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SUMMARY

Recent years have witnessed the flourishing of heterogeneous data from various types of

domains. For example, online review sites (like Amazon and Yelp) have access to contextual

information of shopping histories of users, the reviews written by the users, as well as the de-

scription of the items. Broad learning is introduced to fuse such rich and complex heterogeneous

information to improve the performance of learning tasks at hands.

In this dissertation, I will introduce our latest research progress on broad learning in multiple

heterogeneous domains. In the first part, I focus on heterogeneous network based approaches for

connecting and transferring knowledge across domains. To analyze the hidden connections and

correlations between different domains, I present a methodology for identifying the same users in

multiple domains (Lu et al., 2014a). I further propose a personalized recommendation algorithm

that utilizes complementary information from related domains to improve recommendation

performance (Lu et al., 2016).

To model the complex multi-way relationships among multiple tasks, in the second part,

I propose a tensor-based framework for learning the predictive multilinear structure to solve

multiple tasks altogether (Lu et al., 2017). Moreover, I present a generic method for learn-

ing structural data from heterogeneous domains, which can efficiently explore the high order

correlations underlying relational structures of multi-way interactions (Lu et al., 2018).

x



CHAPTER 1

INTRODUCTION

1.1 Dissertation Outline

Nowadays, it is becoming common to have heterogeneous data obtained from various types

of domains. For example, the visual information, tags, surrounding text, and user-generated

annotations are often observed in multimedia data; the context of messages, friendships, and

locations can be retrieved in social media. How to effectively incorporate such heterogeneous

information is critical to good prediction performance for various applications, such as image

classification, document categorization, and content recommendation. In particular, for newly-

emerged domains, traditional supervised learning methods usually suffer from data-sparsity, as

collecting sufficient labeled data is time-consuming and expansive. It is desirable to provide

an effective broad learning solution to leverage discriminative information shared by related

domains to help the learning task in the target domain, as well as improve the performance of

each task altogether relative to learning them separately.

This dissertation focuses on the study of broad learning in multiple heterogeneous domains.

Specifically, it contains two major approaches in broad learning: (i) heterogeneous network

based approaches for connecting and transferring knowledge across domains in system level; (ii)

matrix/tensor factorization based approaches for learning from multi-way interactions. Four

different research directions related to the above two approaches are covered in this dissertation:

1
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• In order to extract common information shared in related networks (domains in system

level), we judiciously fuse the context features and network-based features to connect

multiple heterogeneous networks.

• We provide a personalized recommendation model that can transfer knowledge from re-

lated domains to fit the newly-emerged domain, by capturing the rich similarity semantics

based on both linkage structures and relationship attributes.

• To model the complex multi-way relationships between multiple tasks in multiple het-

erogeneous domains, we propose a tensor-based framework for learning the predictive

multilinear structure to solve multiple tasks in the same time.

• We introduce a generic method for learning structural data from heterogeneous domains,

which can efficiently explore the high order correlations underlying relational structures

of multi-way interactions.

1.2 Connecting Heterogeneous Domains

(Part of this chapter was previously published in (Lu et al., 2014a).)

Connecting heterogeneous domains via identifying the entities (e.g., users and items) in

common is promising to deal with the data-sparsity problem. In particular, personal social

networks are considered as one of the most influential sources in shaping a customer’s attitudes

and behaviors, while they are barely observable in most e-commerce sites. In Chapter 2,

we study the problem of customer identification in social networks, i.e., connecting customer

accounts at e-commerce sites to the corresponding user accounts in online social networks such
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as Twitter. A novel method is introduced for identifying customers in online social networks

effectively by using the basic information of customers, such as username and purchase history.

It consists of two key phases. The first phase constructs both the context features as well as

network-based features that can be used to compare the similarity between pairs of accounts

across networks with different schema (e.g. an e-commerce company and an online social

network). The second phase identifies the top-K maximum similar and stable matched pairs of

accounts across partially aligned networks.

1.3 Transfer Learning for New Domains

(Part of this chapter was previously published in (Lu et al., 2016))

Transfer learning from related domains through overlapping entities is promising while it

may be biased to the overlapping portion. Recent works suggest that preserving intrinsic

closeness between similar entities is helpful to make the transfer learning robust. Most of the

current similarity measures are computed by either comparing the relationship attributes be-

tween entities or leveraging linkage structures between entities. However, the former measures

are non-trivial to be derived with insufficient information, and the performance of latter mea-

sures is often degraded because relationship attributes are discarded. Taking both the linkage

structures and the augmented relationship attributes into account, in Chapter 4, we introduce

a novel similarity measure, AmpSim (Augmented Meta Path-based Similarity). By traversing

between heterogeneous networks through overlapping entities, AmpSim can easily gather side

information from other networks and capture the rich similarity semantics between entities. We

further incorporate the similarity information captured by AmpSim as graph regularization in
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a collective matrix factorization model such that the transferred knowledge can be iteratively

propagated across networks to fit the new domain.

1.4 Multi-Task Multi-View Learning

(Part of this chapter was previously published in (Lu et al., 2017).)

Many real-world problems, such as web image analysis, document categorization and prod-

uct recommendation, often exhibit dual-heterogeneity: heterogeneous features obtained in mul-

tiple views, and multiple tasks might be related to each other through one or more shared

views. To address this Multi-Task Multi-View (MTMV) problems, in Chapter 4, we propose a

tensor-based framework for learning the predictive multilinear structure from the full-order fea-

ture interactions within the heterogeneous data. The usage of tensor structure is to strengthen

and capture the complex relationships between multiple tasks with multiple views. We further

develop efficient multilinear factorization machines (MFMs) that can learn the task-specific

feature map and the task-view shared multilinear structures, without physically building the

tensor. In the proposed method, a joint factorization is applied to the full-order interactions

such that the consensus representation can be learned. In this manner, it can deal with the par-

tially incomplete data without difficulty as the learning procedure does not simply rely on any

particular view. Furthermore, the complexity of MFMs is linear in the number of parameters,

which makes MFMs suitable to large-scale real-world problems.

1.5 Modeling Multi-View Relational Data

(Part of this chapter was previously published in (Lu et al., 2018))
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Different views may exhibit pairwise relations (e.g., the friendships between users) or even

higher-order relations (e.g., a customer write a review for a product) among entities (such

as customers, products, and reviews), and can be represented in a multi-way data structure,

i.e., tensor. In Chapter 5, we introduce a multi-tensor-based approach that can preserve the

underlying structure of multi-view relational data in a generic predictive model. Specifically, we

propose structural factorization machines (SFMs) that learn the common latent spaces shared

by multi-view tensors and automatically adjust the importance of each view in the predictive

model. Furthermore, we provide an efficient method to avoid redundant computing on repeating

patterns stemming from the relational structure of the data, such that SFMs can make the same

predictions but with largely speed up computation.



CHAPTER 2

CONNECTING HETEROGENEOUS DOMAINS

(This chapter was previously published as “Identifying Your Customers in Social Networks”,

in CIKM ’14 (Lu et al., 2014a). DOI: http://dx.doi.org/10.1145/2661829.2662057.)

2.1 Introduction

Personal social networks affect the adoption of individual innovations and products (Guo

et al., 2011). For example, customers usually gather information from friends, when they

contemplate purchasing goods and services. Customers also share opinions within their social

networks regarding to different products which they have recently purchased or they are familiar

with. Such actions of acquiring and disseminating information are critical to understanding

customer behaviors and analyzing the factors that affect a customer’s decisions (Jiang et al.,

2012a). However, these actions are implicit in the social connections (e.g., the relationship of

friends or colleagues) that are barely observable in most e-commerce sites.

Fortunately, the emergence of online social networks, such as Twitter and Facebook, presents

a great opportunity to access publicly available information of social connections. It appears

that considerable potential exists for novel applications via leveraging the rich information from

online social networks. Examples of applications include prediction of product adoption (Bhatt

et al., 2010), personalized product recommendation via exploiting social correlation (Bhatt et

al., 2010; Chua et al., 2013) , and maximization of product adoption and profits over social

6
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networks (Bhagat et al., 2012). In addition, mining the integrated information from social

networks and commercial companies leads to other promising applications, such as discovering

community of customers and analyzing opinions (Hu and Liu, 2004; Tsytsarau et al., 2013)

of target customer communities for designing a marketing strategy. One common and crucial

assumption of these applications is the knowledge of social connections between customers.

However, since an online social network is built for social communication, this knowledge has

not been used for e-commerce.

To fulfill the gap between conventional companies and social networks, in this chapter, we

tackle the problem of customer identification in social networks. The mapping of customers to

their user accounts in social networks serves as a prerequisite for applying existing marketing

techniques to a broader range of e-commerce. Moreover, astroturfing becomes a serious problem

in e-commerce nowadays. In 2013, the survey conducted by Dimensional Research1 shows that

90% of consumers are influenced by online reviews in their purchasing decisions. The false

advertising not only influences a large amount of customers to make wrong purchasing decisions

but also slanders good products/companies. However, it is challenging to verify whether the

review is spam or not due to lack of user information. Therefore, identifying customers in online

social networks also provides a promising way to facilitate fake review detection2.

1http://www.zendesk.com/resources/customer-service-and-lifetime-customer-value

2The privacy issues are worth discussing. According to the Consumer Privacy Bill of Rights, e-
commerce sites should provide the privacy settings that allow users to avoid being tracking and keep
their feedbacks/reviews private. On the other hand, users are encouraged and have better to adjust the
privacy settings to their comfort levels.
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Figure 1. Example of customer identification across a customer-product network and a social
network.

Generally, in an e-commerce system, customers interact with products (or services) only1,

while users in an online social network have connections with each other and interact with user-

generated contents (e.g., tweets, pictures and videos posted by users). Therefore, the schema of

these two systems are essentially different: the former is a bipartite customer-product network,

but the latter is a general heterogeneous social network involving all kinds of connections among

users and user-generated contents.

Figure 2.1 shows an example of a customer-product network and a social network. In the

customer-product network, five customers adopt three products; meanwhile, six users discuss

these products in the social network. Note that among the five customers, four of them also

1Although contents generated by customers are useful, they are rare in most commercial companies,
and thus they are not included in this work.
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TABLE I

Summary of related problems
Property

Customer Anchor Link Network User Profile Relational Entity Link Prediction
Identification Prediction Alignment Matching Resolution

reference (Kong et al., 2013b) (Bayati et al., 2013) (Zafarani and Liu, 2013) (Bhattacharya and Getoor, 2007) (Getoor and Diehl, 2005)

target link
one-to-one one-to-one one-to-one one-to-one clustering many-to-many

relationship

target link
inter-network inter-network inter-network inter-network intra-network intra-network

type

#network multiple multiple multiple multiple single single/multiple

network bipartite vs.
heterogeneous homogenous heterogeneous

homogenous/ homogenous/
schema heterogeneous1 heterogeneous heterogeneous

target network
partially aligned fully aligned fully aligned N/A N/A N/A

relationship

have user accounts in the social network but only two customers are identified (pairs of accounts

marked in solid red lines). The task of customer identification is to discover which pair, as

marked with question in Figure 2.1, belongs to the same individual.

Although users may create alias accounts on social networks, in most cases users will stick

to a single account because of the difficulty of managing multiple accounts. Furthermore, only

the primary account that reveals the major social activities is of interest to the investigation.

Hence, we assume that each customer shall be identified as at most one (primary) user account

in social network and vise versa.

Despite its value and significance, the customer identification task has not been addressed

as it is very challenging due to the following two reasons:

1) Difference in network schema. Unlike most prior works on link prediction (Getoor

and Diehl, 2005; Liben-Nowell and Kleinberg, 2003; Lichtenwalter et al., 2010; Kong et al.,

2013b), customer identification requires to predict links across networks with completely differ-

ent schema (i.e., bipartite network vs. general heterogeneous network). Most existing features
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for link prediction, such as number of common neighbors and Jaccard’s coefficient, are com-

puted by enumerating the connections between nodes within a single network. However, due to

the one-to-one constraint on the links across multiple networks, existing features will reduce to

a constant value if we directly apply them to predict links across networks (Kong et al., 2013b).

The situation is even more severe when one of the networks is a bipartite network, where no

connections exist between customers. Although a bipartite network can be projected onto a

unimodal network (Benchettara et al., 2010), such as a co-adoption network, many important

features (e.g., interests of customers) will be lost during the transformation. Furthermore, cus-

tomers barely have social interactions with neighbors in the unimodal network (Crandall et al.,

2008).

2) Partially aligned networks. Another fundamental problem lies in the fact that most

networks can only be partially aligned, w.r.t the one-to-one constraint. For example, in Figure

2.1, not all customers have accounts in the social network. Thus, anchor link prediction (Kong et

al., 2013b) and conventional network alignment approaches (Bayati et al., 2013), which assume

that two networks are fully aligned, cannot be directly used in the customer identification

problem. A detailed comparison between customer identification problem and other related

problems are reported in Table I.

To tackle the customer identification problem involving the above issues, we present the

following contributions:
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• We formulate the customer identification problem and present the problem analysis. To

the best of our knowledge, our work is the first to focus on connecting users between

e-commerce companies and online social networks (Section 2.2).

• Our approach, called CSI (Customer-Social Identification), can be applied to most e-

commerce companies by using the basic information of customers, such as username and

purchase history. To compare the similarity between users across networks, we trans-

form existing social features for link prediction into heterogeneous features, e.g., common

interests of users across networks (Section 2.3.1).

• We propose to formulate the multi-network partial alignment problem as a top-K maxi-

mum similarity and stable matching problem. Based on scores of similarity, CSI method

can effectively identify customers in social network w.r.t one-to-one constraint (Section

2.3.2).

• Through extensive experiments on real-world datasets spanning 10 months, we demon-

strate that CSI method consistently outperforms other commonly-used baselines – with

up to 38% improvement on F1-score and 21% improvement on AUC (Section 2.4).

2.2 Problem Formulation

The customer identification problem we focus on, in this chapter, is to connect customer

accounts at an e-commerce site (represented as a customer-product network) to the correspond-

ing user accounts in an online social network. Though the proposed framework can easily be

generalized to the setting with more than one pair of networks. In this section, we first define

the concept of customer-product network and social network, and then present the formulation
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TABLE II

Notation Summary
Symbol Definition and Description

Gs network Gc = (Uc,P, Ec), Gs = (Vs, Es)
Vs set of nodes in Gs, Vs = Us⋃P
Us set of users in Gs
P set of products in both Gc and Gs
Es set of edges in Gs
A set of the identified pairs across networks.

A∗ is the optimum set
Γ(vsi ) neighbors of the node vi in Gs
Γu(usi ) friends of the user ui in Gs
Γp(u

s
i ) products that link to user ui in Gs

Γsu(px) users that link to the product px in Gs

usi user in Gs
px product in Gc and Gs
(uci , u

s
j) candidate pair across networks

f(uci , u
s
j) customer identification function

score(uci , u
s
j) similarity score of candidate pair (uci , u

s
j)

of the customer identification problem. Table II lists the main notations we use throughout the

chapter.

Customer-Product Network: Let Gc = (Uc,P, Ec) denote a customer-product network,

where Uc is the set of customers, P is the set of products, and Ec ⊂ Uc×P is the set of adoption

links. The type of adoption, depending on the genre of the e-commerce site, can be purchase of

a product, subscription of a video or check-in on a hotel. To provide a general model for most

e-commerce sites, we consider only the structure properties between customers and products

and discard the semantic meaning of the adoption.
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In online social networks, a large amount of contents is generated by users daily and most

of them are irrelevant to the concerns. For the sake of efficiency, one may filter out redundant

messages by setting predefined rules. For instance, an e-commence company can specify a list

of terms related to the products of interest to the company and inquire for the relevant contexts

from online social networks. Therefore, the user-generated contents in the social network after

filtering should be relevant to the products of interests, e.g., either containing the names of

the products or the URL links to the product pages in the e-commerce site. Without loss of

generality, we assume the customer-product network and the social network share the same

sets of products of interests P . Here we focus on studying the social networks filtered with the

product related terms.

Social Network: A social network is represented as Gs = (Vs, Es), where Vs = Us⋃P is

the set of nodes including two types of nodes. Us is the set of users and P is the set of the

products of interests mentioned in the user-generated contents. Es ⊂ Vs × Vs denotes the set

of edges in the network Gs. The types of edges include the social links between users, the links

between users and the products mentioned by the users, represented by Us × Us and Us × P,

respectively.

Customer Identification: Suppose we have a customer-adoption network Gc and a social

network Gs, with a small set of identified pairs A, the task of customer identification is to find

the optimal set A∗ in which all the customers in Gc, who can be identified in Gs, are matched

to their corresponding accounts in Gs.
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Given a candidate pair (uci , u
s
j) of a customer uci in Uc and a social network user usj in Us, we

shall decide whether this pair belongs to the same individual. Let f(uci , u
s
j) denote the customer

identification function, i.e.,

f(uci , u
s
j) =



1, if uci ∈ Uc, usj ∈ Us and

(uci , u
s
j) belong to the same individual,

0, otherwise.

Recall that each customer can only be identified as at most one (primary) user account in a

social network and vise versa, i.e., one-to-one constraint. Hence, the set of known pairs A can

be defined in the following formula:

A = {(uci , usj)|f(uci , u
s
j) = 1, and

6 ∃uci′ , usj′ , s.t. f(uci′ , u
s
j) = 1 or f(uci , u

s
j′) = 1}

, where i 6= i′ and j 6= j′. The optimum set A∗ is the maximum set of A, since A∗ contains all

the customers who can be identified in the social network. In addition, due to the one-to-one

constraint, A∗ is unique, i.e., no other combination of pairs that have the same size as A∗.

The customer identification task serves as a prerequisite for developing many potential

marketing applications in general e-commerce sites, as we have discussed in the Introduction.

However, it involves two key challenges that make it difficult to be solved by applying existing

social link prediction techniques (Getoor and Diehl, 2005; Liben-Nowell and Kleinberg, 2003;
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Lichtenwalter et al., 2010; Kong et al., 2013b). First, we need to ensure one-to-one relationships

between the target links to be predicted across networks with completely different schema (e.g.,

a customer-product network and a social network). To predict the existence of target links, we

shall compare the similarity between pairs of nodes across networks. However, most existing

features for link prediction, such as number of common neighbors, are designed for predicting

the target links within a single network. The social features that exploit the social connections of

identified pairs across networks are also not applicable, since there are no connections between

customers in customer-product networks. How can we extract informative features for this

customer identification task using basic information available in most e-commerce sites? Second,

we should consider the prediction of all the target links collectively, not only because of the

one-to-one constraint but, more importantly, because the nature of multiple networks tends to

be partially aligned. How can we effectively match all the customers, who can be identified in

social networks, to their corresponding social user accounts?

2.3 Methodology

In this section, we introduce a novel method, CSI (Customer-Social Identification), for

effectively identifying customers in social networks. It consists of two phases, each of which

addresses one major challenge of customer identification. The first phase tackles the feature

extraction across networks with different schema, while the second phase manages to identify

customers in partially aligned networks.



16

2.3.1 Extracting features across networks with different schema

As the first phase, CSI constructs the features that can be used to measure the similarity

between pairs of accounts across networks with different schema. Because individuals often

exhibit consistent behavioral patterns across networks, such as selecting similar usernames and

passwords (Yan et al., 2000; Zafarani and Liu, 2013; Liu et al., 2013), we can make use of the

similarities between candidate pairs to discover the same individuals.

Considering our purpose is to provide a general model for most e-commerce sites, we shall

extract features by using the basic customer information which is generally available. Therefore,

two common information sources are investigated: user profiles and the (product) interests of

users. In the following, we present several similarity measures corresponding to each information

source. The scores of these measures will be treated as the features for the next phase.

When a customer registers an account in an e-commerce site, s/he is usually asked to select

a unique username and to fill in her/his full name and email address. This registration builds

up the basic user profile of the customer. Other attributes, such as the city of residency, gender

and ages, are also useful to identify individuals. Though, these attributes are inconsistent in

multiple sites and often left blank by the customer. Hence, we attempt to measure the similarity

mainly by exploiting names and email addresses.

Names: Usernames are unique on each web site and can be viewed as identifiers of indi-

viduals, whereas the full names, i.e., the combinations of first name and last name, are not

unique. (Zafarani and Liu, 2013) observed that human tends to have consistent behavior pat-

terns when selecting usernames in different social media sites. For example, individuals often
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select new usernames by changing their previous usernames, such as add prefixes or suffixes or

abbreviate part of their full names. However, their study mainly focus on the assumption that

multiple prior usernames of the same individuals are available. This may not be an appropriate

assumption in our problem, because most e-commerce sites usually obtain only one single prior

username of each customer.

Therefore, among the top 10 important features presented in (Zafarani and Liu, 2013), we

select the four features that can be calculated by the single prior username. Besides, we also

consider the Levenshtein Edit Distance (Levenshtein, 1966), which can capture the changes of

candidate usernames, as another feature. The five features are listed as follows:

• Exact username match,

• Jaccard similarity between the alphabet distribution of the candidate username and the

prior username,

• Distance traveled when typing the candidate username using the QWERTY keyboard,

• Longest common subsequence between the candidate username and the prior username,

• Levenshtein edit distance.

Email: Email addresses can uniquely identify individuals, whereas they are not public

available in most online social networks. In this chapter, email addresses are used as for

verification of the identification. Once we discover that they exist in both customer profiles and

user profiles in online social networks, we can pair the both accounts of their owners and put

them into the set of identified pairs.

Modeling user interest similarity In additional, the products that adopted by customers

and mentioned by social network users reflect their common interests to some extent. Therefore,
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Figure 2. Modeling user interest similarity

we propose to extract user interest features based on the similarity between the products of

interests that customers and social network users both have in common.

1) Common Interests (CI): The most direct implementation of this idea for customer

identification is to consider the number of interests that customer uci and social network user

usj both have in common. We denote the interests of uci as Γp(u
c
i ) and the interests of usj as

Γp(u
s
j). The score of common interests is defined as follows:

score(uci , u
s
j) = |{px|(uci , px) ∈ Ec} ∩ {py|(usj , py) ∈ Es}|

= |Γp(uci ) ∩ Γp(u
s
j)|

(2.1)

where |P| is the cardinality of the set P.
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2) Jaccard’s Coefficient (JC): The Jaccard’s coefficient is a normalized version of com-

mon interests, i.e., the number of common interests divided by the total number of distinct

products of interests in Γp(u
c
i ) ∪ Γp(u

s
j).

score(uci , u
s
j) =

|Γp(uci ) ∩ Γp(u
s
j)|

|Γp(uci ) ∪ Γp(usj)|
(2.2)

3) Admic/Adar Index (AA) (Adamic and Adar, 2003): The AA index refines the

simple counting of common interests by weighting rarer interests more heavily. We denote the

customers who adopt px as Γcu(px) and the social network users who mention px as Γsu(px). We

extend the AA index into multi-network settings, where the common interests are weighted by

their average degrees in log scale. The similarity score of uci and usj is derived as follows:

score(uci , u
s
j) =

∑
∀px∈Γp(uci )∩Γp(usj)

log−1(
|Γcu(px)|+ |Γsu(px)|

2
) (2.3)

4) Resource Allocation Index (RA) (Zhou et al., 2009): The RA index is similar to

the AA index except the weight is distributed averagely instead of in log scale.

score(uci , u
s
j) =

∑
∀px∈Γp(uci )∩Γp(usj)

(
|Γcu(px)|+ |Γsu(px)|

2
)−1 (2.4)

Above four measures compute the similarity between customer uci and social network user usj

based on their shared (products of) interests directly, as illustrated in Figure 2(a). However,

customer uci may not actively mention the products that s/he has adopted in social networks.
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To compute the interest similarity between uci and usj , we need to seek other connections or

paths between them.

According to the researches of social influence on purchase behaviors (Hill et al., 2006; Guo

et al., 2011; Bhatt et al., 2010), a customer is more likely to buy a product if his/her friends

have widely adopt it. Thus, we consider utilizing the interests of friends to help locate the

inactive customers. There are two types of paths between uci and usj through the interests of

friends we can exploit. Figure 2(b) shows an example of the first type of a path. In Figure

2(b), the product px mentioned by usy, a friend of usj , is also adopted by uci . If uci and usj belong

to the same individual, this path 〈uci , px, usy, usj〉 would imply the adoption of px is related to

the post from usy. The second type of a path is similar to the first one, except this time we will

make use of the identified pairs. For example, in Figure 2(c), the product px adopted by ucz,

who is identified as usy (a friend of usj), is also adopted by uci . Similar to the first case, this path

〈uci , px, ucz(usy), usj〉 also imply the adoption of px made by usj is related to that made by usy(u
c
z),

if uci and usj belong to the same individual.

Note that the common interests with (identified) friends is a weaker indicator than the

common interests for a candidate pair. In this work, we extend the Katz’s index (Katz and

Katz, 1953) to provide a weighted measure on the collection of paths between uci and usy.

5) Katz’s Index (Katz and Katz, 1953): The Katz’s index sums over the collection

of paths, which are exponentially damped by the length in order to count short paths more

heavily, leading to the β-parameterized measure.
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score(uci , u
s
j) =

lmax∑
l=1

βl · |paths〈l〉uci ,usj | (2.5)

where paths
〈l〉
uci ,u

s
j

is the set of all length-l paths from uci to usj . Here we adapt the truncated Katz

score, in which the length-l is limited to lmax instead of ∞ as in the original Katz’s measure,

since the truncated Katz often outperforms Katz for link prediction (Lu et al., 2010). In this

work, we set lmax = 2 to capture both factors of the common interests and common interests

with (identified) friends. |paths〈1〉uci ,usj | is the same as the number of common interests, while

|paths〈2〉uci ,usj | is the number of paths through the interests of friends. For example, there are 5

paths between uci and usj in Figure 2(b) and 2 paths between them in Figure 2(c), and thus

|paths〈2〉uci ,usj | = 5 + 2 = 7.

2.3.2 Connecting Users in partially aligned networks

With the features extracted in the previous phase, we can train a binary classifier (e.g., SVM

or logistic regression) to roughly decide whether candidate pairs across networks belong to the

same identities or not. However, the predictions of the binary classifier cannot be directly used

for customer identification. This is because the inference of conventional classifiers are designed

for constraint-free settings (e.g., one customers can be paired with multiple user accounts in a

social network), and thus the one-to-one constraint on account pairs across networks may not

hold.

Instead of simply relying on the decision made by the classifier, we notice that most clas-

sifiers also generate similarity scores for classification. Based on the similarity scores that are

further calibrated (Zadrozny and Elkan, 2002), one may think of applying conventional match-
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Figure 3. Example of customer identification under different approaches. (a) is the input
networks and similarity scores, (b) and (c) are the results of existing baselines. (d) and (e) are

the results of CSI methods for K = 1 and K = 2, respectively.

ing techniques, such as stable marriage (Dubins and Freedman, 1981) and maximum weight

matching, to find a one-to-one matching between pairs of accounts across two networks. Nev-

ertheless, these techniques could be problematic in the customer identification task, since they

usually assume networks are fully aligned, whereas in fact most networks are partially aligned.

That is to say, some customers in an e-commerce site do not have any user accounts in an online

social network. We should not pair these customers to any user accounts in the social network

recklessly; otherwise, we may waste valuable resources on inappropriate targets.
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In order to tackle the above issues, we propose to formulate the customer identification

in partially aligned networks as a top-K maximum similarity and stable matching problem1.

Specifically, our goal is to find the top K pairs that have the maximum similarity (or weight)

among all the stable matching of any combination of K pairs across networks.

Generally speaking, stable matching is a one-to-one matching A with the principle that

there is no unmatched pair (m,w) such that m and w both prefer each other to their current

assignments in A. Here we say “m prefers w over z“, if the pair score (m,w) is larger than

the pair score (m, z). The primal reason for limiting our solution to stable matching is because

stable matching methods can maximize the local benefits of one set of nodes. Other matching

methods, such as maximum weight matching, are less suitable since they usually focus on

maximizing the overall benefit of the mapping of the entire networks.

Take Figure 3 as an illustrative example of different methods. Suppose in Figure 3(a) we are

given the similarity scores from the binary classifier for each candidate pair. Figure 3(b) shows

that link prediction methods with a fixed threshold (e.g., 0.5) may not be able to predict well,

because one customer could be linked with multiple accounts in the social network. On the

other hand, “maximum weight matching” methods find a set of pairs with the maximum sum

of weights (or similarities), in Figure 3(c), whereas it may not be a good solution for customer

1This problem is a variation of maximum weighted stable marriage (or royal couple matching in
(Marie and Gal, 2007)) problem. The major difference is in that we aim at finding a one-to-one mapping
for K nodes, instead of mapping all nodes.
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identification. Since the similarity score of (uc1, u
s
1) is larger than that of (uc1, u

s
2), customer uc1

is more likely to be the same individual of us1 rather than us2.

Assuming K, the number of customers to be identified, is specified in advance, we propose

to find the top K pairs of accounts with the maximum similarity, following the principle of

stable matching mentioned above. Figure 3(d) shows an illustrative example of CSI with K=1.

Pair (uc1, u
s
1) is the top-1 pair that has the maximum similarity score among all candidate pairs.

Hence, we would identify us1 as the social network account of customer uc1. As a consequence,

when K=2 in Figure 3(e), we should ignore the candidate pairs that associate with uc1 or us1

due to the one-to-one constraint. Thus, the next pair we would choose is (uc2, u
s
2), whose score

is the best among the rest pairs. In fact, among all the customers, probably only customer

uc1 has a user account, us1, in the social network, because the scores of other customers do not

indicate that they are similar enough to any users in the social network. Therefore, the result

in Figure 3(d) is the most appropriate solution. Nonetheless, we should be able to find the

top K-1 pairs before move to the K-th pair, which has lower similarity score than the top K-1

pairs.

The proposed CSI method for customer identification is shown in Algorithm 1. In each iter-

ation, we select the pair of accounts (uci , u
s
j) with the maximum similarity score from candidate

pairs. If both uci and usj have not yet assigned to any account, we add (uci , u
s
j) to the solution

set A′ and set uci and usj as occupied; otherwise if either uci or usj is occupied, we ignore (uci , u
s
j).

To facilitate the process of finding the pair with maximum score, we can maintain a max heap

instead of a matrix to store the similarity scores of candidate pairs. The algorithm stops when
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Algorithm 1 Customer-Social Identification
Input: A user-specified value K, a customer-product network Gc, a social network Gs,

a set of existing identified pairs A, .
Output: A set of predicted pairs A′.
1: /* first phase*/
2: Construct a training set with known labels using A
3: For each pair (uci , u

s
j), extract features

4: Train a classifier C on the training set.
5: Inference using the trained C on the test set.
6: /* second phase */
7: Calibrate the similarity scores of candidate pairs and sort them into a max heap H by the scores.
8: Initialize all unlabeled uci in Gc and usj in Gs as free.
9: A′ = ∅

10: while H 6= ∅ and |A′| < K do
11: Pop the pair (uci , u

s
j) with the max score from H

12: if uci and usj are both free then
13: A′ = A′ ∪ (uci , u

s
j)

14: Set uci and usj as occupied
15: end if
16: end while

the top K pairs are found, or there are no remaining candidate pairs in the max heap. The

matching computed by the CSI method is guaranteed to be a stable matching, according to

Theorem 1 in (Marie and Gal, 2007); furthermore, it has the maximum similarity score among

all the stable matching of any combination of K pairs across networks, which can be easily

proved by mathematical induction. Due to lack of space, we skip all the proofs.

It is worth noting that the selection of the parameter K is a challenging issue for most

problems that need to find out the top-K elements. Different approaches are proposed for

finding K, such as cross-validation and bootstrapping. In fact, the selection of K can also be

implemented in other ways. For example, instead of setting K directly, one can find the top

similar pairs until the similarity score of the matching pair is less than a threshold.
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2.4 Experiments

In this section, we first introduce the data sets for the experiments, and then present ex-

perimental results as well as empirical analysis.

2.4.1 Data Preparation

We conduct the experiments on the real-world datasets spanning 10 months, as summarized

in Table III. We choose Kickstarter.com, one of the largest sites for crowdfunding1, as an e-

commerce site because the adoption histories of each customer are public available. More

importantly, novel and creative crowdfunding projects are notably discussed on Twitter where

users are willing to share their interests.

Twitter: We gathered all the tweets regarding Kickstarter from Nov. 2012 to Sep. 2013.

For each tweet’s author, we queried Twitter API for the metadata about the author as well as

the social links of the author. For each project in Kickstarter we consider only the tweets that

can link to its webpage. We further filtered out the projects that were seldom discussed (less

than 5 tweets) in Twitter. The Twitter dataset after filtering consists of 3,725 projects, 178K

users, 5.4 million social links and 385K tweets that construct 234K links between Twitter users

and projects.

Kickstarter: We recorded all the projects in Kickstarter launched after Nov. 2012 and

completed before Sep. 2013. For each project, we obtained all of its backers, which can be

viewed as its customers. For each customer, we crawled his/her user profile and recorded his/her

1Crowdfunding – in which people can propose projects and raise funds through collaborative contri-
butions of crowd.
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Twitter account, if available. The Kickstarter dataset after filtering consists of 3,725 projects,

545K customers and 868K adoption links between customers and projects. The detailed analysis

of these datasets is available in (Lu et al., 2014b).

Data preprocessing: We preprocess the raw data to obtain the ground truth of identified

pairs. If a customer, in the Kickstarter dataset, has shown his/her Twitter account in his/her

user profile, and the Twitter account also exists in the Twitter dataset, we can safely treat the

pair of accounts of the customer as an identified pair. The identified pairs represent the positive

instances and they can be used to help construct negative instances of pairs. Due to the one-

to-one constraint, we can easily find a negative pair by taking one account from an identified

pair and connecting it to any account, in the opposite network, other than the corresponding

one. Thus, we can obtain up to 1.3 billion negative pairs.

However, in practice, if an e-commerce company wants to identify one of its customer in

a social network, it would probably inquire for the social network accounts whose usernames

are similar to the names (i.e., username and full name) of the customer in the company. Con-

sequently, it is critical for the e-commerce company to distinguish the actual one from others

with very similar usernames. To simulate the query process, we shall select the negative pairs

in which two accounts are likely to have similar usernames. Hence, for each account in the iden-

tified pairs, we search the candidate accounts, whose usernames contain a part of the names of

the given account, in the opposite network. Then, the candidate accounts are ranked by the

Levenshtein edit distance between the candidate usernames and the given customer username.

Finally, we sample negative pairs by connecting the given account with up to 100 candidate
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TABLE III

Statistics of the datasets.
Kickstarter-Twitter

property
original sampled

networks networks

# node
projects 3,725 3,725
customers 545,638 20,514
social network users 178,792 43,675

# link

adoption 868,050 39,480
post 234,550 58,988
social links 5,467,565 513,651
identified pairs 1,819 1,819
negative pairs 1.3 billion 93,436

accounts, other than the corresponding one, with the smallest edit distance. The statistics of

the original networks and the sampled networks are presented in Table III. In the following

experiments, we mainly conducted on the sampled networks.

2.4.2 Comparative methods

We compare our CSI method with eight baselines, including both supervised and unsuper-

vised link prediction methods, which are summarized as follows:

1) Unsupervised Link Prediction methods: We compare with a set of unsupervised

link prediction methods using the user interest features discussed in Section 2.3.1: Common

Interests (CI), Jaccard Coefficient (JC), Adamic/ Adar index (AA), Resource Allocation index

(RA), and Katz’s index (Katz). Following the setting in (Liben-Nowell and Kleinberg, 2003),

we test the performance of Katz with three different values of β (i.e., 0.05, 0.005 and 0.0005).
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Each link predictor outputs a ranked list of candidate pairs in deceasing order of similarity

scores. We can evaluate the performance of an unsupervised method based on the ranked list.

2) Supervised Link Prediction methods: We test supervised link prediction methods

using different types of feature sets separately. As discussed in Section 2.3.1, two feature sets

are considered, i.e., Profile and Interest. We also compare with the combination of both sets

of features (Profile+Interest). The label predictions of the base classifier are directly used

as the final predictions.

3) Customer-Social Identification (CSI): The proposed method in this chapter. CSI

leverages all the extracted features, i.e., Profile+Interest, for training the base classifier. Based

on the scores generated by the classifier, CSI takes the top-K maximum similarity and stable

matching as the final predictions. In default, K is set as the size of real identified pairs in the

testing set. We will analyze the performance of CSI method with K varied in the experiment.

Evaluation Measures. We evaluate the performance of each method in terms of Preci-

sion, Recall, F1-score and area under ROC curve (AUC). The first three measures can evaluate

the link prediction performances, while AUC evaluates the ranking performances. Since un-

supervised methods only predict a real value for each candidate pair, we only compare the

AUC of the unsupervised methods. Moreover, CSI and Profile+Interest share the same set of

features and thus they have the same ranking scores generated by the base classifier. Hence,

for AUC measure, we use CSI to represent both methods. For fair comparisons, linear LibSVM

(Chang and Lin, 2011) is used as the base classifier for all the compared methods. Accuracy
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Figure 4. Comparison of customer identification using different features

is not included in the evaluation measures, since we mainly focus on the real-world imbalanced

datasets in which Accuracy is usually meaningless.

Noteworthily, the F1-score and Recall of maximum weight matching (MWM) are consis-

tently lower than 0.1, and the Precision and AUC of MWM are consistently lower than 0.2,

which are significantly worse than those of other baseline methods. This is because MWM aims

at maximizing the overall benefit of the entire matching instead of the local benefits of individ-

uals, as mentioned in Section 2.3.2. Since MWM is not suitable for the customer identification

problem, MWM is not listed as one of the competitive methods.

2.4.3 Performance Analysis

We conduct the experiments using 5-fold cross validation, where one fold is used as training

data, and the remaining folds are used as testing data. We report the average results and

standard deviations of 5-fold cross validation on the dataset.

We first investigate the performance of different features in the unsupervised methods. In

Figure 4, Katz’s methods outperform the methods using other features. It indicates that by
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exploiting the paths through the interests of friends, we have a better opportunity to identify

customers in a social network. Even though the customers are not active in the social network,

the common interests with friends may leak the information of the customers and direct us to

identify them. However, from the comparison between Katz’s methods with different β, which

exponentially decreases the weight of longer path, we notice that the importance of friends’

interest should not be overrated.

Next, the customer identification problem in real world involves distinguishing the real

social network account of a customer from many other similar candidates. If we consider the

real pair of accounts as a positive instance and other candidates as negative instances, the

number of negative instances usually dominates that of positive instances. In other words, the

data instances are usually imbalanced. It is crucial to identify customers in such imbalanced

datasets.

Thus, we compare each method with imbalanced datasets by sampling pairs of accounts

according to different imbalance ratios in each round of the cross validation. The imbalance

ratio is defined as the number of negative pairs divides by the number of positive pairs. Ta-

ble IV presents the performance of each method under different imbalance ratios. The best

performances on each of the evaluation criteria are listed in bold. The results show that Profile

features can be used as the most precise tool to identify some positive pairs but cannot cover

most of them. By taking both Profile and Interest features into account, we are able to identify

the majority of positive pairs effectively, while only slightly decreasing the precision of identifi-

cation. The performance can be further improved through the one-to-one matching step in the
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TABLE IV

Performance comparison with various imbalance ratios.
imbalance ratio

Measure Methods 10 20 30 40 50

F1-score

Profile 0.672± 0.003 0.671± 0.003 0.666± 0.004 0.665± 0.003 0.661± 0.004
Interest 0.836± 0.008 0.815± 0.011 0.78± 0.012 0.763± 0.01 0.747± 0.006
Profile+Interest 0.895± 0.005 0.875± 0.014 0.847± 0.017 0.833± 0.019 0.803± 0.017
CSI 0.926± 0.004 0.915± 0.003 0.898± 0.006 0.89± 0.002 0.878±0.004

Precision

Profile 0.981± 0.001 0.977± 0.001 0.955± 0.004 0.952± 0.002 0.935± 0.004
Interest 0.944± 0.002 0.932±0.005 0.9±0.006 0.884±0.012 0.868±0.017
Profile+Interest 0.959±0.004 0.941±0.005 0.925±0.008 0.911±0.006 0.896±0.008
CSI 0.933± 0.003 0.92±0.003 0.902±0.006 0.894±0.003 0.881±0.003

Recall

Profile 0.511±0.004 0.511±0.004 0.511± 0.004 0.511±0.004 0.511±0.004
Interest 0.75±0.014 0.725±0.019 0.688±0.021 0.671±0.017 0.656±0.012
Profile+Interest 0.838±0.009 0.818±0.027 0.782±0.034 0.769±0.035 0.729±0.033
CSI 0.92±0.004 0.91±0.003 0.895±0.007 0.887±0.002 0.875±0.004

AUC
Profile 0.791±0.001 0.791±0.001 0.791±0.001 0.792±0.001 0.792±0.001
Interest 0.933±0.019 0.933±0.019 0.933±0.019 0.924±0.024 0.903±0.018
CSI 0.957±0.003 0.958±0.004 0.958±0.003 0.958±0.003 0.958±0.003

proposed CSI method. As shown in Table IV, CSI consistently outperforms the other methods

in F1-score, Recall and AUC with up to 38%, 80% and 21% improvement, respectively.

Another challenge of customer identification is that, in practice, there are only a small

number of identified pairs. Hence, we next study the performance of each method using a small

set of identified pairs for training. In each round of cross validation, we randomly sample a

percentage of identified pairs from the training fold and use them for training. The results of

all compared methods are reported in Table V. Again, CSI method consistently outperforms

other methods in F1-score, Recall and AUC. Especially when only 20% of identified pairs from

the training fold are used, the F1-score increases from 0.342 to 0.875 (with 156% improvement)

and the Recall increases from 0.211 to 0.875 (with 315% improvement). We also notice that the

performance of CSI method is quite stable with the change of the number of training samples.
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TABLE V

Performance comparison with various ratio of identified pairs.
number of identified pairs in training set (%)

Measure Methods 20% 40% 60% 80% 100%

F1-score

Profile 0.342± 0.007 0.469± 0.159 0.661± 0.004 0.661± 0.003 0.661± 0.004
Interest 0.486± 0.044 0.631± 0.026 0.695± 0.012 0.720± 0.022 0.747± 0.006
Profile+Interest 0.620± 0.029 0.753± 0.007 0.771± 0.014 0.793± 0.013 0.803± 0.017
CSI 0.875± 0.005 0.878± 0.004 0.877± 0.006 0.878± 0.003 0.878±0.004

Precision

Profile 0.911± 0.006 0.924± 0.008 0.936± 0.002 0.936± 0.004 0.935± 0.004
Interest 0.900± 0.030 0.893±0.008 0.892±0.003 0.884±0.006 0.868±0.017
Profile+Interest 0.938±0.016 0.914±0.015 0.900±0.006 0.901±0.005 0.896±0.008
CSI 0.875± 0.005 0.877±0.004 0.876±0.006 0.878±0.003 0.881±0.003

Recall

Profile 0.211±0.006 0.331±0.150 0.511± 0.004 0.511±0.004 0.511±0.004
Interest 0.335±0.041 0.489±0.032 0.569±0.016 0.609±0.034 0.656±0.012
Profile+Interest 0.464±0.033 0.641±0.008 0.674±0.022 0.708±0.021 0.729±0.033
CSI 0.875±0.005 0.878±0.004 0.877±0.006 0.879±0.003 0.875±0.004

AUC

Profile 0.773±0.025 0.793±0.002 0.794±0.002 0.793±0.002 0.792±0.001
Interest 0.903±0.018 0.903±0.018 0.894±0.002 0.904±0.020 0.903±0.018
CSI 0.958±0.003 0.958±0.003 0.958±0.004 0.958±0.004 0.958±0.003

This is because CSI method is designed to find the best stable matching all the time. Lack

of training samples only affect the accuracy of similarity scores, while it probably would not

change the preference of each account.

Finally, we investigate the performance of each method with K varied, where K is the

number of pairs we should find in a one-to-one matching. In our experiments, K is set as

1466, which is the size of real pairs in our testing set, in default. Since the predictions of

classifications cannot be directly compared, we won’t be able to find the top-K pairs using the

above baseline methods. Thus, in this experiment, we compare the performance of the CSI

methods using different sets of features. We denote the CSI method using only Profile feature

set as “Profile (w/ match)“, and we denote that using only Interest feature set as “Interest

(w/ match)“. Figure 5 shows that CSI method incorporating the more features can achieve
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Figure 5. Comparison between CSI and baselines with K varied

the better performance. Besides, the CSI method using only the Interest feature set performs

better than that using only the Profile feature set. More importantly, our proposed CSI method

achieves the best performance when K is around 1466, the actual size of pairs to be identified.

This indicates that CSI method can effectively find the top-K pairs that are most likely to be

the real pairs before it moves to pick the less possible pairs.
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2.5 Related Work

Due to the emergence of online social network services, social network analysis have been

intensively studied in recent years (Lu et al., 2010; Kong et al., 2013b; Lichtenwalter et al.,

2010; Getoor and Diehl, 2005). One active research topic is to predict unknown link in social

network. (Liben-Nowell and Kleinberg, 2003) developed unsupervised link prediction methods

based upon several topological features. These proposed features can be further used for link

prediction. Recently, there there many works on link prediction in social networks. For example,

(Backstrom and Leskovec, 2011) proposed a supervised random walk algorithm to estimate the

strength of link in social networks. (Lichtenwalter et al., 2010) discussed different challenges of

link prediction. (Kong et al., 2013b) formulated the problem of connecting accounts across social

networks as a anchor link prediction task, w.r.t one-to-one constraint across social networks.

They leverage the heterogeneous features, such as social, spatial and temporal information, to

help predict the anchor links.

Recently, user identification across multiple social networks has attracted many attentions

(Zafarani and Liu, 2013; Liu et al., 2013; Raad et al., 2010; Malhotra et al., 2012). (Zafarani

and Liu, 2013) observed that individuals often exhibit consistent behavioral patterns across

networks when selecting usernames. Based on the observation, they proposed a behavior model

to determine whether two usernames are belong to the same individual. (Raad et al., 2010)

addressed the problem of matching user profiles for inter-social networks. (Malhotra et al., 2012)

analyzed users’ online digital footprints and applied context specific techniques to measure the

similarity of accounts across networks. These studies indicate that username is one of the
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most discriminative features for disambiguating user profiles. However, customer identification

has some unique properties that make it different to the previous works. First, it requires

to predict links across networks with completely different schema (i.e., bipartite network vs.

general heterogeneous network). Second, since most networks are partially aligned, we should

identify the most similar pairs instead of mapping the entire networks. Due to these issues,

previous approaches may not be directly applicable to customer identification.



CHAPTER 3

TRANSFER LEARNING FOR NEW DOMAINS

(This chapter was previously published as “Item Recommendation for Emerging Online

Businesses”, in IJCAI ’16 (Lu et al., 2016).)

3.1 Introduction

Recommending products, services, friends etc. to users on social networks and e-commerce

websites, is an important component of online businesses like LinkedIn, Amazon, Coursera, etc.

Not only users can be guided to discover useful or interesting items, but a large amount of

revenues can be generated by recommending the right products to the target users. To make

accurate recommendation, one of the major tasks is to predict users’ ratings on items. Among

many recommendation techniques, collaborative filtering (CF) methods (Koren, 2008; Rong et

al., 2014) have been widely used in many areas, such as social networks and e-commerce sites.

Finding similar users and items for recommendation based on historical user-item interactions,

CF methods have proven to be one of the most successful solutions for recommendation in

developed online businesses.

However, it is a different story when employing collaborative information for emerging

online businesses. Generally speaking, emerging businesses can be online services that are still

in its embryonic stage; or mature ones that start to branch into new geographic areas or new

categories (Zhang and Yu, 2015). In an emerging business, available user data, including either

37
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explicit feedbacks (e.g., ratings) or implicit feedbacks (e.g., clicks), are usually too sparse for

effective recommendation. Furthermore, it still remains a challenge to provide an accurate

prediction for new users with extremely few records, which is called the “cold-start” problem.

Fortunately, different online businesses may share some common users and items. Figure 6

shows an example of an emerging e-commerce site and a developed review site. Note that among

four customers in the e-commerce site, two of them also have user accounts in the review site.

Besides, two products are shared by both sites. The recommendation task in this chapter is

to predict the rating of a given item by a target customer, as shown in question marks at the

bottom of Figure 6. Although user data are extremely sparse in the e-commerce site, abundant

knowledge in the more developed review site can be utilized to help recommendation.

Recently, researchers have applied transfer learning to CF methods for alleviating the data

sparsity in recommender systems (Singh and Gordon, 2008; Luo et al., 2014). Transfer learning

is a technique to utilize auxiliary information sources to help the learning task in the target

domain. Existing transfer learning models in CF typically utilize information shared by related

domains to learn latent factors for better recommendations, where the latent factors are encoded

into the low-rank representations (of a rating matrix) that can minimize the reconstruction

error. Most of the models assume that there are correspondences between users or items

across domains, and use the correspondences as constraint to align the latent factors. For

example, collective matrix factorization (CMF) (Singh and Gordon, 2008) finds joint low-rank

representations by simultaneously factorizing several matrices, sharing parameters among latent

factors when an entity participates in multiple relations.
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Figure 6. Example of paritally aligned heterogeneous networks, where some entities in one
network belong to the same identities in the other network.

However, the prerequisite of entity correspondence across different domains is often hard to

satisfy for all entities in most real-world scenarios. For example, only a portion of users and

items are overlapped in both eBay and Epinion. Manually identifying the entity correspon-

dences is expensive and time-consuming as users may use different names, or an item may be

named differently in different online businesses. Different identification algorithms (Kong et

al., 2013b; Zafarani and Liu, 2013; Lu et al., 2014a; Zhang et al., 2015) are designed to auto-

matically mapping entities across domains but they are usually much less accurate. Further,

the overlapping users can be biased to more active users. The others can only benefit from the
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transferred knowledge through the sparse user-item interactions in the target domain, leading

to sub-optimal results.

Recent studies suggest that preserving geometric closeness between similar entities is critical

to make transfer learning models robust (Zhu and Lafferty, 2005; Long et al., 2014). Specifically,

to learn latent factors for recommendation in the target domain via transfer learning, both the

cross-domain entity correspondences and the similarity information within the target domain

should be jointly taken into consideration. Recall the underlying assumption of CF: similar

users shall rate items similarly and similar items shall receive similar ratings from similar users.

The entities with cross-domain correspondences are assumed to behave similarly across different

domains, and thus their latent factors are aligned by CMF based methods. In the same manner,

if we are able to find similar entities within target domain, we can refine the latent factors for

similar entities such that the learned latent factors will preserve the similarity information of the

entities. If we can derive such similarity information for all entities universally, non-overlapping

entities can also benefit from the transferred knowledge through the latent factor refinement.

Thus, the learned latent factors should be less biased to the overlapping portion.

With the information sparsity of the emerging businesses, though, it is non-trivial to derive

entity similarity in emerging businesses using traditional similarity measures such as cosine

similarity and Euclidean distance. A number of studies leverage linkage structure for measuring

similarity (e.g., SimRank (Jeh and Widom, 2002) and PathSim (Sun et al., 2011)). These

linkage based similarity measures typically treat the relationships between entities as binary

connections (or with connection probabilities). However, relationships between entities are
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usually attached with plenty of attributes, e.g., the rating of an item given by a user, the

timestamp of a post written by a user and the distance between two locations. Discarding these

relationship attributes can lead to a degraded performance. How can we define an accurate

similarity measure by keeping relationship attributes and further leveraging side information

from multiple businesses?

In this chapter we introduce the concept of augmented meta path (AMP), which is a se-

quence of relations between entities and the relations are augmented with link attributes. Tak-

ing both the linkage structures and the augmented link attributes into account, we define a

novel similarity measure called AmpSim that can judiciously capture the rich similarity seman-

tics between entities via AMPs. By traversing between networks through overlapping entities,

AmpSim can easily gather side information from other networks to help measure entity simi-

larity. For example, the similarity between customer C2 and C3 in Figure 6 can be measured

through the AMP instance C2 ←→ U2
[score=4]←−−−−− I2

[score=4]−−−−−→ U4 ←→ C3, even there is no connection

between C2 and C3 in the emerging e-commerce site.

We further integrate the similarity information captured by AmpSim with a CMF model

such that the latent factors of similar entities would be refined w.r.t the geometric structure.

As a consequence, non-overlapping entities can also benefit from the transferred knowledge

through the latent factor refinement. Hence, the transferred knowledge would not be biased

to the more active ones but can be iteratively propagated across networks to fit the emerg-

ing business. Through extensive experiments on real-world datasets, the proposed model is
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demonstrated to significantly outperform other state-of-the-art CF algorithms in addressing

item recommendation for emerging businesses.

3.2 Preliminaries

In this section, we present the preliminaries and the problem formulation of this study.

Table VI lists the main notations we use through this chapter.

We extend the definition of Heterogenous Information Network (Sun et al., 2011) to take

the link attributes augmented with the links into account.

Definition 1. Augmented Heterogenous Information Network (AHIN): An AHIN can

be represented as G = (V, E ,Y), where each entity v ∈ V belongs to an entity type τ(v) ∈ T ,

and each link l ∈ E belongs to a relation type ψ(l) ∈ R and may have an augmented attribute

y, which belongs to an link attribute type ω(y) ∈ W.

An online business can be modeled using an AHIN: G = (V, E ,Y), where the user set U and

item set I are subsets of entities (i.e., U , I ⊂ V), the existing feedbacks of items given by users

are subsets of links (i.e., U × I ⊂ E). The attributes augmented with the feedbacks (such as

the user-item ratings Y, where each entry Yui corresponds to the rating of user u ∈ U on item

i ∈ I) are kept as link attributes in G (i.e., Y ⊂ Y). An emerging business is a business in

which the average number of ratings is lower than a threshold, i.e., AvgDeg(Y) = |Y|
|U| < ε.

If pairs of different networks share some common entities, then these networks are called

aligned networks.
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Definition 2. Aligned Networks: Aligned networks can be formulated asG = ((G(1), G(2), . . . , G(Π)),

A), where A =
⋃
s,tA(s,t), 1 ≤ s < t ≤ Π. A(s,t) is the set of undirected anchor links (v

(s)
p , v

(t)
q )

between entities across network G(s) and G(t), where v
(s)
p ∈ V(s) and v

(t)
q ∈ V(t).

We can depict the network schema of an AHIN G as SG = (T,R,W ), and the network

schema of of an aligned networks G as SG = (T ,R,W ), where T =
⋃
π T

(π) is the union of

entity types and R =
⋃
π R

(π)
⋃
RA is the union of link types (including the anchor link relation

RA), and W =
⋃
πW

(π) is the union of link attribute types, respectively. The network schema of

the aligned networks in Figure 6, for instance, is shown in Figure 7, where rectangles, diamonds

and circles represent the entity types, relation types and link attribute types, respectively.

For the sake of simplicity, we focus on one target emerging business network G(t) and

one source network G(s) (i.e., Π = {s, t}), which can be easily extended to multiple related

business. The task in this chapter is to predict the missing rating in the target business G(t).

The predicted rating of user u on item j is denoted by Ŷ
(t)
uj . Given aligned networks G, we aims

at providing a predictive function f : G→ Ŷ(t), such that the prediction errors are minimized.

3.3 Augmented Meta Path-based Similarity

To measure entity similarity by taking both the linkage structure and link attributes into

account, we define the augmented meta paths as follows:

Definition 3. Augmented meta path (AMP): Given the network schema SG = (T,R,W ),

an AMP P is a sequence of relations augmented with link attributes between entities, and is

denoted in the form of T1
R1[W1]−−−−→ T2

R2[W2]−−−−→ . . .
Rl−1[Wl−1]−−−−−−−→ Tl, where Ri is the relation type

between entity type Ti and Ti+1, and Wi is the augmented link attribute type of Ri if exists.
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TABLE VI

Notation summary
Symbol Description

u, i user, item
Y, I user-item rating and indicator matrices
P,Q low rank representations of users and items

G,SG augmented information network and its schema
V, E ,W set of entities, links and link attributes

A(s,t) set of anchor links across network G(s) and G(t)

T,R entity type and link type

G aligned networks
P,P−1 meta-path and reverse meta-path

For simplicity, we will use the first letter of each entity to represent that entity, the opposite

direction of the arrow to represent the reverse relation, ignore the relation type if there is no

ambiguity, and ignore the link attribute type if it is simply the count of connections. If an

AMP P does not involve any anchor link relations RA, we call it as an intra-network AMP.

Otherwise, we call it as an inter-network AMP.

Example 1. Intra-network AMP: The products rated by the same customer can be captured

by P
[star]←−−− C [star]−−−→ P .

Example 2. Inter-network AMP: The products in G(t) that are reviewed by the same users

in G(s) can be observed by P ←→ I
[score]←−−−− U [score]−−−−→ I ←→ P , where ←→ denotes the anchor links

across G(s) and G(t).

Inspired by the Homophily Principle (McPherson et al., 2001) – two entities are considered

to be similar if they are related to similar neighbors – we propose to measure the similarity of
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Figure 7. Schema of an e-commerce site partially aligned with a crowd-sourced review site.

two entities by their neighbors’ similarities. However, an AMP may consist of multiple types of

relations, and different link attributes are hard to be compared. To provide a general similarity

measure, we apply a simple trick to normalize the link attributes in the AMP.

Let first assume that in the AMP the link attributes appear in pairs (i.e., the number of the

same type of link attributes is even). We can replace the link attribute Y by the normalized

value M using following equation:

Mui =
Yui − bi√∑
j(Yuj − bj)2

(3.1)
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, where bi is a bias term for the entity i. For the link attributes that are bounded within a

certain range (e.g., a rating can be bounded between 1 and 5), we set bi = Yi the average

value of entity i. For the other type of attributes, we set bi = 0. It is not hard to see that

the multiplication of a pair of normalized link attributes (i.e., MMT ) equals to adjusted cosine

similarity if bi 6= 0 and equals to cosine similarity if bi = 0. For the link attributes that do not

appear in pairs, there is no way to compare the link attributes with others. Thus, we replace

these attributes by the count of the connections and normalize them using Equation 3.1 with

bi = 0.

Considering the normalized link attributes and the direction of AMPs, we formulate the

similarity measure as:

Definition 4. AmpSim: An augmented meta path-based similarity measure between va and

vb based on path P is:

s(va, vb|P) =
[
∏l
i=1 Mi]ab + [

∏1
i=l M

T
i ]ba

[
∏l
i=1 Mi]a∗ + [

∏1
i=l M

T
i ]b∗

∈ [0, 1],

where
∏l
i=1 Mi denotes the product of the normalized link attributes upon P, [M ]ab means the

entry (a, b) in M, and [M ]a∗ means the ath row in M. Since AmpSim can be computed in matrix

form, the time complexity of computing AmpSim equals to that of matrix multiplications. Note

that when P is symmetric and all the link attributes are the count of connections, AmpSim is

equivalent to PathSim (Sun et al., 2011). Hence, AmpSim can be seen as a generalized version

of PathSim on AMPs.
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Different AMPs capture the similarity between entities in different aspects and overall simi-

larity between entities can be obtained by aggregating information from all these AMPs. With-

out loss of generality, we choose tanh as the aggregation function, the overall similarity between

entity va and vb can be represented as

S(va, vb) =
tanh(

∑
iwiSi(va, vb))

tanh(1)
∈ [0, 1], (3.2)

where Si denote the AmpSim upon the AMP Pi, the value of wi denotes the weight of Pi, and∑
iwi = 1.

3.4 Recommendation Model

In transfer learning based collaborative filtering, collective matrix factorization (CMF) (Singh

and Gordon, 2008) is proposed to estimate the low-rank representations as follows:

min
P(π),Q(π),π∈{s,t}

∑
π∈{s,t}

||I(π) � (Y(π) −P(π)Q(π)T )||2F ,

where � is the Hadamard (element-wise) product, || ∗ ||2F stands for Frobenius norm, and

I(π) is an indicator matrix. I
(π)
ui = 1 if Y

(π)
ui is observed, and otherwise I

(π)
ui = 0. P(π) =

[p
(π)
1 ; p

(π)
2 ; . . . ; p

(π)
nπ ] ∈ Rnπ×k and Q(π) = [q

(π)
1 ; q

(π)
2 ; . . . ; q

(π)
mπ ] ∈ Rmπ×k are low-rank represen-

tation of users and items. nπ and mπ are the number of users and items in network G(π),

and k is the parameter that estimate the rank. The key idea of CMF is to share parameters

among factors when an entity participates in multiple relations. In (Singh and Gordon, 2008),

for instance, the factor matrices of items are assumed to be the same (i.e., Q(s) = Q(t)).
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We formulate our model as a constrained collective matrix factorization, where three soft

constraints are involved:

• Non-negativity: The factor matrices {P(π)}, {Q(π)} contain only nonnegative entries,

since we only focus on positive interactions between users and items.

• Geometric closeness: The latent factors of similar entities should be close w.r.t the

geometric structure. Preserving the geometric structure in the target domain can be

achieved by the geometric regularization (Cai et al., 2011):

RG(P) =
1

2

∑
u,v

Suv||pu − pv||22,

where S is computed by Equation 3.2.

• Alignment constraint: The latent factors of aligned entities should be close. Let (i, gi)

be the anchor link between entity i in the target network G(t) and entity gi in the source

network G(s). The difference of their latent factors should be minimized:

RA(Q(t),Q(s)) =
1

2

∑
(i,gi)∈A(s,t)

||q(t)
i − q(s)

gi ||22.

Integrating the alignment regularizationRA and the geometric regularizationRG seamlessly

would enjoy the intrinsic mutual reinforcement learning: 1) with RA, knowledge can be trans-

ferred between businesses through the common latent factors of overlapping entities; 2) with
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RG, the latent factors can be refined for similar entities to fit the geometric closeness within

the emerging business. The objective function of our model can be formulated as follows:

min
P(π),Q(π)≥0,
π∈{s,t}

J =
∑

π∈{s,t}

||I(π) � (Y(π) −P(π)Q(π)T )||2F

+
α

2

∑
π∈{s,t}

(||P(π)||2F + ||Q(π)||2F )

+ β(RA(P(t),P(s)) +RA(Q(t),Q(s)))

+ λ(RG(P(t)) +RG(Q(t))), (3.3)

where α controls the regularization to avoid over-fitting when learning {P(π)}, {Q(π)}, β controls

the trade-off between source network and target network and λ controls the importance of

geometric closeness. Since we focus on improving recommendation in the target business, the

geometric regularization RG is only applied to P(t) and Q(t).

To ease the subsequent derivation, we rewrite the geometric terms into trace form. From

the similarity matrix S on users, we define the diagonal matrix D whose elements Dii =
∑

j Sij ,

and the Laplacian matrix LP = D− S. Then RG(P ) can be reduced into the trace form:

∑
u,v

Suv||pu − pv||2 = Tr(PT (D− S)P) = Tr(PTLPP).

Similar, given the similarity matrix S′ on items, RG(Q) can also be reduced into the trace form

Tr(QTLQQ), where LQ = D′ − S′ and D′ii =
∑

j S′ij .
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For solving Equation 3.3, we derive the multiplicative updating rules w.r.t {P(π)}, {Q(π)}

in the rest of this section.

Let A be the user mapping matrix that map users from network G(t) to network G(s), i.e.,

Au,gu = 1 if (u, gu) ∈ A(t,s), zero otherwise. The partial derivatives of J in Equation 3.3 w.r.t

{P (π)} are:

∂J
∂P(s)

= −(I(s) �Y(s))Q(s) + I(s) � (P(s)Q(s)T )Q(s)

+ αP(s) + β(ATAP(s) −ATP(t))

∂J
∂P(t)

= −(I(t) �Y(t))Q(t) + I(t) � (P(t)Q(t)T )Q(t)

+ αP(t) + β(AATP(t) −AP(s)) + λLPP(t)

Using the Karush-Kuhn-Tucker (KKT) complementarity conditions, we can obtain the fol-

lowing updating rules:

P(s) = P(s)�√
(I(s) �Y(s))Q(s) + βATP(t)

I(s) � (P(s)Q(s)T )Q(s) + αP(s) + βATAP(s)
,

P(t) = P(t)�√
(I(t) �Y(t))Q(t) + βAP(s) + λL−PP(t)

I(t) � (P(t)Q(t)T )Q(t) + αP(t) + βAATP(t) + λL+
PP(t)

,

where LP = L+
P − L−P , [L

+
P ]ij = (|[LP ]ij |+ [LP ]ij)/2 ≥ 0 and [L−P ]ij = (|[LP ]ij | − [LP ]ij)/2 ≥ 0.
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Similarly, let B be the item mapping matrix whose element Bi,gi = 1 if (i, gi) ∈ A(t,s), zero

otherwise. We can obtain the following updating rules from the derivatives of J w.r.t {Q(π)}:

Q(s) = Q(s)�√
(I(s) �Y(s))TP(s) + βBTQ(t)

(I(s) � (P(s)Q(s)T ))TP(s) + αQ(s) + βBTBQ(s)
,

Q(t) = Q(t)�√√√√ (I(t) �Y(t))TP(t) + βBTQ(s) + λL−QQ(t)

(I(t) � (P(t)Q(t)T ))TP(t) + αQ(t) + βBTBQ(t) + λL+
QQ(t)

,

where LQ = L+
Q − L−Q, [L

+
Q]ij = (|[LQ]ij |+ [LQ]ij)/2 ≥ 0 and [L−Q]ij = (|[LQ]ij | − [LQ]ij)/2 ≥ 0.

Given the learned latent factors, the missing ratings in Y(t) are predicted as Ŷ(t) =

P(t)Q(t)T .

3.5 Experiments

3.5.1 Experimental Setup

We evaluate our proposed recommendation model on two real-world datasets: Yelp1 and

Epinions (Tang et al., 2012). For both datasets, we filter out all the locations/items with less

than 5 ratings and all the users who only have 1 rating. The statistics of the datasets after

filtering are listed in Table VII.

The Epinions dataset is used for testing the scenario of an emerging online business that

shares some users with a developed online business. As in (Li and Lin, 2014), we partition the

1http://www.yelp.com/dataset_challenge/

http://www.yelp.com/dataset_challenge/
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TABLE VII

Statistics of Datasets
Name #users #items/locations #tags #ratings #social links

Epinions 21, 740 31, 678 27 541, 108 344, 286
Yelp 26, 618 8, 467 770 230, 418 183, 765

dataset into two parts with partially overlapping users and items. One part consists of ratings

given by 80% users, which serves as the source business. The other part consists of ratings

given by 20% users, which serves as the target business. In this task, 20% users and all the

items in the target business are overlapping with the source business. The Yelp dataset is used

for testing the scenario of a mature online business that starts to branch into new geographic

areas. There are 176, 736 ratings on 6, 317 locations given by 19, 464 users in Arizona, and

53, 682 ratings on 2, 150 locations given by 11, 476 users in Nevada. We consider Arizona as the

source business and Nevada as the target business. 4, 322 users are shared in both businesses

but the locations are disjoint.

For each target business, we conduct the experiments using 5-fold cross-validation and report

the average results of 5-fold cross validation on the datasets. Since we are interested in the cold

start problem, we select the cold start users, who have less than 5 ratings in the training set, in

each fold and report their results separately. We use “Mean Absolute Error” (MAE) and the

“Root Mean Square Error” (RMSE) metrics to measure the prediction quality. Both metrics

have been widely used in the recommendation problem (Zhang et al., 2006; Yu et al., 2013; Luo

et al., 2014) and the smaller is the value of each criterion, the better is the performance.
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TABLE VIII

Augmented meta paths used in the experiment.
Intra-network augmented meta path

(C
[star]−−−→ P

[star]←−−− C),(P
[star]←−−− C [star]−−−→ P ), (P → T ← P )

(C
[star]−−−→ P

[star]←−−− C [star]−−−→ P
[star]←−−− C)

(P
[star]←−−− C [star]−−−→ P

[star]←−−− C [star]−−−→ P )

Inter-network augmented meta path

(P ←→ I
[score]←−−−− U [score]−−−−→ I ←→ P )

(C ←→ U
[score]−−−−→ I

[score]←−−−− U ←→ C), (C ←→ U ←→ U ←→ C)

C and P denote “customer” and “product” in G(t), respectively.

U , I and T denote “user”, “item” and “tag” in G(s), respectively.

←→ denotes the anchor links across G(s) and G(t).

3.5.2 Comparison methods

We compare our proposed model with several state-of-the-art recommendation models.

First, we implement the models that utilize heterogeneous relationships to capture similarity

information as geometric regularization for improving recommendation performance. Weighted

nonnegative matrix factorization (WNMF (Zhang et al., 2006)) on the target rating matrix

is utilized as the baseline method. In the following methods, different similarity measures are

introduced for constructing the geometric regularization and incorporating into the WNMF

model.

• Hete-MF (Yu et al., 2013): uses PathSim to measure the similarity between items.

• Hete-CF (Luo et al., 2014): extends Hete-MF by also considering the relationship be-

tween users.
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• Hete-PRW: We implement pairwise random walk to measure the similarity between

users/items.

• Amp-MF: We use our proposed similarity measure AmpSim to compute the similarity

between users/items.

In the experiments, we construct aligned networks for both datasets based on the network

schema in Figure 7 and utilize eight different similarity semantics listed in Table VIII to capture

the similarity information for the above models. For simplicity, the weights of different AMPs

in Equation 3.2 are assigned with identical values, i.e., ω = [1
8 , ,

1
8 ].

Next, we compare with the models that learn common latent factors from multiple relative

matrices.

• CMF (Singh and Gordon, 2008): Collective matrix factorization with alignment regu-

larization is used as the state-of-the-art transfer learning model with cross-domain entity

correspondences.

• RMGM (Li et al., 2009b): Rating-matrix generative modelis used as the state-of-the-art

model without entity correspondences.

• Amp-CMF: Our proposed recommendation model.

Parameters of baselines are set to be consistent with the values recommended in their

corresponding papers. For each method, we randomly initialize the latent factors and set the

maximum number of iterations as 100. For RMGM, the latent dimensionality k is set as the

number of clusters, the default choice for most kernel-based approaches. The sparsity tradeoff
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TABLE IX

Performance comparison (mean±std) on the Epinion dataset

Method

Overall Cold Start
RMSE MAE RMSE MAE

k = 10 k = 20 k = 10 k = 20 k = 10 k = 20 k = 10 k = 20

WNMF 1.551± 0.009 1.533± 0.009 1.156± 0.008 1.153± 0.009 1.596± 0.016 1.594± 0.016 1.219± 0.016 1.218± 0.013
Hete-MF 1.402± 0.010 1.398± 0.009 1.034± 0.009 1.030± 0.008 1.462± 0.017 1.454± 0.014 1.106± 0.016 1.101± 0.013
Hete-CF 1.148± 0.008 1.141± 0.008 0.908± 0.007 0.901± 0.007 1.211± 0.011 1.201± 0.011 0.961± 0.009 0.955± 0.009

Hete-PRW 1.395± 0.009 1.392± 0.009 1.039± 0.005 1.030± 0.005 1.434± 0.009 1.428± 0.009 1.072± 0.005 1.066± 0.005
Amp-MF 1.099±0.009 1.097±0.009 0.869±0.005 0.868±0.005 1.131±0.009 1.128±0.009 0.899±0.005 0.897±0.005

CMF 1.152± 0.007 1.143± 0.007 0.870± 0.004 0.868± 0.005 1.198± 0.012 1.185± 0.010 0.902± 0.009 0.899± 0.009
RMGM 1.246± 0.008 1.242± 0.010 0.989± 0.005 0.983± 0.007 1.271± 0.005 1.266± 0.009 1.013± 0.002 1.014± 0.006

Amp-CMF 1.097±0.009 1.095±0.009 0.867±0.005 0.866±0.005 1.129±0.009 1.127±0.009 0.898±0.005 0.896±0.005

parameter α is fixed as 0.1 for both datasets. We set the similarity tradeoff parameter λ = 1 as

in (Yu et al., 2013; Luo et al., 2014) and tune the alignment tradeoff parameter by searching

the grid of {10−5, · · · , 103}.

3.5.3 Performance Analysis

Table IX and Table X present the RMSE and MAE results of all methods, with different

dimensionality settings (k = 10 and 20), on both datasets. The column Overall and Cold Start

report the performance on the whole test user set and the cold start user set, respectively. The

best results in each experimental setting are listed in bold.

We first investigate the performance of the models with geometric regularization. It can

be seen that Hete-CF performs better than WNMF and Hete-MF, likely due to the fact that

incorporating more similarity information can alleviate the data sparsity issue and improve the

prediction accuracy. For all cases, Amp-MF beats all baseline methods. We believe this is

because the more accurate similarity measure can usually lead to the better recommendation
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TABLE X

Performance comparison (mean±std) on the Yelp dataset

Method

Overall Cold Start
RMSE MAE RMSE MAE

k = 10 k = 20 k = 10 k = 20 k = 10 k = 20 k = 10 k = 20

WNMF 1.446± 0.009 1.429± 0.009 1.097± 0.006 1.083± 0.005 1.535± 0.014 1.520± 0.013 1.184± 0.005 1.170± 0.005
Hete-MF 1.429± 0.009 1.351± 0.009 1.086± 0.005 1.006± 0.005 1.518± 0.012 1.492± 0.011 1.171± 0.005 1.148± 0.005
Hete-CF 1.305± 0.008 1.199± 0.008 0.957± 0.005 0.907± 0.005 1.378± 0.009 1.228± 0.009 1.017± 0.005 0.935± 0.005

Hete-PRW 1.343± 0.008 1.313± 0.008 1.018± 0.005 0.991± 0.005 1.414± 0.008 1.382± 0.008 1.088± 0.005 1.059± 0.005
Amp-MF 1.191±0.009 1.187±0.009 0.899±0.005 0.897±0.005 1.219±0.008 1.215±0.008 0.928±0.005 0.925±0.005

CMF 1.294± 0.009 1.274± 0.010 0.966± 0.005 0.949± 0.006 1.349± 0.012 1.329± 0.012 1.015± 0.005 0.998± 0.006
RMGM 1.240± 0.009 1.238± 0.009 0.925± 0.005 0.902± 0.004 1.316± 0.009 1.295± 0.009 0.995± 0.004 0.974± 0.004

Amp-CMF 1.134±0.009 1.127±0.009 0.854±0.005 0.847±0.005 1.148±0.009 1.139±0.009 0.875±0.006 0.865±0.006

performance. Our proposed similarity measure, AmpSim, is capable of leveraging the relation-

ship attributes to find the most similar entities.

Next, we compare the models that learn common latent factors from multiple relative matri-

ces. CMF preforms better than RMGM in the Epinions dataset while the results are opposite in

the Yelp dataset. The major reason is that CMF requires entity correspondences for knowledge

transfer. In the Epinions dataset, the items in the target business are contained in the source

business, but in the Yelp dataset the items (locations) are disjoint. The lack of overlapping

items makes CMF not able to transfer the common information of items from the source busi-

ness to the target business. Furthermore, we can see that Amp-CMF consistently outperform

all the other comparison models. This confirms our assumption that integrating the similarity

information with the CMF model would enjoy the intrinsic mutual reinforcement and boost the

recommendation quality.
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Figure 8. Converge Rate on the Yelp Dataset

In general, most of the models with higher dimensionality (K=20) perform slightly better

than that with lower dimensionality (K=10). Besides, all models have higher prediction errors

on the cold start user sets, who have less than 5 ratings the training set, than on the whole testing

user sets. Noteworthily, Amp-CMP also outperforms all the other baseline methods for the cold

start user sets. This confirms the effectiveness of Amp-CMF for cold start recommendation.

Since Amp-CMF is an iterative algorithm based on CMF, we need to check its convergence

property empirically. Figure 8 presents the convergence process of Amp-CMF in terms of the

objective function (in Equation 3.3) and the training performance. From 8(a), one can claim

that the proposed objective function converges nicely and the objective value can be reduced

rapidly in the first few iterations. From Figure 8(b), we notice that it takes a small number of

iterations before the error rates start to converge. This is because the latent factors of similar
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entities are enforced to be close, while their initial values are randomly allocated (as in most

matrix factorization based algorithms). It needs a few iterations as a initialization phase before

the latent factors start to fit the training sets.

3.6 Related Work

Transfer learning based on CMF has been proposed to utilized information shared by related

domains to learn latent factors for better recommendations. The first category of such methods

assume that there are certain overlapping users and/or items across multiple domains and align

the latent factors of the overlapping users and/or items (Singh and Gordon, 2008; Long et

al., 2010). Another approach is to enforce the similarity of cluster-level preference patterns

in two related domains, without assuming cross-domain entity correspondences. Codebook-

based-transfer (CBF) (Li et al., 2009a) proposed to align the two kernel matrices of users from

two domains using a co-clustering process. Rating-matrix generative model (RMGM) uses

a probabilistic graphical model to relax the constraints in CBT from hard clustering to soft

clustering. Although the former approach is more effective for knowledge transfer in general,

it can be biased to the overlapping portions. One possible way to handle the above issue is to

preserve geometric closeness between similar entities (Wang and Mahadevan, 2011; Long et al.,

2014). However, it may not be trivial to find reliable similarity information in the emerging

domain.

When building a recommendation system, it is crucial to choose a good way to measure the

entity similarity. A number of studies leverage linkage structure of a network for measuring

similarity, e.g., personalized PageRank (Jeh and Widom, 2003) and SimRank (Jeh and Widom,
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2002), while they are defined on a homogeneous network or a bipartite network. However, in

real-world applications, there are lots of heterogeneous networks. Meta path was introduced

in (Sun et al., 2011; Shi et al., 2012) to measure the similarity in heterogeneous networks. A

series of meta path-based similarity measures are proposed for either the same type of enti-

ties (Sun et al., 2011) or different type of entities (Shi et al., 2014; Cao et al., 2014b; Shi et al.,

2015). Recently, researchers have been aware of the importance of heterogeneous information

for recommendation. (Yu et al., 2013) proposed an implicit feedback recommendation model

with the similarity information extracted from heterogeneous network. (Luo et al., 2014)

proposed a CF-based social recommendation method, called Hete-CF, using heterogeneous re-

lations. (Vahedian, 2014) proposed the WHyLDR approach for multiple recommendation tasks.

It combines a linear-weighted hybrid model with heterogeneous information. These methods

usually treat the relationships between entities as binary connections. However, plentiful at-

tributes are usually attached to the relationships, e.g., the rating of an item given by a user

and the timestamp of a post. As demonstrated in the experiments, discarding these important

attributes can lead to a degraded performance.



CHAPTER 4

MULTI-TASK MULTI-VIEW LEARNING

(This chapter was previously published as “Multilinear Factorization Machines for Multi-

Task Multi-View Learning”, in WSDM ’17 (Lu et al., 2017). DOI: http://dx.doi.org/10.

1145/3018661.3018716.)

4.1 Introduction

In the era of big data, it is becoming common to have heterogeneous data obtained in

multiple views or extracted from multiple sources, known as “multi-view data”. For example,

in web image retrieval, the visual information of images and their textual descriptions can be

regarded as two views; for scientific document categorization, each paper has word features

and its citations. Multi-View Learning (MVL) was proposed to combine different views to

obtain better performance than relying on just one single view (Cao et al., 2016; Sindhwani

and Rosenberg, 2008; Xu et al., 2013; Varma and Babu, 2009). In addition, different learning

tasks might be related with each other through shared features. For example, for product

recommendation systems, different product domains can be viewed as different tasks and they

might share certain word features in product reviews, e.g., good, great and bad. Multi-Task

Learning (MTL) was developed to learn multiple related tasks together instead of learning them

separately, so as to improve the performance of each task (Ando and Zhang, 2005; Argyriou et

60

http://dx.doi.org/10.1145/3018661.3018716
http://dx.doi.org/10.1145/3018661.3018716
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al., 2008; Chen et al., 2009; Chen et al., 2011; Evgeniou and Pontil, 2007; Evgeniou and Pontil,

2004; Gong et al., 2012).

Existing MVL or MTL approaches only capture one type of heterogeneity, while real-world

problems exhibit dual-heterogeneity (both feature heterogeneity and task heterogeneity) (He

and Lawrence, 2011; Jin et al., 2013; Zhang and Huan, 2012). Consider the multi-task recom-

mendation problem, reviews may also contain multi-view data such as words, emotion icons,

images and web links to other products. Such type of problem is Multi-Task Multi-View

(MTMV) learning. Though there are a wide variety of applications of MTMV learning, only a

few works have addressed this problem. Recently, a graph-based iterative algorithm, IteM2 (He

and Lawrence, 2011), was first introduced for MTMV learning with applications to text classifi-

cation, while it can only deal with nonnegative feature values. Assuming the predictive models

should be consistent among different views, co-regularization based algorithms, such as reg-

MVMT (Zhang and Huan, 2012) and CSL-MTMV (Jin et al., 2013), imposed a regularization

term to enforce the difference of the predictive functions among different views to be small.

Nonetheless, different views might not be consistent with each other especially for heteroge-

neous data; instead, they provide complementary information. For example, textual view (e.g.,

bag-of-words) and topological view (e.g., citations in the document categorization or web links

in the product recommendation) usually provide complementary information. In contrast to

building a distinct model for each view or each task, another direction is to mine the hidden

interactions/correlations among MTMV features.
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In this chapter, we propose a general framework for learning the predictive multilinear

structure from the complex relationships within the heterogeneous data. Specifically, we model

the multimodal interactions among multiple tasks and multiple views as a tensor structure, by

taking the tensor product of their respective feature spaces. As the interactions with different

orders can reflect different but complementary insights (Cao et al., 2016; Rendle, 2010), in the

proposed framework, the full-order interactions observed in the heterogeneous data are used

collectively to learn the consensus representation. In this manner, it can also deal with the

partially incomplete data without difficulty because the learning procedure does not simply

rely on any particular view.

Constructing the full-order tensor may not be realistic for real-world applications, as the

model parameters can be exponential growth. We further propose multilinear factorization ma-

chines (MFMs) that can efficiently learn the task-specific feature map and the task-view shared

multilinear structures, without physically building the tensor. A joint factorization is applied

which makes parameter estimation more accurate under sparsity and avoid overfitting. Fur-

thermore, the model complexity of the proposed MFMs is linear in the feature dimensionality,

making it applicable to large-scale real-world applications.

The contributions of this work are summarized as follows:

• The proposed framework is widely applicable to multiple types of heterogeneous machine

learning problems, by learning predictive multilinear structures from the complex rela-

tionships within the heterogeneous data.
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TABLE XI

List of basic symbols.

Symbol Definition and description

x a scale is denoted by a lowercase letter
x a vector is denoted by a boldface lowercase letter
X a matrix is denoted by a boldface uppercase letter
X a tensor, set or space is represented by a calligraphic letter
[1 : M ] denotes a set of integers in the range of 1 to M inclusively.
〈·, ·〉 denotes inner product
◦ denotes tensor product (outer product)
∗ denotes Hadamard (element-wise) product

• We propose multilinear factorization machines (MFMs) that can efficiently learn the task-

specific feature map and the task-view shared multilinear structures from full-order inter-

actions.

• Extensive experiments on four real-world datasets demonstrate that the proposed MFM

methods outperform several state-of-the-art methods in a wide variety of MTMV prob-

lems, including classification tasks and regression tasks.

4.2 Preliminaries

The key to this work is to apply the tensor structure to fuse all possible dependence re-

lationships among different views and different tasks. We begin by introducing some related

concepts and notation about tensor, and then state the problem of multi-task multi-view learn-

ing. Table XI lists basic symbols that will be used throughout the chapter.
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4.2.1 Tensor Basics and Notation

Tensors is a mathematical representation of higher order arrays. Following (Kolda and

Bader, 2009), an M -th order tensor is denoted by X ∈ RI1×···×IM and its elements by xi1,··· ,iM .

An index is denoted by a lowercase letter, spanning in the range of [1, 2, · · · , I]. All vectors

are column vectors unless otherwise specified. For an arbitrary matrix X ∈ RI×J , the i-th

row is denoted by xi and the j-th column vector is denoted by xj . The inner product of two

same-sized tensors X ,Y ∈ RI1×···×IM is defined by
〈
X ,Y

〉
=
∑I1

i1=1 · · ·
∑IM

i1=1 xi1,··· ,iM yi1,··· ,iM .

The outer product of M vectors x(m) ∈ RIm for m ∈ [1 : M ] is an M -th order tensor and

defined elementwise by
(
x(1) ◦ · · · ◦ x(M)

)
i1,··· ,iM

= x
(1)
i1
· · ·x(M)

iM
for all values of the indices. In

particular, given X = x(1) ◦ · · · ◦ x(M) and Y = y(1) ◦ · · · ◦ y(M), it holds that

〈
X ,Y

〉
=

M∏
m=1

〈
x(m),y(m)

〉
=

M∏
m=1

x(m)T
y(m) (4.1)

For a general tensor X ∈ RI1×···×IM , its CP factorization is

X =

R∑
r=1

x(1)
r ◦ · · · ◦ x(M)

r = JX(1), . . . ,X(M)K (4.2)

where for m ∈ [1 : M ], X(m) = [x
(m)
1 , · · · ,x(m)

R ] are factor matrices of size Im × R, R is the

number of factors, and J·K is used for shorthand.

4.2.2 Problem Formulation

Suppose that the problem includes T tasks and V views. Let Nt be the number of labeled

instances in the task t ∈ [1 : T ], thus we have N =
∑

tNt labeled instances in total. Let Iv
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be the dimensionality of the view v ∈ [1 : V ] and denote I =
∑

v Iv. Assuming the problem is

associated with training data D =
{

(X
(1)
t , . . . ,X

(V )
t , yt) | t ∈ [1 : T ]

}
, where X

(v)
t ∈ RIv×Nt

is the feature matrix in the t-th task for the v-th view; yt is the vector of the responses of

the t-th task. The goal is to leverage the discriminative information from all tasks, as well

as the complementary among different views, to make prediction on the unlabeled instances

in each task. Specifically, for the t-th task, we are interested in finding a predictive function

ft : Xt → Yt that minimizes the expected loss, where Xt is the input space and Yt is the output

space.

The objective is to learn T functions {ft}Tt=1 that minimize the following regularized em-

pirical risk:

R({ft}Tt=1) =
T∑
t=1

(
Nt∑
n=1

1

Nt
`
(
ft({x(v)

t,n}), yt,n)
)

+ λΩ(ft)

)
(4.3)

where ` is a prescribed loss function, Ω is the regularizer encoding the prior knowledge of ft, and

λ > 0 is the regularization hyperparameter that controls the trade-off between the empirical

loss and the prior knowledge. In this formulation, we weight each task equally (by dividing the

number of instances Nt) so that no task will dominate the others. One may also choose other

weighting schemes. The empirical loss of the training data in the t-th task is

Lt(ft({X(v)
t }),y) =

1

Nt

Nt∑
n=1

`
(
ft({x(v)

t,n}), yt,n
)

(4.4)

The choice of the loss function ` depends on learning tasks. To conduct regression, for

example, one can use the squared loss, and for classification problems, one can use the logistic
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loss or cross-entropy. The formulation of regularizer is chosen based on prior knowledge about

data.

For solving MTMV problems, a straightforward approach is to concatenate feature vectors

from different views and apply the multi-task learning algorithms. However, this approach

would fail to leverage the underlying correlations between different views, wherein complemen-

tary information is contained. Through the employment of a nonlinear kernel, such as “polyno-

mial kernel” or “RBF kernel”, one can implicitly project data samples from the feature space

into a high-dimensional space. This allows modeling the higher order interactions between fea-

tures. However, the interaction parameters are learned completely independent (Rendle, 2010).

Moreover, the inter-view correlations are evaluated only at the view-level, while the explicit

correlations between features among different views are failed to be explored.

Currently, there are only a few researches on MTMV learning. The IteM2 algorithm (He

and Lawrence, 2011) projects any two tasks to a new RKHS based on the common views

shared by the given two tasks, and has been shown empirically outperforming multiple kernel

approaches. Assuming the predictive models should be consistent among different views, co-

regularization based methods were later developed (Jin et al., 2013; Zhang and Huan, 2012).

These methods assume that all the views are similar to each other, while such assumption

may not be appropriate especially for heterogeneous data. Furthermore, the co-regularization

approaches involve pairwise comparison of the prediction from different views, which leads to

high model complexity (the space and time complexity are quadratic and cubic in the total
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number of features, respectively) (Jin et al., 2013; Zhang and Huan, 2012). Thus, they can

hardly be applied to high-dimensional data.

In the following, we will introduce a general framework that intrinsically models the complex

relationships in multimodal interactions among multiple tasks and multiple views as a tensor

structure.

4.3 Multilinear Structure Learning for MTMV Problems

In this section, we first discuss how to design the multilinear predictive models for learning

the full-order interactions among MTMV data. We then derive efficient Multilinear Factoriza-

tion Machines (MFMs) that can learn the shared multilinear structure in linear complexity.

4.3.1 Multilinear Predictive Models

Given an input vector x ∈ RI , the linear model for the t-th task is given by

ft(x) =
I∑
i=1

wtxi = xTwt (4.5)

where wt ∈ RI is the weight vector for linear effects. Let W ∈ RI×T denote the weight matrix

to be learned, whose columns are the vector wt. Most of the MTL algorithms aim at solving

the following regularized problem

min
T∑
t=1

Lt
(
XT
t wt,yt

)
+ λΩ(W) (4.6)

Many different assumptions about how tasks are related have been proposed for MTL, leading

to different regularization terms (e.g., `1/`q-norm regularization, trace norm regularization, and



68

composite regularization) in the formulation (Ando and Zhang, 2005; Argyriou et al., 2008; Chen

et al., 2009; Chen et al., 2011; Gong et al., 2012).

In fact, the joint learning of multiple linear models for multiple tasks is essentially to learn

the bilinear map for modeling the second-order interactions between input features and tasks.

Let et ∈ RT denote the task indicator vector

et = [0, · · · , 0︸ ︷︷ ︸
t-1

, 1, 0, · · · , 0]T

We then have that

ft(x) = xTwt = xTWet = 〈W,x ◦ et〉 = f({x, et}) (4.7)

Similarly, we can form a multilinear function for modeling the higher-order interactions

in MTMV data. Assume we are given two views, for example, we can learn the third-order

interactions by

ft({x(1),x(2)}) = x(1)TWtx
(2) =

〈
W,x(1) ◦ x(2) ◦ et

〉
(4.8)

where W ∈ RI1×I2×T is the weight tensor to be learned.

However, only the highest-order interactions are explored in this way, and such interactions

are limited in sparse data, especially when one or more views are missing in some instances. In

contrast, the lower-order (e.g., pairwise) interactions can usually explain the data sufficiently

(Rendle and Schmidt-Thieme, 2010; Rendle, 2010), and incorporating the lower-order interac-
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Figure 9. Multilinear Predictive Models. The feature interactions in multi-task multi-view
data are modeled in a full-order tensor. The prediction is learned from the task-specific

feature space and the task-view shared multilinear feature space.

tions in the predictive models can further improve the performance (Cao et al., 2016; Rendle,

2010). Hence, we consider nesting all interactions up to full-order:

ft({x(1),x(2)}) = wt +
2∑
v=1

x(v)Tw
(v)
t + x(1)TWtx

(2) (4.9)

This can be done by adding a dummy value 1 to the feature vector x
(v)
t , i.e., z

(v)
t = [1; x

(v)
t ] ∈

R1+Iv . Then Equation 4.9 can be rewritten as

ft({x(1),x(2)}) =
〈
W, z(1) ◦ z(2) ◦ et

〉
= 〈W,Zt〉 (4.10)
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We can easily extend Equation 4.10 to the MTMV problems with more views. Formally,

let Zt = z(1) ◦ · · · ◦ z(V ) ◦ et ∈ R(1+I1)×···×(1+IV )×T be the full-order tensor, and let W =

{wi1,...,iV ,t} ∈ R(1+I1)×···×(1+IV )×T be the weight tensor to be learned. The multilinear map

function can be defined as

ft({x(v)}) = 〈W,Zt〉 =

T∑
s=1

I1∑
i1=0

· · ·
IV∑
iV =0

wi1,...,iV ,s

(
et,s

V∏
v=1

z
(v)
iv

)
(4.11)

It is worth noting that wi1,...,iV ,s with some indexes satisfying iv = 0 encodes lower-order

interactions between views whose iv′ > 0.

So far, multiple tasks with multi-view features are able to be incorporated into an elegant

tensor formulation, where the complex multiple relationships among tasks and views are em-

bedded within the tensor structures. However, it could be too restrictive to constrain all tasks

to share a common set of features (Chen et al., 2011; Gong et al., 2012). Thus, following the

structural learning framework for MTL (Ando and Zhang, 2005; Chen et al., 2009), we consider

learning a predictive function from both the original feature spaces and the multilinear feature

interaction space:

ft({x(v)}) = xTut + 〈W,Zt〉 (4.12)

where x = [x(1); . . . ; x(V )] ∈ RI is the concatenated feature vector from multiple views, and ut ∈

RI is the task-specific weight vector. Figure 9 illustrates the proposed multilinear predictive

model with two views.
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4.3.2 Multilinear Factorization Machines

Directly learning the weight tensor W leads to two drawbacks. First, transfer learning is

not possible straight from the model since the weight parameters are learned independently

for different tasks and different views. Second, the number of parameters in Equation 4.11 is

T
∏V
v=1(1 + Iv), which is exponential to the number of features and make it easy to overfitting

and ineffective on sparse data. Hence, we assume the interaction parameters has a low rank

and W can be factorized as

W = JΘ(1), . . . ,Θ(V ),ΦK

by CP factorization. The factor matrix Θ(v) ∈ R(1+Iv)×R is the shared structure matrix for

the v-th view and the t-th row φt within Φ is the task specific weight vector for the t-th task.

Then Equation 4.11 is transformed into

〈W,Zt〉 =

T∑
s=1

I1∑
i1=0

· · ·
IV∑
iV =0

(
R∑
r=1

φs,r

V∏
v=1

θ
(v)
iv ,r

)(
et,s

V∏
v=1

z
(v)
iv

)

=
R∑
r=1

(
T∑
s=1

φs,ret,s

)
I1∑
i1=0

· · ·
IV∑
iV =0

(
V∏
v=1

θ
(v)
iv ,r

z
(v)
iv

)

=
R∑
r=1

〈
θ(1)
r ◦ · · · ◦ θ(V )

r ◦ φr , z(1) ◦ · · · z(V ) ◦ et

〉
(4.13)



72

Because et,s = 1 only when t = s and according to Equation 4.1, we can further rewrite

Equation 4.13 into

〈W,Zt〉 =

R∑
r=1

(
z(1)Tθ(1)

r

)
· · ·
(
z(V )Tθ(V )

r

)
φt,r

= φt
((

z(1)TΘ(1)
)
∗ · · · ∗

(
z(V )TΘ(V )

))T

= φt
V∏
v=1

∗
(
z(v)TΘ(v)

)T
(4.14)

where ∗ is the Hadamard (elementwise) product. It should be noted that the first row θ(v),0

within Θ(v) is always associated with z
(v)
0 = 1 and represents the bias factors of the v-th view.

Through the bias factors, the lower-order interactions are explored in the predictive function.

By replacing the tensor inner product in Equation 4.12 using Equation 4.14, we then have

ft({x(v)}) = xTut + φt
V∏
v=1

∗
(
z(v)TΘ(v)

)T
(4.15)

We name this model as multilinear factorization machines (MFMs). Clearly, the parameters

of the interactions between multiple tasks with multiple views are jointly factorized. The joint

factorization benefits parameter estimation under sparsity, since dependencies exist when the

interactions share the same features. Therefore, the model parameters can be effectively learned

without direct observations of such interactions especially in highly sparse data. Further, since

the lower-order interactions are modeled with the bias factors, this joint factorization model

can easily deal with missing views and even incomplete views for multiple tasks.
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Another appealing property of MFMs comes from the main characteristics of multilinear

analysis. After factorizing the weight tensor W, there is no need to construct the input tensor

physically. From Equation 4.15, we can find that the common subspace shared by multiple

views can be discovered through the Hadamard product of the low-dimensional projection of

each view, and its contribution to the t-th task is controlled by the weight vector φt. Moreover,

the model complexity is linear in the number of original features. In particular, the model

complexity is O(R(V + I + T ) +
∑T

t=1 It), where It is the number of features in the t-th task.

This multilinear property can help save memory and also speed up the learning procedure.

4.3.3 Learning Multilinear Factorization Machines

Following the regularization formulation in Equation 4.3, we propose to estimate the model

parameters by minimizing the following regularized empirical risk:

minR(Φ, {Θ(v)},U) =
T∑
t=1

Lt(ft({X(v)
t }),yt) + λΩλ(Φ, {Θ(v)}) + γΩγ(U) (4.16)

where U = [u1, . . . ,uT ] ∈ RI×T . The regularization Ωλ and Ωγ can be Forbenius norm, `2,1

norm, or other structural regularization. To optimize the objective function, we present the

alternating block coordinate descent approach in the rest of this section.
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With all other parameters fixed, the minimization over Θ(v) simply consists of learning the

parameters Θ(v) by a regularization method, and the partial derivative of R w.r.t. Θ(v) is given

by

∂R
∂Θ(v)

=
T∑
t=1

∂Lt
∂ft

∂ft

∂Θ(v)
+ λ

∂Ωλ(Θ(v))

∂Θ(v)
(4.17)

where ∂Lt
∂ft

= 1
Nt

[
∂`t,1
∂ft

, · · · , ∂`t,Nt∂ft

]T

∈ RNt .

For convenience, we let π ∈ RR denote
∏V
v=1 ∗

(
z(v)TΘ(v)

)T
and π(−v) ∈ RR denote∏V

v′=1,v′ 6=v ∗
(
z(v′)TΘ(v′)

)T
. Let Π = [π1, · · · ,πN ]T and Π(−v) = [π

(−v)
1 , · · · ,π(−v)

N ]T. We

then have that

∂Lt
∂ft

∂ft

∂Θ(v)
=

1

Nt

Nt∑
n=1

∂`t,n
∂ft,n

∂ft,n

∂Θ(v)

=

Nt∑
n=1

z
(v)
t,n

((
1

Nt

∂`t,n
∂ft,n

φt
)
∗ π(−v)

t,n

)

= Z
(v)
t

((
∂Lt
∂ft

φt
)
∗Π

(−v)
t

)
(4.18)

With all other variables fixed, the minimization over Φ w.r.t the empirical loss simply

consists of learning the parameters φt independently. The partial derivative of R w.r.t. Φ is

given by

∂R
∂Φ

=

[
∂L1
∂f1

∂f1
∂φ1 ; · · · ; ∂LT

∂fT

∂fT
∂φT

]
+ λ

∂Ωλ(Φ)

∂Φ
(4.19)
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Algorithm 2 Learning Multilinear Factorization Machines

Input: Training data D, number of factors R, regularization parameter λ, γ and standard
deviation σ

Output: Model parameters {Θ(v)},Φ,U
1: Initialize {Θ(v)},Φ,U ∼ N (0, σ)
2: repeat
3: for v := 1 to V do
4: Fixing {Θ(v′)}v′ 6=v, Φ and U, update Θ(v)

5: end for
6: Fixing {Θ(v)} and U, update Φ
7: Fixing {Θ(v)} and Φ, update U
8: until convergence

Following the derivation in Equation 4.18, we have that

∂Lt
∂ft

∂ft
∂φt

=

(
∂Lt
∂ft

)T

Πt (4.20)

With all other variables fixed, the partial derivative of R w.r.t. U is given by

∂R
∂U

=

[
X1

∂Lt
∂ft

, · · · , XT
∂LT
∂fT

]
+ γ

∂Ωγ(U)

∂U
(4.21)

where Xt = [X
(1)
t ; . . . ; X

(V )
t ] ∈ RI×Nt is the concatenated feature matrix for the t-th task.

The optimization procedure is summarized in Algorithm 2. In the experiment, we apply

AdaGrad (Duchi et al., 2011), an adaptive gradient-based optimization approach that automat-

ically determines a per-parameter learning rate, for parameter updates. The speed bottleneck of

this algorithm is in computing the predicted values of all the training instances. The time com-
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TABLE XII

The statistics for each dataset.
Classification #Feature T Np Nn Partial View Missing?

FOX image(996), text(2,711) 4 178∼635 888∼1,345 No
DBLP linkage(4,638), text(687) 6 635∼1,950 2,688∼3,985 No

Regression #Feature T N Density Partial View Missing?

MovieLens users(943), movies(1,599), tags(1,065) 10 758∼39,895 6.3% No
Amazon users(1,805,364), items(192,978), text(83,143) 5 349,038∼1,015,189 0.001% Yes

plexity of computing Equation 4.15 for an instance is O(RV +(R+1)It)), while the computation

can be done in parallel. It can be further reduced under sparsity, since we only need to compute

the sums over the non-zero elements. Let Nz(xt,n) denote the number of non-zero elements,

then the time complexity of the computation for each instance is O(RV + (R+ 1)Nz(xt,n)).

4.4 Experiments

4.4.1 Datasets

To evaluate the performance of the proposed MFMs, we conduct extensive experiments on

the following four datasets (two of them are for classification tasks, and two of them are for

regression tasks):

• FOX1: This dataset was crawled from FOX web news (Qian and Zhai, 2014). The

category for each news article can be viewed as the class label. For each task (category),

the documents from one category are regarded as positive samples. Each instance can be

represented in two views, the text view and image view. The text view consists of `2-

1https://sites.google.com/site/qianmingjie/home/datasets/
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normalized TF-IDF vector representation extracted from titles, abstracts, and text body

contents1. The image view consists of seven groups of color features and five textural

features.

• DBLP2: This dataset was extracted from the DBLP (Kong et al., 2011). The research

areas (DB, DM, AI, IR, CV, and ML) that an author has published papers in can be

viewed as class labels. For each task (research area), the authors who have published

papers in that research area are regarded as positive samples. Each instance is represented

in two views, the text view and the linkage view. The `2-normalized TF-IDF vector

representation of all the paper titles published by the author is used as the text view

data. Since each instance represents an author, the linkage feature of an instance is the

binary vector of the co-authors’ ids.

• MovieLens3: Regression tasks for rating prediction are studied on this MovieLens

dataset. We select the top 10 genres with the most movies as tasks. Each rating in

this dataset has three views, i.e., users, movies and tags. The user view and item view

are represented by one-hot encoding. The tags of the movies are used for the tag view.

1Stemming, lemmatization, removing stop-words and words with frequency less than 1%, etc., are
handled beforehand for all the text view mentioned in this chapter

2http://dblp.uni-trier.de/db/

3http://grouplens.org/datasets/movielens/
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• Amazon1: This dataset contains item reviews from Amazon (McAuley et al., 2015). We

select ratings from the Clothing, Jewelry, Novelty, Accessories and Shoes item categories

for the study of large-scale regression tasks, where each category is viewed as a task.

Users and items with less than 5 ratings are filtered. Each rating in this dataset has three

views, i.e., users, items and text. The user view and item view are constructed using the

same way as in the MovieLens dataset. The `2-normalized TF-IDF vector representation

of all summaries of the item is used as the text view.

The statistics for each dataset is summarized in Table XII, where T denotes the number of

tasks, Np, Nn and N denote the number of positive, negative and all the samples in each task,

respectively. The density in Table XII means the density of the user-item matrix in the dataset.

Note that the text view is partially missing in the Amazon dataset, where 0.62% reviews have

no text.

4.4.2 Comparisons

We compare the proposed MFM method with five state-of-the-art methods.

• Factorization Machine (FM) explores pairwise interactions between all features. We

apply the FM in the setting of MTMV learning by concatenating the task indicator and

all the feature vectors from multiple views as the input feature vector. The preliminary

study shows it performs better than training each task separately.

1http://jmcauley.ucsd.edu/data/amazon/
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• Robust Multi-Task Feature Learning (rMTFL) is a representative MTL algorithm

that uses composite regularization for joint feature learning (Gong et al., 2012).

• Tensor Factorization (TF) is a generalization of matrix factorization to higher orders.

Since TF only considers the highest-order of the given tensor, we use Equation 4.8 to

model the MTMV data for TF and factorize the weight tensor.

• IteM2 is a transductive MTMV learning algorithm with applications to classification

problems (He and Lawrence, 2011). Since IteM2 can only handle nonnegative feature

values, a positive constant value is added to the feature values such that its nonnegativity

can be guaranteed.

• CSL-MTMV is an inductive MTMV learning algorithm (Jin et al., 2013) that assumes

the predictions of different views within a single task are consistent.

• Multilinear Factorization Machine (MFM) is the proposed model that learns the

predictive multilinear structure. We compare three variations of MFM for studying the

effects of each component in the model. Forbenius norm regularizers are used as the

default for all the parameters to avoid overfitting, if not specified. MFM-F and MFM-

F-S both denote the variations that use the proposed predictive model in Equation 4.15,

while MFM-F-S uses `2,1 norm regularization on U for joint feature selection. MFM-T

denotes the variation that uses only the tensor inner product as the predictive function,

i.e., the task-specific weight vector ut is always set to be zeros. For all three MFM

methods, we use squared loss for regression tasks and logistic loss for classification tasks.
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4.4.3 Model Construction and Evaluation

For each dataset we randomly select n%, 10%, and 40% of labeled samples for each task as

training set, validation set, and testing set, respectively, where n is varying in the range [10, 30]

with the increment of 10. Validation sets are used for hyperparameter tuning for each model.

Validation and testing sets do not overlap with any other. For all the methods, the dimension of

latent factors R = 20, the learning rate η = 0.1, the initialization σ = 1, the maximum number

of iterations are all set as 200. We apply grid searching to identify optimal values for each

regularization hyperparameter from {10−5, 10−4, · · · , 105} for all the comparison methods.

To investigate the performance of comparison methods, we adopt accuracy (ACC), F1-score,

and the area under the receiver-operator characteristic curve (AUC) on the test data as the

evaluation metrics (Cao et al., 2016; He and Lawrence, 2011; Jin et al., 2013). Overall accuracy,

F1-score and AUC are averaged over all tasks. The larger value of each metric indicates the

better performance. For regression tasks, we adopt the mean absolute error (MAE) and root

mean squared error (RMSE) on the test data as the evaluation metrics (Rendle, 2012). Overall

MAE and RMSE are the averaged over all tasks. The smaller value of each metric indicates the

better performance. Each experiment was repeated for 10 times, and the mean and standard

deviation of each metric in each data set were reported. We conducted all the experiments on

machines with 6-Core 2.4 GHz Intel Xeon CPUs and 64 GB memory.

4.4.4 Classification Tasks

Table XIII and Table XIV show the performance of all the comparison methods on the FOX

and DBLP datasets. From these results, we have the several observations. First, most of the
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TABLE XIII

Performance comparison on FOX dataset. The best two results are listed in bold.
Training

Measure rMTFL FM TF IteM2 CSL-MTMV MFM-T MFM-F MFM-F-S
Ratio

10%

ACC 0.8816±0.011 0.7883±0.011 0.8460±0.035 0.4052±0.076 0.8986±0.011 0.9259±0.019 0.9343±0.012 0.9364±0.011
F1 0.6911±0.035 0.2930±0.046 0.6362±0.044 0.3598±0.030 0.7335±0.029 0.7799±0.053 0.8076±0.038 0.8119±0.027

AUC 0.9109±0.013 0.7764±0.018 0.8681±0.038 0.5326±0.036 0.9342±0.011 0.9678±0.015 0.9763±0.008 0.9777±0.009

20%

ACC 0.9039±0.013 0.8087±0.011 0.8546±0.025 0.5091±0.078 0.9264±0.005 0.9551±0.005 0.9569±0.010 0.9612±0.005
F1 0.7654±0.026 0.3764±0.050 0.6632±0.051 0.3306±0.068 0.8004±0.012 0.8721±0.012 0.8769±0.027 0.8882±0.014

AUC 0.9353±0.016 0.8260±0.012 0.8751±0.029 0.4954±0.043 0.9705±0.003 0.9883±0.003 0.9885±0.006 0.9922±0.002

30%

ACC 0.9314±0.005 0.8255±0.007 0.8767±0.082 0.4289±0.134 0.9390±0.004 0.9641±0.007 0.9709±0.003 0.9697±0.004
F1 0.8051±0.015 0.4448±0.026 0.7302±0.132 0.3314±0.056 0.8341±0.012 0.9000±0.018 0.9185±0.010 0.9149±0.010

AUC 0.9709±0.005 0.8393±0.012 0.9010±0.091 0.5365±0.039 0.9812±0.003 0.9916±0.003 0.9949±0.001 0.9949±0.001

TABLE XIV

Performance comparison on DBLP dataset. The best two results are listed in bold.
Training

Measure rMTFL FM TF IteM2 CSL-MTMV MFM-T MFM-F MFM-F-S
Ratio

10%

ACC 0.8057±0.004 0.7264±0.004 0.7471±0.011 0.6223±0.004 0.7290±0.005 0.8008±0.004 0.8058±0.004 0.8062±0.005
F1 0.5395±0.015 0.0732±0.019 0.5606±0.011 0.3176±0.007 0.4402±0.004 0.5278±0.018 0.5469±0.014 0.5471±0.015

AUC 0.7888±0.007 0.6264±0.023 0.7723±0.009 0.5310±0.007 0.6890±0.006 0.8039±0.010 0.8113±0.010 0.8120±0.009

20%

ACC 0.8319±0.004 0.7628±0.007 0.7878±0.007 0.6309±0.003 0.7760±0.002 0.8346±0.004 0.8374±0.004 0.8371±0.004
F1 0.6447±0.008 0.2680±0.038 0.6247±0.014 0.3494±0.006 0.5295±0.007 0.6274±0.013 0.6499±0.012 0.6508±0.012

AUC 0.8374±0.005 0.7548±0.022 0.8200±0.010 0.5550±0.006 0.7655±0.005 0.8531±0.006 0.8658±0.005 0.8632±0.005

30%

ACC 0.8412±0.004 0.7978±0.005 0.8191±0.008 0.6256±0.003 0.8037±0.003 0.8501±0.004 0.8527±0.004 0.8535±0.004
F1 0.6796±0.010 0.4312±0.021 0.6670±0.021 0.3569±0.009 0.5869±0.007 0.6800±0.013 0.6891±0.012 0.6892±0.009

AUC 0.8590±0.005 0.8351±0.010 0.8498±0.009 0.5563±0.006 0.8083±0.006 0.8757±0.005 0.8866±0.006 0.8866±0.006

methods achieve better performance when the training size increases, and the proposed MFM

methods consistently outperform all the other methods on both datasets. This is mainly because

MFM can effectively learn the predictive multilinear structure from the full-order interactions of

MTMV data. Moreover, by combining the task-specific feature map with the task-view shared

multilinear feature map, MFM-F and MFM-F-S can further improve the performance. Further,
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it can be found that MFM-F-S almost always perform better than MFM-F, which empirically

shows the effectiveness of learning features with sparse constraints.

Besides, among all the factorization based methods (i.e., FM, TF and MFM), FM performs

the worst. Such poor performance indicates that FM cannot discriminate important features

(e.g., the task indicators) for different tasks. Because all the pairwise interactions between

all the features are considered in FM, the interactions between the task indicators and im-

portant features are buried by many redundant intra-view feature interactions. The ability to

distinguish different tasks is critical for multi-task classification problems, since the labels of a

classification task are usually dissimilar or even opposite to other classification tasks. On the

other hand, by fusing multi-view information into tensor structures, the tensor-based methods

can achieve relatively better performance. In addition, we find that TF performs much worse

than the MFM-T. This confirms that learning only from the highest-order interactions is lim-

ited and incorporating the lower-order interactions in the predictive models can help provide

more information (Cao et al., 2016; Rendle, 2010).

In addition, the rMTFL method, which learns important features for all the tasks but

does not distinguish features from different views, can achieve comparative or even better

performance than the state-of-the-art MTMV learning methods, i.e., CSL-MTMV. This is

mainly because CSL-MTMV enforces the prediction results of each view to be consistent with

each other, while the text view and the image view (or the linkage view) are not similar.

In contrast, the proposed MFM methods can achieve better performance by exploring the

complementary information of multiple views.
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TABLE XV

Performance comparison on MovieLens dataset. The best two results are listed in bold.
Training

Measure rMTFL FM TF CSL-MTMV MFM-T MFM-F MFM-F-S
Ratio

10%
RMSE 1.1861±0.008 1.0251±0.003 1.5679±0.099 1.05013±0.005 1.0078±0.005 1.0069±0.005 0.9976±0.004
MAE 0.8516±0.004 0.8422±0.004 1.2497±0.088 0.8516±0.004 0.8142±0.005 0.8082±0.005 0.8022±0.004

20%
RMSE 1.0631±0.005 0.9898±0.003 1.2519±0.069 1.0214±0.004 0.9877±0.003 0.9977±0.003 0.9857±0.003
MAE 0.8539±0.005 0.7997±0.004 0.9801±0.053 0.8294±0.004 0.7987±0.003 0.8023±0.003 0.7927±0.004

30%
RMSE 0.9917±0.003 0.9765±0.003 1.2066±0.061 1.0082±0.003 0.9795±0.003 0.9887±0.004 0.9785±0.003
MAE 0.8159±0.003 0.7815±0.003 0.9380±0.045 0.8189±0.003 0.7885±0.002 0.7823±0.004 0.7789±0.004

TABLE XVI

Performance comparison on Amazon dataset. The best two results are listed in bold. Due to
the memory overhead, rMTFL and CSL-MTMV are not compared.

Training
Measure FM TF MFM-T MFM-F MFM-F-S

Ratio

10%
RMSE 0.9834±0.001 3.6044±0.003 0.9775±0.001 0.9857±0.001 0.9825±0.002
MAE 0.7420±0.001 3.4574±0.005 0.7249±0.001 0.7158±0.002 0.7129±0.001

20%
RMSE 0.9814±0.001 3.5611±0.018 0.9764±0.001 0.9845±0.001 0.9775±0.001
MAE 0.7343±0.002 3.3965±0.030 0.7255±0.001 0.7112±0.001 0.7086±0.001

30%
RMSE 0.9782±0.002 3.4962±0.018 0.9705±0.002 0.9841±0.001 0.9733±0.001
MAE 0.7257±0.002 3.2945±0.034 0.7001±0.001 0.7115±0.001 0.7078±0.001

4.4.5 Regression Tasks

Table XV and Table XVI report the performance comparison on the MovieLens and Amazon

datasets. Note that IteM2 is not compared since it can only work for classification tasks.

Besides, due to the high memory complexity CSL-MTMV and rMTFL cannot be applied to

the large-scale Amazon dataset. From these results, we can observe that the proposed MFM

methods outperform most of the comparison methods on both datasets, especially when the

training data is limited. This is because when less instances are available, some users and items
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may hardly appear during training, making it harder to learn the model parameters for the

user view and the item view. By incorporating the bias terms for each view in the full-order

tensor, the proposed MFM models can explore the information from other complementary views

(e.g., the tag view or the text view) to alleviate the issue and to improve the performance. We

also notice that FM achieves much more competitive performance in regression tasks than in

classification tasks. This is due to the fact that the regression tasks in the experiments are

more similar and thus it is less important to learn task-specific features. Furthermore, we

observe that the performance of TF on the Amazon dataset is unacceptably low, which is due

to the fact that some instances do not have any text features. Because TF can only learn from

the highest-order interactions, its performance is significantly impacted by the existence of the

partially missing view. In contrast, by taking the full-order interactions into consideration,

MFM methods can easily deal with the partially missing view.

4.4.6 Hyperparameter Analysis

The number of latent factors R is an important hyperparameter for the proposed MFM

methods involving the CP factorization. We analyze different values of R and report the results

in Figure 10. Due to space limit, we only report AUC for classification tasks and RMSE for

regression tasks using 20% of instances as training set. Compared with the other tensor-based

method (TF), the performance of MFM methods is much more stable when R ≥ 20 for all

four datasets. It validates the importance of including lower-order interactions in the predictive

model.
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Figure 10. Sensitivity analysis of number of latent factor.

To explore the effects of the regularization hyperparameters on the performance, we run

with different values for λ and γ. Since there are no much differences between the results

of MFM-F-S and those of MFM-F, we only report the results using MFM-F-S. From 11(a)

and 11(b), we can clearly see that the performance of classification is fairly stable for most

cases. However, when λ and γ are both large, the model parameters can be very small, which
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Figure 11. Sensitivity analysis of regularization hyperparameters.

decreases the value of AUC. From 11(c) and 11(d), we can observe that for regression tasks, the

RMSE is much lower when the value of γ is large and the value of λ is in the range from 10−3

to 10−1. This could indicate that the task-specific weight vector ut is less important for the

prediction. This confirms our observation that the tasks in the regression problem are much

more similar than in the classification problem.
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4.5 Related Work

Multi-Task Learning: MTL aims to improve the performance of related tasks by learning

a model which is able to capture intrinsic relatedness across tasks (Caruana, 1998). The current

work mainly focuses on joint feature selection and feature learning, where the task relatedness is

explicitly expressed as a shared part of the tasks (Ando and Zhang, 2005; Argyriou et al., 2008;

Evgeniou and Pontil, 2007; Evgeniou and Pontil, 2004; Obozinski et al., 2010). Most of these

methods make the assumption that different tasks share a common representation/structure.

However, in practical applications it is too restrictive to constrain all tasks to share a common

set of features, due to the heterogeneity of tasks. Some recent methods proposed to capture

different types of relationships using a composite regularization (Chen et al., 2011; Gong et al.,

2012). In particular, the alternating structure optimization (ASO) algorithm (Ando and Zhang,

2005) and its convex version cASO algorithm (Chen et al., 2009) decompose the predictive model

into the task-specific and task-shared feature mapping, which can be cast as special cases of

our framework when V = 1.

Multi-View Learning: MVL concerns about exploiting different views on the same object

to make a more accurate learning. In essence, MVL explores diverse representations from

experiential inputs such that a variety of problems could be formulated and solved (Ceci et

al., 2012). In this fashion, the strengths of each view are amplified and the weaknesses are

alleviated. There are currently a plethora of studies available for MVL. Interested readers are

referred to (Xu et al., 2013) for a comprehensive survey of these techniques and applications.

The most related work to ours is that of (Cao et al., 2014a; Cao et al., 2016) who introduced
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and explored the tensor product operator to integrate different views together in a joint tensor.

The advantage of tensor representation is that it enables not only to record the information

from multiple views, but also strengthen and capture the relationships between them (Li et al.,

2016). In addition, various tensor factorizations (Kolda and Bader, 2009) can be modelled to

learn dependencies between variables, each of which imply different hypotheses about the data.

In this study, we employ the CP factorization to facilitate the learning process, but it can be

easily extended also to other types of factorizations.

Multi-Task Multi-View Learning: The IteM2 algorithm (He and Lawrence, 2011) was

first proposed by He et al. for MTMV learning. Since IteM2 is a transductive learning method,

prediction cannot be made to independent, or unknown testing data samples. Besides, it

can only deal with classification problems with nonnegative feature values. Assuming the

predictive models should be consistent among different views, co-regularization based methods

were later developed (Jin et al., 2013; Zhang and Huan, 2012). Specifically, Zhang et al.

proposed regMVMT algorithm (Zhang and Huan, 2012) that minimizes the difference of the

predictive models for different tasks on the same view; Jin et al. proposed a more generalized

algorithm, CSL-MTMV (Jin et al., 2013), which assumes a low-dimensional subspace is shared

among multiple related tasks that have common views. These methods assume that all the

views are similar to each other, while such assumption may not be appropriate especially for

heterogeneous data. It also makes these methods have difficulty in learning from partially

observed views.



CHAPTER 5

MODELING MULTI-VIEW RELATIONAL DATA

(This chapter was previously published as “Learning from Multi-View Multi-Way Data via

Structural Factorization Machines”, in WWW’18 (Lu et al., 2018). DOI: http://dx.doi.org/

10.1145/3178876.3186071.)

5.1 Introduction

With the ability to access massive amounts of heterogeneous data from multiple sources,

multi-view data have become prevalent in many real-world applications. For instance, in rec-

ommender systems, online review sites (like Amazon and Yelp) have access to contextual in-

formation of shopping histories of users, the reviews written by the users, the categorizations

of the items, as well as the friends of the users. Each view may exhibit pairwise relations

(e.g., the friendships between users) or even higher-order relations (e.g., a customer write a

review for a product) among entities (such as customers, products, and reviews), and can be

represented in a multi-way relational data structure, i.e., tensor. Since different views usually

provide complementary information (Cao et al., 2014a; Cao et al., 2016; Lu et al., 2017), how to

effectively incorporate information from multiple structural views is critical to good prediction

performance for various machine learning tasks.

Typically, a predictive model is defined as a function of predictor variables (e.g., the customer

id, the product id, and the categories of the product) to some target (e.g., the rating). The most

89
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common approach in predictive modeling for multi-view relational data is to describe samples

with feature vectors that are flattened and concatenated from structural views, and apply a

classical vector-based method, such as linear regression (LR) and support vector machines

(SVMs), to learn the target function from observed samples. Recent works have shown that

linear models fail for tasks with very sparse data (Rendle, 2012). A variety of methods have been

proposed to address the data sparsity issue by factorizing the monomials (or feature interactions)

with kernels, such as the ANOVA kernels used in FMs (Rendle, 2012; Blondel et al., 2016a) and

polynominal kernels used in polynominal networks (Livni et al., 2014; Blondel et al., 2016b).

However, the disadvantages of this approach are that (1) the important structural information

of each view will be discarded which may lead to the degraded prediction performance and

(2) the feature vectors can be extremely large such that learning and prediction would be very

slow or infeasible, especially if each view involves relations of high cardinality. For example,

including the relation “friends of a user” in the feature vector (represented by their IDs) can

result in a very long feature vector. Further, it will repeatedly appear in many samples that

involve the given user.

Matrix/tensor factorization models have been a topic of interest in the areas of multi-

way data analysis, e.g., community detection (He et al., 2016), collaborative filtering (Koren,

2008; Rendle and Schmidt-Thieme, 2010), knowledge graph completion (Zhang et al., 2017),

and neuroimage analysis (He et al., 2014). Assuming multi-view data have the same underly-

ing low-rank structure (at least in one mode), coupled data analysis such as collective matrix

factorization (CMF) (Singh and Gordon, 2008) and coupled matrix and tensor factorization



91

(CMTF) (Acar et al., 2011) that jointly factorize multiple matrices (or tensors) has been ap-

plied to applications such as clustering and missing data recovery. However, they are only

applicable to categorical variables. Moreover, since existing coupled factorization models are

unsupervised, the importance of each structural view in modeling the target value cannot be

automatically learned. Furthermore, when applying these models to data with rich meta in-

formation (e.g., friendships) but extremely sparse target values (e.g., ratings), it is very likely

the learning process will be dominated by the meta information without manual tuning some

hyperparameters, e.g., the weights of the fitting error of each matrix/tensor in the objective

function (Singh and Gordon, 2008), the weights of different types of latent factors in the predic-

tive models (Koren, 2010), or the regularization hyperparamters of latent factor alignment (Lu

et al., 2016).

In this Chapter, we propose a general and flexible framework for learning the predictive

structure from the complex relationships within the multi-view relational data. Each view of

an instance in this framework is represented by a tensor that describes the multi-way relations

of subsets of entities, and different views have some entities in common. Constructing the

tensors for each instance may not be realistic for real-world applications in terms of space

and computational complexity, and the model parameters can have exponential growth and

tend to be overfitting. In order to preserve the structural information of multi-view data

without physically constructing the tensors, we introduce structural factorization machines

(SFMs) that can learn the consistent representations in the latent feature spaces shared in the

multi-view tensors while automatically adjust the contribution of each view in the predictive
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model. Furthermore, we provide an efficient method to avoid redundant computing on repeating

patterns stemming from the relational structure of the data, such that SFMs can make the same

predictions but with largely speed up computation.

The contributions of this Chapter are summarized as follows:

• We introduce a novel multi-tensor framework for mining data from heterogeneous do-

mains, which can explore the high order correlations underlying multi-view relational

data in a generic predictive model.

• We develop structural factorization machines (SFMs) tailored for learning the common

latent spaces shared in multi-view tensors and automatically adjusting the importance of

each view in the predictive model. The complexity of SFMs is linear in the number of

features, which makes SFMs suitable to large-scale problems.

• Extensive experiments on eight real-world datasets are performed along with comparisons

to existing state-of-the-art factorization models to demonstrate its advantages.

5.2 Problem Formulation

Our problem is different from conventional multi-view learning approaches where multiple

views of data are assumed independent and disjoint, and each view is described by a vector.

We formulate the multi-view learning problem using coupled analysis of multi-view features in

the form of multiple tensors.

Suppose that the problem includes V views where each view consists of a collection of subsets

of entities (such as person, company, location, product) and different views have some entities
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Figure 12. Example of multiple structural views, where X̃ (1) = x̃(1) ◦ x̃(2) ◦ x̃(3) and
X̃(2) = x̃(3) ◦ x̃(4).

in common. We denote a view as a tuple (x(1),x(2), · · · ,x(M)),M ≥ 2, where x(m) ∈ RIm is a

feature vector associated with the entity m. Inspired by (Cao et al., 2016), we construct tensor

representation for each view over its entities by

X̃ = x̃(1) ◦ x̃(2) ◦ · · · ◦ x̃(M) ∈ R(1+I1)×···×(1+IM ),

where x̃(m) = [1; x(m)] ∈ R1+Im and ◦ is the outer product operator. In this manner, the full-

order interactions between entities are embedded within the tensor structure, which not only

provides a unified and compact representation for each view, but also facilitate efficient design

methods. Figure 12 shows an example of two structural views, where the first view consists
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of the full-order interactions among the first three modes (e.g., review text, item ID, and user

ID), and the second view consists of the full-order interactions among the last two modes (e.g.,

user ID and friend IDs).

After generating the tensor representation for each view, we define the multi-view learning

problem as follows. Given a training set D =
{({
X̃ (1)
n , X̃ (2)

n , · · · , X̃ (V )
n

}
, yn

)
| n ∈ [1 : N ]

}
,

where X̃ (v)
n ∈ R(1+I1)×···×(1+IMv ) is the tensor representation in the v-th view for the n-th

instance, yn is the response of the n-th instance, Mv is the number of the constitutive modes

in the v-th view, and N is the number of labeled instances. We assume different views have

common entities, thus the resulting tensors will share common modes, e.g., the third mode

in Fig Figure 12. As we are concerned with predicting unknown values of multiple coupled

tensors, our goal is to leverage the relational information from all the views to help predict the

unlabeled instances, as well as to use the complementary information among different views

to improve the performance. Specifically, we are interested in finding a predictive function

f : X(1) × X(2) · · · × X(V ) → Y that minimizes the expected loss, where X(v), v ∈ [1 : V ] is the

input space in the v-th view and Y is the output space.

5.3 Methodology

In this section, we first discuss how to design the predictive models for learning from mul-

tiple coupled tensors. We then derive structural factorization machines (SFMs) that can learn

the common latent spaces shared in multi-view coupled tensors and automatically adjust the

importance of each view in the predictive model.
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5.3.1 Predictive Models

Without loss of generality, we take two views as an example to introduce our basic design

of the predictive models. Specifically, we consider coupled analysis of a third-order tensor

and a matrix with one mode in common, as shown in Figure 12. Given an input instance({
X̃ (1), X̃(2)

}
, y
)
, where X̃ (1) = x̃(1) ◦ x̃(2) ◦ x̃(3) ∈ R(1+I)×(1+J)×(1+K) and X̃(2) = x̃(3) ◦ x̃(4) ∈

R(1+K)×(1+L). An intuitive solution is to build the following multiple linear model:

f
({
X̃ (1), X̃(2)

})
=
〈
W̃(1), X̃ (1)

〉
+
〈
W̃(2), X̃(2)

〉
(5.1)

where W̃(1) ∈ R(1+I)×(1+J)×(1+K) and W̃(2) ∈ R(1+K)×(1+L) are the weights for each view to

be learned.

However, in this case it does not take into account the relations and differences between

two views. In order to incorporate the relations between two views and also discriminate the

importance of each view, we introduce an indicator vector ev ∈ RV for each view v as

ev = [0, · · · , 0︸ ︷︷ ︸
v-1

, 1, 0, · · · , 0]T,

and transform the predictive model in Equation 5.1 into

f
({
X̃ (1), X̃(2)

})
=
〈
Ŵ(1), X̃ (1) ◦ e1

〉
+
〈
Ŵ(2), X̃(2) ◦ e2

〉
, (5.2)

where Ŵ(1) ∈ R(1+I)×(1+J)×(1+K)×2 and Ŵ(2) ∈ R(1+K)×(1+L)×2.
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Figure 13. Example of the computational graph in a structural factorization machine, given
the input X̃ (1) and X̃(2). By jointly factorizing weight tensors, the h(m) can be regarded as
the latent representation of the feature x(m) in m-th mode, and π(v) can be regarded as the
joint representation of all the modes in the v-th view, which can be easily computed through
the Hadamard product. The contribution of π(v) to the final prediction score is automatically

adjusted by the weight vector φv.

Directly learning the weight tensors Ŵs leads to two drawbacks. First, the weight pa-

rameters are learned independently for different modes and different views. When the feature

interactions rarely (or even never) appear during training, it is unlikely to learn the associated

parameters appropriately. Second, the number of parameters in Equation 5.2 is exponential to

the number of features, which prones to overfitting and ineffective on sparse data. Here, we as-
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sume each weight tensor has a low-rank approximation, and Ŵ(1) and Ŵ(2) can be decomposed

by CP factorization as

Ŵ(1) = JΘ̂(1,1), Θ̂(1,2), Θ̂(1,3),ΦK

= J[b(1,1); Θ(1)], [b(1,2); Θ(2)], [b(1,3); Θ(3)],ΦK,

and

Ŵ(2) = JΘ̂(2,3), Θ̂(2,4),ΦK = J[b(2,3); Θ(3)], [b(2,4); Θ(4)],ΦK,

where Θ(m) ∈ RIm×R is the factor matrix for the features in the m-th mode. It is worth noting

that Θ(3) is shared in the two views. Φ ∈ R2×R is the factor matrix for the view indicator, and

b(v,m) ∈ R1×R, which is always associated with the constant one in x̃(m) = [1; x(m)], represents

the bias factors of the m-th mode in the v-th view. Through b(v,m), the lower-order interactions

(the interactions excluding the features from the m-th mode) in the v-th view are explored in

the predictive function.
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Then we can transform Equation 5.2 into

〈
Ŵ(1), X̃ (1) ◦ e1

〉
+
〈
Ŵ(2), X̃(2) ◦ e2

〉
=

R∑
r=1

〈
θ̂(1,1)
r ◦ θ̂(1,2)

r ◦ θ̂(1,3)
r ◦ φr , x̃(1) ◦ x̃(2) ◦ x̃(3) ◦ e1

〉
+

R∑
r=1

〈
θ̂(2,3)
r ◦ θ̂(2,4)

r ◦ φr , x̃(3) ◦ x̃(4) ◦ e2

〉

=φ1

(
3∏

m=1

∗
(
x̃(m)TΘ̂(1,m)

))T

+ φ2

(
4∏

m=3

∗
(
x̃(m)TΘ̂(2,m)

))T

=φ1

(
3∏

m=1

∗
(
x(m)TΘ(m) + b(1,m)

))T

+ φ2

(
4∏

m=3

∗
(
x(m)TΘ(m) + b(2,m)

))T

(5.3)

where ∗ is the Hadamard (elementwise) product and φv ∈ R1×R is the v-th row of the factor

matrix Φ.

For convenience, we let h(m) = Θ(m)Tx(m), SM (v) denote the set of modes in the v-th

views, π(v) =
∏

m∈SM (v)

∗
(
h(m) + b(v,m)T

)
, and π(v,−m) =

∏
m′∈SM (v),m′ 6=m

∗
(
h(m′) + b(v,m′)T

)
.

The predictive model for the general cases is given as follows

f({X̃ (v)}) =
V∑
v=1

〈
Ŵ(v), X̃ (v) ◦ ev

〉
=

V∑
v=1

φv
∏

m∈SM (v)

∗
(
x(m)TΘ(m) + b(v,m)

)T

=

V∑
v=1

φv
∏

m∈SM (v)

∗
(
h(m) + b(v,m)T

)
(5.4)

A graphical illustration of the proposed model is shown in Figure 13. We name this model as

structural factorization machines (SFMs). Clearly, the parameters are jointly factorized, which
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benefits parameter estimation under sparsity since dependencies exist when the interactions

share the same features. Therefore, the model parameters can be effectively learned without

direct observations of such interactions especially in highly sparse data. More importantly,

after factorizing the weight tensor Ŵs, there is no need to construct the input tensor physically.

Furthermore, the model complexity is linear in the number of original features. In particular,

the model complexity is O(R(V + I +
∑

vMv)), where Mv is the number of modes in the v-th

view.

5.3.2 Learning Structural Factorization Machines

Following the traditional supervised learning framework, we propose to learn the model

parameters by minimizing the following regularized empirical risk:

R =
1

N

N∑
n=1

`
(
f({X (v)

n }), yn
)

+ λΩ(Φ, {Θ(m)}, {b(v,m)}) (5.5)

where ` is a prescribed loss function, Ω is the regularizer encoding the prior knowledge of

{Θ(m)} and Φ, and λ ≥ 0 is the regularization parameter that controls the trade-off between

the empirical loss and the prior knowledge.

The partial derivative of R w.r.t. Θ(m) is given by

∂R
∂Θ(m)

=
∂L
∂f

∂f

∂Θ(m)
+ λ

∂Ωλ(Θ(m))

∂Θ(m)
(5.6)

where ∂L
∂f = 1

N

[
∂`1
∂f , · · · ,

∂`N
∂f

]T

∈ RN .
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For convenience, we let SV (m) denote the set of views that contains the m-th mode, X(m) =

[x
(m)
1 , · · · ,x(m)

N ], Π(v) = [π
(v)
1 , · · · ,π(v)

N ]T and Π(v,−m) = [π
(v,−m)
1 , · · · ,π(v,−m)

N ]T. We then have

that

∂L
∂f

∂f

∂Θ(m)
= X(m)

 ∑
v∈SV (m)

((
∂L
∂f
φv
)
∗Π(v,−m)

) (5.7)

Similarly, the partial derivative of R w.r.t. b(v,m) is given by

∂R
∂b(v,m)

=
∂L
∂f

∂f

∂b(v,m)
+ λ

∂Ωλ(b(v,m))

∂b(v,m)

= 1T

((
∂L
∂f
φv
)
∗Π(v,−m)

)
+ λ

∂Ωλ(b(v,m))

∂b(v,m)
(5.8)

The partial derivative of R w.r.t. Φ is given by

∂R
∂Φ

=

[ (
∂L
∂f

)T
Π(1) ; · · · ;

(
∂L
∂f

)T
Π(V )

]
+ λ

∂Ωλ(Φ)

∂Φ
(5.9)
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Finally, the gradient of R can be formed by vectorizing the partial derivatives with respect

to each factor matrix and concatenating them all, i.e.,

∇R =



vec( ∂R
∂Θ(1) )

...

vec( ∂R
∂Θ(M) )

vec( ∂R
∂b(1,1) )

...

vec( ∂R
∂b(V,M) )

vec(∂R∂Φ )



(5.10)

Once we have the function, R and gradient, ∇R, we can use any gradient-based optimization

algorithm to compute the factor matrices. For the results presented in this Chapter, we use

the Adaptive Moment Estimation (Adam) optimization algorithm (Kingma and Ba, 2014) for

parameter updates. Adam is an adaptive version of gradient descent that controls individual

adaptive learning rates for different parameters from estimates of first and second moments of

the gradient. It combines the best properties of the AdaGrad (Duchi et al., 2011), which works

well with sparse gradients, and RMSProp (Hinton et al., 2012), which works well in on-line and

non-stationary settings. Readers can refer to (Kingma and Ba, 2014) for details of the Adam

optimization algorithm.
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Figure 14. (a) Feature vectors of the same entity repeatedly appear in the plain formatted
feature matrix X. (b) Repeating patterns in X can be formalized by the relational structure

B of each mode.

5.3.3 Efficient Computing with Relational Structures

In relational domains, we can often observe that feature vectors of the same entity repeatedly

appear in the plain formatted feature matrix X, where X = [X(1); · · · ; X(M)] ∈ RI×N and

X(m) ∈ RIm×N is the feature matrix in the m-th mode. Consider Figure 14(a) as an example,

where the parts highlighted in yellow in the forth mode (which represents the friends of the
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user) are repeatedly appear in the first three columns. Clearly, these repeating patterns stem

from the relational structure of the same entity.

In the following, we show how the proposed SFM method can make use of relational structure

of each mode, such that the learning and prediction can be scaled to the number of features in

data involving relations of high cardinality. We adopt the idea from (Rendle, 2013) to avoid

redundant computing on repeating patterns over a set of feature vectors.

Let B = {(XB(m)
, ψB

(m)
)}Mm=1 be the set of relational structures, where XB(m) ∈ RIm×Nm

denotes the relational matrix of m-th mode, ψB
(m)

: {1, · · · , N} → {1, · · · , Nm} denotes the

mapping from columns in the feature matrix X to columns within XB(m)
. For the sake of

simplicity, we drop the index B in ψB whenever the block mapping is clear. From B, one can

reconstruct X by concatenating the corresponding columns of the relational matrices using the

mappings. For instance, the feature vector xn of the n-th case in the plain feature matrix X is

represented as xn = [x
(1)
ψ(n); · · · ; x

(M)
ψ(n)]. Figure 14(b) shows an example how the feature matrix

can be represented in relational structures. For instance, the forth column of the feature matrix

X can be represented as x4 = [x
(1)
ψ(4); x

(2)
ψ(4); x

(3)
ψ(4); x

(4)
ψ(4)] = [xB

(1)

2 ; xB
(2)

1 ; xB
(3)

4 ; xB
(4)

2 ].

Let Nz(A) denote the number of non-zeros in a matrix A. The space required for using

relational structures to represent the input data is |B| = NM +
∑

mNz(X
B(m)

), which is much

smaller than Nz(X) if there are repeating patterns in the feature matrix X.

Now we can rewrite the predictive model in Equation 5.4 as follows

f({X (v)
n } =

V∑
v=1

φv
∏

m∈SM (v)

∗
(
hB

(m)

ψ(n) + b(v,m)T
)
, (5.11)
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TABLE XVII

The statistics for each dataset. Nz(X) and Nz(B) are the number of non-zeros in plain
formatted feature matrix and in relational structures, respectively. Game: Video Games,

Cloth: Clothing, Shoes and Jewelry, Sport: Sports and Outdoors, Health: Health and
Personal Care, Home: Home and Kitchen, Elec: Electronics.

Dataset #Samples Mode Density Nz(X) Nz(B)

Amazon #Users #Items #Words #Categories #Links

Game 231,780 24,303 10,672 7,500 193 17,974 0.089% 32.9M 15.2M
Cloth 278,677 39,387 23,033 3,493 1,175 107,139 0.031% 25.6M 7.3M
Sport 296,337 35,598 18,357 5,202 1,432 73,040 0.045% 34.2M 10.2M
Health 346,355 38,609 18,534 5,889 849 80,379 0.048% 33.6M 12.1M
Home 551,682 66,569 28,237 6,455 970 99,090 0.029% 46.8M 19.4M
Elec 1,689,188 192,403 63,001 12,805 967 89,259 0.014% 161.5M 69M

#Users #Venues #Friends #Categories #Cities

Yelp 1,319,870 88,009 40,520 88,009 892 412 0.037% 70.5M 1.4M

#Users #Books #Countries #Ages #Authors

BX 244,848 24,325 45,074 57 8 17,178 0.022% 1.2M 163K

with the caches HB(m)
= [hB

(m)

1 , · · · ,hB(m)

Nm
] for each mode, where hB

(m)

j = Θ(m)TxB
(m)

j , ∀j ∈

[1 : Nm].

This directly shows how N samples can be efficiently predicted: (i) compute HB(m)
in

O(RNz(X
B(m)

)) for each mode, (ii) compute N predictions with Equation 5.11 using caches in

O(RN(V +
∑

vMv)). With the help of relational structures, SFMs can learn and predict the

same as in Equation 5.4 but with a much lower time complexity, especially for relational data

with high cardinality.
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5.4 Experiments

5.4.1 Datasets

To evaluate the ability and applicability of the proposed SFMs, we include a spectrum

of large datasets from different domains. The statistics for each dataset is summarized in

Table XVII, the schema of the structural views in each dataset is presented in Figure 15, and

the details are as follows:

Amazon1: The first group of datasets are from Amazon.com recently introduced by (McAuley

et al., 2015). This is among the largest datasets available that include review texts and meta-

data of items. Each top category has been constructed as an independent dataset in (McAuley

et al., 2015). In this Chapter, we take a variety of large categories as listed in Table XVII.

Each sample in these datasets has five modes, i.e., users, items, review texts, categories,

and linkage. The user mode and item mode are represented by one-hot encoding. The `2-

1http://jmcauley.ucsd.edu/data/amazon/
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normalized TF-IDF vector representation of review text 1 of the item given by the user is used

as the text mode. The category mode and linkage mode consists of all the categories and all

the co-purchasing items of the item, which might be from other categories. The last two modes

are `1-normalized.

Yelp2: It is a large-scale dataset consisting of venue reviews. Each sample in this dataset

contains five modes, i.e., users, venues, friends, categories and cities. The user mode and venue

mode are represented by one-hot encoding. The friend mode consists of the friends’ ids of users.

The category mode and city mode consists of all the categories and the city of the venue. The

last three modes are `1-normalized.

BookCrossing (BX)3: It is a book review dataset collected from the Book-Crossing com-

munity. Each sample in this dataset contains five modes, i.e., users, books, countries, ages and

authors. The ages are split in eight bins as in (Harper and Konstan, 2016). The country mode

and age mode consist of the corresponding meta information of the user. The author modes

represents the authors of the book. All the modes are represented by one-hot encoding.

The values of samples range within [1:5] in Amazon and Yelp datasets, and range within

[1:10] in BX dataset.

1Stemming, lemmatization, removing stop-words and words with frequency less than 100 times, etc.,
are handled beforehand.

2https://www.yelp.com/dataset-challenge

3http://www2.informatik.uni-freiburg.de/∼cziegler/BX/
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5.4.2 Comparison Methods

In order to demonstrate the effectiveness of the proposed SFMs, we compare a series of

state-of-the-art methods.

Matrix Factorization (MF) is used to validate that meta information is helpful for improving

prediction performance. We use the LIBMF implementation (Chin et al., 2016) for comparison

in the experiment.

Factorization Machine (FM) (Rendle, 2012) is the state-of-the-art method in recommender

systems. We compare with its higher-order extension (Blondel et al., 2016a) with up to second-

order, and third-order feature interactions, and denote them as FM-2 and FM-3.

Polynomial Network (PolyNet) (Livni et al., 2014) is a recently proposed method that

utilizes polynomial kernel on all features. We compare the augmented PolyNet (which adds a

constant one to the feature vector (Blondel et al., 2016b)) with up to the second-order, and

third-order kernel and denote them as PolyNet-2 and PolyNet-3.

Multi-View Machine (MVM) (Cao et al., 2016) is a tensor factorization based method that

explores the latent representation embedded in the full-order interactions among all the modes.

Structural Factorization Machine (SFM) is the proposed model that learns the common

latent spaces shared in multi-way relational data.

5.4.3 Experimental Settings

For each dataset, we randomly split 50%, 10%, and 40% of labeled samples as training set,

validation set, and testing set, respectively. Validation sets are used for hyper-parameter tuning

for each model. Each validation and testing set does not overlap with any other. For simplicity
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and fair comparison, in all the comparison methods, the dimension of latent factors R = 20 and

the maximum number of epochs is set as 400 and we use early stop to obtain the best results

for each method. Forbenius norm regularizers are used to avoid overfitting. The regularization

hyper-parameter is tuned from {10−5, 10−4, · · · , 100}.

All the methods except MF are implemented in TensorFlow, and the parameters are initial-

ized using scaling variance initializer (He et al., 2015). We tune the scaling factor of initializer

σ from {1, 2, 5, 10, 100} and the learning rate η from {0.01, 0.1, 1} using the validation sets. In

the experiment, we set σ = 2 (default setting in TensorFlow) and η = 0.01 for these methods

except MVM. We found that MVM is more sensitive to the configuration, because MVM will

element-wisely multiply the latent factors of all the modes which leads to an extremely small

value approaching zero. σ = 10 and η = 0.1 yielded the best performance for MVM.

To investigate the performance of comparison methods, we adopt mean squared error (MSE)

on the test data as the evaluation metrics (McAuley and Leskovec, 2013; Zheng et al., 2017).

The smaller value of the metric indicates the better performance. Each experiment was repeated

for 10 times, and the mean and standard deviation of each metric in each data set were reported.

All experiments are conducted on a single machine with Intel Xeon 6-Core CPUs of 2.4 GHz

and equipped with a Maxwell Titan X GPU.

5.4.4 Performance Analysis

The experimental results are shown in Table XVIII. The best method of each dataset is

in bold. For clarity, on the right of the tables we show the percentage improvement of the

proposed SFM method over a variety of methods. From these results, we can observe that SFM
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TABLE XVIII

MSE comparison on all the datasets. The best results are listed in bold.
Dataset

(a) (b) (c) (d) (e) (f) (g) Improvement of SFM verus
MF MVM FM-2 FM-3 PolyNet-2 PolyNet-3 SFM b min(c,d) min(e,f)

Game 1.569 ± 0.005 0.753 ± 0.007 0.764 ± 0.006 0.749 ± 0.007 0.749 ± 0.004 0.748 ± 0.006 0.723 ± 0.006 4.06% 3.52% 3.35%
Cloth 1.624 ± 0.009 0.725 ± 0.046 0.678 ± 0.004 0.679 ± 0.004 0.678 ± 0.007 0.680 ± 0.005 0.659 ± 0.013 9.03% 2.82% 2.84%
Sport 1.290 ± 0.004 0.646 ± 0.019 0.638 ± 0.003 0.632 ± 0.007 0.631 ± 0.005 0.632 ± 0.005 0.614 ± 0.011 5.00% 2.91% 2.79%
Health 1.568 ± 0.007 0.807 ± 0.012 0.779 ± 0.004 0.778 ± 0.004 0.779 ± 0.005 0.776 ± 0.005 0.763 ± 0.019 5.47% 2.02% 1.77%
Home 1.591 ± 0.004 0.729 ± 0.067 0.714 ± 0.002 0.714 ± 0.004 0.690 ± 0.003 0.692 ± 0.005 0.678 ± 0.008 6.93% 5.00% 1.72%
Elec 1.756 ± 0.002 0.792 ± 0.042 0.776 ± 0.006 0.749 ± 0.007 0.760 ± 0.004 0.757 ± 0.001 0.747 ± 0.006 5.69% 0.27% 1.33%
Yelp 1.713 ± 0.003 1.2575 ± 0.013 1.277 ± 0.002 1.277 ± 0.002 1.272 ± 0.002 1.272 ± 0.002 1.256 ± 0.010 0.09% 1.58% 1.19%
BX 4.094 ± 0.025 2.844 ± 0.024 2.766 ± 0.012 2.767 ± 0.014 2.654 ± 0.013 2.658 ± 0.013 2.541 ± 0.025 10.66% 8.16% 4.27%

Average on all datasets 5.87% 3.29% 2.41%

consistently outperforms all the comparison methods. We also make a few comparisons and

summarize our findings as follows.

Compared with MF, SFM performs better with an average improvement of nearly 50%. MF

usually performs well in practice (Ling et al., 2014; Rendle, 2012), while in datasets which are

extremely sparse, as is shown in our case, MF cannot learn an accurate representation of users

and items. Thus, the performance of MF is much worse than the other methods that utilize

the meta information.

In both FM and PolyNet methods, the feature vectors from all the modes are concatenated

as a single input feature vector. The major difference between these two methods is the choice

of kernel applied (Blondel et al., 2016a). The polynomial kernel used in PolyNet considers all

monomials (the products of features), i.e., all combinations of features with replacement. The

ANOVA kernel used in FM considers only monomials composed of distinct features, i.e., feature

combinations without replacement. Compared with the best results obtained from FM methods
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and from PolyNet methods, SFM leads to an average improvement of 3.3% and 2.4% in MSE,

respectively.

The primary reason behind the results is how the latent factors of each feature are learned.

For any factorization based method, the latent factors of a feature are essentially learned from

its interactions with other features observed in the data, as can be observed from its update

rule. In FM and PolyNet, all the feature interactions are taken into consideration without

distinguishing the features from different modes. As a result, important feature interactions

(e.g., the interactions between the given user and her friend) would be easily buried in irrelevant

feature interactions from the same modes (e.g., the interactions between the friends of the same

user). Hence, the learned latent factors are less representative in FM and PolyNet, compared

with the proposed SFM. Besides, we can find that including higher-order interactions in FM

and PolyNet (i.e., FM-3 and PolyNet-3) does not always improve the performance. Instead, it

may even degrade the performance, as shown in Cloth, Yelp, and BX datasets. This is probably

due to overfitting, as they need to include more parameters to model the interactions in higher

orders while the datasets are extremely sparse such that the parameters cannot be properly

learned.

Compared to the MVM method, which models the full-order interactions among all the

modes, our proposed SFM leads to an average improvement of 5.87%. This is because not

all the modes are relevant, and some irrelevant feature interactions may introduce noises to

the learning task, which could be further exaggerated after combinations of interactions. This
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suggests that preserving the nature of relational structure is important in building predictive

models.

5.4.5 Computational Cost Analysis
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Figure 16. Training Time (Seconds/Epoch) Comparison.

Next, we investigate the computational cost for comparison methods. The averaged training

time (seconds per epoch) required for each dataset is shown in Figure 16. We can easily find

that the proposed SFM requires much less computational cost on all the datasets, especially for

the Yelp dataset (roughly 11% of computational cost required for training FM-3). The efficiency

comes from the use of relational structure representation. As shown in Table XVII, the number

of non-zeros of the feature matrix Nz(X) is much larger than the number of non-zeros of the

relational structure representation Nz(B). The amount of repeating patterns is much higher for
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the Yelp dataset than for the other dataset, because adding all the friends of a user significantly

increases results in large repeating blocks in the plain feature matrix. Standard ML algorithms

like the compared methods have typically at best a linear complexity in Nz(X), while using the

relational structure representation for SFM have a linear complexity in Nz(B). This experiment

substantiates the efficiency of the proposed SFM for large datasets.

5.4.6 Analysis of the Impact of Data Sparsity

We proceed by further studying the impact of data sparsity on different methods. For

datasets that are sparse, it can be easily found that the improvement of SFM over MF is

significant, mainly because the number of samples is too scarce to model the items and users

adequately. In order to verify this finding, we compare the performance of MF with all the

other methods on the set of users with limited training samples. The gain of each method

over MF is shown in Figure 17, where G1, G2, and G3 are groups of users with [1, 3], [4, 6],

and [7, 10] observed samples in the training set. Due to space limit, we only report the results

from two Amazon datasets (Sport and Health) while the observations still hold for the rest

datasets. It can be seen that the proposed SFM gains the most in group G1, in which the users

have extremely few training items, and the performance gain decreases along with the number

of training samples. The results indicate that including meta information can be valuable

information especially when limited information available.

5.4.7 Sensitivity analysis

The number of latent factors R is an important hyperparameter for the factorization models.

We analyze different values of R and report the averaged results in Figure 18. The results again
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Figure 17. Performance gain in MSE compared with MF for users with limited training
samples. G1, G2, and G3 are groups of users with [1, 3], [4, 6], and [7, 10] observed samples in

the training set, respectively.

show that SFM consistently outperforms other methods with various values of R. In contrast

to findings in other related factorization models (Yan et al., 2014) where prediction error can

steadily get reduced with larger R, we observe that the performance of each method is rather

stable even with the increasing of R. It is reasonable in a general sense, as the expressiveness

of the model is enough to describe the information embedded in data. Although larger R



114

5 10 15 20 30
0.6

0.61

0.62

0.63

0.64

0.65

0.66

R

M
S

E

 

 

MVM

FM−2

FM−3

PolyNet−2

PolyNet−3

SFM

(a) Sport

5 10 15 20 30
0.72

0.74

0.76

0.78

0.8

0.82

R

M
S

E

 

 

MVM

FM−2

FM−3

PolyNet−2

PolyNet−3

SFM

(b) Health

5 10 15 20 30
1.22

1.24

1.26

1.28

1.3

R

M
S

E

 

 

MVM

FM−2

FM−3

PolyNet−2

PolyNet−3

SFM

(c) Yelp

5 10 15 20 30
2.4

2.6

2.8

3

R

M
S

E

 

 

MVM

FM−2

FM−3

PolyNet−2

PolyNet−3

SFM

(d) BX

Figure 18. Sensitivity analysis of the latent dimension R.

renders the model with greater expressiveness, when the available observations regarding the

target values are too sparse but the meta information is rich, only a few number of factors are

required to fit the data well.

5.5 Related Work

Rendle pioneered the concept of feature interactions in Factorization Machines (FM) (Ren-

dle, 2012). Juan et al. presented Field-aware Factorization Machines (FFM) (Juan et al., 2016)
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to allow each feature to interact differently with another feature depending on its field. Novikov

et al. proposed Exponential Machines (ExM) (Novikov et al., 2017) where the weight tensor is

represented in a factorized format called Tensor Train. Zhang et al. used FM to initialize the

embedding layer in a deep model (Zhang et al., 2016). Qu et al. added a product layer on the

top of the embedding layer to increase the model capacity (Qu et al., 2016). Other extensions of

FM to deep architectures include Neural Factorization Machines (NFM) (He and Chua, 2017)

and Attentional Factorization Machines (AFM) (Xiao et al., 2017). In order to effectively model

feature interactions, a variety of models has been developed in the industry as well. Microsoft

studied feature interactions in deep models, including Deep Semantic Similarity Model (DSSM)

(Huang et al., 2013), Deep Crossing (Shan et al., 2016) and Deep Embedding Forest (Zhu et al.,

2017). They use features as raw as possible without manually crafted combinatorial features,

and let deep neural networks take care of the rest. Alibaba proposed a Deep Interest Network

(DIN) (Zhou et al., 2017) to learn user embeddings as a function of ad embeddings. Google

used deep neural networks to learn from heterogeneous signals for YouTube recommendations

(Covington et al., 2016). In addition, Wide & Deep Models (Cheng et al., 2016) were devel-

oped for app recommender systems in Google Play where the wide component includes cross

features that are good at memorization and the deep component includes embedding layers for

generalization. Guo et al. proposed to use FM as the wide component in Wide & Deep with

shared embeddings in the deep component (Guo et al., 2017). Wang et al. developed the Deep

& Cross Network (DCN) to learn explicit cross features of bounded degree (Wang et al., 2017).

However, previous approaches will introduce unexpected noise from the irrelevant feature in-
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teractions that can even be exaggerated after combinations, thereby degrading performance

as demonstrated in the experiments. Different from conventional approaches, the proposed

algorithm can learn the common latent spaces shared in multi-view tensors and automatically

adjusting the importance of each view in the predictive model.



CHAPTER 6

CONCLUSION

(Part of the chapter was previously published in (Lu et al., 2014a; Lu et al., 2016; Lu et al.,

2017; Lu et al., 2018).)

In this dissertation, we have discussed broad learning in multiple heterogeneous domains.

We covered two major approaches in broad learning: network-based approaches and ma-

trix/tensor factorization based approaches. Towards this direction, we thoroughly studied four

different research problems: connecting heterogeneous networks, transfer learning for new do-

mains, multi-task multi-view learning, and modeling multi-view relational data. We evaluated

the effectiveness of the proposed models and algorithms by extensive experiments on various

real-world datasets. The major contributions are summarized as follows.

First, we have described and studied the problem of connecting heterogeneous networks.

Different from previous works in link prediction and network alignment, it requires to predict

links between accounts across partially aligned networks with completely different schema. We

have proposed to extract two types of features, user profile features and user interest features,

that can be used to compute the similarity scores of pairs across such networks. By finding the

top-K maximum similar and stable matching, our proposed approach can effectively connect

user accounts across heterogeneous networks. Extensively experiments have demonstrated that

the proposed method consistently outperforms other commonly-used baselines. It provides a

promising step towards incorporating existing online social networks for e-commence.
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Additionally, we explored how to leverage knowledge from related domains to fit the newly-

emerged domain. We have proposed a novel similarity measure called AmpSim that can ju-

diciously capture the rich similarity semantics between entities by taking both the linkage

structures and the augmented link attributes into account. We further incorporated the simi-

larity information captured by AmpSim in a constrained collective matrix factorization model.

Extensively experiments on real-world datasets have demonstrated that our proposed model

significantly outperforms other state-of-the-art collaborative filtering algorithms in addressing

item recommendation for emerging domain.

Furthermore, we also studied a relatively new research direction in multi-task multi-view

(MTMV) learning. We have presented efficient multilinear factorization machines (MFMs)

that can learn the task-specific features and the common latent spaces embedded within the

multimodal interactions among the multiple tasks and the multiple views. Because full-order

interactions are collectively used during learning procedure, MFMs can deal with the partially

incomplete data without difficulty. Moreover, the complexity of MFMs is linear in the number of

features, which make MFMs suitable to large-scale real-world problems. Extensive experiments

on four real-world datasets demonstrated that our proposed MFMs outperform several state-

of-the-art methods in a wide variety of MTMV learning problems.

Finally, we introduced a generic framework for learning relational data from heterogeneous

domains, which can explore the high order correlations underlying multi-view relational data.

We developed structural factorization machines (SFMs) that learn the common latent spaces

shared in the multi-view tensors while automatically adjust the contribution of each view in the
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predictive model. With the help of relational structure representation, we further provided an

efficient approach to avoid unnecessary computation costs on repeating patterns of the multi-

view data. It was shown that the proposed SFMs outperform state-of-the-art factorization

models on eight large-scale datasets in terms of prediction accuracy and computational cost.
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