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SUMMARY

Results in two topics within knowledge representation and reasoning are presented. The

first, belief revision, concentrates on incorporation of new knowledge into previous knowledge.

The objective of research presented herein is to provide a formal logical framework to evaluate

whether a finite set of logical statements, postulates, can be used to characterize a class of belief

revision operators. A connection between characterizability by postulates and definability in a

fragment of second order logic is established. This connection allows tools from finite model

theory to be employed to identify classes of belief revision operators which are not characteriz-

able. This framework is developed in Chapter 2 and extended to the case of Horn belief revision

in Chapter 3. In addition, examples of characterizable and non-characterizable classes of belief

revision operators are given to demonstrate the application of this framework.

The second topic is a method for inference on conditional knowledge bases proposed by Kern-

Isberner et al. A set of conditional statements with associated probabilities form a conditional

knowledge base. However, conditional knowledge bases may not contain enough information

to fully determine a probability distribution. Therefore, the maximum entropy principle is ap-

plied, allowing probabilities of statements outside the knowledge to be inferred. The technique

explored in Chapter 4 represents knowledge bases as polynomials and uses methods from compu-

tational algebra for inference on new conditional statements. Several examples and experiments

were conducted to determine the viability of using this method for inference with arbitrary con-
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SUMMARY (Continued)

ditional knowledge bases. Additionally, explanations regarding the algebraic geometry of these

examples are given.
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CHAPTER 1

INTRODUCTION

1.1 Knowledge Representation and Reasoning

Acquiring, conceptualizing, evaluating, and modifying knowledge are fundamental parts of

the human experience. For this reason, the subfield of knowledge representation and reasoning

is also an essential part of artificial intelligence research. As a consequence of the integral part

knowledge plays in our everyday lives, the challenge of translating these processes to computa-

tional models and procedures can be easily underestimated. Delving into modeling knowledge

and reasoning systems reveals a wealth of sophisticated compelling applications and active mul-

tidisciplinary research areas.

Due to the ubiquitous nature of knowledge and its use, a variety of fields have begun de-

veloping applications using knowledge representation. The need to organize, manipulate, and

draw conclusions from information plays a vital role in many of these applications. Increases of

computational power and availability of data have been accompanied by the drive to implement

the theoretical models of knowledge representation. However, theoretical and applied models

may differ greatly in their focus and methodology. For instance, a theoretical approach may

employ techniques which are not computationally efficient, rendering it impractical. Conversely,

an application may have an efficient implementation which does not adhere to widely accepted

theoretical principles, causing behavior which may be unexpected or undesirable. Therefore,

1
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frameworks bridging between the theoretical and the practical serve an important function in

the field’s growth.

Another consequence of knowledge representation being applicable in many fields is that

unified research from a range of disciplines is required. Application areas include inferring in-

formation from text or video, automating computerized decision making, merging conflicting

information from multiple sources, and evaluating context of natural language input. For such

applications, knowledge representation must integrate techniques developed by engineers, com-

puter scientists, mathematicians, cognitive scientists, philosophers, and others to design perti-

nent solutions. These solutions readily apply techniques from mathematics, statistics, logic, and

computer science with the goal of devising models for representing knowledge and algorithms for

reasoning on that knowledge. Moreover, one may anticipate frameworks connecting theoretical

and practical aspects of knowledge representation to also be multidisciplinary in nature.

1.2 Background

Knowledge representation can be roughly divided into two major approaches – logic and

probability. A broad survey of knowledge representation may give the impression these are

incompatible approaches. Each approach contributes by addressing pressing issues which exist

in knowledge representation. Despite the weaknesses of each approach, compelling reasons

remain to integrate research from these two approaches.

Logic has an established role in representation and reasoning in mathematics. A natural

next step would be to extend formal logic to a system which is capable of handling human

knowledge. Even though logic has been an indispensable tool in knowledge representation for
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representing knowledge and changes in that knowledge, several of the shortcomings of traditional

logic are defining features of human reasoning. For example, in mathematical logic, the addition

of new information always results in the expansion of knowledge. In particular, the addition of

contradictory information results in the ability to conclude anything. Human reasoning does

not seem to conform to this property of classical logic. As a result, nonmonotonic logic was

developed to describe the situation in which obtaining new information does not necessarily

cause expansion of previously known information.

Furthermore, classical logic does not offer an adequate solution for the representation of un-

certainty. Within many applications, information is known with some level of confidence. Prob-

ability is well equipped to resolve representation problems which involve uncertainty. Moreover,

probability has proven quite successful in fields such as natural language processing and machine

learning. Even though uncertainty remains only one aspect of knowledge, instances occur in

which logic representation would be more appropriate.

Merging logic and probability is an active area of research with a myriad of exciting open

problems and worthwhile application. As noted recently in [37], incorporation of logical and

statistical approaches may be vital for implementations of knowledge representation such as se-

mantic web applications. Therefore, the future may include applications which employ multiple

integrated techniques from both approaches to knowledge representation.

1.2.1 Belief Change

Belief change studies the operations of extending, revising, and retracting information from a

knowledge base. The first portion of this thesis will focus will on belief revision, the incorporation
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of new information into currently held beliefs. More formally, given a knowledge base K, a belief

revision operator ∗ assigns a formula K ∗ ϕ to every formula ϕ. Here ϕ is called the revising

formula, and K ∗ ϕ is called the revised knowledge base. If the revising formula is consistent

with K, then revision is equivalent to adjoining the knowledge base by the revising formula. In

this case, the expansion operator + is written instead of ∗.

While different approaches to belief revision exist, one of the most influential approaches was

introduced by Alchourrón, Gärdenfors, and Makinson (AGM). In [3], they propose an axiomatic

approach by requiring a rational revision operator to satisfy eight postulates [3].

AGM1 K ∗ ϕ is logically closed.

AGM2 ϕ ∈ K ∗ ϕ.

AGM3 K ∗ ϕ ⊆ K + ϕ.

AGM4 If ¬ϕ /∈ K, then K ∗ ϕ = K + ϕ.

AGM5 K ∗ ϕ is inconsistent only if ϕ is inconsistent.

AGM6 If µ = ϕ, then K ∗ µ = K ∗ ϕ.

AGM7 K ∗ (µ ∧ ϕ) ⊆ (K ∗ µ) + ϕ.

AGM8 If ¬µ /∈ K ∗ ϕ, then (K ∗ µ) + ϕ ⊆ K ∗ (µ ∧ ϕ).

An epistemic state is a knowledge base with additional epistemic information used in the

belief change operations. Although additional information may be represented in various forms,

the current work is primary concerned with preference relations over possible worlds or truth

assignments. In general, there may be numerous ways to revise a given knowledge base. The
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purpose of the preference relation is to contribute information which aids in determining the

revised knowledge base. One contribution area is the work by Katsuno and Mendelzon. In [27],

they defined a revision operator by minimization on total preorders of truth assignments.

Theorem 1.2.1. (Katsuno, Mendelzon [27]) A belief revision operator satisfies the AGM pos-

tulates iff it can be obtained from a faithful total preorder using minimization.

This characterization is a special case of the system of spheres characterization introduced

by Grove in [22]. Kastuno and Mendelzon also proved a result for revision operators generated

by minimization on a partial orders.

Theorem 1.2.2. (Katsuno, Mendelzon [27]) A belief revision operator satisfies a modified set

of AGM postulates iff it can be obtained from a faithful partial order using minimization.

In the past several years, a growing body of results on how to adapt the AGM theory to

Horn logic has been published [13] [43]. A Horn clause is a disjunction of literals with at most

one positive literal. A Horn formula is a conjunction of Horn clauses. Horn formulas provide an

expressive, yet tractable knowledge representation framework. In particular, satisfiability and

equivalence of Horn formulas are efficiently computable, a desirable quality for applications.

Therefore, development of such operators hold promising potential for practical applications.

In [11], Delgrande and Peppas offer a representation result for Horn revision operators which

consists of infinitely many postulates by appending a scheme called acyclicity to the AGM

postulates.
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Theorem 1.2.3. (Delgrande, Peppas [11]) A Horn belief revision operator satisfies the Horn

AGM postulates and the acyclicity postulate scheme iff it can be obtained from a Horn compliant

faithful ranking using minimization.

1.2.2 Conditional Knowledge Bases

Horn belief revision confronts the challenge of constructing efficiently computable belief

revision operators, while conditional knowledge bases attempt to build models addressing other

obstacles to practical applications. More precisely, models which represent knowledge with

propositional logic lack the ability to express uncertainty, yet uncertainty is prevalent in human

reasoning.

As an example, consider creating a model of information acquired regarding a patient’s

symptoms and medical history. The goal is to infer a diagnosis of the patient. This information

may offer neither a complete description of the patient’s health nor certainty of the condition in-

dicated by their symptoms. At most one may be able to relate symptoms and medical conditions

by statements such as

Given the patient has symptom A, there is a probability, P , that they have condition B.

Given this set of knowledge with associated measures of uncertainty, there should be a method

to infer the likelihood of unknown information. In the example, information may exist link-

ing individual symptoms and medical conditions; however, for diagnosis, the probability of a

medical condition Aj given all the symptoms B1, ..., Bj would need to be inferred. From this
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information, if a probability distribution were assigned such that known probabilities are pre-

served, then a probability could be inferred for the Aj given B1, ..., Bj . However, there could

be many distributions which satisfy this condition. Therefore, there must be additional criteria

for selecting a probability distribution. One way to accomplish this would be to attempt to

minimize assumptions made when assigning probabilities.

The framework for conditional knowledge bases developed by [28] does exactly this. A

knowledge base, KB, over a propositional logic language, L, is of the form

KB =

{
Bj |Aj

[
nj
mj

]
: Aj , Bj ∈ L,mj , nj ∈ N, 0 ≤ j ≤ s

}
.

Each element in the knowledge base is a conditional statement, Bj given Aj , with a probabil-

ity nj

mj
. A knowledge base may not provide enough information to determine a unique probability

for all possible conditional formulas. For this reason, the method of maximum entropy is bor-

rowed from information theory. Maximum entropy minimizes bias, while determining a unique

probability distribution. Once this distribution is found, other statements not included in the

knowledge base may be inferred.

In [30], techniques from [16] are adapted to this specific problem to produce a system of

polynomials representing a knowledge base. The objective of encoding the maximum entropy

principle into a polynomial system was to use tools from computational algebraic geometry.

Computationally, this representation of the problem allows for use of techniques from compu-

tational algebraic geometry. These algorithms are well known and researched as well as widely
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Figure 1: Classes of Posets Generate R-revision Operators

available in common computer algebra systems. Additionally, this approach provides an oppor-

tunity to investigate the algebraic structure of conditional knowledge bases.

1.2.3 Overview

Chapter 2 focuses on developing a logical framework for the characterizability of belief revi-

sion operators. A fundamental realization of attempts to formalize mathematics was that some

logical systems cannot be finitely axiomatized. In other words, there is no finite set of logical

statements which fully describe the system. Similarly to these results about formal logic, are

there analogous situations in belief revision, when a finite set of logical statements is unable

to describe classes of revision operators? Such issues were also studied in modal logic [5] and

dynamic epistemic logic [40]. However, much of the belief revision literature has concentrated

on providing postulates for various operators, without consideration of negative results.

In order to study this problem, consider classes of belief revision operators, where a class can

be defined by a class of posets. This class, then, defines the class of revision operators generated

by minimization from posets in the class. The situation is pictured in Figure 1. Given a class

of posets over the possible worlds with known properties, the question is what properties of
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the revision operators are entailed by this information? For example, total orders mean that

any two models can be compared, while bounded height means that the length of any chain

of comparable models is bounded. Depending on the type of property describing the class of

posets, this observation may be used to give a postulate characterization of the corresponding

class of revision operators.

The first step in building a framework for this study, one needs a precise definition of

a postulate. This issue was not considered so far in the belief revision literature, with the

exception of the work of Schlechta [38] and Ben-Naim [4] to be discussed later on. As noted in

the survey [19]

“[T]heories of belief change developed in the AGM tradition are not logics in a

strict sense, but rather informal axiomatic theories of belief change. Instead of

characterizing the models of belief and belief change in a formalized object language,

the AGM approach uses a natural language (ordinary mathematical English) to

characterize the mathematical structures under study.”

After formalizing the notion of a postulate, a relationship is to be found between the pos-

tulate definability classes of revision operators, and the definability classes of posets. The main

observation in establishing such a connection is that postulates are implicitly universally quan-

tified over revising formulas, and for posets generating the revision operators this corresponds

to universal quantification over subsets of the universe, i.e., to universal monadic second-order

quantification.
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The formal definitions for postulates are given in Definition 2.5.1. These basic postulates

can then be used to formalize the idea of characterizability of revision operators by Theorem

2.7.3. The relationship between postulate characterizability of classes of revision operators

and definability of the corresponding classes of posets reduces the problem of proving non-

characterizability by postulates to proving undefinability of the poset class. The situation is

complicated by the fact that belief revision models are finite structures. Most of the tools

from mathematical logic to prove non-axiomatizability are not applicable for finite models. For

this reason, techniques are used from finite model theory, a subfield which studies finite logical

structures.

The main technique to prove undefinability in finite model theory is model-theoretic games.

A version of such games is defined, such that a winning strategy corresponds to characterizability

by basic postulates. The game given in Definition 2.8.4 is played on two structures, one in

the class R and the other outside R. The goal for Duplicator/Spoiler, the two players, is to

maintain/avoid a partial isomorphism generated by the game moves on the element and subset

relations of the underlying structures. The minimal subsets generated by a revision operator

using minimization are encoded in a structure called a min-variant given in Definition 2.8.3.

This modification reduces the game to a first-order logic game on the min-variant structures.

Typical applications of such games in finite model theory are to determine the monadic

second-order (MSO) definability of graph properties [2,33]. For instance, this method can prove

disconnected graphs are not universal monadic second-order definable (∀MSO). In this work,

the implicit quantification of a postulate over all formulas mentioned above gives a translation
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into a fragment, ∀MSOmin , of universal monadic-second order logic with a special predicate for

minimal sets. Therefore, the characterizability of a class of operators corresponds to ∀MSOmin

- definability by Theorem 2.8.5. Using this game, one can prove, for example, that revision

operators over disconnected – as well as connected – posets are not ∀MSOmin -definable. Note

that this is in contrast to the fact that the class of connected posets is universal monadic

second-order definable. As a consequence, in addition to creating a new application of finite

model theory, a new fragment of ∀MSO has been obtained, which is shown to be incomparable

to first-order logic as well. Our results on characterizability are summarized in Figure 7.

In Chapter 3, the characterizability framework is adapted to apply to Horn belief revision.

The material in this chapter is submitted for publication.

In order to adapt the general framework, several modifications must be made to accommo-

date postulates composed of Horn formulas. It has to be taken into consideration that revision

formulas are now restricted to be Horn, and that Horn logic is closed under conjunction, but it

is not closed under negation. In the corresponding version of universal monadic second-order

logic, universal monadic second-order quantifiers are replaced by universal monadic second-order

quantifiers which range over closed sets of truth assignments as opposed to arbitrary sets as in

Definition 3.5.2.

In Theorem 1.2.3, Delgrande and Peppas [11] characterize Horn revision operators obtained

by minimization from Horn compliant total preorders using an infinite postulate scheme. Using

the characterizability framework for Horn revision, it is shown that this characterization cannot

be replaced by a finite set of postulates.
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Theorem 3.8.1. The class of Horn belief revision operators obtained from Horn compliant

faithful rankings using minimization cannot be characterized by a finite set of postulates.

This result may also be of interest as the existence of interesting, inherently infinite postulate

characterizations appear to be a new phenomenon in belief revision.

The final section, Section 3.9, discusses the case of strictly Horn compliant revision operators

for which characterizability remains an open problem. A generalization of two tractable classes of

Horn belief revision operators introduced by Delgrande and Peppas [11] is given, showing that

strictly Horn compliant revision operators come from Horn compliant total preorders where

the levels are obtained by unit resolutions and weakenings. It also follows that strictly Horn

compliant revision operators are tractable in general.

Chapter 4 deals with conditional knowledge bases. The work described in this chapter is

mainly experimental, supplemented with material from algebraic geometry and computational

algebra.

The goal is to expand on the work presented in [28] and [30] described above, which describes

a maximum entropy-based computational algebra approach to the inference problem in condi-

tional knowledge bases. Computational examples, mathematical explanations, and experimental

data are provided. The following is a brief outline of the issues considered.

[30] suggests that a polynomial may be simplified by removal of a specific GCD from the

polynomials presented in [29]. Solutions for the original and GCD-simplified versions of the

polynomial system are considered with respect to the computational output when attempting

to infer an unknown probability. Situations in which unexpected output may occur are identified
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and explained. Algebraically, this corresponds to considering systems which may have multiple

roots between (0, 1) and algebraic independence of polynomials in the system. Geometrically,

these situations occur when multiple solutions have a projection on the final coordinate which

lie in (0, 1) and the solution set contains higher dimensional sets, respectively.

Experiments are conducted to study the effects of different knowledge base structures on

the aforementioned features and computation time. Knowledge base structures were chosen

from properties in [28] along with one which did not conform to a known property. A thousand

examples were run with random formulas input into the KB structures. Both the original and

GCD-simplified polynomial systems were analyzed for multiple roots, algebraic independence,

and computation time. The results demonstrate clearly the dramatic differences that the KB

structure can have on output. Moreover, sensitivity of the KB structure which was not generated

by a property was reflected in its variance in computation time.

The overall conclusion of this work on conditional knowledge bases is that the computational

algebra approach can have difficulties both in terms of providing the correct answer, and in

terms of computational complexity, and it is of interest to explore structural properties of the

knowledge bases where the approach is efficient.



CHAPTER 2

CHARACTERIZABILITY IN BELIEF REVISION

The material of the following chapter was published as part of the proceedings of the 24th

International Joint Conference on Artificial Intelligence [39].

2.1 Introduction

Few non-characterizability results exist within the belief revision literature. The first known

negative results are due to Schlechta and Ben-Naim [4, 32, 38]. Impossibility results are also

proved by Reis et al.[36]. Having tools to prove non-characterizability could be useful when

one tries to understand the properties of a class of revision operators. While the standard

presentations of belief change start with a set of postulates and then find a matching class

of revision operators, there may be situations when a class of revision operators comes first.

This may happen, for example, when one considers a class of revision operators which is a

natural variant of previously considered ones. For example, a natural subclass of Horn revision

operators is called strictly Horn compliant. Frameworks capable of assisting with assessing

characterizability could be useful when applied to such classes. Also, one may introduce a

class of efficiently computable revision operators for practical purposes. In these cases one may

inquire what are the properties of the given class of revision operators? For instance, does it

form a “nice” class, which can be characterized by postulates?

14
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In this chapter, methods are developed to prove non-characterizability results using tools

from finite model theory. Postulates are translated into a fragment of universal monadic second-

order logic and Ehrenfeucht-Fraïssé games are used to prove undefinability. The goal is to “char-

acterize postulate characterizability.” This is achieved for families of partial orders by showing

that the answer to the question is positive iff the family is definable by a ∀MSOmin sentence,

which is a special kind of monadic second-order sentence. Interestingly, ∀MSOmin -definability

turns out to be incomparable to first-order definability. This characterization is used to give

several examples of characterizable and non-characterizable classes of revision operators. The

negative results are proved using a “forgetful” version of the Ajtai-Fagin variant of Ehrenfeucht-

Fraïssé games [2, 33].

2.2 General Concepts

This section introduces concepts which will be used within the two chapters discussing

characterizabiity of belief revision. Material specific to each topic will then be explained when

relevant.

Let L be a language of propositional logic over finitely many variables. A knowledge base,

K, is a logically closed set of propositional formulas over L. Due to L being finite, K may be

represented with a single formula. If needed, Kn is used to indicate that K is over n variables.

Both representations of K will be used in fashion appropriate for the context. Belief revision

considers the situation in which new information in the form of a propositional formula, ϕ, is

obtained. A revision operator ∗ maps from SL × SL to SL with SL the set of all formulas of
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total reflexive antisymmetric transitive
Pseudo Order X X

Partial Preorder X X
Partial Order X X X
Total Preorder X X X

Figure 2: Relations and their Properties

L. In other words, ∗ is considered to assign a revised knowledge base K ∗ϕ to every knowledge

base K and every revising formula ϕ.

Truth assignments (or interpretations, models, possible worlds) are assignments of truth

values to the variables. The set {0, 1}n of truth assignments over n variables is denoted by Tn.

A Boolean function is a function of the form f : {0, 1}n → {0, 1}. The set of truth assignments a

for which f(a) = 1 is denoted by |f |, and the set of truth assignments satisfying a propositional

formula ϕ is denoted by |ϕ|. Given a closed set A of truth assignments, 〈A〉 denotes some

propositional formula ϕ such that |ϕ| = A.

A binary relation ≤ is total iff for all a, b a ≤ b or b ≤ a. Otherwise the relation is called

partial. A relation is reflexive iff for all a, a ≤ a. The relation b < a is strict iff b ≤ a but a 6≤ b.

A relation is called antisymmetric iff for all a and b, a < b implies that b 6< a. Transitivity

requires that for all a, b, c if a ≤ b and b ≤ c, then a ≤ c.

Structures R = (X,≤), where X is a finite ground set and ≤ is a binary relation will be

considered in the following chapters. Figure 2 gives a summary of the properties of binary

relations of these structures.
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In addition, several concepts will be needed to speak about the relationship of elements in

the ground set. Elements a and b are comparable if a ≤ b or b ≤ a holds. Otherwise they are

incomparable. The comparability graph of R is the undirected graph over X such that for any

pair of vertices (a, b) is an edge iff a ≤ b or b ≤ a. Elements a and b in a partial preorder are

twins, denoted by a ≈ b, if a ≤ b and b ≤ a. An element a is minimal if there is no b such that

b < a. If X ′ ⊆ X then a is minimal in X ′ iff a ∈ X ′ and there is no b ∈ X ′ such that b < a.

The set of minimal elements of X ′ is denoted by min≤X
′, or simply minX ′ if ≤ is clear from

the context. A total preorder determines a partition (V1, . . . , Vm) of its elements into levels: V1

is the set of minimal elements, V2 is the set of minimal elements in V \ V1, etc.

2.3 Further Concepts

Partial preorders will be used to represent preferences over truth assignments, with truth

assignments satisfying the knowledge base being most preferred1. This assumes that partial

preorders considered have a special structure, referred to as regularity.

Definition 2.3.1. (Regular) A partial preorder is regular if

1. every minimal element is smaller than any non-minimal element and

2. the number of elements is a power of 2.

The first assumption means that every truth assignment satisfying the knowledge base is

preferred to every truth assignment not satisfying it. This is a standard assumption in belief

1Following standard usage, a ≤ b is taken to mean that a is preferred to b.
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change theory. The second assumption is made because the number of truth assignments is

always a power of two, and the elements of the partial preorder are identified with truth assign-

ments. From the point of view of partial preorders these are mild technical assumptions which

do not have an essential effect on definability. An example of a non-regular partial preorder is

the 4-element poset with a < b, c < d and no other comparability. Condition 1 is satisfied, for

example, if there is a unique minimal element.

In the standard definition, the partial preorder is defined over the set of truth assignments.

For this discussion it is more convenient to separate the partial preorder and the labeling of its

elements by truth assignments. Similar distinctions are made in modal logic as well [5].

Definition 2.3.2. (Faithful partial preorder) A faithful partial preorder for a knowledge base

Kn is a pair F = (R, t), where R = (X,≤) is a regular partial preorder and t : X → Tn is a

bijection between the elements of X and truth assignments, such that a ∈ X is minimal iff t(a)

satisfies Kn.

2.4 Revision Using Minimization

One of the basic approaches to belief change is to perform minimization using epistemic

states represented by faithful partial preorders.

Definition 2.4.1. (Revision using minimization) The revision operator ∗F for K, determined

by a faithful partial preorder F for K, using minimization is

K ∗F ϕ = 〈
(
t(min≤ t

−1(|ϕ|))
)
〉.
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Thus the revised knowledge base is satisfied by the minimal satisfying truth assignments

of the revising formula. Faithfulness implies that if the revising formula is consistent with the

knowledge base then the revised knowledge base is the conjunction of the knowledge base and

the revising formula.

Consider the situation depicted in Figure 3. Let n = 2 and the knowledge base be K =

x1 ∧ x2. Then F1, F2 and F3 are faithful partial preorders for K. In the figure, the elements

of X have explicit labels for the purpose of illustrating revision my minimization. The double

line in F3 indicates that t−1(01) and t−1(00) are twins. Consider the revising formula ϕ = x̄1.

Elements belonging to t−1(|ϕ|) are shown as black dots and the elements of min≤ t
−1(|ϕ|) are

in ovals. Then it holds that

K ∗F1 ϕ = ¬x1 ∧ x2 and K ∗F2 ϕ = K ∗F3 ϕ = ¬x1.

Figure 3: Revision on Posets and Preorders
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Note that the regular partial preorders underlying F1 and F2 are posets; the first one is

total and the second one is not. The revision operator ∗F1 satisfies the postulate “if K and

ϕ are inconsistent then |K ∗ ϕ| is a singleton”. The revision operator ∗F2 does not satisfy the

postulate. Also, note that the regular partial preorders underlying F2 and F3 are not isomorphic,

but the corresponding revision operators are identical. The difference between revision operators

determined by partial preorders and posets, indicated by this example, can be formulated as

follows.

Definition 2.4.2. A revision operator ∗ is poset-based if it is of the form ∗F for some faithful

poset F .

Lemma 2.4.3. a) There are non-isomorphic regular partial preorders R1 and R2 such that there

are faithful partial preorders F1 = (R1, t1) and F2 = (R2, t2) with ∗F1 = ∗F2.

b) Let K be a knowledge base, and ∗ be a poset-based revision operator. Then there is a

unique faithful poset F such that ∗ = ∗F .

Proof a) As discussed above, this is shown by the regular partial preorders underlying F2

and F3 above.

b) Let F = (R, t), where R = (X,≤) is a regular poset and t : X → Tn is a bijection between

the elements of X and truth assignments. Then for any two elements u, v ∈ X it holds that

u < v iff Kn ∗F 〈t(u), t(v)〉 = 〈t(u)〉, and u ∼ v iff Kn ∗F 〈t(u), t(v)〉 = 〈t(u), t(v)〉.

Thus F can be reconstructed from ∗ up to isomorphism of R. 2
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2.5 Postulates and Characterizability

Consider the AGM postulate

if K ∧ ϕ is satisfiable, then K ∗ ϕ = K ∧ ϕ. (2.1)

Here K,K ∗ϕ and ϕ can be considered as unary predicates over the set of truth assignments.

For example, in Equation 2.1 a unary predicate would be introduced such that x ∈ K(x) iff

x ∈ |K|. Thus the above postulate can be rewritten in such a manner.

[∃x(K(x) ∧ ϕ(x))]→ [∀x
(
(K ∗ ϕ)(x)↔ (K(x) ∧ ϕ(x))

)
]. (2.2)

Postulates refer to a fixed knowledge base K, and are implicitly universally quantified over

formula symbols such as ϕ. They express general requirements that are supposed to hold for

all revising formulas. The definition for postulate generalizes this example. However, this

definition is one possibility to formalize the notion of a postulate. It seems natural and covers

most postulates considered for belief revision operators. In order to emphasize that this is just

one, though hopefully basic, notion, the definition refers to such postulates as basic.

Definition 2.5.1. (Basic postulate) A basic postulate P is a first-order sentence with unary

predicate symbols K,ϕ1, . . . , ϕ` and K ∗µ1, . . . ,K ∗µm, where µ1, . . . , µm are Boolean combina-

tions of ϕ1, . . . , ϕ`.
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A revision operator satisfies a basic postulate for a knowledge base K if the basic postulate

holds for all ϕ1, . . . , ϕ`, with the variables ranging over the set of sets of truth assignments.

Allowing for Boolean combinations as arguments to the belief revision operator is necessary

as many postulates use such constructs. For example, the AGM postulates refer to K ∗ (ϕ∧ψ).

Definition 2.5.1 covers most postulates in [27] and in Section 7.3 of [23]. Also, note in this

context, a finite set of postulates can be represented by one postulate for the same reason that

K can be considered a single propositional formula.

This framework was constructed to address the form of a majority of the postulates put forth

in the literature. However, there is no inherent "correct" form for a postulate. If one chose to

allow quantifier alternation for instance, another framework similar to this could be constructed

to accommodate classes of partial preorders defined in that manner.

Characterizability in belief revision is intended to correspond to the formal logic concept

of finite axiomizabiity. The definition of characterizability applies to revision operators within

the partial preorder minimization framework. Classes of revision operators can be defined by

specifying a class of partial preorders.

Definition 2.5.2. (R-revision operator) Let R be a family of regular partial preorders. Let K be

a knowledge base and ∗ be a revision operator for K. Then ∗ is an R-revision operator iff there

is a faithful partial preorder F = (R, t) for K with R ∈ R, representing ∗ using minimization.

Lemma 2.4.3 shows that there is a bijection between poset-based revision operators and the

posets generating them, while this is not always the case for revision operators generated by
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partial preorders. Therefore, in the rest of this chapter the discussion will be restricted to posets

for simplicity.

Definition 2.5.3. (Characterization, characterizability) Let R be a family of regular posets. A

finite set of basic postulates P characterizes R-revision operators if for every knowledge base

K and every poset-based revision operator ∗ for K the following holds: ∗ satisfies the basic

postulates in P iff ∗ is an R-revision operator.

The family of R-revision operators is characterizable if there is a finite set of basic postulates

characterizing R-revision operators.

2.6 min-formulas and Translation

We define a translation of basic postulates as defined in Definition 2.5.1 into sentences

over an extension of the first-order language of posets. The language of posets contains the

binary relation symbol ≤ and equality. The translated sentences also contain additional unary

predicate symbols A1, . . . , A`. These correspond to propositional formulas ϕ1, . . . , ϕ` occurring

in the basic postulates. The following is some notation for the translations.

Definition 2.6.1. (Hat) Given a Boolean combination µ of ϕ1, . . . , ϕ`, denoted by µ̂ the first-

order formula obtained by replacing the ϕ’s with A’s.

For instance, for µ(x) = ϕ1(x), one has µ̂(x) = A1(x), and for µ(x) = ϕ1(x) ∧ ϕ2(x), one

has µ̂(x) = A1(x) ∧ A2(x). In addition, a predicate must be introduced for minimals sets of
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the A1, . . . , A`. Given a formula ν over the language ≤, A1, . . . , A` with a single free variable x,

write minν≤ for a formula expressing that x is a minimal element satisfying ν, i.e.,

minν≤(x) ≡ ν(x) ∧ ∀y(ν(y)→ ¬(y < x)). (2.3)

When ≤ is clear from the context it is omitted as a subscript. Similarly, minimal elements in

the poset can be defined by

min(x) ≡ ∀y(¬(y < x)).

In order to express revision, minimal sets of formulas and their Boolean combinations must

be considered. Therefore, special cases when the formula ν is a Boolean combination of the

unary predicates A1, . . . , A` are needed.

Definition 2.6.2. (min-formula) A min-formula over the unary predicate symbols A1, . . . , A`

is a first-order formula built from the Ais and formulas of the form minν≤(x), where the ν’s are

arbitrary Boolean combinations of the Ais.

By combining these definitions, one can define a translation of a postulate to formulas in a

restricted version ∀MSO. Each step is a straightforward substitution based upon the previous

definitions.

Definition 2.6.3. (Translation) The translation τ(P ) of a basic postulate P is the min-sentence

obtained from P by replacing

1. every occurrence of K(x) with min(x),
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2. every occurrence of ϕi(x) and µi(x) with their “hat" versions and

3. every occurrence of K ∗ µi with minµ̂i(x).

Note that Part 2 in the definition is redundant as the definition for ϕi is a special case

of the definition for µi. The translation of a basic postulate is a first-order sentence over the

predicate symbols ≤, A1, . . . , A`. It is based on the observation that the definition of revision

by minimization (Definition 2.4.1) uses the underlying poset in a restricted manner, by simply

taking the minimal elements of the revising formula.

Example 2.6.4. (Translation of basic postulate (Equation 2.2)) Applying Definition 2.6.3 one

obtains the min-sentence

[
∃x(min(x) ∧A1(x))] → [∀x

(
minA1(x)↔ (min(x) ∧A1(x))

)]
. (2.4)

Because τ is a simple syntactic transformation, the correspondence between min-sentences

and postulates is a direct consequence of the previous definitions.

Proposition 2.6.5. The mapping τ is a bijection between basic postulates containing revising

formulas ϕ1, . . . , ϕ` and min-sentences over unary predicates A1, . . . , A`.

In order to interpret min-formulas the following structure is introduced. As an abuse of

notation, the same notation for a predicate symbol and its interpretation over a structure will

be used assuming that the structure is clear from the context.
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Definition 2.6.6. (`-extension) Let R = (X,≤) be a partial preorder. An `-extension of R is

a structure

R′ = (X,≤, A1, . . . , A`),

where A1, . . . , A` are unary relations.

Given K,ϕ1, . . . , ϕ` and a faithful partial preorder F for K, the (ϕ1, . . . , ϕ`)-extension of

F is determined in the standard way, by interpreting the unary predicate symbols A1, . . . , Ak

by Ai(a) = ϕi(t(a)). Recall that a distinction is made between an element a of the poset, and

the truth assignment t(a) assigned to that element. Again, the following proposition is a direct

consequence of the definitions.

Proposition 2.6.7. Let K be a knowledge base, F = (R, t) be a faithful partial preorder for

K and let ∗F be the revision operator determined by F using minimization. Let ϕ1, . . . , ϕ` be

propositional formulas and P be a basic postulate. Then P is satisfied by ∗F for ϕ1, . . . , ϕ` iff

the (ϕ1, . . . , ϕ`)-extension of F satisfies τ(P ).

2.7 ∀MSOmin -definability

In the next two sections the concepts and tools for the logical characterization of postulate

characterizability are developed using finite model theory [17, 33]. As propositional logic for-

mulas occurring in the basic postulates are implicitly universally quantified and such formulas

are translated into subsets of the partial preorders, it is natural to consider universal monadic

second-order logic.



27

A universal monadic second-order (∀MSO) sentence is of the form

Φ = ∀A1, . . . , A`Ψ, (2.5)

where A1, . . . , A` range over unary predicates (or subsets) of the universe, and Ψ is a first-order

sentence using the unary predicate symbols A1, . . . , A` in addition to the original language

(in this case ≤ and equality). An existential second-order (∃MSO) sentence is of the form

Φ = ∃A1, . . . , A`Ψ.

As noted in the previous section, translations of basic postulates, such as (Equation 2.4),

have special structure. The translation of a postulate only refers to the underlying order relation

≤ in a restricted manner, only inside a minµ̂≤-formula. This corresponds to using only a fragment

of universal monadic second-order logic, defined as follows.

Definition 2.7.1. (∀MSOmin sentence) A ∀MSOmin sentence is a universal second order sen-

tence where Ψ is a min-sentence.

The definition of ∃MSOmin sentences is analogous.

For example, universally quantifying in (Equation 2.4) over the second-order variable A1

yields the ∀MSOmin sentence

∀A1(
[
∃x(min(x) ∧A1(x))] → [∀x

(
minA1(x)↔ (min(x) ∧A1(x))

)]
).
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Thus from the formal rewriting of the AGM postulate (Equation 2.1) as (Equation 2.2),

one arrives at (Equation 2.6) through the intermediate step (Equation 2.4). Each step is an

invertible syntactic transformation.

Definition 2.7.2. (∀MSOmin -definability) A family R of regular posets is ∀MSOmin -definable

if there is a ∀MSOmin sentence Φ such that for every regular poset R it holds that R ∈ R iff R

satisfies Φ.

The translation of a postulate into a ∀MSOmin sentence allows for tools from logic to be

applied to postulates. In particular, a primary concern is determining the definability of a

class of operators by a set of finite postulates. To this end, the logical characterization of

basic postulate characterizability can now be stated. These theorems reduce questions about

characterizability to questions about ∀MSOmin -definability. The next section develops tools

from finite model theory for proving undefinability.

Theorem 2.7.3. Let R be a family of regular posets. The family of R-revision operators is

characterizable iff the family R is ∀MSOmin -definable.

Proof (⇒) Let R be a family of regular posets such that R-revision operators are charac-

terized by a basic postulate P. The claim is that R is defined by the ∀MSOmin sentence

Φ = ∀A1, . . . A` τ(P ).

Assume that the regular poset R = (X,≤) is in R. Let the number of its elements be 2n.

Let t : X → {0, 1}n be an arbitrary bijection between X and the set of truth assignments.
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There is a faithful poset F = (R, t) for some knowledge base Kn, and thus the corresponding

revision operator ∗F is an R-revision operator. Therefore ∗F satisfies P. Consider arbitrary

unary relations A1, . . . , A` over the elements. Applying Proposition 2.6.7 to the propositional

formulas ϕ1, . . . , ϕ` corresponding to A1, . . . , A`, it follows that A1, . . . , A` and the corresponding

min-predicates satisfy τ(P ). Thus R satisfies Φ.

Now assume that the regular poset R is not in R. Again, let t : X → {0, 1}n be an arbitrary

bijection between X and the set of truth assignments. Consider the faithful poset F = (R, t)

for some knowledge base Kn. This determines a revision operator ∗F . By Lemma 2.4.3, up

to isomorphism, R is the only poset such that some faithful poset determines this ∗F , thus

∗F is not an R-revision operator. Hence ∗F does not satisfy P. So there are propositional

formulas ϕ1, . . . , ϕ` such that the corresponding instance of P is false. By Proposition 2.6.7

the corresponding unary predicates A1, . . . , A` and their min predicates falsify τ(P ). Hence R

falsifies Φ.

(⇐) Assume that R is defined by the ∀MSOmin -sentence ∀A1, . . . , A`Ψ, where Ψ is a min-

sentence. By Proposition 2.6.5 there is a basic postulate P such that τ(P ) = Ψ. The claim is

that R-revision operators are characterized by P . This follows similarly as the other direction.

2

2.8 Games

The q-round first-order Ehrenfeucht - Fraïssé game over two relational structures is played

by two players, Spoiler and Duplicator. In each round Spoiler picks one of the structures and

an element of that structure. Duplicator responds by picking an element in the other structure.
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After q rounds Duplicator wins if the mapping, assigning elements picked in the same round to

each other, yields isomorphic substructures. Otherwise Spoiler wins. A basic result is that a

class of structures is first-order definable iff there is a q such that if the q-round game is played

on two structures, one belonging to the class and the other not, then Spoiler has a winning

strategy.

The ∃MSOmin -definability of a class is the same as the ∀MSOmin -definability of its com-

plement. Therefore, in the following definitions, ∃MSOmin is used instead of ∀MSOmin for

convenience. Similarly, in Section 2.9 this fact will provide a convenience for proving character-

izability results.

The first-order Ehrenfeucht - Fraïssé game has a variant corresponding to ∃MSO definability.

Because the objective is to prove undefinability, a modified game, defined in [2], will be used.

The form of this game, the Ajtai-Fagin game, is better suited to prove undefinability in this

situation.

Definition 2.8.1. ((R, `, q)-∃MSO Ajtai-Fagin game) Given a class R of structures and pa-

rameters ` and q, the (R, `, q)-∃MSO Ajtai-Fagin game is played as follows:

1. Duplicator picks a structure R1 ∈ R,

2. Spoiler picks ` subsets A1, . . . , A` of the universe of R1,

3. Duplicator picks a structure R2 6∈ R and subsets B1, . . . , B` of the universe of R2,

4. Spoiler and Duplicator play a q-round first-order Ehrenfeucht - Fraïssé game on the struc-

tures extended with the subsets (i.e., unary relations) selected.
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The connection between ∃-definability and the Ajtai-Fagin game is as follows.

Theorem 2.8.2. [2] A class R is ∃MSO-definable iff there are `, q such that Spoiler has a

winning strategy in the (R, `, q)-∃MSO Ajtai-Fagin game.

Due to the restriction of ∀MSO to ∀MSOmin , the Ajtai-Fagin game must be modified to

reflect definability of this specific fragment. In order to accomplish this, the concept of variant

is introduced.

Definition 2.8.3. (`-min-variant) Let R = (X,≤) be a partial order. Let A1, . . . , A` be

unary predicate symbols. Denote the L = 22
` logically inequivalent Boolean combinations µ

of A1, . . . , A` as the unary predicate symbols M1, . . . ,ML. An `-min-variant of R is a structure

R′′ = (X,A1, . . . , A`,M1, . . . ,ML),

where R′ = (X,≤, A1, . . . , A`) is an `-extension of R, and M1, . . . ,ML are the interpretations

of the formulas minν≤(x), for Boolean combinations ν of the Ais.

Note that R′′ is a structure with unary predicates only, the relation ≤ is not included, it is

“forgotten”. This is the “forgetful property” of the game, mentioned in Section 2.1. Even though

the order relation ≤ is used to interpret the unary predicates M1, . . . ,ML, this relation is not

used in min-formulas. R′′ is not an extension of R; therefore, it is referred to as a variant.

Using a variant, a modified version of the Ajtai-Fagin game will be applicable to ∀MSOmin

-definability over partial orders. This game is referred to as the Katsuno-Mendelzon (KM) game.
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Definition 2.8.4. ((R, `, q)-∃MSOmin game, or Katsuno-Mendelzon game) Given a class R of

posets and parameters ` and q, the (R, `, q)-∃MSOmin game is played by Spoiler and Duplicator

as follows:

1. Duplicator picks a poset R1 = (X1,≤1) in R,

2. Spoiler picks ` subsets A1, . . . , A` of X1,

3. Duplicator picks a poset R2 = (X2,≤2) 6∈ R and subsets B1, . . . , B` of X2,

4. Form the `-min-variant R′′1 of R1 determined by the `-extension R′1 = (X1,≤1, A1, . . . , A`),

and the `-min-variant R′′2 of R2 determined by the `-extension R′2 = (X2,≤2, B1, . . . , B`),

5. Spoiler and Duplicator play a q-round first-order Ehrenfeucht - Fraïssé game on R′′1 and

R′′2.

Theorem 2.8.5. A class R of posets is ∃MSOmin -definable iff there are ` and q such that

Spoiler wins the (R, `, q) - ∃MSOmin game.

Theorem 2.8.5 follows directly from Theorem 2.8.7. The following concepts are needed for

the statement of Theorem 2.8.7. Consider a structure with ` + L unary predicates. The type

t(a) of an element a of the structure is the binary vector of length `+L describing the behavior

of a with respect to the unary predicates. For a number q, the q-profile of the structure collects

approximate counting information on the number of different types in the form a function

γ : {0, 1}`+L → {0, . . . , q},
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where for every type u it holds that

γ(u) = min(|{a ∈ X : γ(a) = u}|, q).

Thus the q-profile of the structure tells, for every type u, the exact number of elements in the

structure having type u if this number is less than q, and it gives the value q if this number is

at least q.

For a q-profile γ let

Φ =
∧

u∈{0,1}`+L

Φu

be a first-order formula describing γ, where for every binary vector u, the formula Φu says either

that there are exactly i elements with type u for i < q, or that there are at least q elements

with type u, whichever is the case for γ(u). Note that the quantifier rank of Φ is at most q.

The following is a standard fact about the first-order Ehrenfeucht-Fraïssé game for unary

structures.

Lemma 2.8.6. Consider the q-round first-order Ehrenfeucht-Fraissé game played on two struc-

tures with unary predicates, such that for every atom it holds that its size in the two structures

is either the same, or both are at least q. Then Duplicator wins.

For a partial order R and numbers ` and q, let

Γ`,q(R)
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be the set of q-profiles of all `-min-variants of R. Thus in this case L = 22
` . Let ∆`,q be the set

of functions from {0, 1}`+L to {0, . . . , q}.

Theorem 2.8.7. Let R be a family of partial orders and `, q be numbers. Then the following

are equivalent:

1. R is definable by a ∃MSOmin-sentence with ` second-order quantifiers and quantifier-rank-

q first-order part,

2. Spoiler has a winning strategy in the (R, `, q)-∃MSOmin game,

3. there is a set Γ ⊆ ∆`,q such that for every partial order R it holds that

R ∈ R iff Γ`,q(R) ∩ Γ 6= ∅.

Proof. (1 ⇒ 2) As usual, Spoiler can use the definition of R to win, by picking the subsets

of R1 which satisfy the ∃MSO-sentence defining R.

(2 ⇒ 3) Given Spoiler’s winning strategy, let Γ be the set of all q-types of `-min-variants

formed by Spoiler’s responses in round 2 to all possible initial choices R1 of Duplicator.

If R1 ∈ R then by the definition of the game there is an `-min-variant of R1 with q-type γ

in Γ, namely the one formed by Spoiler’s response to R as Duplicator’s initial move. If R1 ∈ R

then Γ`,q(R1) ∩ Γ 6= ∅ by definition.

Now assume there is a partial order R2 6∈ R with an `-min-variant having q-type γ ∈ Γ.

As γ ∈ Γ, there is a partial order R1 ∈ R such that if Duplicator starts with R1 then Spoiler

responds with forming a `-min-variant having q-type γ. But then it follows from Lemma 2.8.6



35

that Duplicator can pick R2 and its `-min-variant having q-profile γ in round 3, and win the

game.

(3⇒ 1) Let Γ = {γ1, . . . , γm}. Then ∃A1 . . . A`(γ1 ∨ . . . ∨ γm) defines R.2

For non-characterizability the following corollary will be used. The formulation takes into

account that the theorem holds for general posets, but the relevant concept here is regular

posets.

Corollary 2.8.8. Let R be a class of regular posets. Assume that for every ` and q, Duplicator

has a winning strategy in the (R, `, q) - ∃MSOmin game such that each of the posets, R2, are

also regular. Then R is not ∃MSOmin -definable.

2.9 Classes of Posets

A chain (resp., antichain) is a set of pairwise comparable (resp., incomparable) elements.

The height (resp., width) of a poset is size of a largest chain (resp., antichain). A poset is total

(aka linear) if it has width 1. A poset is connected (resp., disconnected) if its comparability

graph is connected (resp., disconnected).

For technical reasons explained earlier, only regular posets are considered here. As a result,

somewhat modified notions are needed. In particular, the minimal elements of the poset will

be disregarded. The reason is that for the current purposes the contribution of the minimal

elements is not essential, as they relate to the other elements in a trivial way, but they may

interfere with the structure of the remaining elements. For example, minimal elements are always

incomparable. Therefore, if minimal elements are included, then a poset with a knowledge base
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such that |K| consists of more than one element would never be total. For this reason, modified

definitions for regular posets are introduced.

The r-height (resp. r-width) of a regular poset is the height (resp., width) of the poset

obtained by removing the minimal elements. A regular poset is r-total ( resp., r-connected, r-

disconnected) if the poset obtained by removing the minimal elements is total (resp., connected,

disconnected). Denote by H≤k the class of regular posets with r-height at most k. The classes

H≥k,H<k,H>k,H=k are defined similarly. For width, use the notations W≤k,W≥k,W<k,W>k.

The class of r-total (resp., r-connected, r-disconnected) regular posets is denoted by Λ (resp.,

C, D).

2.10 Characterizable Classes

The characterizability results of this section are proved by showing that a given class of

posets is ∀MSOmin -definable, or that its complement is ∃MSOmin -definable. It may happen

that the standard definition of a class is not suitable for such a definition, but it can be replaced

by an equivalent definition which is suitable. As a first example of characterizability, a basic

postulate characterizing revision operators obtained from r-total regular posets is given.

Theorem 2.10.1. The class of Λ-revision operators is characterized by the basic postulate

(∀x(¬(K(x) ∧ φ(x))) ∧ ∃xφ(x))→ ∃!x((K ∗ φ)(x)). (2.6)

Proof Let ∗R be a revision operator generated by an r-total regular poset R. If ϕ is satisfiable

and inconsistent with K then it has a unique minimal satisfying truth assignment and so its
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revision is a singleton. Conversely, if R is a non-r-total regular poset then it has an incomparable

non-minimal pair (a, b). If the revising formula φ has the two corresponding truth assignments

as its models, then the models of the revision by φ will consist of these two assignments. 2

The standard definition of totality is that any two elements are comparable. With the

modification to consider only non-minimal elements, this becomes the statement that any two

non-minimal elements are comparable. This is not suitable for construction of a postulate,

because min-formulas cannot directly express comparability. An equivalent formulation in the

language of min-formulas is that every nonempty set of non-minimal elements has a unique

minimal element, expressed by (Equation 2.6).

The following results summarize several characterizable classes as well as demonstrate some

strategies for constructing a characterization.

Theorem 2.10.2. 1. For every k, the class of H≤k-revision operators is characterizable.

2. For every k, the class of H≥k-revision operators is characterizable.

3. For every k, the class of W≤k-revision operators is characterizable.

Proof

Part 1 : The following results shows that H>k is ∃MSOmin -definable.

A regular poset has r-height greater than k iff there exists a chain of k + 1 non-minimal

elements. This is equivalent to the following: there are sets A1, . . . , Ak+1 such that

• the Ais are disjoint from the set of minimal elements,

• there are k + 1 elements a1, . . . , ak+1 such that Ai = {a1, . . . , ai} for every i ≤ k + 1, and
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Figure 4: Chain of Subsets for Bounded Height Characterization

• minAi = {ai}.

This construction is pictured in Figure 4. From this criteria, a ∃MSOmin sentence which

expresses height greater than k can directly be constructed.

Part 2 : Similarly,H<k is ∃MSOmin -definable. A regular poset has height less than k iff there

are sets A1, . . . , Ak−1 such that the Ais form a partition of the set of non-minimal elements, and

each Ai is an antichain. This definition starts with existential second-order monadic quantifiers,

thus the second-order quantifier structure is of the right form. The standard description of a set

Ai being an antichain is that there are no comparable pairs in Ai. However, min-definability

cannot directly express comparability. On the other hand, a min-definition can be given by

the observation that Ai is an antichain iff it is equal to the set of its minimal elements, i.e.,

Ai = minAi.

Part 3 : Show that W>k is ∃MSOmin -definable. A regular poset has width greater than k

iff there is an antichain of size at least k + 1. This can be expressed similarly to the previous

cases. 2

One case where a replacement of the standard definition by a ∀MSOmin -sentence cannot

be found is having width at least k: the classes W≥k turn out to not be ∀MSOmin -definable,
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even though they are first-order definable. Connectedness and disconnectedness are also not

∀MSOmin -definable. These results are presented in the next section.

On the other hand, connected posets of bounded height turn out to be ∀MSOmin -definable.

This is an example of an ∀MSOmin -definable class which is not first-order.

Theorem 2.10.3. For every k, the class of C ∩ H≤k-revision operators is characterizable.

Proof It is sufficient to show that H=k ∩D is ∃MSOmin -definable. A regular poset R of r-

height k is r-disconnected iff there is a partition of the non-minimal elements into 2k antichains

A1, . . . , Ak and B1, . . . , Bk such that

• the Ais are all non-empty,

• some Bi is non-empty, and

• every union Ai ∪Bj is also an antichain.

If R has r-height k and is disconnected, then k antichains in an r-height k component, plus

at most k antichains for the other components satisfy these conditions. Conversely, assume that

R has height k and is connected. Then there is a comparable pair (a, b) such that a ∈ Ai and

b ∈ Bj for some i, j, contradicting the last condition.2

2.11 Non-characterizable Classes

The negative results are based on Theorem 2.7.3 and Corollary 2.8.8, by constructing winning

strategies for the Duplicator. First consider the class of W≥2-revision operators, i.e., the class

of revision operators obtained from regular posets which are not r-total. As non r-total regular
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posets form a simple and natural first-order definable class, the non-characterizability of the

corresponding class of revision operators might be considered somewhat surprising.

a

R1

K

a b

R2

K

1

Figure 5: Logical Structures for Nonlinear Non-characterizability

Theorem 2.11.1. The class of W≥2-revision operators is not characterizable.

Proof Given ` and q, a winning strategy needs to be described for Duplicator in the (R, `, q)

- ∃MSOmin game for the class of regular posets not inW≥2, i.e., for the class Λ of r-total regular

posets.

The poset R1 = (X1,≤1) picked in step 1. will be a chain on N elements, for some power

of 2 to be determined later. Assume that Spoiler picks ` subsets A1, . . . , A`. For any element

a ∈ X1 associate a bit-vector with components indicating which subsets Ai a belongs to, and

for every Boolean combination ν of the Ais, whether a is minimal among elements belonging

to ν. These bit-vectors form a coloring of X1 with L = 2`+22
`

colors. As there is at most

one element which is minimal in a Boolean combination, there are at least N − 22
` elements
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which are never minimal. If N − 22
`
> L then there are at least two never-minimal elements

of the same color. Duplicator then forms R2 by picking such an element a, splitting it into

two incomparable elements a and b, and deleting another element c from the same color class.

(See Figure 5 for illustration.) The sets Bi are the same as the Ais, with the exception of b

replacing c. The monadic structures R∗1 and R∗2 are isomorphic and thus Duplicator can win

the first-order game in Step 5.

The non-characterizability of W≥k-revision operators follows similarly. In Theorem 2.10.3

the class of revision operators generated by connected regular posets of bounded height is char-

acterizable. On the other hand, the full class of revision operators generated by connected

regular posets turns out to be non-characterizable. This shows another limitation of ∀MSOmin

-definability, as connected posets are ∀MSO-definable. Finally, the class of revision operators

generated by disconnected regular posets is not even ∀MSO-definable.

u

R1

K

u

b

R2

K

1

Figure 6: Logical Structures for Connected Non-characterizability

Theorem 2.11.2. The classes of C-revision operators and D-revision operators are not char-

acterizable.
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Proof The argument is similar to the previous one and it is illustrated by the Figure 6.

Duplicator picks a poset R1 consisting of a long chain and a single element u. After Spoiler

picks the subsets A1, . . . , A`, Duplicator considers the coloring described above, and finds a

color class containing never-minimal elements. Duplicator then builds the poset R2 by picking

an element b from this color class and putting it above the chain and u. Then it follows as above

that Duplicator can win in Step 5. of the game. 2

2.12 Summary

The results on classes of revision operators are summarized in following Venn diagram.

Characterizable classes (denoted by ∀MSOmin in Figure 7) turn out be a proper subset of

universal monadic second-order definable classes, incomparable with first-order definable classes.

As noted, C∩H≤k is not first-order definable, but is ∀MSOmin -definable. This demonstrates

that ∀MSOmin can define some ∀MSOmin classes which are not first-order definable ∀MSO

sentences. On the other hand, ∀MSOmin cannot express the class of revision operators on

connected posets. Furthermore, the restriction of bounded height restricts the class enough to

permit it to be expressed in ∀MSOmin .
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Characterizable Non-characterizable
1. Height ≤ k, height ≥ k 4. Width ≥ k
2. Width ≤ k 5. Connected
3. Connected and height ≤ k 6. Disconnected

Figure 7: Summary of Characterizable and Noncharacterizable Revision Operators



CHAPTER 3

CHARACTERIZABILITY IN HORN BELIEF REVISION

3.1 Horn Belief Revision

As discussed in Chapter 2, the standard setup for the AGM framework is full propositional

logic. However, recent work has considered similar questions for other logics such as the Horn

fragment of propositional logic [1, 6, 7, 10, 12, 13, 20, 31, 41, 42]. Although most of the results on

Horn belief change are about Horn belief contraction, Horn belief revision was considered by

Delgrande and Peppas [11] and Zhang et al. [43]. Meanwhile Horn belief merging was addressed

in Haret et al. [24]. The recent interest in the area may be due to the fact that Horn formulas

have attractive computational properties.

A clause is a disjunction of literals. A clause is Horn if it contains at most one unnegated

literal. A Horn formula is a conjunction of Horn clauses. The Horn fragment of propositional

logic differs in several respects from standard logic. The most noticeable distinction is that the

Horn fragment is not closed under negation. Thus, while a formula ϕ is in the Horn fragment,

¬ϕ may not be. On the surface, it may be easy to underestimate the far-reaching consequences

of this feature on Horn belief revision. After all only slight alteration is needed to the AGM

postulates AGM4 and AGM8 in order to avoid negation.

H1 H ∗ ϕ is logically closed.

H2 ϕ ∈ H ∗ ϕ

44
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H3 H ∗ ϕ ⊆ H + ϕ

H4 If H ∗ ϕ is consistent, then H ∗ ϕ = H + ϕ.

H5 H ∗ ϕ is inconsistent only if ϕ is inconsistent.

H6 If µ = ϕ, then H ∗ µ = H ∗ ϕ.

H7 H ∗ (µ ∧ ϕ) ⊆ (H ∗ µ) + ϕ.

H8 If H ∗ µ is consistent, then (H ∗ µ) + ϕ ⊆ H ∗ (µ ∧ ϕ).

Nevertheless, Horn belief change turns out to be quite different from general belief change.

If the goal is to obtain a representation result analogous to that of Katsuno-Mendelzon for

Horn belief revision, another modification must be made to the mapping of truth assignments.

In [27] total preorders with an arbitrary mapping of truth assignments were used to generate

revision operators by minimization. In the case of Horn revision, the mapping of truth assign-

ments must be further restricted such that minimal sets model Horn formulas. This property is

referred to as Horn compliance.

Delgrande and Peppas gave a characterization of a class of Horn belief operators. They char-

acterized Horn belief revision operators obtained from Horn compliant faithful total preorders

by minimization, showing that a Horn belief revision operator belongs to this class iff it satisfies

the Horn AGM postulates and the acyclicity postulate scheme. The acyclicity scheme has a

postulate for every n ≥ 3, expressing the non-existence of a certain cyclic substructure.

As noted in [11], in the context of Katsuno-Mendelzon style belief revision, the limited

expressibility of the Horn language fails to preclude revision operators generated by relations
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which are not total preorders. Moreover, they prove there exists revision operators generated by

a psuedo-order which cannot be generated with a total preorder. In order to limit the class of

revision operators generated by minimization to those defined by Horn complaint faithful total

preorders, acyclicity is introduced.

As infinite postulate characterizations are unusual in belief revision, it is natural to ask

whether it is necessary to use infinitely many postulates in Theorem 1.2.3. In this chapter, the

following theorem will be presented as an answer to that question.

Theorem 3.8.1. The class of Horn belief revision operators obtained from Horn compliant

faithful rankings using minimization cannot be characterized by a finite set of postulates.

In order to prove this, the framework developed in chapter 2 has to be modified for the

present application. To accommodate Horn formulas, quantifiers of universal monadic second

order logic must be restricted to quantifying over closed subsets of the ground set consisting

of truth assignments. Also, the natural class of preference structures to consider (implicit in

[11] and formalized here) goes beyond total preorders or even partial preorders, and contains

structures with cyclic substructures as well. This observation is due to [11], and the structures

used in this proof generalize an example presented in that paper.

A motivation to develop methods for proving non-characterizability is that the study of

belief change for logics other than full propositional logic is “uncharted territory”, where it is not

clear what kind of characterizations can be expected. Another candidate is the class of Horn

belief revision operators with strictly Horn compliant faithful rankings, introduced by Zhang et

al. [43]. Characterizability of this class of revision operators is an open problem, and approaching
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it from the point of view of non-characterizability might be useful. An understanding of the

properties of strictly Horn compliant faithful rankings might be helpful for the study of their

characterizability. Therefore some remarks are included on their properties and connections to

classes of efficiently computable Horn belief revision operators introduced in [11].

This chapter is structured as follows: Sections 3.2-3.6 develop the framework for proving

non-characterizability. Section 3.7 describes the structures used in the non-characterizability

proof. Section 3.8 contains the proof of Theorem 3.8.1 and the statement of another non-

characterizability result. The final section contains remarks on strict Horn compliance.

3.2 Specific Concepts

Many of the definitions used in Chapter 2 can be easily modified for the Horn case, because

the definitions were not structure dependent. Some examples would be minimal sets and faithful

structures. These concepts will be reused in this chapter even though the underlying structure

may vary from those in Chapter 2.

The weight of a truth assignment is the number of its ones. The intersection of two truth as-

signments is the truth assignment formed by taking componentwise ∧’s, e.g., (1, 0, 1)∩(0, 1, 1) =

(0, 0, 1). A Boolean function is a Horn function if it is represented by a Horn formula. It is a

basic fact that a Boolean function f is Horn iff |f | is closed under intersection [25,34]. In what

follows, sets of truth assignments closed under intersection are referred to as closed.

3.3 Pseudo-orders and Horn revision by minimization

A pseudo-order R = (V,≤) is a total binary relation over a finite ground set V . Thus, in

particular, pseudo-orders are reflexive. It is convenient to think of a pseudo-order as a directed
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graph, containing edges (u, v) such that v < u. (Thus edges between two vertices can go one

way or both ways.) For a subset S ⊆ V , note that min≤ S may be empty. This happens, for

example, if S can be covered with a set of directed cycles of edges (u, v) such v < u.

The notion of a pseudo-order is used in [11] informally, and the definition above is one of the

possible formalizations. Another possible formalization would be to require reflexivity only, i.e.,

to allow for vertices having no directed edges between them. The material presented here would

work with modification for this interpretation of pseudo-order also. The use of the term “order”

in this general context is explained by the possibility of formulating minimality as above.

Definition 3.3.1. (Faithful structure) A faithful structure F for a Horn knowledge base Hn

is a pseudo-order over Tn, such that minTn = |Hn|, and if u ∈ minTn and v 6∈ minTn then

u < v.

Definition 3.3.2. (Horn compliance) A faithful structure is Horn compliant if for every Horn

formula ϕ it holds that min |ϕ| is closed.

In a Horn compliant faithful structure there are two relations: the preference relation ≤

of the underlying pseudo-order, and the componentwise partial ordering on truth assignments.

The latter is only used implicitly when referring to closed sets. The notion of a Horn compliant

faithful structure generalizes that of a Horn compliant faithful total preorder used by Kastuno-

Mendelzon to an even broader class of structures then Definition 2.3.2.
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Definition 3.3.3. (Horn revision by minimization) The revision operator ∗F for H, determined

by a Horn compliant faithful structure F for H, by minimization is

H ∗F ϕ = 〈min |ϕ|〉.

The assumption of Horn compliance guarantees that H ∗F ϕ is well-defined. Horn revision

operators defined by some Horn compliant faithful structure are called pseudo-order based.

3.4 Horn postulates and characterizability

As in Chapter 2 in order to be able to prove non-characterizability, one needs a formal

definition of postulates and characterizability. These definitions will follow closely the form

presented previously. In the following material the definitions will be illustrated using the

acyclicity scheme from Theorem 1.2.3. Therefore, the following is a restatement of that scheme

in a manner more convenient for the present work. Here indices are meant cyclically, i.e.,

n+ 1 = 1.

Definition 3.4.1. (Acyclicity) The acyclicity postulate Acycn for n ≥ 3 is the following: if

(H ∗ ϕi) ∧ ϕi+1 is satisfiable for i = 1, . . . , n then (H ∗ ϕ1) ∧ ϕn is also satisfiable.

The difference between the definition of a postulate used in this chapter and the general

definition from Chapter 2 is that only conjunctions are allowed as arguments of the belief revision

operator, instead of arbitrary Boolean combinations, because the class of Horn formulas is not

closed under negation. As discussed in Chapter 2, while this definition seems to be a natural

one in the present context, others could be considered as well. For example, one could use a
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language which included predicates or functions on truth assignments, such as a componentwise

partial ordering. A framework allowing the acyclicity scheme to be considered a single postulate

would allow the inclusion of natural numbers and a variable number of formulas; this seems to

be hard to deal with and it is perhaps less natural in view of the types of postulates used in

belief revision.

Definition 3.4.2. (Horn postulate) A Horn postulate P is a first-order sentence with unary

predicate symbols H,ϕ1, . . . , ϕ` and H ∗ µ1, . . . ,H ∗ µm, where µ1, . . . , µm are conjunctions of

ϕ1, . . . , ϕ`.

A Horn revision operator satisfies a postulate for a Horn knowledge base H if the postulate

holds for all Horn revision formulas ϕ1, . . . , ϕ`, with the variables ranging over the set of closed

sets of truth assignments.

As an example, the acyclicity postulates can be rewritten in this form as follows:

(
n∧
i=1

∃x((H ∗ ϕi(x)) ∧ ϕi+1(x))

)
→ ∃x((H ∗ ϕ1(x)) ∧ ϕn(x)).

Theorem 1.2.3 gives a postulate characterization of Horn belief revision operators obtained

from Horn compliant faithful structures. The framework to be developed applies to a general-

ization of this setup.

Definition 3.4.3. (F-revision operator) Let F be a family of faithful structures. Let H be

a Horn knowledge base and ∗ be a Horn revision operator for H. Then ∗ is an F-revision
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operator iff there is a faithful structure F ∈ F for H such that ∗ = ∗F , i.e., F represents ∗ using

minimization.

Definition 3.4.4. (Characterization, characterizability) Let F be a family of faithful structures.

A finite set of Horn postulates P characterizes F-revision operators if for every Horn knowledge

base H and every Horn revision operator ∗ for H the following holds: ∗ satisfies the postulates

in P iff ∗ is an F-revision operator. The family of F-revision operators is characterizable if

there is a finite set of postulates characterizing F-revision operators.

The class considered in [11] is the following. Let T be the class of faithful structures where

the underlying pseudo-order is a total preorder. Note that even if P characterizes F-revision

operators, it may happen that an F-revision operator ∗ can also be represented by a faithful

structure F ′ 6∈ F . For example, for T , Figure 2 in [11] gives an example of a revision operator

generated by a Horn compliant faithful structure based on a pseudo-order which is not a total

preorder, such that the same revision operator can also be generated by a Horn compliant

faithful ranking. The following concept is useful to deal with this phenomenon.

Definition 3.4.5. For a family F of faithful structures let

F̃ = {F : F is a faithful structure such that ∗F is an F-revision operator}.

Thus F ∈ F̃ if there is an F ′ ∈ F such that ∗F = ∗
F ′
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3.5 Hmin-formulas and translation

Again similarly to Chapter 2, Horn postulates are translated into sentences over an extension

of the first-order language of pseudo-orders. The language of pseudo-orders contains the binary

relation symbol ≤ and equality.

The translated sentences also contain additional unary predicate symbols A1, . . . , A`, corre-

sponding to Horn formulas ϕ1, . . . , ϕ` occurring in the postulates. In other words, the predicates

A1, . . . , A` range over closed subsets of the ground set Tn.

Definition 3.5.1. (Hat) Given a conjunction µ of ϕ1, . . . , ϕ`, denote by µ̂ the first-order formula

obtained by replacing the ϕ’s with A’s.

For instance, for µ(x) = ϕ1(x) one has µ̂(x) = A1(x), and for µ(x) = ϕ1(x) ∧ ϕ2(x) one has

µ̂(x) = A1(x) ∧A2(x).

As previously in Chapter 2, a predicate is defined for minimal sets and an entire pseudo-order

.

minν≤(x) ≡ ν(x) ∧ ∀y(ν(y)→ ¬(y < x)).

Minimal elements in the pseudo-order are defined by

min(x) ≡ ∀y(¬(y < x)).

While in Definition 2.7.1 ν could range over all Boolean combinations, in this context ν is a

conjunction of closed sets, i.e. the unary predicates A1, . . . , A`.
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Definition 3.5.2. (Hmin-formula) A Hmin-formula over the unary predicate symbols A1, . . . , A`

is a first-order formula built from the Ais and formulas of the form minν≤(x), where the ν’s are

arbitrary conjunctions of the Ais.

With these definitions, translation of a Horn postulate can be defined as follows.

Definition 3.5.3. (Translation) The translation τ(P ) of a Horn postulate P is the Hmin-

sentence obtained from P by replacing

1. every occurrence of K(x) with min(x)

2. every occurrence µi(x) with its “hat" version

3. every occurrence of K ∗ µi with minµ̂i(x).

As before, Part 2 in the definition is redundant as the definition for ϕi is a special case of

the definition for µi.

As an example of translation of a Horn postulate consider Definition 3.4.1.

Example 3.5.4. (Translation of the acyclicity postulates) Applying Definition 3.5.3 yields the

Hmin-sentence

(
n∧
i=1

∃x(minAi(x) ∧Ai+1(x))

)
→ ∃x(minA1(x) ∧An(x)),

where, again, indices are meant cyclically.

As in Proposition 3.5.5, this is a syntactic transformation which goes from postulates to

Hmin-sentences.
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Proposition 3.5.5. The mapping τ is a bijection between Horn postulates containing revising

formulas ϕ1, . . . , ϕ` and Hmin-sentences over unary predicates A1, . . . , A`.

In order to interpret Hmin-formulas, the following definition will be needed.

Definition 3.5.6. (`-extension) Let F = (X,≤) be a faithful structure. An `-extension of F is

a structure

F ′ = (X,≤, A1, . . . , A`),

where A1, . . . , A` are unary relations and every Ai is a closed set of truth assignments.

Given Horn formulas H,ϕ1, . . . , ϕ` and a faithful structure F for H, the definition of the

(ϕ1, . . . , ϕ`)-extension of F is standard, obtained by interpreting the unary predicate symbols

A1, . . . , A` by Ai(a) = ϕi(a). Again, the following proposition is a direct consequence of the

definitions.

Proposition 3.5.7. Let H be a Horn knowledge base, F = (X,≤) be a faithful structure for H

and let ∗F be the Horn revision operator determined by F using minimization. Let ϕ1, . . . , ϕ` be

Horn formulas and P be a postulate. Then P is satisfied by ∗F for ϕ1, . . . , ϕ` iff the (ϕ1, . . . , ϕ`)-

extension of F satisfies τ(P ).

3.6 ∀MSOHmin -definability and games

The following modifications are made to the material presented in Sections 2.7 and 2.8 in

order to develop a game for ∀MSOHmin -definability. Section 2.7 constructs definability for a

general belief revision operator. A brief introduction of the relevant material of finite model
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theory is presented in Section 2.8 as well as the a game to determine definability for a general

belief revision operator.

The first modification of the section will be to the quantifiers used. Horn formulas correspond

to closed subsets of truth assignments; therefore, quantification will only occur over closed

subsets.

Definition 3.6.1. (Closed set quantifier) The closed-set quantifiers ∀c and ∃c are generalized

monadic second-order quantifiers interpreted in faithful structures, ranging over closed subsets

of truth assignments.

Definition 3.6.2. (∀MSOHmin sentence) A ∀MSOHmin sentence is a second order sentence

with universal closed-set quantifiers, of the form

Φ = ∀cA1, . . . , A` Ψ,

where Ψ is a Hmin-sentence.

The definition of ∃MSOHmin sentences is analogous.

Definition 3.6.3. (∀MSOHmin -definability) A family F of faithful structures is ∀MSOHmin

-definable if there is a ∀MSOHmin sentence Φ such that for every faithful structure F it holds

that F ∈ F iff F satisfies Φ.

The following theorem corresponds to Theorem 2.7.3 and establishes the link between char-

acterizability and definability for Horn belief revision.
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Theorem 3.6.4. Let F be a family of faithful structures. The family of F-revision operators is

characterizable iff the family F̃ is ∀MSOHmin -definable.

As in Section 2.8 a version of the Ajtai-Fagin game is defined for faithful structures only.

This game is called the Horn-KM game. For reasons similar to the general case, Definition 2.8.3

is modified for the current context.

Definition 3.6.5. (`-min-variant) Let F = (X,≤) be a faithful structure. Let A1, . . . , A` be

unary predicate symbols. There are L = 2` conjunctions µ of A1, . . . , A`. Let unary predicate

symbols M1, . . . ,ML represent them. An `-min-variant of F is a structure

F ′′ = (X,A1, . . . , A`,M1, . . . ,ML),

where F ′ = (X,≤, A1, . . . , A`) is an `-extension of F , and M1, . . . ,ML are the interpretations

of the formulas minν≤(x) in F ′, for conjunctions ν of the Ais.

Definition 3.6.6. ((G, `, q)-∃MSOHmin game, or Horn-KM game) Given a class G of faith-

ful structures and parameters ` and q, the (G, `, q)-∃MSOHmin game is played by Spoiler and

Duplicator as follows:

1. Duplicator picks a faithful structure F1 = (X1,≤1) in G,

2. Spoiler picks closed subsets A1, . . . , A` of X1,

3. Duplicator picks a faithful structure F2 = (X2,≤2) 6∈ G, and closed subsets B1, . . . , B` of

X2,
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4. Form the `-min-variant F ′′1 of F1 determined by the `-extension F ′1 = (X1,≤1, A1, . . . , A`),

and the `-min-variant F ′′2 of F2 determined by the `-extension F ′2 = (X2,≤2, B1, . . . , B`),

5. Spoiler and Duplicator play a q-round first-order Ehrenfeucht - Fraïssé game on F ′′1 and

F ′′2 .

The following theorem shows how to use these games to prove undefinability (which, by

Theorem 3.6.4, implies non-characterizability). This corresponds to Corollary 2.8.8 in Chapter

2. The proof closely parallels that of Theorem 2.8.5 and Theorem 2.8.7, and for this reason, has

been omitted here.

Theorem 3.6.7. Let G be a class of faithful structures. Then G is not ∃MSOHmin -definable iff

for every ` and q, Duplicator has a winning strategy in the (G, `, q)-∃MSOHmin game.

3.7 Ab wheels
011110

001111

111100

011111 111101

111110

100100

000000

1

Figure 8: An ab wheel for n=6
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After having developed the machinery to prove non-characterizability, this section describes

the structures used in the proof of Theorem 3.8.1. These structures generalize the example of

Figure 1 in [11].

Consider the knowledge base Hn = 〈0n〉. Let Cn = {a1, . . . , an} ⊂ Tn be the set of truth

assignments of weight n − 1, where ai is the truth assignment with a zero in the i’th position.

Let Un = {b1, . . . , bn} be the set of truth assignments of weight n−2 with two consecutive zeros.

The truth assignment bi has zeros in positions i and i+ 1. Indices are meant cyclically, i.e., for

the case of 6 variables, bb = 011110. Thus ai ∩ ai+1 = bi, and so {ai, ai+1, bi} is closed. Finally,

let Gn be the directed graph on the vertex set Cn, containing one-way edges (ai, ai+1) (where

addition is again meant cyclically) and the other edges both ways.

Definition 3.7.1. (Ab wheel) An ab wheel Wn is a faithful structure for Hn with vertices Tn

and < corresponding to the following cases:

1. upper chain: truth assignments in Un form a linear order and are greater than any other

truth assignment,

2. cycle: truth assignments in Cn are below Un and form the directed graph structure Gn as

described above,

3. lower chain: all other truth assignments form a linear order and are smaller than any

other truth assignment, with the all-zero truth assignment at the bottom.

Note that

min{ai, ai+1, bi} = {ai+1}. (3.1)
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Lemma 3.7.2. Every closed subset of Tn has a unique minimum in Wn.

Proof. Let S be a closed subset of Tn. The statement is clear if S is contained in the upper

chain, or if it has an element in the lower chain. Otherwise assume that S contains k ≥ 1

elements in the cycle, and possibly some elements in the upper chain.

If k = 1 then the statement is clear again. If k = 2 and the two elements in the cycle are

consecutive, i.e., of the form ai, ai+1, then the unique minimal element of S is ai+1. Other cases

are not possible: if k = 2 and the two elements are non-consecutive, or if k ≥ 3, the closure of

S implies that it contains at least one element from the lower chain.

Lemma 3.7.3. The following hold for the ab wheel Wn

1. it is a Horn compliant faithful structure for Hn,

2. ∗Wn
is Horn revision operator which is not in T̃ , i.e., it is not generated by any Horn

compliant faithful ranking.

Proof. For 1., only Horn compliance needs to be proved and it follows directly from Lemma 3.7.2.

Part 2. follows from the facts that Horn compliant faithful rankings generate revision operators

satisfying the acyclicity postulate scheme [11], and, on the other hand, ∗Wn
falsifies Acycn.

The latter claim follows from considering ϕi = 〈{ai, ai+1, bi}〉. By (Equation 3.1) it holds that

(min |ϕi|) ∩ |ϕi+1| = {ai+1}, but

min |ϕ1| ∩ |ϕn| = {a2} ∩ {an, a1, bn} = ∅.
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The following statement is not required for a proof, but does give other interesting properties

of ∗Wn
.

Proposition 3.7.4. The Horn revision operator ∗Wn

1. satisfies the Horn AGM postulates,

2. satisfies the acyclicity postulates Acyc` for 3 ≤ ` ≤ n− 1.

3.8 Horn Belief Revision Results

Theorem 3.8.1. The class of Horn belief revision operators obtained from Horn compliant

faithful total preorders using minimization cannot be characterized by a finite set of postulates.

Theorems 3.6.4 and 3.6.7 yield the following “characterization of characterizability”.

Lemma 3.8.2. Let F be a class of faithful structures and let G be the class of faithful structures

not in F̃ . The class of F-revision operators is not characterizable iff for every ` and q, Duplicator

has a winning strategy in the (G, `, q)-∃MSOmin game.

Thus to show that the class of T -revision operators is not characterizable, Duplicator needs

a winning strategy in the (G, `, q)-∃MSOmin game for G, the class of faithful structures not in

T̃ .

In the first round Duplicator picks the ab wheel Wn for n = 2` + 1. Assume that Spoiler

picks closed subsets A1, . . . , A` of Tn in the second round.

Let I ⊆ {1, . . . , `}. Then SI = ∩i∈IAi is closed and has a unique minimum mI . Let aj ∈ Cn

be a truth assignment which is never minimal, i.e., aj 6= mI for every I.
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The Horn compliant faithful structure picked by Duplicator in the third round is a linear

order where the upper and lower chains are the same as in Wn, and the cyclic structure Gn

between them is replaced by the linear order

aj > aj+1 > . . . > an > a1 > . . . > aj−1.

In other words, the cycle Gn is cut and it is made into a chain (referred to as the middle chain)

by placing aj on top. The closed sets B1, . . . , B` are the same as the ones selected by Spoiler in

Wn. (Note that closedness is defined in terms of the truth assignments only, independently of

the underlying pseudo-order.)

The claim is that the `-min variants of the two structures are the same (as structures with

unary relations over Tn), thus Duplicator wins the first-order game in the last part of the

Horn−KM game.

For this, one needs to show that for every I ⊆ {1, . . . , `} the set of minimal truth assignments

in SI and S′I = ∩i∈IBi are the same (in each case with respect to the corresponding pseudo-order

). In both structures every closed subset has a unique minimum, it is sufficient to show that

the minimal element mI of SI is also minimal in S′I . This follows directly if mI is in the upper

or lower chain.

If mI is in the cycle then there is two cases. If mI is the only element of SI in the cycle,

then all other elements of SI are in the upper chain. In the second structure mI is in the middle

chain and all the other elements of S′I are in the upper chain, so mI is indeed minimal in S′I .
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Otherwise, it must be the case that SI has two elements in the cycle, mI and its predecessor

m′I on the cycle, and all other elements of SI are in the upper chain. The choice of aj guarantees

that mI 6= aj , thus m′I is greater than mI in the second structure, and all other elements of

S′I are in the upper chain. Thus mI is again minimal in S′I . This completes the proof of

Theorem 3.8.1. 2

The following formulates a non-characterizability result for another class of Horn revision

operators as well. Let

B = {F : F 6∈ T̃ }

be the class of Horn compliant faithful structures not in T̃ .

Theorem 3.8.3. The class of B-revision operators is not characterizable.

The proof is similar to the proof of Theorem 3.8.1, with the Duplicator starting with a

sufficiently large linear order with truth assignments of weight n− 3 and n− 1 at the bottom,

and producing a faithful structure similar to an ab wheel in the third round.

3.9 Remarks on strict Horn compliance

Strictly Horn compliant faithful rankings are introduced by Zhang et al. [43]. In this sec-

tion, some observations are made regarding properties of strictly Horn compliant faithful total

preorders and their connections to classes studied in [11].

Horn compliance for a faithful total preorder is equivalent to the requirement that the in-

tersection of two equivalent truth assignments is not above the two truth assignments [43]. A



63

faithful total preorder is strictly Horn compliant if the intersection of two arbitrary truth assign-

ments is not above both assignments. The following is a direct consequence of the definitions.

Proposition 3.9.1. Let R be a total preorder on Tn with level sets V1, . . . , Vr. Then R is strictly

Horn compliant iff V1 ∪ . . . ∪ Vi is closed under intersection for every i, 1 ≤ i ≤ r.

In other words, strictly Horn compliant total preorders can be thought of as a sequence of

Horn formulas ϕ0, . . . , ϕr, where ϕ0 = H is the knowledge base, ϕr is identically true, ϕi implies

ϕi+1 for every i, and the level of a truth assignment is determined by the first formula it satisfies.

This also implies that strictly Horn compliant total preorders have a syntactic definition as well,

using the completeness of unit resolution for Horn formulas, as each formula can be obtained

from the previous one using a sequence of unit resolutions and weakenings which preserve the

Horn property of clauses.

Strictly Horn compliant belief revision operators turn out to be of interest from the point

of view of relating contractions and revisions for Horn logic [43]. Strictly Horn compliant belief

revision operators are related to basic and canonical Horn belief revision operators introduced

in [11].

A faithful total preorder is basic if truth assignments not in the knowledge base are ranked

according to their weight, with lower weight truth assignments having lower rank. A canonical

faithful ranking is specified by a Horn knowledge base H and a partition (P1, . . . , Pr) of the

variables. This determines a sequence ϕ0, . . . , ϕr+1 of Horn formulas, where ϕ0 = H and ϕi

is obtained from H by adding the negations of every variable in P1 ∪ . . . Pi to every Horn

clause of H. This, in turn, determines a total preorder on the truth assignments, where a truth
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assignment is on the i’th level if ϕi is the first formula it satisfies. There is an additional level

added for truth assignments not satisfying ϕr.

It is clear, then, that both basic and canonical revisions are strongly Horn compliant. Propo-

sition 3.9.1 implies that strictly Horn compliant revision operators, given their syntactic descrip-

tion, can be computed efficiently.

Thus strictly Horn compliant belief revision operators emerge as a natural class based on total

preorders with Horn “fallback sets” [11] and good computational properties. Characterizability

of Horn revision operators obtained from such rankings is an open problem. If the answer turns

out to be negative then the framework of this papercould provide an approach to prove this.



CHAPTER 4

CONDITIONAL KNOWLEDGE BASES

4.1 Introduction

The book [28] introduces knowledge bases, composed of conditional statements each of which

has an associated probability. The maximum entropy distribution is utilized as the method for

inferring the probability of a condition outside the knowledge base with an unknown asso-

ciated probability. In [29] and [30], an alternative technique for computing this method of

inference was proposed. The approach consists of constructing a system of polynomials, one

for each conditional in the knowledge base. In addition, given another conditional with an un-

known probability, a new polynomial encoding the unknown probability can be appended to the

polynomial system of the knowledge base. Using techniques from computational algebra, the

unknown probability can be computed from this augmented system of polynomials.

There are several advantages to such an alternative framework. Most notably, this construc-

tion utilizes widely available and powerful techniques from computational algebraic geometry.

Consequently, one could implement this method on almost any widely-used computer algebra

system. In addition, this reformulation could offer further insight into the algebraic and geomet-

ric properties of conditional knowledge bases, providing mathematical insight into conditional

knowledge base structure and its associated probability distribution. For these reasons, further

investigation into these techniques would be of interest.

65
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The purpose of this chapter is to investigate computational aspects of this technique. As part

of this investigation, algebraic and geometric properties of the augmented polynomial systems

of conditional knowledge bases will be explained. Experimental statistics will be presented to

demonstrate the computational properties discussed. In conclusion, suggestions are made for

further topics of interest and their relation to those discussed in this section.

4.2 Computational Aspects of Conditional Knowledge Bases

Section 4.3.1 provides tools to apply Theorem 4.3.10 for inference on conditional knowledge

bases. In [30], several examples of these computations are given in which the Gröbner basis is

satisfied by a finite set of points and only one root of the polynomial defining the elimination

ideal is in the interval (0, 1). The purpose of the following sections is to examine conditions

under which these conditions may not hold.

In Section 4.4, the situation in which the solutions set to the Gröbner basis has high di-

mensional components will be considered. Algebraic background will be given relating sets of

polynomials with computational results of elimination. The connection will then be used to

examine several examples in which elimination does not output a univariate polynomial ideal.

Section 4.5 considers the case in which the elimination ideal is defined by a univariate

polynomial, but that polynomial may have several roots on the interval (0, 1). An example

illustrates the phenomenon, and Theorem 4.3.6 is applied in an attempt to distinguish which

roots are appropriate.
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In [30], a method is proposed to simplify polynomials by removal of specific terms. Section

4.6 considers the effects of this simplification on the behavior described in Section 4.4 and Section

4.5. Examples are given to demonstrate situations which may occur.

Finally, Section 4.7 considers specific knowledge base forms with arbitrary formulas. Samples

are taken of knowledge bases with and without the simplification mentioned above and the

frequency of the behaviors from Section 4.4 and Section 4.5 are recorded. The computation

time to complete elimination is also recorded.

4.3 Conditional Knowledge Bases

Let L be the language of propositional logic with finitely many variables, a, b, c, . . . . Denote

formulas of L as capital letters A,B,C, . . . 1. If L has n variables, denote the set of 2n truth

assignments as Tn. For each formula A, the truth assignments which satisfy A are denoted

|A|. Given a probability distribution P which assigns probabilities to each element of ω ∈ Tn,

probabilities associated with formulas can be determined by

P (C) =
∑
ω∈|C|

P (ω).

Moreover, conditional probabilities can be defined as follows

1In order to remain consistent with the literature, the notation of this chapter differs from previous
chapters.
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P (B|A) =
P (A ∧B)

P (A)
=

∑
ω∈|A∧B|

P (ω)

∑
ω∈|A|

P (ω)
, where P (A) > 0. (4.1)

Definition 4.3.1. A conditional knowledge base is a subset of a language over conditional

statements in which probabilities are rational,

KB =

{
Bj |Aj

[
nj
mj

]
: Aj , Bj ∈ L,mj , nj ∈ N, 0 ≤ j ≤ s

}
.

Example 4.3.2. Consider a situation in which there is knowledge of at least the three following

events:
A is the event that an area has environmental pollution

B is the event that a particular species has not been sighted recently in the given area

C is the event that a particular species in this area is locally extinct
with probabilities P (B|A) = .15 and P (C|A) = .6. Using Definition 4.3.1, the knowledge

base could be represented as {
B|A

[
3

20

]
, C|A

[
3

5

]}
.

A given knowledge base may not contain enough information to uniquely determine a prob-

ability distribution over the set of truth assignments. In order to overcome this challenge,

information theory has a well-established mathematical framework, the maximum entropy prin-

ciple [26]. The maximum entropy principle employs the Shannon entropy measure to maximize

entropy, i.e., maximize randomness in order to minimize bias. The maximum entropy princi-
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ple integrates existing information, while minimizing unnecessary assumptions, to produce a

probability distribution.

This distribution is acquired by maximizing the Shannon entropy measure

−
2n∑
k=1

Pk(ωk) lnPk(ωk)

with the constraints
2n∑
k=1

Pk(ωk) = 1

and a linear constraint for each conditional in the knowledge base

0 = (1− nj
mj

)
∑

ω|=Aj∧Bj

Pk(ω)− nj
mj

∑
ω|=Aj∧¬Bj

Pk(ω).

The result is a system of equations in 2n number of variables, one for the probability of each

truth assignment.

Definition 4.3.3. Let

fj = (mj − nj)x
mj

i

∑
ω|=Aj∧Bj

∏
i6=j

ω|=Ai∧Bi

xmi
i

∏
i6=j

ω|=¬Ai

xni
i

︸ ︷︷ ︸
f+
j

−nj

∑
ω|=Ai∧¬Bi

∏
i 6=j

ω|=Ai∧Bi

xmi
i

∏
i 6=j

ω|=¬Ai

xni
i

︸ ︷︷ ︸
f−
j

for 1 ≤ j ≤ s. The polynomial fj can be decomposed into a positive and negative polynomials, f+
j and f−j

respectively.
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Given a knowledge base

{
B1|A1

[
n1
m1

]
, . . . , Bs|As

[
ns
ms

]}

denote the ideal in C[x1, . . . , xs] formed by these polynomials as IKB.

For each conditional Bj |Aj , the corresponding polynomial is a sum over the sets of truth

assignments satisfying Aj∧Bj and Aj∧¬Bj . These sets of truth assignments are then compared

to the truth assignments satisfying each of the other conditionals, Bi|Ai, in the knowledge base.

Based on this comparison, a monomial, x0i , x
mi
i , or xni

i is used to form a term in the jth

polynomial.

Example 4.3.4. Let KB = {b|c, c|a} with P (b|c) = 1
2 and P (c|a) = 1

2 over the three proposi-

tional variables a, b, c. The following truth assignments satisfy these formulas.

|a| = {111, 101, 110, 100}

|b| = {111, 011, 110, 010}

|c| = {111, 101, 011, 001}
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Then

f+
1 = (2− 1)x2

1

∑
ω|=A1∧B1

∏
i6=1

ω|=Ai∧Bi

xmi
i

∏
i6=1

ω|=¬Ai

xni
i = x2

1

∑
{011,111}|=b∧c

∏
i 6=1

ω|=a∧c

xmi
i

∏
i6=1

ω|=¬a

xni
i

= x2
1

 ∏
i 6=1

011|=Ai∧Bi

xmi
i

∏
i6=1

011|=¬Ai

xni
i +

∏
i6=j

111|=Ai∧Bi

xmi
i

∏
i 6=1

111|=¬Ai

xni
i



= x2
1

 ∏
011 6|=a∧c

x0
2

∏
011|=¬a

x1
2 +

∏
111|=a∧c

x2
2

∏
111 6|=¬a

x0
2


= x2

1(x2 + x2
2),

f−1 =
∑

ω|=A1∧¬B1

∏
i 6=1

ω|=Ai∧Bi

xmi
i

∏
i 6=1

ω|=¬Ai

xni
i = x2

1

∑
{101,001}|=¬b∧c

∏
i 6=1

ω|=a∧c

xmi
i

∏
i6=1

ω|=¬a

xni
i

=

 ∏
i 6=1

101|=Ai∧Bi

xmi
i

∏
i 6=1

101|=¬Ai

xni
i +

∏
i 6=j

001|=Ai∧Bi

xmi
i

∏
i6=1

001|=¬Ai

xni
i



=

 ∏
101|=a∧c

x2
2

∏
101 6|=¬a

x0
2 +

∏
0016|=a∧c

x0
2

∏
001|=¬a

x1
2


= (x2

2 + x2).

This results in final polynomials

f1 = f+1 − f−1 = x21(x2 + x22)− (x22 + x2)
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and

f2 = x22(1 + x21)− 2x1.

One can utilize |Aj | and |Bj | to define conditional formulas constructing a formula which

satisfies the given truth assignments. In the implementation, formulas are represented by their

satisfying truth assignments. While representing formulas as sets of truth assignments may limit

computational scalability, this formulation provides more flexibility and ease when producing

formulas to input into conditionals. Moreover, the implementation of the algorithms utilized

Python. Due to sets being a built-in datatype in Python, operations like set comparison and

inclusion are already implemented saving time spent on implementation.

The maximum entropy principle does not guarantee that there is a probability distribution

which can accommodate known probabilities of conditionals in the knowledge base. Therefore,

criteria to discern whether there exists an applicable probability distribution is needed before

applying the maximum entropy principle. If there is at least one probability distribution which

satisfies the information in the knowledge base, the knowledge base is consistent.

Definition 4.3.5. A conditional knowledge base,

KB =

{
B1|A1

[
n1
m1

]
. . . Bs|As

[
ns
ms

]}
,

is consistent iff there exists a probability distribution, P , such that for all Bj |Aj ∈ KB

P (Bj |Aj) =
nj
mj

.
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As part of [29] and [30], there is a method proposed to determine the consistency of prob-

abilities assigned to elements in a knowledge base. Issues of consistency may be relevant as a

preliminary test of a knowledge base. Consistency will be used later when discussing inference.

In this context, consistency will be used as tool to evaluate the viability of several possible

probabilities for a conditional which is not in the knowledge base. In Example 4.5.2, such a

situation will occur, and this will offer a possible method to distinguish the appropriate value.

The following theorem offers a computational method to assess consistency of a given knowledge

base.

Theorem 4.3.6. (Kern-Isberner et al. [30]) Given a conditional knowledge base, KB, composed

of s conditionals with non-trivial probabilities, if the KB is consistent, then the polynomials

defined by KB are not a generating set for C[x1, . . . , xs]

Computationally, if

IKB = (1),

then the original knowledge base was inconsistent. Given a polynomial system from a knowledge

base, one common task is to infer the probability of a condition not in the knowledge base. For

instance, a natural question in Example 4.3.2 may inquire about the probability that a species

is extinct in a particular area, given pollution and no recent sightings. This would be equivalent

to asking what is the probability of the conditional C|A ∧B. Mathematically, this corresponds

to constructing a new polynomial with a variable to represent the probability to be inferred.
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Definition 4.3.7. Let Binf |Ainf be a conditional probability to be inferred from a conditional

knowledge base, KB. Similarly to Definition 4.3.3, a polynomial with a special variable, xinf ,

to encode the probability of a condition Binf |Ainf can be defined as

finf = xinf

∑
ω|=Ainf∧Binf

∏
ω|=Ai∧Bi

xmi
i

∏
ω|=¬Ai

xni
i︸ ︷︷ ︸

f+
inf

−
∑

ω|=Ainf∧¬Binf

∏
ω|=Ai∧Bi

xmi
i

∏
ω|=¬Ai

xni
i︸ ︷︷ ︸

f−
inf

.

where i indexes conditionals in KB.

Unlike the knowledge base polynomials, the inference polynomial does not contain infor-

mation about a specific probability, but instead this information is encoded into the variable

xinf .

Example 4.3.8. Consider inferring the probability of a|(b ∧ c) with the knowledge base from

Example 4.3.4. The corresponding inference polynomial would be

finf = xinf (x21x2 + x21x
2
2) + x21x

2
2.

Definition 4.3.9. Given a knowledge base of s conditional statements and a conditional Binf |Ainf

for which the probability is to be inferred, the augmented polynomial system is formed by adding

the inference polynomial for Binf |Ainf to the KB polynomials,

{f1, . . . , fs} ∪ finf .

Denote the ideal of C[x1, . . . , xs, xinf ] formed by the augmented polynomial system as IKB∗.
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The goal is to find the probability which has been encoded into the variable xinf and satisfies

the following theorem.

Theorem 4.3.10. (Kern-Isberner et al. [30]) ( Let KB = {(B1|A1)
[
n1
m1

]
, . . . , (Bs|As)

[
ns
ms

]
} be

consistent with nontrivial probabilities and Binf |Ainf a new conditional formula with a probability

to be inferred from the KB. The probability
[
ninf

minf

]
under the maximum entropy distribution is

a common root of

IKB∗ ∩ C[xinf ].

This theorem leads naturally to computation of polynomials in the intersection of this ideal

by means of elimination. Such calculations rely on the formation of a Gröbner basis. The

following is a brief introduction to the topic.

4.3.1 Gröbner Basis and Elimination

Computationally, Gröbner bases are often used to represent the generating set of an ideal.

A Gröbner basis preserves much of the vital algebraic and geometric information of the ideal.

The following is intended to be a short introduction to Gröbner bases and their application in

elimination theory. The background information presented in this section with more detail can

be found in [8].

Definition 4.3.11. A monomial order is a total well-ordered relation, ≤, on the set of mono-

mials xα, α ∈ Zn>0 such that if α ≤ β, then α+ δ ≤ β + δ.
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With a fixed monomial ordering, leading terms of polynomials and the associated monomial

ideals defined by the leading terms can be defined. Leading term ideals are often easier to work

with and already contain important algebraic information.

Definition 4.3.12. Given a monomial ordering the leading term of a nonzero polynomial f is

the monomial of the maximal order in f and 0 if f = 0. Denote the leading term of f as LT (f).

Definition 4.3.13. If I is an ideal in C[x1, . . . , xn] then the leading term ideal,

LT (I) = {LT (f) : f ∈ I}.

As a consequence of Hilbert’s Basis theorem, every ideal in C[x1, . . . , xs] is finitely generated.

By a method analogous to Gaussian elimination, every ideal also has a generating set which is

a Gröbner basis.

Definition 4.3.14. A Gröbner basis for an ideal I is a set {g1, . . . , gm} such that

I = (g1, . . . , gm) and LT (I) = (LT (g1), . . . , LT (gm)).

Definition 4.3.15. Let I be an ideal of C[x1, . . . , xn]. Define the jth elimination ideal with

respect to x1 ≤ · · · ≤ xn as

Ij = I ∩ C[xj+1, . . . , xn].

Algorithms that depend on Gröbner basis calculations can be doubly exponential in time

complexity. The computations in this chapter use Sage 6.4.1 and Singular 3.1.6 in which the
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implementation of elimination uses Gröbner bases as part of the computation [14, 21]1. As a

consequence, the degree of polynomials or the size of coefficients in intermediate steps may

increase the computational time significantly [15].

With increases in computational power and development of new algorithms, the performance

of techniques employing Gröbner bases has increased [15,18,35]. As existing software packages

integrate these new algorithms, implementations of computational methods expressed here will

become even more feasible. If algebraic limits can be set on degree of polynomials or size of

coefficients, computational time may decrease.

On the other hand, from a design perspective, time is only one possible constraint. The

reliability of software to produce a meaningful solution may outweigh a concern about computa-

tional time. In such a situation, the computational technique may only output relevant solutions

for a specific set of inputs. Therefore, identifying the constraints on the input is essential to

implementation.

In either case, a better understanding of the computational aspects and their algebraic con-

sequences of the proposed approach would provide valuable information for practical situations.

The remainder of this chapter is dedicated to investigating some of the computational features

of this method. Whenever possible, algebraic explanation accompanies the observations of al-

gebraic behavior.

1Code will be posted to https://github.com/jonyaggie/thesis-code
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According to the maximum entropy principle, the uniform distribution when applicable is

the distribution which assumes the minimal amount of prior information. Therefore, to make

comparison easier, all examples use probabilities from the uniform distribution unless otherwise

stated. A variety of modern computer algebra systems can perform these calculations.

4.4 Algebraic Independence

In order to find the polynomial in the intersection, an elimination ideal is computed to

eliminate x1, . . . , xn, leaving a polynomial in xinf . As with the previous chapter, the background

concepts and propositions are from [8]. An affine variety is the zeros in Cn for a system of

polynomials {f1, . . . , fs}. If V is an affine variety, the coordinate ring, C[V ], is formed from all

the polynomial functions which vanish on V .

Definition 4.4.1. The set of polynomials f1, . . . , fs ∈ C[V ] is algebraically independent over C

if there is no nonzero polynomial, p, in s variables with coefficients C such that p(f1, . . . , fs) = 0

in C[V ].

Proposition 4.4.2. Let V ⊂ Cn be an affine variety. The maximal number of elements of

C[V ] which are algebraically independent over C is equal to the largest r such that there exists r

variables for which the ideal formed from V intersected with C[x1, . . . , xr] equals (0).

In particular, finf may be algebraically independent and thus IKB∗ ∩ C[xinf ] = {0}. This

could be problematic, because the inferred probability is encoded as a root of this intersection.

Therefore, in such cases, one may not be able to ascertain a probability for Cinf .
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Observation 4.4.3. There exist knowledge bases for which finf is algebraically independent i.e.

the elimination ideal, IKB∗ ∩ C[xinf ] = (0).

The following example proves the existence of such knowledge bases.

Example 4.4.4. Consider another example, with knowledge base B1|A1 = B|A[23 ] and B2|A2 =

C|A[13 ] with A, B, C the formulas which satisfy

|A| = {(0, 1, 1), (0, 1, 0), (0, 0, 1)}

|B| = {(1, 1, 0), (0, 1, 1), (1, 0, 0), (1, 0, 1), (0, 0, 0), (1, 1, 1), (0, 1, 0)}

|C| = {(1, 0, 0), (0, 0, 1).}.
Applying Definition 4.3.3 and 4.3.7 yields the set

f1 = 2x31 − 2x32

f2 = 2x32 − 2x31

finf = x32xinf + x21x2xinf − x21x2.

Using elimination on x1, x2 to find the intersection of this ideal and C[xinf ] yields the ideal

(0).

A concern could be whether f1 or f2 being algebraically independent would have any effect

on the intersection IKB∗ ∩ C [xinf ]. A geometric interpretation of elimination is in terms of

projections. If the elimination ideal with respect to xinf is a polynomial with a finite set of

roots, then the solutions to the original system of polynomials only have a finite set of values

for the xinf component. Thus the algebraic independence of finf corresponds to an infinite set

of values for xinf .
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It may occur that f1 or f2 are algebraically independent which has no effect on computing

the elimination ideal with respect to finf . The following example illustrates a case in which f1

and f2 are each algebraically independent, but neither {finf} or {f1, f2} are.

Example 4.4.5. Let A, B, and C be formulas satisfying

|A| = {(1, 1, 0), (0, 1, 1), (1, 0, 0), (1, 0, 1), (0, 1, 0), (1, 1, 1)}

|B| = {(1, 0, 0), (1, 1, 0), (0, 1, 0), (0, 0, 1), (1, 0, 1)}

|C| = {(1, 0, 0), (1, 1, 0), (0, 1, 0), (0, 0, 0), (1, 0, 1)}
and the conditional knowledge base consist of the conditions B1|A1 = B|A[23 ] and B2|A2 =

C|A[23 ]. Consider inferring Cinf = B|C. The resulting polynomial system is

f1 = 4x31x
3
2 − 4

f2 = 4x31x
3
2 − 4

finf = 4x31x
3
2xinf − 4x31x

3
2 + x21x

2
2xinf

The following are the elimination ideals for this system

IKB∗ ∩ C[x1] = {0}

IKB∗ ∩ C[x2] = {0}

IKB∗ ∩ C[xinf ] = {65 ∗ xi3 − 192 ∗ xi2 + 192 ∗ xi− 64}.
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In fact, if one considers eliminating less variables the intersection is no longer zero. For

example, the intersection IKB∗ ∩ C[x1, x2] = {x31x32 − 1}. Therefore, one is the largest number

of algebraically independent polynomials in this system.

4.5 Multiple Roots

The purpose of this section is to consider the case when elimination results in a polynomial

ideal of one variable. The primary concern in this situation is whether this polynomial can have

multiple roots on the interval (0, 1). Several examples of knowledge bases, their augmented

polynomial systems, and the results of inference are presented.

Observation 4.5.1. Given a conditional knowledge base, the elimination ideal for an augmented

polynomial system for inferring the probability of Ainf |Binf may have multiple roots within (0, 1).

Moreover, there may be no method by which to determine the root which corresponds to the

maximum entropy distribution.

The following example proves this observation.

Example 4.5.2. Let A, B, and C be formulas satisfying

|A| = {(1, 0, 0), (1, 1, 0), (0, 1, 0), (0, 0, 1)}

|B| = {(1, 1, 0), (0, 1, 1), (1, 0, 0), (1, 0, 1), (0, 0, 0), (1, 1, 1)}

|C| = {(1, 0, 0), (0, 1, 1), (0, 0, 0), (0, 0, 1)}
and the conditional knowledge base consist of the conditions B1|A1 = B|A[12 ] and B2|A2 =

C|A[12 ]. Consider inferring Cinf = B|C.

From Definition 4.3.3 the following polynomials can be produced
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f1 = x21x
2
2 + x21 − x22 − 1

f2 = x21x
2
2 − x21 + x22 − 1

finf = x21x
2
2xinf − x21x22 + x21xinf + 4x1x2xinf − 2x1x2

Eliminating x1 and x2 results in {32x3inf − 48x2inf + 22xinf − 3} which produces three real

roots in (0,1) – {14 , 12 , 34}.

Unlike the Example 4.4.4 in the previous section, finf is not algebraically independent

and the elimination ideal yields a degree three polynomial in xinf . By Theorem 4.3.10, the

probability of b|c is a root of this polynomial. This polynomial has 3 real roots, {14 , 12 , 34}. While

it is not discussed in detail in [30], ideally, the results of this calculation would be a polynomial

with a unique root on the interval (0, 1), yet this example has three such roots. How would one

choose which root is appropriate?

A possible attempt to find the the correct root may appeal to Theorem 4.3.6. If adding

Cinf to the knowledge base only was consistent for one of the three values produced, then there

would be a method to identify the correct probability for Cinf . However, this is not the case

which can be seen in the following example.

Example 4.5.3. Let A, B, and C be formulas satisfying
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|A| = {(0, 1, 1), (0, 0, 0)}

|B| = {(1, 1, 0), (1, 1, 1), (0, 0, 0), (0, 0, 1), (1, 0, 1)}

|C| = {(1, 0, 0), (1, 1, 0), (0, 0, 0), (0, 0, 1)}
and the conditional knowledge base consist of the conditions B1|A1 = B|A[12 ] and B2|A2 =

C|A[12 ]. Consider inferring Cinf = B|C.

From Definition 4.3.3, the following polynomials can be produced

f1 = x21x
2
2 − 1

f2 = x21x
2
2 − 1

finf = x21x
2
2xinf − x21x22 + 3x1x2xinf − 2x1x2.

Elimination produces two real roots in (0,1) – {12 , 34}.

Assigning P (B|C) = 1
2 and adding a polynomial f3 to polynomial system of the knowledge

base yields

f1 = x21x
2
2x

2
3 − x3

f2 = x21x
2
2x

2
3 − x3

f3 = x21x
2
2x

2
3 + 2x1x2x

2
3 − 2x1x2.

On the other hand, using P (B|C) = 3
4 to generate f3 results in
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f1 = x21x
2
2x

4
3 − x33

f2 = x21x
2
2x

4
3 − x33

f3 = x21x
2
2x

4
3 + 2x1x2x

4
3 − 6x1x2.

Applying Theorem 4.3.6, neither of the Gröbner bases generated from these systems are

trivial. Therefore, both roots are potential candidates for the probability of conditional B|C.

4.6 GCD Removal

One computational simplification proposed in [30] is to divide each fi by GCD(f+i , f
−
i ) and

similarly for finf . The goal is to remove solutions which may make computation easier without

effecting the solutions containing valuable information about the knowledge base. Formally, in

the remainder of this section, all polynomial systems will be composed of polynomials of the

form

f∗i =
f+i − f−i

GCD(f+i , f
−
i )
.

The system of polynomials for a knowledge base or its augmented polynomial system would be

composed the same as in previous sections but with this additional simplification. These sys-

tems will be called the GCD-simplified knowledge base polynomial systems and GCD-simplified

augmented polynomial systems respectively.

Algebraically, the GCD-simplified systems cannot contain additional solutions. Each time a

polynomial is divided, a solution to that polynomial is removed. Denote this solution as θ. If
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θ was not a common solution to the system, the common solution set is unaffected. If θ was a

common solution, then θ is no longer part of the common solutions. In either case, solutions

are not added to the system. Consequently, the dimension and common roots of the system

can never be adversely affected. Thus the worst case scenario would be that GCD-simplified

systems would have all the same properties noted in the previous sections. Computationally,

removal of terms may theoretically cause swell in size of the polynomials in the system.

The influence of removing the GCD has can be dramatic or minimal depending on the

situation. In this section, examples which illustrate that the situations in Observation 4.4.3 and

Observation 4.5.1 still can occur in GCD-simplified systems will be presented. The next section

will then offer some experimental results to demonstrate the vastly different effect the technique

may have on inference and computational time.

Observation 4.6.1. Removal of the GCD from an augmented system of polynomials does not

preclude the occurrence of the phenomena in Observation 4.4.3 and 4.5.1.

The following examples prove the existence situation when GCD-simplified systems results

in behaviors from Observation 4.4.3 and 4.5.1.

4.6.1 Multiple Roots

Example 4.6.2. Repeating this process with the GCD removed from Example 4.5.2 results in

the polynomial equations
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f1 = x21 − 1

f2 = x22 − 1

finf = x1x
2
2xinf − x1x22 + x1xinf + 4x2xinf − 2x2.

Finding the elimination ideal yields the polynomial {2xinf − 1} which clearly has one real

root – 1
2 .

While this example did yield a positive result, there are cases in which removing the GCD

does reduce the number of applicable roots.

Example 4.6.3. Let A, B, and C be formulas satisfying

|A| = {(0, 1, 1), (1, 0, 0), (0, 0, 1), (0, 0, 0), (1, 1, 1), (0, 1, 0)}

|B| = {(0, 1, 1), (1, 1, 0), (0, 0, 1), (1, 0, 1), (0, 0, 0), (1, 1, 1)}

|C| = {(0, 1, 1), (0, 0, 1), (1, 0, 1), (0, 0, 0), (1, 1, 1), (0, 1, 0)}
and the conditional knowledge base consist of the conditions B1|A1 = B|A[23 ] and B2|A2 =

C|A[56 ]. Consider inferring Cinf = B|C.

From Definition 4.3.3 the following polynomials can be produced

f1 = 4x31x
6
2 − 2x62 − 2

f2 = 4x31x
6
2 + x62 − 5

finf = 4x31x
6
2xinf − 4x31x

6
2 + x21x

5
2xinf − x21x52 + x62xinf .
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Eliminating x1 and x2 results in {15624∗x6inf −74994∗x5inf +149985∗x4inf −159980∗x3inf +

95985 ∗ x2inf − 30714 ∗ xinf + 4095} which produces two real roots in (0,1) – {56 , 34}.

Removal of the GCD will only affect finf . Therefore, GCD-simplified augmented polynomials

system would be

f1 = 4x31x
6
2 − 2x62 − 2

f2 = 4x31x
6
2 + x62 − 5

finf = 4x31x2 ∗ xinf − 4x31x2 + x21xinf − x21 + x2xinf

which has the same elimination ideal with respect to xi as the original polynomial system.

Therefore, it also has the same two potential roots.

4.6.2 Algebraic Independence

Similar to the case of multiple roots, removing the GCD may have a positive influence on

algebraic independence of finf by removing higher dimensional solutions. There is no guarantee

that this will happen in all circumstances as illustrated by Example 4.6.4. Similar to Example

4.6.3, the removal of the GCD only effects finf and this does not change the polynomials

generating the elimination ideal with respect to xinf .

Example 4.6.4. Let A, B, and C be formulas satisfying

|A| = {(1, 1, 1), (0, 0, 1), (1, 0, 1)}

|B| = {(0, 1, 1), (0, 0, 1), (1, 0, 1)}

|C| = {(1, 0, 0), (0, 1, 1), (1, 1, 1), (0, 0, 0)}
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and the conditional knowledge base consist of the conditions B1|A1 = B|A[23 ] and B2|A2 =

C|A[13 ]. Consider inferring Cinf = B|C.

From Definition 4.3.3 the following polynomials can be produced

f1 = 2x31 − 2x32

f2 = −2x31 + 2x32

finf = 3x21x2xinf + x32xinf − x21x2

As noted above, the only GCD which can be removed is x2 in finf . However, removing this

term does not change the fact that the elimination ideal with respect to xinf is (0).

4.7 Experimental Results

One noteworthy feature of this method of computing inferred probabilities is the influence

of the knowledge base structure. For example, for three arbitrary formulas the knowledge bases

B|A,C|A and B|A,A|C perform very differently when inferring the probability of B|C. As a

initial step in analyzing this behavior, experiments were conducted looking at several knowledge

base structures, some of which were known properties.

In [28], several properties of maximum entropy inference are proposed. These properties

require specific structure of a knowledge base. The following experiments were conducted to

investigate the relationship between knowledge base structure of these inference properties and

a randomly selected knowledge base structure. Data was collected for each of the previously

mentioned computational considerations – unique roots, ideal (0), and multiple roots. Three
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variable propositional formulas – A,B,C – were chosen at random and inserted into the given

knowledge base structure. Probabilities for knowledge bases conditionals were determined by

the uniform distribution. The augmented polynomial system was generated to infer the desired

probability, and the inferred probability was calculated both with and without removal of the

GCD of each polynomial. This process was repeated 1000 times for each knowledge base struc-

ture yielding the following results. The machine used for computation was running Red Hat 6.6

with a 2.6 GHz Intel Xeon E5-2670 processor and 126 GB RAM.

In the following, the knowledge base structure is represented so that the knowledge base is

given in the numerator and the conditional to be inferred in the denominator. More formally,

each KB structure is of the following form,

KB

Cinf
=
A1|B1, . . . , Aj |Bj

Ainf |Binf
.

TABLE I: Knowledge Base Structure (Uniform)

Without GCD Removed With GCD Removed

Property Structure Unique (0) Multiple Unique (0) Multiple

Reasoning By Cases C|(A∧B),C|(A∧¬B)
B|A 0% 100% 0% 100% 0% 0%

Transitive Chaining B|A,C|B
C|A 0% 100% 0% 57% 0% 43%

Cautious Monotonicity B|A,C|A
C|(A∧B)

50% 0% 50% 100% 0% 0%

Antecedent Conjunction C|A,C|B
C|(A∧B)

98% 0% 2% 100% 0% 0%

Conjunction Left B|A,(B∧C)|A
C|(A∧B)

100% 0% 0% 100% 0% 0%

KB form 1 A|B,(A∨B)|C
B|C 0% 100% 0% 68% 32% 0%
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The data collected in Table I demonstrates how dramatically the ability to find a unique

root can be depending on the knowledge base structure. For example, the forms for "Reasoning

by Cases" and "Transitive Chaining" produced an elimination ideal of (0). While in both cases

removing the GCD produced unique roots, the results for "Transitive Chaining" show that a

bit over 40% of the samples resulted in multiple roots. However, it is also clear that removing

the GCD cannot make the situation worse.

In addition to comparing the results of elimination, the computational time used to find the

elimination ideal was recorded. In Table II, the mean and variance of computational time are

displayed for each knowledge base form.

TABLE II: Computational Time (seconds)

Without GCD Removed With GCD Removed

Property Mean Variance Mean Variance

Reasoning By Cases 6.320× 10−4 2.709× 10−7 5.502× 10−4 1.717× 10−7

Transitive Chaining 4.602× 10−3 6.605× 10−5 4.225× 10−3 7.316× 10−5

Cautious Monotonicity 6.020× 10−4 7.046× 10−5 4.008× 10−3 9.269× 10−4

Antecedent Conjunction 9.662× 10−1 3.471× 10−1 9.656× 10−2 3.4699× 10−1

Conjunction Left 3.005× 10−4 7.668× 10−10 3.001× 10−4 1.044× 10−9

KB form 1 1.106 1.776× 102 2.434× 10−1 1.353

The measurements in Table II show that on average, removing the GCD has a mostly positive

effect on the computational time. One exception is cautious monotonicity for which the mean

and variance increase when the GCD is removed. In other cases, KB form 1 also shows the

most significant improvement on average after removal of the GCD. In general, unlike the KB

forms which adhere to a property, KB form 1 seems to be the most sensitive to changes in the

formulas input.
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Due to computational limitations, experiments were repeated for only a 100 samples. The

probability distribution for the knowledge bases was produced by assigning P (1) = 1
4 and

P (0) = 3
4 for each component of a truth assignment. For example, the truth assignment (1, 0, 0)

has the probability,

P (100) = P (1)P (0P (0) =
1

4

3

4

3

4
=

9

64
.

For several of the above properties, it was not possible to consistently produce enough results to

record data. The following tables summarize the instances in which 100 samples were collected.

TABLE III: Knowledge Base Structure (Non-Uniform)

Without GCD Removed With GCD Removed

Property Structure Unique (0) Multiple Unique (0) Multiple

Reasoning By Cases C|(A∧B),C|(A∧¬B)
B|A 0% 100% 0% 10% 0% 90%

Cautious Monotonicity B|A,C|A
C|(A∧B)

23% 0% 77% 78% 0% 22%

Conjunction Left B|A,(B∧C)|A
C|(A∧B)

100% 0% 0% 100% 0% 0%

TABLE IV: Computational Time (seconds)

Without GCD Removed With GCD Removed

Property Mean Variance Mean Variance

Reasoning By Cases 2.825 2.022× 102 2.560 1.099× 102

Cautious Monotonicity 3.223× 10−4 2.660× 10−9 3.158× 10−3 6.487× 10−10

Conjunction Left 3.052× 10−4 1.750× 10−9 3.011× 10−4 5.448× 10−10



CHAPTER 5

CONCLUSION

The thesis discussed two topics in knowledge representation: characterizability in belief

revision and conditional knowledge bases. The results on both topics suggest several directions

for further research. The thesis is concluded by very brief summaries of the results and a list of

problems for further work.

5.1 Characterizability in Belief Revision

The framework established in Chapter 2 provides an approach to show that certain classes

of belief revision operators are not characterizable by postulates. This framework is adapted in

Chapter 3 to Horn belief revision. The approach merges techniques from finite model theory

with theoretical models of belief revision. Several examples are given of classes of belief revision

operators which are not characterizable. It is shown that the logical definability class corre-

sponding to belief revision operators obtained by minimization from posets is a proper subset of

universal monadic second-order logic and it is incomparable to first-order logic. For Horn belief

revision, it is shown that the class of Horn belief operators obtained from Horn compliant total

preorders cannot be characterized by finitely many postulates. Thus the characterization of this

class given by Delgrande and Peppas, using infinitely many postulates, cannot be replaced by

a finite characterization. It would be of interest to study the following problems related to this

work.

92
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Extending the framework to belief contraction. In general belief revision, the Harper

and Levi identities allow for translation between revision and contraction, and revision by min-

imization has a natural counterpart for belief contraction. Using this definition for contraction

by minimization, one could extend the current framework to consider characterizability of con-

traction operators generated by minimization.

Iterated belief revision. The current framework does not account for repeated revisions

called iterated revision. This is a very important extension, which needs to be well understood

for practical applications of belief revision. Darwiche and Pearl proposed postulates which have

served as the foundation for many later works on iterated belief revision [9]. Developing a

methodology to evaluate whether classes iterated revision operators are characterizable could

be useful for the further development of iterated belief revision.

Strictly Horn compliant belief revision operators. While Section 3.9 presented some

new information about strictly Horn compliant operators, their characterizability is still an

open problem. The techniques developed in Chapter 3 may offer a way to prove their non-

characterizability.

Reasoning about postulates. Reasoning about implications between postulates is an

important part of the belief revision literature. This reasoning has not been formalized yet, and

so basic questions about its hardness, such as the decidability of implication, appear to be open.

5.2 Conditional Knowledge Bases

The method introduced by Kern-Isberner et al. [30] offers a technique for maximum en-

tropy inference on conditional knowledge bases. The experiments of Chapter 4 suggest that
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the method may be best applied to subclasses of this problem, in which the knowledge bases

have specific structure, and consequently the polynomial systems produced can be handled ef-

ficiently. Alternatively, computational techniques which avoid elimination could be explored.

The following are some possible future directions for research.

Structured subclasses. Identify structural properties of conditional knowledge bases where

the computational algebra approach can infer the correct conditional probability and the com-

putation time is feasible.

Zero dimensional components. In instances where the algebraic independence of finf

cannot be eliminated by removing the GCD, isolated solutions to the augmented polynomial

system may still exist. These isolated points may contain information about the value of the

probability to be inferred. Further investigation into both theoretical and computational ap-

proaches to address this situation is needed.

Alternatives to elimination. Elimination is known to lead to certain computational

challenges such as intermediate expression swell and large coefficients [15]. In order to give

more flexibility tp this computational approach one could explore alternative symbolic methods

or numerical methods to avoid elimination.

Risk and consequence of expression swell in GCD-simplified systems. Expression

swell can occur when removing factors causes the introduction of additional terms. For example,

consider the polynomial

fi = f+i − f−i = (a3 + b3)− (a2 + b2).
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It holds that GCD(f+i , f
−
i ) = a + b, and the removal of a + b results in the polynomial a2 −

2ab+ b2− a+ b which is of lower degree, but more terms. Further information about frequency

and conditions under which this may occur need to be identified. Moreover, the computational

effects of such a situation would need to be assessed.
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Appendix A

PERMISSION TO REPRINT PUBLISHED MATERIAL

Reprint permission was granted by Vesena Sabljakovic-Fritz, IJCAI Executive Secretary,

who may be contacted at sablja@dbai.tuwien.ac.at. Her statement was as follows:

“You are hereby authorized to re-print paper ID #456:Characterizability in Belief Revision by

György Turán, Jon Yaggie, Proceedings of the 24th International Joint Conference on Artificial

Intelligence, published by AAAI Press and IJCAI as part of your PhD thesis @ UIC with clear

reference."

In addition the International Joint Conference on Artificial Intelligence Transfer of Copyright

Agreement Returned Rights states the following:

IJCAI hereby grants to the above authors, and the employers for whom the work

was performed, royalty-free permission to: ...

2. personally reuse all or portions of the paper in other works of their own authorship;

3. make oral presentation of the material in any forum;

4. reproduce, or have reproduced, the above paper for the author’s personal use, or

for company use provided that IJCAI copyright and the source are indicated, and

that the copies are not used in a way that implies IJCAI endorsement of a product

or service of an employer, and that the copies per se are not offered for sale. The



98

Appendix A (Continued)

foregoing right shall not permit the posting of the paper in electronic or digital

form on any computer network, except by the author or the author?s employer, and

then only on the author?s or the employer?s own World Wide Web page or ftp site.

Such Web page or ftp site, in addition to the aforementioned requirements of this

Paragraph, must provide an electronic reference or link back to the IJCAI electronic

server (http://www.ijcai.org), and shall not post other IJCAI copyrighted materials

not of the author’s or the employer?s creation (including tables of contents with links

to other papers) without IJCA’s written permission;
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Appendix B

CODE FOR CHAPTER 4

The code used to produce examples in Chapter 4 can be found at:

https:github.comjonyaggiethesis-code
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