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SUMMARY

The microbiome plays a vital role in host-immune responses resulting in significant effects on
host health. Dysbiosis of the microbiome has been linked to diseases including asthma, obesity,
diabetes, and inflammatory bowel disease. Over the past decade, culture-independent sequencing
methods have revolutionized microbiome studies through identification of the genetic content of
microbial communities in the form of millions to billions of short DNA sequences. The sequences
derived from the microbiome originate from thousands of different species that need to be iden-
tified, quantified, and compared over time among disease phenotypes. These analyses can detect
biomarkers that may be used for microbial reconstitution through bacteriotherapy, probiotics, or
antibiotics.

Current taxonomic identification methods that achieve high precision can lack sensitivity
in some applications. Conversely, methods with high sensitivity can suffer from low precision
and require long computation time. Thus, highly accurate and sensitive taxonomic identification
methods are needed. Furthermore, in longitudinal studies, sample collection suffers from all forms
of variability such as a different number of subjects per phenotypic group, a different number of
samples per subject, and samples not collected at consistent time points. These inconsistencies
make current analysis methods unsuitable and create opportunities for the development of new
methods. In addition, given the strong association between microbiome and disease, compu-
tational models can be built to predict disease status or prognosis using longitudinal microbial

profiles.
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SUMMARY (Continued)

In this thesis, we discuss the computational methods and tools we have developed that im-
prove both the characterization and longitudinal analysis of the microbiome. The first method,
WEVOTE, classifies microbial sequences into taxonomic units with both high precision and high
sensitivity. The second method, MetaLonDA, identifies time intervals of differentially abundant
microbial features in longitudinal studies. The third method is a computational framework to pre-
dict host clinical phenotype from longitudinal microbiome profiles via deep learning approach.
Finally, using these methods and tools, we identified microbiome dynamics suggestive of the de-
velopment of bronchiolitis obliterans syndrome in pediatric lung transplant recipients, insights

that can be leveraged to improve lung transplant outcomes across life span.
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CHAPTER 1

INTRODUCTION

The microbiome plays a vital role in a broad range of host-related processes and has a signif-
icant effect on host health, and its dysbiosis has been linked to various diseases such as asthma,
obesity, diabetes, inflammatory bowel disease, etc. Over the past decade, culture-independent
sequencing has revolutionized microbiome studies by quickly deciphering the genetic content of
microbial communities in the form of millions to billions of short DNA sequences. Moreover,
the exponential decay in sequencing cost makes large-scale longitudinal studies affordable and
appealing. These sequences, originating from thousands of different species, need to be iden-
tified, quantified, and compared over time between phenotypes in order to extract biomarkers,
which may be used for microbial reconstitution through bacteriotherapy, probiotics, or antibi-
otics. Given the strong association between microbiome and disease, computational models can

be built to predict diseases status or prognosis using longitudinal microbial profiles.

1.1 Problem Identification

One of the key steps in microbial data analysis is the taxonomic classification of sequence
reads in a metagenomic dataset. Different methods can generate variation in taxonomic output
profiles for the same input dataset. Sample type, sequencing error, and read length are the main
factors that cause variation. This variation in the predicted taxonomic annotations presents a

challenge to investigators in the selection of identification methods and the interpretation of an-



notations. Hence, developing a method that has a high precision of annotating the metagenome
shotgun sequencing (MGS) sequence reads is relevant and merits investigation. In this thesis,
we first studied the problem of taxonomic classification of microbial sequences. We developed
WEVOTE (WEighted VOting Taxonomic idEntification), a phylogenetic-based ensemble method
that classifies MGS DNA sequence reads based on an ensemble of existing methods using k-mer-
based, marker-based, and naive-similarity based approaches.

The recent advances in DNA sequencing technologies and rapid reduction in costs have fos-
tered longitudinal analyses, which include multiple samples per subject over time. These lon-
gitudinal studies provide increased insights into the underlying biological mechanisms of the
microbiome role in health and disease. In addition to identifying differentially abundant features,
detecting the time intervals where these features exhibit changes in their abundance between two
phenotypes in longitudinal studies adds insights into disease pathogenesis. Thus, there is a need
to develop a method that can accurately identify the time intervals (start or end) of microbial
features (taxon, genes, or pathways) wherein they are differentially abundant between the two
phenotypes in a longitudinal study. The method should also be able to handle the inconsistencies
of the sample collection process such as the number of samples per subject maybe unequal and ob-
tained at inconsistent time points. In this thesis, we study the problem of detection of differential
abundant microbial features and their significant time intervals that are associated with pheno-
types. We developed a statistical method, MetaLonDA (Metagenomic Longitudinal Differential
Abundant), that is based on a semi-parametric Smoothing Spline ANOVA and negative binomial

distribution to model the time-course of the features between two phenotypes. The method ac-



curately identifies the time intervals when the features are differentially abundant between two
phenotypic groups.

Another focus of the microbiome analysis is the classification and prediction of host pheno-
type based on microbiome profiles. Since the microbiome has been linked to various diseases,
there is an opportunity to develop novel methods that predict the host phenotype based on their
microbiome profiles. Recently, multiple deep learning frameworks have been applied to the mi-
crobiome phenotype prediction; including Convolutional Neural Networks and Deep Belief Net-
works. Another deep learning architecture that is being used in time-series prediction applica-
tions is called Recurrent Neural Networks. It takes as its input, not only the current input, but also
what it perceived in the previous step in time, which is valuable in the analysis over time since it
is possible to express a change in the state of the network without having an explicit state. In this
thesis, we developed a deep learning framework to predict phenotypes from longitudinal micro-
biome taxonomic profiles. The method considers the dependency between adjacent longitudinal
microbiome profiles.

Apotentail intersting application of these methods is to analyze the dynamics of microbiome
in cystic fibrosis (CF) lung transplant recipients. CF is a rare genetic disease that is caused by
various mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene which
functions as a chloride transporter. It is uncommon for people with cystic fibrosis to live into their
40s, 50s, or beyond. In an effort to improve survival and quality of life, lung transplantation has
become an effective therapeutic option and is the only definitive therapy for selected patients

with end-stage CF. Median survival in pediatric patients who undergo bilateral lung transplant



is about 5.6 years. Bronchiolitis Obliterans Syndrome (BOS) is the most common cause of re-
transplantation and death. 50% of transplant recipients develop BOS in the first 5 years post
transplantation; however the etiology is unknown. Since transplant patients are treated with
immunosuppression and antibiotics, we hypothesized that the microbiome plays a role in BOS
development which is not clearly defined. Using methods developed in this thesis, we analyzed
the longitudinal microbiome profiles of pediatric CF patients post-transplant to illuminate the

role of the microbiome in BOS development.

1.2 Thesis Outline

The focus of this thesis is the development of novel computational methods to analyze lon-
gitudinal microbiome profiles for a better understanding of microbiome associated diseases. The
research described in this dissertation is organized as follows:

In Chapter 2, we provide a background of microbiome research and diseases associated with
the microbiome, and covers recent major longitudinal microbiome projects. We also discuss the
current advances in computational methods that are being used to analyze microbiome data. This
chapter is partially based on the following publications (The necessary permissions are provided

in the appendices):

e Ranjan R, Rani R, Metwally AA, McGee H, Perkins DL. Analysis of the microbiome: Ad-
vantages of whole genome shotgun versus 16S amplicon sequencing. Biochemical and Bio-

physical Research Communications, 2016.



e Reiman D, Metwally AA, Dai Y. PopPhy-CNN: A Phylogentic Tree Embedded Architecture

for Convolution Neural Networks for Metagenomic Data. bioRxiv, 2018.

In Chapter 3, we briefly discuss taxonomic identification methods including state of the art
of methods and their limitations. Then, we introduce WEVOTE, a phylogenetic based ensemble
method that classifies microbial sequences with very high sensitivity and the highest precision
among state-of-the-art methods. Next, we introduce WEVOTE-web, a cloud-based version of the
WEVOTE algorithm. This chapter is based on the following publications (The necessary permis-

sions are provided in the appendices):

e Metwally AA, Dai Y, Finn PW, Perkins DL. WEVOTE: Weighted Voting Taxonomic Identi-

fication Method of Microbial Sequences. PLoS ONE, 2016.

e Alaa A, Metwally AA. Cloud-based Solution for Improving Usability and Interactivity
of Metagenomic Ensemble Taxonomic Identification Methods. IEEE EMBS Biomedical and

Health Informatics, 2018.

In Chapter 4, we introduce MetaLonDA, a method that can identify significant time-intervals
of differentially abundant microbial features such as taxonomies, genes, or pathways associated
with phenotypes. We show our benchmarking of MetaLonDA using both simulated and biological
datasets. We also, introduce the R-package that implements the MetaLonDA method. This chapter

is based on the following publications (The necessary permissions are provided in the appendices):



e Metwally AA, Yang J, Ascoli C, Dai Y, Finn PW, Perkins DL. MetaLonDA: a flexible R pack-
age for identifying time intervals of differentially abundant features in metagenomic lon-

gitudinal studies. Microbiome, 2018.

e Metwally AA, Finn PW, Dai Y, Perkins DL. Detection of Differential Abundance Intervals
in Longitudinal Metagenomic Data Using Negative Binomial Smoothing Spline ANOVA.
In Proceedings of the 8th ACM International Conference on Bioinformatics, Computational

Biology, and Health Informatics, 2017.

In Chapter 5, we introduce our development of a deep learning framework that has the
capacity to predict food allergy from longitudinal microbiome profiles. The framework is based on
sparse autoencoder and Long Short-Term Memory networks. We also report results of applying
the developed framework to the DIABIMMUNE study. This chapter is based on the following

publication:

e Metwally AA, Yu PS, Reiman D, Dai Y, Finn PW, Perkins DL. Utilizing Longitudinal Gut
Microbiome Taxonomic Profiles to Predict Food Allergy via Sparse Autoencoder and Long

Short-Term Memory Network. Under-review.

In Chapter 6, we analyze the association between changes in the composition of the lower

airway microbiome and the BOS development. This chapter is based on the following publication:

e Metwally AA, Ascoli C, Rani A, Ranjan R, Ferkol TW, Finn PW, Perkins DL. Lower Airway
Microbiome Dynamics as a Predictor of Bronchiolitis Obliterans Syndrome after Pediatric

Lung Transplantation in Cystic Fibrosis. Manuscript in-preparation.



Finally, in Chapter 7, we review the main topics of this dissertation, highlight the novel con-
tribution of our methods, and discuss the strengths and weaknesses of our approaches. We also

provide perspectives on potential future studies.



CHAPTER 2

OVERVIEW OF MICROBIOME STUDIES AND DATA ANALYSIS METHODS

2.1 Microbiome Studies

The microbiome, a dynamic ecosystem of microorganisms (bacteria, archaea, fungi, and viruses)
that live in and on us, plays a vital role in host-immune responses resulting in significant effects
on host health. Dysbiosis of the microbiome has been linked to diseases including asthma, obesity,
diabetes, transplant rejection, and inflammatory bowel disease (1; 2; 3; 4; 5; 6). These observations
suggest that modulation of the microbiome could become an important therapeutic modality for
some diseases. For example, fecal transplants have been shown to alleviate diarrhea caused by
Clostridium difficile infection and temporarily improve insulin sensitivity (7; 8). Specifically, the
gut microbiome, which has been the most extensively studied of the human microbiomes, is highly
diverse and has been shown to include thousands of different bacterial species (9; 10). This diverse
community of bacteria is composed of a few species that are highly abundant and a large amount
of species that are found in trace amount (11). The human microbiome can be divided into the core
microbiome and the variable microbiome (12). The core microbiome is the set of taxa or genes that
present in a given body location (gut, kidney, skit, oral, etc.) in almost all humans. The variable
microbiome arises from various factors such as host physiological status, host environment, host

genotype, host lifestyle, host pathobiology, etc.



The number of studies investigating the microbiome has risen exponentially since the techno-
logical advances in high-throughput sequencing that have led to culture- and cloning-independent
analysis (13). Sequencing technologies are able to identify the genetic content of microbial com-
munities in the form of millions to billions of short DNA sequences. These technical advances
have been paradigm shifting since the majority (>90%) of microbial species cannot be readily
cultured using current laboratory culture techniques (14; 15; 16).

The most common sequencing approach to analyze the microbiome is amplicon analysis of
the 16S ribosomal RNA (rRNA) gene (17; 18). In this method, a 16S rRNA region is amplified
by PCR with primers that recognize highly conserved regions of the gene and sequenced (19).
The limitations of this method are that the annotation is based on a putative association of the
16S rRNA gene with taxa defined as an operational taxonomic unit (OTU). In general, OTUs are
analyzed at the phyla or genera level and can be less precise at the species level. In 165 rRNA
sequencing, genes are not directly sequenced, but rather predicted based on the OTUs. Due to
horizontal gene transfer and the existence of numerous bacterial strains (20; 21; 22), the lack of
direct gene identification potentially limits understanding of a microbiome.

An alternative approach to the 16S rRNA amplicon sequencing is metagenome shotgun (MGS)
sequencing in which random fragments of genome are sequenced. MGS is more expensive and
requires more extensive data analysis (13; 23; 24; 25). A major advantage of the MGS sequencing
is that the taxa can be more accurately defined at the species level. In addition, to identify and
understand the bacterial genes in a taxon, it may be necessary to sequence a genome with high

coverage (23).
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2.2 Major Microbiome Projects

In this section we summarize three major microbiome projects to date; the Human Micro-
biome Project (HMP) (12; 17; 26), the Integrative Human Microbiome Project (iIHMP) (27; 28; 29),

and the DIABIMMUNE Project (1; 30; 31).

2.2.1 HMP: Human Microbiome Project

HMP phase I: The National Institutes of Health Human Microbiome Project (HMP) was es-
tablished in 2008, with the mission of generating resources that would enable the comprehensive
characterization of the human microbiome and analysis of its role in human health and disease.
The HMP-I characterized the microbial communities from 242 healthy adults (129 males and 113
females) between the ages of 18 and 40. Women were sampled at 18 body habitats, and men at
15 (excluding the three vaginal sites), distributed among five major body areas: nasal cavity, oral
cavity, skin, gastrointestinal tract, and urogenital tract (17; 32).

HMP phase II: The second phase of HMP targeted diverse body sites with multiple time
points in 265 individuals. Strain identification revealed subspecies clades specific to body sites (26).
It also quantified species with phylogenetic diversity under-represented in the isolate genomes.
Body-wide functional profiling classified pathways into universal, human-enriched, and body
site-enriched subsets. Finally, temporal analysis decomposed microbial variation into rapidly
variable, moderately variable, and stable subsets. HMP-II enables an understanding of person-

alized microbiome functions and dynamics (26).
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2.2.2 iHMP: Integrative Human Microbiome Project

iHMP was established with the aim of creating integrated longitudinal datasets from both
the microbiome and host from three different cohort studies of microbiome-associated conditions

using multiple omics technologies (27; 28; 29). The three cohorts are:

1. Pregnancy and Preterm Birth Cohort: The multi-omic microbiome pregnancy initiative
is established to better understand how microbiome and host profiles change throughout
pregnancy and influence the establishment of the nascent microbiome in neonates. The

study aims to recruit 2000 pregnant women and their neonates (27).

2. Inflammatory Bowel Disease Cohort: Inflammatory bowel disease (IBD), which in-
cludes both Crohn’s disease and ulcerative colitis, is one of the most-studied imbalances
between microbes and the immune system. There exist genetic and environmental risk
factors that are associated with IBD (33; 34). However, they are inadequate to explain the
dramatic increase in IBD over the past 50 years (35). Rather, comprehensive evidence has
linked IBD to the gut microbiota (36; 37). In contrast to traditional disease models, no single
pathogen seems to cause IBD. The IBD multi-omics project has been established to provide
comprehensive insights into the gut microbial ecosystem in the context of IBD. This will

improve our ability to understand, diagnose, and treat IBD (28; 29).

3. Type 2 Diabetes Cohort: Differences in the gut microbiome have been noted between
diabetics and healthy individuals (38; 39), and direct alteration of the microbiome in mice

has been shown to lower blood glucose levels (40). The longitudinal multi-omic study is
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aimed to better understand the biological changes that occur type 1 diabetes (T2D) disease
acquisition. This cohort will consist of approximately 100 individuals at risk for diabetes.
Samples will frequently be taken (at 1-to-4-day intervals) during infected and other stress
states and less frequently (every ~ 3 months) during healthy periods, with a minimum of

27 timepoints sampled per subject.

2.2.3 DIABIMMUNE Project

The DIABIMMUNE project is established with the aim of studying the hygiene hypothesis.
The hygiene hypothesis is widely supported theory that accounts for the association between
the increase in diseases of the immune system and decreased exposure to pathogens. The DI-
ABIMMUNE project analyzes the microbiome in subjects from three separate countries (Russia,
Finland, and Estonia) in order to explore this phenomenon (30; 1; 31). These three populations
comprise a “living laboratory,” offering a unique opportunity to test the hygiene hypothesis and
gene-environmental interactions in the development of autoimmune disease. DIABIMMUNE is

divided into three cohorts as described below:

1. Type 1 Diabetes Cohort: Characterization of developing microbiome in 33 infants en
route to type 1 diabetes (T1D). This is a prospective, longitudinal analysis of developing
gut microbiome in infants en route to type 1 diabetes (30). Infants from Finland and Esto-
nia were recruited at birth based on predisposition to autoimmunity determined by human
leukocyte antigen (HLA) genotyping. Parents collected their infants’ stool samples at ap-

proximately monthly intervals. The cohort consists of 33 infants, 11 of which seroconverted
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to serum autoantibody positivity and of those, four developed T1D within the three-year

time-frame of this study.

. Three Country Cohort: Early infancy is considered to be an important time for the mat-
uration of the immune system. This cohort consists of collected stool samples from infants
from Finland, Estonia, and Russia to elucidate mechanisms behind the hygiene hypothe-
sis (1). The three countries have substantial differences in incidence of T1D and allergies.
The prevalence of the allergies is highest in Finland and lowest in Russia with Estonia in-
termediate. 74 infants from each country were selected on the basis of similar HLA risk and
matching gender and followed up from birth until the age of three. For each infant, three
years of monthly stool samples, laboratory assays, and questionnaires regarding breast-
feeding, diet, allergies, infections, family history, use of drugs and clinical examinations

were collected.

. Antibiotics Cohort: The gut microbial community is dynamic during the first three years
of life, before stabilizing to an adult-like state. However, little is known about the impact of
environmental factors on the developing human gut microbiome. This cohort is designed
to characterize the development of the infant gut microbiome and the impact of repeated
antibiotic exposure on bacterial strain diversity and stability (31). The cohort consists of
39 infants followed up for 3 years. Stool samples and clinical information are collected,
approximately half of whom received multiple courses of antibiotics during the first three

years of life. The microbiota of antibiotic-treated children was less diverse in terms of both
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bacterial species and strains, with some species often dominated by single strains. In addi-
tion, short-term composition changes between consecutive samples from children treated
with antibiotics. Antibiotic resistance genes carried on microbial chromosomes showed a
peak in abundance after antibiotic treatment followed by a sharp decline, whereas some

genes carried on mobile elements persisted longer after antibiotic therapy ended.

2.3 Computational Microbiome Analysis Methods

2.3.1 Taxonomic Classification of Microbial Sequences

Metagenomic sequences come from a number of different species, some of which either have
a previously sequenced reference genomes or have a related sequenced species sufficiently close
phylogenetically. Other sequences, however, may come from organisms that have no sufficiently
close relatives with sequenced genomes, or from DNA fragments that show no significant simi-
larity with any available genomic sequence.

The metagenomic classification problem is to assign each sequence of the metagenome to a
corresponding taxonomic unit or to classify it as ‘'novel” Methods performing taxonomic classifi-
cation of metagenome sequences can be, in large, grouped into three categories; alignment-based
sequence classifiers, alignment-free sequence classifiers, and ensemble sequence classifiers. In
the following section, we provide a summary of each category and list of methods that are based

on the corresponding design.
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Alignment-based Sequence Classifiers

In this category, metagenome sequences are aligned to each of the known genomes from the
reference database, in order by using best alignment score as an estimator of the phylogenetic
“closeness” between the sequence and the genome. This could be done with generic alignment
program, such as BLAST (41), Bowtie (42), BWA (43), or BLAT (44). Although this approach is
highly sensitive, it tends to produce a lot of false positives and the running time of these meth-
ods makes it unfeasible to be used in its naive form for large datasets (45; 46). For this reason, a
sub-category of classification methods has been developed with the design of preprocessing the
sequence files and database before performing the alignment. This reduces the computational
time and resources needed and also increases the annotation specificity. One technique to re-
duce the time complexity of the alignment is by assembling the short reads into longer contigs
then annotate these contigs (47). Although annotating contigs is more efficient than annotating
reads, this approach is fragile due to the complexity of the assemblers and the assembly error.
Another approach is to use the information preserved in phylogeny to annotate metagenome se-
quence. Examples of methods covering phylogenetic-based classification are MetaPhlAn (48; 49),

MEGAN (50; 51; 52), MetaPhyler (53), and TIPP (54).
Alignment-free Sequence Classifiers
Another strategy to cope with increasingly large metagenomic datasets is the alignment-free

methods. Generally, most of alignment-free methods are based on the analysis of words, which

are usually of fixed size (k-mer). The basic idea behind the k-mers methods is performing metage-
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nomic classification of next generation sequencing (NGS) sequence reads based on the analysis
of shared k-mers between a metagenome read and each genome from a pre-compiled database.
Given a taxonomic tree involving the species of the database, these tools “map” each read to a node
of the tree, thus reporting the most specific taxon or clade the read is associated with. Based on the
obtained counts and tree topology, algorithms assign each read to a tree node “best explaining”
the counts. Examples of these methods are Kraken (46), LMAT (55), Centrifuge (56), CLARK (57),

Kaiju (58), ProPhyle (59), Seed-Kraken (60), CoMeta (61), One Codex (62), and SMART (63).

Ensemble Read Classifiers

Ensemble read classifier is the approach we proposed (Chapter 3) to classify microbial se-

quences based on ensemble of base classifiers.

Computational Challenge in Classification Methods

A major computational problem of the taxonomic classification of microbial sequences is that
sometime the analysis of same sample by different methods produces different results (Figure 1).
This raises controversy on the false positive problem, and it is usually attributed to the design of
the method (64; 65; 66; 67; 68). Some methods favor speed over accuracy, while the other favor the
sensitivity. The conclusion from these benchmarking studies is that current individual taxonomic
methods are not the best approach to identify microbial profile and hence developing ensemble

methods may be the solution for such metagenomic sequence classification problem.
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Figure 1: Different methods produce different results for the same input. Evaluation of different

taxonomic classification method using 35 simulated and biological metagenome (64).
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2.3.2 Differential Abundance Analysis

One of the objectives of the microbiome studies is to determine whether there is a particular
microbial signature (e.g., taxa or genes) associated with a particular disease state and/or disease
outcome. These biomarkers can play an important role in the development of preventative and
therapeutic strategies. Modeling metagenomic data for disease-association studies is an active
area of research. The standard parametric models may reduce the variance in read counts if the
data follows the corresponding parametric distribution, but the models may be substantially bi-
ased if the data does not support that distribution. On the other hand, non-parametric models do
not assume any prior distribution of the data and thus are not biased towards any distribution,
but these models may suffer from a huge model variance (69).

Longitudinal studies of the microbiome have gained tremendous popularity during the past
few years due to the ability to detect trends of microbiome changes over time and relate these
changes to disease progression in different parts of body, such as gut, kidney, skin, or lung (70;
30; 1; 71; 72; 73). In addition, there has been a drastic reduction in sequencing cost that has made
longitudinal studies more affordable on a large scale.

Analyzing longitudinal metagenomic profile data is different from analyzing a single time
point profile. An individual’s microbiome evolves over time, but its composition has some depen-
dency on its previous structure (i.e., Markov Process), despite the independence between samples.
For longitudinal data, two types of differential abundance analysis are widely utilized: (a) Treat

data from each time point independently and detect features that have differential abundance be-
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tween the phenotypes at individual time points (74); (b) Identify features that have differential
abundance during the time-course within a phenotype (75; 76).

Another strategy for longitudinal differential abundance is to identify time intervals of dif-
ferentially abundant microbial features. To date, two methods have been proposed; the first is
MetaSplines (77), and the second is MetaDprof (78). MetaSplines and MetaDprof are both based on
the Gaussian Smoothing Spline ANOVA (SS-ANOVA) approach (79; 80; 81), where the Gaussian
distribution is used to model the number of reads mapped to each microbial feature. MetaS-
plines has a higher sensitivity of detecting time intervals of differentially abundant features than
MetaDprof, but MetaDprof has higher specificity (78). MetaDprof has a major drawback, namely,
its implementation assumes consistency in longitudinal microbial samples, such that it is only
able to perform the analysis on an equivalent number of subjects per phenotypic group, the same
number of samples from each subject, and the same elapsed time between adjacent time points.
However, these conditions are rarely fulfilled in human microbiome longitudinal studies.

Challenges in Differential Abundance Analysis

Longitudinal analysis is usually challenged by variability in longitudinal sample collections,
including inconsistencies in the number of subjects per phenotype, number of samples per sub-
ject, and sample collection at inconsistent time points. These inconsistencies increase with the
level of difficulty with which samples are obtained from the subjects. For example, in humans,
the variability decreases in samples collected non-invasively (e.g., stool and urine samples) but
increases in the invasive procedures (e.g., bronchoalveolar lavage (BAL) samples which are ex-

tracted from the lung by bronchoscopy).
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One solution to address this variability is to bin samples into a certain number of windows
between the start and end times of the study course by selecting the nearest sample in time for
each bin (30), then compare the microbial feature’s relative abundance or diversity indices (82; 83)
between any pair of time points to characterize any pairwise changes. The limitation of this
approach is that it deals with the longitudinal data points as a collection of static snapshots and
ignores temporal dependencies. Furthermore, if more than one sample is taken in the same time
window, it may result in either retaining only one sample and excluding the others or taking the
average of the measured feature’s values, which may lead to mischaracterizing the exact microbial

behavior.

2.3.3 Host Phenotype Prediction

The other primary task of microbiome analysis is the prediction of host phenotype based on
microbiome profiles. Since microbiome has been linked to numerous diseases, it opens a door
to develop new methods that predict the host phenotype based on their microbiome profiles.
Approaches using traditional machine learning models, e.g., Random Forest (RF), LASSO and
Support Vector Machines (SVMs), and recently, deep neural networks (DNN), demonstrated the
potential of developing microbial biomarker signature for the prediction of disease or phenotype
of the host (84; 85; 86; 87; 88). This type of approaches is motivated by the findings that a micro-
bial signature for the host phenotype may be complex, involving simultaneous over- and under-
representations of multiple microbial taxa at distinct taxonomic levels and potentially interacting

with each other (85; 89). Varying levels of predictive accuracy have been reported. The perfor-
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mance of the deep learning models is encouraging, owing to the ability of deep architectures in
identifying potential interactions of microbial taxa for disease prediction (85).

Recently, we have proposed a prototype of a novel architecture for convolution neural net-
works (CNNis) for the prediction of host phenotype from the microbial taxonomic abundance pro-
files (90; 91). CNNs were originally developed based on the visual cortex in images and have been
successful in image processing and speech recognition (92). The major characteristic of a CNN
is its ability to generate convolution layers with multiple feature maps that capture the spatial
information in training data. However, metagenomic data are represented by relative microbial
taxonomic abundance profiles, where taxa can be placed in arbitrary orders. To empower CNNs
in metagenomic phenotype prediction, it is important to provide structural input with certain dis-
tance metric among the microbial taxa. In our work, we constructed a phylogenetic tree, a natural
structure representing the relationship among the microbial taxa in the profiles (90; 91). The tree
is embedded in a 2D matrix after populating with the observed relative abundance of microbial
taxa in each profile. In this way, the constructed matrices provide a better spatial and quantita-
tive information in the metagenomic data to CNNs, compared to the vectors of relative microbial
taxa abundances in an arbitrary order. Our analysis has revealed encouraging predictive ability
of CNNs based on metagenomic data taken from different parts of body (90; 91).

Challenges in Host Phenotype Prediction from Microbial Sequences

Although DNNs provide incomparable ability of learning non-linear representation from the
trainingset that can be used to predict host phenotype, the past results also raise the skepticism

that DNNs may not be suitable learning models due to their requirement of excessive amount
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of training data, which are impractical in the present metagenomic study. Furthermore, DNNs
are often used as black-boxes, making it difficult to extract informative features from the learned
models. Therefore, despite the success of DNNs in other biomedical applications (93), it is unclear
whether they can outperform the existing models, such as RF, LASSO and SVMs, and whether
they can learn a set of informative microbial taxa from metagenomics data.

Developing methods that predict the host phenotype from longitudinal microbiome samples
comes with some challenges, e.g., variable sample collection times and uneven number of time
points along the subjects’ longitudinal study, especially when samples come from human subjects.
Hence, using standard prediction methods such as Hidden Markov Models (HMMs) (94) and Auto

Regressive (AR) models (95) may not be suitable in these cases.



CHAPTER 3

WEVOTE: WEIGHTED VOTING TAXONOMIC IDENTIFICATION METHOD OF

MICROBIAL SEQUENCES

Previously published as:

e Metwally, A., Dai, Y., Finn, P., Perkins D. (2016) WEVOTE: Weighted Voting Taxonomic Identification Method
of Microbial Sequences, PLoS ONE, 11(9), e0163527.

e Alaa, A., Metwally, A. (2018) Cloud-based Solution for Improving Usability and Interactivity of Metagenomic

Ensemble Taxonomic Identification Methods, IEEE EMBS Biomedical and Health Informatics, (pp. 198-201). IEEE
3.1 Introduction

Taxonomic classification of sequence reads in a metagenomic dataset is a fundamental step
in microbiome data analysis. The existing taxonomic identification methods of MGS data can be
primarily classified into four categories: methods based on naive-similarity, methods based on
analyzing sequence alignment results, methods based on sequence composition, such as k-mers,
and marker-based methods. The naive-similarity-based methods rely on mapping each read to a
reference database, such as the National Center for Biotechnology Information (NCBI) nucleotide
database, and the taxonomic annotation of the best hit is assigned to the read if it passes a pre-set
threshold. Bowtie (42), BLASTN (41), and its faster version MegaBlast (96) are the most commonly
used algorithms in this category. Since the number of sequences in the database is enormous,
these methods have a high probability of finding a match. Therefore, these types of methods

usually achieve a higher level of sensitivity compared to other methods (46; 97). However, the

23
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major drawbacks are the increased rate of false positive annotations and the long computational
time. Although it has been shown that the taxonomic profile obtained from the naive-similarity-
based methods produces a large number of false positives (46; 98), a vast array of researchers are
still dependent on them because they do not want to sacrifice the high level of sensitivity to obtain
fewer false positives annotations.

The category analyzing the results from sequence alignment includes MEGAN (50), and
PhymmBL (97). These methods consist of a preprocessing step and a post-analysis step. In
MEGAN, an algorithm involving the Lowest Common Ancestor (LCA) assigns each read an NCBI
taxonomic identification number (si. taxon / pl. taxa) that reflects the level of conservation within
the sequence. On the other hand, PhymmBL constructs a large number of Interpolated Markov
Models (IMMs) using a BLASTN query against a reference database. It subsequently computes the
scores which correspond to the probability of the generated IMMs matching a given sequence.
Then it classifies a read using the clade label belonging to the organism whose IMM generated
the best score. The methods in this category usually require additional computational time than
those in the naive-similarity methods.

The marker-based methods utilize a curated collection of marker genes where each marker
gene set is used to identify a unique group of clades. The fundamental difference between these
methods and the naive-similarity methods is in the reference databases. Based on how the database
of the marker genes is formed, this type of methods is classified into two main subcategories: (i)
methods that depend on a universal single copy marker genes database such as MetaPhyler (53),

TIPP (54), and mOTU (99), and (ii) methods that depend on a clade-specific marker genes database
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such as MetaPhlAn (48; 100). These marker-based methods can achieve high accuracy if the reads
come from genomes represented by the marker gene database. Otherwise, they only achieve a
low-level of sensitivity. The running time varies depending on the statistical algorithm used in
each method.

The k-mer-based methods use DNA composition as a characteristic to achieve taxonomic
annotation. The key idea is to map the k-mers of each read to a database of k-mers, and then, each
read is assigned a taxonomic annotation (46; 55; 57; 58; 101). For example, Kraken (46) uses an exact
match to align the overlapped k-mers of the queries with a k-mer reference database, instead of
an inexact match of the complete sequence used in the naive-similarity based methods. Because
of the exact matching on short k-mers, many efficient data structures can be implemented for
searching the k-mer database; thus the k-mer-based methods can be extremely fast. Compared to
the naive-similarity methods, it was recently shown that at the genus level, k-mer-based methods
could achieve a similar sensitivity but with higher precision (65). However, these methods are
not robust to sequences that have a high sequencing error rate because they are based on exact
matching to the reference database. This limitation is demonstrated in (46). It shows that Kraken
has the lowest sensitivity compared to other methods when tested on the simBA-5 dataset.

In addition to our benchmarking, it has also revealed that different methods could generate
variation in taxonomic output profiles for the same input dataset (65). Sample type, sequenc-
ing error, and read length are the main factors that cause variation. This inconsistency in the
predicted taxonomic annotations presents a challenge to investigators in the selection of identi-

fication methods and the interpretation of annotations.
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3.1.1 Problem Definition

In this work, we present a novel framework, WEVOTE (WEighted VOting Taxonomic idEntification),
which takes advantage of three categories of the taxonomic identification methods; naive-similarity
methods, k-mer-based methods, and marker-based methods. WEVOTE combines the high sensi-
tivity of the naive similarity methods, the high precision of the k-mer-based methods, and the
robustness of the marker-based methods to identify novel members of a marker family from novel

genomes.

3.2 Methods

3.2.1 WEVOTE Core Algorithm

The core of WEVOTE is a weighting scheme organized as a taxonomic tree tallying the anno-
tations from NV different taxonomic identification methods. As shown in Figure 2, the input to
WEVOTE is the raw MGS reads of a microbiome sample. First, each of the V identification meth-
ods independently assigns a taxon for each read. If any method fails to classify the read based
on the given threshold, the WEVOTE preprocessing phase assigns 0 as a taxon, indicating that
the read is unclassified by the corresponding method. Then, WEVOTE identifies the taxonomic
relationship of the IV taxa per read based on the pre-configured taxonomy tree structure and casts
a vote to the final taxon, which may be a common ancestor of the IV taxa. Although the current
version of our method only includes five methods, the voting scheme in our framework is flexible

and allows for the inclusion or removal of different methods.
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Figure 2: Schematic diagram of the WEVOTE framework. The input to the WEVOTE is the raw
reads of the sample. First, each of the identification methods independently assigns a taxon to
each read. Then, WEVOTE identifies the taxonomic relationship of the /V taxa based on the pre-

configured taxonomy tree structure and determines the final taxon assigned to each read (102).
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WEVOTE utilizes a simplified version of the NCBI taxonomy tree as a backbone for its decision
algorithm. This resolved phylogeny tree only contains the nodes that have a taxon corresponding
to one of the standard taxonomic levels (Super-kingdom, Phylum, Class, Order, Family, Genus, and
Species). This backbone structure facilitates and accelerates the choice of a consensus taxon based
on the taxonomic annotations received from each identification method. The decision scheme in
WEVOTE is shown in Algorithm 1. Here, N denotes the number of methods used in the WEVOTE
pipeline; C the number of methods that can classify the read at any taxonomic level, i.e., taxon # 0;
and A the number of methods that support the WEVOTE decision. The relationship N > C' > A

always holds.
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Algorithm 1 The WEVOTE Decision Scheme

1:
2
3
4
5:
6
7
8
9

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:

procedure WEVOTE (N taxa for each read)
for each (Read € sequence file) do
if (C == 0) then

Read. Taxon =0
Read.DecisionScore = 1
Read. NumSupportedTools = N

else if (C' > 1) then

build a WeightedIree of the reported tazxa
Threshold = floor(C/2)
MazWeight = 0
MaxzNode =0
for each (Node € WeightedTree and weight(Node) > Threshold) do
if (rootToTaxon(Node) > MaxWeight) then
MaxWeight=rootToTaxon(Node)
MaxTaxon=Node
else if (rootToTaxon(Node) == MaxW eight) then
MaxTaxon=LCA(Node, MaxTaxon)
end if
end for
Read. Taxon = MaxTazxon
Read.NumSupportedT ools = weight(Read.Taxon)

if (A == C) then

Read.DecisionScore = A/N
else

Read.DecisionScore = (A/N) — (1/(m * N))
end if

end if
end for

29: end procedure

In the case that no single tool can classify the read, WEVOTE will accordingly fail to classify

the read and give it a taxon 0 and score of 1. Otherwise, WEVOTE starts by building a weighted

tree for each read from the taxa reported by individual methods. The weighted tree is a tree that
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comprises the nodes of the identified taxa along with their ancestors’ taxa including the root.
The weight of any node on the weighted tree represents the number of methods that support the
identification of this particular node. Next, WEVOTE annotates the read with the taxon of the
node that has the highest weight from the root to that node (RootToTaxon), with the additional
condition that the node itself has more weight than the WEVOTE threshold. This threshold can
be set as half of the number of methods that classify a read as shown in Figure 3. In the case
where more than one node satisfies the WEVOTE condition, then the LCA of these nodes will be
assigned as the WEVOTE decision. For each classified read, a score is also assigned to reflect the

confidence of WEVOTE decision. The scoring scheme works based on Equation 3.1.

IfC=A4,
Score = (3.1)

2=

— L otherwise; A < C

2
[\v]
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Figure 3: Illustration of WEVOTE algorithm.
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The choice of the constant m depends on how strongly one elects to penalize the disagreement
among individual methods that classify the read but do not agree with the WEVOTE decision. A
small value of m leads to a small WEVOTE score, implying more penalty is placed on the WEVOTE
decision score, and vice versa. This scoring scheme makes the score satisfy the condition of % <
score < %. Although the score does not affect the WEVOTE decision, it would be useful if the
user is interested in assessing the confidence of the taxon assignment made by WEVOTE. The
default value of m is 2. We have chosen this value because it gives a score exactly in the middle
of % and % As m increases, the score skews towards the % side. In order to demonstrate the
decision and scoring schemes described in the WEVOTE algorithm, the case scenarios of WEVOTE

for N = 3 are shown in Figure 4.
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(k)

c @ @ []

One tool Two tools Three tools WEVOTE
classified the  classified the  classified the decision
read read read

Figure 4: WEVOTE case scenarios using three tools. C denotes the # tools able to classify the read,
A represents the # of tools that support WEVOTE Decision, and S represents the WEVOTE score.
Scenarios are shown for (a) None of the three tools classified the read; (b) Only one tool classified
the read; (c) Two tools classified the read with the same taxon; (d, e) Two tools classified the read
with two different taxa; (f-i) Three tools classified the read with three different taxa; (j, k) Three
tools classified the read, two taxa are identical, and the other is different; (1) Three tools identified

the read with the same taxon (45).
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Methods Used in the Current WEVOTE Implementation

In our current implementation of WEVOTE, we used BLASTN (41) to represent the naive-
similarity-based methods, Kraken (46) and CLARK (57) as the identification methods representing
the k-mer methods, and TIPP (54) and MetaPhlAn (48) representing the marker-based methods.
The five methods were chosen since they are widely used and represent the three major categories
of taxonomic identification methods. We selected BLASTN over MegaBlast because of its greater
sensitivity. The primary reason for the increased sensitivity in BLASTN is the use of a shorter
word size as a search seed. Thus, BLASTN is better than MegaBlast in finding alignments for
sequences that have a sequencing error which occurs after a short length of matched bases (i.e.,
the initial exact match is shorter).

Kraken assigns taxonomic annotations to the reads by splitting each sequence into overlap-
ping k-mers (46). Each k-mer is mapped to a pre-computed database where each node in the
database is the LCA taxon of all genomes that contain that k-mer. For each read, a classification
tree is computed by obtaining all the taxa associated with the k-mers in that read. The number
of k-mers mapped to each node in the classification tree is assigned as a weight for this node.
The node that has the highest sum of weights from the root is used to classify the read. Kraken
is an ultra-fast and highly precise algorithm for reads involving a low rate of sequencing error.
CLARK is a recently released tool that is very similar to Kraken and also based on k-mers. It is
reported to be faster and more accurate than Kraken at the genus/species level (57). The funda-

mental difference between Kraken and CLARK is their backbone k-mers database. Kraken has
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only one database that can serve for the classification of metagenomic reads at any taxonomic
level. If more than one genome shares the same k-mer, Kraken assigns this k-mer to their LCA
taxon. CLARK, on the other hand, builds an index for each taxonomic level at which the user
wishes to classify. Each level’s index has only the discriminative k-mers that distinguish its taxa
from others.

TIPP (Taxonomic Identification and Phylogenetic Profiling) is considered a state-of-the-art
method based on a set of marker genes. It uses a customized database of 30 marker genes (103)
which are mostly universal and single-copy genes. First, it performs multiple sequence alignment
of each marker gene set, then builds a phylogeny tree for each marker gene and constructs a
resolved taxonomy tree of these marker genes. Then, it uses SATe (104) to decompose the tree of
each marker gene to many sub-trees. Subsequently, TIPP uses HMMER software (105) to build a
Hidden Markov Model (HMM) for each of the sub-trees. For each query read, TIPP uses HMMER
again to align the query to the HMMs. Then, TIPP uses the alignments to the HMM that have an
alignment score and statistical support greater than a group of pre-set values, and places them on
the precomputed taxonomic tree using pplacer (106) to assign taxonomy to the query. It has been
shown that TIPP can precisely identify reads containing high sequencing error or novel members
of a marker family from novel genomes (54). The other method chosen for this category in our
implementation is MetaPhlAn. MetaPhlAn has a set of clade-specific marker genes. The marker set
was built from the genomes available from the Integrated Microbial Genomes (IMG). For a given
read, MetaPhlAn compares the read against the precomputed marker set using BLASTN searches

in order to provide clade abundances for one or more sequenced metagenomes.
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3.2.2 WEVOTE-web: Cloud-based Solution for Improving Usability and Interactivity of

WEVOTE

Although WEVOTE has higher sensitivity and precision than individual methods, several dif-
ficulties are imposed as a price to this gain. First, the issue of usability persists, at least for re-
searchers who lack decent computational skills, unless these methods are introduced through
graphical user interfaces. Second, installing WEVOTE with the corresponding dependencies re-
quires large storage budget and careful dependency management. In addition, much of WEVOTE
configuration and sorting the reference databases requires caution and minimal scripting back-
ground. Third, the execution of specific algorithms requires an unattainable memory space on
regular computers. A workaround is to exclude expensive algorithms from the pipeline, however,
this will also reduce quality.

In this project, we address the aforementioned obstructions by porting the WEVOTE frame-
work into the cloud for attaining several objectives: (a) improve usability by implementing a mod-
ular web application, (b) interactive visualization using the rich Javascript visualization libraries,
(c) unrestricted deployment of the expensive computational options by leveraging the robust pay-
as-you-go infrastructure on the cloud. The modular design of the cloud implementation allowed
more use cases of WEVOTE.

In our cloud framework, we developed three use cases of the the WEVOTE algorithm; (a)
apply the whole WEVOTE pipeline: the user uploads a sequences file then selects the ensemble

methods from the currently available methods, (b) use WEVOTE algorithm on an ensemble file:
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the user intercepts the pipeline at the integration step and uploads a file containing classified se-
quences from multiple methods in order to employ the WEVOTE classifier followed by generation
of the community profile, (c) taxonomic profiling from a classified taxa file: the user intecepts the
pipeline from the profiling step and the system generates the community profile from an input
of classified sequences. The WEVOTE cloud framework consists of two modules; the web module

and the visualization module.
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Figure 5: User interface of the cloud implementation of WEVOTE pipeline. The panel in (a) is an

entry point to the pipeline where the user selects the usage scenario and accordingly uploads the

query file. The user may override the configuration by using the secondary panel in (b). Finally,

the user is recommended to add a description as a tag to the experiment and a reference e-mail, so

the user is notified by e-mail when the results are ready for visualization. Alternatively, the user

may track the pipeline progress in the panel in (c). This panel also includes all the meta informa-

tion corresponding to an experiment (e.g., parameters, incorporated algorithms, and description)

so the user can explore and compare previous experiments without confusion. Upon completion,

the results are ready for visualization in a dedicated page for different analyses like in (d) and

(e). Also, the user may choose to download the results, including the intermediate results as in

(d) (102).
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Web Module

Based on the highlighted usability issues, the user interface was developed with multiple
objectives in mind: (a) ease of using the pipeline through intuitive panels with minimal parameters
setting, (b) controllability over the pipeline, and (c) user-centered design, so the user is able to keep
track of previous experiments. Figure 5 illustrates the current user interface elements in the web
application. Furthermore, the web module carries out the communication between the client and
the computational web service. It also stores user profiles to keep track of previous experiments.
This module is implemented using TypeScript language based on Express.js as web framework and

MongoDB as a database driver (107).

Visualization Module

In this module, several intuitive and interactive visuals are generated to summarize the taxo-

nomic classification results (Figure 6). Here is a summary of different outputs:
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Figure 6: Visualization options on the client-side. The table in (a) lists the intermediate classi-
fication results of WEVOTE pipeline. The cost column represents the Manhattan distance. The
distance is defined as the shortest path between the voting node and the resolved node in the
taxonomy tree. The last column is the classification score. (b) The abundance profile is listed as a
table. The numerical columns like "cost” and "score” in (a) and "count” in (b) are color-encoded.
(d) The interactive radial treemap diagram with the embedded taxon lineage at the top and the
abundance percentage inside the diagram center. For all visualization entities in (a), (b), and (d),
when the user clicks on a label or a cell corresponds to a taxon, a new tab in the browser will
access the taxon page at the NCBI Taxonomy Browser as in (c). In addition, detailed info about

the cell is shown upon the mouse hovering on that cell (102).



41

(a) Tabular list: The tabular list is employed for taxonomic binning and abundance profile
results (Figure 6). In the classification results table, two descriptive values are included: (a) Score:
each classified read is associated with a score computed based on Equation 3.1, and (b) Cost: a
cost value is computed for a classified read,, as a Manhattan distance combining the lengths of
shortest paths from the resolved node to the other votes by Equation 3.2.

N
Cost, = Z ||SHORTESTPATH(WEVOTE,, Taxon,; )|| (3.2)
i=1

Numerical information, e.g., score and cost values in the classification results, are color-coded
for seamless data exploration. Moreover, color scale is not global for the whole table, but specific
for each column; each cell color is represented by an intensity normalized along the column
and log-scaled for better color distribution. However, tables remain an inefficient visual analytic
solution for visualizing scalable data as they occupy much space.

(b) Radial treemap: An interactive radial treemap is developed in the visualization module
in our implementation to visualize taxonomic abundance profile. A hierarchical clustering is
constructed for the taxa in the abundance profile. Each taxon accumulates its abundance value
along its ancestry.

(c) Venn diagram: A further precision analysis on the incorporated taxonomic classification
methods can be visually assisted using interactive Venn diagram. The intersection areas among

sets depict the agreement among the taxonomic binning algorithms.



42

3.3 Experiments and Results

3.3.1 WEVOTE Benchmarking

Simulated datasets have been used in the evaluation of various taxonomic identification meth-
ods. In our assessment, we selected fourteen simulated datasets as shown in Table I. Our choice
was based on the ability of these datasets to provide the true assignment for each read rather than
the true relative abundance at each taxonomic level. This information allows for the evaluation
of WEVOTE based on various metrics in addition to the assessment of relative abundance.

The first three datasets were used in the evaluation of Kraken (46). The HiSeq and MiSeq
datasets are simulated from sequences obtained from non-simulated microbial projects but were
sequenced using two different platforms, i.e., llumina HiSeq " and Illumina MiSeq . The simBA5
is a simulated dataset with a higher percentage of error to mimic increased sequencing errors.
Hence, it can be used to measure the ability of each tool to handle actual sequencing data. The
simHC20 dataset was used to benchmark CLARK (57) and it contains 20 subsets of long Sanger
reads from various known microbial genomes. The other ten datasets were used in MetaPhlAn (48)
evaluations. HC1 and HC2 consist of reads from high-complexity, evenly distributed metagenomes
that contain 100 genomes, and LC1-LC8 consist of reads from low-complexity, log-normally dis-
tributed metagenomes that contain 25 genomes. The reads from all ten MetaPhlAn datasets were
sampled from KEGG v54 (108) with a length of 100 bp and an error model similar to real Illumina

reads.
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TABLE I: WEVOTE benchmarking datasets.

Source Dataset #reads length (bp) # genomes
HiSeq 10,000 92 10
Kraken MiSeq 10,000 156 10
simBA5 10,000 100 1,967
CLARK simHC20 10,000 951 20
HC1 999,998 88 100
HC2 999,991 88 100
LC1 249,995 88 25
LC2 250,000 88 25
LC3 250,000 88 25
MetaPhlAn
LC4 249,999 88 25
LC5 249,999 88 25
LC6 250,002 88 25
LC7 250,000 88 25
LC8 250,000 88 25

Our benchmarking was performed with two variants of WEVOTE: (i) WEVOTE (N = 3) in-

cluding BLASTN, TIPP and Kraken; and (ii) WEVOTE (N = 5) including BLASTN, TIPP, MetaPhlAn,
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Kraken, and CLARK. As described previously, BLASTN represents the naive-similarity method,;
TIPP and MetaPhlAn belong to the category of the marker-based methods; and Kraken and CLARK
belong to the category of the k-mer-based methods. The default parameter values were set for
the individual method, and the score penalty in WEVOTE was set at m = 2. Regarding WEVOTE,
we reported all results in which at least one method supported the WEVOTE decision. With this
approach, we can evaluate the accuracy of WEVOTE at the highest classification rate of the reads.
By increasing the threshold, we can generate more precise results as shown later.

We first looked at how accurately each method annotates individual reads at each taxonomic
level using sensitivity and precision metrics, which are defined in (Equation 3.3) and (Equa-

tion 3.4), respectively. For each level [ in a simulated dataset:

Ny

Sensitivity ;) = 2 (3.3)
l
TP
Precision ;) = WIFPZ (3.4)

where P, denotes the number of reads annotated with some taxon at level [ in the original dataset;
T P, the number of reads correctly annotated at level [; and F'P; the number of reads incorrectly
annotated at level .

It could be inappropriate to compare the sensitivity of all the methods used in WEVOTE, since

the marker-based methods are primarily designed to calculate the microbial abundance of the
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sample based on the annotation of the reads that come from genes represented by the marker
gene database. Based on this consideration, Figure 7 (I) shows the sensitivity and precision of
Kraken, CLARK, BLASTN, and WEVOTE; while in Figure 7 (II), we show the precision of TIPP and
MetaPhlAn separately. It is observed from Figure 7 that WEVOTE achieves the highest level of
precision and a level of sensitivity that is second only to BLASTN at the species level. At all other
taxonomic levels, WEVOTE outperforms all the other individual methods in terms of sensitivity
and precision in most datasets (S1 Table at (45)). Note that the reason for the lower precision with
N = 5 is because the results were reported when the minimum number of methods supported
the WEVOTE decision was set at 1. If a higher level of precision is required, then the WEVOTE

reporting threshold should be set at N/2 as explained later.
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Figure 7: Sensitivity and precision at the species levels. sub-panel (I) shows the sensitivity and pre-
cision of methods developed to identify every read; Kraken, CLARK, BLASTN, and WEVOTE. sub-
panel (II) shows the precision of marker-based methods; TIPP and MetaPhlAn. The MetaPhlAn-HC

and MetaPhlAn-LC datasets are the average of two HC and eight LC datasets, respectively (45).
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In addition, we calculated the Hellinger distance (109) (H;) between a sample’s metagenomic
abundance profile generated by each method and its true abundance profile at each taxonomic
level [. The Hellinger distance measures the deviation of the predicted profile from the true profile.
It is calculated as shown in (Equation 3.5). Here, Cj is the union of all taxa that are in the true
and predicted profiles at each taxonomic level /. For each taxon z at level [, P, is the predicted
relative abundance and 7, is the true relative abundance at taxonomic level /. The v/2 is added to

the denominator to keep 0 < H; < 1.

VEeeo VP = VTL)?
H; = NG (3.5)

The calculation of the relative abundance (RA) differs among the methods. For methods that
are developed to identify every genomic read, such as BLASTN, Kraken, and CLARK, the relative
abundance is calculated as shown in (Equation 3.6). As mentioned before, TIPP and MetaPhlAn
are not designed to identify every read. They build metagenomics abundance profile of the sam-
ple based on the annotation of the reads that come from genes represented by the marker gene
database. In this case, the relative abundance of a taxon x is calculated using (Equation 3.7). For
WEVOTE, we used (Equation 3.6) to calculate the RA. These two forms of relative abundance calcu-
lation are implemented in WEVOTE. It is the user option to select which method to use. However,
the genomic-based method (Equation 3.6) is the default setting.

n
RAgenamic—based(fI:) = ;x (3.6)
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n
RAmarkerfbased(x) = n7$ (3.7)
c

Where n,, is the total number of reads classified at taxon x, n the total number of reads, and n.
the total number of classified reads.

As the Hellinger distance represents an error distance, a small value is always preferable. Par-
ticularly, H = 0 means that the predicted profile is exactly the same as the true profile; while
H = 1 means that the predicted profile is completely different from the true profile. Figure 8
shows the Hellinger distance between the true relative abundance profile and the profiles gen-
erated by all methods at different taxonomic levels (Table S2 at (45)). For all the benchmarking
datasets, WEVOTE, particularly when N = 3, always has the smallest Hellinger distance among
all other individual identification methods across all taxonomic levels. Although the Hellinger
distance is marginally different for WEVOTE and BLASTN, the interpretation is quite different.
The error that originates from BLASTN is due to the false positive annotations while the error
that originates from WEVOTE is due to the lack of support in annotating the read at the corre-
sponding level. TIPP and MetaPhlAn have higher Hellinger distance than other methods used in
WEVOTE. This is mainly because few taxa in the datasets are predicted in low rate by them, i.e., P,
being near zero for few taxa. This has led to the accumulation in the Hellinger distance. One of the
reasons for the inability to predict these taxa may be because the current marker gene databases
used in TIPP and MetaPhlAn do not contain sufficient markers of the genomes represented in the

simulated datasets.
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Figure 8: Evaluation of Hellinger distance. The deviation between the predicted and the true
abundance profile was measured in terms of the Hellinger distance for each method at different
taxonomic levels. Results are shown for: (a) Kraken-HiSeq dataset; (b) Kraken-MiSeq dataset;
(c) Kraken-simBAS5 dataset; (d) CLARK-simHC20; () MetaPhlAn-HC and (f) MetaPhlAn-LC. The
lower the error, the more precise the corresponding method is at the corresponding taxonomic
level. H = 0 means that the predicted relative abundance profile is exactly the same as the
true profile; while H = 1 means that the predicted profile is completely different from the true

profile (45).
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Lastly, we examined the details of various case scenarios that were encountered in the eval-
uation of the two WEVOTE variants, i.e, N = 3 and N = 5. The plots in Figure 9 show the
percentages of annotations in which the individual methods support the WEVOTE decision for
all the datasets. It can be observed that the majority of WEVOTE annotations are determined
based on more than N/2 agreements; 2 in the case of N = 3 and 3 in the case of N = 5. For
only a small portion of each dataset, all the used methods agreed on the WEVOTE decision. An
interesting observation is that a very small portion of all the classified reads by WEVOTE are in
agreement with one method when N = 3, or either 1 or 2 methods when N = 5. Therefore,
if we set a threshold on WEVOTE to report the taxon at which more than half the methods are
in agreement with the WEVOTE decision, then the precision of WEVOTE would increase, and
its sensitivity will only be marginally decreased as demonstrated in Figure 10. We have chosen
Kraken-HiSeq and Kraken-MiSeq datasets for this investigation because they had low precision

among all the used taxonomic identification methods (Figure 7).
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Figure 9: The percentage distribution of the number of individual methods that support the
WEVOTE decision for the 14 datasets. Here, 0 means that the read was not classified by any
methods, 1 means that one method supports the WEVOTE assigned taxon for the read, and so on.
A=3 in the case of (a) means that all the 3 methods support WEVOTE on its assigned taxon for the
corresponding read, A=5 in case of (b) means that all the used 5 methods support WEVOTE on its

assigned taxon for the corresponding read (45).
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Figure 10: The sensitivity and precision at the species level for the WEVOTE (N=5) using different
thresholds for the minimum number of methods that support the WEVOTE decision. (a) Kraken-

HiSeq dataset; and (b) Kraken-MiSeq dataset (45).
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3.3.2 Computational Resources and Running Performance

All the experiments were performed on the UIC computer cluster (EXTREME) at the Uni-
versity of Illinois at Chicago. To benchmark WEVOTE, we used one node with 16 cores (Intel
Xeon E5-2670 @ 2.60 GHz, cache size of 20 MB, and 128 GB RAM). Since the WEVOTE core algo-
rithm and all the individual methods are parallelizable, we utilized 16 threads for all experiments
conducted in this work. Due to the high requirement on the memory for constructing Kraken
and CLARK databases, we used the Highmem node on EXTREME which has specification of 1TB
RAM. In order to achieve the maximum performance from Kraken and CLARK, we used the de-
fault versions of the two methods, which require at least 80 GB of RAM. Therefore, if there is only
a limited amount of memory available, users can run these methods using their mini versions,
i.e., MiniKraken and CLARK-I, which only require 4 GB of RAM. In this case, the output could be
11%-25% less sensitive, but it will still preserve a high level of precision. The WEVOTE algorithm
is particularly useful in this case because it can exploit the high precision level of Kraken and
CLARK without using large memory machines and compensate the sensitivity by using BLASTN.

Table II shows the running time for each method per dataset. For HC and LC classes of
datasets, the running time is presented as the average over the datasets in each class. Kraken
and CLARK finished in less than 3 minutes for any individual dataset. For BLASTN, the most
time-consuming method that is currently implemented in the WEVOTE pipeline, its running time
is proportional to the number of reads and the read length in a dataset. The total time of the entire

WEVOTE pipeline is the summation of the running times of the individual methods and the time
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needed to run the WEVOTE core algorithm. The WEVOTE core algorithm was finished execution
in less than 33 seconds for any individual dataset regardless N = 3 or N = 5. The WEVOTE core
algorithm is mainly affected by the number of the used methods, and more specifically, the num-
ber of methods that identified taxa for the reads. Because the running time of WEVOTE pipeline is
primarily dominated by the time required by BLASTN, the pipeline running time can be reduced

if many cores are used to execute BLASTN.

TABLE II: WEVOTE running time measured in minutes.

WEVOTE
Simulated
Kraken BLASTN TIPP CLARK MetaPhlAn Pipeline
Dataset
[N=5]
HiSeq 1 2 4 1 1 10
MiSeq 1 8 4 1 1 16
simBA5 1 7 3 1 1 14
simHC20 1 9 5 1 1 18
HC (sd) 2(0.0)  30(1.4) 14(0.0) 3(0.0) 2 (0.0) 53 (1.4)

LC (sd) 10000 929  8(0.5  2(0.0) 1(0.5) 22 (3.5)
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To analyze the time-cost trade-off on the AWS for WEVOTE-web, we used Kraken_MiSeq
dataset as an experiment for taxonomic classification task. We tested two different AWS machine
types; t2.large and t2.2xlarge. The reported time and the total cost according to the reserved

instances are listed in Table III.

TABLE III: Time consumed and total cost on different machines specifications. Usage scenario:

full pipeline; utilized algorithms: BLASTN, Kraken, CLARK, TIPP, and MetaPhlAn.

Instance type || Experiment time (minutes) | Total cost ($)

t2 large 26 0.10

t2.2xlarge 14 0.38

3.4 Conclusion

We developed WEVOTE (WEighted VOting Taxonomic idEntification), a phylogenetic-based
ensemble method that classifies metagenome shotgun sequencing DNA reads based on an ensem-
ble of existing methods using k-mer-based, marker-based, and naive-similarity based approaches.
The performance evaluation based on the fourteen simulated microbiome datasets consistently

demonstrates that WEVOTE achieves a high level of sensitivity and precision compared to the
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individual methods across different taxonomic levels. Moreover, the score assigned to the taxon
for each read indicates the confidence level of the assignment. This information is especially
useful for the assessment of false positive annotations at a particular taxonomic level. The clas-
sification score given by WEVOTE can be used for any downstream analysis that requires the
high confidence of the annotated sequences. Moreover, we introduced a cloud-based solution
to address common usability issues in the WEVOTE framework. In addition, an interactive vi-
sual analytics tool was developed to ease the interpretation of the classification results. We have
demonstrated three different use cases of the pipeline that, in turn, reflect the significance of our
modular design. WEVOTE and WEVOTE-web are publicly available on https://github.
com/aametwally/WEVOTE and https://github.com/aametwally/WEVOTE-
web, respectively.

After WEVOTE has been developed and showed a spectacular performance in taxonomic iden-
tification of microbial sequences, two other methods were developed; MetaMeta (110) and Direct
Majority Voting (64).

MetaMeta employs multiple taxonomic binning algorithms producing individual abundance
profiles from each algorithm and a final abundance profile (110) (Figure 11.b). The primary differ-
ence between MetaMeta and WEVOTE is that MetaMeta merges information at a very late stage.
It performs cascading statistical operations to suppress outliers effect in the taxonomic profile.
However, It does not guarantee to suppress false positive classifications effect. Moreover, it may
prune out low abundant taxa as false positive. Furthermore, MetaMeta requires the user to con-

figure more preference parameters that may reduce its usability. Similar to WEVOTE, MetaMeta’s
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computational resources and running times depend on the utilized algorithms. On the other hand,
Direct Majority Voting uses multiple combinations of taxonomic binning algorithms (64) by inte-

grating votes (Figure 11.c).
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Figure 11: Comparative view three ensemble taxonomic classification methods. The primary vari-

ations among these methods are in the integration step (102).



CHAPTER 4

METALONDA: IDENTIFYING TIME INTERVALS OF DIFFERENTIALLY

ABUNDANT FEATURES IN METAGENOMIC LONGITUDINAL STUDIES

Previously published as:

e Metwally, A., Yang, J., Ascoli, C., Dai, Y., Finn, P., Perkins, D. (2018) MetaLonDA: a flexible R package for
identifying time intervals of differentially abundant features in metagenomic longitudinal studies, Microbiome,
6(1), 32.

e Metwally, A, Finn, P., Dai, Y., Perkins, D. (2017) Detection of Differential Abundance Intervals in Longitu-
dinal Metagenomic Data Using Negative Binomial Smoothing Spline ANOVA, In Proceedings of the 8th ACM

International Conference on Bioinformatics, Computational Biology, and Health Informatics (pp. 295-304). ACM.
4.1 Introduction

One of the objectives of the microbiome studies is to determine whether there is a particu-
lar microbial signature (e.g., taxa, genes, or pathways) associated with a particular disease state
and/or disease outcome. These biomarkers can play an important role in the development of pre-
ventative and therapeutic strategies. A major challenge in microbiome studies is the variability
in microbial taxa among subjects, in addition to variability due to disease influences. A powerful
strategy to address this challenge is the analysis of time series data in which the time intervals as-
sociated with temporal effects are identified. Modeling metagenomic data for disease-association
studies is an active area of research. The standard parametric models may reduce variance if the

data follows the corresponding parametric distribution, but the models may be substantially bi-
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ased if the data does not support that distribution. On the other hand, non-parametric models do
not assume any prior distribution of the data and thus are not biased towards any distribution,
but these models may suffer from a large model variance (69).

For longitudinal data, two types of differential abundance analysis are widely utilized: (a)
Treat data from each time point independently and detect features that have differential abun-
dance between the phenotypes at individual time points (74), and (b) Identify features that have
differential abundance during the time-course within a phenotype (75; 76). Longitudinal analysis
is usually challenged by variability in longitudinal sample collections, including inconsistencies
in the number of subjects per phenotype, number of samples per subject, and sample collec-
tion at inconsistent time points. These inconsistencies increase with the level of difficulty with
which samples are obtained from the subjects. For example, in humans, the variability decreases
in samples collected non-invasively (e.g., stool and urine samples) but increases in the invasive
procedures (e.g., bronchoalveolar lavage (BAL) samples which are extracted from the lung by
bronchoscopy).

One solution to address this variability is to bin samples into a certain number of windows
between the start and end times of the study course by selecting the nearest sample in time for
each bin (30), then compare the microbial feature’s relative abundance or diversity indices (82; 83)
between any pair of time points to characterize any pairwise changes. The limitation of this
approach is that it deals with the longitudinal data points as a collection of static snapshots and
ignores temporal dependencies. Furthermore, if more than one sample is taken in the same time

window, it may result in either retaining only one sample and excluding the others or taking the
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average of the measured feature’s values, which may lead to mischaracterizing the exact microbial
behavior.

Another strategy is to identify time intervals of differentially abundant microbial features. To
date, two methods have been proposed; the first is MetaSplines (77), and the second is MetaD-
prof (78).

MetaSplines is implemented as an R-script within the metagenomeSeq package (111). It starts
by fitting a curve for the difference between the means of the read counts of a particular feature
from two phenotypic groups across different time points. It uses the standard Smoothing Spline
ANOVA (SS-ANOVA) approach (69; 79; 80), where the Gaussian distribution is assumed for the
reads. The identification of a significant time interval is based on comparing the areas under the
fitted curve to that of the null model, which is generated from the bootstrapping of the sample’s
group labels. This method is easy to use, and it handles time point inconsistencies in the samples
collection, such as, variable sample collection times and the uneven number of time points among
the subjects’ longitudinal timeframe. However, it assumes the normality of metagenomic read
counts, which are not suitable to be modeled by a Gaussian distribution. Additionally, MetaSplines
has a relatively high false positive rate (78).

MetaDprof is also based on the standard SS-ANOVA which assumes the normality of the read
count. The difference between the two methods is that MetaDprof fits a curve for each pheno-
typic/treatment group and compares the area between the two curves with the data generated
by the permutation of the group labels. The identification of the significant time intervals is ac-

complished in two steps. Initially, MetaDprof tests whether the feature is globally significant or
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not. In the event that the feature is significant, it proceeds to identify significant time intervals.
Compared to MetaSplines and Next-maSigPro (112), a tool for differential analysis of longitudinal
RNAseq profiles, MetaDprof shows a high level of detection power. MetaDprof performs very
well when the following criteria are met: a) the samples are equally spaced, b) the number of
samples taken from each subject is equal, and c) the samples from subjects are collected at the
same time points. In animal model studies, the sample collection process can be well controlled
to meet the criteria. However, they rarely can be met for samples collected from humans, par-
ticularly when an invasive procedure is used, such as bronchoscopy to obtain a bronchoalveolar

lavage (BAL) fluid samples.

4.1.1 Problem Definition

Develop a method to accurately identify time intervals of differentially abundant features in

metagenomic longitudinal studies.
Significance
The identified differentially abundant features and their time intervals have the potential to

distinguish microbial biomarkers that may be used for microbial reconstitution therapy through

bacteriotherapy, probiotics, or antibiotics, and may also suggest timing and duration of the ther-

apy.
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4.2 Methods

Fixing a feature f = 1,..., F, the data under consideration are the random variables Y;j; or
their observations y; of mapped reads of the ith subject of phenotype k to the feature f at time
point ¢, wheret = 1,...,T, k = 1,2, and subjectt = 1,..., ng.

The random variable Yy, is assumed to follow a negative binomial distribution

Yiui ~ NB(a,p(t, k) (4.1)

with integer & > 0 and success probability p(¢,k) € (0,1). That is, Yj; stands for the
number of failures before the ath success in a sequence of Bernoulli trials. Then the probability

for observing y number of reads can be written as

IN'a+y)

P(Yii =y) = T a) -p(t, k)™ - (1= p(t, k))? (4.2)

with an expectation and variance
E(Yii) = a(lp—(tp;t), ul) (4.3)
Var(Yi) = ol p(t. k) (4.4)
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To model the time and phenotypic effect we use a general linear model with a logit link:

p(t; k)
t, k) =log ———— 4.5
From (Equation 4.5), we have
en(tk)
p(t, k) = T4 ol (4.6)
1) — 1
—p(tk) = —am R (4.7)

Assuming Y;i;’s are independent, the log likelihood given a time-course metagenomic count

profiles y = {yiki }t=1,... T:k=12:i=1,... n,, 18 calculated as:

L = logL(p,a|Y =Yy)

T 2 ng
= ZZ [yeilog(1 — p(t, k)) + alogp(t, k)

t=1 k=1 i=1
+log (o + ysri) — log T'(0) — log(yeki!)]
T 2 ng

= Y ) lweilog(1 — p(t, k) + alogp(t, k)
t=1 k=1 i=1

+logI'(a + yeki) — log I'(«v)] + constant (4.8)
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Given the success probabilities p = {p(t, k) }4=1,... 7.k=1,2 or equivalently the linear predic-

tors n = {n(t, k) }4=1,... 7,k=12, the main part of £ involving « is

s

2
Ly(a) = Z Z Z[log T+ yi) — log () + alog p(t, k)] (4.9)

t=1 k=1 i=1

which will be maximized to update « later.
Given the number of failures a > 0, using (Equation 4.6), (Equation 4.7), (Equation 4.8), we

have the main part of £ involving p or n:

T 2
La(m) =D > lom(t k) = (a+ yus) log(1 + €M) (4.10)

We seek the estimation of model parameters « and p(t, k) by maximizing (Equation 4.8). Fol-
lowing (Gu, 2013) (81), in order to control the smoothness of the function 7, a roughness penalty
J(n) is added to the minus log-likelihood together with the smoothing parameter A > 0 for the

trade-off between the goodness of fit and the smoothness of the spline curve:

min—L+ - J(n) (4.11)
p,x

In the objective function, £ encourages the goodness of fit; J(n) quantifies the smoothness
of 1, which is essentially the inner product in a reproducing kernel Hilbert space (Gu, 2013) (81),

Section 3.1). The A in expression (Equation 4.11) controls the tradeoff between the goodness of fit
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and the smoothness of the spline and can be determined using performance-oriented iterations
or cross-validation (Gu, 2013 (81) Section 5.2).

The solution to the optimization problem in (Equation 4.11) leads to the smoothing spline that
fits the reads from the samples across multiple time points. With the estimated parameters o and
p(t, k), we obtain the estimated mean of Yy; using (Equation 4.3), (Equation 4.6), (Equation 4.7),

ie.,
ap(t, k)

( tk) e 1_]§(t7 k)

(4.12)

Connecting the values at each time point using (Equation 4.12) the fitted curve can be con-
structed in each group. With (Equation 4.4) and (Equation 4.12), the confidence intervals can be
obtained for each feature. We use the R package gss (Gu, 2013 (81)) to solve problem (Equa-
tion 4.11). For readers’ reference, a more detailed description for the algorithm used in (81),

Section 5.4.6) with a specified A > 0 is given below:

0° Givendata {ysk;i}t=1,.. 7:k=12;i=1.....n,, find the maximum likelihood estimate for the usual
logistic regression model with negative binomial responses. That is, determine &%), p(0) (¢, k), t =

1,...,T;k = 1,2 that maximize £ in (Equation 4.8). Denote

30 = gy, 1Ot k) = log(pO (¢, k) /(1 — 5O (1, k)))

t=1,....Tk=1,25i=1,...,nk

For iteration s = 1,...,.5, do 1°, 2° and 3°:
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1° Determine &) that maximizes

s

T 2
ZZZlogF oz—l—ygkl ))—logF( )+ alog gV (t, k)]

t=1 k=1 i=1

2° Fort=1,...,T:k=1,2;i=1,...,ng,let

als) = (@ + g E) - &
@) = (@9 + @fz;”m(s—”(t, k) - (1— 5V, k)
an = eV k) —al) /o)

3° Use quasi-Newton approach to find 77(*) (t, k)’s that minimize the penalized weighted least

squares functional

Nk

1 2
T ) SOSTS @GS 0t k) + AT ()

t=1 k=1 i=1

Let () (¢, k) = eV ®R) /(1 4 &1ER) ¢ =1, .. Tk =1,2.

Once we have the two splines that fits each group’s samples, we can then calculate the nor-
malized area between the two curves for each unit time interval of the T" — 1 time intervals. The
normalized Area Ratio (AR) is calculated as in (Equation 4.13), where Afi 41 and Ath 41 denote

the area under the spline curve from time ¢ to time t+1 for group 1 and group 2, respectively,
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AR — AR
tt+1 tt+1 (4.13)

ARt 141 =
; k1 ko
max(At,tJrl? At,t+1)

Then, we perform a permutation procedure by permuting the sample group labels to calculate
the ARy for the random samples for each time interval. The procedure is repeated B times.

This is essential for calculating the p — value of each interval. The p_value is calculated using

(Equation 4.14)

#(AR, > AR)

b=1,..,B 4.14
" s (414

pvalue =

The significant time intervals are those with p_value < 0.05 after multiple testing correc-
tion (113) which adjusts for the number of time intervals per feature and for the multiple features

that are testing for. Figure 12 gives an illustration of how MetaLonDA method works.
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Figure 12: Illustration of how MetaLonDA works. (a) The longitudinal samples for one feature

from two phenotypic groups. (b) The two fitted NB Smoothing Splines of two groups (The solid

dark blue and dark red curves). The dashed curves show the 95% confidence interval. (c) The

significant time intervals identified (the grey highlighted regions) (114).



4.2.1 MetaLonDA R-package Framework

The main components of the MetaLonDA framework are shown in Figure 13.
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Figure 13: MetaLonDA R-package framework (115).
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Input

Metagenomic reads are processed for each sample to construct taxonomic and/or functional
profiles (45; 56; 116; 117). The taxonomic profiles, functional profiles, or both for all samples
from different subjects are then integrated into one count table C' with dimension of m x n,
where m denotes the number of microbial features and n denotes the number of metagenomic
samples. C'(4, j) represents the number of reads from sample j that mapped to microbial feature
i. The count table C' is the main input to MetaLonDA. Additionally, three vectors each of length
n are needed for MetaLonDA to perform the analysis: (a) time of sample collection vector 7', (b)
phenotypic group vector G, and (c) subject ID vector I. As previously highlighted, MetaLonDA
supports unequal numbers of samples between subjects, unequal numbers of subjects between

phenotypic groups, and uneven elapsed time between time points.

Normalization

Since metagenomic samples may have different sequencing depths, the aggregated metage-
nomic counts need to be normalized among samples (118; 119; 120). MetaLonDA incorporates
three different normalization methods into its framework: (a) Cumulative Sum Scaling (111), (b)
median-of-ratios scaling factor (121), and (c) Trimmed Mean of M-values (122). If the count table
is already normalized, the normalization step should be skipped in MetaLonDA. As a preprocess-
ing step for MetaLonDA and based on a user-specified threshold, relatively low abundant features
are removed from the metagenomic count table. In our model, we assume that the normalized

counts of each feature follow a negative binomial (NB) distribution, which is different from mod-
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eling the original counts as NB distributed after incorporating a size factor into the mean as in
DESeq2 (121).

MetaLonDA Core Algorithm

MetaLonDA’s core algorithm is discussed before in section 4.2.

Output Format and Visualization

MetaLonDA outputs a table that includes significant features, start and end points of the cor-
responding significant intervals, the adjusted p-value of each significant time interval, and the
phenotypic group in which the corresponding feature is more abundant. In addition to the out-
put table, MetaLonDA produces two types of visualizations: (a) a figure showing the fitted splines
of each group and the associated time interval for each feature that has at least one significant
time interval, and (b) a figure visualizing the identified time intervals of the differentially abun-

dant features.

4.3 Experiments and Results

4.3.1 Evaluation of the Negative Binomial Assumption

One major assumption of MetalLonDA is that the number of metagenomic reads mapped to
microbial features follows a NB distribution. To evaluate this assumption, we extracted the count
data from Caporaso et al. (70). In this dataset, microbial samples were taken on a daily basis

from a man and a woman over a period of 15 months and 6 months, respectively, from four dif-
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ferent body sites. The obtained read counts were normalized using the median-of-ratios scaling
factor method (121). After filtering out the relatively rare operational taxonomic units (OTUs)
with fewer than 5 reads, a total of 750 OTUs were selected from 1967 samples. The Q-Q plot in
Figure 14 exemplifies the suitability of modeling read counts of Klebsiella species using different
parametric distributions, namely, NB, Poisson, zero-inflated Poisson (ZIP), and lognormal distri-
butions. The theoretical quantiles of each parametric distribution are calculated from random
numbers generated from each parametric distribution with parameters estimated from each OTU
read count.

Parameters of each distribution are calculated as following, for each vector of feature’s reads
counts, we used the £itdistr function from the MASS R-package (123) to estimate the param-
eters of each parametric distribution used in the project except zero-inflated Poisson (ZIP) distri-
bution. Here are the parameters for each distribution: (a) Negative-binomial distribution: size and
mean, (b) Poisson distribution: lambda, (c) Zero-inflated Poisson distribution: p and lambda, (d)
Lognormal distribution: mean and standard deviation, (e) Normal distribution: mean and standard
deviation, and (f) Exponential distribution: rate. For zero-inflated Poisson distribution, we used
the zeroinf1 function from the pscl R-package (124; 125) to fit each features read counts with
a ZIP. Then we extracted the values of p (zero-inflation probability) and the lambda. Using the
estimated parameters for all aforementioned distributions except ZIP, we simulated N (N = # of
samples of the Caporaso et al, study (70)) random numbers are generated using the correspond-
ing parametric distribution. For ZIP, we can generate N random numbers following ZIP with the

estimated parameters using rzipois function from the VGAM R-package (126; 127).
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The p-value on the top of each sub-figure of Figure 14 represents the BH adjusted p-value of
the two-sample Kolmogorov-Smirnov (KS) test (128), where a higher p-value indicates that the
two samples are derived from the same population distribution, and smaller p-value indicates that
the two samples are drawn from different population distributions. In the case of Klebsiella, only

the NB distribution is considered suitable (p-value = 0.28).
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represents the significance of the KS test between the sample quantiles and the theoretical quan-

tiles of the corresponding distribution. The NB distribution is most appropriate to model the OTU

count among other standard distributions (115).
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To evaluate all other features, we applied the KS test to the read counts of each of the 750 OTUs
and the sampled numbers from the corresponding parametric statistical distribution that had the
same parameters as estimated from the read counts. Table IV summarizes the number of features
that do not show significant divergence (p-value > 0.05 after BH multiple testing corrections) with
NB, ZIP, Poisson, lognormal, exponential, half-normal, and normal distributions. Out of the 750
features, 96% were modeled appropriately using NB distribution. In comparison, ZIP and Poisson
were appropriate for 41% and 26% of the OTUs, respectively, whereas the rest of the parametric
distributions employed in this analysis barely fit. This indicates the appropriate use of NB as
a parametric distribution model for MetaLonDA when compared to other standard parametric
distributions. Furthermore, this finding is consistent with previous studies that show that cross-
sectional differential abundance methods that use a NB distribution to model microbial features
outperform methods that rely on other distributions, especially when the number of samples is

small (129).
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TABLE IV: Number and percentage of species out of 750 species that do not show significant dif-
ferences (KS p-value>0.05) with various standard statistical parametric distributions. The count

data is taken from Caporaso et al..

Number Percentage

NB 721 96.13
1P 309 41.20
Poisson 201 26.80
Lognormal 1 0.13
Exponential 0 0
Half-normal 0 0
Normal 0 0

4.3.2 Performance Evaluation Based on Simulated Datasets

In order to benchmark MetaLonDA’s performance, we performed a comprehensive simulation
study. Longitudinal features (n=1000) were simulated from NB, Poisson, and ZIP distributions us-
ing the corcounts R-package (130). Although read counts of metagenomic features follow NB
distribution as shown in Table IV, the purpose of simulating data from Poisson and ZIP was to

evaluate the robustness of MetaLonDA when read counts fail to follow the NB distribution. These
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simulated features were categorized into two types: (a) 500 differentially abundant features be-
tween the two testing groups, and (b) 500 features that were not differentially abundant between
the two testing groups. In the case of the differentially abundant features (demonstrated in Fig-
ure 16A), the mean p(t) pattern is simulated to be differentially abundant in three regions: (a)
at the start of the study course, (b) at the end of the study course, (c) in the middle of the study
course (Equation 4.15). In the case of non-differentially abundant features, the p(t) = N(20, 1),

where N denotes normal distribution and ¢t = 0, . . ., 20.

p(t) =N(20,1) + [N(20,1) * (5 — t) * I(t < 5)]+
2% N(20,1) % (t — 8) * I(t > 8&t < 11)]+
(4.15)
[2 % N(20,1) (13 — ) = I(¢ > 11&t < 13)]+

[N(20,1) = (t — 15) * I(t > 15)]

For features simulated from the NB distribution, we used a size factor equal to 40/p(¢). In the
case of Poisson distribution, we used A = p(t), and in the case of zero-inflated Poisson distribu-
tion, we used p(y = 0) = 0.3 for the zero-inflation parameter. Our choice of the zero-inflation
probability was based on the analysis of p(y = 0) when we fitted all features in the Caporaso et
al., study (70) with the ZIP distribution (Table IV). The histogram in Figure 15 shows that 75% of
the p(y = 0) is less than 0.3 (median of p = 0.1). Therefore, our choice of 0.3 is to evaluate how

MetaLonDA performs in this case of simulated zero inflation.
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Figure 15: Zero-inflation probability distribution of the fitted ZIP distribution. Read counts are

taken from the Caporaso et al., study (115).
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In order to mimic the correlation behavior between adjacent time points in longitudinal stud-
ies, the simulation of read counts of adjacent samples followed the first-order autoregressive
model (131) with a correlation coefficient p = 0.9. Datasets were simulated for 15 subjects with
20 time points each (' = 20). Additionally, to mimic inconsistencies in the number of subjects
per group and number of samples per subject, we randomly chose 11 samples from 8 subjects

from group (A) and 8 samples from 6 subjects from group (B) (Figure 16A).
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Figure 16: Pattern and performance evaluation of data simulated from various statistical distribu-
tions. (a) The pattern of the simulated longitudinal features. Each differentially abundant feature
has time intervals between group A and B at [1,5] | [8,13] | [15,20] time-unit and non-differential
time intervals [5,8] | J [13,15]. The simulated data mimics inconsistencies in sample collection (dif-
ferent number of subjects per group, different number of samples per subject, and samples are
not equally spaced.) (b) The fitted smoothing spline of each group and the highlighted significant
time intervals between the two groups. (c-e) The performance of different tools using data simu-
lated from NB, Poisson, zero-inflated Poisson, respectively. Each bar represents the mean among
1000 features, and the error bar represents the standard deviation. MetaLonDA always has higher
specificity than LOWESS and MetaSplines. This shows MetaLonDA’s robustness among different

distributions (115).
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TABLE V: Performance evaluation on data simulated from various statistical distributions mim-

icking consistent sampling.

NB Poisson VALY

Sensitivity (%) Specificity (%) Sensitivity (%) Specificity (%) Sensitivity (%) Specificity (%)

MetaLonDA 98 95 99 96 84 90
MetaDprof 94 94 86 94 87 96

LOWESS 96 80 100 47 94 60
MetaSplines 81 79 85 59 60 64

We proceeded to evaluate the performance of MetaLonDA in comparison to MetaSplines, MetaD-
prof, and LOWESS (132). LOWESS is a non-parametric local regression model that is based on
combining multiple regression models in a k-nearest-neighbor-based meta-model. In the context
of this project, LOWESS refers to using the LOWESS regression model to substitute the NB dis-
tribution in MetaLonDA’s framework. Each method was run for 1000 permutations to construct
the AR empirical distribution. The p-value threshold was set to 0.05 after multiple testing correc-
tions using BH. The rest of the parameters were set to default. The assessment is based on the

sensitivity = 2t and speci ficity =

TPLFN In this context, TP represents the number

TN
TN+FP*
of truly identified time intervals of differentially abundant features. TN represents the number

of truly identified time intervals of non-differentially abundant features, FP represents the falsely
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identified time intervals of non-differentially abundant features, and FN represents the falsely
identified time intervals of differentially abundant features.

Table V shows the performance evaluation based on consistent sampling, i.e., the ideal sce-
nario which is rare. MetaLonDA has the most balanced prediction in terms of sensitivity and
specificity followed by MetaDprof and MetaSplines.

Next, we benchmarked MetaLonDA using the inconsistent sampling scenario. In this exper-
iment, MetaDprof was excluded since its package cannot handle the sampling inconsistencies.
In the case of data simulated from NB distribution, Figure 16C shows that MetaLonDA outper-
forms MetaSplines and LOWESS in sensitivity and specificity. On the other hand, in the case of
data simulated from Poisson distribution, Figure 16D demonstrates that LOWESS has a slightly
better sensitivity than MetaLonDA (100% vs. 98%). But, the specificity of LOWESS and MetaS-
plines is very low when compared to MetaLonDA (50% vs. 95%). This is because LOWESS and
MetaSplines over-fit the data. Lastly for the case of the zero-inflated Poisson, Figure 16E shows
that MetaLonDA, MetaSplines, and LOWESS have a comparatively low-level of sensitivity(~50%),
but MetaLonDA has higher specificity. The reason behind this low sensitivity is the high zero
inflation probability we chose for ZIP, p(y=0)=0.3. To summarize, MetaLonDA always maintains
a very high specificity, in contrast to LOWESS and MetaSplines.

The execution time of MetaLonDA, MetaDprof, and MetaSplines is comparable and depends on
the number of permutations used. Analysis of the simulated dataset from a NB distribution with
1000 features took 104 minutes with MetaLonDA, 113 minutes with MetaDprof, and 99 minutes

with MetaSplines. The analysis was conducted on a MAC machine with 2.5 GHz Intel Core i7 pro-
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cessor and 16 GB 1600 MHz RAM. For the same analysis, LOWESS was slightly faster (87 minutes)
because it does not have the complex smoothing spline optimization equation (Equation 4.11) that

needs to be solved numerically.

4.3.3 Performance Evaluation Based on a Biological Dataset: Hygiene Hypothesis Study

In order to assess the biological significance of the identified time intervals of differentially
abundant features, we used a publicly available dataset from a longitudinal metagenomic study
that investigates the hygiene hypothesis (1). The study was part of the DIABIMMUNE project
(https://pubs.broadinstitute.org/diabimmune). Stool samples were collected
from 222 infants (74 from Russia, 74 from Finland, and 74 from Estonia) from birth to ~ 3 years
of age. In our analysis, we identified the time intervals with differentially abundant genera in
Russian and Finnish infant guts. We focused on the 585 samples (304 from 70 Russian infants
and 281 from 71 Finnish infants) that had been sequenced using Metagenomic shotgun (MGS)
sequencing. Figure 17 shows the distribution of time points of the stool samples collected from
each group (Figure 18 shows the distribution of time points per subject). Reads from the 585 se-
quenced samples were quality-controlled by filtering out low-quality reads, short reads (<60 bp),
and human reads. Taxonomic profiles were constructed using MetaPhlAn2 (100). The number
of reads mapped to each taxonomic feature was then normalized to the reads per kilo-base per
million sample reads (RPKM) to correct for bias due to differences in genome size and sequencing

depth. The aggregated taxonomic profiles of all 585 samples revealed 128 genera.
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