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SUMMARY 
 

The aim of this study was to use RNA-sequencing (RNA-seq) data to identify 

transcriptomic predictors of isolated post-capillary pulmonary hypertension (IpcPH) and 

combined pre- and post-capillary pulmonary hypertension (CpcPH) pathogenesis in heart failure 

patients with preserved ejection fraction (HFpEF). 

Whole blood samples were selected from two different biobanks, from which peripheral 

blood mononuclear cells (PBMCs) were extracted. RNA was isolated from PBMCs, converted 

into complementary DNA libraries, and then sequenced to generate paired-end reads of about 

75 bases. Next, these reads were aligned to the human reference genome (hg38). After 

alignment, the number of reads per gene were quantified on an individual patient basis. 

Following bias correction and normalization, adjusted pairwise gene expression values were 

compared among three groups (n=10/group): HFpEF without pulmonary hypertension (HFpEF 

without PH); IpcPH; and CpcPH. Gene set enrichment analysis was performed to identify 

groups of differentially expressed genes that were significantly over-represented in certain 

molecular pathways in relation to all interrogated genes. Network analysis was performed to 

observe co-expression and genetic interactions among a subset of differentially expressed 

genes. Finally, expression quantitative trait loci (eQTLs) were analyzed in silico. Using the 

candidate eQTLs from this analysis, a genetic association analysis was performed to determine 

if the single nucleotide polymorphisms (SNPs) were associated with pulmonary hypertension in 

a larger dataset of heart failure patients with and without pulmonary hypertension.   

After controlling for age, sex, race and smoking status, 152 genes/transcripts were 

significantly downregulated, and 194 genes/transcripts were significantly upregulated in CpcPH 

patients compared with HFpEF without PH patients. No significant differentially expressed 

genes were found in other pairwise comparisons. Based on the enrichment analysis of all 

22,418 genes/transcripts, 11 pathways were significantly upregulated in CpcPH compared to 
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SUMMARY (continued) 
 

HFpEF without PH, one of which, the cell-cycle, maintained significance after correction for 

multiple comparisons. Network analysis revealed a high level of co-expression among the 

candidate genes (false discovery rate < 0.05 and log2-fold change > 1.5 or < -1.5) and 6 genes 

had eQTLs in one of the tissues of interest. Eighty six unique candidate eQTLs were identified 

from the 6 genes; of these, genotype array data was only available for 15 SNPs, none of which 

showed significance with PH in the larger dataset. 

This study confirms that there is a complex network of molecular pathways that 

modulate the intricate CpcPH phenotype involving inflammation, cell proliferation and 

mitochondrial dysfunction. In addition, the results suggest some overlap between CpcPH 

phenotype and cancer etiology, as well as between CpcPH and other pulmonary hypertension 

subtypes. The candidate genes associated with CpcPH that were identified in this study may 

provide a new level of molecular targeting that has not been previously published, but which is 

strongly advocated for by experts in the field. Future work should focus on the translational 

confirmation of these molecular signatures.  
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I. INTRODUCTION 
 

A.  Heart Failure and Pulmonary Hypertension 
 
 By 2030, it is estimated that over 8 million Americans will have heart failure (HF).1 Heart 

failure is a complex syndrome characterized by a decreased ability of the heart to fill and/or 

eject blood proportionate to the body’s metabolic needs, which results in a host of signs and 

symptoms of systemic and pulmonary venous congestion.2,3 Of HF patients, roughly half have 

HF with preserved ejection fraction (HFpEF), which compared to HF with reduced ejection 

fraction (HFrEF), has limited clinical evidence for specific pharmacotherapies.4,5 Also 

problematic for these HFpEF patients is that up to 80% of them can develop pulmonary 

hypertension (PH), which confers additional morbidity and mortality risk.6-12 The five-year 

mortality rate for HFpEF-PH patients is alarming – about 50%.13 The World Health Organization 

categorizes this condition as Group 2 PH, with an etiology of left ventricular dysfunction and/or 

valvular heart disease.14 Other classifications of PH by the World Health Organization are 

shown in Table I.15 In order to definitively diagnose Group 2 PH, a right heart catheterization is 

required, which must reveal the following hemodynamic measurements: mean pulmonary artery 

pressure (mPAP) ≥ 25 mmHg and pulmonary artery wedge pressure (PAWP) > 15 mmHg.16  

 Within Group 2 PH, the predominant pathophysiology is thought to originate from 

sustained left atrial pressure, which leads to passive pulmonary venous congestion with high 

pulmonary pressures.17 In many HFpEF-PH patients, this most likely accurately reflects the 

underlying mechanism. These patients are classified as having isolated post-capillary PH 

(IpcPH), displaying a PAWP > 15 mmHg and diastolic pulmonary gradient (DPG, = diastolic 

PAP – PAWP) < 7 mmHg or transpulmonary gradient (TPG, = mPAP – PAWP) ≤ 12 mmHg 

and/or pulmonary vascular resistance (PVR) ≤ 3 wood units.14 However, up to 20% of HFpEF-

PH patients develop an intrinsic pulmonary vascular disease and a disproportionately elevated 

mPAP that cannot be solely explained by passive venous congestion.18 This severe progression  
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TABLE I 

WORLD HEALTH ORGANIZATION CLASSIFICATION OF PH 

I. Pulmonary arterial hypertension 

1.1 Idiopathic  
1.2 Heritable 

 1.2.1 BMPR2 mutation 
 1.2.2 Other mutations 

1.3 Drugs and toxins induced 
1.4 Associated with: 

 1.4.1 Connective tissue disease 
 1.4.2 Human immunodeficiency virus infection 
 1.4.3 Portal hypertension 
 1.4.4 Congenital heart disease 
 1.4.5 Schistosomiasis 

1’. Pulmonary veno-occlusive disease and/or pulmonary capillary hemangiomatosis 

1”. Persistent pulmonary hypertension of the newborn 

2. Pulmonary hypertension due to left heart disease 

2.1 Left ventricular systolic dysfunction 
2.2 Left ventricular diastolic dysfunction 
2.3 Valvular disease 
2.4 Congenital/acquired left heart inflow/outflow tract obstruction and congenital cardiomyopathies 
2.5 Congenital /acquired pulmonary veins stenosis 

3. Pulmonary hypertension due to lung diseases and/or hypoxia 

3.1 Chronic obstructive pulmonary disease 
3.2 Interstitial lung disease 
3.3 Other pulmonary diseases with mixed restrictive and 

obstructive pattern 
3.4 Sleep-disordered breathing 
3.5 Alveolar hypoventilation disorders 
3.6 Chronic exposure to high altitude 
3.7 Developmental lung diseases 

4. Chronic thromboembolic pulmonary hypertension and other pulmonary artery obstructions 

4.1 Chronic thromboembolic pulmonary hypertension 
4.2 Other pulmonary artery obstructions 

 4.2.1 Angiosarcoma 
 4.2.2 Other intravascular tumors 

 4.2.3 Arteritis 
 4.2.4 Congenital pulmonary arteries stenoses 
 4.2.5 Parasites (hydatidosis) 

5. Pulmonary hypertension with unclear and/or multifactorial mechanisms 

5.1 Hematological disorders: chronic hemolytic anemia, myeloproliferative disorders, splenectomy 
5.2 Systemic disorders: sarcoidosis, pulmonary histiocytosis, lymphangioleiomyomatosis, 

neurofibromatosis 
5.3 Metabolic disorders: glycogen storage disease, Gaucher disease, thyroid disorders 
5.4 5.4 Others: pulmonary tumoral thrombotic microangiopathy, fibrosing mediastinitis, chronic 

renal failure (with/without dialysis), segmental pulmonary hypertension 
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is called combined pre- and post-capillary PH (CpcPH, PAWP > 15 mmHg and DPG ≥ 7 mmHg 

or TPG > 12 mmHg and/or PVR > 3 wood units), and carries a more than two-fold mortality rate 

compared to IpcPH.14,19,20 

B. Significance 

 Due to the fact that over half of HFpEF patients develop PH, which carries an 

astounding mortality rate, evidence-based treatment for HFpEF-PH is needed, but no FDA-

approved treatments currently exist.16 Consequently, clinicians are limited to treating 

comorbidities like hypertension and focusing on optimization of volume status and relaxation of 

the left ventricle.21 Chronic pressure elevations within the pulmonary capillaries and subsequent 

remodeling suggest that a critical therapeutic target for HFpEF-PH may be the pulmonary 

vasculature.22 Within this vasculature, there is an intricate interplay among a variety of cells (e.g. 

endothelial, progenitor, pericytes, smooth muscle, myofibroblasts, epithelial, macrophages, 

lymphocytes), and the dysregulation of this intercellular communication is the origin of PH.23 

 Thus far, most therapies tested in HF-PH patients have targeted endothelial 

control of vascular tone and permeability,17 but have failed to show a consistent positive benefit. 

Treatments effective for pulmonary arterial hypertension (PAH), such as prostacyclins and 

endothelin receptor antagonists, have shown neutral results and even increased mortality in HF 

patients.24,25 More recently, trials have assessed phosphodiesterase-5 inhibitors (PDE5-Is) as a 

potential therapy in HFpEF-PH patients due to the role of nitric oxide in maintaining endothelial 

cell quiescence and preventing dysfunction of endothelial cells.26 In a trial by Guazzi et. al. 

(n=44),27 patients were randomized to placebo or sildenafil 50mg three times daily for one year. 

At both six months and one year, sildenafil was shown to significantly improve mPAP and 

function of the right ventricle. While these results are extremely promising, a trial by Redfield et. 

al. that enrolled a larger number of HFpEF patients (n=216) failed to show any benefit at 24 

weeks with use of sildenafil at 60mg three times daily.28 The lack of strict, invasive 

hemodynamic characteristics as inclusion criteria for PH patients to enroll into the Redfield et. 
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al.28 trial may have been the reason for the lack of significant findings despite almost five times 

the number of patients compared to the positive Guazzi et. al. trial.27 However, the Guazzi et. al. 

study suggests that PDE5-Is may be a treatment option for CpcPH patients. These findings 

highlight the lack of effective treatments for Group 2 PH patients. 

Histological investigation into the impact of chronic HF on the pulmonary vasculature has 

revealed that persistent elevations in left-sided filling pressures cause pathological changes of 

the pulmonary arteries, illustrated by intimal fibrosis, medial hypertrophy, and elastic fiber 

derangements.29,30  Some postulate that IpcPH is not derived from abnormalities inherent to the 

pulmonary vascular system, but rather stems from increased left ventricular and atrial 

pressures, which is why IpcPH is usually considered to be reversible.21 This paradigm is 

challenged by findings that some degree of pulmonary capillary remodeling may happen even in 

IpcPH patients.18 Combined pre- and post-capillary PH is thought to be the result of sustained 

elevated pressures in the left atria, which leads to pathological changes in the distal pulmonary 

arteries and arterioles and causes an unusual increase in TPG.29 The mPAP is higher than 

anticipated for the increase in PAWP. At this phase, the pulmonary vascular injury may be 

permanent. It seems likely that there is interindividual variability in the time course and degree 

of the development and regression of the disruptive changes seen in HFpEF-PH, which may be 

linked to constitutional elements apart from genetic predisposition.21 Despite these known 

remodeling effects on the pulmonary vasculature, the pathogenesis of IpcPH and CpcPH in 

HFpEF patients is poorly understood, thus more research is needed to uncover the driving 

pathophysiological mechanisms.  

 It is essential to understand these mechanisms behind PH development in HFpEF in 

order to personalize patients’ pharmacotherapy and discover innovative treatment strategies. 

One way to understand these pathophysiological mechanisms is to identify genes or gene 

pathways that promote HFpEF-PH development. Studies that have identified a few potential 

candidate genes for HF-PH development have been limited in scope and have suffered from a 
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lack of robust genome-wide expression analyses.31-33 Thus, the objective of this study was to 

use RNA- sequencing (RNA-seq) data to identify transcriptomic predictors of IpcPH and CpcPH 

development in HFpEF patients. 

C. RNA-sequencing Overview  

 RNA-seq is a revolutionary tool that enables investigators to study gene expression and 

identify candidate genes associated with disease or drug response via deep-sequencing 

technologies and bioinformatics analyses.34 This approach is attractive as it allows for the 

combination of gene discovery and quantification in one high-throughput sequencing assay,35 

which is one way that transcriptomics has an advantage over methodologies in genomics that 

are limited to identifying genetic variants associated with drug response or disease. While the 

importance of genomics should not be disregarded, solely utilizing one-dimensional genomic 

information restricts our ability to understand the multidimensional relationship among 

genes/transcripts, levels of gene/transcript expression, and disease, under different conditions 

or within specific tissues. RNA-seq enables researchers to catalogue all transcript species, 

including messenger RNA (mRNA), non-coding RNA, and small RNAs, to ascertain the 

transcriptional structure of genes (with respect to start sites, 5’ and 3’ ends, splicing patterns, 

and other post-transcriptional modifications), and to quantify changing expression levels of all 

transcripts.34  

 The first RNA-seq study was reported ten years ago,36 and until then, complementary 

DNA (cDNA) microarrays were a popular technology for high throughput gene expression 

profiling. However, microarrays have a number of limitations compared to RNA-seq due to their 

hybridization-based approach. One of which is their need for prior knowledge about the existing 

sequence, which restricts the identification of novel genes or transcripts or alternative 

splicing.34,37 Furthermore, microarrays have a much smaller dynamic range of expression levels 

than RNA-seq, which means they lack sensitivity for genes that are expressed at low or high 

levels.34 Table II describes these and other key differences between RNA-seq and microarray.  
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TABLE II 

COMPARISON OF RNA-SEQ WITH MICROARRAY 
 

 RNA-seq Microarray 

Methodology High-throughput sequencing Hybridization 
 
Need for prior sequence 
knowledge 

 
No 

 
Yes 

   
Resolution Single base  >100 base pair 
   
Dynamic range to 
quantify gene expression 

>105 102-103 

   
Background noise Low High 
   
Ability to detect structural 
variations or isoforms 
 

Yes Limited 

Data analysis Complex; no standard pipeline Straightforward  
   

 

 

 

While either can be used to study the association of genes and complex diseases, RNA-seq 

provides a far more comprehensive view of the transcriptome, while having the ability to 

uncover the exact location of transcription boundaries to a single base resolution.34 

In this past decade, RNA-seq studies have revealed thousands of novel isoforms and 

given additional insight into the complexity of the protein-coding transcriptome.38 Further, RNA-

seq studies have illustrated the importance of non-coding RNAs, particularly long non-coding 

RNAs, in physiological processes (e.g. neuron development, endocrine regulation, brown 

adipose differentiation)39-41 and dysregulation of these having implications in disease (e.g. 

cancer, diabetes, and myocardial infarction).42-45 Mounting evidence suggests that dysregulation 

of circular and short RNAs also play a role in disease.46-48 These studies elucidate the potential 

role of RNA-seq to discover biomarkers that drive disease progression or that can act as 

therapeutic targets.49 
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II. METHODS 

A. Study Population, Data Collection, and Design 

Heart failure patients with and without PH were included in this study, and were recruited 

from the University of Illinois Hospital and Health Science System (UI Health) pulmonary 

hypertension and heart failure clinics. This study selected patient data and samples from two 

biobanks, Genomics and Biomarkers of Pulmonary Hypertension (GBPH) and the Heart Failure 

Genomics Database (HFGDB). Recruitment protocols for these biobanks were approved by the 

institutional review board at the University of Illinois at Chicago and all enrolled patients 

provided written, informed consent.  

Inclusion and exclusion criteria for HFGDB and GBPH are summarized in Table III. For 

this study, the following data were available: DNA, peripheral blood mononuclear cells  

 

 

 

TABLE III 

INCLUSION AND EXCLUSION CRITERIA FOR THE HF AND PH BIOBANKS  

 Heart Failure Genomics Database Genomics And Biomarkers Of 
Pulmonary Hypertension 

Inclusion Men or women of any race who are  
18 years of age or older 
 

Men or women of any race who are  
18 years of age or older 

 Diagnosis of HF  Suspected or clinically diagnosed 
with PH 

 Echocardiogram within the past two 
years 
 

 

 Ejection fraction ≤ 45% or diastolic 
dysfunction on echocardiogram 

 

Exclusion Documented non-adherence to HF 
medications 
 

 

 Usage of illicit drugs  
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(PBMCs), patient characteristics, past medical history, medication regimen, and 

echocardiogram and right heart catheterization measurements. Patient characteristics included 

age, sex, race, and ethnicity. Past medical history included hypertension, obstructive sleep 

apnea, lung disease, asthma, chronic obstructive pulmonary disorder, chronic renal 

insufficiency, hemodialysis, and smoking status. Echocardiogram measurements included 

ejection fraction, tricuspid regurgitation velocity (TRV) and pulmonary artery systolic pressure 

(PASP). Lastly, right heart catheterization measurements included systolic and diastolic PAP, 

PAWP, and cardiac output (CO). The following hemodynamic measurements were calculated: 

mPAP (=2/3 * diastolic PAP + 1/3 * systolic PAP), DPG (= diastolic PAP – PAWP), and TPG 

(=mPAP – PAWP), and PVR (=TPG/CO, in wood units).  

 In order to search for transcriptomic predictors of IpcPH and CpcPH development in 

HFpEF patients, our study used RNA-seq analysis to compare pairwise gene expression values 

among three groups: HFpEF without PH (n=10), IpcPH (n=10), and CpcPH (n=10). Table IV 

displays the echocardiogram and right heart catheterization measurements used to separate 

patients into one of these groups from GBPH (n=125) and HFGDB (n=353). Additionally, HFpEF 

patients had a history of diastolic dysfunction on echocardiogram and an ejection fraction >45%. 

 
 
 

 
 
 

TABLE IV  
 

ECHOCARDIOGRAM AND RIGHT HEART CATHETERIZATION 
MEASUREMENTS FOR COMPARATOR GROUPS 

  mPAP 
(mmHg) 

TRV 
(m/s) 

  PASP 
(mmHg) 

 PAWP 
(mmHg) 

  DPG 
(mmHg) 

   TPG 
(mmHg) 

  PVR 
(units) 

HFpEF 
(no PH) 

 
≤ 20 

 
or 

 
≤ 3 

 
or 

 
 ≤ 35 

 

        

IpcPH ≥ 25     and > 15 and < 7 or ≤ 12  or ≤ 3 

CpcPH  ≥ 25     and > 15 and ≥ 7 or > 12  or > 3 
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Baseline patient characteristics were compared among the three experimental groups. The 

Wilcoxon Mann-Whiney U-test or Kruskal-Wallis test were used to compare continuous data, 

whereas Fisher’s exact test was used to compare categorical data. 

B. RNA-sequencing and Analysis 

1. Sample Preparation and Sequencing  

Peripheral blood mononuclear cells, which were isolated from whole blood according to 

the manufacturer’s protocol,50 were used as the RNA source from the 30 patients included in 

this study. RNA was extracted and its quality was assessed using the Agilent 2100 Bioanalyzer 

(Agilent Technologies, Waldbronn, Germany). To create a sequencing library, the TruSeq 

Stranded Total RNA Sample Preparation kit (Illumina, San Diego, CA) was used, in which the 

first step was bead-based ribosomal RNA (rRNA) depletion. After purification, the RNA was 

fragmented into small pieces, which were synthesized into double stranded complementary 

DNA (cDNA). Indexing adapters were ligated to the ends of the cDNA, and these cDNA libraries 

were polymerase chain reaction (PCR) amplified and purified. In order to reduce batch and lane 

effects, the indexed libraries prepared from HFpEF without PH, IpcPH, and CpcPH samples 

were randomized by experimental group and RNA extraction batch and combined into four 

different pools for sequencing. Total RNA-seq was performed on the Illumina NextSeq 500 

platform at the University of Illinois Core Genomics Facility, which generated paired-end reads 

of about 75 bases. 

2. Data Preparation and Alignment 

The raw sequencing data in FASTQ file format were uploaded to BaseSpace (Illumina, 

San Diego, CA), a cloud computing environment, from which it was downloaded and stored on 

an external hard drive. All files were then transferred to a directory on HiPerGator, the 

supercomputing cluster at the University of Florida, as cluster computing was used to run 

programs for some key analysis steps (e.g. quality control, read alignment to the human 

reference genome, and quantification). Figure 1 displays the key steps in RNA-seq data  
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Figure 1. Steps in our RNA-seq data analysis. DEGs- differentially expressed genes; eQTLs- 
expression quantitative trait loci. 
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analysis, including file formats and programs used to execute each step. White and green boxes 

represent steps, orange boxes represent file formats, and blue hexagons represent programs. 

FastQC51 was used to assess the quality of the raw sequenced reads (Table V) before 

proceeding to alignment.  

Prior to alignment, Bowtie 252 was used to build a reference index (hg38) to be used in 

the downstream analysis with TopHat. The paired-end reads produced from sequencing were 

aligned to the human reference genome (hg38) using the splice-aware short read aligner 

TopHat v2.1.1,53 with an expected mean inner distance between mate pairs of 175 bases 

(calculated as mean average library fragment [325 bases] minus 75 bases on each end). We 

also used a parameter that indicated that the right-most end of fragments (in transcript 

coordinates) were sequenced first. Alignment data were generated in BAM file format, which 

were assessed for quality using SAMStat.54  As an additional quality check, SAMtools55 was 

used to create an index of the BAM files, in order to use the Integrative Genomics Viewer56 to 

visualize a handful of random genes and the reads mapped to them.  

 

 

TABLE V 
 

FASTQC: SUMMARY OF EVALUATED ITEMS 
 

Modules 

1. Basic Statistics 
2. Per base sequence quality 
3. Per tile sequence quality 
4. Per sequence quality scores 
5. Per base sequence content 
6. Per sequence GC content 
7. Per base N content 
8. Sequence Length Distribution 
9. Sequence Duplication Levels 
10. Overrepresented sequences 
11. Adapter Content 
12. Kmer Content 
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3. Quantification and Bias Detection 

To prepare the paired-end alignment data for quantification, SAMtools55 was used to sort 

the BAM files by read name. In order to estimate expression, HTSeq57 was used to count the 

number of reads per gene using the sorted BAM files. In order to run the htseq-count function,  

we set parameters that indicated our input files were BAM, that the right-most end of fragments  

were sequenced first, that gene ID was the aggregate level at which to return results, that paired 

end reads were sorted by name, and that mode was set as the intersection of all non-empty 

sets. The read count files for each patient sample were merged together into one file using R 

v3.5.1,58 with gene names as row headers, sample IDs as column headers, and discrete counts 

by gene for each sample. 

In order to detect biases in the gene expression estimates, exploratory analyses were 

performed on raw count data using NOISeq59 to assess for: gene length bias, GC content bias, 

and count distribution bias. Plots from these analyses were generated and used to inform 

downstream normalization methods. Gene length bias describes the fact that longer genes are 

more likely to be sequenced and appear to have higher expression, whereas GC content bias 

describes how genes with low/high GC content (percentage of guanosine or cytosine 

nucleotides of a given gene) typically have lower expression. Count distribution bias describes a 

situation where two samples may have the same sequencing depth and expression of gene B, 

but gene A is highly expressed in sample 1 and not in sample 2; as gene A accumulates a lot of 

the reads in sample 1, there are less reads remaining for the rest of the genes. This means that 

even though gene B should have the same number of reads mapped to it in both samples, it will 

probably have less counts in sample 1. 

4. Normalization and Differential Gene Expression Analyses 

Prior to differential gene expression analysis, a principle component analysis plot was 

generated in R to look for any relationships among samples. Next, GC content bias was 

corrected using loess robust local regression within the EDASeq package60,61 in R. Then, genes 
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with low expression were filtered out of the count data in R, retaining genes with a count per 

million (CPM) value greater than 0.24 in at least 5 samples. In other words, taking into account 

the sequence depth (minimum library size) of 20,690,000 reads, genes were retained if they had 

five fragments in at least 5 samples (𝐶𝑃𝑀 =
5

𝑀𝑖𝑛 (𝐿𝑖𝑏𝑟𝑎𝑟𝑦 𝑠𝑖𝑧𝑒)
× 1,000,000). Furthermore, the 

trimmed mean of M-values (TMM) method62 was used to normalize the count data for count 

distribution bias, which was performed in edgeR in R with the function calcNormFactors. Design 

and contrast matrices, which are R objects that describe the experimental design and which 

comparisons are to be made, respectively, were created in R to facilitate differential gene 

expression analyses.  

Expression levels were compared in pairwise analyses among the three groups of 

biological replicates: 1) HFpEF without PH vs. IpcPH; 2) HFpEF without PH vs. CpcPH; 3) 

IpcPH vs. CpcPH. Differences in gene expression were compared using R’s BioConductor 

package edgeR,63 using a negative binomial, generalized linear model with a quasi-likelihood 

method and adjusting for age, sex, race (Caucasian, Hispanic/Latino, African American), and 

smoking status (never smoker, past smoker, current smoker). This method allowed us to 

account for the uncertainty of the variance and overdispersion in the data, for which the 

estimateDisp function was used. Using the Benjamini-Hochberg method to adjust for multiple 

comparisons, false discovery rates (FDR) were calculated. Genes were considered to be 

differentially expressed between two groups if the FDR adjusted p-value < 0.05.  

Since the output file from the edgeR analysis only provided Ensembl gene IDs, the 

BioConductor package biomaRt64 was used to link Ensembl gene IDs with Entrez gene IDs 

(needed for downstream pathway analysis) and HUGO Gene Nomenclature Committee gene 

names (helpful for biological interpretation). Volcano and smear plots were produced in R to 

visualize the differentially expressed genes, including whether the genes were up or 

downregulated. 
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C. Pathway Analysis 

Gene set enrichment analysis was performed to identify groups of differentially 

expressed genes that were significantly over-represented in certain molecular pathways in 

relation to all interrogated genes. Specifically, a functional class scoring method called 

Generally Applicable Gene-set Enrichment (GAGE)65 was used. Since the functional class 

scoring method does not need an arbitrary a priori significance level and uses all available 

molecular measurements for pathway analysis, this method was preferred over approaches 

utilizing over-representation analysis, like the commonly used database for annotation, 

visualization and integrated discovery (DAVID).66 Using the GAGE package in R, pathway 

analysis was done by drawing upon the Kyoto Encyclopedia of Genes and Genomes (KEGG) 

database,67 a widely used knowledge base that links genomic information with molecular 

pathways, illustrating higher order biological function. 

D.  Network Analysis 

 Next, network analysis was performed to observe co-expression and genetic interactions 

among a subset of differentially expressed genes using GeneMANIA.68 Differentially expressed 

genes (FDR < 0.05) were utilized as input for this analysis if they had a LogFC > 1.5 or < -1.5. 

In order to infer functional relevance in PH, genes used in the network analysis and revealed 

from the pathway analysis (P < 0.05 for enriched pathway, FDR < 0.05 for gene) were explored 

in the literature for previous associations with PH, including the subtype of PH and studied cell 

type. Furthermore, the literature was searched to identify if these candidate genes had 

associations with pulmonary disease. 

E. In Silico Expression Quantitative Trait Loci Analysis 

 In order to investigate whether the differentially expressed genes have any known 

expression quantitative trait loci (eQTL) potentially driving their expression, the Genotype-

Tissue Expression (GTEx) portal (https://gtexportal.org/home/) was utilized to perform in silico 

eQTL analysis. Of the genes that were differentially expressed (i.e. FDR < 0.05), a subset of 

https://gtexportal.org/home/
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genes were removed that did not have Entrez IDs, as to narrow this list down to genes with 

more detailed annotation. From here, only a subset of differentially expressed genes were 

selected if they had a log2-fold change (logFC) > 1.5 or < -1.5, since these genes are least likely 

to have significant gene expression values due to chance. The remaining genes were queried in 

the GTEx portal to determine if they were expressed in our tissues of interest (i.e. lung, atria, left 

ventricle, aorta, coronary artery). Plots were generated in the GTEx portal to view expression of 

each of these genes by tissue type, examining the relative expression within our tissues of 

interest compared to all other GTEx tissues. Genes where lung was ranked within the top 5 

tissues with highest expression were noted. 

 Next, the GTEx portal was used to create a list of genes within our tissues of interest 

that had eQTLs associated with them. From this list of genes, we created a list of known eQTLs 

(noting rsID) using GTEx, removing any duplicates. Using SNPclip tool 

(https://ldlink.nci.nih.gov/?tab=snpclip), linkage disequilibrium (LD) pruning was performed to 

remove eQTLs with R2 > 0.8 (a value indicating that the loci have a high likelihood of being 

inherited together) and minor allele frequency < 0.01, using data from the following ancestries: 

Americans of African ancestry in Southwestern US, Mexican ancestry from Los Angeles, and 

Utah residents from Northern and Western Europe. The pruned dataset of candidate eQTLs 

was set aside for further validation analysis within the larger dataset of patients in the HFGDB 

with available genotype array data (see section II, F). For a representative subgroup of eQTLs, 

boxplots were viewed in GTEx, which showed gene expression values (y-axis) by genotype 

group (x-axis). 

F. Genetic Association Analysis of Expression Quantitative Trait Loci 

Genotyping of genomic DNA from the HFGDB was completed using the Axiom® 

Genome-Wide Pan-African Array Set (Affymetrix, Inc, Santa Clara, CA), which has provided us 

genotype data on over 2 million single nucleotide polymorphisms (SNPs) per patient. Due to our 

unique study population consisting mainly of those of African descent, this platform was ideal. In 

https://ldlink.nci.nih.gov/?tab=snpclip
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an effort to determine if the candidate SNPs from the in silico eQTL analysis are associated with 

PH, a genetic association analysis was attempted in a larger dataset of HF patients with and 

without PH. For this analysis, the aim was to determine if HF patients with these candidate 

SNPs were more likely to have PH, controlling for age, sex, race, and smoking status. From the 

HFGDB, 165 HF patients with genotype array data had hemodynamic or echocardiographic 

information available to categorize them into one of two groups: Heart failure without PH (mPAP 

≤ 20 mmHg or TRV ≤ 3 m/s; n = 80) and HF-PH (mPAP ≥ 25 mmHg and PAWP > 15 mmHg; n 

= 85). Since right heart catheterization data was not available on many of these HF patients, we 

also had to use TRV as a marker for PH status. This TRV threshold was used because patients 

with a TRV ≤ 3 m/s are less likely to have PH than those with TRV > 3 m/s. 

First, candidate eQTLs were extracted from the GWAS data for the 165 HF patients 

using PLINK v1.9.69 PLINK was used for all quality control procedures and SNP analysis. 

Remaining candidate SNPs were tested for Hardy-Weinberg equilibrium (HWE). Quality control  

procedures included removing low quality SNPs with more than 10% of samples missing 

genotype data, excluding low quality samples with more than 10% missing genotype data, and 

removing monomorphic SNPs (with minor allele frequency, MAF, equal to 0%). Logistic 

regression was performed, comparing log odds of PH status to candidate SNP genotypes (e.g. 

CC, CT, TT coded as 0, 1, 2) assuming an additive inheritance model, adjusting for age, sex, 

race, and smoking status. SNPs were considered to be significantly associated with log odds of 

PH if they had a Bonferroni-corrected P value < 0.003. 
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III. RESULTS 

A.  Patient Characteristics 

 Table VI shows the demographic, hemodynamic, and clinical characteristics of the total 

28 patients by PH group. Two samples collected from IpcPH patients failed quality control, 

hence they were excluded from all analyses. As expected based on study selection criteria and 

diagnostic differences between IpcPH and CpcPH, the following measurements were 

significantly different between the two PH phenotype groups: mPAP, PVR, TPG, and DPG. 

Likewise, there was no difference in PAWP between the PH patients. Demographics were 

similar among the three groups, as well as prevalence of hypertension, obstructive sleep apnea, 

lung disease, and hemodialysis use. Smoking status significantly differed among the three 

groups, as about a third of HFpEF patients were current smokers and the majority of PH 

patients were previous smokers. As anticipated, CpcPH patients were younger on average and 

had a higher prevalence of chronic lung disease compared to IpcPH patients. 

B. Sample Preparation, Sequencing, Alignment, Quantification, Bias Detection, 

Normalization 

 Prior to sequencing, all isolated samples had RNA integrity numbers above 7, meaning 

the RNA quality was acceptable and confirming a low contamination with degradation 

products.70,71 Most samples (except for three samples with values of 7.7, 7.9, and 7.9) had RNA 

integrity numbers above 8, indicating good quality. 

Upon assessment of sequencing quality, the majority of the sequenced reads had an 

average quality score of 32-36 (Figure 2), meaning the probability of calling an incorrect base 

was 0.025-0.063%. Two IpcPH samples failed quality control, while the quality of the other raw 

data was deemed acceptable to move onto alignment. 

At the alignment stage, an average of 54.5 million paired-end reads per sample were 

mapped to the human reference genome (hg38), of which approximately 95.9% were mapped  
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TABLE VI 
 

 PATIENT CHARACTERISTICS BY GROUP 

 OSA- obstructive sleep apnea; SD- standard deviation. 
 
a n=6. 
 
b Includes asthma, chronic obstructive pulmonary disease, restrictive lung disease, latent 
tuberculosis, parenchymal lung disease, history of pulmonary embolism (in addition to PH for 
IpcPH and CpcPH patients. 
 

 

 

 

 

 

Baseline Characteristics HFpEF (no PH) 
(n=10) 

IpcPH  
(n=8) 

CpcPH  
(n=10) 

P-value 

Age (years), mean ± SD 58 ± 6 63 ± 12 55 ± 8 0.16 
Female sex, % 80 62.5 50 0.38 
Race/ethnicity, %     

African American 70 37.5 70  
Hispanic Caucasian 0 37.5 10 0.31 
Non-Hispanic Caucasian 20 25 20  
Unknown 10 0 0  

Mean PAP (mmHg), mean ± SD  33.6 ± 6.4 49.7 ± 7.5 0.001 
PAWP (mmHg), mean ± SD  25.0 ± 8.5 22.5 ± 3.3 0.89 
PVR (wood units), mean ± SD N/A 1.2 ± 0.7a 4.1 ± 1.4 0.002 
TPG (mmHg), mean ± SD  8.8 ± 4.1 27.2 ± 5.7 0.0004 
DPG (mmHg), mean ± SD  0.5 ± 1.4 11.5 ± 3.3 0.0003 
Hypertension, % 90 100 100 1.00 
OSA, % 40 37.5 50 0.90 
History of lung disease,b % 60 12.5 60 0.08 
Hemodialysis, % 10 12.5 20 1.00 
Smoker, %     

Never 50 37.5 10  
Previous 20 62.5 90 0.01 
Current 30 0 0  
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Figure 2. FastQC modules for a representative sample, showing average quality scores per 
base (A) and sequence content per base (B). 

A
. 
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and 85.2% were uniquely mapped (Table VII). The ratio of uniquely mapped reads to multiple 

mapped reads was 5.8, which is within the acceptable threshold for human data (i.e., < 20). 

Using HTSeq for quantification and R to merge read count files for each sample, read counts 

per gene/transcript per sample were generated for a total of 58,051 unique coding or non-

coding transcripts. Based on assessment of the mapping statistics and the mean base quality 

via SAMStat (Figure 3) and visualization with Integrative Genomics Viewer (Figure 4), the data 

was acceptable for quantification. 

 Based on exploratory bias analyses in NOISeq, the raw count data showed significant 

biases in gene length (Figure 5), GC content (Figure 6), and count distribution (Figure 7).  

As such, GC content and count distribution bias were corrected using EDASeq and the TMM 

method in R. Sequencing depth bias was addressed using a CPM filter to remove genes with 

low expression. During normalization, the total gene/transcript count was reduced from 58,051 

to 57,785 after GC content bias correction, which was further reduced to 22,418 after using the 

CPM filter. Hence, GC-corrected and filtered count data underwent TMM normalization for 

22,418 genes, which was used for differential gene expression analyses in edgeR. Lastly, a 

principle component analysis plot revealed lack of defined clustering for the three PH groups 

(Figure 8), suggesting heterogeneity within and between these groups. Black study IDs indicate 

HFpEF without PH samples, red study IDs indicate IpcPH samples, and green study IDs 

indicate CpcPH samples. 

C.  Differentially Expressed Genes and Associated Pathways 

 When controlling for age, sex, race, and smoking status, 152 genes/transcripts were 

significantly downregulated and 194 genes/transcripts were significantly upregulated (FDR < 

0.05) in CpcPH patients compared to HFpEF patients without PH (Figure 9). Red and blue dots 

indicate differentially expressed genes/transcripts with FDR < 0.05, with red illustrating 

upregulated genes/transcripts and blue illustrating downregulated genes/transcripts. Blue lines 

are set at logFC values of 1.5 and -1.5. At this significance threshold, there were no differentially 
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TABLE VII 

ALIGNMENT STATISTICS 

Characteristics HFpEF (no 
PH) (n=10) 

IpcPH 
(n=8) 

CpcPH 
(n=10) 

Total  
(n=28) 

Total number of unaligned 
paired-end reads 
 

581,839,436 
 

451,993,807 
 

556,558,150 1,590,391,393 

Number of unaligned reads  
per samplea 

58,183,943 
 (49,950,758-
66,813,976) 

 

56,499,225 
(49,696,045-
65,949,768) 

55,655,815 
(50,680,843-
68,024,333) 

56,799,692.6 
(49,696,045-
68,024,333) 

Total number of aligned 
paired-end reads 

558,219,210 433,681,474 533,980,236 1,525,880,920 

 
Number of aligned reads per 
samplea 

 
55,821,921 

(46,556,139-
64,993,962) 

 
54,210,184 

(47,307,761-
64,129,854) 

 
53,398,023 

(47,946,846-
66,160,132) 

 
54,495,747 

(46,556,139-
66,160,132) 

 
Aligned readsa (%) 

 
95.9        

(95.0-96.4) 

 
95.9      

(95.6-96.4) 

 
95.9     

(95.0-96.5) 

 
95.9        

(95.0-96.5) 
 
Uniquely mapped readsa (%) 

 
85.1        

(80.6-88.6) 

 
86.1     

(79.9-88.5) 

 
84.5      

(75.2-90.8) 

 
85.2       

(75.2-90.8) 
 
Multiple mapped readsa (%) 

 
14.9                 

(11.4-19.4) 

 
13.9                 

(11.5-20.1) 

 
15.5                

(9.2-24.8) 

 
14.8         

(9.2-24.8) 
a Denotes mean (range) 
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Figure 3. SAMStat modules for a representative sample, showing mapping statistics by quality 
score (A) and mean base quality (B).

A
. 

B
. 
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Figure 4. Visualization of mapped reads to NOS3 within Integrative Genomics Viewer for a CpcPH (A), IpcPH (B), and HFpEF without 
PH (C) sample.

A
. 

B
. 

C
. 
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Figure 5. Gene length bias plots from NOISeq.
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Figure 6. GC content bias plots from NOISeq.
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Figure 7. Count distribution bias plots from NOISeq. 
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Figure 8. Principle component analysis plot of all samples, illustrating the first two principle 
components. PC- principle component. 
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Figure 9. Smear plot comparing log fold change expression values between CpcPH and HFpEF 
without PH patients by average logCPM. DE- differentially expressed. 
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expressed genes/transcripts between the other pairwise comparisons (i.e. HFpEF without PH 

vs. IpcPH and IpcPH vs. CpcPH). Of the 346 differentially expressed genes/transcripts, 26 

genes had a logFC > |1.5| (Figure 10 and Table VIII). In Figure 10, blue dots indicate 

differentially expressed genes/transcripts with FDR < 0.05 and logFC > |1.5|. 

 Based on the enrichment analysis of all 22,418 genes/transcripts, 11 pathways were 

significantly upregulated in CpcPH patients compared to HFpEF without PH patients (P < 0.05), 

while one retained significance after Benjamini-Hochberg correction for multiple testing (FDR < 

0.05): cell-cycle (FDR = 0.04). Table IX displays these significant pathways, including 

differentially expressed genes/transcripts within these pathways (FDR < 0.05). 

D. Network Analysis 

Figure 11 shows a network of genes that may have biological relevance with respect to 

PH development in HFpEF patients. Of the 346 differentially expressed genes/transcripts 

between CpcPH and HFpEF without PH (FDR < 0.05), 26 genes/transcripts with LogFC > 1.5 or 

< -1.5 (Table VIII) were explored in this analysis: Nine genes/transcripts were not found in 

GeneMANIA (BNIP3P5, RPL32P2, SMIM33, IGHV7-4-1, HSP90AA6P, RN7SL749P, 

LOC105371242, LOC100506571, LOC100422382) due to lack of substantial information about 

them in the literature. OLFM2 and the pseudogene RIMBP3 did not have connections to other 

candidate genes, thus are not shown in Figure 11. Hence, 15 of our candidate genes were 

displayed in this network. The network analysis also revealed 20 additional related genes based 

on functional association data (Table X). Six of these genes were differentially expressed within 

our dataset at a FDR < 0.05 (NFKBIA, logFC = 1.15, FDR = 0.0010; DUSP2, logFC = 1.40, FDR 

= 0.0013; HBEGF, logFC = 1.42, FDR = 0.0015; PLK3, logFC = 0.95, FDR = 0.0062; RGS1, 

logFC = 1.22, FDR = 0.0100; PPP1R15A, logFC = 0.74, FDR = 0.0114; Table X). 

Within the constructed composite network (Figure 11), this analysis uncovered 3 

networks, each of which are a weighted sum of individual data sources and are denoted by 

different colored lines. Each line (link) is weighted by the particular data source. These 3 
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Figure 10. Volcano plot comparing log fold change expression values between CpcPH and 
HFpEF without PH patients by level of significance. 
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TABLE VIII 

DIFFERENTIALLY EXPRESSED GENES/TRANSCRIPTS BETWEEN HFPEF WITHOUT PH AND CPCPH PATIENTS 
 

Gene Symbol Gene Name Gene Family Chr 
Location 

Length 
(bases) 

LogFCb P value FDR 

ID1 inhibitor of DNA binding 1, HLH 
protein 
 

Basic helix-loop-helix 
proteins 

20q11.21 1,233 5.2 1.75E-06 0.0078 

BNIP3P5a BCL2 interacting protein 3 
pseudogene 5 
 

N/A – pseudogene 15q15.1 899 -2.2 1.48E-06 0.0078 

TPBG trophoblast glycoprotein 
 

N/A 6q14.1 7,623 -2.2 1.39E-05 0.0136 

CD83 CD83 molecule CD molecules, 
V-set domain containing 
 

6p23 19,663 1.7 2.92E-05 0.0166 

AREG amphiregulin Endogenous ligands 
 

4q13.3 9,912 1.8 4.05E-05 0.0197 

RORC RAR related orphan receptor C 
 

Nuclear hormone receptors 1q21 26,168 -1.7 5.00E-05 0.0210 

LOC105371242 peptidyl-prolyl isomerase A like 
4C 
 

N/A 1q21.1 1,752 -3.4 6.07E-05 0.0223 

TKTL2 transketolase like 2 N/A 
 

4q32.2 2,803 3.2 8.17E-05 0.0245 

DUSP8 dual specificity phosphatase 8 
 

MAP kinase phosphatases 11p15.5 18,788 2.3 8.60E-05 0.0245 

LOC100506571 uncharacterized 
 

N/A 1q42.13 4,098 -1.8 7.55E-05 0.0245 

HIC1 HIC ZBTB transcriptional 
repressor 1 
 

BTB domain containing, 
Zinc fingers C2H2-type 

17p13.3 9,088 1.6 1.16E-04             0.0265 

GRASP general receptor for 
phosphoinositides 1  
associated scaffold protein 
 

PDZ domain containing 12q13.13 8,953 1.5 1.16E-04 0.0265 

RPL32P2a  ribosomal protein L32 
pseudogene 2 
 

N/A – pseudogene 15q14 509 2.0 1.51E-04 0.0275 

SMIM33 small integral membrane 
protein 33 

N/A 5q31.2 3,995 -2.0 1.61E-04 0.0279 

a Non-protein coding. 
 
b Log fold change corresponds to gene/transcript expression values from CpcPH patients divided by values from HFpEF without PH 
patients. Positive values indicate upregulation in CpcPH vs. HFpEF without PH patients, whereas negative values indicate 
downregulation in CpcPH vs. HFpEF without PH patients (i.e., upregulation in HFpEF without PH patients vs. CpcPH patients). 
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TABLE VIII (continued) 

DIFFERENTIALLY EXPRESSED GENES/TRANSCRIPTS BETWEEN HFPEF WITHOUT PH AND CPCPH PATIENTS 
 
 

Gene Symbol Gene Name Gene Family Chr 
Location 

Length 
(bases) 

LogFCb P value FDR 

IGHV7-4-1 immunoglobulin heavy 
variable 7-4-1 
 

Immunoglobulin heavy locus 
at 14q32.33 

14q32.33 486 4.4 2.07E-04 0.0307 

TNFRSF12A TNF receptor superfamily 
member 12A 

CD molecules, 
Tumor necrosis factor receptor 
superfamily 
 

16p13.3 3,939 2.2 2.40E-04 0.0312 

RIMBP3 RIMS binding protein 3 N/A 
 

22q11.21 6,105 -1.7 2.16E-04 0.0312 

LOC100422382a nocturnin pseudogene N/A – pseudogene (lncRNA) 
 

11q23.2 1,062 -2.0 3.36E-04 0.0369 

CD69 CD69 molecule CD molecules, 
C-type lectin domain 
containing 
 

12p13.31 8,416 1.5 4.56E-04 0.0416 

HSP90AA6Pa heat shock protein 90 alpha 
family class A member 6, 
pseudogene 
 

N/A – pseudogene 4q33 23,989 4.7 5.66E-04 0.0450 

TNFAIP3 TNF alpha induced protein 3 
 

OTU domain containing 6q23.3 16,998 1.7 6.20E-04 0.0463 

OLFM2 olfactomedin 2 
 

N/A 19p13.2 82,835 -1.6 6.55E-04 0.0470 

FOSL1 FOS like 1, AP-1 
transcription factor subunit 
 

Fos transcription factor family, 
Basic leucine zipper proteins 

11q13.1 8,525 3.3 7.20E-04 0.0485 

SMAD6 SMAD family member 6 
 

SMAD family 15q22.31 80,749 1.6 7.12E-04 0.0485 

WNT16 Wnt family member 16 
 

Wnt family 7q31.31 15,738 -1.5 7.09E-04 0.0485 

RN7SL749Pa RNA, 7SL, cytoplasmic 749, 
pseudogene 

N/A – pseudogene (lncRNA) 10q26.11 290 1.7 7.45E-04 0.0490 

a Non-protein coding. 
 
b Log fold change corresponds to gene/transcript expression values from CpcPH patients divided by values from HFpEF without PH 
patients. Positive values indicate upregulation in CpcPH vs. HFpEF without PH patients, whereas negative values indicate 
downregulation in CpcPH vs. HFpEF without PH patients (i.e., upregulation in HFpEF without PH patients vs. CpcPH patients).
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TABLE IX 
 

SIGNIFICANT KEGG PATHWAYS UPREGULATED IN CPCPH PATIENTS VERSUS HFPEF 
WITHOUT PH PATIENTS USING GAGE METHOD 

 

KEGG Pathway Gage      
P value 

Gage 
FDR 

Differentially 
Expressed Genes 

(FDR<0.05) 

logFC P value FDR 

Cell cycle 
hsa04110 0.0003 0.0442a 

GADD45B 
DBF4 

CDKN1A 

0.73 
0.38 
1.23 

0.0001 
0.0004 
0.0007 

0.0268 
0.0401 
0.0475 

 

Oocyte meiosis 
hsa04114 
 

0.0044 0.3452 – – – – 

Complement and 
coagulation 
cascades 

hsa04610 
 

0.0147 0.6011 – – – – 

p53 signaling 
pathway 

hsa04115 
 
 

0.0152 0.6011 

GADD45B 
CYCS 

PMAIP1 
CDKN1A 

0.73 
0.40 
0.94 
1.23 

0.0001 
0.0005 
0.0006 
0.0007 

0.0268 
0.0423 
0.0463 
0.0475 

Spliceosome 
hsa03040 

0.0342 0.6986 

SNRPD1 
SNRPA1 
SRSF4 
TRA2B 

SRSF10 
XAB2 

 

0.44 
0.93 
0.37 
0.61 
0.42 
0.52 

1.59E-05 
0.0002 
0.0004 
0.0005 
0.0006 
0.0007 

0.0137 
0.0311 
0.0388 
0.0425 
0.0450 
0.0485 

Proteasome 
hsa03050 

0.0364 0.6986 

PSMC1 
PSMA6 
PSMC6 
PSMA2 

 

0.84 
0.74 
0.57 
0.42 

1.27E-05 
1.29E-05 
8.51E-05 
0.0003 

0.0136 
0.0136 
0.0245 
0.0320 

Progesterone-
mediated oocyte 
maturation 

hsa04914 
 

0.0375 0.6986 – – – – 

ECM-receptor 
interaction 

hsa04512 
 

0.0441 0.6986 ITGA10 -0.87 
 

0.0007 
 

 
0.0490 

 

Oxidative 
phosphorylation 

hsa00190 
 

0.0448 0.6986 – – – – 

Vascular smooth 
muscle contraction 

hsa04270 
 

0.0453 0.6986 NPR2 
 

-0.70 
 

 
0.0002 

 

 
0.0297 

 

Gap junction 
hsa04540 

0.0490 0.6986 NRAS 0.42 0.0005 0.0429 

a Significant based on FDR<0.05.
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Figure 11. GeneMANIA network analysis. Circles containing diagonal lines represent genes that were input into this analysis and circles 
without diagonal lines depict genes that were output from this analysis. Networks: co-expression (pink lines); co-localization (blue lines); 
genetic interactions (green lines).
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TABLE X 
 

GENE EXPRESSION DATA FOR THE 20 ADDITIONAL GENES GENERATED FROM THE 
NETWORK ANALYSIS 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

    
 

a Indicate values from our differential gene expression analysis. 
b Calculated based on correction for multiple comparisons (19 above genes). 

 

 

 

 

 

 

 

 

 

Genes LogFCa P valuea FDRb 

NFKBIA 1.15 7.68E-05 0.0010 

DUSP2 1.40 0.0001 0.0013 
HBEGF 1.42 0.0002 0.0015 

PLK3 0.95 0.0013 0.0062 
RGS1 1.22 0.0026 0.0100 
PPP1R15A 0.74 0.0036 0.0114 
EREG 0.64 0.0344 0.0934 
JUNB 0.41 0.0570 0.1354 

GPR183 -0.35 0.0816 0.1723 
NR4A1 0.87 0.1091 0.2073 
IER3 0.39 0.1305 0.2254 
IL1B -0.66 0.1322 0.2093 
IL6 0.80 0.1908 0.2789 
ZFP36 0.26 0.2748 0.3729 

IER2 -0.15 0.4595 0.5820 
CCL4 -0.19 0.5287 0.6278 
BTG2 -0.16 0.5960 0.6661 
KDM6B 0.05 0.9126 0.9633 
LIF -0.004 0.9948 0.9948 
CSF3 Not found in our data set 
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network weights add up to 100%, and indicate the relevance of the data sources for predicting 

membership in the queried gene list. The co-expression network, denoted by pink lines in Figure 

11, was scored 98.10%; genes that are linked by pink lines have similar expression levels 

across conditions in gene expression studies collected from the Gene Expression Omnibus or 

other published literature. This means that when two genes are co-expressed, their transcript 

levels increase and decrease jointly across conditions. The co-localization network, denoted by 

blue lines in Figure 11, was scored 1.73%; genes that are linked by blue lines are both 

expressed in the same tissue or have gene products in the same cellular location. Lastly, the 

genetic interactions network, depicted by green lines in Figure 11, was scored 0.17%; genes 

that are linked by green lines are functionally associated per the Biological General Repository 

for Interaction Datasets or primary literature, meaning the impacts of perturbing one gene were 

found to be changed by perturbations to a second gene. 

Based on review of primary literature for the genes used in the network analysis (n= 17) 

and additional genes revealed from the network analysis (n= 20), 30% (11 of 37) of these 

candidate genes have previously been associated with PH (Table XI). Of these candidate 

genes, 78% (29 of 37) have been associated with other pulmonary disease, including lung 

cancer (21 of 29) and other inflammatory and fibrotic conditions (Table XI). Five candidate 

genes did not appear to have any prior associations with PH or other pulmonary disease 

(TPBG, TKTL2, DUSP8, SRSF4, and PSMC1), however, they are all expressed in the lung. 

TPBG, TKTL2, DUSP8 have proliferative, apoptotic, and/or oncological functions, whereas 

SRSF4 and PSMC1A have associations with HF phenotypes (Table XI). Sixteen percent of the 

candidate genes (6 of 37), including the top signal ID1, were within or interact with the 

transforming growth factor β (TGF- β) signaling pathway (Table XI); dysregulation in this 

pathway has been linked to several subtypes of PH.  

E. In Silico Expression Quantitative Trait Loci Findings 

In order to perform in silico eQTL analyses using the GTEx portal, a stepwise process 
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TABLE XI   
ASSOCIATIONS IN THE LITERATURE FOR DIFFERENTIALLY EXPRESSED GENES (LOGFC >|1.5| OR PATHWAY P<0.05) 

Descriptor 
 

Genes LogFCa FDRa Association 
with PH 

Subtype of 
PH 

Studied 
Cell 
Type 

Association 
with Lung 

Cancer 

Association with other 
Lung Conditions 

Associations outside 
the Lung 

Within or 
interacts with 

TGF-β 
Pathway 

Log2-fold 
change 
>|1.5| 

ID1 5.2 0.0078 Yes 72-78 HPAH, 
hypoxia-
induced PH 
(mice) 

PAECs, 
PASMCs 

Yes 79,80 
  

Yes (within) 

TPBG -2.2 0.0136 
     

Mediates inhibition of 
Wnt/ β-catenin 
signaling 81 

 

CD83 1.7 0.0166 Yes 82 Sch-APAH Lung 
tissue 

 
COPD 83,84 

  

AREG 1.8 0.0197 
   

Yes 85 IPF 86 
  

RORC -1.7 0.021 
    

Pulmonary manifestations 
of Behcet disease,87 lung 
response to acute ozone 
exposure 88 

 
Yes 

(downstream) 

TKTL2 3.2 0.0245 
     

Cellular proliferation in 
uterine cancer 89 

 

DUSP8 2.3 0.0245 
     

VEC apoptosis 90 
 

HIC1 1.6 0.0265 Yes 91 CTEPH PASMCs Yes 92 
   

GRASP 1.5 0.0265 
    

Asthma 93 
  

TNFRSF12A 2.2 0.0312 
   

Yes 94-96 
   

RIMBP3 -1.7 0.0312     IPF with pirfenidone 97   

CD69 1.5 0.0416 
    

IPF, pulmonary 
inflammation, emphysema 
98-100 

  

TNFAIP3 1.7 0.0463 Yes 101,102 SSc-APAH, 
CHD-APAH 

lung 
tissue   

 
Neutrophilic airway 
inflammation,103 endotoxin-
induced lung injury 104 

  

OLFM2 -1.6 0.047 Yes 105 PH in 
sarcoidosis 

PBMCs 
   

Yes (induced 
by TGF-β)106 

FOSL1 3.3 0.0485 
   

Yes 85,107-109 
   

SMAD6 1.6 0.0485 Yes 110 MCT-induced 
PAH (rats) 

PASMCs Yes 111,112 IPF 113 
 

Yes (within) 

WNT16 -1.5 0.0485 
   

Yes 114 Bleomycin-induced lung 
injury and fibrosis 115 

 
Yes (TGF-β-
inhibits WNT16 
expression)116 

CHD-APAH- congenital heart disease-associated PAH; COPD- chronic obstructive pulmonary disease; CTEPH- chronic thromboembolic PH; HPAH- heritable PAH; IPAH- idiopathic PAH; 
IPF- idiopathic pulmonary fibrosis; LVDD- left ventricular diastolic dysfunction; MCT- monocrotaline; PAECs- pulmonary artery endothelial cells; PASMCs- pulmonary artery smooth muscle 
cells; PBMCs- peripheral blood mononuclear cells; RVF- right ventricular failure; Sch-APAH- Schistosomiasis-associated PAH; SSc-APAH- Systemic sclerosis-associated PAH; VEC- vascular 
endothelial cell; VSM-vascular smooth muscle.  
 

a Indicate values from our differential gene expression analysis. 
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TABLE XI  (continued) 

ASSOCIATIONS IN THE LITERATURE FOR DIFFERENTIALLY EXPRESSED GENES (LOGFC >|1.5| OR PATHWAY P<0.05) 
 

Descriptor  
 

Genes LogFCa FDRa Association 
with PH 

Subtype of 
PH 

Studied 
Cell 
Type 

Association 
with Lung 

Cancer 

Association with other 
Lung Conditions 

Associations outside 
the Lung 

Within or 
interacts 

with TGF-β 
Pathway 

Cell cycle 
and p53 

GADD45B 0.73 0.0268 Yes 117 IPAH PAECs Yes 118-120   Yes (effector 
of TGF-β-
induced 

apoptosis)121 

DBF4 0.38 0.0401 
   

Yes 122-124 
   

CDKN1A 1.23 0.0475 Yes 125,126 Hypoxia-
induced PH 
(mice) 

PAECs, 
PASMCs 

Yes 127,128 
   

CYCS 0.4 0.0423 Yes 129 Fenfluramine-
associated 
PAH 

PASMCs Yes 130 
   

PMAIP1 0.94 0.0463 
   

Yes 131 
   

VSM 
contraction 

NPR2 -0.7 0.0297 
    

OSA 132 
  

Spliceosome 

SNRPD1 0.44 0.0137    Yes 133,134    

SNRPA1 0.93 0.0311    Yes 134    

SRSF4 0.37 0.0388      Loss of SRSF4 
resulted in cardiac 
hypertrophy, LVDD 
and increased risk of 
sudden death135  

 

TRA2B 0.61 0.0425    Yes 136    

SRSF10 0.42 0.0450     Smoking exposure 137   

XAB2 0.52 0.0485    Yes 138    

Proteasome 

PSMC1 0.84 0.0136      RVF in carvedilol-
treated rats with PH 139 

 

PSMA6 0.74 0.0136    Yes 140,141    

PSMC6 0.57 0.0245 Yes 142 PAH (in vivo) PASMC Yes 143    

PSMA2 0.42 0.0320 Yes 142 PAH (in vivo) PASMC Yes 141    

ECM-R 
Interaction 

ITGA10 -0.87 0.0490    Yes 144 Severe COPD 145   

Gap junction NRAS 0.42 0.0429    Yes 146,147 Pulmonary Langerhans cell 
histiocytosis 148 

  

CHD-APAH- congenital heart disease-associated PAH; COPD- chronic obstructive pulmonary disease; CTEPH- chronic thromboembolic PH; HPAH- heritable PAH; IPAH- idiopathic PAH; 
IPF- idiopathic pulmonary fibrosis; LVDD- left ventricular diastolic dysfunction; MCT- monocrotaline; PAECs- pulmonary artery endothelial cells; PASMCs- pulmonary artery smooth muscle 
cells; PBMCs- peripheral blood mononuclear cells; RVF- right ventricular failure; Sch-APAH- Schistosomiasis-associated PAH; SSc-APAH- Systemic sclerosis-associated PAH; VEC- 
vascular endothelial cell; VSM-vascular smooth muscle.  
 

a Indicate values from our differential gene expression analysis. 
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was taken to determine which differentially expressed genes to investigate for known eQTLs 

driving their expression, the process and results of which are shown in Figure 12. In summary, 

of the 346 differentially expressed genes/transcripts between CpcPH and HFpEF without PH 

patients, 298 genes/transcripts had Entrez IDs. Of these, 26 genes/transcripts had a logFC>1.5 

or <-1.5, and 19 of them were expressed in one of the five tissues of interest to our phenotype 

(i.e. lung, atria, left ventricle, aorta, coronary artery) based on GTEx portal interrogation. Seven 

transcripts/genes were not found in GTEx portal. Seventeen of 19 genes had eQTLs in GTEx 

portal, although only 6 of these genes had eQTLs in one of our tissues of interest. In these 6 

genes (i.e. TPBG, AREG, RN7SL749P, CD83, OLFM2, and WNT16), there were a total of 1415 

eQTLs, which was further reduced to 668 unique eQTLs after removing duplicates across 

tissues for each gene. After LD pruning, there were 86 candidate eQTLs remaining for further 

genetic association analysis in HF patients with and without PH to determine whether patients 

with these variants were more likely to have PH, while controlling for age, sex, race, and 

smoking status. 

Table XII displays the results from these in silico eQTL analyses in GTEx portal, which 

shows the following for 19 genes: median expression values in the lung (in transcripts per 

million, TPM), instances where lung was ranked within the top 5 tissues with highest expression, 

and tissues where eQTLs were found and how many candidate eQTLs are known within those 

tissues. There were 9 genes for which lung tissue was ranked among the top five tissues with 

highest expression (Table XII), two of which (ID1 and SMAD6) are displayed in Figure 13. In this 

figure, the upper and lower boundaries of the box plots mark the 75th and 25th percentiles. 

Circles represent outliers, meaning they are above or below 1.5 multiplied by the interquartile 

range. The neon green box plots represent lung tissue expression. Some notable eQTL box 

plots are shown in Figure 14.  
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Figure 12. Flowchart showing the stepwise process of determining candidate eQTLs from the 
list of differentially expressed genes. DEG- differentially expressed gene. 
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TABLE XII 

IN SILICO EQTL ANALYSIS RESULTS FROM GTEX PORTAL 

   

 

 

 

   

 

  

 

 

 

 

 

 

 

 

 

 

        

LV- left ventricle. 

 

Gene 
Symbol 

Median 
expression 
in lung 
(TPM) 

Lung was 
ranked within 
top 5 tissues 
with highest 
expression 

Tissue of 
interest with 
eQTLs 

# unique 
eQTLs in 
tissue of 
interest 

ID1 291.83 Yes, #5 – – 
GRASP 127.14 Yes, #1 – – 
TNFRSF12A 94.88 Yes, #3 – – 
TNFAIP3 74.1 Yes, #3 – – 
SMAD6 52.14 Yes, #1 – – 
CD83 34.62 Yes, #5 atria, LV 31 
CD69 27.31 Yes, #3 – – 
DUSP8 18.53 – – – 
FOSL1 15.08 Yes, #5 – – 
HIC1 14.31 – – – 

OLFM2 12.14 – 

lung, 
coronary 

artery 

 

4 

TPBG 6.74 – 

lung, aorta, 
coronary 

artery, atria, 
LV 

469 

RORC 5.2 – – – 
 
AREG 

 
1.94 

 
Yes, #1 

 
lung, aorta 

 
156 

RN7SL749P 0.8 – lung, aorta 
 

2 
 

WNT16 0.35 – 
coronary 

artery 
6 

HSP90AA6P 0.09 – – – 
TKTL2 0.05 – – – 
RIMBP3 0.05 – – – 
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Figure 13. Representative box plots of ID1 (A) and SMAD6 (B) expression within all tissues in GTEx portal.  

A
. 

B
. 
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Figure 14. Representative expression quantitative loci box plots from GTEx portal for rs950611 within TPBG in the aorta (A), 
rs36110067 within OLFM2 in the lung (B), and rs9464657 within CD83 in the left ventricle. 
 

 

 

 

 

A
. 

B
. 

C
. 
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F. Genetic Association of Expression Quantitative Trait Loci 

Of the 86 candidate SNPs discovered from in silico eQTL analysis in GTEx portal, 

genotype array data was available for only 15 SNPs in the 165 HF patients from the HFGDB. All 

SNPs met the HWE threshold P value of above 0.003 (0.05/15). No SNPs had more than 10% 

of samples missing genotype data. Fifteen samples were excluded due to missing genotype 

data for more than 10% of SNPs and no SNPs were monomorphic. Logistic regression results 

for 76 HF-PH and 74 HF without PH patients are displayed in Table XIII, which showed that 

none of the 15 SNPs located within genes CD83, TPBG, and OLFM2 were significantly 

associated with PH in HF patients in our larger dataset. Expression box plots from GTEx portal 

for the three SNPs with the strongest associations (i.e. rs950611, rs36110067, and rs9464657) 

are shown in Figure 14. 
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TABLE XIII 

LOGISTIC REGRESSION RESULTS FROM GENETIC ASSOCIATION ANALYSIS WITHIN 
HFGDB 

 

Gene Chr SNP A1 A2 MAF OR SE 95% CI 

(lower)  

95% CI 

(upper)  

P 

value 

CD83 6 rs72836546 T C 0.09 0.65 0.43 0.28 1.51 0.32 

CD83 6 rs9464657 C G 0.17 0.62 0.34 0.32 1.20 0.15 

TPBG 6 rs62429917 G A 0.30 0.86 0.26 0.51 1.44 0.57 

TPBG 6 rs1890118 T C 0.19 1.30 0.29 0.73 2.31 0.37 

TPBG 6 rs950611 A C 0.33 1.48 0.25 0.91 2.40 0.11 

TPBG 6 rs507500 C T 0.49 0.90 0.23 0.57 1.40 0.63 

TPBG 6 rs72904360 G A 0.30 1.10 0.27 0.65 1.87 0.73 

TPBG 6 rs2208422 T G 0.29 0.71 0.27 0.42 1.20 0.20 

TPBG 6 rs6926639 G A 0.08 0.84 0.45 0.34 2.05 0.70 

TPBG 6 rs1321796 G A 0.26 1.14 0.32 0.61 2.15 0.68 

TPBG 6 rs3011887 G A 0.30 1.11 0.29 0.63 1.95 0.71 

TPBG 6 rs1321793 C T 0.40 1.04 0.26 0.62 1.73 0.90 

TPBG 6 rs2458536 T C 0.48 0.96 0.23 0.61 1.51 0.86 

OLFM2 19 rs36110067 A C 0.31 1.45 0.25 0.89 2.38 0.14 

OLFM2 19 rs10425175 T C 0.29 1.16 0.26 0.70 1.92 0.56 

A1- allele 1 (minor allele); A2- allele 2 (major allele); Chr- chromosome; CI: confidence interval; 
MAF: minor allele frequency; OR- odds ratio (regression coefficient for allele 1); SE: standard 
error of the odds ratio.  
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IV. DISCUSSION 

With RNA-seq data analysis, there is no agreed upon pipeline and there are certain 

unavoidable biases, though many can be corrected. Although the per base sequence content 

chart in FastQC revealed that there was some selection bias in the sequence composition of the 

first 12 bases of our reads (Figure 2), this is a common bias seen with Illumina sequencing due 

to random hexamer priming during library generation. Some experts believe this cannot be 

corrected by trimming and in most instances does not appear to adversely affect downstream 

analysis.149 We did not perform quality-based trimming on our reads based on evidence that 

suggests that untrimmed reads are most likely to result in the highest accuracy for expression 

estimates from RNA-seq.150 Further, we did not trim our reads for adapters based on literature 

that shows that adapter trimming does not significantly improve the significance of RNA-seq 

biological signals.151 Since the alignment program TopHat has been designed to handle 

unmapped portions of the reads, like adapters,53 the data processed by it may not be 

remarkably improved by adapter trimming.151 In addition to this selection bias, we did not correct 

for gene length bias because count data (rather than Fragments Per Kilobase of transcript per 

Million mapped reads [FPKM]) is required to use edgeR for differential gene expression. Some 

experts have shown that many biological replicate data from unrelated samples do not suffer 

from this bias except for genes with reduced read counts (small gene variance).152 Since our 

samples were biological replicates from unrelated patients and we used CPM to filter out genes 

with low expression, we expect that gene length bias had a relatively small impact on our 

findings. 

The results of this transcriptome-wide study suggest that HFpEF patients with CpcPH 

may have systemic pathophysiological differences that are measurable in PBMCs, some of 

which overlap with other subtypes of PH. This study confirms that there is a complex network of 

molecular pathways that modulate the intricate CpcPH phenotype, involving inflammation, cell 

proliferation, and mitochondrial dysfunction. To the best of our knowledge, this is the first study 
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to use RNA-seq data to investigate Group 2 PH. Previous genetic/genomic studies related to 

this specific phenotype have either utilized a candidate gene approach with genotyping several 

SNPs,32 or used GWAS data in mice33 or humans.31 Group 2 PH patients are an understudied 

patient population in genomic/transcriptomic studies, especially compared to their Group 1 PH 

counterpart (PAH), on which the majority of studies focus their investigations.117,153-159  

In general, it can be difficult to study Group 2 PH in humans for several reasons: 1) right 

heart catheterization is required to properly diagnose PH and often to enroll patients in 

prospective PH trials, but it is an invasive and costly procedure that requires an individual to 

take a half to full day off of work; 2) there is heterogeneity within the phenotype. With respect to 

the latter, patients can have more than one type of PH as classified by the World Health 

Organization (e.g. Group 2 and 3), numerous comorbidities, and/or varying phenotypes of 

HFpEF.160 Despite these challenges, we aimed to identify transcriptomic predictors of IpcPH 

and CpcPH development in HFpEF patients using RNA-seq data analysis, in an attempt to find 

biological pathways that could be targets for novel treatment strategies, as there are currently 

no approved treatments for these patients. 

Herein, we have shown that 346 genes were differentially expressed (FDR<0.05) 

between CpcPH and HFpEF without PH, when adjusting for age, sex, race, and smoking status. 

We did not find any differentially expressed genes between HFpEF without PH and IpcPH nor 

between IpcPH and CpcPH patients. These lack of significant findings in the IpcPH analyses 

could suggest that these analyses were underpowered, as a larger sample size may be needed 

to detect differentially expressed genes due to a likely smaller effect size for IpcPH than seen 

between CpcPH and HFpEF without PH. The effect size is potentially smaller because IpcPH 

may be in the middle of the phenotypic spectrum between HFpEF without PH and CpcPH 

pathogenesis/severity. However, recent findings raise suspicions about the hypothesis that 

CpcPH is merely a result of sustained exposure to high left-sided pressures. In a study by 

Assad et. al., CpcPH patients were younger but had more pronounced hemodynamic 
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imbalances (in right atrial and pulmonary arterial pressures, PVR, and pulmonary arterial 

compliance) than IpcPH patients, although similar chronicity, severity of left ventricular 

dysfunction, and co-morbidities (e.g. vascular disease, left heart disease, obesity, and 

diabetes), which the authors suggested may indicate an alternative reason for the inflated 

pulmonary vascular disease in CpcPH patients.31 One such reason could be a biological 

predisposition, which our findings support with respect to dysregulation of certain gene signaling 

pathways. Further, the severe hemodynamics in CpcPH patients were similar to those observed 

in PAH patients, which other studies have corroborated.161 Thus, the effect size for CpcPH 

versus HFpEF without PH is likely much larger than that of IpcPH compared to CpcPH or 

HFpEF, which presumably played a role in our discovery of several significant associations 

between CpcPH and HFpEF with a relatively small sample size, but none for IpcPH 

comparisons. 

In exploratory genetic findings from the Assad et. al. study, 141 genes were associated 

with shared risk for CpcPH and PAH compared to IpcPH patients, which was a result of testing 

their hypothesis that CpcPH develops, in part, because of a shared genetic risk with PAH.31 It 

seems likely that these investigators found genes associated with risk for CpcPH versus IpcPH, 

unlike in our study, as they had a larger sample size (139 IpcPH, 36 CpcPH, and 79 PAH), they 

used a less conservative significance threshold, and they combined CpcPH and PAH patients 

into one cohort (potentially enabling them to tease out the effects of the pre-capillary component 

of pulmonary vascular disease). Despite these differences, these findings are interesting as they 

may implicate genetic similarities between PAH and CpcPH, which our findings support as well, 

as described later in this discussion. Along the same lines, another Assad et. al. study 

demonstrated that CpcPH patients have a pulmonary vascular physiology that more closely 

resembles that of PAH patients versus IpcPH patients.162 

Another potential reason that we were unable to find differentially expressed genes 

between IpcPH and HFpEF without PH or CpcPH is our lack of defined clustering of the three 
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groups on our principle component analysis plot. Based on this plot, it appears clear that there 

is more variability in our CpcPH and HFpEF without PH samples compared to our IpcPH 

samples. The IpcPH samples displayed the tightest clustering, perhaps indicating that IpcPH 

patients tend to have less heterogeneity than either CpcPH  or HFpEF alone. By the nature of 

IpcPH presentation, it makes sense that our IpcPH patients had smaller variability in certain 

hemodynamics (i.e. mPAP, PVR, TPG, and DPG), had a lower prevalence of chronic lung 

disease, and were older on average.31,163  

Although not significant, our IpcPH patients had a trend towards significantly less chronic 

lung disease (12.5%) compared to our HFpEF and CpcPH patients (both 60%). It could be 

possible that this influenced our lack of significant findings for IpcPH patients, due to the 

potential increase in the noise of the signals from PH due to signals from other lung conditions. 

Alternatively, this decreased prevalence of chronic lung disease could have made the signals 

even stronger, due to reduced inflammatory processes, and therefore lack of significant findings 

could merely reiterate that the effect size between IpcPH and CpcPH or HFpEF without PH is 

likely small, warranting larger samples sizes to see an effect. Or perhaps IpcPH has genetic 

similarities to HFpEF and CpcPH that make it difficult to discern the signals. There are a number 

of possibilities with respect to pathophysiology of IpcPH and potential links to CpcPH 

progression, which are incompletely understood. 

We took multiple approaches to functionally annotate our gene expression results, 

including pathway analysis, network analysis, in silico eQTL analyses, and genetic association 

analysis of eQTLs. Additionally, in order to provide insight into whether our findings may be 

unique to Group 2 PH or common among other PH subtypes, we performed literature searches 

on differentially expressed candidate genes (FDR< 0.05) with logFC > |1.5| or within significant 

pathways (P < 0.05) (Table XI) to determine if there have been any previous associations 

between them and PH. With the large number of differentially expressed genes between CpcPH 

and HFpEF, we set logFC, FDR, and other thresholds in order to decide which genes to 
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functionally annotate. This may have led us to overlook certain interesting findings, however, 

herein we will discuss overall trends and focus in on select genes within pathways, the 

constructed network, or the literature. We plan to further investigate the other significant genes 

outside these thresholds in future analyses. 

Our pathway analysis (Table IX) revealed that the most significantly enriched pathway 

between our CpcPH and HFpEF without PH controlled the cell cycle. Pulmonary hypertension 

appears to be a multifaceted pan-vasculopathy that mimics certain characteristics seen in 

cancer, like inflammation, increased proliferation, resistance to apoptosis, and fibrosis due to 

drastic remodeling of the extracellular matrix.164 As such, dysregulation in the ability of cells in 

the pulmonary vasculature to progress through the phases of the cell cycle could lead to cell 

proliferation and apoptosis resistance. Genes from our data set within the cell cycle control 

pathway include GADD45B, CDKN1A, and DBF4.  

Expression of GADD45B (Growth Arrest and DNA Damage Inducible Beta) is induced by 

stressful growth arrest conditions, and it has been shown to play a role in TGF-β induced 

apoptosis by acting upstream of p38 activation.121 CDKN1A (Cyclin Dependent Kinase Inhibitor 

1A) regulates cell cycle progression at G1 phase, and its expression is tightly controlled by 

tumor suppressor protein p53; through its inhibition of cyclin-dependent kinase activity, it 

appears to block cell cycle progression in response to stress stimuli by preventing 

phosphorylation of important cyclin-dependent kinase substrates. Of interest, hypoxia has been 

shown to inhibit CDKN1A, which would allow cell cycle progression.125 One proposed 

mechanism for this hypoxia-induced repression of CDKN1A is via the activity of microRNA 

family miR-130, which decreased CDKN1A expression in vitro and significantly increased 

smooth muscle cell proliferation.125 Alternatively, exogenous nitric oxide upregulates CDKN1A in 

rat pulmonary microvascular smooth muscle cells, a mechanism by which it may wield its anti-

proliferative effects.165 Peculiarly, both GADD45B and CDKN1A had opposite directions of effect 

in our data set than previously reported in other PH subtypes, since they were upregulated in 
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our CpcPH patients and downregulated in Group 1 and 3 PH studies, respectively.117,125,126 

DBF4 (DBF4 Zinc Finger) is a regulatory subunit for CDC7 and plays a key role in DNA 

replication (S phase) and cell proliferation. In breast cancer, it has been demonstrated that 

increased DBF4 expression was correlated with loss of p53, which would have pro-proliferative 

implications.123  

Another enriched pathway that overlaps with the cell cycle is the p53 signaling pathway, 

which, in addition to GADD45B and CDKN1A, contains CYCS, and PMAIP1 (Table IX). p53 is 

one of the most known tumor suppressor proteins, as genetic variation and reduced activity of 

this gene has been associated with cancer.166 p53 is a critical transcriptional activator of p53-

regulated genes, and its activation is induced by various stress stimuli, including oxidative 

stress, DNA damage, and activated oncogenes.167 This signaling pathway results in cell cycle 

arrest, cellular senescence, or apoptosis.167 Compared with wild type mice, p53 knock out mice 

developed worse PH under hypoxia.168 Whereas inactivation of p53 with pifithrin-α induced 

pulmonary vascular remodeling in rats with monocrotaline-induced PH.169 One significant gene 

that we revealed in the p53 signaling pathway was CYCS (Cytochrome C, Somatic), which is a 

key part of the electron transport chain in mitochondria, while PMAIP1 (Phorbol-12-Myristate-

13-Acetate-Induced Protein 1) stimulates changes in the mitochondrial membrane.  

Being that mitochondria play an essential role in energy production, respiration, and 

modulation of calcium signaling, investigators have turned their attention to its role in the 

pathogenesis of numerous diseases.170 The “metabolic theory” of disease proposes that 

changes in an organism’s bioenergetics, shifting from energy production primarily through 

aerobic respiration to fermentation and glycolysis, can lead to dysfunctional downstream 

processes, subsequently causing disease.23 And although it has been explained in most detail 

in cancer,171-174 recently it has been expanded to the pathogenesis of PH.175-177 This metabolic 

shift (coined the “Warburg effect”) impacts endothelial cells, especially since they are first to 

detect a low oxygenated environment and they have the ability to signal to cells around them.23 
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The signaling cascade leads to quick vasoconstriction of the pulmonary bed in an effort to 

maintain ventilation-perfusion matching.178 Apart from deceased efficiency in energy production, 

this process leads to rapid changes in the production of reactive oxygen species with worsened 

handling of oxidative stress, changes in oxygen-sensing potassium channels, resultant changes 

in cytosolic calcium, and pulmonary vasculature constriction.23 The mitochondria depend on 

reactive oxygen species for proper signaling and internal regulation, but, the distinguishing 

characteristic of mitochondrial or metabolic disease is an imbalance of oxidative stress.179  

Related to this discussion on the biology of mitochondria, another pathway revealed in 

our pathway analysis was oxidative phosphorylation, which is a process of energy production in 

mitochondria through which energy (ATP) is formed via the transfer of electrons. In a review by 

Marshall et. al. on the role of mitochondrial dysfunction in PH,23 authors explain that HIF-1α 

(Hypoxia inducible factor-1α) is one of the most studied metabolic pathways in PH. Expression 

of HIF-1α  is usually upregulated by hypoxia,180 and its upregulation activates over 100 genes, 

controlling energy metabolism, vasomotor tone, apoptosis, angiogenesis, and erythropoiesis.181 

In endothelial cells of PH patients under normoxia, high levels of nitric oxide led to increased 

HIF-1α expression, while low levels of supplemental nitric oxide reduced HIF-1α.182 Increased 

levels of nitric oxide reduce the need for endothelial cells to produce their own nitric oxide, 

which alludes to the fact that loss of nitric oxide production, through reduced endothelial nitric 

oxide synthesis, may lead to activation of HIF-1α under normoxia in PH patients.182 In our data 

set, HIF-1α was upregulated in CpcPH compared to HFpEF (logFC 0.50, FDR= 0.05), a similar 

direction of effect to other PH studies, suggesting that mitochondrial dysfunction mediated by 

hypoxia or nitric oxide levels may be one aspect of CpcPH development in HFpEF patients. 

Furthermore, HIF-1α has been linked in the literature to several other significant genes in our 

data set (RORC [Table VIII] and genes from the proteasome pathway, PSMC1, PSMA6, 

PSMC6, PSMA2 [Table IX]). HIF-1α activates transcription of RORC, thereby playing a key role 

in T helper 17 cell differentiation,183 and HIF-1α is degraded via the proteasome pathway.184 
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These results highlight the pervasive role of HIF-1α in mediating energy metabolism and 

inflammation.  

As discussed earlier, PH has many pathogenic mechanisms similar to cancer.185 

Interestingly, over half of our candidate differentially expressed genes have had previous 

associations with lung cancer (Table XI). Shared pathological mechanisms respective to cell 

growth between PH and cancer include sustaining proliferative signaling, evading growth 

suppressors, resisting cell death, limitless replicative potential, and genome instability and 

mutation.185 With respect to the first mechanism, upregulated EGFR (Epidermal growth factor 

receptor) has been implicated in cancer, as it mediates cell proliferation and protection from 

apoptosis.186 EGFR has been linked to pathogenesis of Group 1 PH in rats187, as well as Group 

2 PH in mice.33 Although EGFR was not present in our data set, six of our 346 differentially 

expressed genes/transcripts (MRPL38, PHLDB2, AREG, TGFA, HBEGF, and NRAS) are found 

within the EGFR signaling pathway per PANTHER pathway analysis.188 This pathway was tied 

with the p53 signaling pathway for most significant genes within a pathway. EGFR may have 

been filtered out of our data set due to our CPM filter/normalization or there may have been 

poor coverage of this gene during sequencing. EGFR may play a role in CpcPH development, 

but more research is needed in this area.  

In addition to sustaining proliferative signaling, evading growth suppressors is another 

pathological mechanism of cancer. p53 has already been discussed as an example of this 

mechanism, however, TGF-β has tumor suppressor activities as well.185 TGF-β inhibits growth 

of numerous cell types by inhibiting cyclin-dependent kinase complexes that inactivate 

retinoblastoma protein.189 Inactivating mutations in TGF-β receptors and SMAD genes have 

been implicated in cancer.190 Group 1 PH has also been associated with dysregulation in the 

TGF-β signaling pathway.191 It is possible that the TGF-β signaling pathway has a role in Group 

2 PH as well, because our top differentially expressed gene (based on FDR and logFC), ID1, is 

part of this pathway, and some of our other candidate genes are within or interact with this 
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pathway (SMAD6, OLFM2, RORC, WNT16, GADD45B, Table XI). ID1 (inhibitor of DNA binding 

1, HLH protein) regulates proliferation of pulmonary artery smooth muscle cells by cell cycle 

inhibition.72,75,76 Additionally, SMAD6 (SMAD family member 6) is an inhibitory SMAD that is 

induced by TGF-β ligands,112 which has been shown to repress bone morphogenetic protein-

induced ID1 transcription.192 Both ID1 and SMAD6 had the same direction of effect (i.e., both 

genes were upregulated) in our data set as in other studies.72-78,110 OLFM2 (olfactomedin 2) is 

involved in TGF-β induced smooth muscle cell differentiation.106 Lastly, WNT16 also plays a role 

in vascular smooth muscle cell activity, as it attenuates TGF-β induced chondrogenic 

transformation in these cells.116 

 In addition to our results that suggest some overlap between CpcPH development and 

cancer pathology, a striking finding is that nearly a third of these candidate genes have had 

previous PH associations (Table XI): 8 genes with Group 1 PH, 2 genes with Group 3 PH, 1 

gene with Group 4 PH, and 1 gene with Group 5 PH (PH in sarcoidosis). These findings may 

support some pathobiological overlap between Group 2 PH and other PH subtypes. This also 

has been asserted by Assad et. al. for Group 1 and Group 2 PH.31 Although there are some 

common genes and pathways among the different PH subtypes, a number of genes have not 

yet been identified in Group 2 PH pathogenesis. This study has provided numerous candidate 

genes associated with CpcPH development that warrant further investigation.  

 There appears to be an overlap of pro-proliferative, anti-apoptotic stimuli and signaling 

pathways among the different PH subtypes, and developing a strategy to target a single 

receptor or pro-mitogenic factor may have restricted and/or temporary effects.185 Pullamsetti et. 

al. discuss that the awareness of major signaling pathways cross-talking and inter-controlling 

each other by common signaling molecules at areas below the receptors has led to an 

interesting potential treatment strategy to reverse pulmonary vascular remodeling.185 There may 

be an opportunity to target downstream effectors (called “signaling hubs”) that incorporate 

signals from multiple receptors, induce cell cycle entry and progression, and cell proliferation.185 
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 In another review article by Pullamsetti et. al., the authors build upon the “signaling 

hubs” concept, highlighting that numerous, complex signaling pathways modulate the activity of 

particular sequence-specific DNA-binding transcription factors and coregulators that are crucial 

for transcriptional regulation of gene expression that contributes to vascular cell phenotypes in 

PH.193 Multiple pathologies and stimuli (e.g. oxidative stress, hypoxia, infection) can activate 

these signaling cascades that lead to PH. However, eventually different signaling pathways 

unite to target the activity of specific transcription factors.194 This results in activation of a 

“vascular gene program” in the nucleus that is displayed ultimately as the vascular phenotype in 

PH patients.193 The authors explain that comprehension of the differential gene expression in 

diseased cells will provide the foundation for innovative treatment plans that involve gene 

expression manipulation. And that targeting transcription factors is one novel way that can 

enable alteration of gene activation/suppression.193 

In line with the importance of transcription factors in facilitating PH-related vascular 

phenotypes, more than a quarter of our 346 differentially expressed genes/transcripts have the 

category “binding” for molecular function (Figure 15), of which about half encode sequence-

specific DNA- or RNA-binding transcription factors (Figure 15).188 Some of these DNA-binding 

TFs include HIF-1α, ID1, SMAD6, RORC, HIC1, and FOSL1. These genes warrant further 

investigation to explore their potential role in CpcPH pathogenesis and possible role as 

therapeutic targets. 

Our network analysis (Figure 11) supports the interconnectedness and co-expression of 

our top signals, and revealed additional related genes of lower effect size (logFC ≤ |1.5|) that 

may also be of importance in CpcPH pathogenesis (Table X). Of the 20 additional genes 

revealed from this analysis, 6 were significant in our dataset at FDR < 0.05 (HBEGF, NFKBIA, 

DUSP2, PLK3, RGS1, PPP1R15A). HBEGF (Heparin Binding EGF-like Growth Factor) is a 

growth factor that is a stronger mitogen for smooth muscle cells than EGF and it can bind the  
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Figure 15. PANTHER gene ontology charts that display molecular function for our  
differentially expressed genes (A) and the subset involved in “binding” (B). 
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EGF receptor with greater affinity.195 Although HBEGF has been associated with hypoxia-

induced PH in rats196 and was similarly upregulated in our study, a more recent study that 

included human lung tissue was unable to validate this.197 While it is unclear if upregulation of 

HBEGF is unique to CpcPH pathogenesis compared to other PH subtypes, it is a candidate 

gene worthy of further investigation. Since its affinity for the EGF receptor is higher than EGF 

itself, perhaps HBEGF has a competitive advantage to sustaining proliferative signaling. As 

previously mentioned, EGFR was not found in our data set, so we are unable to confirm 

whether this association seen with HBEGF and CpcPH holds true for EGFR as well.  

NFKBIA (nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, 

alpha) is a transcription factor that plays a crucial role in inflammation, cellular proliferation, 

differentiation, immunity, and survival.198 It has been previously associated with hypoxia-induced 

PH in vitro,199 with the same direction of effect in our data set (i.e. upregulated). DUSP2 (dual-

specificity phosphatase 2) negatively regulates members of the mitogen-activated protein 

kinase superfamily and has been associated with PAH and PH secondary to idiopathic 

pulmonary fibrosis.154 Based on the known functions of HBEGF, NFKBIA, and DUSP2, as well 

as PLK3, RGS1, PPP1R15A,200-203 it seems likely that these associations are not due to chance, 

thus, they may play a role in CpcPH development in HFpEF patients.  

Regarding the in silico eQTL analysis (Table XII), after excluding non-coding transcripts 

or pseudogenes that were not available in GTEx portal, it was discovered that all remaining 

candidate genes were expressed in the lung. Of these genes, only 6 contained known eQTLs. 

After LD pruning, 86 unique SNPs were explored for potential association with PH in HF 

patients. In this genetic association analysis, we did not identify any SNPs associated with 

Group 2 PH. However, the significant genes in our differential gene expression analysis were 

associated with CpcPH rather than Group 2 PH in general. Further, HF patients in this analysis 

included those with HFrEF as well, unlike our RNA-seq analysis that included only HFpEF 

patients. Our non-significant findings may be explained by the fact that we were underpowered 
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to detect PH association with our small sample size and/or that our phenotype in this analysis 

was not as clean as the phenotype in our RNA-seq analysis.  

Lastly, we compared a list of differentially expressed genes from Group 2 PH genetic 

studies (as no published transcriptomic studies were found) and select Group 1 PH 

transcriptomic studies to our data set to search for concordant genes, assessing direction and 

effect size (Table XIV). Of the three Group 2 PH studies,31-33 only one gene was found in 

common, ALG11 (Alpha-1,2-Mannosyltransferase). This gene is involved in metabolism and is 

found on the endoplasmic reticulum.31 For the comparison with Group 1 PH transcriptomic 

studies, there were some curious findings. Two of our candidate genes, SMAD6 and GADD45B, 

were significant in PAH patients in these studies.117,156 While about half of our concordant genes 

(SMAD6,156 IL16,154 IL7R,154 and PDE4D154) had the same direction of effect (i.e., upregulated) 

in our CpcPH patients as in patients from studies in other PH subtypes, there were several 

genes that had opposite directions of effect in our data set compared to these other studies. 

PTX3, GADD45B, and IL7R were upregulated in our CpcPH patients, whereas they were 

downregulated in various Group 1 PH subtypes.117,204,205 PDE4 is the  primary selective cyclic 

adenosine monophosphate (cAMP) enzyme in immune and inflammatory cells, which is 

involved in the pathobiologic mechanisms of certain inflammatory lung diseases, like chronic 

obstructive pulmonary disease and asthma.206 These findings further support our assertion that 

there is pathobiological overlap between Group 2 PH and other PH subtypes, particularly Group 

1 PH, but they also suggest that these signaling molecules may have different magnitudes or 

directions of effect depending on the underlying cause of PH. One might theorize that this may 

be part of the reason why some therapies used to treat one subtype of PH (e.g. endothelin 

receptor antagonists in PAH) may cause harm to another (e.g. Group 2 PH). 

Previous PAH and heritable pulmonary veno-occlusive disease genes (BMPR2, ALK1, 

ENG, BMPR1B, CAV1, EIF2AK4) were not significantly associated with either PH subtype in 

our analysis. This may suggest that there are other more important genes with a role in CpcPH
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TABLE XIV 
 

CONCORDANT DIFFERENTIALLY EXPRESSED GENES BETWEEN OUR STUDY AND SEVERAL PUBLISHED GENOMIC GROUP 
2 PH STUDIES AND TRANSCRIPTOMIC PAH STUDIES  

HPAH- heritable PAH; IPAH- idiopathic PAH; IPF- idiopathic pulmonary fibrosis; SSc-APAH- systemic sclerosis-associated PAH. 
 

a FDR was trending in our differential gene expression analysis. 
 
b Genes with a fold change in the opposite direction than found in our differential gene expression analysis.

Lead Author 
[reference] 

Type of 
PH 

Study Description Concordant DEGs 
between our studies 

Fold change comparison between their study and ours 

Duarte JD32 Group 2 
PH 

Genotyped 118 HF-PH patient samples for NOS2 
and NOS3 polymorphisms. 
 

- - 

Kelly NJ33 Group 2 
PH 

Performed a GWAS to find candidate genes 
associated with development of high-fat diet-induced 
PH in mice. 
 

- - 

Assad TR31 Group 2 
PH, PAH 

Conducted a GWAS to identify differentially 
expressed SNPs between 36 CpcPH and 79 PAH 
patients versus 139 IpcPH control patients. GTEx 
portal was used to perform eQTL mapping to identify 
genes associated with shared risk for CpcPH and 
PAH compared to IpcPH. 
 

ALG11 Fold change and FDR not reported in Assad et. al.. 
1.24 in CpcPH vs. HFpEF without PH (FDR=0.039) 

Hoffman 
J159,204,205 

PAH Review of 25 human microarray studies that 
analyzed expression profiles of PH patients in 
various tissues. 
 

IL7Ra,b 

 
 

PTX3a,b 

-1.95 in SSc-APAH vs. SSc without PAH (P=3.94E-6) 
0.33 in CpcPH vs. HFpEF without PH (FDR=0.061) 
 
-2.21 in IPAH vs. no IPAH (FDR=0.020) 
2.23 in CpcPH vs. HFpEF without PH (FDR=0.070) 
 

Sasagawa S156 PAH Performed comparative transcriptome analysis of 5 
mammalian PAH data sets within a publically 
available database. 
 

SMAD6 

 
0.51 in Human PAH vs. controls (FDR=0.00)                        
2.99 in CpcPH vs. HFpEF without PH (FDR=0.049) 

Rhodes CJ117 IPAH Used RNA-seq to analyze endothelial 
transcriptomes from the lungs of 7 control patients 
and 6 patients with IPAH. 
 

GADD45Bb -0.80 in IPAH vs. no IPAH (P=0.05) 
1.66 in CpcPH vs. HFpEF without PH (FDR=0.027) 

Rajkumar R154 PAH Created the largest data set to date of RNA 
expression profiles from lung tissue samples from 
18 patients with PAH, 8 patients with PH secondary 
to IPF, and 13 control patients, using genome-wide 
microarray analysis. 

IL16 
 
 

IL7Ra 

 
 

PDE4Da 

0.27 in PAH vs no PAH (FDR<0.01) 
0.69 in CpcPH vs. HFpEF without PH (FDR=0.031) 
 
2.83 in PAH vs no PAH (FDR<0.01) 
0.33 in CpcPH vs. HFpEF without PH (FDR=0.061) 
 
3.48 in PAH vs no PAH (FDR<0.01) 
1.87 in CpcPH vs. HFpEF without PH (FDR=0.061) 
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pathogenesis than in PAH development.  

Our study has several strengths worthy of mention. Importantly, we utilized RNA-seq 

analysis to study Group 2 PH, which to our knowledge, has never been done before. Studies 

thus far investigating this PH subtype have been primarily genetic or genomic in nature,31-33 with 

one study performing an in silico transcriptomic analysis due to lack of gene expression data to 

accompany their GWAS data. This current landscape in Group 2 PH research is striking 

compared to the plethora of transcriptomic studies in PAH, for which there are about 30 or more 

published at this time.159,207,208 As previously described in the Introduction, RNA-seq allows us to 

study gene expression at a single base resolution with a high dynamic range and low 

background noise, as compared to microarray, which has a resolution of 100 or more bases 

with about half the dynamic range and high background noise (Table II). Microarray analysis 

represents the majority of existing transcriptomic studies in PAH.159 Furthermore, RNA-seq 

enables us to study alternative splicing and detect novel transcripts or genes. Although we did 

not explore these data in this particular study, this available data presents a wealth of 

opportunity to further investigate in the future, far beyond what can be studied with genotyping 

or whole genome sequencing data. Another strength of our study is that we had well-

phenotyped patients, since we had extensive clinical history, medication data, and 

echocardiogram information on all patients, with right heart catheterization data for our PH 

patients. This detailed phenotype information, in addition to the high quality, deeply sequenced 

RNA data, likely contributed to our ability to detect differentially expressed genes between 

CpcPH and HFpEF without PH patients, despite the relatively small sample size. Having the 

access to echocardiographic and hemodynamic data is crucial to distinguish whether a patient 

has HFpEF and whether they have developed PH and if so, to what severity.  

In addition to our small sample size, our study had some additional limitations. In our 

genetic association analysis that was informed by the in silico eQTL analysis, only 15 of our 86 

candidate SNPs were found in our genotype array data. Since only a small percentage of SNPs 
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were present in our data set, a potential future direction would be to use imputed genotype data, 

which would allow us to investigate many more of these SNPs for association with PH. 

Additionally, utilizing RNA isolated from PBMCs for RNA-seq data analysis may have restricted 

our ability to detect gene expression that may be tissue- or cell-specific to the pulmonary 

vasculature. Although pulmonary artery endothelial or smooth muscle cells would logically 

appear to be a better tissue source and cell type for gene expression studies in PH patients, 

due to the challenging nature of obtaining pulmonary arteries from patients, we used RNA 

isolated from PBMCs instead. Investigators have had previous successes in finding gene 

expression signatures from PBMCs,209,210 thus we felt confident in this approach. Presumably 

we care about gene expression in the lung vasculature, but PBMCs afford us the opportunity to 

investigate gene expression from a pathobiologic perspective in the periphery where there are 

various biomarkers and signaling pathways. Furthermore, PBMC expression data can be used 

more easily as a clinical biomarker.  

Another limitation is that our samples represent a single snapshot in time, as they were 

collected from patients at different time points after their PH development or diagnosis. If a 

patient had a right heart catheterization 1 year prior to sample collection that showed they had 

IpcPH, it is possible that they may no longer have the same pulmonary abnormalities they had 

when they received the diagnosis. In this scenario, their current gene expression signature 

would not match their phenotype from the year before. In line with this concept, we also could 

not definitively say that all HFpEF “without PH” patients did not have some early stages of PH. 

Right heart catheterization is not available on all HFpEF patients, and often it is a procedure that 

is performed only once a patient is having issues (e.g. shortness of breath, fatigue, edema). 

However, to reduce the impact posed by these last two limitations, we did have echocardiogram 

and other clinical data on all patients, including TRV on most patients. Setting our TRV 

threshold at less than or equal to 3 m/s helped to ensure that our HFpEF “control” patients were 

less likely to have PH. Since we found numerous strong signals between CpcPH and HFpEF 
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patients, lack of right heart catheterization data on HFpEF patients does not appear to have 

been a huge concern. One limitation inherent to this patient population is that HFpEF patients 

have been shown to have several clinical phenotypes, which may have impacted the 

heterogeneity of our sample and hindered our ability to detect true gene signals from the PH 

subtype rather than HFpEF phenotype that may be more likely to develop PH.160,211  

With this in mind, we reviewed some of the literature on common biomarkers in HFpEF 

to look for any overlapping signals with our data set. This search largely turned up empty, but 

we did find one significant and another trending gene in common with HFpEF: IL6R (logFC=      

-0.43, FDR= 0.047),212 PTX3 (logFC= 1.16, FDR= 0.07).213 Interleukin-6 is part of the cytokine 

family and it interacts with gp 130 and its receptor, IL-6R, in order to become activated. Once 

this complex is activated, IL6 can induce cardiomyocyte hypertrophy, although the soluble IL-6R 

is required for it to interact within the myocardium.212 Interestingly, in a study that explored 

interactions between biomarkers in HFrEF and HFpEF, there was a significant interaction 

between interleukin-6 and PTX-3 that was only observed in HFpEF.213 While HFpEF revealed 

interactions primarily associated with inflammation, HFrEF revealed NT-proBNP mediated 

interactions that are more related to cardiac stretch. These authors noted that biomarker studies 

like theirs have difficulty distinguishing whether elucidated biomarker differences are the cause 

or result of HF.213 This is an astute remark and one that certainly applies to our RNA-seq study 

as well.  

 We cannot be certain that our differentially expressed genes in CpcPH patients are the 

cause or consequence of PH in HFpEF. For this reason, it is essential to validate the 

differentially expressed genes of interest via in vitro or in vivo molecular studies or animal 

models. Validation is currently underway, as real time-quantitative PCR is ongoing, as is work 

with mouse models, as these models provide a way to correlate differential gene expression in 

tissues of interest. This is an exciting time for Group 2 PH research as just last year a study by 

Meng et. al. was published on the development of the first Group 2 PH mouse model.214 AKR/J-
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strain mice fed a high fat diet consistently displayed a higher right ventricular systolic pressure, 

mPAP, left ventricular end diastolic pressure, preserved left ventricular ejection fraction, and left 

and right ventricular hypertrophy, compared to regular diet-fed mice. Remarkably, elevated PVR 

and pulmonary vascular proliferative modeling were observed as well.214 The creation of this 

genetically modifiable mouse model holds the potential to further explore our RNA-seq findings, 

mechanisms of HFpEF-PH development, and ultimately possible treatments. 

In addition to real time-quantitative PCR validation and preparations for mouse models, 

there are a number of further analyses that can be performed with our RNA-seq data. These 

include alternative splicing, novel transcript and isoform detection, and allele specific 

expression. Lastly, there is an opportunity to try HFpEF phenomapping in our patients,160 which 

may help us improve the clustering of our samples and reduce inherent noise in our RNA-seq 

data due to HFpEF heterogeneity.  

As discussed, Group 2 PH is understudied compared to Group 1 PH. Furthermore, 

clearly there are limitations to the current clinical classification of PH, which has posed 

challenges for identifying innovative therapeutic strategies.215 Before focusing on treatment 

approaches, experts have argued that it may be wise to reclassify PH based on molecular 

phenotype.23 Gurtu and Michelakis advocate that a diagnostic, therapeutic, and research-

focused approach to PH should mirror the “precision medicine” model of cancer research and 

treatment.216 We wholeheartedly agrees with this, which is reflected in our overarching goal of 

this current study, as we aimed to identify transcriptomic predictors of CpcPH and IpcPH 

development in HFpEF patients. In our effort, another limitation is that patients can sometimes 

have more than one subtype of PH, thus it is possible that some of these top associated genes 

with CpcPH development are confounded by other unknown or unconfirmed concomitant PH 

subtypes that these patients may have had in addition to Group 2 PH (e.g. Group 3 or 4 PH). 

Unfortunately, we do not currently have access to pulmonary function tests and/or tests to rule 

out pulmonary embolism on our PH patients, but a future direction would be to collect this 
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information and adjust for these other PH subtypes, if possible, in our differential gene 

expression analyses. This further illustrates the dire need to expand our clinical classification of 

PH. 

In an effort to improve the current knowledge base of the clinical classification of PH 

using “omics” methodologies, the National Institutes of Health/ National Heart, Lung, and Blood 

Institute in conjunction with the Pulmonary Hypertension Association has funded a multi-center 

study called PVDOMICS to implement deep clinical and molecular phenotyping on 1500 

patients with PH, as well as healthy and disease comparators.217,218 Its goal is to enhance the 

classification of PH and foster new understanding of the molecular pathogenesis of PH. This 

trial stands to provide a wealth of information on PH etiology to inform therapeutics, however, in 

the meantime, we have a number of leads to pursue from this RNA-seq study. 
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2017. *Winner of Presidential Trainee Award.  

 

5. Singh S, Alghamdi W, Arwood MJ, Bargal SA, de Oliveira F, Dumeny L, Wen-Yi L, 
Mehanna M, Stockard B, Yang G, Fredette N, Shahin M, Bailey KR, Beitelshees AL, 
Boerwinkle E, Chapman AB, Gums JG, Turner ST, Gong Y, McDonough CW, Cooper-
DeHoff RM, Johnson JA. A Genome Wide Association Study Identifies Pharmacogenomic 
Variants Associated with Chlorthalidone Induced Glucose Change in African Americans. 
Clin Pharmacol Ther. 2017;101(S1):S9. (#PT-019). Poster presentation at the 2017 
American Society for Clinical Pharmacology and Therapeutics (ASCPT) Annual Meeting. 
Washington DC. March 15, 2017. *Winner of Presidential Trainee Award.  

 

6. Duarte JD, Arwood MJ, Liko I, Mansour I, Nair V, Kansal M, Stamos T, Cavallari LH, Desai 
AA. Beta-blocker dose stratifies both mortality risk and circulating procollagen levels in 
African Americans with heart failure. Circulation. 2016;134:A11877. Poster presentation at 
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the American Heart Association (AHA) Scientific Sessions. New Orleans, LA. November 15, 
2016.     

 

7. Deng J, Arwood MJ, Duarte JD, Cavallari LH, Schmidt S. Development of a universal 
pharmacogenetics-guided warfarin dosing nomogram. Poster presentation at the American 
Conference on Pharmacometrics (ACoP) Annual Meeting. Arlington, VA. October 24, 2016. 

 

8. Arwood MJ, Heierman T, Gilbert S, Dabady J. Ventilator‐associated pneumonia in trauma 
patients: gasping for answers about contributing risk factors and the efficacy of the ventilator 
bundle. Poster Presentation at the American Society of Health-System Pharmacists (ASHP) 
2013 Midyear Clinical Meeting. Orlando, FL. December 2013. 

 

Local 
1. “Translational Pharmacogenomics: Research and Clinical Practice.” Clinical 

Pharmacogenomics Faculty Candidate Seminar at the Department of Pharmacotherapy and 
Translational Research, University of Florida, College of Pharmacy. Gainesville, FL. June 8, 
2016. 

 

2. “Genome-wide analysis to identify novel treatment targets for pulmonary hypertension in 
heart failure patients.” MS Thesis Project Proposal Defense at the University of Illinois at 
Chicago, School of Public Health. Chicago, IL. June 2015.                                                                                                                                                      

 

3. “Ventilator-associated pneumonia in trauma patients: gasping for answers about contributing 
risk factors and the efficacy of the ventilator bundle.” PowerPoint presentation at the Florida 
Society of Health-System Pharmacists (FSHP) Florida Residency Conference. Gainesville, 
FL. May 2014. 

 

4. “The approach to reversing anticoagulation in intracerebral hemorrhages.” Continuing 

Education Presentation at the 3rd Annual Pharmacy Practice Update & Residency Forum. 

Palm Beach Atlantic University, Gregory School of Pharmacy. West Palm Beach, FL. 

January 2014. 

 

5. “Conversions between Anticoagulants and the Approach to Their Reversal.” Continuing 
Education Presentation at the Treasure Coast Society of Health‐System Pharmacists’ 
meeting. Melbourne, FL. September 2013. 

 

Invited 
1. “Integrating Clinical Pharmacogenetics Into Primary Care: Initial Experiences from the 

University of Florida.” IGNITE Clinical Informatics Webinar Series. May 3, 2018. 
 

2. “Integrating Pharmacogenetics Into Primary Care: Implementation of a Pharmacist-Led, 
Referral-Based Pharmacogenetics Consult Clinic.” Continuing Education Presentation at the 
University of Florida Primary Care Innovations Conference. Gainesville, FL. April 28, 2018. 

 

3. “Translational Pharmacogenomics.” Presentation to the Student Industry Pharmacists 
Organization (IPhO). Gainesville, FL. March 26, 2018. 

 

4. “Innovative Practice Models for Incorporating Precision Medicine Into Primary Care: Making 
it Work.” Continuing Education Presentation at the University of Florida Precision Medicine 
Conference. Orlando, FL. March 9, 2018. 
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5. “Translational Pharmacogenomics: Opportunities, Experience, & Implementation.” 
Presentation to the Student Personalized Medicine Coalition. Gainesville, FL (broadcast to 
Orlando, FL). Apr 6, 2017. 

 

6. “Taking a Novel Approach: Update on Innovations in Pharmacogenetics Education.” 
Continuing Education Presentation at the University of Florida Precision Medicine 
Conference. Orlando, FL. March 9, 2017. (Co-author to Kristin Weitzel, PharmD)                                          

 

7. “Advancing Clinical Implementation of Pharmacogenetics: Progress, Needs, and 
Opportunities.” Continuing Education Presentation at the University of Florida Precision 
Medicine Conference. Orlando, FL. March 8, 2017. (Co-author to Kristin Weitzel, PharmD)                                          

 

AWARDS AND HONORS 
03/2017 2017 American Society for Clinical Pharmacology and 

Therapeutics (ASCPT) Presidential Trainee Award 
04/2013   2013 Merck Award for Outstanding Research 
03/2011   F. Peter Field Scholarship, Kappa Psi Pharmaceutical Society, Inc.  
05/2008   Elected into Golden Key International Honour Society 
08/2006 – 05/2010  Florida Bright Futures: Florida Academic Scholars Award 
05/2006   International Baccalaureate Certificate       
 

PROFESSIONAL AFFILIATIONS 
American Society of Human Genetics (ASHG)    2017 – Present 
Clinical Pharmacogenetics Implementation Consortium (CPIC)  2017 – Present 
Florida Pharmacy Association (FPA)          2017  
American Society for Clinical Pharmacology and Therapeutics (ASCPT) 2014 – Present 
American Heart Association (AHA)              2014 – Present 
Pharmacogenomics Research Network (PGRN)              2014 – Present 
Florida Society of Health-System Pharmacists (FSHP) 2013 – 2014, 2017 – 

Present 
American Society of Health-System Pharmacists (ASHP) 2012 –2013, 2017 –

Present 
American College of Clinical Pharmacy (ACCP)  2011 – 2012, 2015 – 

Present      
Kappa Psi Pharmaceutical Fraternity, Inc (KΨ)       2009 – Present 
 

 
 
 
PROFESSIONAL SERVICE 
American Society for Clinical Pharmacology and Therapeutics (ASCPT) 

04/2018 – Present             Member, 2019 ASCPT Pharmacogenomics Community 
Programming Committee 

08/2015 – 06/2017  Member, Social Media Task Force 
 

American College of Clinical Pharmacy (ACCP) 
11/2017 – Present Member, 2018 ACCP Pharmacokinetics/Pharmacodynamics/ 

Pharmacogenetics Practice and Research Networks (PRN) Focus 
Session Planning Committee 

 

Implementing Genomics in Practice (IGNITE) 
02/2017 – Present  Member, Common Measures Group 
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Kappa Psi Pharmaceutical Fraternity, Inc (KΨ)  
11/2012 – 11/2013  Member, Southeast Province KΨ Political Action Committee 
08/2011 – 04/2012  Chair, Gamma Sigma KΨ Golf Tournament 
02/2011 – 02/2012  Vice Regent, Gamma Sigma KΨ Pharmaceutical Fraternity 
01/2011 – 01/2012  Assistant Webmaster, Province IV KΨ Pharmaceutical Fraternity 
01/2011 – 01/2012  Member, Province IV KΨ Publications Committee 
02/2010 – 02/2011  Historian, Gamma Sigma KΨ Pharmaceutical Fraternity 
01/2010 – 01/2011  Member, Province IV KΨ Risk Management Committee 

 

National Human Genome Research Institute (NHGRI)       
06/2017   Subject Matter Expert  

 

Manuscript Review: Cardiovascular Therapeutics (11/2017), Currents in Pharmacy Teaching 
and Learning (08/2017), Pharmacotherapy (12/2015, 05/2018), Future Medicine (08/2015) 
 

TEACHING EXPERIENCE 
Clinical Assistant Professor, University of Florida, College of Pharmacy, Gainesville, FL 

01/2017 – Present   
 

Didactic Teaching   
PHA5012: Clinical Applications of Personalized Medicine (Elective) 

 Spring 2018, Course co-coordinator and lecturer for P2, P3, and P4 pharmacy 
students 

 Lecture: Beyond the CPIC Guidelines: Emerging Gene-Drug Pairs and Clinical 
Implementation  

 Lecture: Clinical Laboratory Testing in Pharmacogenetics 
o Conducted 6 Active Learning sessions 
o Wrote quiz and test questions, assignments, patient cases 

 Spring 2017, Course co-coordinator and lecturer for P2 and P3 pharmacy students 
 Lecture: Beyond the CPIC Guidelines: Emerging Gene-Drug Pairs and Clinical 

Implementation 
o Conducted 4 Active Learning sessions 
o Wrote quiz and test questions, assignments, patient cases 
 

Experiential Teaching 
Research Trainee 
06/2017 – 08/2017 Hanna Harper, PharmD Candidate 2020 
 
 
Clinical Trainees 
07/2018 – Present  Kelsey Melloy, PharmD, PGY2 Pharmacogenetics Resident 
07/2017 – 06/2018 Benjamin Duong, PharmD, PGY2 Pharmacogenetics Resident 
01/2016 – 06/2018 D. Max Smith, PharmD, BCPS, PGY2 Pharmacogenetics 

Resident and Pharmacogenetics Fellow 
 
Postdoctoral Fellow, University of Florida, College of Pharmacy, Gainesville, FL 

12/2015 – 12/2016  
  
Didactic Teaching   
PHA 5933: Clinical Applications of Personalized Medicine (Elective) 

 Fall 2016, Lecturer for P2 and P3 pharmacy students 
 Lecture: Clinical Laboratory Testing in Pharmacogenetics 
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Experiential Teaching 
Research Trainee 
05/2016 – 08/2016 Justin Immerman, PharmD Candidate 2018                                                                                        

 
Clinical Instructor, University of Illinois at Chicago, College of Pharmacy, Chicago, IL  

07/2014 – 12/2015 
 
Experiential Teaching 
Research Trainees 
08/2015 – 12/2015  Candice Bundzinski, PharmD Candidate 2019                                                                                    
07/2014 – 12/2015  Ina Liko, PharmD Candidate 2017                
05/2015 – 08/2015       Anesia Reticker, PharmD Candidate 2018                                                                                         
05/2015 – 08/2015       Patrick Prunty, PharmD Candidate 2018                                                                                            
01/2015 – 04/2015 Lorena Berrios, PharmD Candidate 2018                                                                                             
01/2015 – 04/2015 Paula Bielnicka, PharmD Candidate 2018                                                                                             
01/2015 – 04/2015 Ali Alobaidi, PharmD Candidate 2018                                                                                                   

 
 
 
 

 
 

 


