapter 4, we introduce MetaLonDA, a method that can identify signi�cant time-intervals

of di�erentially abundant microbial features such as taxonomies, genes, or pathways associated

with phenotypes. We show our benchmarking of MetaLonDA using both simulated and biological

datasets. We also, introduce the R-package that implements the MetaLonDA method. �is chapter

is based on the following publications (�e necessary permissions are provided in the appendices):
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• Metwally AA, Yang J, Ascoli C, Dai Y, Finn PW, Perkins DL. MetaLonDA: a �exible R pack-

age for identifying time intervals of di�erentially abundant features in metagenomic lon-

gitudinal studies. Microbiome, 2018.

• Metwally AA, Finn PW, Dai Y, Perkins DL. Detection of Di�erential Abundance Intervals

in Longitudinal Metagenomic Data Using Negative Binomial Smoothing Spline ANOVA.

In Proceedings of the 8th ACM International Conference on Bioinformatics, Computational

Biology, and Health Informatics, 2017.

In Chapter 5, we introduce our development of a deep learning framework that has the

capacity to predict food allergy from longitudinal microbiome pro�les. �e framework is based on

sparse autoencoder and Long Short-Term Memory networks. We also report results of applying

the developed framework to the DIABIMMUNE study. �is chapter is based on the following

publication:

• Metwally AA, Yu PS, Reiman D, Dai Y, Finn PW, Perkins DL. Utilizing Longitudinal Gut

Microbiome Taxonomic Pro�les to Predict Food Allergy via Sparse Autoencoder and Long

Short-Term Memory Network. Under-review.

In Chapter 6, we analyze the association between changes in the composition of the lower

airway microbiome and the BOS development. �is chapter is based on the following publication:

• Metwally AA, Ascoli C, Rani A, Ranjan R, Ferkol TW, Finn PW, Perkins DL. Lower Airway

Microbiome Dynamics as a Predictor of Bronchiolitis Obliterans Syndrome a�er Pediatric

Lung Transplantation in Cystic Fibrosis. Manuscript in-preparation.
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Finally, in Chapter 7, we review the main topics of this dissertation, highlight the novel con-

tribution of our methods, and discuss the strengths and weaknesses of our approaches. We also

provide perspectives on potential future studies.



CHAPTER 2

OVERVIEW OF MICROBIOME STUDIES AND DATA ANALYSIS METHODS

2.1 Microbiome Studies

�e microbiome, a dynamic ecosystem of microorganisms (bacteria, archaea, fungi, and viruses)

that live in and on us, plays a vital role in host-immune responses resulting in signi�cant e�ects

on host health. Dysbiosis of the microbiome has been linked to diseases including asthma, obesity,

diabetes, transplant rejection, and in�ammatory bowel disease (1; 2; 3; 4; 5; 6). �ese observations

suggest that modulation of the microbiome could become an important therapeutic modality for

some diseases. For example, fecal transplants have been shown to alleviate diarrhea caused by

Clostridium di�cile infection and temporarily improve insulin sensitivity (7; 8). Speci�cally, the

gut microbiome, which has been the most extensively studied of the human microbiomes, is highly

diverse and has been shown to include thousands of di�erent bacterial species (9; 10). �is diverse

community of bacteria is composed of a few species that are highly abundant and a large amount

of species that are found in trace amount (11). �e human microbiome can be divided into the core

microbiome and the variable microbiome (12). �e core microbiome is the set of taxa or genes that

present in a given body location (gut, kidney, skit, oral, etc.) in almost all humans. �e variable

microbiome arises from various factors such as host physiological status, host environment, host

genotype, host lifestyle, host pathobiology, etc.

8
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�e number of studies investigating the microbiome has risen exponentially since the techno-

logical advances in high-throughput sequencing that have led to culture- and cloning-independent

analysis (13). Sequencing technologies are able to identify the genetic content of microbial com-

munities in the form of millions to billions of short DNA sequences. �ese technical advances

have been paradigm shi�ing since the majority (>90%) of microbial species cannot be readily

cultured using current laboratory culture techniques (14; 15; 16).

�e most common sequencing approach to analyze the microbiome is amplicon analysis of

the 16S ribosomal RNA (rRNA) gene (17; 18). In this method, a 16S rRNA region is ampli�ed

by PCR with primers that recognize highly conserved regions of the gene and sequenced (19).

�e limitations of this method are that the annotation is based on a putative association of the

16S rRNA gene with taxa de�ned as an operational taxonomic unit (OTU). In general, OTUs are

analyzed at the phyla or genera level and can be less precise at the species level. In 16S rRNA

sequencing, genes are not directly sequenced, but rather predicted based on the OTUs. Due to

horizontal gene transfer and the existence of numerous bacterial strains (20; 21; 22), the lack of

direct gene identi�cation potentially limits understanding of a microbiome.

An alternative approach to the 16S rRNA amplicon sequencing is metagenome shotgun (MGS)

sequencing in which random fragments of genome are sequenced. MGS is more expensive and

requires more extensive data analysis (13; 23; 24; 25). A major advantage of the MGS sequencing

is that the taxa can be more accurately de�ned at the species level. In addition, to identify and

understand the bacterial genes in a taxon, it may be necessary to sequence a genome with high

coverage (23).
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2.2 Major Microbiome Projects

In this section we summarize three major microbiome projects to date; the Human Micro-

biome Project (HMP) (12; 17; 26), the Integrative Human Microbiome Project (iHMP) (27; 28; 29),

and the DIABIMMUNE Project (1; 30; 31).

2.2.1 HMP: Human Microbiome Project

HMP phase I: �e National Institutes of Health Human Microbiome Project (HMP) was es-

tablished in 2008, with the mission of generating resources that would enable the comprehensive

characterization of the human microbiome and analysis of its role in human health and disease.

�e HMP-I characterized the microbial communities from 242 healthy adults (129 males and 113

females) between the ages of 18 and 40. Women were sampled at 18 body habitats, and men at

15 (excluding the three vaginal sites), distributed among �ve major body areas: nasal cavity, oral

cavity, skin, gastrointestinal tract, and urogenital tract (17; 32).

HMP phase II: �e second phase of HMP targeted diverse body sites with multiple time

points in 265 individuals. Strain identi�cation revealed subspecies clades speci�c to body sites (26).

It also quanti�ed species with phylogenetic diversity under-represented in the isolate genomes.

Body-wide functional pro�ling classi�ed pathways into universal, human-enriched, and body

site-enriched subsets. Finally, temporal analysis decomposed microbial variation into rapidly

variable, moderately variable, and stable subsets. HMP-II enables an understanding of person-

alized microbiome functions and dynamics (26).
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2.2.2 iHMP: Integrative Human Microbiome Project

iHMP was established with the aim of creating integrated longitudinal datasets from both

the microbiome and host from three di�erent cohort studies of microbiome-associated conditions

using multiple omics technologies (27; 28; 29). �e three cohorts are:

1. Pregnancy and Preterm Birth Cohort: �e multi-omic microbiome pregnancy initiative

is established to be�er understand how microbiome and host pro�les change throughout

pregnancy and in�uence the establishment of the nascent microbiome in neonates. �e

study aims to recruit 2000 pregnant women and their neonates (27).

2. In�ammatory Bowel Disease Cohort: In�ammatory bowel disease (IBD), which in-

cludes both Crohn’s disease and ulcerative colitis, is one of the most-studied imbalances

between microbes and the immune system. �ere exist genetic and environmental risk

factors that are associated with IBD (33; 34). However, they are inadequate to explain the

dramatic increase in IBD over the past 50 years (35). Rather, comprehensive evidence has

linked IBD to the gut microbiota (36; 37). In contrast to traditional disease models, no single

pathogen seems to cause IBD. �e IBD multi-omics project has been established to provide

comprehensive insights into the gut microbial ecosystem in the context of IBD. �is will

improve our ability to understand, diagnose, and treat IBD (28; 29).

3. Type 2 Diabetes Cohort: Di�erences in the gut microbiome have been noted between

diabetics and healthy individuals (38; 39), and direct alteration of the microbiome in mice

has been shown to lower blood glucose levels (40). �e longitudinal multi-omic study is
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aimed to be�er understand the biological changes that occur type 1 diabetes (T2D) disease

acquisition. �is cohort will consist of approximately 100 individuals at risk for diabetes.

Samples will frequently be taken (at 1-to-4-day intervals) during infected and other stress

states and less frequently (every ∼ 3 months) during healthy periods, with a minimum of

27 timepoints sampled per subject.

2.2.3 DIABIMMUNE Project

�e DIABIMMUNE project is established with the aim of studying the hygiene hypothesis.

�e hygiene hypothesis is widely supported theory that accounts for the association between

the increase in diseases of the immune system and decreased exposure to pathogens. �e DI-

ABIMMUNE project analyzes the microbiome in subjects from three separate countries (Russia,

Finland, and Estonia) in order to explore this phenomenon (30; 1; 31). �ese three populations

comprise a “living laboratory,” o�ering a unique opportunity to test the hygiene hypothesis and

gene-environmental interactions in the development of autoimmune disease. DIABIMMUNE is

divided into three cohorts as described below:

1. Type 1 Diabetes Cohort: Characterization of developing microbiome in 33 infants en

route to type 1 diabetes (T1D). �is is a prospective, longitudinal analysis of developing

gut microbiome in infants en route to type 1 diabetes (30). Infants from Finland and Esto-

nia were recruited at birth based on predisposition to autoimmunity determined by human

leukocyte antigen (HLA) genotyping. Parents collected their infants’ stool samples at ap-

proximately monthly intervals. �e cohort consists of 33 infants, 11 of which seroconverted
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to serum autoantibody positivity and of those, four developed T1D within the three-year

time-frame of this study.

2. �ree Country Cohort: Early infancy is considered to be an important time for the mat-

uration of the immune system. �is cohort consists of collected stool samples from infants

from Finland, Estonia, and Russia to elucidate mechanisms behind the hygiene hypothe-

sis (1). �e three countries have substantial di�erences in incidence of T1D and allergies.

�e prevalence of the allergies is highest in Finland and lowest in Russia with Estonia in-

termediate. 74 infants from each country were selected on the basis of similar HLA risk and

matching gender and followed up from birth until the age of three. For each infant, three

years of monthly stool samples, laboratory assays, and questionnaires regarding breast-

feeding, diet, allergies, infections, family history, use of drugs and clinical examinations

were collected.

3. Antibiotics Cohort: �e gut microbial community is dynamic during the �rst three years

of life, before stabilizing to an adult-like state. However, li�le is known about the impact of

environmental factors on the developing human gut microbiome. �is cohort is designed

to characterize the development of the infant gut microbiome and the impact of repeated

antibiotic exposure on bacterial strain diversity and stability (31). �e cohort consists of

39 infants followed up for 3 years. Stool samples and clinical information are collected,

approximately half of whom received multiple courses of antibiotics during the �rst three

years of life. �e microbiota of antibiotic-treated children was less diverse in terms of both
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bacterial species and strains, with some species o�en dominated by single strains. In addi-

tion, short-term composition changes between consecutive samples from children treated

with antibiotics. Antibiotic resistance genes carried on microbial chromosomes showed a

peak in abundance a�er antibiotic treatment followed by a sharp decline, whereas some

genes carried on mobile elements persisted longer a�er antibiotic therapy ended.

2.3 Computational Microbiome Analysis Methods

2.3.1 Taxonomic Classi�cation of Microbial Sequences

Metagenomic sequences come from a number of di�erent species, some of which either have

a previously sequenced reference genomes or have a related sequenced species su�ciently close

phylogenetically. Other sequences, however, may come from organisms that have no su�ciently

close relatives with sequenced genomes, or from DNA fragments that show no signi�cant simi-

larity with any available genomic sequence.

�e metagenomic classi�cation problem is to assign each sequence of the metagenome to a

corresponding taxonomic unit or to classify it as ’novel.’ Methods performing taxonomic classi�-

cation of metagenome sequences can be, in large, grouped into three categories; alignment-based

sequence classi�ers, alignment-free sequence classi�ers, and ensemble sequence classi�ers. In

the following section, we provide a summary of each category and list of methods that are based

on the corresponding design.
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Alignment-based Sequence Classi�ers

In this category, metagenome sequences are aligned to each of the known genomes from the

reference database, in order by using best alignment score as an estimator of the phylogenetic

”closeness” between the sequence and the genome. �is could be done with generic alignment

program, such as BLAST (41), Bowtie (42), BWA (43), or BLAT (44). Although this approach is

highly sensitive, it tends to produce a lot of false positives and the running time of these meth-

ods makes it unfeasible to be used in its naive form for large datasets (45; 46). For this reason, a

sub-category of classi�cation methods has been developed with the design of preprocessing the

sequence �les and database before performing the alignment. �is reduces the computational

time and resources needed and also increases the annotation speci�city. One technique to re-

duce the time complexity of the alignment is by assembling the short reads into longer contigs

then annotate these contigs (47). Although annotating contigs is more e�cient than annotating

reads, this approach is fragile due to the complexity of the assemblers and the assembly error.

Another approach is to use the information preserved in phylogeny to annotate metagenome se-

quence. Examples of methods covering phylogenetic-based classi�cation are MetaPhlAn (48; 49),

MEGAN (50; 51; 52), MetaPhyler (53), and TIPP (54).

Alignment-free Sequence Classi�ers

Another strategy to cope with increasingly large metagenomic datasets is the alignment-free

methods. Generally, most of alignment-free methods are based on the analysis of words, which

are usually of �xed size (k-mer). �e basic idea behind the k-mers methods is performing metage-
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nomic classi�cation of next generation sequencing (NGS) sequence reads based on the analysis

of shared k-mers between a metagenome read and each genome from a pre-compiled database.

Given a taxonomic tree involving the species of the database, these tools “map” each read to a node

of the tree, thus reporting the most speci�c taxon or clade the read is associated with. Based on the

obtained counts and tree topology, algorithms assign each read to a tree node “best explaining”

the counts. Examples of these methods are Kraken (46), LMAT (55), Centrifuge (56), CLARK (57),

Kaiju (58), ProPhyle (59), Seed-Kraken (60), CoMeta (61), One Codex (62), and SMART (63).

Ensemble Read Classi�ers

Ensemble read classi�er is the approach we proposed (Chapter 3) to classify microbial se-

quences based on ensemble of base classi�ers.

Computational Challenge in Classi�cation Methods

A major computational problem of the taxonomic classi�cation of microbial sequences is that

sometime the analysis of same sample by di�erent methods produces di�erent results (Figure 1).

�is raises controversy on the false positive problem, and it is usually a�ributed to the design of

the method (64; 65; 66; 67; 68). Some methods favor speed over accuracy, while the other favor the

sensitivity. �e conclusion from these benchmarking studies is that current individual taxonomic

methods are not the best approach to identify microbial pro�le and hence developing ensemble

methods may be the solution for such metagenomic sequence classi�cation problem.
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Figure 1: Di�erent methods produce di�erent results for the same input. Evaluation of di�erent

taxonomic classi�cation method using 35 simulated and biological metagenome (64).
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2.3.2 Di�erential Abundance Analysis

One of the objectives of the microbiome studies is to determine whether there is a particular

microbial signature (e.g., taxa or genes) associated with a particular disease state and/or disease

outcome. �ese biomarkers can play an important role in the development of preventative and

therapeutic strategies. Modeling metagenomic data for disease-association studies is an active

area of research. �e standard parametric models may reduce the variance in read counts if the

data follows the corresponding parametric distribution, but the models may be substantially bi-

ased if the data does not support that distribution. On the other hand, non-parametric models do

not assume any prior distribution of the data and thus are not biased towards any distribution,

but these models may su�er from a huge model variance (69).

Longitudinal studies of the microbiome have gained tremendous popularity during the past

few years due to the ability to detect trends of microbiome changes over time and relate these

changes to disease progression in di�erent parts of body, such as gut, kidney, skin, or lung (70;

30; 1; 71; 72; 73). In addition, there has been a drastic reduction in sequencing cost that has made

longitudinal studies more a�ordable on a large scale.

Analyzing longitudinal metagenomic pro�le data is di�erent from analyzing a single time

point pro�le. An individual’s microbiome evolves over time, but its composition has some depen-

dency on its previous structure (i.e., Markov Process), despite the independence between samples.

For longitudinal data, two types of di�erential abundance analysis are widely utilized: (a) Treat

data from each time point independently and detect features that have di�erential abundance be-
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tween the phenotypes at individual time points (74); (b) Identify features that have di�erential

abundance during the time-course within a phenotype (75; 76).

Another strategy for longitudinal di�erential abundance is to identify time intervals of dif-

ferentially abundant microbial features. To date, two methods have been proposed; the �rst is

MetaSplines (77), and the second is MetaDprof (78). MetaSplines and MetaDprof are both based on

the Gaussian Smoothing Spline ANOVA (SS-ANOVA) approach (79; 80; 81), where the Gaussian

distribution is used to model the number of reads mapped to each microbial feature. MetaS-

plines has a higher sensitivity of detecting time intervals of di�erentially abundant features than

MetaDprof, but MetaDprof has higher speci�city (78). MetaDprof has a major drawback, namely,

its implementation assumes consistency in longitudinal microbial samples, such that it is only

able to perform the analysis on an equivalent number of subjects per phenotypic group, the same

number of samples from each subject, and the same elapsed time between adjacent time points.

However, these conditions are rarely ful�lled in human microbiome longitudinal studies.

Challenges in Di�erential Abundance Analysis

Longitudinal analysis is usually challenged by variability in longitudinal sample collections,

including inconsistencies in the number of subjects per phenotype, number of samples per sub-

ject, and sample collection at inconsistent time points. �ese inconsistencies increase with the

level of di�culty with which samples are obtained from the subjects. For example, in humans,

the variability decreases in samples collected non-invasively (e.g., stool and urine samples) but

increases in the invasive procedures (e.g., bronchoalveolar lavage (BAL) samples which are ex-

tracted from the lung by bronchoscopy).



20

One solution to address this variability is to bin samples into a certain number of windows

between the start and end times of the study course by selecting the nearest sample in time for

each bin (30), then compare the microbial feature’s relative abundance or diversity indices (82; 83)

between any pair of time points to characterize any pairwise changes. �e limitation of this

approach is that it deals with the longitudinal data points as a collection of static snapshots and

ignores temporal dependencies. Furthermore, if more than one sample is taken in the same time

window, it may result in either retaining only one sample and excluding the others or taking the

average of the measured feature’s values, which may lead to mischaracterizing the exact microbial

behavior.

2.3.3 Host Phenotype Prediction

�e other primary task of microbiome analysis is the prediction of host phenotype based on

microbiome pro�les. Since microbiome has been linked to numerous diseases, it opens a door

to develop new methods that predict the host phenotype based on their microbiome pro�les.

Approaches using traditional machine learning models, e.g., Random Forest (RF), LASSO and

Support Vector Machines (SVMs), and recently, deep neural networks (DNN), demonstrated the

potential of developing microbial biomarker signature for the prediction of disease or phenotype

of the host (84; 85; 86; 87; 88). �is type of approaches is motivated by the �ndings that a micro-

bial signature for the host phenotype may be complex, involving simultaneous over- and under-

representations of multiple microbial taxa at distinct taxonomic levels and potentially interacting

with each other (85; 89). Varying levels of predictive accuracy have been reported. �e perfor-



21

mance of the deep learning models is encouraging, owing to the ability of deep architectures in

identifying potential interactions of microbial taxa for disease prediction (85).

Recently, we have proposed a prototype of a novel architecture for convolution neural net-

works (CNNs) for the prediction of host phenotype from the microbial taxonomic abundance pro-

�les (90; 91). CNNs were originally developed based on the visual cortex in images and have been

successful in image processing and speech recognition (92). �e major characteristic of a CNN

is its ability to generate convolution layers with multiple feature maps that capture the spatial

information in training data. However, metagenomic data are represented by relative microbial

taxonomic abundance pro�les, where taxa can be placed in arbitrary orders. To empower CNNs

in metagenomic phenotype prediction, it is important to provide structural input with certain dis-

tance metric among the microbial taxa. In our work, we constructed a phylogenetic tree, a natural

structure representing the relationship among the microbial taxa in the pro�les (90; 91). �e tree

is embedded in a 2D matrix a�er populating with the observed relative abundance of microbial

taxa in each pro�le. In this way, the constructed matrices provide a be�er spatial and quantita-

tive information in the metagenomic data to CNNs, compared to the vectors of relative microbial

taxa abundances in an arbitrary order. Our analysis has revealed encouraging predictive ability

of CNNs based on metagenomic data taken from di�erent parts of body (90; 91).

Challenges in Host Phenotype Prediction from Microbial Sequences

Although DNNs provide incomparable ability of learning non-linear representation from the

trainingset that can be used to predict host phenotype, the past results also raise the skepticism

that DNNs may not be suitable learning models due to their requirement of excessive amount
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of training data, which are impractical in the present metagenomic study. Furthermore, DNNs

are o�en used as black-boxes, making it di�cult to extract informative features from the learned

models. �erefore, despite the success of DNNs in other biomedical applications (93), it is unclear

whether they can outperform the existing models, such as RF, LASSO and SVMs, and whether

they can learn a set of informative microbial taxa from metagenomics data.

Developing methods that predict the host phenotype from longitudinal microbiome samples

comes with some challenges, e.g., variable sample collection times and uneven number of time

points along the subjects’ longitudinal study, especially when samples come from human subjects.

Hence, using standard prediction methods such as Hidden Markov Models (HMMs) (94) and Auto

Regressive (AR) models (95) may not be suitable in these cases.



CHAPTER 3

WEVOTE: WEIGHTED VOTING TAXONOMIC IDENTIFICATION METHOD OF

MICROBIAL SEQUENCES

Previously published as:

• Metwally, A., Dai, Y., Finn, P., Perkins D. (2016) WEVOTE: Weighted Voting Taxonomic Identi�cation Method

of Microbial Sequences, PLoS ONE, 11(9), e0163527.

• Alaa, A., Metwally, A. (2018) Cloud-based Solution for Improving Usability and Interactivity of Metagenomic

Ensemble Taxonomic Identi�cation Methods, IEEE EMBS Biomedical and Health Informatics, (pp. 198-201). IEEE

3.1 Introduction

Taxonomic classi�cation of sequence reads in a metagenomic dataset is a fundamental step

in microbiome data analysis. �e existing taxonomic identi�cation methods of MGS data can be

primarily classi�ed into four categories: methods based on naive-similarity, methods based on

analyzing sequence alignment results, methods based on sequence composition, such as k-mers,

and marker-based methods. �e naive-similarity-based methods rely on mapping each read to a

reference database, such as the National Center for Biotechnology Information (NCBI) nucleotide

database, and the taxonomic annotation of the best hit is assigned to the read if it passes a pre-set

threshold. Bowtie (42), BLASTN (41), and its faster version MegaBlast (96) are the most commonly

used algorithms in this category. Since the number of sequences in the database is enormous,

these methods have a high probability of �nding a match. �erefore, these types of methods

usually achieve a higher level of sensitivity compared to other methods (46; 97). However, the

23
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major drawbacks are the increased rate of false positive annotations and the long computational

time. Although it has been shown that the taxonomic pro�le obtained from the naive-similarity-

based methods produces a large number of false positives (46; 98), a vast array of researchers are

still dependent on them because they do not want to sacri�ce the high level of sensitivity to obtain

fewer false positives annotations.

�e category analyzing the results from sequence alignment includes MEGAN (50), and

PhymmBL (97). �ese methods consist of a preprocessing step and a post-analysis step. In

MEGAN, an algorithm involving the Lowest Common Ancestor (LCA) assigns each read an NCBI

taxonomic identi�cation number (si. taxon / pl. taxa) that re�ects the level of conservation within

the sequence. On the other hand, PhymmBL constructs a large number of Interpolated Markov

Models (IMMs) using a BLASTN query against a reference database. It subsequently computes the

scores which correspond to the probability of the generated IMMs matching a given sequence.

�en it classi�es a read using the clade label belonging to the organism whose IMM generated

the best score. �e methods in this category usually require additional computational time than

those in the naive-similarity methods.

�e marker-based methods utilize a curated collection of marker genes where each marker

gene set is used to identify a unique group of clades. �e fundamental di�erence between these

methods and the naive-similarity methods is in the reference databases. Based on how the database

of the marker genes is formed, this type of methods is classi�ed into two main subcategories: (i)

methods that depend on a universal single copy marker genes database such as MetaPhyler (53),

TIPP (54), and mOTU (99), and (ii) methods that depend on a clade-speci�c marker genes database
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such as MetaPhlAn (48; 100). �ese marker-based methods can achieve high accuracy if the reads

come from genomes represented by the marker gene database. Otherwise, they only achieve a

low-level of sensitivity. �e running time varies depending on the statistical algorithm used in

each method.

�e k-mer-based methods use DNA composition as a characteristic to achieve taxonomic

annotation. �e key idea is to map the k-mers of each read to a database of k-mers, and then, each

read is assigned a taxonomic annotation (46; 55; 57; 58; 101). For example,Kraken (46) uses an exact

match to align the overlapped k-mers of the queries with a k-mer reference database, instead of

an inexact match of the complete sequence used in the naive-similarity based methods. Because

of the exact matching on short k-mers, many e�cient data structures can be implemented for

searching the k-mer database; thus the k-mer-based methods can be extremely fast. Compared to

the naive-similarity methods, it was recently shown that at the genus level, k-mer-based methods

could achieve a similar sensitivity but with higher precision (65). However, these methods are

not robust to sequences that have a high sequencing error rate because they are based on exact

matching to the reference database. �is limitation is demonstrated in (46). It shows that Kraken

has the lowest sensitivity compared to other methods when tested on the simBA-5 dataset.

In addition to our benchmarking, it has also revealed that di�erent methods could generate

variation in taxonomic output pro�les for the same input dataset (65). Sample type, sequenc-

ing error, and read length are the main factors that cause variation. �is inconsistency in the

predicted taxonomic annotations presents a challenge to investigators in the selection of identi-

�cation methods and the interpretation of annotations.
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3.1.1 Problem De�nition

In this work, we present a novel framework,WEVOTE (WEighted VOting Taxonomic idEnti�cation),

which takes advantage of three categories of the taxonomic identi�cation methods; naive-similarity

methods, k-mer-based methods, and marker-based methods. WEVOTE combines the high sensi-

tivity of the naive similarity methods, the high precision of the k-mer-based methods, and the

robustness of the marker-based methods to identify novel members of a marker family from novel

genomes.

3.2 Methods

3.2.1 WEVOTE Core Algorithm

�e core of WEVOTE is a weighting scheme organized as a taxonomic tree tallying the anno-

tations from N di�erent taxonomic identi�cation methods. As shown in Figure 2, the input to

WEVOTE is the raw MGS reads of a microbiome sample. First, each of the N identi�cation meth-

ods independently assigns a taxon for each read. If any method fails to classify the read based

on the given threshold, the WEVOTE preprocessing phase assigns 0 as a taxon, indicating that

the read is unclassi�ed by the corresponding method. �en, WEVOTE identi�es the taxonomic

relationship of theN taxa per read based on the pre-con�gured taxonomy tree structure and casts

a vote to the �nal taxon, which may be a common ancestor of the N taxa. Although the current

version of our method only includes �ve methods, the voting scheme in our framework is �exible

and allows for the inclusion or removal of di�erent methods.
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Figure 2: Schematic diagram of the WEVOTE framework. �e input to the WEVOTE is the raw

reads of the sample. First, each of the identi�cation methods independently assigns a taxon to

each read. �en, WEVOTE identi�es the taxonomic relationship of the N taxa based on the pre-

con�gured taxonomy tree structure and determines the �nal taxon assigned to each read (102).
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WEVOTE utilizes a simpli�ed version of the NCBI taxonomy tree as a backbone for its decision

algorithm. �is resolved phylogeny tree only contains the nodes that have a taxon corresponding

to one of the standard taxonomic levels (Super-kingdom, Phylum, Class, Order, Family, Genus, and

Species). �is backbone structure facilitates and accelerates the choice of a consensus taxon based

on the taxonomic annotations received from each identi�cation method. �e decision scheme in

WEVOTE is shown in Algorithm 1. Here, N denotes the number of methods used in the WEVOTE

pipeline; C the number of methods that can classify the read at any taxonomic level, i.e., taxon 6= 0;

and A the number of methods that support the WEVOTE decision. �e relationship N > C > A

always holds.
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Algorithm 1 �e WEVOTE Decision Scheme
1: procedureWEVOTE (N taxa for each read)
2: for each (Read ∈ sequence file) do
3: if (C == 0) then
4: Read.Taxon = 0
5: Read.DecisionScore = 1
6: Read.NumSupportedTools = N
7: else if (C > 1) then
8: build a WeightedTree of the reported taxa
9: Threshold = floor(C/2)

10: MaxWeight = 0
11: MaxNode = 0
12: for each (Node ∈WeightedTree and weight(Node) > Threshold) do
13: if (rootToTaxon(Node) > MaxWeight) then
14: MaxWeight=rootToTaxon(Node)
15: MaxTaxon=Node
16: else if (rootToTaxon(Node) == MaxWeight) then
17: MaxTaxon=LCA(Node, MaxTaxon)
18: end if
19: end for
20: Read.Taxon = MaxTaxon
21: Read.NumSupportedTools = weight(Read.Taxon)
22: if (A == C) then
23: Read.DecisionScore = A/N
24: else
25: Read.DecisionScore = (A/N)− (1/(m ∗N))
26: end if
27: end if
28: end for
29: end procedure

In the case that no single tool can classify the read, WEVOTE will accordingly fail to classify

the read and give it a taxon 0 and score of 1. Otherwise, WEVOTE starts by building a weighted

tree for each read from the taxa reported by individual methods. �e weighted tree is a tree that
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comprises the nodes of the identi�ed taxa along with their ancestors’ taxa including the root.

�e weight of any node on the weighted tree represents the number of methods that support the

identi�cation of this particular node. Next, WEVOTE annotates the read with the taxon of the

node that has the highest weight from the root to that node (RootToTaxon), with the additional

condition that the node itself has more weight than the WEVOTE threshold. �is threshold can

be set as half of the number of methods that classify a read as shown in Figure 3. In the case

where more than one node satis�es the WEVOTE condition, then the LCA of these nodes will be

assigned as the WEVOTE decision. For each classi�ed read, a score is also assigned to re�ect the

con�dence of WEVOTE decision. �e scoring scheme works based on Equation 3.1.

Score =


A
N If C = A,

A
N − 1

2N otherwise; A < C

(3.1)
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Figure 3: Illustration of WEVOTE algorithm.
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�e choice of the constantm depends on how strongly one elects to penalize the disagreement

among individual methods that classify the read but do not agree with the WEVOTE decision. A

small value ofm leads to a small WEVOTE score, implying more penalty is placed on the WEVOTE

decision score, and vice versa. �is scoring scheme makes the score satisfy the condition of A−1N <

score < A
N . Although the score does not a�ect the WEVOTE decision, it would be useful if the

user is interested in assessing the con�dence of the taxon assignment made by WEVOTE. �e

default value of m is 2. We have chosen this value because it gives a score exactly in the middle

of A−1N and A
N . As m increases, the score skews towards the A

N side. In order to demonstrate the

decision and scoring schemes described in the WEVOTE algorithm, the case scenarios of WEVOTE

for N = 3 are shown in Figure 4.
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Figure 4: WEVOTE case scenarios using three tools. C denotes the # tools able to classify the read,

A represents the # of tools that support WEVOTE Decision, and S represents the WEVOTE score.

Scenarios are shown for (a) None of the three tools classi�ed the read; (b) Only one tool classi�ed

the read; (c) Two tools classi�ed the read with the same taxon; (d, e) Two tools classi�ed the read

with two di�erent taxa; (f-i) �ree tools classi�ed the read with three di�erent taxa; (j, k) �ree

tools classi�ed the read, two taxa are identical, and the other is di�erent; (l) �ree tools identi�ed

the read with the same taxon (45).
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Methods Used in the CurrentWEVOTE Implementation

In our current implementation of WEVOTE, we used BLASTN (41) to represent the naive-

similarity-based methods, Kraken (46) and CLARK (57) as the identi�cation methods representing

the k-mer methods, and TIPP (54) and MetaPhlAn (48) representing the marker-based methods.

�e �ve methods were chosen since they are widely used and represent the three major categories

of taxonomic identi�cation methods. We selected BLASTN over MegaBlast because of its greater

sensitivity. �e primary reason for the increased sensitivity in BLASTN is the use of a shorter

word size as a search seed. �us, BLASTN is be�er than MegaBlast in �nding alignments for

sequences that have a sequencing error which occurs a�er a short length of matched bases (i.e.,

the initial exact match is shorter).

Kraken assigns taxonomic annotations to the reads by spli�ing each sequence into overlap-

ping k-mers (46). Each k-mer is mapped to a pre-computed database where each node in the

database is the LCA taxon of all genomes that contain that k-mer. For each read, a classi�cation

tree is computed by obtaining all the taxa associated with the k-mers in that read. �e number

of k-mers mapped to each node in the classi�cation tree is assigned as a weight for this node.

�e node that has the highest sum of weights from the root is used to classify the read. Kraken

is an ultra-fast and highly precise algorithm for reads involving a low rate of sequencing error.

CLARK is a recently released tool that is very similar to Kraken and also based on k-mers. It is

reported to be faster and more accurate than Kraken at the genus/species level (57). �e funda-

mental di�erence between Kraken and CLARK is their backbone k-mers database. Kraken has
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only one database that can serve for the classi�cation of metagenomic reads at any taxonomic

level. If more than one genome shares the same k-mer, Kraken assigns this k-mer to their LCA

taxon. CLARK, on the other hand, builds an index for each taxonomic level at which the user

wishes to classify. Each level’s index has only the discriminative k-mers that distinguish its taxa

from others.

TIPP (Taxonomic Identi�cation and Phylogenetic Pro�ling) is considered a state-of-the-art

method based on a set of marker genes. It uses a customized database of 30 marker genes (103)

which are mostly universal and single-copy genes. First, it performs multiple sequence alignment

of each marker gene set, then builds a phylogeny tree for each marker gene and constructs a

resolved taxonomy tree of these marker genes. �en, it uses SATe (104) to decompose the tree of

each marker gene to many sub-trees. Subsequently, TIPP uses HMMER so�ware (105) to build a

Hidden Markov Model (HMM) for each of the sub-trees. For each query read, TIPP uses HMMER

again to align the query to the HMMs. �en, TIPP uses the alignments to the HMM that have an

alignment score and statistical support greater than a group of pre-set values, and places them on

the precomputed taxonomic tree using pplacer (106) to assign taxonomy to the query. It has been

shown that TIPP can precisely identify reads containing high sequencing error or novel members

of a marker family from novel genomes (54). �e other method chosen for this category in our

implementation is MetaPhlAn. MetaPhlAn has a set of clade-speci�c marker genes. �e marker set

was built from the genomes available from the Integrated Microbial Genomes (IMG). For a given

read, MetaPhlAn compares the read against the precomputed marker set using BLASTN searches

in order to provide clade abundances for one or more sequenced metagenomes.
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3.2.2 WEVOTE-web: Cloud-based Solution for Improving Usability and Interactivity of

WEVOTE

Although WEVOTE has higher sensitivity and precision than individual methods, several dif-

�culties are imposed as a price to this gain. First, the issue of usability persists, at least for re-

searchers who lack decent computational skills, unless these methods are introduced through

graphical user interfaces. Second, installing WEVOTE with the corresponding dependencies re-

quires large storage budget and careful dependency management. In addition, much of WEVOTE

con�guration and sorting the reference databases requires caution and minimal scripting back-

ground. �ird, the execution of speci�c algorithms requires an una�ainable memory space on

regular computers. A workaround is to exclude expensive algorithms from the pipeline, however,

this will also reduce quality.

In this project, we address the aforementioned obstructions by porting the WEVOTE frame-

work into the cloud for a�aining several objectives: (a) improve usability by implementing a mod-

ular web application, (b) interactive visualization using the rich Javascript visualization libraries,

(c) unrestricted deployment of the expensive computational options by leveraging the robust pay-

as-you-go infrastructure on the cloud. �e modular design of the cloud implementation allowed

more use cases of WEVOTE.

In our cloud framework, we developed three use cases of the the WEVOTE algorithm; (a)

apply the whole WEVOTE pipeline: the user uploads a sequences �le then selects the ensemble

methods from the currently available methods, (b) use WEVOTE algorithm on an ensemble �le:
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the user intercepts the pipeline at the integration step and uploads a �le containing classi�ed se-

quences from multiple methods in order to employ the WEVOTE classi�er followed by generation

of the community pro�le, (c) taxonomic pro�ling from a classi�ed taxa �le: the user intecepts the

pipeline from the pro�ling step and the system generates the community pro�le from an input

of classi�ed sequences. �e WEVOTE cloud framework consists of two modules; the web module

and the visualization module.
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Figure 5: User interface of the cloud implementation of WEVOTE pipeline. �e panel in (a) is an

entry point to the pipeline where the user selects the usage scenario and accordingly uploads the

query �le. �e user may override the con�guration by using the secondary panel in (b). Finally,

the user is recommended to add a description as a tag to the experiment and a reference e-mail, so

the user is noti�ed by e-mail when the results are ready for visualization. Alternatively, the user

may track the pipeline progress in the panel in (c). �is panel also includes all the meta informa-

tion corresponding to an experiment (e.g., parameters, incorporated algorithms, and description)

so the user can explore and compare previous experiments without confusion. Upon completion,

the results are ready for visualization in a dedicated page for di�erent analyses like in (d) and

(e). Also, the user may choose to download the results, including the intermediate results as in

(d) (102).
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Web Module

Based on the highlighted usability issues, the user interface was developed with multiple

objectives in mind: (a) ease of using the pipeline through intuitive panels with minimal parameters

se�ing, (b) controllability over the pipeline, and (c) user-centered design, so the user is able to keep

track of previous experiments. Figure 5 illustrates the current user interface elements in the web

application. Furthermore, the web module carries out the communication between the client and

the computational web service. It also stores user pro�les to keep track of previous experiments.

�is module is implemented using TypeScript language based on Express.js as web framework and

MongoDB as a database driver (107).

Visualization Module

In this module, several intuitive and interactive visuals are generated to summarize the taxo-

nomic classi�cation results (Figure 6). Here is a summary of di�erent outputs:
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Figure 6: Visualization options on the client-side. �e table in (a) lists the intermediate classi-

�cation results of WEVOTE pipeline. �e cost column represents the Manha�an distance. �e

distance is de�ned as the shortest path between the voting node and the resolved node in the

taxonomy tree. �e last column is the classi�cation score. (b) �e abundance pro�le is listed as a

table. �e numerical columns like ”cost” and ”score” in (a) and ”count” in (b) are color-encoded.

(d) �e interactive radial treemap diagram with the embedded taxon lineage at the top and the

abundance percentage inside the diagram center. For all visualization entities in (a), (b), and (d),

when the user clicks on a label or a cell corresponds to a taxon, a new tab in the browser will

access the taxon page at the NCBI Taxonomy Browser as in (c). In addition, detailed info about

the cell is shown upon the mouse hovering on that cell (102).
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(a) Tabular list: �e tabular list is employed for taxonomic binning and abundance pro�le

results (Figure 6). In the classi�cation results table, two descriptive values are included: (a) Score:

each classi�ed read is associated with a score computed based on Equation 3.1, and (b) Cost: a

cost value is computed for a classi�ed reada as a Manha�an distance combining the lengths of

shortest paths from the resolved node to the other votes by Equation 3.2.

Costa =
N∑
i=1

||ShortestPath(WEVOTEa,Taxonai)|| (3.2)

Numerical information, e.g., score and cost values in the classi�cation results, are color-coded

for seamless data exploration. Moreover, color scale is not global for the whole table, but speci�c

for each column; each cell color is represented by an intensity normalized along the column

and log-scaled for be�er color distribution. However, tables remain an ine�cient visual analytic

solution for visualizing scalable data as they occupy much space.

(b) Radial treemap: An interactive radial treemap is developed in the visualization module

in our implementation to visualize taxonomic abundance pro�le. A hierarchical clustering is

constructed for the taxa in the abundance pro�le. Each taxon accumulates its abundance value

along its ancestry.

(c) Venn diagram: A further precision analysis on the incorporated taxonomic classi�cation

methods can be visually assisted using interactive Venn diagram. �e intersection areas among

sets depict the agreement among the taxonomic binning algorithms.
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3.3 Experiments and Results

3.3.1 WEVOTE Benchmarking

Simulated datasets have been used in the evaluation of various taxonomic identi�cation meth-

ods. In our assessment, we selected fourteen simulated datasets as shown in Table I. Our choice

was based on the ability of these datasets to provide the true assignment for each read rather than

the true relative abundance at each taxonomic level. �is information allows for the evaluation

of WEVOTE based on various metrics in addition to the assessment of relative abundance.

�e �rst three datasets were used in the evaluation of Kraken (46). �e HiSeq and MiSeq

datasets are simulated from sequences obtained from non-simulated microbial projects but were

sequenced using two di�erent platforms, i.e., Illumina HiSeq™ and Illumina MiSeq™. �e simBA5

is a simulated dataset with a higher percentage of error to mimic increased sequencing errors.

Hence, it can be used to measure the ability of each tool to handle actual sequencing data. �e

simHC20 dataset was used to benchmark CLARK (57) and it contains 20 subsets of long Sanger

reads from various known microbial genomes. �e other ten datasets were used inMetaPhlAn (48)

evaluations. HC1 and HC2 consist of reads from high-complexity, evenly distributed metagenomes

that contain 100 genomes, and LC1–LC8 consist of reads from low-complexity, log-normally dis-

tributed metagenomes that contain 25 genomes. �e reads from all ten MetaPhlAn datasets were

sampled from KEGG v54 (108) with a length of 100 bp and an error model similar to real Illumina

reads.
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TABLE I: WEVOTE benchmarking datasets.

Source Dataset # reads length (bp) # genomes

Kraken

HiSeq 10,000 92 10

MiSeq 10,000 156 10

simBA5 10,000 100 1,967

CLARK simHC20 10,000 951 20

MetaPhlAn

HC1 999,998 88 100

HC2 999,991 88 100

LC1 249,995 88 25

LC2 250,000 88 25

LC3 250,000 88 25

LC4 249,999 88 25

LC5 249,999 88 25

LC6 250,002 88 25

LC7 250,000 88 25

LC8 250,000 88 25

Our benchmarking was performed with two variants of WEVOTE: (i) WEVOTE (N = 3) in-

cluding BLASTN, TIPP andKraken; and (ii)WEVOTE (N = 5) including BLASTN, TIPP,MetaPhlAn,
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Kraken, and CLARK. As described previously, BLASTN represents the naive-similarity method;

TIPP and MetaPhlAn belong to the category of the marker-based methods; and Kraken and CLARK

belong to the category of the k-mer-based methods. �e default parameter values were set for

the individual method, and the score penalty in WEVOTE was set at m = 2. Regarding WEVOTE,

we reported all results in which at least one method supported the WEVOTE decision. With this

approach, we can evaluate the accuracy of WEVOTE at the highest classi�cation rate of the reads.

By increasing the threshold, we can generate more precise results as shown later.

We �rst looked at how accurately each method annotates individual reads at each taxonomic

level using sensitivity and precision metrics, which are de�ned in (Equation 3.3) and (Equa-

tion 3.4), respectively. For each level l in a simulated dataset:

Sensitivity(l) =
TPl
Pl

(3.3)

Precision(l) =
TPl

TPl + FPl
(3.4)

where Pl denotes the number of reads annotated with some taxon at level l in the original dataset;

TPl the number of reads correctly annotated at level l; and FPl the number of reads incorrectly

annotated at level l.

It could be inappropriate to compare the sensitivity of all the methods used in WEVOTE, since

the marker-based methods are primarily designed to calculate the microbial abundance of the
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sample based on the annotation of the reads that come from genes represented by the marker

gene database. Based on this consideration, Figure 7 (I) shows the sensitivity and precision of

Kraken, CLARK, BLASTN, and WEVOTE; while in Figure 7 (II), we show the precision of TIPP and

MetaPhlAn separately. It is observed from Figure 7 that WEVOTE achieves the highest level of

precision and a level of sensitivity that is second only to BLASTN at the species level. At all other

taxonomic levels, WEVOTE outperforms all the other individual methods in terms of sensitivity

and precision in most datasets (S1 Table at (45)). Note that the reason for the lower precision with

N = 5 is because the results were reported when the minimum number of methods supported

the WEVOTE decision was set at 1. If a higher level of precision is required, then the WEVOTE

reporting threshold should be set at N/2 as explained later.
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Figure 7: Sensitivity and precision at the species levels. sub-panel (I) shows the sensitivity and pre-

cision of methods developed to identify every read; Kraken, CLARK, BLASTN, and WEVOTE. sub-

panel (II) shows the precision of marker-based methods; TIPP andMetaPhlAn. �e MetaPhlAn-HC

and MetaPhlAn-LC datasets are the average of two HC and eight LC datasets, respectively (45).
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In addition, we calculated the Hellinger distance (109) (Hl) between a sample’s metagenomic

abundance pro�le generated by each method and its true abundance pro�le at each taxonomic

level l. �e Hellinger distance measures the deviation of the predicted pro�le from the true pro�le.

It is calculated as shown in (Equation 3.5). Here, Cl is the union of all taxa that are in the true

and predicted pro�les at each taxonomic level l. For each taxon x at level l, Px is the predicted

relative abundance and Tx is the true relative abundance at taxonomic level l. �e
√

2 is added to

the denominator to keep 0 ≤ Hl ≤ 1.

Hl =

√∑
x∈Cl

(
√
Px −

√
Tx)2

√
2

(3.5)

�e calculation of the relative abundance (RA) di�ers among the methods. For methods that

are developed to identify every genomic read, such as BLASTN, Kraken, and CLARK, the relative

abundance is calculated as shown in (Equation 3.6). As mentioned before, TIPP and MetaPhlAn

are not designed to identify every read. �ey build metagenomics abundance pro�le of the sam-

ple based on the annotation of the reads that come from genes represented by the marker gene

database. In this case, the relative abundance of a taxon x is calculated using (Equation 3.7). For

WEVOTE, we used (Equation 3.6) to calculate the RA. �ese two forms of relative abundance calcu-

lation are implemented in WEVOTE. It is the user option to select which method to use. However,

the genomic-based method (Equation 3.6) is the default se�ing.

RAgenomic−based(x) =
nx
n

(3.6)
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RAmarker−based(x) =
nx
nc

(3.7)

Where nx is the total number of reads classi�ed at taxon x, n the total number of reads, and nc

the total number of classi�ed reads.

As the Hellinger distance represents an error distance, a small value is always preferable. Par-

ticularly, H = 0 means that the predicted pro�le is exactly the same as the true pro�le; while

H = 1 means that the predicted pro�le is completely di�erent from the true pro�le. Figure 8

shows the Hellinger distance between the true relative abundance pro�le and the pro�les gen-

erated by all methods at di�erent taxonomic levels (Table S2 at (45)). For all the benchmarking

datasets, WEVOTE, particularly when N = 3, always has the smallest Hellinger distance among

all other individual identi�cation methods across all taxonomic levels. Although the Hellinger

distance is marginally di�erent for WEVOTE and BLASTN, the interpretation is quite di�erent.

�e error that originates from BLASTN is due to the false positive annotations while the error

that originates from WEVOTE is due to the lack of support in annotating the read at the corre-

sponding level. TIPP and MetaPhlAn have higher Hellinger distance than other methods used in

WEVOTE. �is is mainly because few taxa in the datasets are predicted in low rate by them, i.e., Px

being near zero for few taxa. �is has led to the accumulation in the Hellinger distance. One of the

reasons for the inability to predict these taxa may be because the current marker gene databases

used in TIPP and MetaPhlAn do not contain su�cient markers of the genomes represented in the

simulated datasets.
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Figure 8: Evaluation of Hellinger distance. �e deviation between the predicted and the true

abundance pro�le was measured in terms of the Hellinger distance for each method at di�erent

taxonomic levels. Results are shown for: (a) Kraken-HiSeq dataset; (b) Kraken-MiSeq dataset;

(c) Kraken-simBA5 dataset; (d) CLARK-simHC20; (e) MetaPhlAn-HC and (f) MetaPhlAn-LC. �e

lower the error, the more precise the corresponding method is at the corresponding taxonomic

level. H = 0 means that the predicted relative abundance pro�le is exactly the same as the

true pro�le; while H = 1 means that the predicted pro�le is completely di�erent from the true

pro�le (45).
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Lastly, we examined the details of various case scenarios that were encountered in the eval-

uation of the two WEVOTE variants, i.e., N = 3 and N = 5. �e plots in Figure 9 show the

percentages of annotations in which the individual methods support the WEVOTE decision for

all the datasets. It can be observed that the majority of WEVOTE annotations are determined

based on more than N/2 agreements; 2 in the case of N = 3 and 3 in the case of N = 5. For

only a small portion of each dataset, all the used methods agreed on the WEVOTE decision. An

interesting observation is that a very small portion of all the classi�ed reads by WEVOTE are in

agreement with one method when N = 3, or either 1 or 2 methods when N = 5. �erefore,

if we set a threshold on WEVOTE to report the taxon at which more than half the methods are

in agreement with the WEVOTE decision, then the precision of WEVOTE would increase, and

its sensitivity will only be marginally decreased as demonstrated in Figure 10. We have chosen

Kraken-HiSeq and Kraken-MiSeq datasets for this investigation because they had low precision

among all the used taxonomic identi�cation methods (Figure 7).
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Figure 9: �e percentage distribution of the number of individual methods that support the

WEVOTE decision for the 14 datasets. Here, 0 means that the read was not classi�ed by any

methods, 1 means that one method supports the WEVOTE assigned taxon for the read, and so on.

A=3 in the case of (a) means that all the 3 methods support WEVOTE on its assigned taxon for the

corresponding read, A=5 in case of (b) means that all the used 5 methods support WEVOTE on its

assigned taxon for the corresponding read (45).
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Figure 10: �e sensitivity and precision at the species level for the WEVOTE (N=5) using di�erent

thresholds for the minimum number of methods that support the WEVOTE decision. (a) Kraken-

HiSeq dataset; and (b) Kraken-MiSeq dataset (45).
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3.3.2 Computational Resources and Running Performance

All the experiments were performed on the UIC computer cluster (EXTREME) at the Uni-

versity of Illinois at Chicago. To benchmark WEVOTE, we used one node with 16 cores (Intel

Xeon E5-2670 @ 2.60 GHz, cache size of 20 MB, and 128 GB RAM). Since the WEVOTE core algo-

rithm and all the individual methods are parallelizable, we utilized 16 threads for all experiments

conducted in this work. Due to the high requirement on the memory for constructing Kraken

and CLARK databases, we used the Highmem node on EXTREME which has speci�cation of 1TB

RAM. In order to achieve the maximum performance from Kraken and CLARK, we used the de-

fault versions of the two methods, which require at least 80 GB of RAM. �erefore, if there is only

a limited amount of memory available, users can run these methods using their mini versions,

i.e., MiniKraken and CLARK-l, which only require 4 GB of RAM. In this case, the output could be

11%-25% less sensitive, but it will still preserve a high level of precision. �e WEVOTE algorithm

is particularly useful in this case because it can exploit the high precision level of Kraken and

CLARK without using large memory machines and compensate the sensitivity by using BLASTN.

Table II shows the running time for each method per dataset. For HC and LC classes of

datasets, the running time is presented as the average over the datasets in each class. Kraken

and CLARK �nished in less than 3 minutes for any individual dataset. For BLASTN, the most

time-consuming method that is currently implemented in the WEVOTE pipeline, its running time

is proportional to the number of reads and the read length in a dataset. �e total time of the entire

WEVOTE pipeline is the summation of the running times of the individual methods and the time
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needed to run the WEVOTE core algorithm. �e WEVOTE core algorithm was �nished execution

in less than 33 seconds for any individual dataset regardless N = 3 or N = 5. �e WEVOTE core

algorithm is mainly a�ected by the number of the used methods, and more speci�cally, the num-

ber of methods that identi�ed taxa for the reads. Because the running time of WEVOTE pipeline is

primarily dominated by the time required by BLASTN, the pipeline running time can be reduced

if many cores are used to execute BLASTN.

TABLE II: WEVOTE running time measured in minutes.

Simulated

Dataset
Kraken BLASTN TIPP CLARK MetaPhlAn

WEVOTE

Pipeline

[N=5]

HiSeq 1 2 4 1 1 10

MiSeq 1 8 4 1 1 16

simBA5 1 7 3 1 1 14

simHC20 1 9 5 1 1 18

HC (sd) 2 (0.0) 30 (1.4) 14 (0.0) 3 (0.0) 2 (0.0) 53 (1.4)

LC (sd) 1 (0.0) 9 (2.9) 8 (0.5) 2 (0.0) 1 (0.5) 22 (3.5)
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To analyze the time-cost trade-o� on the AWS for WEVOTE-web, we used Kraken MiSeq

dataset as an experiment for taxonomic classi�cation task. We tested two di�erent AWS machine

types; t2.large and t2.2xlarge. �e reported time and the total cost according to the reserved

instances are listed in Table III.

TABLE III: Time consumed and total cost on di�erent machines speci�cations. Usage scenario:

full pipeline; utilized algorithms: BLASTN, Kraken, CLARK, TIPP, and MetaPhlAn.

Instance type Experiment time (minutes) Total cost ($)

t2.large 26 0.10

t2.2xlarge 14 0.38

3.4 Conclusion

We developed WEVOTE (WEighted VOting Taxonomic idEnti�cation), a phylogenetic-based

ensemble method that classi�es metagenome shotgun sequencing DNA reads based on an ensem-

ble of existing methods using k-mer-based, marker-based, and naive-similarity based approaches.

�e performance evaluation based on the fourteen simulated microbiome datasets consistently

demonstrates that WEVOTE achieves a high level of sensitivity and precision compared to the
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individual methods across di�erent taxonomic levels. Moreover, the score assigned to the taxon

for each read indicates the con�dence level of the assignment. �is information is especially

useful for the assessment of false positive annotations at a particular taxonomic level. �e clas-

si�cation score given by WEVOTE can be used for any downstream analysis that requires the

high con�dence of the annotated sequences. Moreover, we introduced a cloud-based solution

to address common usability issues in the WEVOTE framework. In addition, an interactive vi-

sual analytics tool was developed to ease the interpretation of the classi�cation results. We have

demonstrated three di�erent use cases of the pipeline that, in turn, re�ect the signi�cance of our

modular design. WEVOTE and WEVOTE-web are publicly available on https://github.

com/aametwally/WEVOTE and https://github.com/aametwally/WEVOTE-

web, respectively.

A�er WEVOTE has been developed and showed a spectacular performance in taxonomic iden-

ti�cation of microbial sequences, two other methods were developed; MetaMeta (110) and Direct

Majority Voting (64).

MetaMeta employs multiple taxonomic binning algorithms producing individual abundance

pro�les from each algorithm and a �nal abundance pro�le (110) (Figure 11.b). �e primary di�er-

ence between MetaMeta and WEVOTE is that MetaMeta merges information at a very late stage.

It performs cascading statistical operations to suppress outliers e�ect in the taxonomic pro�le.

However, It does not guarantee to suppress false positive classi�cations e�ect. Moreover, it may

prune out low abundant taxa as false positive. Furthermore, MetaMeta requires the user to con-

�gure more preference parameters that may reduce its usability. Similar to WEVOTE, MetaMeta’s
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computational resources and running times depend on the utilized algorithms. On the other hand,

Direct Majority Voting uses multiple combinations of taxonomic binning algorithms (64) by inte-

grating votes (Figure 11.c).
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(a)

(b)

(c)

Figure 11: Comparative view three ensemble taxonomic classi�cation methods. �e primary vari-

ations among these methods are in the integration step (102).



CHAPTER 4

METALONDA: IDENTIFYING TIME INTERVALS OF DIFFERENTIALLY

ABUNDANT FEATURES IN METAGENOMIC LONGITUDINAL STUDIES

Previously published as:

• Metwally, A., Yang, J., Ascoli, C., Dai, Y., Finn, P., Perkins, D. (2018) MetaLonDA: a �exible R package for

identifying time intervals of di�erentially abundant features in metagenomic longitudinal studies, Microbiome,

6(1), 32.

• Metwally, A., Finn, P., Dai, Y., Perkins, D. (2017) Detection of Di�erential Abundance Intervals in Longitu-

dinal Metagenomic Data Using Negative Binomial Smoothing Spline ANOVA, In Proceedings of the 8th ACM

International Conference on Bioinformatics, Computational Biology, and Health Informatics (pp. 295-304). ACM.

4.1 Introduction

One of the objectives of the microbiome studies is to determine whether there is a particu-

lar microbial signature (e.g., taxa, genes, or pathways) associated with a particular disease state

and/or disease outcome. �ese biomarkers can play an important role in the development of pre-

ventative and therapeutic strategies. A major challenge in microbiome studies is the variability

in microbial taxa among subjects, in addition to variability due to disease in�uences. A powerful

strategy to address this challenge is the analysis of time series data in which the time intervals as-

sociated with temporal e�ects are identi�ed. Modeling metagenomic data for disease-association

studies is an active area of research. �e standard parametric models may reduce variance if the

data follows the corresponding parametric distribution, but the models may be substantially bi-

59
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ased if the data does not support that distribution. On the other hand, non-parametric models do

not assume any prior distribution of the data and thus are not biased towards any distribution,

but these models may su�er from a large model variance (69).

For longitudinal data, two types of di�erential abundance analysis are widely utilized: (a)

Treat data from each time point independently and detect features that have di�erential abun-

dance between the phenotypes at individual time points (74), and (b) Identify features that have

di�erential abundance during the time-course within a phenotype (75; 76). Longitudinal analysis

is usually challenged by variability in longitudinal sample collections, including inconsistencies

in the number of subjects per phenotype, number of samples per subject, and sample collec-

tion at inconsistent time points. �ese inconsistencies increase with the level of di�culty with

which samples are obtained from the subjects. For example, in humans, the variability decreases

in samples collected non-invasively (e.g., stool and urine samples) but increases in the invasive

procedures (e.g., bronchoalveolar lavage (BAL) samples which are extracted from the lung by

bronchoscopy).

One solution to address this variability is to bin samples into a certain number of windows

between the start and end times of the study course by selecting the nearest sample in time for

each bin (30), then compare the microbial feature’s relative abundance or diversity indices (82; 83)

between any pair of time points to characterize any pairwise changes. �e limitation of this

approach is that it deals with the longitudinal data points as a collection of static snapshots and

ignores temporal dependencies. Furthermore, if more than one sample is taken in the same time

window, it may result in either retaining only one sample and excluding the others or taking the
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average of the measured feature’s values, which may lead to mischaracterizing the exact microbial

behavior.

Another strategy is to identify time intervals of di�erentially abundant microbial features. To

date, two methods have been proposed; the �rst is MetaSplines (77), and the second is MetaD-

prof (78).

MetaSplines is implemented as an R-script within the metagenomeSeq package (111). It starts

by ��ing a curve for the di�erence between the means of the read counts of a particular feature

from two phenotypic groups across di�erent time points. It uses the standard Smoothing Spline

ANOVA (SS-ANOVA) approach (69; 79; 80), where the Gaussian distribution is assumed for the

reads. �e identi�cation of a signi�cant time interval is based on comparing the areas under the

��ed curve to that of the null model, which is generated from the bootstrapping of the sample’s

group labels. �is method is easy to use, and it handles time point inconsistencies in the samples

collection, such as, variable sample collection times and the uneven number of time points among

the subjects’ longitudinal timeframe. However, it assumes the normality of metagenomic read

counts, which are not suitable to be modeled by a Gaussian distribution. Additionally, MetaSplines

has a relatively high false positive rate (78).

MetaDprof is also based on the standard SS-ANOVA which assumes the normality of the read

count. �e di�erence between the two methods is that MetaDprof �ts a curve for each pheno-

typic/treatment group and compares the area between the two curves with the data generated

by the permutation of the group labels. �e identi�cation of the signi�cant time intervals is ac-

complished in two steps. Initially, MetaDprof tests whether the feature is globally signi�cant or
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not. In the event that the feature is signi�cant, it proceeds to identify signi�cant time intervals.

Compared to MetaSplines and Next-maSigPro (112), a tool for di�erential analysis of longitudinal

RNAseq pro�les, MetaDprof shows a high level of detection power. MetaDprof performs very

well when the following criteria are met: a) the samples are equally spaced, b) the number of

samples taken from each subject is equal, and c) the samples from subjects are collected at the

same time points. In animal model studies, the sample collection process can be well controlled

to meet the criteria. However, they rarely can be met for samples collected from humans, par-

ticularly when an invasive procedure is used, such as bronchoscopy to obtain a bronchoalveolar

lavage (BAL) �uid samples.

4.1.1 Problem De�nition

Develop a method to accurately identify time intervals of di�erentially abundant features in

metagenomic longitudinal studies.

Signi�cance

�e identi�ed di�erentially abundant features and their time intervals have the potential to

distinguish microbial biomarkers that may be used for microbial reconstitution therapy through

bacteriotherapy, probiotics, or antibiotics, and may also suggest timing and duration of the ther-

apy.
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4.2 Methods

Fixing a feature f = 1, . . . , F , the data under consideration are the random variables Ytki or

their observations ytki of mapped reads of the ith subject of phenotype k to the feature f at time

point t, where t = 1, . . . , T , k = 1, 2, and subject i = 1, . . . , nk.

�e random variable Ytki is assumed to follow a negative binomial distribution

Ytki ∼ NB(α, p(t, k)) (4.1)

with integer α > 0 and success probability p(t, k) ∈ (0, 1). �at is, Ytki stands for the

number of failures before the αth success in a sequence of Bernoulli trials. �en the probability

for observing y number of reads can be wri�en as

P (Ytki = y) =
Γ(α+ y)

y!Γ(α)
· p(t, k)α · (1− p(t, k))y (4.2)

with an expectation and variance

E(Ytki) =
α(1− p(t, k))

p(t, k)
(4.3)

V ar(Ytki) =
α(1− p(t, k))

p(t, k)2
(4.4)
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To model the time and phenotypic e�ect we use a general linear model with a logit link:

η(t, k) = log
p(t, k)

1− p(t, k)
(4.5)

From (Equation 4.5), we have

p(t, k) =
eη(t,k)

1 + eη(t,k)
(4.6)

1− p(t, k) =
1

1 + eη(t,k)
(4.7)

Assuming Ytki’s are independent, the log likelihood given a time-course metagenomic count

pro�les y = {ytki}t=1,...,T ;k=1,2;i=1,...,nk
is calculated as:

L = logL(p, α | Y = y)

=
T∑
t=1

2∑
k=1

nk∑
i=1

[ytki log(1− p(t, k)) + α log p(t, k)

+ log Γ(α+ ytki)− log Γ(α)− log(ytki!)]

=

T∑
t=1

2∑
k=1

nk∑
i=1

[ytki log(1− p(t, k)) + α log p(t, k)

+ log Γ(α+ ytki)− log Γ(α)] + constant (4.8)
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Given the success probabilities p = {p(t, k)}t=1,...,T ;k=1,2 or equivalently the linear predic-

tors η = {η(t, k)}t=1,...,T ;k=1,2, the main part of L involving α is

Lp(α) =
T∑
t=1

2∑
k=1

nk∑
i=1

[log Γ(α+ ytki)− log Γ(α) + α log p(t, k)] (4.9)

which will be maximized to update α later.

Given the number of failures α > 0, using (Equation 4.6), (Equation 4.7), (Equation 4.8), we

have the main part of L involving p or η:

Lα(η) =
T∑
t=1

2∑
k=1

nk∑
i=1

[αη(t, k)− (α+ ytki) log(1 + eη(t,k))] (4.10)

We seek the estimation of model parameters α and p(t, k) by maximizing (Equation 4.8). Fol-

lowing (Gu, 2013) (81), in order to control the smoothness of the function η, a roughness penalty

J(η) is added to the minus log-likelihood together with the smoothing parameter λ > 0 for the

trade-o� between the goodness of �t and the smoothness of the spline curve:

min
p,α
−L+ λ · J(η) (4.11)

In the objective function, L encourages the goodness of �t; J(η) quanti�es the smoothness

of η, which is essentially the inner product in a reproducing kernel Hilbert space (Gu, 2013) (81),

Section 3.1). �e λ in expression (Equation 4.11) controls the tradeo� between the goodness of �t
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and the smoothness of the spline and can be determined using performance-oriented iterations

or cross-validation (Gu, 2013 (81) Section 5.2).

�e solution to the optimization problem in (Equation 4.11) leads to the smoothing spline that

�ts the reads from the samples across multiple time points. With the estimated parameters α and

p(t, k), we obtain the estimated mean of Ytki using (Equation 4.3), (Equation 4.6), (Equation 4.7),

i.e.,

ˆE(Ytki) = α̂eη̂(t,k) =
α̂p̂(t, k)

1− p̂(t, k)
(4.12)

Connecting the values at each time point using (Equation 4.12) the ��ed curve can be con-

structed in each group. With (Equation 4.4) and (Equation 4.12), the con�dence intervals can be

obtained for each feature. We use the R package gss (Gu, 2013 (81)) to solve problem (Equa-

tion 4.11). For readers’ reference, a more detailed description for the algorithm used in (81),

Section 5.4.6) with a speci�ed λ > 0 is given below:

0◦ Given data {ytki}t=1,...,T ;k=1,2;i=1,...,nk
, �nd the maximum likelihood estimate for the usual

logistic regression model with negative binomial responses. �at is, determine α̃(0), p̃(0)(t, k), t =

1, . . . , T ; k = 1, 2 that maximize L in (Equation 4.8). Denote

ỹ
(0)
tki = ytki, η̃

(0)(t, k) = log(p̃(0)(t, k)/(1− p̃(0)(t, k)))

t = 1, . . . , T ; k = 1, 2; i = 1, . . . , nk.

For iteration s = 1, . . . , S, do 1◦, 2◦ and 3◦:
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1◦ Determine α̃(s) that maximizes

T∑
t=1

2∑
k=1

nk∑
i=1

[log Γ(α+ ỹ
(s−1)
tki )− log Γ(α) + α log p̃(s−1)(t, k)]

2◦ For t = 1, . . . , T ; k = 1, 2; i = 1, . . . , nk, let

ũ
(s)
tki = (α̃(s) + ỹ

(s−1)
tki )p̃(s−1)(t, k)− α̃(s)

w̃
(s)
tki = (α̃(s) + ỹ

(s−1)
tki )p̃(s−1)(t, k) · (1− p̃(s−1)(t, k))

ỹ
(s)
tki = η̃(s−1)(t, k)− ũ(s)tki/w̃

(s)
tki

3◦ Use quasi-Newton approach to �nd η̃(s)(t, k)’s that minimize the penalized weighted least

squares functional

1

T (n1 + n2)

T∑
t=1

2∑
k=1

nk∑
i=1

w̃
(s)
tki(ỹ

(s)
tki − η(t, k))2 + λJ(η)

Let p̃(s)(t, k) = eη̃
(s)(t,k)/(1 + eη̃

(s)(t,k)), t = 1, . . . , T ; k = 1, 2.

Once we have the two splines that �ts each group’s samples, we can then calculate the nor-

malized area between the two curves for each unit time interval of the T − 1 time intervals. �e

normalized Area Ratio (AR) is calculated as in (Equation 4.13), where Ak1t,t+1 and Ak2t,t+1 denote

the area under the spline curve from time t to time t+1 for group 1 and group 2, respectively,

t = 1, . . . , T − 1.
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ARt,t+1 =
Ak1t,t+1 −Ak2t,t+1

max(Ak1t,t+1, A
k2
t,t+1)

(4.13)

�en, we perform a permutation procedure by permuting the sample group labels to calculate

the ARb for the random samples for each time interval. �e procedure is repeated B times.

�is is essential for calculating the p − value of each interval. �e p value is calculated using

(Equation 4.14)

p value =
#(ARb > AR)

B
b = 1, ..., B (4.14)

�e signi�cant time intervals are those with p value < 0.05 a�er multiple testing correc-

tion (113) which adjusts for the number of time intervals per feature and for the multiple features

that are testing for. Figure 12 gives an illustration of how MetaLonDA method works.
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Figure 12: Illustration of how MetaLonDA works. (a) �e longitudinal samples for one feature

from two phenotypic groups. (b) �e two ��ed NB Smoothing Splines of two groups (�e solid

dark blue and dark red curves). �e dashed curves show the 95% con�dence interval. (c) �e

signi�cant time intervals identi�ed (the grey highlighted regions) (114).
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4.2.1 MetaLonDA R-package Framework

�e main components of the MetaLonDA framework are shown in Figure 13.

Figure 13: MetaLonDA R-package framework (115).
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Input

Metagenomic reads are processed for each sample to construct taxonomic and/or functional

pro�les (45; 56; 116; 117). �e taxonomic pro�les, functional pro�les, or both for all samples

from di�erent subjects are then integrated into one count table C with dimension of m × n,

where m denotes the number of microbial features and n denotes the number of metagenomic

samples. C(i, j) represents the number of reads from sample j that mapped to microbial feature

i. �e count table C is the main input to MetaLonDA. Additionally, three vectors each of length

n are needed for MetaLonDA to perform the analysis: (a) time of sample collection vector T , (b)

phenotypic group vector G, and (c) subject ID vector I . As previously highlighted, MetaLonDA

supports unequal numbers of samples between subjects, unequal numbers of subjects between

phenotypic groups, and uneven elapsed time between time points.

Normalization

Since metagenomic samples may have di�erent sequencing depths, the aggregated metage-

nomic counts need to be normalized among samples (118; 119; 120). MetaLonDA incorporates

three di�erent normalization methods into its framework: (a) Cumulative Sum Scaling (111), (b)

median-of-ratios scaling factor (121), and (c) Trimmed Mean of M-values (122). If the count table

is already normalized, the normalization step should be skipped in MetaLonDA. As a preprocess-

ing step for MetaLonDA and based on a user-speci�ed threshold, relatively low abundant features

are removed from the metagenomic count table. In our model, we assume that the normalized

counts of each feature follow a negative binomial (NB) distribution, which is di�erent from mod-
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eling the original counts as NB distributed a�er incorporating a size factor into the mean as in

DESeq2 (121).

MetaLonDA Core Algorithm

MetaLonDA’s core algorithm is discussed before in section 4.2.

Output Format and Visualization

MetaLonDA outputs a table that includes signi�cant features, start and end points of the cor-

responding signi�cant intervals, the adjusted p-value of each signi�cant time interval, and the

phenotypic group in which the corresponding feature is more abundant. In addition to the out-

put table, MetaLonDA produces two types of visualizations: (a) a �gure showing the ��ed splines

of each group and the associated time interval for each feature that has at least one signi�cant

time interval, and (b) a �gure visualizing the identi�ed time intervals of the di�erentially abun-

dant features.

4.3 Experiments and Results

4.3.1 Evaluation of the Negative Binomial Assumption

One major assumption of MetaLonDA is that the number of metagenomic reads mapped to

microbial features follows a NB distribution. To evaluate this assumption, we extracted the count

data from Caporaso et al. (70). In this dataset, microbial samples were taken on a daily basis

from a man and a woman over a period of 15 months and 6 months, respectively, from four dif-
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ferent body sites. �e obtained read counts were normalized using the median-of-ratios scaling

factor method (121). A�er �ltering out the relatively rare operational taxonomic units (OTUs)

with fewer than 5 reads, a total of 750 OTUs were selected from 1967 samples. �e Q-Q plot in

Figure 14 exempli�es the suitability of modeling read counts of Klebsiella species using di�erent

parametric distributions, namely, NB, Poisson, zero-in�ated Poisson (ZIP), and lognormal distri-

butions. �e theoretical quantiles of each parametric distribution are calculated from random

numbers generated from each parametric distribution with parameters estimated from each OTU

read count.

Parameters of each distribution are calculated as following, for each vector of feature’s reads

counts, we used the fitdistr function from the MASS R-package (123) to estimate the param-

eters of each parametric distribution used in the project except zero-in�ated Poisson (ZIP) distri-

bution. Here are the parameters for each distribution: (a) Negative-binomial distribution: size and

mean, (b) Poisson distribution: lambda, (c) Zero-in�ated Poisson distribution: p and lambda, (d)

Lognormal distribution: mean and standard deviation, (e) Normal distribution: mean and standard

deviation, and (f) Exponential distribution: rate. For zero-in�ated Poisson distribution, we used

the zeroinfl function from the pscl R-package (124; 125) to �t each features read counts with

a ZIP. �en we extracted the values of p (zero-in�ation probability) and the lambda. Using the

estimated parameters for all aforementioned distributions except ZIP, we simulated N (N = # of

samples of the Caporaso et al., study (70)) random numbers are generated using the correspond-

ing parametric distribution. For ZIP, we can generate N random numbers following ZIP with the

estimated parameters using rzipois function from the VGAM R-package (126; 127).
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�e p-value on the top of each sub-�gure of Figure 14 represents the BH adjusted p-value of

the two-sample Kolmogorov-Smirnov (KS) test (128), where a higher p-value indicates that the

two samples are derived from the same population distribution, and smaller p-value indicates that

the two samples are drawn from di�erent population distributions. In the case of Klebsiella, only

the NB distribution is considered suitable (p-value = 0.28).
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Figure 14: �antile-�antile plot between di�erent theoretical distributions on Klebsiella read

counts. Each sub-�gure represents a di�erent distribution: (a) NB distribution; (b) Poisson dis-

tribution; (c) ZIP distribution; and (d) Lognormal distribution. �e p-value above each sub-�gure

represents the signi�cance of the KS test between the sample quantiles and the theoretical quan-

tiles of the corresponding distribution. �e NB distribution is most appropriate to model the OTU

count among other standard distributions (115).
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To evaluate all other features, we applied the KS test to the read counts of each of the 750 OTUs

and the sampled numbers from the corresponding parametric statistical distribution that had the

same parameters as estimated from the read counts. Table IV summarizes the number of features

that do not show signi�cant divergence (p-value> 0.05 a�er BH multiple testing corrections) with

NB, ZIP, Poisson, lognormal, exponential, half-normal, and normal distributions. Out of the 750

features, 96% were modeled appropriately using NB distribution. In comparison, ZIP and Poisson

were appropriate for 41% and 26% of the OTUs, respectively, whereas the rest of the parametric

distributions employed in this analysis barely �t. �is indicates the appropriate use of NB as

a parametric distribution model for MetaLonDA when compared to other standard parametric

distributions. Furthermore, this �nding is consistent with previous studies that show that cross-

sectional di�erential abundance methods that use a NB distribution to model microbial features

outperform methods that rely on other distributions, especially when the number of samples is

small (129).
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TABLE IV: Number and percentage of species out of 750 species that do not show signi�cant dif-

ferences (KS p-value>0.05) with various standard statistical parametric distributions. �e count

data is taken from Caporaso et al..

Number Percentage

NB 721 96.13

ZIP 309 41.20

Poisson 201 26.80

Lognormal 1 0.13

Exponential 0 0

Half-normal 0 0

Normal 0 0

4.3.2 Performance Evaluation Based on Simulated Datasets

In order to benchmark MetaLonDA’s performance, we performed a comprehensive simulation

study. Longitudinal features (n=1000) were simulated from NB, Poisson, and ZIP distributions us-

ing the corcounts R-package (130). Although read counts of metagenomic features follow NB

distribution as shown in Table IV, the purpose of simulating data from Poisson and ZIP was to

evaluate the robustness of MetaLonDA when read counts fail to follow the NB distribution. �ese
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simulated features were categorized into two types: (a) 500 di�erentially abundant features be-

tween the two testing groups, and (b) 500 features that were not di�erentially abundant between

the two testing groups. In the case of the di�erentially abundant features (demonstrated in Fig-

ure 16A), the mean µ(t) pa�ern is simulated to be di�erentially abundant in three regions: (a)

at the start of the study course, (b) at the end of the study course, (c) in the middle of the study

course (Equation 4.15). In the case of non-di�erentially abundant features, the µ(t) = N(20, 1),

where N denotes normal distribution and t = 0, . . . , 20.

µ(t) =N(20, 1) + [N(20, 1) ∗ (5− t) ∗ I(t < 5)]+

[2 ∗N(20, 1) ∗ (t− 8) ∗ I(t > 8&t 6 11)]+

[2 ∗N(20, 1) ∗ (13− t) ∗ I(t > 11&t 6 13)]+

[N(20, 1) ∗ (t− 15) ∗ I(t > 15)]

(4.15)

For features simulated from the NB distribution, we used a size factor equal to 40/µ(t). In the

case of Poisson distribution, we used λ = µ(t), and in the case of zero-in�ated Poisson distribu-

tion, we used p(y = 0) = 0.3 for the zero-in�ation parameter. Our choice of the zero-in�ation

probability was based on the analysis of p̂(y = 0) when we ��ed all features in the Caporaso et

al., study (70) with the ZIP distribution (Table IV). �e histogram in Figure 15 shows that 75% of

the p̂(y = 0) is less than 0.3 (median of p̂ = 0.1). �erefore, our choice of 0.3 is to evaluate how

MetaLonDA performs in this case of simulated zero in�ation.
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Figure 15: Zero-in�ation probability distribution of the ��ed ZIP distribution. Read counts are

taken from the Caporaso et al., study (115).
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In order to mimic the correlation behavior between adjacent time points in longitudinal stud-

ies, the simulation of read counts of adjacent samples followed the �rst-order autoregressive

model (131) with a correlation coe�cient ρ = 0.9. Datasets were simulated for 15 subjects with

20 time points each (T = 20). Additionally, to mimic inconsistencies in the number of subjects

per group and number of samples per subject, we randomly chose 11 samples from 8 subjects

from group (A) and 8 samples from 6 subjects from group (B) (Figure 16A).
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Figure 16: Pa�ern and performance evaluation of data simulated from various statistical distribu-

tions. (a) �e pa�ern of the simulated longitudinal features. Each di�erentially abundant feature

has time intervals between group A and B at [1,5]
⋃

[8,13]
⋃

[15,20] time-unit and non-di�erential

time intervals [5,8]
⋃

[13,15]. �e simulated data mimics inconsistencies in sample collection (dif-

ferent number of subjects per group, di�erent number of samples per subject, and samples are

not equally spaced.) (b) �e ��ed smoothing spline of each group and the highlighted signi�cant

time intervals between the two groups. (c-e) �e performance of di�erent tools using data simu-

lated from NB, Poisson, zero-in�ated Poisson, respectively. Each bar represents the mean among

1000 features, and the error bar represents the standard deviation. MetaLonDA always has higher

speci�city than LOWESS and MetaSplines. �is shows MetaLonDA’s robustness among di�erent

distributions (115).
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TABLE V: Performance evaluation on data simulated from various statistical distributions mim-

icking consistent sampling.

NB Poisson ZIP

Sensitivity (%) Speci�city (%) Sensitivity (%) Speci�city (%) Sensitivity (%) Speci�city (%)

MetaLonDA 98 95 99 96 84 90

MetaDprof 94 94 86 94 87 96

LOWESS 96 80 100 47 94 60

MetaSplines 81 79 85 59 60 64

We proceeded to evaluate the performance ofMetaLonDA in comparison toMetaSplines,MetaD-

prof, and LOWESS (132). LOWESS is a non-parametric local regression model that is based on

combining multiple regression models in a k-nearest-neighbor-based meta-model. In the context

of this project, LOWESS refers to using the LOWESS regression model to substitute the NB dis-

tribution in MetaLonDA’s framework. Each method was run for 1000 permutations to construct

the AR empirical distribution. �e p-value threshold was set to 0.05 a�er multiple testing correc-

tions using BH. �e rest of the parameters were set to default. �e assessment is based on the

sensitivity = TP
TP+FN and specificity = TN

TN+FP . In this context, TP represents the number

of truly identi�ed time intervals of di�erentially abundant features. TN represents the number

of truly identi�ed time intervals of non-di�erentially abundant features, FP represents the falsely
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identi�ed time intervals of non-di�erentially abundant features, and FN represents the falsely

identi�ed time intervals of di�erentially abundant features.

Table V shows the performance evaluation based on consistent sampling, i.e., the ideal sce-

nario which is rare. MetaLonDA has the most balanced prediction in terms of sensitivity and

speci�city followed by MetaDprof and MetaSplines.

Next, we benchmarked MetaLonDA using the inconsistent sampling scenario. In this exper-

iment, MetaDprof was excluded since its package cannot handle the sampling inconsistencies.

In the case of data simulated from NB distribution, Figure 16C shows that MetaLonDA outper-

forms MetaSplines and LOWESS in sensitivity and speci�city. On the other hand, in the case of

data simulated from Poisson distribution, Figure 16D demonstrates that LOWESS has a slightly

be�er sensitivity than MetaLonDA (100% vs. 98%). But, the speci�city of LOWESS and MetaS-

plines is very low when compared to MetaLonDA (50% vs. 95%). �is is because LOWESS and

MetaSplines over-�t the data. Lastly for the case of the zero-in�ated Poisson, Figure 16E shows

that MetaLonDA, MetaSplines, and LOWESS have a comparatively low-level of sensitivity(∼50%),

but MetaLonDA has higher speci�city. �e reason behind this low sensitivity is the high zero

in�ation probability we chose for ZIP, p(y=0)=0.3. To summarize, MetaLonDA always maintains

a very high speci�city, in contrast to LOWESS and MetaSplines.

�e execution time of MetaLonDA, MetaDprof, and MetaSplines is comparable and depends on

the number of permutations used. Analysis of the simulated dataset from a NB distribution with

1000 features took 104 minutes with MetaLonDA, 113 minutes with MetaDprof, and 99 minutes

with MetaSplines. �e analysis was conducted on a MAC machine with 2.5 GHz Intel Core i7 pro-



84

cessor and 16 GB 1600 MHz RAM. For the same analysis, LOWESS was slightly faster (87 minutes)

because it does not have the complex smoothing spline optimization equation (Equation 4.11) that

needs to be solved numerically.

4.3.3 Performance Evaluation Based on a Biological Dataset: Hygiene Hypothesis Study

In order to assess the biological signi�cance of the identi�ed time intervals of di�erentially

abundant features, we used a publicly available dataset from a longitudinal metagenomic study

that investigates the hygiene hypothesis (1). �e study was part of the DIABIMMUNE project

(https://pubs.broadinstitute.org/diabimmune). Stool samples were collected

from 222 infants (74 from Russia, 74 from Finland, and 74 from Estonia) from birth to ∼ 3 years

of age. In our analysis, we identi�ed the time intervals with di�erentially abundant genera in

Russian and Finnish infant guts. We focused on the 585 samples (304 from 70 Russian infants

and 281 from 71 Finnish infants) that had been sequenced using Metagenomic shotgun (MGS)

sequencing. Figure 17 shows the distribution of time points of the stool samples collected from

each group (Figure 18 shows the distribution of time points per subject). Reads from the 585 se-

quenced samples were quality-controlled by �ltering out low-quality reads, short reads (<60 bp),

and human reads. Taxonomic pro�les were constructed using MetaPhlAn2 (100). �e number

of reads mapped to each taxonomic feature was then normalized to the reads per kilo-base per

million sample reads (RPKM) to correct for bias due to di�erences in genome size and sequencing

depth. �e aggregated taxonomic pro�les of all 585 samples revealed 128 genera.
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Figure 17: Time distribution of 585 stool samples (304 from 70 Russian and 281 from 71 Finnish)

sequenced using MGS in the DIABIMMUNE project. �e collected samples have various forms

of inconsistencies; di�erent number of subjects per group (70 Russian vs 71 Finnish infants),

di�erent number of samples per subject (min=1, max=13), and the samples’ time points are not

equally spaced (115).
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Figure 18: Time points distribution per subject in the DIABIMMUNE study (115).
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In order to evaluate the suitability of using NB to model genera read counts before applying

MetaLonDA, we conducted an analysis similar to the one shown in Table IV. We found that NB

can be considered a good �t for 79% of the 128 genera.

We applied MetaLonDA, LOWESS, and MetaSplines to identify the time intervals of the di�er-

entially abundant genera. We set the number of permutations for all three methods to 1000, p-

value threshold = 0.05, multiple testing correction method to BH, and other parameters to default.

MetaLonDA identi�ed 71 genera that have at least one time interval with di�erentially abundant

genera, LOWESS identi�ed 122 genera, and MetaSplines identi�ed 80 genera. Although there are

53 mutually inclusive common genera identi�ed by the three methods as shown in Figure 19, this

does not necessarily indicate that they share the same identi�ed time intervals as demonstrated

in Figure 20. LOWESS identi�ed 30 genera that neither MetaSplines nor MetaLonDA reported.

Whereas MetaLonDA identi�ed 2 genera that were not reported by either LOWESS or MetaS-

plines. �ese results emphasize the high control of false positive identi�cations by MetaLonDA.

�is results emphasizes the high control of false positive identi�cations by MetaLonDA. In con-

trast, LOWESS identi�ed 30 genera that neither MetaSplines nor MetaLonDA reported. �e previ-

ously discussed simulation study concluded that LOWESS and MetaSplines have lower speci�city

compared to MetaLonDA. �us, MetaLonDA discovery of few signi�cant time intervals is directly

related to its increased speci�city compared to the other two methods.
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Figure 19: Number of genera identi�ed as di�erentially abundant between the Finnish and Russian

infants. 53 common genera were identi�ed as di�erentially abundant using the three tools. �e

”17” on the lower right corner represents the number of genera that were not identi�ed at any

time interval by MetaLonDA, LOWESS, or MetaSplines (115).
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Figure 20: Time intervals of the mutually di�erentially abundant genera from Finnish and Russian

infants identi�ed by MetaLonDA, LOWESS, and MetaSplines. Each line represents signi�cant time

interval of the corresponding genus. MetaLonDA (purple), LOWESS (green), MetSplines (orange).

�e solid lines represent the intervals where samples from the Finnish group have more reads,

while the dashed lines represent the di�erential abundance intervals where samples from the

Russian group have more reads (115).
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Figure 20 visualizes di�erences between the time intervals identi�ed byMetaLonDA, LOWESS,

and MetaSplines correlating with the major shared genera. In most cases, the time intervals iden-

ti�ed by MetaLonDA were also identi�ed by either LOWESS, MetaSplines or both. One critical

observation that likely contributes the greater number of false positives observed in MetaSplines

is that it sometimes identi�es time intervals where samples from one group are missing. �e ab-

sence of one group’s samples can make the spline ��ing uncontrollable (81). For example, MetaS-

plines identi�ed Actinobacillus as relatively more abundant in the Russian infants from day 40

until day 65, although the �rst Russian sample was collected a�er 96 days a�er birth. MetaLonDA

handles this situation by only reporting signi�cant intervals during the time period when samples

from all study groups are available. In the case of the hygiene hypothesis study, individual gen-

era’s time intervals identi�ed by MetaLonDA are bounded in the range of 96 to 1105 days. Day 96

was the day on which the �rst sample from a Russian infant was collected, and day 1105 is when

the last Russian sample was collected (the �rst sample from Finnish infants was on day 41, and

the last was on day 1162). Since we implemented LOWESS on the same MetaLonDA framework,

it also handles this edge problem. Figure 21 shows the time intervals of di�erentially abundant

genera identi�ed by MetaLonDA, LOWESS, and MetaSplines, while Figure 22 shows time intervals

identi�ed by MetaLonDA only.
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Figure 21: �e identi�ed time intervals of the shared di�erentially abundant genera by Met-

aLonDA, LOWESS, and MetaSplines between Finnish and Russian infants (115).
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Figure 22: �e identi�ed time intervals of the di�erentially abundant genera by MetaLonDA be-

tween Finnish and Russian infants (115).
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In our analysis, MetaLonDA con�rms the report by Vatanen et al. demonstrating that the

genus Bacteroides is relatively more abundant during early time points in the Finnish group,

whereas the genus Bi�dobacterium is relatively more abundant in the Russian group (1). Met-

aLonDA speci�es that Bacteroides were signi�cantly abundant during days 96-584 in Finnish in-

fants, and Bi�dobacterium were relatively more abundant in Russian infants from day 96 to day

720. Furthermore, in their study, Vatanen et al. noted that early life exposure to speci�c struc-

turally distinct bacterial lipopolysaccharides (LPS) in�uences the development of autoimmune dis-

ease. �ey suggest that in contrast to Russian infants, Finnish infants mount an insu�cient im-

mune response due to exposure to Bacteroides LPS rather than Escherichia coli LPS. Utilization

of MetaLonDA in this cohort demonstrates that Escherichia establishes a signi�cant community

in Russian infants from day 550-946 with li�le variability. MetaLonDA also de�ned speci�c time

intervals during which other bacterial genera (e.g., Lactobacillus, Leptotrichia, Klebsiella) previ-

ously associated as protective or instigating of Type 1 Diabetes (T1D) were di�erentially abun-

dant (133; 134). Moreover, MetaLonDA established that up until day 629, Finnish infants present

an additional shi� in Proteobacteria with an overabundance of genera that are known to be im-

plicated in human disease; including Campylobacter, Haemophilus, Klebsiella, and Neisseria. In

parallel, when evaluating genera that have previously been associated with protection against

T1D, MetaLonDA reveals a divergence from Lactobacillus and Lactococcus to Veillonella as the

dominant Firmicutes genera observed early in the life of Finnish infants. �ese �ndings suggest

that there is a complex interplay of multiple bacterial genera early in life which may all have im-

munogenic potential and will allow, in this case, further exploration of the role bacteria speci�c
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LPS as well as other microbial speci�c stimulators or inhibitors of the host immune response and

their role in development of autoimmune disease.

4.4 Conclusion

We have developed MetaLonDA, a method that can identify signi�cant time-intervals of dif-

ferentially abundant microbial features such as taxonomies, genes, or pathways. MetaLonDA is

�exible such that it can perform di�erential abundance tests on longitudinal samples with dif-

ferent numbers of subjects per phenotypic group, di�erent number of samples per subject, and

samples that are not collected at consistent time points. �ese inconsistencies are o�en the case

for samples collected from human subjects. Inconsistencies increase with the complexity of the

procedure utilized to obtain the samples. Usually, there is less inconsistency in samples collected

through non-invasive procedures such as stool and urine samples, but increases in the case of

invasive procedures such as BAL. MetaLonDA relies on two modeling components: the NB distri-

bution for modeling the mapped read counts for each feature and the semi-parametric SS-ANOVA

technique for modeling longitudinal pro�les associated with di�erent phenotypes.

Extensive experiments on simulated datasets quantitatively demonstrate the e�ectiveness of

MetaLonDA with signi�cant improvement over alternative methods. �e time needed to execute

MetaLonDA depends on the number of features being tested and the number of permutations for

generating AR empirical distributions. MetaLonDA performs signi�cance testing based on unit

time intervals that can be hours, days, weeks, months, or years. �e identi�ed time intervals of

di�erentially abundant features can be used as preselected features for a machine learning classi-
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�er to predict disease prognosis (135; 90; 85). MetaLonDA can be applied to any longitudinal count

data such as metagenomic sequencing, 16S rRNA gene sequencing, or RNA-Seq. It is worth not-

ing that the NB assumption made for taxonomy would need to be reassessed before MetaLonDA

can be con�dently applied to functional data. In the future, we plan to implement a checker func-

tion that evaluates the distributional assumption based on KS test, and accordingly, the best-��ed

model can be utilized for the longitudinal di�erential abundance test.

Furthermore, MetaLonDA allows for an in-depth exploration of potential features and estab-

lishment of precise time intervals during which individual features may serve as biomarkers from

population-based longitudinal studies such as the DIABIMMUNE cohort discussed in this project.

Speci�c signi�cant time intervals can then be utilized to establish targeted timely screening or

prevention of individual features and allow for prompt intervention, such as the use of antibiotics

or probiotics. Unlike with cross-sectional methods that are incapable of identifying signi�cant

time intervals associated with di�erentially abundant features, MetaLonDA may lead to reconsti-

tution of the microbiome and reestablish homeostasis prior to entering the cascade of events that

may lead to overt disease.

Although MetaLonDA addresses one of the most common limitations in human sample col-

lection inconsistencies, there is still room for improvement. �e current version of MetaLonDA

only �nds the association between microbial features, time, and phenotypic group. In the future,

we plan to incorporate additional confounding factors (age, gender, race, disease severity, etc.) to

the MetaLonDA model. Another limitation of MetaLonDA is that when samples are sparse over

extended time intervals, the ��ed smoothing spline has large variation (81). �is causes the iden-
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ti�ed signi�cant time intervals to be unreliable and should be excluded from the analysis. �us,

identi�cation of these extended intervals based on a statistical method merits further investiga-

tion.

MetaLonDA is publicly available on the CRAN repository (https://CRAN.R-project.

org/package=MetaLonDA).



CHAPTER 5

UTILIZING LONGITUDINAL GUT MICROBIOME TAXONOMIC PROFILES TO

PREDICT FOOD ALLERGY VIA SPARSE AUTOENCODER AND LONG

SHORT-TERMMEMORY NETWORK

5.1 Introduction

Food Allergy and Relationship to the Microbiome

Food sensitization and allergy are characterized by an immunologic reaction caused by expo-

sure to antigenic products derived from food, such as Ara h1 (peanuts) or tropomyosin (shell�sh).

�e estimated prevalence of food sensitization and allergy in the US is 8% (136), with peak preva-

lence between the ages of one and two years old. Food sensitization is o�en associated with a

positive reaction to skin prick testing or by increased levels of serum speci�c IgE to speci�c food

antigens. Food allergy can be diagnosed by the clinical history of symptoms a�er food ingestion

or by direct food challenge and monitoring of symptoms. Notably, not all individuals who are

sensitized develop allergy, but the prevalence of food allergy is substantially higher for individ-

uals with food sensitization. In turn, not all individuals with food allergy are sensitized to food

allergens and thus serologic or skin testing alone is not su�cient for diagnosis of the food allergy.

�ere is a need for more objective measures that have predictive value in diagnosing food allergy.

Food allergies are categorized into three groups: IgE-mediated, non-IgE-mediated, and mixed

reactions. IgE-mediated food reactions are caused by the cross-linking of IgE on the surface of

97
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mast cells or basophils by food proteins. �is leads to rapid degranulation of these cells and release

of histamine which is the primary mediator of IgE symptoms including urticaria, angioedema, and

anaphylaxis, which can be life-threatening. �ese symptoms present acutely within minutes a�er

the ingestion of food allergen. In contrast, non-IgE-mediated and mixed reactions present in a

subacute to chronic time-frame and their mechanisms are less de�ned. Subacute symptoms asso-

ciated with non-IgE food allergy are localized to the gastrointestinal tract, such as blood/mucus

�lled stools or vomiting, which can lead to chronic symptoms such as weight loss, dehydration,

lethargy, and failure to thrive. Mixed reactions are characterized by food allergens exacerbat-

ing IgE-mediated diseases, such as atopic dermatitis. �us, food allergy represents a spectrum of

diseases that are currently diagnosed by subjective measurements during early life.

�e increasing incidence of food allergy and other allergic diseases has been a�ributed to

“westernized” life-styles, as prevalence of these diseases is substantially higher in the developed

world. One over-arching theme as to why the incidence of allergy is increasing is the loss or dis-

turbance in communities of micro-organisms that live on and in us (i.e., the microbiome). Impor-

tantly, di�erences in composition of the microbiome have been associated with food sensitization

and/or IgE and non-IgE-mediated reactions (137; 138; 139; 140; 141), symptom resolution (142),

and prevention and treatment (143; 144). �is opens the door to develop more rigorous food al-

lergy prediction models that are based on microbiome pro�les of newborns, which could be used

to predict food allergy and inform early intervention with novel therapies.
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Longitudinal Microbiome Studies

Longitudinal microbiome studies have been widely utilized to study disease prognosis and

microbial dynamics within an ecosystem such as the gut, lung, or kidney (30; 1; 70; 71; 72; 73).

�e exponential reduction in sequencing cost has resulted in the increase in popularity of longitu-

dinal microbiome studies. Usually, a microbiome study is performed by sequencing the extracted

DNA from a biological sample using either metagenomic shotgun (MGS) or 16S rRNA gene se-

quencing (145). Metagenomic reads are processed for each sample independently to construct

the taxonomic and/or functional pro�les (45; 56; 116; 117). Developing methods that predict the

host phenotype from longitudinal microbiome samples comes with some challenges, e.g., variable

sample collection times and an uneven number of time points along the subjects’ longitudinal

time-line, especially when samples are collected from human subjects. Hence, using standard

prediction methods such as Hidden Markov Models (HMMs) (94) and Auto Regressive (AR) mod-

els (95) may not be suitable in these cases.

Deep Learning

Deep learning has revolutionized various �elds by o�ering robust strategies to extract ab-

stract nonlinear features that are refractory to traditional methods (146; 147). Multiple deep

learning frameworks have been developed to predict phenotype from snapshot microbiome pro-

�les (85; 90). On the other hand, a powerful approach to analyze temporal data is the Recurrent

Neural Network (RNN). RNNs have shown success in di�erent �elds such as natural language

processing (148) and speech recognition (149). Although in theory, the RNN can learn depen-
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dent representation from distant events, it fails in practice due to problems with vanishing gra-

dients (147). �is problem occurs because the error loss is back-propagated through the deep

network by multiplying the derivative of the utilized activation function, which is usually the

sigmoid or hyperbolic tangent. �e derivative of these activation functions is usually less than

one. Hence, multiplying the error loss by many of these less than one numbers causes the van-

ishing gradient problem. Fortunately, Long Short-Term Memory (LSTM) networks, a modi�ed

variant of the RNN, have the ability to learn dynamic temporal behavior for a time sequence

event and overcome the vanishing gradient problem that occurs in standard RNNs (150).

5.1.1 Problem De�nition

In this work, we present a deep learning framework to predict food allergies in infants based

on longitudinal gut microbiome pro�les. In our model, we use all historical samples up to time-

point t (features at timepoint t included) from each subject to predict the phenotype (food allergy

vs. non food allergy) at timepoint t. We hypothesize that adding the information from past micro-

biome pro�les increases the predictive power of food allergy versus training a model with each

timepoint independently. �e proposed framework is based on a sparse autoencoder and LSTM

network. �e proposed model is �exible such that it can analyze subjects with a di�erent number

of time points.
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5.2 Methods

5.2.1 Proposed Framework

Figure 23 illustrates an overview of our proposed framework to predict food allergy from lon-

gitudinal microbiome taxonomic pro�les. It consists of two main components; an autoencoder

and an LSTM network. �e input to the autoencoder is a vector representing a normalized tax-

onomic pro�le of a subject’s microbial sample. �e aim of this module is to learn a compressed

latent representation of a sample’s microbial features. �e learned latent representations are then

passed to the LSTM module to learn temporal dependency between sequence pro�les. Subse-

quently, the output from the last cell of the LSTM model is then fed to a so�max output layer

where the prediction can be determined (e.g., food allergy vs. non food allergy). �e method-

ology of obtaining the latent representation and learning temporal dependency is explained in

details in the following sections.
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Figure 23: �e proposed deep learning framework, where n denotes the number of timepoints

from each subject, which is not the same for all subjects.
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5.2.2 Sparse Autoencoder

Autoencoders are neural network architectures that use unsupervised learning to extract com-

pressed latent representations from unlabeled data. Figure 24 shows a schematic diagram of the

autoencoder architecture that we used in our framework. �e number of neurons in the input

layer equals the number of raw features (220 in our case). It has three hidden layers with 100, 50,

and 100 neurons in that order. �e number of neurons for the output layer equals the number of

raw features (220 in our case).

�e output of layer l follows (Equation 5.1), where xl is the input feature vector, Wl is edge

weight matrix, and bl is the bias. We used the Recti�ed Linear Unit (ReLU) (Equation 5.2) as the

activation function since it makes objective function converges faster (151).

fl(xl) = ReLU(Wlxl + bl) (5.1)

ReLU(x) = max(0, x) (5.2)

�e output of the autoencoder x′ is calculated as in Equation 5.3 where m is the number of

layers of the autoencoder (4 layers in our framework)

x′ = F1→m(x) = f1 ◦ .... ◦ fm(x) (5.3)
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Figure 24: Autoencoder architecture.
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�e weights and biases of the autoencoder are learned by minimizing the error between the

input x and the reconstructed input x′ as shown in Equation 5.4 where n is the number of data-

points (number of samples in our case).

Loss(x,x′) =
1

n

n∑
i=1

∥∥xi − x′i
∥∥2 (5.4)

In order to prevent over-��ing, an L2 regularization on the weights is added to the loss func-

tion with regularization parameter λwherem denotes the number of layers (Equation 5.5). Addi-

tionally, in order to enforce the sparsity on the hidden layer neurons, we added Kullback-Leibler

(KL) divergence to the loss function (Equation 5.5) where ρ denotes the sparsity parameter (152),

β is a parameter that controls the weight of the sparsity penalty term, and k denotes the number

of neurons on the latent representation layer.

KL-divergence is a standard function to measure the di�erence between two distributions. It is

calculated as shown in (Equation 5.6), where ρ′j (Equation 5.7) is the average activation of neuron

j in the latent representation layer of the autoencoder across all timepoints and aj denotes the

output of the activation function of neuron j. By pu�ing KL-divergence into the loss function,

latent representation neurons are forced to activate a small fraction of their neurons (152). �is is

useful to force the neurons to learn certain pa�erns of data which in turn increase their speci�city

in performance contrasted to the more general training.

Loss(1)(x,x′) =
1

n

n∑
i=1

∥∥xi − x′i
∥∥2 + λ

m∑
j=1

‖Wj‖2 + β

k∑
j=1

KL(ρ||ρ′j) (5.5)
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KL(ρ||ρ′j) = ρ ∗ log
ρ

ρ′j
+ (1− ρ) log

1− ρ
1− ρ′j

(5.6)

ρ′j =
1

n

n∑
i=1

aj(xi) (5.7)

�e sparse autoencoder is trained via the backpropagation algorithm (152) to minimize the

loss function (Loss(1)). A�er the training is completed, the latent features are extracted and

passed to the LSTM to train the model for phenotype prediction (food allergy vs. non food allergy).

5.2.3 Long Short-Term Memory (LSTM) Network

�e LSTM network is a variant of the vanilla RNN that has the ability to learn long se-

quences (150). �is ability is due to the presence of a memory, usually referred to as Cell state

C that stores long-term information so that errors will not be propagated through distant states.

LSTM networks solve the two major problems of RNNs, the vanishing and exploding gradient

descent problems. It accomplishes this by using 3 gates to control the cell state: forget, input, and

output.

�e forget gate controls the amount of information that should be forgo�en from the previous

cell state by analyzing the current input xt and the previous hidden state ht−1. �e sigmoid

function σ(.) in Equation 5.8 gives a value [0-1] representing the proportion of the previous cell

state that should be retained.

ft = σ(Wfxt + Ufht−1 + bf ) (5.8)



107

�e input gate controls how much of the current input xt should be used in training (Equa-

tion 5.9). �en, a list of new candidates for the cell state is calculated as in Equation 5.10.

it = σ(Wixt + Uiht−1 + bi) (5.9)

C̃ = tanh(Wcxt + Ucht−1 + bc) (5.10)

Updating the cell state is performed as formulated in Equation 5.11

Ct = ftCt−1 + itC̃ (5.11)

To calculate the output of the LSTM ht, usually called the hidden state, that is passed to the

next sample in a sequence, we �rst determine which part of the cell state should be outpu�ed

by the following (Equation 5.12) where ot denotes the output of the output gate. Subsequently,

multiplying ot by the squashed cell state Ct via tanh function (Equation 5.13). bf , bi, bc, and bo

are bias terms.

ot = σ(Woxt + Uoht−1 + bo) (5.12)

ht = ot ∗ tanh(Ct) (5.13)
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Since the number of samples for each subject is not identical, we extract the LSTM output

of the last sample of each subjects’ sequence. �is output is then fed into a dense layer with the

sigmoid activation and with the dimension of (num hidden neurons x num classes) (64x2 in our

case) (Equation 5.14).

zt = σ(Wzxz + bz) (5.14)

zt is then fed to a so�max function in order to give an output probability for each class (Equa-

tion 5.15). �e class with the highest probability is considered the predicted class.

ŷt = so�max(zt) (5.15)

Since our main target in this project is to predict the phenotype (food allergic vs. non food

allergic), we used the cross-entropy between target yt and predicted output y′t (Equation 5.16) to

be the loss function.

E(yt, ŷt) = −yt log(ŷt)− (1− yt) log(1− ŷt) (5.16)

To prevent over ��ing, we used L2 regularization in the loss function (Equation 5.17), where

J = {f, i, c, o, z}. Similar to the autoencoder, we used the back-propagation algorithm to mini-

mize the loss. Here, N denotes the number of data sequences (subjects in our case)
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Loss(2)(y, ŷ) =
N∑
i=1

E(yti , ŷti) + λ
∑
j∈J
‖Wj‖2 (5.17)

5.3 Experiments

Dataset: DIABIMMUNE

In order to evaluate our proposed model, we used the longitudinal microbiome pro�les from

the DIABIMMUNE project(https://pubs.broadinstitute.org/diabimmune),

a study that aimed to characterize host-microbe immune interactions contributing to autoimmu-

nity and allergy. �ese diseases were evaluated in relationship to the hygiene hypothesis, which

states that subjects with high bacterial exposure tends to have a more powerful immune system

and fewer allergic diseases (1). To test this hypothesis, stool samples were collected from 222

infants (74 from Russia, 74 from Finland, and 74 from Estonia) from birth to 3 years of age. At

the time of stool sample collection, various food allergen-speci�c Immunoglobulin E (IgE) levels

were measured for each subject, and based on a prede�ned threshold, infants were annotated as

allergic or non-allergic to the corresponding food allergen. Figure 25 shows the breakdown of the

number of subjects with milk, egg, or peanut allergic responses. It is clear that the prevalence of

the allergies is highest in Finland and lowest in Russia with Estonia intermediate. �is is aligned

with the hygiene hypothesis. For the purpose of evaluating our framework, we labeled subjects

as food allergy positive if they are allergic to milk, eggs, or peanuts (Figure 25).
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Figure 25: Number of subjects allergic to milk, egg, and peanut within the DIABIMMUNE cohort

a�er �ltering out missing data. �e Food-Allergy group is the summation of milk, egg, and peanut

allergy.
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Figure 26: Time distribution of 731 (281 from 71 Finnish, 197 from 70 Estonian, and 253 from

54 Russian) stool samples sequenced using MGS from the DIABIMMUNE project. �e collected

samples have various forms of inconsistencies, such as di�erent numbers of samples per subject

(min = 1, max = 13).
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As a preprocessing step, we removed all samples without a food allergy class label, i.e., missing

data, resulting in 731 samples from 195 subjects (281 from 71 Finnish, 197 from 70 Estonian, and

253 from 54 Russian). �e 195 subjects are categorized as 68 food allergic and 127 non food allergic.

Figure 26 shows the distribution of time points of the samples collected from each class from each

country.

As shown, these samples su�er from all forms of variability such as a di�erent number of

subjects per phenotypic group (food allergy vs non food allergy), a di�erent number of samples

per subject, and samples not collected at consistent time points

�ese samples have been sequenced using MGS sequencing. As previously described in (1),

reads from the 731 sequenced samples were quality-controlled by �ltering out low-quality reads,

short reads (< 60 bp), and human reads. Taxonomic pro�les were constructed usingMetaPhlAn2 (100).

�e number of reads mapped to each taxonomic feature was then normalized to the reads per kilo-

base per million (RPKM) sample reads to correct for bias due to di�erences in genome size and

sequencing depth. �e aggregated taxonomic pro�les of all 731 samples revealed 220 genera.

Benchmarking Procedure

We benchmarked the proposed framework against other predictive models, such as Support

Vector Machine (SVM), Random Forests (RF), and Least Absolute Shrinkage and Selection Oper-

ator (LASSO). In our evaluation, we benchmarked two aspects: (1) the e�ect of extracting and

using the latent representation versus using raw features on the prediction, and (2) the e�ect on

the prediction of learning temporal dependency between the sequence of samples, as in LSTM,

versus learning from each sampling independently using methods such as SVM, RF, or LASSO.
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We implemented our autoencoder-LSTM model using Tensor�ow (v1.6.0) (153). We trained the

autoencoder and LSTM separately. �e autoencoder consists of 220, 100, 50, 100, and 220 neurons

for the input layer, �rst hidden layer, second hidden layer (latent representation), third hidden

layer, and output layer, respectively. We trained the model with the back-propagation algorithm

using the Adaptive Moment Estimation (Adam) optimizer (154) with a learning rate of 0.001 and

batch size of 5. �e model was trained for 50 epochs, and the best model was saved based on the

loss value on the test set. For L2 regularization we used λ = 0.05. For the sparsity constraint,

we used ρ = 0.01 and β = 3. For the LSTM module, we used 64 neurons for the LSTM hidden

neurons. Similar to the autoencoder, the LSTM model was trained with Adam Optimizer with a

learning rate of 0.001 and batch size = 5.

�e RF, SVM, and LASSO models were all trained using Python’s scikit-learn package(http:

//scikit-learn.org). �e RF models were trained by se�ing a maximum of 500 trees.

All other parameters were le� as the default values. �e SVM models were trained using an ex-

haustive grid search with 5-fold cross-validation over the linear and Gaussian kernels, using the

parameters 1, 10, 100, 1000 for error terms and the parameters 0.001, 0.0001 for γ values in Gaus-

sian kernels. �e LASSO models were trained using iterative ��ing with 5-fold cross-validation

for the error term α over a set of 50 numbers, evenly log-spaced between 4-10 and 0.5-10.

In the case of RF, SVM, or LASSO, the prediction of the last timepoint of each subject is deter-

mined based on a majority voting scheme from the predicted phenotype of all subject’s timepoints.

�is strategy ensures a fair comparison with LSTM, which uses all of a subject’s timepoints to

predict the phenotype of the last timepoint.
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Evaluation Metrics

We used 10-fold cross validation to evaluate all of the methods. Given the fact of the imbal-

anced data (68 allergic and 127 non-allergic) we up-sampled samples from allergic infants and

down-sampled samples from non-allergic infants. Up/down sampling was achieved by spli�ing

the training set (N = 195) into allergic (Na = 68) and non-allergic (Nna = 127) subjects. For

l = N
10 for 10-fold, we calculated the proportion of allergic (N l

a = Na
10 = 7) and non aller-

gic (N l
na = Nna

10 = 13). In the case of a balanced dataset, we should have 10 allergic and 10

non-allergic. To correct for our imbalanced dataset, we up-sampled allergic subjects by sampling

(0.5 ∗ l−N l
a) samples from N l

a and concatenated them to N l
a. Similarly, we down-sampled non-

allergic subjects by sampling (N l
na−0.5∗ l) samples fromN l

na and removed them fromN l
na. �is

ensures the proper training and more meaningful evaluation metrics.

Various performance metrics were calculated such asSensitivity = TP
TP+FN andSpecificity =

TN
TN+FP . �ese metrics have been used to obtain area under the received operating curve (AU-

ROC).

5.4 Results and Discussion

5.4.1 Analyze the Latent Representation

�e �rst aspect we investigated the similarities of the latent representation to the raw features.

Figure 27 shows PCA of the latent features and raw features labeled by country, phenotype, and

age. Figure 27.A shows a distinction between samples from Finland and Russia, while the Esto-

nian samples overlap between them. �is is aligned with the rate of allergy between the three
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countries where Russia and Finland represent the two extremes, and Estonian infants are in be-

tween (Figure 25). �e distinction is less apparent using the raw features (Figure 27.D). However,

changes in age and phenotype are more discriminative using the latent representation. previous

studies indicate that the infants’ gut microbiome evolves over time (9). At birth, gut microbiomes

are similar but then start to di�erentiate by colonizing di�erent types of bacteria either from

breast milk or environmental sources.



116

Figure 27: PCA of the latent representation (le� panel, A-C) vs. raw features (right panel, D-E).

�e �rst row is labeled by country (Russia, Estonia, and Finland), the second row is labeled by

phenotype (food allergic vs non food allergic), the third row is labeled by age (0-3 years).
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Figure 28 shows the trajectory of the loss by training the autoencoder with more epochs.

�e loss progressively decreases by more training epochs until it stabilizes a�er 40 epochs. �e

smallest loss achieved was 25.8. Ideally, it should be zero or very small value, but this is due to

the regularization we put on the autoencoder to prevent over-��ing.
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Figure 28: Reduction in autoencoder loss function (Loss(1)) with the increasing number of train-

ing epochs.



119

5.4.2 Evaluation of Prediction

Subsequently, we evaluated how our proposed method compares with the commonly used

classi�cation methods. Figure 29 shows a violin plot of the area under the ROC curve (AUROC)

for four classi�ers; LSTM, RF, SVM, and LASSO. For each classi�er, we evaluated two types of

input features; latent features which extracted from the trained autoencoder and raw taxonomic

pro�le features. �e violin plot shows the distribution of AUROC for each model a�er running

10 times 10-fold cross-validation experiments. Samples are shu�ed a�er each 10-fold to test the

robustness of each classi�er.
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Figure 29: Evaluation of area under ROC curve (AUROC) for the proposed model versus baseline

models. In this �gure we evaluated four classi�ers; LSTM, RF, SVM, and LASSO. For each clas-

si�er, we evaluated two types of input features; latent features which extracted from the trained

autoencoder and raw taxonomic pro�le features. �e violin plot shows the distribution of AU-

ROC for each model a�er running 10 times 10-fold cross-validation experiments. �e samples are

shu�ed a�er each 10-fold cross-validation to test the robustness of each classi�er.
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TABLE VI: Evaluation of area under ROC curve (AUROC) for the proposed model versus baseline

models. P-values are calculated using Mann-Whitney U test between LSTM-latent versus each

corresponding method.

mean (sd) p-value

LSTM-latent 0.69 (0.08) -

LSTM-raw 0.67 (0.10) 0.60

RF-latent 0.49 (0.15) 5.24 ∗ 10−7

RF-raw 0.60 (0.14) 0.0027

SVM-latent 0.48 (0.16) 1.47 ∗ 10−6

SVM-raw 0.52 (0.11) 4.83 ∗ 10−7

LASSO-latent 0.56 (0.10) 1.03 ∗ 10−5

LASSO-raw 0.57 (0.14) 0.0001

LSTM shows superior performance compared to the other classi�ers, supporting the concept

that learning a sequence of events increases the prediction power. Although the median of LSTM

trained on latent features and raw features were similar (0.67 vs. 0.65), the prediction was more
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stable with the latent representation (Table VI). �is highlights the bene�t of using compressed

features rather than using all raw features which may be redundant information. Alternatively, all

other classi�ers that do not take time sequence data into consideration perform poorly compared

to LSTM. Table VI and Figure 29 show that the AUROC of RF with raw features comes second to

LSTM, but it su�ers from an unstable performance (sd=0.14).

5.4.3 Execution Time

�e execution time of training LSTM on both latent representation and raw features is com-

parable and depends on the number of epochs used and batch size. 10-times 10-fold validation

was 92 minutes on the DIABIMMUNE dataset that we used given all the parameters stated above.

Alternatively, using raw and latent features, it took 13 and 12 minutes for SVM, 9 and 5 minutes

for RF, and 2 and 1 minutes for LASSO, respectively. �e prediction time is linear for all algo-

rithms. �e evaluation was conducted on a MAC machine with 2.5 GHz Intel Core i7 processor

and 16 GB 1600 MHz RAM. No GPU was used for training of the LSTM.

5.5 Conclusion

Food allergy is usually di�cult to diagnose at young ages, and the inability to diagnose pa-

tients with this atopic disease at an earlier age may lead to severe complications due to the lack

of treatment. In this work, we have developed a deep learning framework that has the capacity to

predict food allergy from longitudinal microbiome pro�les. �e framework is based on sparse au-

toencoder and Long Short-Term Memory (LSTM) networks. Sparse autoencoder is devised to ex-

tract potential latent structure in microbiome prior to LSTM training. We tested the framework on

the DIABIMMUNE dataset(https://pubs.broadinstitute.org/diabimmune),
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a study that aimed to characterize host-microbe immune interactions contributing to autoimmu-

nity and allergy. Our results demonstrate the increase in predictive power of our proposed model

compared to SVM, Random Forest, and LASSO regression.

Although our deep learning framework shows the potential to predict allergic phenotypes

from a sequence of microbiome pro�les and outperforms other classical methods, it does not reach

a prediction level for optimal clinical utilization. �is is mainly due to the nature of the training

dataset that we used to train our model. �e DIABIMMUNE dataset is small (195 subjects) and

each subject has few time points (6 on average). With the current reduction in sequencing costs,

we anticipate that multiple large longitudinal microbiome projects will be available which in turn

could be used to train models like ours for be�er prediction power.



CHAPTER 6

LOWER AIRWAY MICROBIOME DYNAMICS AS A PREDICTOR OF

BRONCHIOLITIS OBLITERANS SYNDROME AFTER PEDIATRIC LUNG

TRANSPLANTATION IN CYSTIC FIBROSIS

6.1 Introduction

Cystic �brosis (CF) is a highly prevalent autosomal recessive disease associated with reduced

life expectancy despite advances in comprehensive care (155; 156; 157). �e pulmonary disease

remains the primary cause of poor outcomes in those a�ected by CF and lung involvement is

evident even in healthy-appearing infants with as many as 1/3 demonstrating tomographic evi-

dence of bronchiectasis (156; 158; 159). In CF, defective mucociliary clearance, recurrent bacterial

infections, and chronic suppurative in�ammation of the airways results in end-stage pulmonary

disease and accounts for about 80% of deaths (157; 160; 161). In end-stage pulmonary disease, lung

transplant (LTx) is considered the �nal therapeutic option to improve quality of life and prolong

survival. �us, LTx is usually reserved for those with forced expiratory volume (FEV1) <30%

predicted, poor performance on 6-minute walk test (<400m), pulmonary hypertension, or other

clinical signs related to end-stage CF pulmonary disease (162; 163).

Overall, median survival in pediatric patients who undergo bilateral lung transplant is about

5.6 years, and functional status with good quality of life is maintained during the �rst 2-3 years

a�er transplantation (163; 164; 165). Despite increased survival and improved outcomes, LTx

124
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is still characterized by the highest rates of rejection among solid organ transplants. In LTx,

chronic lung allogra� dysfunction (CLAD) remains the principal cause of poor long-term sur-

vival and is common in those who survive beyond 1 year a�er transplantation (164; 166; 167).

Speci�cally, bronchiolitis obliterans syndrome (BOS), manifesting as a sustained progressive de-

cline in FEV1, is the cause of over 50% of morbidity and 45% of mortality observed at 5 years

post-transplantation (164; 167; 168).

To date, the complex immune interactions that contribute to BOS development and reduced

long-term survival are poorly understood (169; 170; 171; 172; 173). It is possible that persistent

exposure to organisms within microbial communities in this population drives neutrophil activ-

ity and promotes the lower airway in�ammatory environment that is associated with allogra�

damage and development of BOS (174; 175; 176). Correspondingly, we recently reported that the

presence of a complex lower airway microbial community, enriched with Proteobacteria and Bac-

teroidetes and relatively devoid of Actinobacteria, is associated with increased risk of BOS in a

post-LTx adult cohort of subjects with end-stage lung disease without CF or bronchiectasis (177).

Additionally, in CF, others have described reemergence of lower airway pre-transplant micro-

biota, predominance of recognized CF bacterial pathogen (e.g. Pseudomonas and Staphylococcus),

and distinct post-transplant clinical manifestations associated with BOS (178; 179; 180; 181; 182).

Hence, in CF, development of BOS during the post-transplant period may be related to the respi-

ratory system’s constant exposure to extrinsic and intrinsic microbes (173; 183; 184).
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6.2 Hypothesis

In this prospective, observational, longitudinal study, we hypothesize that changes in the

composition of the pulmonary bacterial microbiome in CF are associated with the progression

BOS development and poor overall survival in lung transplant recipients.

6.3 Methods

Ethics Statement

�e study protocol and clinical investigation were approved by the Washington Universi-

ty/St. Louis (WASHU) Children’s Hospital Cystic Fibrosis Center Institutional Review Board (IRB

# 201105467 and 201311048) and the University of Illinois at Chicago (UIC) Institutional Review

Board (IRB #2015-0116). Parents, guardians, or other legally authorized representatives provided

oral and wri�en informed consent to allow child participation in this study in accordance with

the principles expressed in the Declaration of Helsinki.

Identi�cation of Study Patients

Lung transplant recipients at WASHU were enrolled in a prospective observational registry

that included the collection of bronchoalveolar lavage �uid (BAL) samples for research purposes

at the time of standard of care bronchoscopies. Standardized medical record abstraction was

performed in parallel to obtain demographic and clinicopathologic variables related to transplant

outcome. Twelve representative subjects were selected from the registry for this study. BOS was

de�ned as a sustained drop in forced FEV1 by at least 20% from the average of the 2 best post-
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transplant FEV1 measurements (167). Subjects were grouped according to presence or absence of

BOS, those in the nonBOS group remained without evidence of BOS for at least 3 years following

lung transplantation.

Bronchoscopy

Lung transplant recipients at WASHU underwent surveillance bronchoscopy 1 day, 1 week,

1 month, 2 months, 3 months, 6 months, 1 year, 2 years, and 3 years post-transplant, and when

clinically indicated. BAL was collected in usual fashion. For this longitudinal study, eligible sub-

jects had a surveillance bronchoscopy with the corresponding research BAL sample available in

our biorepository.

DNA Isolation, Library Construction, and Sequencing

Around 750 µL of BAL was processed for DNA isolation. Samples were spun for 10min at

1000rpm to remove lymphocytes, and the supernatant was centrifuged at 22,000 rpm for 2h at

4◦C (�ermo Fisher Scienti�c Sorvall WX Ultra 80). �e pellet was saved, and supernatant was

processed through 3KD amicon Ultra 4 for 30min at 4000g. �e retentate was saved and used

to resuspend the pellet and was subjected to DNaseI treatment. �e contents were subjected to

enzymatic treatment using lysozyme, followed by Proteinase K treatment. DNA was puri�ed

using the Qiagen QIAmp® MinElute® Virus Spin Kit (Qiagen cat. no. 57704) and subsequently

quanti�ed using the �bit 2.0 �uorometer (Invitrogen). Since, the DNA was in low amounts, it

was ampli�ed using the WGA Picoplex kit (New England Biolabs). �e ampli�ed DNA was used

for library preparation using NEBNext DNA Library Prep Mastermix Set for Illumina according

to the manufacturer protocol (New England Biolab). �e quantity and quality was anaylsed by
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�bit and Agilent 2100 Bioanalyzer. �e libraries were sequenced on the Illumina MiSeq using

v3 600 cycle kit for 301 PE read length.

Statistical Analysis

Statistical analyses were performed using R 3.3.0 so�ware (�e R Foundation for Statistical

Computing). �e null hypothesis of continuous responses with no prior distributional informa-

tion was tested usingMann-Whitney U test (185). Generalized linear mixed models (GLMMs) (186)

were constructed to test association between clinical variables and BOS development in our lon-

gitudinal study.

Taxonomic Pro�ling and Diversity Measures

Metagenomic sequencing reads were processed with a custom pipeline that is hosted on the

UIC computer cluster ”Extreme”. Brie�y, we �rst performed quality control by �ltering out all

low-quality reads (<25 on Phred quality score), short reads (<100 bp), or any human reads from

the generated sequences. �e remaining high-quality microbial short-reads were assembled into

longer contigs using MetaVelvet (187). Subsequently, microbial taxonomic pro�le for each sample

was constructed using WEVOTE (45) with Kraken (46), Clark (57), and BLASTN (41) as base clas-

si�ers for the WEVOTE platform. Fisher’s index was chosen as a measure of diversity because it

accounts for microbial evenness and richness and utilized to summarize the microbial community

in each sample. �e Phyloseq R-package (188) was utilized to aggregate and summarize taxonomic

pro�les and metadata for all samples.
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Longitudinal Analysis

Microbial taxa were normalized using the median-of-ratios method (121) to remove the batch

e�ect between multiple runs. Subsequently, di�erentially abundant taxa and their signi�cant

time intervals were identi�ed using MetaLonDA R-package (115). In performing the MetaLonDA

analysis, the study period was divided into 100 intervals with 1000 permutations to construct the

empirical distribution. Speci�cally, the negative binomial distribution was used to identify time

intervals of taxonomic features whereas locally weighted sca�erplot smoothing (LOWESS) was

used to identify time intervals of diversity measures and pulmonary function (FEV1%). Microbial

taxa and time intervals were considered statistically signi�cant if a p-value<0.05 was observed

a�er correction for the multiple testing using Benjamini-Hochberg (BH) (113).

Functional Annotation

HUMANn2 (117) (http://huttenhower.sph.harvard.edu/humann2) was used

to construct metagenomic functional pro�les for each sample with default parameters. We used

the UniRef90 and MetaCyc databases (189; 190) to identify gene families and metabolic pathways,

respectively. Functional pro�les were normalized to counts per million (CPM) mapped reads.

6.4 Results and Discussion

6.4.1 Clinical characteristics

�e study involved subjects who underwent cadaveric bilateral lung transplant for end-stage

lung disease related to cystic �brosis at WASHU (n=12). In addition to clinical data, an average of
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7.4 bronchoalveolar lavage (BAL) samples (range 4-9) for a total of 83 were collected per subject

from the time of LTx until development of bronchiolitis obliterans syndrome (BOS) or discharge

from WASHU. Actual sample collection timepoints distribution is shown in Figure 30.A. Samples

from subjects without BOS (nonBOS) are shown in blue (n=53) whereas those with BOS are shown

in red (n=30). Initial BAL samples were collected signi�cantly later in the BOS group (x̄ = 31 ±

12.8 days) compared to the BOS-free group (x̄ = 10.7 ± 13.5 days) a�er lung transplant (Mann-

Whitney U test p-value=0.022). No di�erence was observed with regards to timing of �nal sample

between the BOS and nonBOS group (x̄ = 393.6 ± 73 vs. 608.3 ± 233 days, respectively; Mann-

Whitney U test p-value=0.1).

Baseline subject characteristics comparing BOS versus nonBOS groups are described in Table

1. No di�erences were observed with regards to gender, body mass index (BMI), pre-transplant

diagnosis, recipient age at time of transplant, FEV1 (% predicted) prior to transplantation or right

lung perfusion a�er LTx. Longitudinal di�erential analysis by MetaLonDA shows signi�cant re-

duction in FEV1 (%) predicted, consistent with development of BOS, is noted to start from day

427 to day 455 (Figure 30.B). Conversely, no signi�cant di�erence throughout the study period

was identi�ed by MetaLonDA for other pulmonary function measures, and FVC (%) predicted and

FEV1/FVC.

Choice of induction immunosuppression regimens consisting either of tacrolimus (T), my-

cophenolate (MMF), prednisone (P) or T, MMF, P, and daclizumab (DAC) at acquisition of the �rst

BAL sample did not di�er between BOS and nonBOS groups (χ2 p-value=0.68). Transbronchial

biopsy was performed on all subjects within the BOS group and 86% (6/7) nonBOS subjects dur-
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ing the �rst 50 days post-transplant. Comparison of histopathologic acute cellular rejection (ACR)

grades A and B proved to be similar between groups (χ2 p-value=0.68).



132

TABLE VII: Baseline characteristics of BOS and nonBOS groups. No clinical parameter demon-

strated a statistically signi�cant di�erence by Mann-Whitney U test for continuous data or chi-

square test for categorical data. Continuous variables are reported as range (average ± standard

deviation) and categorical variables as frequency (percentage). De�nition of abbreviations: CF:

Cystic �brosis; BMI: Body mass index; FEV1: Forced expiratory volume in 1 second; ∆F508: Delta

F508 mutation.

BOS (5) nonBOS (7) p-value

Gender 0.97

Male 3 (60%) 4 (57.1%)

Female 2 (40%) 3 (42.9)

Ethnicity (Caucasian) 5 (100%) 7 (100%) 1

BMI (kg/m2) 14.9 - 20.8 (17 ± 2.6) 13.4-19.9 (16 ± 2.3) 0.43

Pre-transplant diagnosis (CF) 5 (100%) 7 (100%) 1

Genotype 0.67

Homozygous ∆F508 1 (20%) 5 (71.5%)

Heterozygous ∆F508 2 (40%) 2 (18.5%)

NA 2 (40%) 0 (0%)

Recipient age at transplantation (years) 13-17 (16 ± 1.8) 11-16 (14 ± 1.8) 0.5

FEV1 (%) predicted before transplantation 20-34 (25.2 ± 5.7) 17-33 (24 ± 6) 0.52

Bilateral lung transplantation 5 (100%) 7 (100%) 1

Lung allogra� type (cadaveric donor) 5 (100%) 7 (100%) 1

Right lung perfusion (%) 32-78 (60 ± 19) 46-70 (58 ± 8) 0.69
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BOS was diagnosed on average at 222.52 days (range 276-475) post-transplant. Expectedly,

BOS subjects demonstrated a lower FEV1% compared to nonBOS subjects (x̄ = 55.5% vs 83.2%,

respectively; Mann-Whitney test p-value=0.23) at the time of �nal BAL sample collection. No

di�erences were observed with regards to acute cellular rejection (ACR) grade, immunosuppres-

sive regimen or antibiotic use between BOS subjects and nonBOS subjects at the time of �nal

bronchoscopy.
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Figure 30: (A) Shown are the timepoints of bronchoalveolar lavage (BAL) sample collection (in

days) per subject. (B) Longitudnal di�erential analysis by MetaLonDA demonstrates the time

interval during which FEV1 (%) predicted is signi�cantly is di�erent between the BOS and nonBOS

groups. �e red spline represents pulmonary function of the BOS group over time (days) and blue

spline is representative of the nonBOS group. �e gray shaded area represents the signi�cant time

interval during which di�erences between groups were observed.
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BOS was reported in 41.67% (5/12) subjects, while 58.33% remained nonBOS at the end of their

follow-up period. 3 subjects (25%) died. Two subjects (16.67%), 1 male (subject BOS4) and 1 female

(subject BOS3), died from complications of BOS during follow-up at 291 and 680 days a�er LTx.

Among nonBOS subjects, one female (subject nonBOS6) was reported to have died from acute

respiratory distress syndrome 2,111 days (5.8 years) a�er LTx and one male (subject nonBOS1) was

reported to have developed lymphoproliferative disorder on day 1,156 (3.2 years) post-transplant.

Both events in the nonBOS group occurred a�er WASHU follow-up had concluded. A single

subject in the nonBOS group (subject nonBOS4) received an HLA mismatched allogra� and was

successfully discharged from the WASHU on post-transplant day 1,588 (4.35 years).

Antibiotic regimens at the time of �rst BAL sample collection were variable in both groups.

�e use of trimethoprim-sulfamethoxazole (TMP-SMX) prophylaxis, anti-pseudomonal and anti-

staphylococcal antibiotics did not di�er between BOS and nonBOS groups (χ2 test p-value=0.92,

0.30, and 0.56; respectively). Notably, macrolides were not part of the initial antibiotic regimen

for any subject in either group.

Conventional bacterial cultures performed on BAL samples at baseline were reported as neg-

ative for bacterial growth in all subjects who progressed to develop BOS, whereas 2 nonBOS

subjects were found to have bacterial growth (1 subject with S. aureus, and the other with co-

occurring S. aureus and P. aeruginosa). A single BOS subject had conventional BAL virology

positive for parain�uenza virus. At the time of �nal bronchoscopy, conventional cultures were

positive in 2/5 subjects with BOS (both P. aeruginosa) and 2/7 nonBOS subjects (one culture was

found to have concomitant infection with P. aeruginosa, S. aureus, and E. coli, and the other was
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positive for H. in�uenza). None of the �nal positive cultures were observed in subjects who later

died. Additionally, BAL cell counts were assessed and compared. �ere were no di�erences noted

in BAL total, absolute neutrophil or absolute lymphocyte counts (p-value>0.05) between the BOS

and nonBOS groups.

6.4.2 Lower Airway Microbial Community Structure and Diversity

Bacterial community structure of the lower airways based on metagenomic sequencing data

acquired from BAL was assessed. An average of 2,211,236 reads were identi�ed among all 83 BAL

samples (Figure 31.A). A�er removal of low quality and short reads, an average of 1,584,636 and

1,754,157 raw reads and were identi�ed among the 30 and 53 BAL samples collected from sub-

jects who developed BOS versus those who remained nonBOS (Mann-Whitney test p-value=0.11).

Reads mapped against the human genome were subsequently �ltered out and an average of 5,716

microbial reads were identi�ed across all samples. �ere was no di�erence in the percent of reads

mapped to microbial genomes in the BOS and nonBOS groups (Figure 31.B).
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Figure 31: (A) Number of raw MGS sequences. (B) Number of identi�ed microbial sequences.
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We identi�ed a total of 15 unique bacterial phyla and 129 bacterial families in all 83 BAL

samples. Assessment of bacterial phyla demonstrated predominance of the phylum Proteobac-

teria, and to a lesser extent the majority of BAL samples demonstrated presence of Actinobac-

teria, Bacteroidetes, and Firmicutes (Figure 33). Further taxonomic analysis at the family level

demonstrated a predominance of the betaproteobacterial family Burkholderiaceae invariably rep-

resented in all samples. Many samples also demonstrated high relative abundance of the gammapro-

teobacterial family Alteromonadaceae and to a much lesser extent Pseudomonadaceae. �e genus

Burkholderia, belonging to the Betaproteobacteria class, was identi�ed as the predominant mi-

crobial genus in the Proteobacteria phylum (Figure 33). Figure 34, shows the most abundant

species in the Burkholderia genus. In addition, within the Firmicutes phyla, Streptococcus and

Enterococcus were the most abundant genera (Figure 35).
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Figure 32: �e top four most abundant bacterial phyla were Proteobacteria, Firmicutes, Bac-

teroides, and Actinobacteria. Stacked bar graphs demonstrate the relative taxonomic abundance

per subject across individual BAL collection timepoints in the BOS and nonBOS groups.
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Figure 33: �e top 8 most abundant genera in the Proteobacteria phylum. Stacked bar graphs

demonstrate the relative taxonomic abundance per subject across individual BAL collection time-

points in the BOS and nonBOS groups. �e genus Burkholderia, belonging to the Betaproteobac-

teria class, was identi�ed as the predominant microbial genera among all identi�ed phyla in the

lower airways a�er bilateral lung transplantation in cystic �brosis.
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Figure 34: �e most abundant species in the Burkholderia genus. Stacked bar graphs demonstrate

the relative taxonomic abundance per subject across individual BAL collection timepoints in the

BOS and nonBOS groups.



142

Figure 35: �e top 8 most abundant genera in the Firmicutes phylum. Stacked bar graphs demon-

strate the relative taxonomic abundance per subject across individual BAL collection timepoints

in the BOS and nonBOS groups. Within the Firmicutes phyla, Streptococcus and Enterococcus

were the most abundant genera.
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Similarity among bacterial communities between all samples was assessed by non-metric

multidimensional scaling (NMDS) based on Jaccard index. �e unsupervised ordination analy-

sis revealed no distinct clustering of the BOS and nonBOS groups (Figure 36), suggesting that no

di�erence exists with regards to the whole bacterial taxonomic pro�les among all samples from

either group (BOS or nonBOS). Similarly, we assessed longitudinal variability of the relative abun-

dance of bacterial communities at the phylum level and the family for the most abundant bacterial

phyla per subject and identi�ed a core lower airway microbiome comprised mainly of Burkholde-

ria/Burkholderiaceae is preserved throughout the post-transplant state of recipients with cystic

�brosis children. �ere are a few notable exceptions in lower abundance taxa that correlate with

infection identi�ed by conventional culture data (samples at timepoints A, E, F, G, H from subject

nonBOS1, and sample at timepoint E from subject nonBOS2).
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Figure 36: Non-metric multidimensional scaling (NMDS) using Jaccard distance between BOS and

nonBOS taxonomic pro�les.
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Evaluation of Fisher diversity index demonstrated no di�erence between BOS and nonBOS

subjects (p-value=0.11, Figure 37.A). Despite overall similar diversity, longitudinal comparison

via MetaLonDA analysis of microbial diversity between groups identi�ed the signi�cant time-

point (beyond post transplant day 297) during which signi�cantly reduced microbial diversity

is observed in the BOS group compared to the BOS-free group (p-value<0.05) suggesting that

decreased microbial diversity contributes to BOS development (Figure 37.B). In addition, evalu-

ation of individual diversity index trajectories per BAL sample collection timepoints per subject

indicates that trends in Fisher’s diversity index are related to development of BOS (Figure 38).

Speci�cally, a pa�ern of relatively low post-transplant Fisher’s diversity was observed within the

�rst 50 days post-transplant. �is was subsequently followed by an increase in diversity between

post-transplant days 50-100, and �nally a reduction in diversity at the time of �nal bronchoscopy

and BAL sampling. To further understanding between bacterial diversity and development of

BOS, spirometric and BAL parameters were analyzed in relation to Fisher’s diversity index.
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Figure 37: (A) Pooled microbial diversity was assessed by measuring Fisher’s index among all BAL

samples between BOS and nonBOS groups was found to be comparable (Mann-Whitney U test p-

value=0.11). (B) Despite overall similar diversity, longitudinal comparison byMetaLonDA analysis

of microbial diversity between groups identi�ed the signi�cant timepoint (beyond post transplant

day 297) during which signi�cantly reduced microbial diversity is observed in the BOS group

compared to the BOS-free group (p-value<0.05) suggesting that decreased microbial diversity

contributes to BOS development. �e red spline represents pulmonary function of the BOS group

over time (days) and blue spline is representative of the nonBOS group. �e gray shaded area

represents the signi�cant time interval during which di�erences between groups were observed.
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Figure 38: Diversity trajectory for initial and last time points. (A) for BOS group (B) nonBOS

group.
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Interestingly, among all 83 collected BAL samples, we identi�ed signi�cant negative correla-

tions between increased BAL percent neutrophils (Figure 39; Pearson’s R2=0.2, p-value=3.54e-05)

and absolute cell counts, but not percent lymphocytes, with decreased Fisher’s diversity. �is

demonstrate that increases in microbial diversity relate to decreased percentage of neutrophils in

BAL, suggesting that overgrowth or depletion of speci�c microbial taxa is directly related with a

intensi�ed local in�ammatory response.
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Figure 39: �e relationship between microbial diversity (Fisher’s index) and bronchoalveolar

lavage in�ammatory cell counts was explored among all samples. A signi�cant inverse relation-

ship was noted demonstrating that increases in microbial diversity relate to decreased percentage

of neutrophils in BAL, suggesting that overgrowth or depletion of speci�c microbial taxa is di-

rectly related with a intensi�ed local in�ammatory response (Pearson’s R2=0.2, p-value=3.54e-05).

Gray shaded area represents the 95% con�dence interval.
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6.4.3 Dynamics of Lower Airway Metagenomics

Dynamics and signi�cance of individual taxonomic features within the lower airway bacterial

communities were assessed at the phylum and family levels by applying MetaLonDA, a method

that identi�es the signi�cant time intervals of microbial features in longitudinal studies, to the

metagenomics data acquired from the BAL samples. We identi�ed time intervals with di�er-

entially abundant phyla (Figure 40) and families in the BOS and nonBOS groups. A total of 2

bacterial phyla, Actinobacteria (p-value=0.016) and Proteobacteria (p-value=0.025) were identi-

�ed as relatively more abundant in the nonBOS group compared to the BOS group. �ese two

phyla were noted to establish signi�cant communities later time intervals, with Actinobacteria

(day 207.9 to 466.5) increasing from an earlier than Proteobacteria (day 352.7 to 466.5) (Figure 40).

Actinobacteria and Proteobacteria demonstrate a downward trend in the BOS group in the im-

mediate post-transplant period and ultimately cross-over and become relatively less abundant in

the BOS group between days 100-150.
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Figure 40: Longitudinal analysis of the identi�ed lower airway microbiome from BAL samples

between BOS and nonBOS groups was performed for all phyla with MetaLonDA. Di�erential

timepoint analysis identi�ed signi�cant di�erences in abundance of the predominant (A) Pro-

teobacteria phylum from day 373 to 456 (p-value<0.05) and in the less abundant (B) Actinobacte-

ria phylum from day 207 to 456 (p-value<0.05). �e red spline represents pulmonary function of

the BOS group over time (days) and blue spline is representative of the nonBOS group. �e gray

shaded area represents the signi�cant time interval during which di�erences between groups

were observed.
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At the family level, a total of 33 taxa were identi�ed to have signi�cant intervals of increased

relative abundance (p-value<0.05). 96% (32/33) of these taxa demonstrated a higher relative abun-

dance in nonBOS group and one taxa had a higher relative abundance in BOS (Figure 41). �e

majority of these bacterial families were noted to be environmental bacteria. However, Staphy-

lococcaceae, Lactobacillaceae, and Neisseriaceae were among the families that have members

which have previously been associated with human health and disease. Notably, early high rel-

ative abundance of Staphylococcaceae (prior to day 50 post-transplant) and late high relative

abundance of Lactobacillaceae are associated with resilience against BOS. Interestingly, late (day

207.9 to 466.45) high relative abundance is associated with resilience against BOS. Similar to the

phylum level, a cross-over point was found in 75% of these families related to human health and

disease. Higher relative abundance of Staphylococcaceae was maintained in the nonBOS group

throughout. �ese data suggest that a shi� in bacterial community structure likely follows a

critical event around day 100-150 that possibly determines the development of BOS or resilience

against BOS. Speci�cally, early antibiotic regimens that deplete staphylococci and fail to control

colonization with Neisseria may be a contributing factor. However, comparison of clinical events

during this time interval did not demonstrate any signi�cant di�erences between groups.
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Figure 41: Longitudinal di�erential abundant families identi�ed via MetaLonDA.
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6.5 Conclusion

We analyzed the longitudinal microbiome pro�les of pediatric post-transplant CF patients to

illuminate the role of the microbiome in BOS development. We also examined the microbiome

role in susceptibility or resilience to BOS. Our results suggest that as time progresses in the post-

transplant period, those subjects who develop BOS are prone to a lower airway ecologic shi�

that leads to reduced bacterial diversity and may indicate an overgrowth of distinct bacteria that

promote a persistent in�ammatory response and development of BOS. In addition, our results

suggest that a shi� in bacterial community structure likely follows a critical event around day

100-150 that may determine the development of BOS or resilience against BOS. Speci�cally, early

antibiotic regimens that deplete staphylococci and fail to control colonization with Neisseria may

be a contributing factor. Interestingly, comparison of clinical events during this time interval

did not demonstrate any signi�cant di�erences between groups. �us, it is possible that host-

microbe interactions may lead to immune response modulation and exacerbate in�ammatory and

�broproliferative changes involved in the development of BOS (191; 192).

Our limitations include the small sample size because the recruitment of cystic �brosis pa-

tients undergoing lung transplantation is limited. Nevertheless, the number of samples and lon-

gitudinal analyses using MetaLonDA, made it possible to explore microbiome dynamics in small

sample size.

A technical issue that arose was the sequencing depth, on average 2 million reads per sample,

limiting investigation to only the most abundant taxa on high taxonomic levels such as phyla and
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family. Interestingly, with the sequencing depth used in this study, we were able to identify all

pathogens that were reported positive in conventional bacterial cultures.



CHAPTER 7

CONCLUSIONS

We discussed the computational methods and tools we have developed to improve both char-

acterization and longitudinal analysis of the microbiome.

In this work, we have discussed our computational methods and tools, which were developed

in an a�empt to improve characterization and longitudinal analysis of the microbiome. �e �rst

method, WEVOTE, classi�es microbial sequences into taxonomic units with both high precision

and high sensitivity. �e second method, MetaLonDA, identi�es time intervals of di�erentially

abundant microbial features in longitudinal studies. �e third method is a computational frame-

work to predict host clinical phenotype from longitudinal microbiome pro�les via deep learning

approach. Finally, using these methods and tools, we identi�ed microbiome dynamics suggestive

of the development of bronchiolitis obliterans syndrome in pediatric lung transplant recipients,

insights that can be leveraged to improve lung transplant outcomes across life span. In the fol-

lowing sections, we summarize our contribution and give some insights to future perspectives.

7.1 Taxonomic Identi�cation of Metagenomics Sequences

We developed WEVOTE (WEighted VOting Taxonomic idEnti�cation), a phylogenetic-based

method that classi�es metagenome shotgun sequencing DNA sequence reads based on an en-

semble of existing methods using k-mer-based, marker-based, and naive-similarity based ap-

proaches. Our performance evaluation, based on fourteen simulated microbiome datasets, con-

156
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sistently demonstrates that WEVOTE achieves a high level of sensitivity and precision compared

to individual methods across di�erent taxonomic levels ranging from phyla to species. Moreover,

the score assigned to the taxon for each read indicates the con�dence level of the assignment. �is

information is especially useful for the assessment of false positive annotations at a particular tax-

onomic level. �e classi�cation score given by WEVOTE can be used for any downstream analysis

that requires the con�dence of the annotated sequences. In addition, we introduced a cloud-based

solution to address common usability issues in the WEVOTE framework. Lastly, an interactive vi-

sual analytics tool was developed to ease interpretation of the classi�cation results. We have

demonstrated three di�erent use cases of the pipeline that, in turn, re�ects the signi�cance of our

modular design. WEVOTE and WEVOTE-web are publicly available on https://github.

com/aametwally/WEVOTE and https://github.com/aametwally/WEVOTE-

web, respectively.

7.1.1 Limitations and Future Perspectives

In our current implementation of WEVOTE, we have used a uniform weight of voting for each

method. While WEVOTE outperforms other taxonomic classi�cation methods, examination of

the potential of incorporating di�erent weighted votes for individual methods in each speci�c

application merits investigation. A major obstacle in the current WEVOTE implementation, is the

long computational time. �is is mainly caused by the incorporation of BLASTN in the WEVOTE

framework. In the future, we plan to replace BLASTN with DIAMOND (193), a method that is as

sensitive as BLAST but an order of magnitude faster. In addition, we plan to extend WEVOTE

algorithm to be able identify the microbial sequences at the strain level.
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7.2 Identifying Time Intervals of Di�erentially Abundant Features in Metagenomic

Longitudinal Studies

We have developed MetaLonDA, a method that can identify signi�cant time-intervals of dif-

ferentially abundant microbial features such as taxonomies, genes, or pathways. MetaLonDA

is �exible such that it can perform di�erential abundance tests on longitudinal samples with

di�erent numbers of subjects per phenotypic group, di�erent numbers of samples per subject,

and samples that are not collected at consistent time points. �ese inconsistencies are o�en

the case for samples collected from human subjects in translational studies. Inconsistencies in-

crease with the complexity of the procedure utilized to obtain the samples. Usually, there is

less inconsistency in samples collected through non-invasive procedures such as stool and urine

samples, but increases in the case of invasive procedures such as bronchoalveolar lavage ob-

tained by bronchoscopy. MetaLonDA relies on two modeling components: the NB distribution

for modeling the mapped read counts for each feature and the semi-parametric SS-ANOVA tech-

nique for modeling longitudinal pro�les associated with di�erent phenotypes. Speci�c signi�-

cant time intervals of microbial features can then be utilized to establish targeted timely screen-

ing or prevention of individual features and facilitate timely interventions, such as the use of

antibiotics or probiotics. Unlike with cross-sectional methods that are incapable of identify-

ing signi�cant time intervals associated with di�erentially abundant features, MetaLonDA may

lead to reconstitution of the microbiome and reestablishment of homeostasis prior to onset of

overt disease. MetaLonDA is publicly available on the CRAN repository (https://CRAN.
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R-project.org/package=MetaLonDA) and an active development is being done on

(https://github.com/aametwally/MetaLonDA).

7.2.1 Limitations and Future Perspectives

One of MetaLonDA’s limitations is that when samples are sparse over extended time intervals,

the ��ed smoothing spline has large variation (81). �is causes the identi�ed signi�cant time in-

tervals to be unreliable and should be excluded from the analysis. �us, in the future, we plan

to develop a statistical method that identi�es these extended intervals. Additionally, the current

version of MetaLonDA only �nds the association between microbial features, time, and pheno-

typic group. Incorporation of additional confounding factors (age, gender, race, disease severity,

etc.) to the MetaLonDA model will enhance applicability. MetaLonDA was developed primarily

for identifying time intervals of features in metagenomics studies. �us, the NB assumption made

for taxonomy needs to be reassessed before MetaLonDA can be con�dently applied to other anal-

yses, e.g., metatranscriptomic, RNAseq, or proteomics data. In the future, we plan to implement

a checker function that evaluates the distributional assumption based on the KS test, and accord-

ingly, the best-��ed model can be utilized for the longitudinal di�erential abundance test.

7.3 Predict Host Phenotype from Longitudinal Microbiome Pro�les via Deep Learning

Long Short-Term Memory networks have the ability to learn dynamic temporal behavior for

a time sequence event. We have developed a deep learning framework that has the capacity of

predicting clinical outcomes from longitudinal microbiome pro�les, we discussed as an example,
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food allergy. Food allergy is di�cult to diagnose at young ages, may lead to inability to treat at

earlier ages causing severe complications. �e framework is based on sparse autoencoder and

Long Short-Term Memory networks. Sparse autoencoder is devised to extract potential latent

structures in the microbiome prior to LSTM training. We tested the framework on the DIABIM-

MUNE dataset(https://pubs.broadinstitute.org/diabimmune), a study that

characterized host-microbe immune interactions contributing to autoimmunity and allergy. Our

results demonstrate the proper use of the proposed model and show the increase in predictive

power compared to SVM, Random Forest, and LASSO regression.

7.3.1 Limitations and Future Perspectives

Although our deep learning framework shows potential to predict phenotype from a sequence

of microbiome pro�les and outperforms other classical methods, it does not reach a prediction

level for optimal clinical utilization. �is is mainly caused by the nature of the training dataset that

we used to train our model. �e DIABIMMUNE dataset is small (195 subjects) and each subject

has few time points (6 on average). With the current reduction in sequencing costs, we anticipate

that multiple large longitudinal microbiome projects will be available which in turn could be used

to train models like ours for be�er prediction power. Another hypothesis that tested with the

DIABIMMUNE dataset but were not successful is predicting disease prognosis from longitudinal

microbiome pro�les. To train such a model, we needed to have a dataset with subjects that are

changing phenotype from one to the other back and forth so that the model learns the pa�ern

associated with the change. Unfortunately, in the DIABIMMUE dataset, subjects maintain the

same phenotype across the study period.
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7.4 Lower Airway Microbiome Dynamics as a Predictor of Bronchiolitis Obliterans

Syndrome a�er Pediatric Lung Transplantation in Cystic Fibrosis

We analyzed the longitudinal microbiome pro�les of pediatric post-transplant CF patients to

illuminate the role of the microbiome in BOS development. We also examined the microbiome

role in susceptibility or resilience to BOS. Our results suggest that as time progresses in the post-

transplant period, those subjects who develop BOS are prone to a lower airway ecologic shi�

that leads to reduced bacterial diversity and may indicate an overgrowth of distinct bacteria that

promote a persistent in�ammatory response and development of BOS. In addition, our results

suggest that a shi� in bacterial community structure likely follows a critical event around day

100-150 that may determine the development of BOS or resilience against BOS. Speci�cally, early

antibiotic regimens that deplete staphylococci and fail to control colonization with Neisseria may

be a contributing factor. Interestingly, comparison of clinical events during this time interval

did not demonstrate any signi�cant di�erences between groups. �us, it is possible that host-

microbe interactions may lead to immune response modulation and exacerbate in�ammatory and

�broproliferative changes involved in the development of BOS (191; 192).

7.4.1 Limitations and Future Perspectives

One limitation we have in our study is the small sample size. It is di�cult to recruit pediatric

patients who have cystic �brosis, and undergo lung transplant and follow up for three years.

Another limitation is sequencing depth, on average 2 million reads per sample. �is depth limits
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the investigation to only the most abundant taxa on high taxonomic levels such as phyla and

family.
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Appendix A

WEVOTE AND WEVOTE-WEB PACKAGES

Source-code

• https://github.com/aametwally/WEVOTE

• https://github.com/aametwally/WEVOTE-web

Publications:

• Metwally AA, Dai Y, Finn PW, Perkins DL. WEVOTE: Weighted Voting Taxonomic Iden-

ti�cation Method of Microbial Sequences. PLoS ONE, 2016.
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Appendix B

METALONDA PACKAGE

Source-code

• https://CRAN.R-project.org/package=MetaLonDA

• https://github.com/aametwally/MetaLonDA
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• Metwally AA, Yang J, Ascoli C, Dai Y, Finn PW, Perkins DL. MetaLonDA: a �exible R

package for identifying time intervals of di�erentially abundant features in metagenomic
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