
Cryptographic Security: Countermeasures against Side-Channel Attacks

BY

KUN MA
B.S. Jilin University, Changchun, China, 2006

M.S. Beijing University of Posts and Telecommunications, Beijing, China 2009

THESIS

Submitted as partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Electrical and Computer Engineering

in the Graduate College of the
University of Illinois at Chicago, 2014

Defense Committee:

Wenjing Rao, Chair and Advisor
Zhichun Zhu
Ashfaq Khokhar
Venkatakrishnan Venkatesan Natarajan, Computer Science
Kaijie Wu, Chongqing University

ACKNOWLEDGMENTS

I would like to thank my advisors, Professor Wenjing Rao and Professor Kaijie Wu, for all

their guidance, support and encouragement throughout my Ph.D study and research. Professor

Wu introduced me to the interesting field of side channel attacks and countermeasures. Dis-

cussing with him has always been inspiring and helpful. My research work would not be made

possible without the guidance of Professor Wu. We have been keeping research interations after

he left University of Illinois at Chicago. I’m very grateful for his thoughtful support during

the tough times. Professor Rao has been my advisor after Professor Wu left. Her insightful

comments and suggestions on my research are important to me towards better work. I’m really

grateful for her support in my last year of Ph.D study.

My sincere thanks also goes to my dissertation committee, Professor Zhichun Zhu, Professor

Ashfaq Khokhar, Professor Venkat Venkatakrishnan, for valuable comments and suggestions.

Special thanks to Professor Zhichun Zhu, who overcame every difficulties to join my dissertation

defense even when she was on sabbatical and Professor Ashfaq Khokhar for his help in offering

financial support when he was the Director of Graduate Studies in University of Illinois at

Chicago.

Thanks to my family. My husband and my parents have been unconditionally supporting

and encouraging me. They have always been the source of my strength.

ii

ACKNOWLEDGMENTS (Continued)

KM

iii

TABLE OF CONTENTS

CHAPTER PAGE

1 INTRODUCTION . 1
1.1 Cryptography . 1
1.2 Public Key Cryptography and Applications 5
1.3 Security of Public Key Cryptography: A Mathematical Point

of View . 11
1.4 Side Channel Attacks . 12
1.4.1 Timing Attacks . 13
1.4.2 Power Analysis Attacks . 14
1.4.3 Electromagnetic Analysis Attacks 15
1.4.4 Fault Attacks . 15
1.5 Contributions . 16

2 PRELIMINARIES . 19
2.1 Finite Fields . 19
2.1.1 Prime Field . 20
2.1.2 Binary Finite Field . 20
2.2 Elliptic Curves . 23
2.3 Elliptic Curve Scalar Multiplication 26
2.3.1 Basic Algorithms . 26
2.3.2 Montgomery Ladder Algorithm 26
2.3.3 Fast ECSM over F2m . 28
2.4 Modular Exponentiation . 30
2.4.1 Algorithms . 30
2.4.2 Computing RSA Fast with Chinese Remainder Theorem . . . 32

3 SIDE CHANNEL ATTACKS AND COUNTERMEASURES FOR
PUBLIC KEY CRYPTOSYSTEMS 34
3.1 Fault Attacks and Countermeasures 34
3.1.1 Fault Injection and Fault Models 35
3.1.2 Fault Attacks on ECC and RSA 36
3.1.3 Countermeasures against Fault Attacks 40
3.2 Power Analysis Attacks and Countermeasures 42
3.2.1 Power Analysis Attacks on ECC and RSA 42
3.2.2 Countermeasures against Power Analysis Attacks 45

4 A NEW COUNTERMEASURE AGAINST FAULT ATTACKS
FOR ECC . 48

iv

TABLE OF CONTENTS (Continued)

CHAPTER PAGE

4.1 The Proposed Low-cost Error Detection and Recovery Scheme 48
4.1.1 The Idea . 49
4.1.2 The LOEDAR Scheme . 52
4.2 Analysis of Error Detection Capability 55
4.2.1 Single Error Occurrence in ECSM/EDR 58
4.2.2 Multiple Error Occurrences in ECSM/EDR 66
4.3 Resistance to Fault Attacks . 70
4.4 Extendibility to Thwart Power Analysis Attacks 70
4.5 The Experiments . 74
4.5.1 Overhead . 74
4.5.2 Comparison to Existing Schemes 77
4.5.3 Error Detection and Recovery Test with Random Fault Injection 79

5 A NEW COUNTERMEASURE AGAINST FAULT ATTACKS
FOR RSA . 81
5.1 Overview . 81
5.2 The Proposed Concurrent Error Detection Scheme 83
5.2.1 The Basic CED Scheme . 84
5.2.2 The Modified CED Scheme . 86
5.2.3 The Enhanced CED Scheme . 88
5.2.4 One for All: Unifying the CED Schemes 89
5.3 Error Detection Capability and Resistance to Fault Attacks . 90
5.3.1 Intentional Faults . 91
5.3.2 Accidental Faults . 93
5.4 Performance and Cost . 93
5.4.1 Performance . 95
5.4.2 Cost . 98

6 TOWARDS A COMPREHENSIVE COUNTERMEASURE AGAINST
MULTIPLE SIDE CHANNEL ATTACKS 101
6.1 Overview . 101
6.2 Basic Principles to Construct a Flexible Comprehensive Scheme 103
6.3 A Comprehensive Protection Scheme for RSA 104
6.4 Techniques to Improve Resistance and Performance 107
6.4.1 Register Transfer Level Techniques 108
6.5 Mask Reusing . 117
6.6 Security Analysis . 120
6.6.1 Resistance to Fault Attacks . 120
6.6.2 Resistance to Power Analysis Attacks 126
6.7 Experiment Results . 129
6.7.1 Hardware Cost and Performance 130
6.7.2 Simulation of Power Analysis Attacks 130

v

TABLE OF CONTENTS (Continued)

CHAPTER PAGE

7 CONCLUSION . 136

CITED LITERATURE . 139

VITA . 148

vi

LIST OF TABLES

TABLE PAGE

I KEY LENGTH VS. SECURITY LEVEL 4

II SECURITY STRENGTH TIME FRAMES 5

III THE FA(O) AND FB(O) OF THE POINT ADDITION OF SCALAR
MULTIPLICATION . 61

IV THE Prundetected error OF THE POINT ADDITION OF SCALAR
MULTIPLICATION . 64

V LOEDAR’S COMPATIBILITY WITH COUNTERMEASURES AGAINST
POWER ANALYSIS . 72

VI COMPARISON OF COUNTERMEASURES WHEN APPLIED TO
LOEDAR . 74

VII THE AREA AND DELAY OF THE ARITHMETIC UNITS 75

VIII HARDWARE OVERHEAD . 75

IX TIME OVERHEAD AND SWITCHING ACTIVITY OVERHEAD 76

X COMPARISON OF THE AREAS OF THE ARITHMETIC UNITS 78

XI COMPARISON OF THE AREAS OF THE COMPLETE SCHEMES 78

XII COMPARISON OF PERFORMANCE 79

XIII MAJOR STEPS OF CRT-RSA, VILIGANT ALGORITHM AND
GIGRAUD ALGORITHM . 94

XIV PERFORMANCE COMPARISON OF CRT-RSA, VIGILANT AL-
GORITHM AND GIRAUD ALGORITHM AND OUR CED SCHEME 96

XV COMPARISON OF THE HARDWARE OVERHEAD OF MODU-
LUS EXTENSION . 98

vii

LIST OF TABLES (Continued)

TABLE PAGE

XVI COMPARISON OF THE REQUIRED MEMORY 99

XVII COMPUTATIONAL OVERHEADS OF DIFFERENT MASK UP-
DATING FREQUENCIES . 120

XVIII RESISTANCE TO POWER ANALYSIS ATTACKS 128

XIX THE AREA AND PERFORMANCE OF THE PROPOSED COM-
PREHENSIVE SCHEME . 130

XX COMPARISON OF THE WAVEFORM 135

viii

LIST OF FIGURES

FIGURE PAGE

1 Point updating graph of the Montgomery ladder algorithm 49

2 Point updating graph of the LOEDAR scheme 51

3 The architecture of the LOEDAR scheme 55

4 LOEDAR’s protection in the computation flow 56

5 DFG of point addition and point doubling in ECSM and Pv accumulation 59

6 The unified CED scheme . 90

7 The nested structure of single-purpose countermeasures in a comprehen-
sive scheme . 104

8 The nested structure of the comprehensive scheme 106

9 The systolic architecture of modular multiplier 111

10 An example: the working state of cells in systolic array 112

11 The schedule of cells for interleaving modular multiplications 114

12 The architecture of the modular multiplier 115

13 Implementation of the interleaving modular multiplier 116

14 The circuit of a cell the modular multiplier 116

15 The hardware architecture of the comprehensive scheme 117

16 Mask reusing for consecutive messages . 118

17 Similation of the power trace using toggle counts 132

18 Power trace of middle iterations for computing modular exponentiation 133

ix

LIST OF FIGURES (Continued)

FIGURE PAGE

19 Power consumption of exponentiating m and m2 134

x

SUMMARY

Side channel attacks have become a serious threat to a cryptosystem. Even if a crypto-

graphic algorithm is mathematically secure, its software or hardware implementation may leak

information through side channels. Side channel attacks exploit the side channel leakage to

break a cryptosystem. A small amount of side channel information may be sufficient to com-

promise a cryptosystem which cannot be broken by pure cryptanalysis with current computing

capability in limited time. As side channel attacks are not only powerful but also practical, pro-

tecting cryptosystem against side channel attacks is critical to ensure security in cryptographic

applications.

This work aims at protecting public key cryptosystems against side channel attacks. Fault

attack is one of the most powerful side channel attacks. In fault attacks, an attacker needs to

induce faults to disturb the cryptosystem and reveal the secret information by analyzing the er-

roneous output or the reaction of the cryptosystem under faults. We present countermeasures

against fault attacks for two widely used public key cryptosystems, Elliptic Curve Cryptog-

raphy (ECC) and RSA. The countermeasures prevent the attacker from obtaining erroneous

result through error detection. Although parallel computation with two identical datapaths or

recomputation can verify the correctness of result, the high overhead in terms of hardware or

time may not be acceptable. In this dissertation, we propose low-cost error detection methods

for ECC and RSA as countermeasures against fault attacks.

xi

SUMMARY (Continued)

The error detection method for ECC shares the same design principle as the error detec-

tion method for RSA. We discover or construct an invariant in the ECC or RSA algorithm

based on mathematical properties. The invariant is verified to detect errors. In the proposed

error detection scheme for ECC, an invariant is constructed by introducing a new point in the

Montgomery ladder algorithm. Meanwhile, it retains the property to compute ECC fast. The

proposed scheme also supports fast recovery upon detecting errors. It saves the intermediate

results as a checked state after their correctness is verified. Upon detecting errors, it can easily

roll back to the previous checked state and restart computation from there rather than from

the very beginning. The process reduces the loss in time to recover from error and hence im-

proves the overall efficiency. This is desirable in mission-critical systems which are required to

deliver service on time even in the events of natural or attacker-induced faults. The proposed

error detection scheme for RSA exploits the multiplicative homomorphic property of RSA to

construct an invariant. The invariant is verified for every k messages to detect errors. k can

be adjusted to trade-off time overhead with storage overhead and output latency according to

requirement of applications.

When designing the error detection schemes against fault attacks for ECC and RSA, we

also take into account their extendibility to thwart other types of side channel attacks, e.g.,

power analysis attacks. In practice, public key cryptosystems are threatened by all types of

side channel attacks since an attacker is able to choose any attacking approach. Protecting a

cryptosystem against fault attacks is not sufficient to ensure security. Hence, extendibility or

compatibility is important for a countermeasure to be useful in the face of various side channel

xii

SUMMARY (Continued)

attacks. The proposed scheme for ECC is compatible with most of the existing countermeasures

against power analysis attacks. It is easy to extend it to thwart power analysis attacks. The

proposed error detection scheme for RSA does not impose any requirement on how to compute

modular exponentiation. Hence, it can work with any RSA architecture which could be a

fine-tuned architecture resistant to other types of side channel attacks.

Although various countermeasures have been proposed to thwart side channel attacks, most

of them target only one type of side channel attacks. With a rich variety of such single-

purpose countermeasures, we discuss how to construct a comprehensive countermeasure using

the single-purpose countermeasures to thwart multiple types of side channel attacks. Combining

the single-purpose countermeasures carelessly may create new leakage. We propose the basic

principles to choose single-purpose countermeasures and construct a comprehensive one without

compromising the security of any single-purpose countermeasure. Following the principles, we

present a comprehensive scheme for RSA to thwart two of the most powerful side channel

attacks, fault attacks and power analysis attacks. Techniques at hardware level are used to

enhance the resistance to power analysis attacks and improve the overall performance of the

scheme. Resistance to other types of side channel attacks can be integrated flexibly under the

proposed principles. The constructing method can be used to create a comprehensive scheme

for ECC cryptosystem.

xiii

CHAPTER 1

INTRODUCTION

Cryptography has been applied to secure communication for thousands of years. It enables

communicating parties to exchange sensitive information securely over an insecure commu-

nication channel by encrypting messages. With the development of Internet and electronic

techniques, cryptography is not limited to just a set of encryption mechanism. Modern cryp-

tography is developed to provide new security properties for various applications and services.

Examples include digital signature to demonstrate the authenticity of a digital document, user

authentication to control access to some restricted services, data protection to prevent unau-

thorized use or reproduction of copyrighted files, etc.

1.1 Cryptography

Modern cryptography can provide confidentiality, data integrity, authentication and non-

repudiation. The purpose of confidentiality is to guarantee that the information cannot be

disclosed by unauthorized users. Confidentiality is enforced by encryption. When two or

more parties have to exchange sensitive information over an insecure communication channel,

the communication parties encode sensitive information to a serial of unreadable codes using

encryption algorithm, send them over the communication channel. Only the authorized parties

can decode it. The received message, after decoded, should be exactly the same one sent by the

sending party. This is referred to as data integrity. Accuracy and consistency of data should be

1

2

maintained, and unauthorized modification violates data integrity. Besides verification of data

integrity, the receiver should be able to verify the origin of data. It is achieved by authentication.

Communication parties are able to validate identification each other through authentication.

Non-repudiation prevents the sender of information from denying having sent it.

Different security goals can be achieved by different cryptographic schemes such as hash

functions, secret key cryptography, public key cryptography, etc. Hash functions can be applied

to verify data integrity. Hash function maps an arbitrary finite size of block data to a string

of fixed length. Any modification of data will generally lead to different hash values. The

Secure Hash Algorithm (SHA) is a family of hash functions published by National Institute of

Standards and Technology (NIST) as Federal Information Processing Standards (FIPS). Secret

key cryptography is also called symmetric key cryptography in which a single, shared, secret

piece of information, called key, is used to encrypt and decrypt data. Data Encryption Standard

(DES) and Advanced Encryption Standard (AES) are two well-known secret key cryptographic

algorithms. AES has been announced as FIPS to supersede DES. Secret key encryption is fast

and hence is suited to encryption of high volume of data. It can be used to encrypt messages

in secure communication. When the communicating parties are located far away from each

other, they have to agree on a secret key before encrypting messages. The exchange of secret

key is addressed by public key cryptography. Public key cryptography, or asymmetric key

cryptography, involves a pair of different keys, a public key and a private key. The public key

is published openly and the private key is kept secret. Besides key establishment for secret key

encryption, public key cryptography also plays an important role in digital signature. Digital

3

signature addresses data authentication and non-repudiation. Analogous to ink signature in

the real world, digital signature is used to authenticate signer in electronic world. A signer

generates a signature for an electronic document using the private key, and anyone can verify the

signature with the corresponding public key. Ronald Rivest, Adi Shamir and Leonard Adleman

presented the first public key cryptographic scheme, RSA, in 1978 (1). RSA has been used

as public key cryptographic scheme for decades. Elliptic Curve Cryptography, an alternative

public key cryptographic approach, was introduced independently by Neal Koblitz (2) and

Victor Miller (3) in 1985. NIST has included the schemes based on ECC in its recommended

cryptographic algorithms (4).

In modern cryptography, key is an essential element to provide security properties. It

is used in cryptographic algorithms to encrypt the plaintext or to decrypt the ciphertext.

In cryptographic terminology, plaintext is the message to be encrypted and ciphertext is the

encryption of plaintext. According to the basic principle of modern cryptography, Kerckhoffss

principle, the security of a cryptosystem should depend on the secrecy of the key and not on

the secrecy of cryptographic algorithm. Most modern cryptographic algorithms are designed

under the assumption that the adversaries will gain full knowledge of the cryptosystem. In

other words, the design of cryptosystem is not required to be secret. As a result, modern

cryptography provides secrecy by just keeping relatively small keys secret. Key length is an

important security parameter which is measured in bits of the key. It is always used to indicate

the security strength of a cryptosystem, such as 256-bit AES, 2048-bit RSA. Generally speaking,

increasing key length will gain the security strength, for example, 2048-bit RSA provides higher

4

TABLE I

KEY LENGTH VS. SECURITY LEVEL

Security strength (Bits) ECC key length (Bits) RSA key length (Bits) AES key length (Bits)

80 163-223 1024 -
112 224-255 2048 -
128 256-383 3072 128
192 384-511 7680 192
256 512+ 15360 256

security than 1024-bit RSA. However, secret key cryptography and public key cryptography

cannot be compared directly by key length for security level as they may have different levels of

cryptographic complexity. The security levels are only estimated based on specific public key

cryptographic algorithms. NIST guidelines give key length verses security level (5), as shown

in Table I. 2048-bit RSA provides equivalent strength to 112-bit symmetric key algorithms.

RSA requires much longer keys than ECC for the same security level. For example, 224-bit

ECC would have the same strength as 2048-bit RSA.

As the length of key determines security level, it should be chosen according to the require-

ment of cryptographic applications. For security purpose, NIST also recommends the length

of keys to ensure security in next two decades (5). Table II shows the recommendations when

cryptographic protection is applied to data, where “Acceptable” means that the algorithm or

key length is now known to be secure and “Disallowed” indicates that the algorithm or key

length shall not be used.

5

TABLE II

SECURITY STRENGTH TIME FRAMES

Security Strength (Bits) 2014 through 2030 2031 and beyond

80 Disallowed Disallowed
112 Acceptable Disallowed
128 Acceptable Acceptable
192 Acceptable Acceptable
256 Acceptable Acceptable

Even though the cryptographic schemes are designed for high theoretical strength, their

implementations in hardware or software may leak information. Side channel attacks exploit

the information leaked by physical implementation such as timing, power consumption, elec-

tromagnetic radiation and erroneous result to break a cryptosystem. In this dissertation, we

focus on protecting public key cryptographic schemes against side channel attacks.

1.2 Public Key Cryptography and Applications

Public key cryptography involves a pair of different keys, a public key and a private key.

The public key is used for encrypting a message. The private key must be known to decrypt a

ciphertext. The roles of keys are reversed in digital signature. The private key is used to sign

a message, and the signature can be verified with the public key. Without knowing the private

key, others should not be able to generate a valid signature.

In 1976, Whitfield Diffie and Martin Hellman presented the public key cryptosystem and

discussed one-way functions to develop public key cryptosystem (6). A one-way function is

6

a function such that it is easy to compute in one direction but very difficult to compute in

the other. More precisely, a function f is a one-way function if it is easy to compute the

y = f(x) for any argument x, yet, it is computationally infeasible to solve the equation for

x given y, i.e., x = f−1(y). If the inverse direction is easy to compute given a certain piece

of information (the trapdoor), the one-way function is a trapdoor one-way function. Public

key cryptosystems are based on trapdoor one-way functions. The private key gives information

about the trapdoor. Lacking the trapdoor, one can only compute the function in the forward

direction. The forward direction corresponds to encryption or signature verification. Knowing

the trapdoor, one can compute the function in inverse direction which corresponds to decryption

or signature generation.

RSA, presented by Rivest, Shamir and Adleman in 1978 (1), is still one of the most popular

public key cryptosystems. The encryption function is based on modular exponentiation. A

message m is encrypted by exponentiating m with a public key e, i.e., c = me mod N , where

N is the product of two large primes p and q. The ciphertext c can be decrypted by computing

m = cd mod N with the private key d. In digital signature, the signer performs modular

exponentiation s = md mod N with the private key d to generate the signature s, and the

signature receiver uses the signer’s public key e to verify the signature by computing m′ =

se mod N . The signature is correct if and only if m′ ≡ m mod N . The message m may be

pre-processed with a padding scheme agreed on by two communicating parties.

To generate the keys for RSA, two distinct prime numbers p and q are randomly selected.

The length of p and q should be similar. Modulus N is computed as N = p · q, and its Eulers

7

totient function is ϕ(N) = (p−1)(q−1). Then an integer e is chosen as the public key such that

1 < e < ϕ(N), e and ϕ(N) are coprime, i.e., gcd(e, ϕ(N)) = 1. The private key d is computed

as d = e−1 mod ϕ(N). Since p, q and ϕ(N) are used to compute the private key, they must also

be kept secret besides the private key itself. For security reasons, p and q should be chosen with

additional requirements described in Public Key Cryptography Standards (PKCS) #1 (7).

The correctness of RSA can be proved with Fermats little theorem. The theorem states

that if p is a prime number and a is not divisible by p, then ap−1 ≡ 1 mod p. According

to the key generation procedure of RSA, the public key and the private key satisfy ed ≡

1 mod ϕ(N) where ϕ(N) = (p − 1)(q − 1). By the definition of modular operation, ed − 1 =

i(p − 1)(q − 1) for some nonnegative integer i. In RSA signature scheme, the signature is

verified by computing se mod N = (md)e mod N = med mod N . In RSA encryption scheme,

the ciphertext is decrypted by computing cd mod N = (me)d mod N = med mod N . Using

Fermats little theorem, we have

med = m ·m(ed−1) = m ·mi(p−1)(q−1) = m · (m(p−1))i(q−1) ≡ m mod p (1.1)

Similarly, we have

med = m ·m(ed−1) = m ·mi(p−1)(q−1) = m · (m(q−1))i(p−1) ≡ m mod q (1.2)

Therefore, med ≡ m mod p · q.

8

As an alternative to RSA, ECC can achieve strong security level with relatively small keys.

According to Table I, one should use 3072-bit RSA for 128-bit AES, while the equivalent key

length for ECC is only 256 bits. ECC offers more security per bit increase in key length than

RSA. Although elliptic curve arithmetic for ECC is slightly more complex than RSA, ECC is

more computational efficient than RSA due to the increased security strength per bit of ECC.

ECC performs operations on elliptic curve. An elliptic curve is a set of points satisfying a

curve equation along with a point at infinity. For cryptographic purpose, the elliptic curve is

defined over a finite field. Elliptic curve arithmetic will be discussed in §2.2. Given a set of

parameters which defines an elliptic curve and a base point P on the elliptic curve, the key pair

(d,Q) is generated by a randomly selected non-zero integer d and a multiplication Q = dP . d

is the private key and required to be kept secret, and Q is the public key which can be made

public. The key generation procedure involves Elliptic Curve Scalar Multiplication (ECSM)

which multiplies a point P on the elliptic curve with a scalar k, i.e., kP . The result is also a

point on the curve. ECSM is the core operation in ECC-based cryptographic implementations.

In the Elliptic Curve Digital Signature Algorithm (ECDSA), which was standardized in

FIPS 186-4 (8), the signer generates a key pair (d,Q) where d is the private signing key and

Q = dP is the public key for signature verification. The signer chooses a per-message random

integer k such that 1 ≤ k ≤ n− 1 where n is the order of base point P , i.e., n = ord(P). Then

kP = (x1, y1) is computed, and the result x1 is converted to integer x1 to compute r = x1 mod n.

The message m is hashed to a bit string of length no more than n and is then converted to an

integer e. Then s is computed as s = k−1(e+ dr) mod n. The signature for message m is (r, s).

9

Neither r nor s can be zero, otherwise the signature should be recomputed by choosing a new

random integer k. To verify the received signature (r, s), the received message m is hashed and

converted to an integer e. Then point X is computed as X = (x1, y1) = u1P + u2Q, where

u1 = ew mod n, u2 = rw mod n and w = s−1 mod n. The signature is valid if and only if

r = x1 mod n where x1 is the integer computed from x1.

The signature verification procedure can authenticate the signer. Suppose signature (r, s)

is generated for message m. According to the signature generation procedure, s = k−1(e +

dr) mod n. Hence k = s−1(e+ dr) mod n. In the verification procedure,

u1P + u2Q = (u1 + u2d)P = s−1(e+ dr)P = kP (1.3)

Hence, only the signature generated by the message owner who has the private key can pass

the verification procedure. It is crucial that the per-message random number k is kept secret,

otherwise the private key d can be revealed by computing d = r−1(ks− e) mod n. The random

number k should be used to sign only one message. If it is used to sign two different messages

m1 and m2 with the same private key d and generate two signatures (r, s1) and (r, s2), then

k can be computed by k = (s1 − s2)
−1(e1 − e2) mod n. Hence, d can be recovered by d =

r−1(ks− e) mod n.

The Diffie-Hellman key exchange based on ECC, Elliptic Curve Diffie-Hellman (ECDH),

is a variant of Diffie-Hellman key exchange protocol which enables communicating parties to

establish a shared secret key for secret key encryption over an insecure communication channel.

10

Suppose Alice and Bob are two communicating parties who want to exchange secret. They have

to agree on a set of elliptic curve and domain parameters and each generates a pair of keys, i.e., a

public key and a private key, for operation. Alice may randomly select an integer as her private

key dA and compute QA = dAP as her public key, where P is the base point on the elliptic curve

agreed upon. Similarly, Bob generates his key pair (dB, QB). Then Alice and Bob exchange

their public keys over the insecure channel. Alice receives Bobs public key QB and she computes

(x, y) = dAQB. Bob receives Alices public key QA and he computes (x, y) = dBQA. The value

(x, y) computed by both parties are equal because dAQB = dAdBP = dBdAP = dBQA. Hence,

it is a shared secret between Alice and Bob. The shared secret can be directly used as the secret

key, but care should be taken to remove weak bits. Most standardized ECDH-based protocols

derive the secret key from the shared secret.

ECDH immediately leads to the classic Elliptic Curve El-Gamal (EC-ElGamal) encryption.

To encrypt a message m, a random number r is chosen, 1 < r < n where n = ord(P). Then

we compute R = rP and c = rQ + m with the public key Q. The ciphertext is (R, c). To

decrypt the ciphertext, we compute m = c− dR with the private key d (Q = dP). The classic

EC-ElGamal encryption scheme is insecure against active attackers (9). Moreover, it requires

that a mesage should be transformed to a point on the elliptic curve. This problem can be

addressed by hashed ElGamal or the Elliptic Curve Integrated Encryption Scheme (ECIES).

The hashed ElGamal appears in the ANSI X9.63 standard (10). In contrast to the classic EC-

ElGamal, it applies a key derivation function H to rQ, i.e., k = H(rQ) where r is a random

number and Q is the public key (Q = dP). And c is computed with a secret key encryption

11

scheme, c = Ek(m). The ciphertext is (R, c) where R = rP . To decrypt the ciphertext, we

compute k = H(d ·R) and m = Dk(c).

ECIES is the same as hashed ElGamal except that it includes Message Authentication Code

(MAC) to prevent active attacks. It also appears in ANSI X9.63 standard (10).

1.3 Security of Public Key Cryptography: A Mathematical Point of View

Public key cryptosystems are based on one-way functions which are believed to be compu-

tational infeasible to invert. RSA computes exponentiation modulo a composite number N .

The composite number N is the product of two large primes p and q. Given p and q, it is easy

to compute N = p · q. However, inverting this function is difficult. Inverting the function is to

find the factors p and q given N . The factorization problem is a hard mathematical problem

when the numbers are very large and p, q are of similar size. No efficient factorization algo-

rithm is known. The difficulty of solving the prime factorization problem is the basis of RSA

security. The security of ECC is based on the difficulty of solving the Elliptic Curve Discrete

Logarithm Problem (ECDLP). More specifically, given points P and Q on elliptic curve, it

finds a number k that kP = Q and k is thus called the discrete logarithm of Q to the base

P . As of now, RSA-768 has been successfully factored. The factorization work took almost

2000 2.2GHz-Opteron-CPU years (11). The record of solving ECDLP over 112-bit prime field

was announced in 2010. The calculation took around 3.5 months on a cluster of more than 200

PlayStation 3 game consoles (12). The previous record solving the problem over 109-bit prime

field was set in 2002 requiring 549 days of computing by more than 10,000 members in almost

250 teams, that is around 4000 to 5000 PC years. However, the key lengths used in practice are

12

usually at least 1024 bits for RSA and at least 163 bits for ECC. NIST recommends the length

of keys for public key cryptosystems to ensure security in next two decades (5). According

to Table I and Table II, RSA 2048-bit and ECC at least 224-bit are considered to be secure

before year 2030. With the length of key properly chosen based on the NIST recommendation,

public key cryptosystem are now considered mathematically secure.

1.4 Side Channel Attacks

In practice, however, public key cryptosystems are not secure enough as they are designed to

be. Attackers can exploit the weakness in the software or hardware implementations of public

key cryptosystems. The implementations leak additional information via side channels. Typical

side channels include timing, power consumption, electromagnetic radiation, erroneous output,

etc. A small amount of side channel information may be sufficient to break the cryptosystems.

Side channel attacks exploiting side channel information require much less computing resources

than mathematical cryptanalysis. They are powerful to break public key cryptosystems which

are believed mathematically secure and hence become a serious threat. Side channel attacks

can be classified in the following ways.

• Active vs. passive: Active attacks attempt to tamper the functionality of cryptographic

device. For example, in fault attacks faults are induced to cryptographic device to generate

erroneous output. Passive attacks collect side channel information by measuring the

physical parameters, observing the behavior of cryptographic device. The functionality

of cryptographic device is not disturbed.

13

• Invasive vs. non-invasive: Invasive attacks obtain side channel information in an invasive

way such as depackaging the device. Different components of the device can then be

accessed directly. In non-invasive attacks, the cryptographic device is intact and external

information such as timing, power consumption are exploited.

Based on the types of side channel information exploited by attacks, side channel attacks

can also be divided into timing attack, power analysis attack, fault attack, etc.

1.4.1 Timing Attacks

Timing attacks exploit the non-constant execution time of cryptographic algorithm to re-

cover the secret information. The time variation can be caused by conditional branches in

the algorithm, performance optimizations, etc. The execution time may be slightly different

depending on the input data and secret key. Hence, the secret information can be derived by

analyzing the time for each execution.

The timing characteristics in public key cryptosystems are more dependent on key than

secret key cryptosystems. Hence, public key cryptosystems are more vulnerable to timing

attacks.

The most obvious way to prevent timing attacks is to implement cryptographic algorithms

such that the execution time is constant. This is often difficult. Another approach is to make

timing measurements inaccurate by randomization techniques such as adding random delays.

Attackers have to collect more measurements to compensate the noise caused by random delays.

The fast increase of measurements required can make timing attacks infeasible.

14

1.4.2 Power Analysis Attacks

Nowadays, CMOS technology is the predominant technology for digital integrated circuits.

The dynamic power consumption of CMOS circuits depends on the change of data. Switching

from logic 0 to logic 1 (i.e., 0 → 1) or from logic 1 to logic 0 (i.e., 1 → 0) consumes dynamic

power, while staying at the same logic level (i.e., 0 → 0 and 1 → 1) does not. Power analysis

attacks exploit the dependence of the dynamic power consumption of a cryptographic device

on the data it is processing to recover secret information.

Simple Power Analysis (SPA) attacks require only one power consumption trace over time.

In SPA, an attacker identifies the key-dependent operations by observing the power consump-

tion trace. Differential Power Analysis (DPA) attacks involve statistical analysis of correlation

between the power consumption and the processed data. In DPA, an attacker makes a hypoth-

esis on the partial key and computes the intermediate values from the key. The intermediate

values are then transformed to leakage through a leakage model, e.g., Hamming weight model

or Hamming distance model. The attacker performs statistical tests, e.g., distance-of-means,

correlation analysis, on the leakage and the power consumption with a large number of power

traces. A large correlation should appear for the correct hypothesis.

To prevent SPA attacks, key-dependent operations should be avoided or made indistinguish-

able in power consumption. DPA attacks can be prevented by hiding the power consumption

or masking the data. Hiding reduces the correlation between intermediate data and power con-

sumption by adding noise, reducing signal leakage or using a variable clock frequency. Masking

15

makes intermediate data unpredictable, thereby breaking the correlation between intermediate

data and power consumption.

More details on power analysis attacks on public key cryptosystems and countermeasures

will be discussed in Chapter 3.

1.4.3 Electromagnetic Analysis Attacks

Electromagnetic analysis (EMA) attacks exploit the leakage of electromagnetic fields due

to current flows. Quisquater and Samyde presented the first EMA attack (13). They measured

the electromagnetic radiation of a smart card with an oscilloscope, a flat coil and a Faraday

cage. The measurement can be analyzed in a similar way to power analysis attacks. And

similar to power analysis attacks, there are simple electromagnetic analysis (SEMA) attacks

and differential electromagnetic analysis (DEMA) attacks.

EM radiation can be measured from a distance. Hence, the measurement may be more

noisy compared to the power measurement in power analysis attacks.

Countermeasures against EMA attacks include confining the radiation by metal layers,

blurring the radiation with an active emitting grid, canceling the radiation using dual logic,

etc.

1.4.4 Fault Attacks

In contrast to timing attacks, power analysis attacks and electromagnetic analysis attacks,

fault attacks are active attacks which require an attacker to induce faults into cryptographic

device when it is performing computation. The erroneous output is analyzed to reveal the

secret information.

16

To thwart fault attacks, error detection can be performed when the cryptographic device

is computing. The result will not be outputted once errors are detected. This prevents an

attacker from obtaining erroneous result for analysis. More details on fault attacks on public

key cryptosystems and countermeasures will be discussed in Chapter 3.

In this dissertation, we consider two of the most powerful side channel attacks, fault attacks

and power analysis attacks, and present countermeasures for public key cryptosystems against

them.

1.5 Contributions

In this dissertation, we present new countermeasures for two widely used public key cryp-

tosystems, ECC and RSA, to thwart fault attacks. The countermeasures are based on error

detection methods. If an error is detected, the cryptosystem will not output the erroneous

result and hence prevent an attacker from obtaining it to perform fault analysis. The proposed

low-cost error detection and recovery scheme for ECC introduces a new point Pv into the Mont-

gomery ladder algorithm and updates it in a way such that Pv + P2 ≡ 2P1, where P1 and P2

are two point variables used in the Montgomery ladder algorithm. Pv + P2 ≡ 2P1 is verified

to detect errors. The error detection scheme for RSA exploits the homomorphic property of

RSA encryption, i.e., E(m1 ·m2) ≡ E(m1) · E(m2), and checks it to detect errors. Both error

detection schemes are design from the same idea: constructing an invariant from the mathe-

matical properties of the public key cryptosystems and checking the correctness of the invariant

to detect errors. The proposed error detection methods can achieve good error detection capa-

bility while significantly reduce the overhead in terms of time and hardware compared to error

17

detection methods based on parallel computing and recomputing. The idea of discovering or

constructing an invariant for error detection should work for other mathematically structured

cryptographic cryptosystems besides ECC and RSA. We hope it can provide some guidance for

designing the error detection methods for other cryptosystems.

We also discuss the basic principles to construct a comprehensive scheme to thwart mul-

tiple side channel attacks. A comprehensive scheme is critical in the security of public key

cryptosystems since an attacker can choose any side channel attack in practice and he/she

needs to succeed in only one attack to break the public key cryptosystems. Most existing coun-

termeasures target at preventing a single type of side channel attacks. The countermeasures

proposed to thwart more than one type of side channel attacks customize the computations,

which makes them inflexible to be extended when new side channel attacks appear. Careless

modification can cause new leakage compromising the expected security, as shown by Kim and

Quisquater (14). Designing a new scheme from scratch whenever resistance to new side channel

attacks has to be included is unrealistic. We present an approach to construct a comprehensive

scheme from a rich variety of single-purpose countermeasures against different side channel at-

tacks. The scheme can flexibly integrate the countermeasures against new side channel attacks

at any time. We show a scheme for RSA constructed with the proposed approach and propose

techniques at the Register Transfer Level to improve the performance and the resistant to power

analysis attacks.

The rest of the dissertation is organized as follows. In Chapter 2, we introduce the math-

ematical background, basic definitions and algorithms for the public key cryptosystems, ECC

18

and RSA. In Chapter 3, we focus on two of the most powerful side channel attacks, fault attacks

and power analysis attacks on ECC and RSA. The related work on countermeasures against

them is introduced. We present a low-cost error detection and recovery scheme (LOEDAR) for

ECC to thwart fault attacks in Chapter 4. It can be easily extended to thwart power analysis

attacks. In Chapter 5, we propose a concurrent error detection scheme for RSA to thwart fault

attacks, which can work with any fine-tuned RSA architecture resistant to other side channel

attacks. To protect the public key cryptosystems against multiple types of side channel at-

tacks, we discuss the basic principles to construct a comprehensive scheme using single-purpose

countermeasures and present one such scheme for RSA in Chapter 6. Chapter 7 concludes the

dissertation.

CHAPTER 2

PRELIMINARIES

Public key cryptographic algorithms operate over finite fields. These algebraic structures

are the mathematical basis to understand public key cryptographic algorithms. They define

the arithmetic operations in public key cryptographic algorithms. This chapter gives a brief

overview of the finite fields, and introduces elliptic curves and operations on the elliptic curves.

Then the algorithms to compute ECSM for ECC and modular exponentiation for RSA are

introduced.

2.1 Finite Fields

A field is a set F with two operations, usually called addition (+) and multiplication (·),

respectively, for which the following conditions are satisfied:

• Closure: If a, b ∈ F, then a+ b ∈ F and a · b ∈ F.

• Associativity : a+ (b+ c) = (a+ b) + c and a · (b · c) = (a · b) · c for all a, b, c ∈ F.

• Commutativity : a+ b = b+ a and a · b = b · a for all a, b ∈ F.

• Additive identity and multiplicative identity : There exists an element, denoted by 0, 0 ∈ F

such that for all a ∈ F, 0 + a = a + 0 = a. There also exists an element, denoted by 1,

1 ∈ F such that for all a ∈ F, 1 · a = a · 1 = a.

• Additive inverse and multiplicative inverse: For any a ∈ F, there exists −a ∈ F such that

a+ (−a) = 0. For any a ∈ F and a 6= 0, there exist b ∈ F such that a · b = b · a = 1.

19

20

• Distributivity : a · (b+ c) = a · b+ a · c and (b+ c) · a = b · a+ c · a for all a, b, c ∈ F.

According to the above definition of field, the set of all real numbers is a field, denoted by

R, and the set of all rational numbers is also a field, denoted by Q. There are infinite elements

in R and Q. A field containing a finite number of elements is called finite field or Galois field.

The order of finite field, i.e., the number of elements in the field, is equal to pm for some prime

p and positive integer m. p is called the characteristic of the field. Hence, the finite field can be

denoted by Fpm . When m = 1, the finite field is called prime field and denoted by Fp. When

p = 2, the field is known as binary extension finite field or simply binary finite field, denoted

by F2m . Prime field and binary finite field play an important role in public key cryptography.

2.1.1 Prime Field

Given a positive integer n, an integer i can be expressed as i = qn + r for some integer r,

0 ≤ r ≤ n − 1, and some integer q. r, namely the remainder, is i modulo n, i.e., r = i mod n.

For prime p, the set of mod-p remainders contains p integers, Rp = {0, 1, · · · , p − 1}. The

remainder set Rp forms a prime field Fp under mod-p addition and mod-p multiplication. The

mod-p addition and mod-p multiplication are addition and multiplication performed modulo p.

The prime field Fp has a prime p number of elements.

2.1.2 Binary Finite Field

Binary finite field F2m can be constructed with polynomials. A polynomial in X over the

field F is an expression of the form

a(X) = anX
n + an−1X

n−1 + · · ·+ a1X + a0

21

where an, an−1, · · · , a1, a0 ∈ F and n is a positive integer. an, an−1, · · · , a1, a0 are the

coefficients of the polynomial. The largest i for which ai is nonzero is called the degree of

the polynomial. A polynomial a(X) is said to be irreducible if degree(a(X)) ≥ 1 and a(X) is

divisible only by polynomials of degree 0 or c · a(X) for some c ∈ F.

The set of all polynomials over the field F in X is denoted by F[X]. The field Fpm , when

m 6= 1, can be obtained by taking Fp[X], the set of all polynomials with coefficients over the

prime field Fp, modulo an irreducible polynomial of degree m. Hence, the binary finite field F2m

can be constructed by taking F2[X] modulo an irreducible polynomial of degree m. Hence, the

elements in F2m are the polynomials of degree at most m−1 and coefficients of the polynomials

are in the field F2 = {0, 1}. For example, the binary finite field F24 contains 16 polynomials: 0,

1, X, X + 1, X2, X2 + 1, X2 +X, X2 +X + 1, X3, X3 + 1, X3 +X, X3 +X + 1, X3 +X2,

X3+X2+1, X3+X2+X, X3+X2+X+1. Arithmetic operations over F24 are performed using

an irreducible polynomial as the reduction polynomial, e.g., f(X) = X4 +X+ 1. The following

are examples of addition and multiplication. Suppose g(X) = X3 +X + 1 and h(X) = X2 + 1.

Addition : g(X) + h(X) = (X3 +X + 1) + (X2 + 1)

= X3 +X2 +X

22

Multiplication : g(X) · h(X) = (X3 +X + 1) · (X2 + 1)

= X5 +X2 +X + 1 mod (X4 +X + 1)

= 1

A binary finite field F2m can also be viewed as a vector space of dimension m over F2. And

the elements in the field can be represented in bases such as polynomial bases and normal bases.

Let α be an element of F2m such that α is a root of an irreducible polynomial f(X) of degree

m over F2, the element α ∈ F2m generates

{1, α, α2, · · · , αm−1}

which is called a polynomial basis of F2m over F2. Any element in the field can be represented

in terms of the basis as a(X) = am−1α
m−1 + · · ·+ a1α+ a0. In computer systems, the element

can be represented by the vector formed by the coefficients. For example, X3 +X2 + 1 in the

field F24 is represented as (1101)2.

A normal basis of F2m over F2 is a basis of the form

{α, α2, α22 , · · · , α2m−1}

for an element α ∈ F2m . One advantage of normal bases is that raising an element to the power

of 2 is simply a cyclic shift of the element vector.

23

2.2 Elliptic Curves

An elliptic curve E over a field F is defined by a Weierstrass equation:

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 (2.1)

where a1, a2, a3, a4, a6 ∈ F and the discriminant of E is nonzero. The discriminant of E is

defined as follows:

∆ = −d22d8 − 8d34 − 27d26 + 9d2d4d6

d2 = a21 + 4a2

d4 = 2a4 + a1a3

d6 = a23 + 4a6

d8 = a21a6 + 4a2a6 − a1a3a4 + a2a
2
3 − a24.

(2.2)

For cryptographic applications, elliptic curves are defined over finite fields. In the binary

finite field F2m , i.e., the characteristic is 2, Equation 2.1 can be transformed to

E : y2 + xy = x3 + ax2 + b (2.3)

where a, b ∈ F and b 6= 0. The set of points (x, y) ∈ F2m × F2m satisfying Equation 2.3 along

with the point at infinity O forms a group under addition. The point at infinity O serves as

24

the identity of the group, i.e., P +O = O + P = P for all P on E. For any two points P1 and

P2 on E, P1 6= O, P2 6= O, they can be written as P1 = (x1, y1) and P2 = (x2, y2).

If P2 6= ±P1, then P1 + P2 = (x3, y3), where

x3 =

(
y1 + y2
x1 + x2

)2

+
y1 + y2
x1 + x2

+ x1 + x2 + a,

y3 =

(
y1 + y2
x1 + x2

)
(x1 + x3) + x3 + y1

(2.4)

The operation is known as point addition.

If P2 = −P1, then P1 + P2 = O.

If P2 = P1, then P1 + P2 = 2P1 = (x3, y3), where

x3 = x1

2 +
b

x12
,

y3 = x1
2 +

(
x1 +

y1
x1

)
x3 + x3

(2.5)

The operation is referred to as point doubling.

If the characteristic of the finite field F is not equal to 2 or 3, the Weierstrass equation can

be transformed to

E : y2 = x3 + ax+ b. (2.6)

Let P1 = (x1, y1) and P2 = (x2, y2), P1 6= O, P2 6= O, P1 6= ±P2, point addition P1 + P2 =

(x3, y3) is computed as
x3 = λ2 − x1 − x2,

y3 = λ(x1 − x3)− y1

(2.7)

25

where λ = (y2 − y1)/(x2 − x1).

Point doubling 2P1 = (x3, y3) is computed as

x3 = λ2 − 2x1,

y3 = λ(x1 − x3)− y1

(2.8)

where λ = (3x21 + a)/(2y1).

Point addition and point doubling consist of arithmetic operations over a finite field such as

addition, multiplication, squaring operation and inversion. Inversion over binary finite field or

prime field is more expensive than other arithmetic operations. To avoid expensive inversions,

affine coordinates can be transformed into projective coordinates. The projective form of the

Weierstrass equation of an elliptic curve E can be obtained by replacing x by X/Zc and y by

Y/Zd where c, d ∈ N.

In homogeneous projective coordinates, coordinates are transformed by setting x = X/Z

and y = Y/Z. The equation of elliptic curve over binary finite fields, i.e., Equation 2.3, is

transformed to

Y 2Z +XY Z = X3 + aX2Z + bZ3. (2.9)

An affine point (x, y) is represented by a projective point (X,Y, Z) = (θx, θy, θ) for some θ ∈ F.

The X,Y -coordinate and Z-coordinate can be computed separately for point addition and point

doubling.

26

Affine coordinates can be mapped to projective coordinates in other ways. In the Jaco-

bian projective coordinate, an affine point (x, y) is mapped to a projective point (X,Y, Z) =

(θ2x, θ3y, θ) for some θ ∈ F by setting x = X/Z2 and y = Y/Z3. In the Lopez Dahab projective

coordinate (15), an affine point (x, y) is mapped to a projective point (X,Y, Z) = (θx, θ2y, θ)

for some θ ∈ F by setting x = X/Z and y = Y/Z2.

2.3 Elliptic Curve Scalar Multiplication

In this section, we introduce the methods to compute ECSM, i.e., kP where k is an integer

and P is a point on the elliptic curve E. The ECSM operation dominates the computation in

ECC schemes.

2.3.1 Basic Algorithms

The basic algorithms to compute ECSM are binary method and add-and-double-always

method. Algorithm 1 shows the left-to-right binary method. The algorithm computes from the

second Most Significant Bit (MSB) towards the Least Significant Bit (LSB) of k. It doubles

point R for each bit of k and adds P to R only when the bit of k is 1. Therefore, the sequence

of operations is dependent on the value of k.

The add-and-double-always method inserts a dummy point addition to make the sequence

of operations independent on the value of k, as shown in Algorithm 2.

2.3.2 Montgomery Ladder Algorithm

Montgomery introduced a different method to compute kP (16). He observed that the x-

coordinate of the addition of two points can be computed from the x-coordinates of the two

points and the x-coordinate of the difference between them. The algorithm computes with two

27

Algorithm 1 Left-to-right binary method

Input: P ∈ E, k = (kl−1kl−2 · · · k0)2 where kl−1 = 1
Output: Q = kP

R← P
for i = l − 2 downto 0 do

R← 2R
if ki = 1 then

R← R+ P
end if

end for
Return (R)

Algorithm 2 Add-and-double-always method

Input: P ∈ E, k = (kl−1kl−2 · · · k0)2 where kl−1 = 1
Output: Q = kP

R[0]← P
for i = l − 2 downto 0 do

R[0]← 2R[0]
R[1]← R[0] + P
R[0]← R[ki]

end for
Return (R[0])

28

points, P1 and P2, whose difference is always P after each iteration. In each iteration, one point

addition and one point doubling are performed independent on the value of k. Algorithm 3

shows the method.

Algorithm 3 Montgomery ladder algorithm

Input: P ∈ E, k = (kl−1kl−2 · · · k0)2 where kl−1 = 1
Output: Q = kP

Set P1 ← P , P2 ← 2P
for i = l − 2 downto 0 do

if ki = 1 then
P1 ← P1 + P2

P2 ← 2P2

else
P2 ← P2 + P1

P1 ← 2P1

end if
end for
Return (Q = P1)

2.3.3 Fast ECSM over F2m

Lopez and Dahab presented an efficient implementation of the Montgomery ladder algorithm

for computing kP on elliptic curves over F2m (17). They showed that given P1 = (x1, y1),

P2 = (x2, y2) and P = P2−P1 = (x, y), the x-coordinate of P1 +P2 can be computed as follows.

x(P1 + P2) = x+ (
x1

x1 + x2
)2 +

x1
x1 + x2

(2.10)

29

The x-coordinate of the doubling of a point P1 can also be computed from the x-coordinate

of P1, as shown in Equation 2.5. Therefore, only the x-coordinates of P1, P2 and P can be used

to perform arithmetic operations needed in the (l− 1) iterations in Algorithm 3. At the end of

the (l − 1)th iteration, the x-coordinates of kP and (k + 1)P are obtained. The y-coordinate

of kP can be recovered as follows.

y1 = (x1 + x){(x1 + x)(x2 + x) + x2 + y}/x+ y (2.11)

where x1, x2 are the x-coordinates of P1 and P2 after the (l − 1)th iteration.

To avoid expensive inversions over F2m , the affine coordinates of P1 and P2 can be trans-

formed to projective coordinates by setting x = X/Z and y = Y/Z. Hence, the x-coordinates

of P1 and P2, i.e., x1 and x2, are represented by X1/Z1 and X2/Z2.

The x-coordinate of P1 + P2 can be computed as X(P1 + P2)/Z(P1 + P2) where

Z(P1 + P2) = Z3 = (X1 · Z2 +X2 · Z1)

2

X(P1 + P2) = X3 = x · Z3 + (X1 · Z2) · (X2 · Z1)

(2.12)

where x is the affine x-coordinate of P = P2 − P1.

The x-coordinate of 2P1 can be computed as X(2P1)/Z(2P1) where

X(2P1) = X4 = X4

1 + b · Z4
1

Z(2P1) = Z4 = X2
1 · Z2

1

(2.13)

30

2.4 Modular Exponentiation

RSA is based on modular exponentiation. Given a message m and an exponent d, modular

exponentiation computes md mod N where N is the modulus.

2.4.1 Algorithms

A basic method for computing modular exponentiation is the binary exponentiation algo-

rithm, also known as the square-and-multiply algorithm. Algorithm 4 shows the left-to-right

version which starts at the second MSB of the exponent and works downward. Each bit of ex-

ponent is processed with a modular square operation and a conditional modular multiplication.

The right-to-left binary exponentiation algorithm is similar to the left-to-right one except that

it starts at the LSB and works upward.

Algorithm 4 Binary exponentiation algorithm

Input: m, d = (dl−1 · · · d1d0)2 where dl−1 = 1, N
Output: md mod N

R← m
for i = l − 2 downto 0 do

R← R2 mod N
if di = 1 then

R← R ·m mod N
end if

end for
Return (R)

31

In the binary exponentiation algorithm, the sequence of operations is dependent on the value

of d since the modular multiplication is performed only when the bit of d is 1. The square-

and-multiply-always algorithm inserts a dummy operation to make the sequence of operations

independent on d, as shown in Algorithm 5.

Algorithm 5 Square-and-multiply-always algorithm

Input: m, d = (dl−1 · · · d1d0)2 where dl−1 = 1, N
Output: md mod N

R[0]← m
for i = l − 2 downto 0 do

R[0]← R[0]2 mod N
R[1]← R[0] ·m
R[0]← R[di]

end for
Return (R[0])

The Montgomery ladder exponentiation algorithm also ensures the sequence of operations

independent on the value of d. As shown in Algorithm 6, it starts at the second MSB of

the exponent and processes bit by bit down to the LSB. A modular multiplication and a

modular squaring operation are performed in each iteration. R[1] and R[0] satisfy the relation

R[1] = R[0] ·m mod N after each iteration. At the end of the lth iteration, R[0] = md mod N

and R[1] = md+1 mod N are obtained. There is no dummy operations in the algorithm.

32

Algorithm 6 Montgomery ladder exponentiation algorithm

Input: m, d = (dl−1 · · · d1d0)2, N
Output: md mod N

R[0]← 1, R[1]← m
for i = l − 1 to 0 do

R[di]← R[di] ·R[di] mod N
R[di]← R[di] ·R[di] mod N

end for
Return (R[0])

2.4.2 Computing RSA Fast with Chinese Remainder Theorem

Modular exponentiation in RSA is time-consuming due to the lengths of exponent and

modulus. Chinese Remainder Theorem can be used to accelerate computation of the modular

exponentiation with the private key in RSA, known as CRT-RSA. Algorithm 7 shows CRT-RSA

where Iq = q−1 mod p, Ip = p−1 mod q.

Algorithm 7 CRT-RSA

Input: m, d, p and q where p · q = N
Output: md mod N

dp ← d mod (p− 1), dq ← d mod (q − 1)
sp ← mdp mod p
sq ← mdq mod q
s← CRT(sp, sq) = ((sp · q · Iq) + (sq · p · Ip)) mod N
Return (s)

33

Compared to the straightforward implementation of RSA, CRT-RSA computes two modular

exponentiations md mod (p−1) mod p and md mod (q−1) mod q. Since p and q are chosen to have

about half the bit length of N , i.e., |p| ≈ |q| ≈ |N |/2, the exponents in the two modular

exponentiations are of half bit length of d. Hence, CRT-RSA is about 4 times faster than

the straightforward implementation of RSA. Note that CRT-RSA can be used only in digital

signature or decryption since it requires to know the secret information p and q.

CHAPTER 3

SIDE CHANNEL ATTACKS AND COUNTERMEASURES FOR PUBLIC

KEY CRYPTOSYSTEMS

As introduced in §1.4, side channel attacks exploit the weakness in the implementations

of cryptographic algorithms. An attacker can gain information about the internal state of the

cryptosystem by monitoring timing, power consumption, electromagnetic emission or erroneous

output, and derive the secret key by analyzing the information. Based on the source of leakage,

side channel attacks can be divided into timing attacks, power analysis attacks, fault attacks,

etc. Fault attacks and power analysis attacks are two of the most powerful ones of all side

channel attacks. In this section, we survey fault attacks and power analysis attacks on ECC

and RSA and the countermeasures against them.

3.1 Fault Attacks and Countermeasures

Fault attacks are active attacks in which attackers need to disturb the cryptosystem by

inducing faults. With erroneous output or the reaction of the cryptosystem under faults, at-

tackers can reveal the secret information. The first fault attack targeted RSA (18) in which a

fault was introduced to the computation of one modular exponentiation in CRT-RSA and the

secret prime number was derived from the erronous output. Since then, fault attacks have been

reported to break other cryptosystems.

34

35

3.1.1 Fault Injection and Fault Models

There are many techniques to induce faults. Variations in supply voltage or variations in

the external clock may cause data misread, instruction miss or erroneous data. Temperature

can lead to misfunctioning of cryptographic device. Circuit manufacturers give the temperature

bound for a circuit to function correctly. If the temperature exceeds the bound, operations may

not work. And the data stored in memory cells could be modified due to heating. White light

can also induce faults due to photoelectric effects. The photons can induce current when a

circuit exposed to intense light for a short time period. Laser improves the precision of fault

injection. Its directionality allows it to target a small circuit area. X-rays and ion beams can

inject faults without depackaging the chip.

The difficulty in inducing a fault depends on the precision in terms of timing and location.

Different fault attacks are based on different fault models which require certain control on

timing and location. Without any control, a fault is induced randomly. With better control

of location, a block of operations can be targeted. Powerful attackers may be able to inject a

fault to selected bits with precise control. Attackers may also be able to control the timing of

fault injection, however, it is hard to induce a fault at some exact time. Based on the control

level of timing, location and the number of bits affected, the most popular fault models used in

the literature of fault attacks are single bit fault model, byte fault model, random fault model

and arbitrary fault model. The single bit fault model assumes that a fault affects only a single

bit of a targeted variable. It is considered unrealistic to target a specific bit of the variable

at a specific point of time. Boneh, Demillo and Lipton introduced the single bit fault model

36

which relaxed the control over location and timing in the first fault attack (18). In the model,

a variable used in the cryptographic algorithm rather than a specific bit is targeted, and one

bit of the affected variable is flipped. The byte fault model represents the attacks where only

a bounded number of bits are affected by an induced fault. When cryptographic devices store

and load variables in blocks, the block of bits, typically one byte, can be affected by induced

faults. In the byte fault model, a specific variable is targeted, and a fault can affect one byte

at an unknown position in the variable. The number of affected bits is usually bounded by a

small number, which allows an attacker to try all possible error patterns to identify the correct

error pattern for secret information recovery. The random fault model assumes that a variable

affected by an induced fault is changed to some random value. It models the case that an

attacker lacks the knowledge of how an induced fault affects the value of the variable. The

resulting random values are usually assumed to be distributed uniformly to simplify analysis.

The weakest fault model is the arbitrary fault model. In the model, an attacker has even

less control over location. Only a specific line of the code of cryptographic algorithm can be

targeted. And the attacker may not know the effect of the faults, e.g., the distribution of error.

An attack based on the arbitrary fault model is more dangerous compared to attacks based on

other fault models since it requires less about the capability of an attacker.

3.1.2 Fault Attacks on ECC and RSA

Fault attacks on ECC can be divided into three categories: weak curve based fault attacks,

differential fault attacks and safe error attacks.

37

Weak curve based attacks try to move the computation of ECSM from a strong elliptic

curve to a weak elliptic curve. Biehl, Meyer and Muller presented a weak curve based fault

attack (19). They observed that parameter a6 in the Weierstrass equation (Equation 2.1) was

not used in computation of ECSM. An attacker can cheat the cryptosystem with a point P ′ ∈ E′

where E′ is a cryptographically weak elliptic curve.

E′ : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

′ (3.1)

The ECSM computed by the cryptographic device for elliptic curve E will generate a point

on the elliptic curve E′, which differs from E in only a6. On the weak elliptic curve P ′ has

a smaller order r. Consequently, the attacker can solve ECDLP in a subgroup to retrieve

kr where kr = k mod r. By collecting different pairs of kr and r, k can be derived using

Chinese Remainder Theorem. Ciet and Joye then extended the idea and showed that random

errors in either coordinates of the base point P , or the elliptic curve parameters or the field

representation can help reveal the secret information (20). Fouque et al. presented an attack

based on quadratic twist curve (21). They observed that the twist curves of most strong curves

are weak. For an elliptic curve E defined over prime field, its twist curve Ẽ is defined as

Ẽ : (ε)y2 = x3 + ax+ b (3.2)

where ε is a quadratic non-residue in the prime field. According to the curve equation, a random

x-coordinate corresponds to a point on either E or Ẽ. When ECSM is computed with only

38

x-coordinate, a random fault on the x-coordinate of a point on E has a probability of one half

to move to a point on Ẽ.

Differential fault attacks derive the secret information by analyzing the difference between

correct result and erroneous result. Biehl, Meyer and Muller presented differential fault attacks

on ECC (19). In the right-to-left binary algorithm for computing ECSM, an attacker can reveal

k from the most significant bits to the least significant bits. Every time partial bits of k are

targeted. Computing ECSM once, the attacker can obtain the correct result Q. In the second

time of computation, the attacker induces a one-bit flip fault on the intermediate result Q′i

after iteration i and obtains the erroneous output Q′. All possible values of targeted bits of

k are searched. The correct value is the one which leads to Qi and Q′i differing in only one

bit. Similarly, the left-to-right binary algorithm (Algorithm 1) can be attacked. Blömer et al.

presented a sign change fault attack (22). It targets ECC over prime field. A fault is induced

to change a point P to −P . This can be achieved by changing the sign of y-coordinate of P .

Even though the sign of a point is changed, it is still a valid point on the elliptic curve.

Weak curve based attacks and differential fault attacks need the erroneous result to reveal

the secret information. In contrast, safe error attacks do not require to obtain the erroneous

results. They simply need the fact that whether the output is affected by induced faults. Yen

and Joye presented an attack on ECC based on safe error (23). Faults are induced into the

dummy point addition in the add-and-double-always algorithm (Algorithm 2). Whether the

dummy point addition will affect the final result depends on the bit value of k, so an attacker

can recover k bit by bit by checking the correctness of output.

39

Boneh, Demillo and Lipton presented the first fault attack on RSA (18). In CRT-RSA,

two modular exponentiations are computed with prime p and q, where p and q are the factors

of modulus N , i.e., n = p · q. An attacker induces a fault during the computation of one

modular exponentiation (i.e., sp or sq), and an erroneous result s′ is produced after CRT

combination. With the erroneous signature s′ and a correct signature s, the attacker can easily

reveal the secret prime number (q or p) by computing Greatest Common Divider of s′ − s, i.e.,

GCD(s′ − s). The attack assumes that the message padding function is deterministic. Coron

extended it to attack RSA when the message is partially unknown due to padding or message

encoding (24). The attack finds small roots of linear equations modulo an unknown factor p

of n. The straightforward implementation of RSA without CRT is also vulnerable (18). An

attacker asks to sign a serial of messages m1,m2, ...ml. After collecting erroneous signatures

ŝi, the attacker can use {mi, ŝi} to deduce the secret information. It is assumed that an error

occurs at a random iteration during computation of modular exponentiation and flips one bit

of the intermediate result. The secret exponent can be recovered in a similar way to differential

fault attacks on ECC. A block of bits in secret exponent is recovered at a time. The attacker

tries all possible bit vectors until the correct one, which leads to the erroneous output, is found.

Similar to safe error attacks on ECC, safe error attacks on RSA can break the implementa-

tion of square-and-multiply-always algorithm (23). In the square-and-multiply-always algorithm

(Algorithm 5), modular multiplication is a dummy operation (i.e., the result is discarded) if

the value of key bit is 0. If a fault is induced into the dummy modular multiplication, it will

40

not affect the result of modular exponentiation. Hence, the value of key bit can be revealed by

checking whether the result is affected by the induced fault.

3.1.3 Countermeasures against Fault Attacks

In fault attacks, an attacker has to induce faults into the cryptographic device to obtain

erroneous result. The erroneous result leaks secret information. Hence, fault attacks can be

thwarted by preventing the cryptographic device from outputting erroneous results, which can

be achieved by error detection.

Various error detection techniques have been proposed to thwart fault attacks. Elliptic

curve integrity check can prevent the fault attacks which move ECSM computation to weak

elliptic curves (20) (21). Point verification, which verifies whether a point is on the elliptic

curve, is effective against the fault attack presented by Biehl et al. (19). Dominguez-Oviedo

et al. showed that point verification misses some errors and they presented error detection

methods using input randomization to ensure the correctness of computation of ECSM (25).

Error detection based countermeasures are also developed for RSA. Shamir proposed an

approach for CRT-RSA (26). It chooses a random prime number t and computes spt =

md mod (p−1)(t−1) mod p · t and sqt = md mod (q−1)(t−1) mod q · t. And spt ≡ sqt mod t is checked

before combining them using CRT. The computation is deemed error free if spt ≡ sqt mod t.

This method leaves the CRT combination step unprotected. Exploiting this drawback, Au-

muller et al. broke the countermeasure proposed by Shamir, and they proposed an improved

scheme which also protects the CRT combination step (27). But the random number gen-

eration is a problem in the scheme, since generating the random numbers for each signature

41

operation results in large time overhead. Later, Vigilant presented a scheme to improve it (28).

The scheme is still based on modulus extension. It computes md mod N in ZNr2 where r is a

small random number coprime with N . The message m is transformed to m′ which satisfies

m′ = m mod N and m′ = 1 + r mod r2. Then s and s′ are computed as s = md mod N and

s′ = md mod Nr2. Error is detected by verifying the equation s′ ≡ s mod N . The method

can be applied to RSA with CRT. However, its performance in terms of time and hardware

overhead is not improved much. Giraud proposed a countermeasure for the Montgomery lad-

der exponentiation algorithm (Algorithm 6) (29). The scheme takes advantage of the relation

between the two intermediate results to perform coherence check.

A class of countermeasures based on “fault infective” computation has been proposed

(30) (31). The main idea is that if a fault is induced at any step of the algorithm, the fi-

nal result will be changed in a way that is useless to the attacker.

The safe error attack proposed in (32) does not rely on the analysis of erroneous output.

Knowing whether an induced fault affects the output may be enough to reveal the secret infor-

mation, and such knowledge can be obtained by monitoring output or error signal generated by

error detection circuit. This puts in danger all above error detection based schemes that use a

check procedure. The “fault infective” based countermeasures may suffer the same problem in

the face of the safe error attack since an error occurrence can be verified by simply comparing

the output with the correct one. However, a closer investigation shows that the attack is quite

implementation-specific and can be thwarted by slightly modifying the implementation.

42

3.2 Power Analysis Attacks and Countermeasures

Power analysis is a powerful technique to attack a cryptosystem by analyzing the power

consumption. The power consumed at a given time during cryptographic computation is related

to the data being processed. Kocher et al. described the first power analysis attack on DES (33).

The idea then was extended to attack public key cryptosystems ECC and RSA.

Power consumption enables to identify some features in the cryptographic algorithms such

as loop, block of operations. If these operations depend on the secret key, the value of the secret

key can be recovered by distinguishing the operations. Simple Power Analysis (SPA) is such an

attack that distinguishes the key-dependent operations by observing the power consumption of

cryptographic device.

Differential Power Analysis (DPA) is more complicated and more powerful than SPA. It

exploits the correlation between intermediate cryptographic data and power consumption, and

performs statistical analysis on power consumption traces to test hypothetical value of the

secret key. DPA usually requires a large number of power consumption traces to recover the

secret key. The variants of DPA are presented to attack ECC and RSA by taking advantage of

special properties of cryptographic algorithms.

3.2.1 Power Analysis Attacks on ECC and RSA

A basic implementation of ECSM can be vulnerable to SPA. The binary method (e.g., the

left-to-right binary method in Algorithm 1) performs operations depending on the value of

secret key. Point addition is performed only when the value of key bit is 1. Hence, identifying

point addition by power consumption will reveal the key bit.

43

Coron presented a DPA attack on ECC (34). It monitors the power consumption of smart-

card ECC implementation and recovers the secret key stored inside the smart-card. It is as-

sumed that an attacker can ask to compute ECSM with distinct P1, P2, · · · , Pk to obtain

Q1 = dP1, Q2 = dP2, · · · , Qk = dPk, and monitor the power consumption of every execution.

The attacker makes a hypothesis on the value of key bit and derives the intermediate point

aP during the computation of ECSM based on the hypothesis. The correlation between the

intermediate point aP and power consumption is computed. At time t = t1 when aP is com-

puted, the correlation function will present a “peak” if the hypothesis is correct, otherwise, no

“peak” will be observed. Later Goubin presented a Refined Power Analysis (RPA) approach

that can successfully attack even if some countermeasures are used (35). The approach makes

use of a “special” point P0, P0 6= O, such that one of its coordinates equals zero. The DPA

countermeasures based on randomization will not affect the special property of P0. Hence,

correlation analysis for DPA still works. RPA is later extended to Zero Power Analysis (ZPA)

by Akishita and Takagi (36). They observed that even if a point had no zero-value coordinate,

the registers might take zero-value. ZPA exploits the zero-value registers that can result from

certain points to perform statistical analysis. Both RPA and ZPA can be considered as variants

of DPA. They assume that the attacker can choose the base point P and ask the cryptographic

device to perform ECSM with the fixed secret key, so they are not applicable to ECDSA.

Messerges et al. presented three power analysis scenarios on RSA (37). The three attacks are

“Single-Exponent, Multiple-Data” (SEMD) attack, “Multiple-Exponent, Single-Data” (MESD)

attack and “Zero-Exponent, Multiple-Data” (ZEMD) attack, with different assumptions of at-

44

tacker’s ability to manipulate the cryptographic device. In the attacks, the power consumption

traces are averaged to reduce noise. Then the power consumption of exponentiation with a

known exponent is compared to the power consumption of exponentiation with the secret ex-

ponent to reveal the secret exponent. Boer et al. proposed a DPA attack on CRT-RSA (38).

The attack focuses on the modular reduction performed prior to the modular exponentiations.

It makes hypotheses on the remainder after the modular reduction with one of the primes (p

or q) and performs correlation on series of power consumption traces of chosen-message RSA

to find the prime. Witteman et al. presented a correlation attack by exploiting the relation

between consecutive modular squaring operations and modular multiplications (39).

DPA requires a large number of power consumption traces to do statistical analysis, how-

ever, Comparative Power Analysis (CPA) can reveal the secret key with only several power

consumption traces. CPA assumes that an attacker can input user-defined message to RSA

device for computation. The doubling attack, presented by Fouque and Valette, asks for modu-

lar exponentiations with input X (mod N) and input X2 (mod N), respectively (40). Due to

the relation between two inputs, a collision will be generated between the power consumption

trace of exponentiating X and the power consumption trace of exponentiating X2 at adjacent

operations when the value of key bit is 0. Yen et al. presented an attack using messages X

(mod N) and −X (mod N) for modular exponentiations (41). This attack reveals the secret

key by taking advantage of the collision which will be observed between the two power traces

at modular squaring operations if the value of key bit is 0. Homma et al. generalized the tech-

nique (42). They proposed to generate a collision using a message pair (Y , Z) which satisfies

45

Y α ≡ Zβ (mod N) and detect the collision between two power consumption traces at a certain

location determined by α and β. More than one pair of inputs may be needed to reveal the

secret key.

3.2.2 Countermeasures against Power Analysis Attacks

SPA can be prevented by making operation sequence independent on the secret informa-

tion. The add-and-double-always algorithm (Algorithm 2) and the Montgomery ladder al-

gorithm (Algorithm 3) perform one point addition and one point doubling in each iteration

independent on the value of k to compute kP . Hence, they are resistant to SPA. For RSA, the

square-and-multiply-always algorithm (Algorithm 5) and Montgomery ladder exponentiation

algorithm (Algorithm 6) are resistant to SPA. But the add-and-double-always algorithm and

the square-and-multiply-always algorithm are vulnerable to the safe error attack due to the

dummy operations.

To thwart DPA, techniques of hiding and masking are used. Hiding reduces the correlation

between the intermediate data and power consumption by adding noise, reducing signal leakage

or using a variable clock frequency. Masking makes the intermediate data unpredictable, thereby

breaking the correlation between the intermediate data and power consumption.

Masking can be achieved by randomizing the intermediate data. Countermeasures based

on randomization have been proposed to thwart DPA and its variants for ECC. Random scalar

splitting computes kP as kP = rP + (k − r)P with a random number r. An alternative is to

multiplicatively split k such that k = bk/rc · r + k mod r in order to reduce the size of r. The

scalar k can also be randomized by computing kP as kP = (k + r#E)P , where r is a random

46

number and #E is the total number of points on the elliptic curve. The base point P can be

blinded by adding a secret random point R to P (i.e., k(R+P)) and then subtracting kR from

it. Random field isomorphisms and random EC isomorphisms randomize the computation by

using an elliptic curve isomorphism and isomorphic representation of the field, respectively. The

projective coordinate can be randomized. A point P = (X,Y, Z) is randomized to an equivalent

representation (λX, λY, λZ) where λ is a random number. Mamiya et al. proposed the Binary

Expansion with a Random Initial Point algorithm to thwart DPA and RPA/ZPA (43). The

algorithm was later improved by Kim et al. (44) and Wang et al. (45).

Messerges et al. suggested to use message masking to prevent MESD and ZESD and use

exponent masking to prevent SEMD (37). Prior to modular exponentiation, the message m

can be masked with a random value r. The mask is removed after modular exponentiation by

multiplying (r−1)e mod N . Kocher presented an efficient way to compute it (46). To mask the

exponent, a random multiple of ϕ(N) can be added to it, i.e., ê = e+rϕ(N), where ϕ(N) = (p−

1)(q−1). It can be proved that me ≡ mê mod N . Messerges et al. described a way to randomize

the exponentiation algorithm to protect against power analysis attack (37). The idea is to select

a random starting point in the exponent to begin modular exponentiation. This can be achieved

by combining the left-to-right binary exponentiation algorithm (Algorithm 4) and the right-to-

left binary exponentiation algorithm. The computation of modular exponentiation proceeds

from the random starting point towards the MSB using the right-to-left binary exponentiation

algorithm, returns to the starting point and then moves towards the LSB using the left-to-right

binary exponentiation algorithm. Masking by randomization is also an effective method to

47

thwart CPA, however, proper random number updating technique should be used, as discussed

in (42).

CHAPTER 4

A NEW COUNTERMEASURE AGAINST FAULT ATTACKS FOR ECC

In this chapter, we present LOEDAR, a novel low-cost error detection and recovery scheme

for ECC over F2m . The scheme is based on the Montgomery ladder algorithm (Algorithm 3).

We construct an invariant in the Montgomery ladder algorithm. Error is detected by verifying

the invariant. The proposed scheme preserves the features in the Montgomery ladder algorithm

to retain the fast computation of ECSM discussed in §2.3.3. The scheme also supports fast

recovery upon error detecting.

4.1 The Proposed Low-cost Error Detection and Recovery Scheme

The point-updating pyramid of the Montgomery ladder algorithm (Algorithm 3) is shown

in Figure 1. It illustrates how points P1 and P2 are updated in the first three iterations in the

for loop of Algorithm 3 that traverses from the MSB to the LSB. At iteration i, the ECSM

process will take either the left path (if ki = 0) or the right path (if ki = 1). This is repeated

until the LSB k0 is processed. For example, the path shown in bold arrows is taken when

k = 11 = (k3k2k1k0)2 = (1011)2.

Figure 1 shows that P2 = P1 + P is true at the end of each iteration of the for loop.

This property of the Montgomery ladder algorithm helps reduce the complexity of computation

significantly as discussed in §2.3.2. The computation for ECSM over F2m can be further reduced

using the method proposed by Lopez and Dahab (17), as discussed in §2.3.3.

48

49

Figure 1. Point updating graph of the Montgomery ladder algorithm

4.1.1 The Idea

In the Montgomery ladder algorithm (Algorithm 3), the difference between P2 and P1 is

equal to P if no error occurs. Intuitively, the relation P2 = P1 + P can be verified at the end

of an iteration to detect errors. This idea, however, does not work well due to the following

reason. The ECSM is computed fast in projective coordinate using Equation 2.12 and Equa-

tion 2.13. So one may want to verify P2 = P1 +P by computing P1 +P in projective coordinate

using Equation 2.12 and then comparing the result with P2. However, adding two points us-

ing Equation 2.12 requires the knowledge of x-coordinate of the difference between the two

points, i.e., x(P1 − P) in this case. Since P1 changes after every iteration during the com-

putation of ECSM, it is impossible to know x(P1 − P) without adding extra computation to

track it. Hence, one cannot verify P2 = P1 + P in projective coordinate using Equation 2.12.

Verifying P2 = P1 + P in affine coordinate using Equation 2.4 is also a choice. In order to add

P1 and P using Equation 2.4, one needs to know both x-coordinate and y-coordinate of the two

50

points. But ECSM is computed iteratively using Equation 2.12 and Equation 2.13 in which

only X-coordinate and Z-coordinate are involved. Coordinate recovery and transformation

from projective coordinate (X,Z) to affine coordinate (x, y) are necessary before adding P1 and

P using Equation 2.4. Converting (X,Z) to (x, y) requires the expensive modular inversions,

and hence it is quite time-consuming. Moreover, adding two points using Equation 2.4 cost

much more than adding two points in projective coordinate using Equation 2.12. Therefore,

verifying P2 = P1 + P in affine coordinate using Equation 2.4 is not a good choice either.

In order to take the advantage of computing point addition and point doubling using Equa-

tion 2.12 and Equation 2.13 in the projective coordinate, we introduce a new point called Verifi-

cation Point, Pv, such that ECSM as well as computations for error detection can be performed

in projective coordinate using Equation 2.12 and Equation 2.13. As shown in Figure 2, Pv is

initialized to O and is incremented at each iteration just like P1 and P2. We denote by P i1, P
i
2, P

i
v

the value of points P1, P2, Pv after the ith iteration, respectively. During the ith iteration, Pv

is incremented by either P1 or P2 depending on the value of kl−1−i, i.e., P iv = P i−1v + P i−11 if

kl−1−i = 0, or P iv = P i−1v +P i−12 if kl−1−i = 1, where l is the length of k. For example, the path

shown in bold arrows is taken when k = 11 = (k3k2k1k0)2 = (1011)2, P
1
v = P 0

v + P 0
1 = P since

k2 = 0, P 2
v = P 1

v + P 1
2 = 4P since k1 = 0, and P 3

v = P 2
v + P 2

2 = 10P since k0 = 1. Lemma 4.1.1

shows that after the ith iteration P iv + P i2 = 2P i1 always holds if no error occurs.

Lemma 4.1.1. If Pv is updated such that P iv = P i−1v +P i−11 if kl−1−i = 0, P iv = P i−1v +P i−12 if

kl−1−i = 1, where i indicates the ith iteration and l is the length of k, then P iv + P i2 = 2P i1 for

1 ≤ i ≤ l − 1.

51

Figure 2. Point updating graph of the LOEDAR scheme

Proof. P 0
1 , P 0

2 , and P 0
v are initialized to P , 2P , and O respectively where P is the base point

on the elliptic curve. After the 1st iteration, P1, P2 and Pv are updated as follows.

P 1
1 =

2P when kl−2 = 0

3P when kl−2 = 1

(4.1)

P 1
2 =

3P when kl−2 = 0

4P when kl−2 = 1

(4.2)

P 1
v =

O + P = P when kl−2 = 0

O + 2P = 2P when kl−2 = 1

(4.3)

Hence P iv + P i2 = 2P i1 holds for i = 1 no matter kl−2 = 0 or 1.

Now assume that P qv +P q2 = 2P q1 holds for i = q ≥ 1, and we will show that P q+1
v +P q+1

2 =

2P q+1
1 always holds:

52

P q+1
v =

2P q1 when kl−q−2 = 0

P q1 + P q2 when kl−q−2 = 1

(4.4)

P q+1
2 =

P q1 + P q2 when kl−q−2 = 0

2P q2 when kl−q−2 = 1

(4.5)

and the verification point

P q+1
v =

P qv + P q1 when kl−q−2 = 0

P qv + P q2 when kl−q−2 = 1

(4.6)

When kl−q−2 = 0, we have P q+1
v +P q+1

2 = P qv +P q1 +P q1 +P q2 = 4P q1 = 2P q+1
1 . When kl−q−2 = 1,

we have P q+1
v + P q+1

2 = P qv + P q2 + 2P q2 = 2(P q1 + P q2) = 2P q+1
1 . Thus P q+1

v + P q+1
2 = 2P q+1

1 .

This proves Lemma 4.1.1.

4.1.2 The LOEDAR Scheme

The proposed LOEDAR scheme is shown in Algorithm 8. Algorithm 8 has two parts. Part 1

updates P1 and P2 just like the Montgomery ladder algorithm (Algorithm 3), which is referred

to as the normal ECSM computation. Part 1 also updates Pv concurrently with P1 and P2,

which is referred to as Pv accumulation. Between two iterations of Part 1, Part 2 verifies the

correctness and triggers recovery if errors are detected, and it is referred to as EDR (Error

Detection and Recovery). In Part 1, P1, P2 and Pv are initialized in the projective coordinate,

53

and all the operations in Part 1 and Part 2 are performed in the projective coordinate. In

EDR errors are detected by verifying if Pv + P2 = 2P1 is true at the end of an iteration, which

involves a point addition that calculates the X and Z coordinates of Pv + P2 (denoted by

XPv+P2 and ZPv+P2), a point doubling that calculates X and Z coordinates of 2P1 (denoted

by X2P1 and Z2P1), and two multiplications XPv+P2 · Z2P1 and ZPv+P2 · X2P1 followed by a

comparison to verify if XPv+P2 · Z2P1 = ZPv+P2 · X2P1 . The equation, if holds, implies that

XPv+P2/ZPv+P2 = X2P1/Z2P1 which further implies Pv + P2 = 2P1. We don’t directly compare

if XPv+P2 = X2P1 and Z2P1 = ZPv+P2 because the transformation of a point from the affine

coordinate to the projective coordinate is not unique and different pairs of (X,Z) may map to

the same affine x-coordinate. If XPv+P2 ·Z2P1 = ZPv+P2 ·X2P1 is true, no error is detected and

P1, P2, Pv will be saved as a checked state and then Part 1 is resumed. Otherwise it will rewind

to the previous checked state and resume Part 1 from there.

The architecture of the LOEDAR scheme is shown in Figure 3. It is composed of an

ECSM/EDR module, an accumulation module, a coordinate transformation module, a point

verification module, and a register file. Pv is computed by the accumulation module and

updated after each iteration. The ECSM/EDR module updates P1 and P2 to compute ECSM

and verifies if Pv + P2 = 2P1 for EDR. At the end of a certain iteration when an EDR process

is about to run, the ECSM/EDR module suspends the computation for ECSM and computes

for EDR. After finishing all the iterations of ECSM computation, the projective coordinates of

P1 are transformed to affine coordinates by coordinate transformation module, and the result

54

Algorithm 8 The LOEDAR scheme

Input: An integer k ≥ 0, and a point P = (x, y) ∈ E
Output: Q = kP

Part 1: ECSM and Pv Accumulation
P1 ← P , P2 ← 2P , P2 ← O
for i from l − 2 to 0 do

if ki = 1 then
Pv ← Pv + P2

P1 ← P1 + P2

P2 ← 2P2

else
Pv ← Pv + P1

P2 ← P2 + P1

P1 ← 2P1

end if
end for
Return (Q = P1)

Part 2: Error Detection and Recovery (EDR)
Pause Part 1 at the end of an iteration
if Pv + P2 = 2P1 then

save them as a new checked state;
else

retrieve the previous checked state;
end if
Resume Part 1

55

will be outputted only after it passes point verification which verifies if a point is on the elliptic

curve.

Figure 3. The architecture of the LOEDAR scheme

4.2 Analysis of Error Detection Capability

It is assumed that error occurrences are a random event even though they may be introduced

deliberately. This indicates errors may occur anywhere in the computation and any module can

be affected by errors with a probability depending on its silicon area. The computation flow is

shown in Figure 4. It is assumed that the secret k and the elliplitc curve and field parameters are

56

loaded, verified, and stored inside the cryptographic device prior to the encryption/decryption

or signing/verification process. Besides the secret k, verifying the base point P and other elliptic

curve parameters are also necessary since Biehl et al. (19) and Ciet et al. (20) have presented

fault attacks by inducing faults to the base point or elliptic curve parameters. The validity of

the base point P can be verified by point verification. And the integrity of the elliptic curve

parameters can be protected by error detecting code, as suggested in (20).

Figure 4. LOEDAR’s protection in the computation flow

The initialization step initializes the registers in the datapath using the stored parameters.

The ECSM step performs operations in the projective coordinate. The correctness of these two

57

steps is protected by the proposed LOEDAR scheme. If errors occur during the initialization

step such that the computation of ECSM starts with erroneous points P ′ and 2P ′, errors can be

detected by the LOEDAR scheme. The reason is that the point addition shown in Equation 2.12,

which uses the x-coordinate of P ′, is based on the fact that the difference of the two points

is P . As a result P ′ and 2P ′ cannot be added correctly and errors will be detected when

Pv +P2 = 2P1 is verified. If errors occur in the ECSM/EDR process, they will be detected and

recovered by the LOEDAR scheme as well with extremely low error missing probability. The

detailed analysis is given in this section.

The result of ECSM is then transformed to affine coordinates for output. Errors occurring

during coordinate transformation can be detected by point verification and recovered by just

transforming the coordinates one more time.

The register file and the FSM controller (not shown in Figure 4) are subject to errors as

well. Errors in the registers which are used to store intermediate results for the computation

of ECSM and Pv will be detected. Only the ones that store the checked state require special

attention. However, they can be protected efficiently using error detecting/correcting codes.

The proposed scheme can be implemented with a simple state machine. It can be made fault-

tolerant by duplication/triplication with little overhead, or using error detecting/correcting

codes with minimum overhead as suggested in (47). Hence the analysis will focus on the errors

occurring in the ECSM module and the accumulation module.

The ECSM module and the accumulation module each performs a sequence of operations

on GF (2m) and stores the intermediate data in registers. Errors occurring in the datapath for

58

any operation will lead to erroneous value to be stored in the corresponding register. Hence,

they can be modeled in registers. We assume that an error in the datapath causes an offset

to correct value which will be stored in the register. An error occurring in a register storing

the intermediate data is also modeled by an offset to the correct value. Since a register can be

scheduled to store the outputs of different operations at different clock cycles, an error occurring

in a datapath or a register at different time may affect different operations. For simplicity, we

ignore register assignments and hardware implementation details and analyze error detection

capability based on the Data Flow Graph (DFG). An error occurring in an operation in the

DFG can be an error occurring either in the datapath for that operation or in the register

storing the output of the operation.

4.2.1 Single Error Occurrence in ECSM/EDR

An error can affect either an operation in the computation for ECSM or an operation in Pv

accumulation, or an operation in EDR. While the proposed scheme protects the operations in

all the three functions, the capability of detecting errors in the computation for ECSM and Pv

accumulation is of the most interest to us since the major goal of the proposed scheme is to

deliver correct P1, P2 and Pv. The capability of detecting errors in the EDR is of less interest

because missing these errors will not affect the correctness of P1, P2 and Pv at all. Hence our

analysis will focus on the former.

We first consider the case that a single error occurs between two successive EDR processes

and the error affects only one operation.

59

Figure 5 shows the DFG of the point addition and point doubling in ECSM and the point

addition in Pv accumulation. The operations in ECSM are numbered from A1 to A7 for point

addition and from D1 to D7 for point doubling, while the operations of the point addition in

the Pv accumulation are numbered from V 1 to V 7. Here ×, +, and S inside circles denote

multiplier, adder and squarer, respectively, which perform operations over F2m . For example,

×1 refers to multiplier 1 and is used four times (A1, A2, A3, A6) for point addition in ECSM.

Each of the three functions (i.e., ECSM, Pv accumulation, EDR) is performed on a set of

arithmetic units including one multiplier, one adder and one squarer, and they do not share

hardware with one another.

Figure 5. DFG of point addition and point doubling in ECSM and Pv accumulation

60

An error may occur at any time between two successive EDR processes. A simple scenario

is that the error occurs in the iteration right before an EDR process. We will analyze error

detection capability in this scenario first, and then show that whenever the error occurs, EDR

process can detect it with the same capability. Since the error may occur in any operation,

we take A1 as an example and assume the error causes an offset O to the output. The offset

will be passed through all subsequent operations and will eventually affect the result of point

addition. Suppose P3 = (X3, Z3) = P1 + P2 when no error occurs. The erroneous coordinates

are denoted by X ′3 and Z ′3.

Z ′3 = [(X1Z2 +O) +X2Z1]
2 = Z3 +O2 (4.7)

X ′3 = xZ3 + (X1Z2 +O)X2Z1 = X3 + xO2 +OX2Z1 (4.8)

If X ′3/Z
′
3 = X3/Z3, (X ′3, Z

′
3) is just another mapping of P3 in the projective coordinate. This

is because the mapping of a point from the affine coordinate to the projective coordinate is not

unique. The x-coordinate of a point can be mapped to any pair of (X,Z) in the projective

coordinate as long as X/Z = x. Hence, (X ′3, Z
′
3) can be deemed as a correct result in spite of

the error. This type of error has no effect on the correctness of result and can be safely ignored.

If X ′3/Z
′
3 6= X3/Z3, (X ′3, Z

′
3) is not a mapping of the correct P3. The result is erroneous.

Without loss of generality, X ′3 and Z ′3 can be expressed in Equation 4.9 and Equation 4.10 when

an error occurs in any arithmetic unit calculating for the point addition in ECSM.

61

TABLE III

THE FA(O) AND FB(O) OF THE POINT ADDITION OF SCALAR MULTIPLICATION

Erroneous operation Fa(O) Fb(O)

A1 O2 xO2 +OX2Z1

A2 O2 xO2 +OX1Z2

A3 0 O
A4 O2 xO2

A5 O xO
A6 0 O
A7 0 O

Z ′3 = Z3 + Fa(O) (4.9)

X ′3 = X3 + Fb(O) (4.10)

where Fa(O) and Fb(O) are functions of offset O and are listed in Table III. Meanwhile the

point P4 = (X4, Z4) obtained from the point doubling in ECSM and the point Pv = (Xv, Zv)

from Pv accumulation are not affected by the error.

If the value of the bit of k is 0, the updated P1 and P2 are PU1 = P4, P
U
2 = P3. The EDR

process verifies if PU2 + Pv = 2PU1 , that is P3 + Pv = 2P4.

Z ′P3+Pv
= ZP3+Pv + (Fb(O)Zv +XvFa(O)2

X ′P3+Pv
= XP3+Pv + x(Fb(O)Zv +XvFa(O))2 +XvZv(X3Fa(O) + Fb(O)Z3 + Fa(O)Fb(O))

Z ′2P4
= Z2P4

62

X ′2P4
= X2P4

If Z ′P3+Pv
X ′2P4

= X ′P3+Pv
Z ′2P4

, the error will be missed. This happens only when O satis-

fies Equation 4.11.

X2P4(Fb(O)Zv +XvFa(O))2 = Z2P4x(Fb(O)Zv +XvFa(O))2

+Z2P4XvZv(X3Fa(O) + Fb(O)Z3 + Fa(O)Fb(O))

(4.11)

Consider O as an argument, Equation 4.11 has at most four solutions if the error occurs

in operation A1, A2 or A4. Assume O can be any element in F2m with equivalent probability.

The probability of undetected error is satisfies

Prundetected error ≤
4

2m − 1
≈ 1

2m−2
(4.12)

If the error occurs in A3, A5, A6 or A7, Equation 4.11 has at most 2 solutions. The

probability of undetected error satisfies

Prundetected error ≤
2

2m − 1
≈ 1

2m−1
(4.13)

If the value of the bit of k is 1, the updated P1 and P2 are PU1 = P3, P
U
2 = P4. The EDR

process verifies if PU2 + Pv = 2PU1 , that is P4 + Pv = 2P3.

Z ′P4+Pv
= ZP4+Pv

X ′P4+Pv
= XP4+Pv

Z ′2P3
= Z2P3 + Z2

3 (Fb(O))2 +X2
3 (Fa(O))2 + (Fa(O)Fb(O))2

63

X ′2P3
= X2P3 + (Fb(O))4 + b(Fa(O))4

If Z ′P4+Pv
X ′2P3

= X ′P4+Pv
Z ′2P3

, the error will be missed. This happens only when O satis-

fies Equation 4.14.

ZP4+Pv((Fb(O))4 + b(Fa(O))4) =

XP4+Pv(Z2
3 (Fb(O))2 +X2

3 (Fa(O))2 + (Fa(O)Fb(O))2)

(4.14)

If the error occurs in operation A1, A2 or A4, Equation 4.14 has at most 8 solutions. The

probability of undetected error satisfies

Prundetected error ≤
8

2m − 1
≈ 1

2m−3
(4.15)

If the error occurs in A3, A5, A6 or A7, Equation 4.14 has at most 4 solutions. The

probability of undetected error satisfies

Prundetected error ≤
4

2m − 1
≈ 1

2m−2
(4.16)

Similarly, we can compute the probability of undetected error when an error occurs in

the point doubling in ECSM or in the point addition in Pv accumulation. The results are

summarized in Table IV, where “-” indicates that the probability is independent on the value

of the bit of k.

Overall the maximum probability of undetected error is no larger than 1
2m−3 . Since m is

usually at least 163 for security reasons, the probability is quite small. As show in Table IV, if

64

TABLE IV

THE Prundetected error OF THE POINT ADDITION OF SCALAR MULTIPLICATION

Erroneous operation ki Prundetected error

A1, A2, A4, D1, D4
0 Prundetected error ≤ 1

2m−2

1 Prundetected error ≤ 1
2m−3

A3, A5, A6, A7
0 Prundetected error ≤ 1

2m−1

1 Prundetected error ≤ 1
2m−2

D3, D4, D5, D6, D7
0 Prundetected error ≤ 1

2m−2

1 Prundetected error ≤ 1
2m−1

V1, V2, V4 - Prundetected error ≤ 1
2m−2

V3, V5, V6, V7 - Prundetected error ≤ 1
2m−1

an error occurs in an operation in ECSM, the upper bound of Prundetected error can be different

depending on the value of the bit of k, which may cause information leakage. However, it

should be quite difficult, if not impossible, to obtain enough samples to exploit the leakage,

probabilities as small as Prundetected error. Moreover, the upper bound of Prundetected error only

gives the worst case of Prundetected error. Exploiting its relation to the value of k is more difficult.

Lemma 4.2.1 shows that under transient fault model the incorrect relation among points

will be kept over iterations. Hence, the LOEDAR scheme can still detect the error even if the

EDR process is not performed right after the iteration where the error occurs.

Lemma 4.2.1. If in the qth iteration, P qv +P q2 6= 2P q1 , then in the nth iteration, q < n < l− 1,

inequation Pnv + Pn2 6= 2Pn1 is true if no error occurs between the qth iteration and the nth

iteration.

Proof. Given P qv + P q2 6= 2P q1 and let n = q + 1, we have

65

P q+1
1 =

2P q1 when kl−q−2 = 0

P q1 + P q2 when kl−q−2 = 1

(4.17)

P q+1
2 =

P q1 + P q2 when kl−q−2 = 0

2P q2 when kl−q−2 = 1

(4.18)

P q+1
v =

P qv + P q1 when kl−q−2 = 0

P qv + P q2 when kl−q−2 = 1

(4.19)

This gives the following:

P q+1
v + P q+1

2 =

P qv + 2P q1 + P q2 6= 4P q1 when kl−q−2 = 0

P qv + P q2 + 2P q2 6= 2P q1 + 2P q2 when kl−q−2 = 1

(4.20)

Hence, after the (q+1)th iteration, P q+1
v +P q+1

2 6= 2P q+1
1 . Now we assume that P iv+P

i
2 6= 2P i1

holds for n = i, q + 1 ≤ i ≤ l − 1, we will show that P i+1
v + P i+1

2 6= 2P i+1
1 also holds.

Alfter the (i+ 1)th iteration, we have the following:

P i+1
1 =

2P i1 when kl−i−2 = 0

P i1 + P i2 when kl−i−2 = 1

(4.21)

P i+1
2 =

P i1 + P i2 when kl−i−2 = 0

2P i2 when kl−i−2 = 1

(4.22)

66

P i+1
v = P iv + P it

P iv + P i1 when kl−i−2 = 0

P iv + P i2 when kl−i−2 = 1

(4.23)

This gives the following:

P i+1
v + P i+1

2 =

P iv + P i1 + +P i1 + P i2 6= 4P i1 when kl−i−2 = 0

P iv + P i2 + 2P i2 6= 2P i1 + 2P i2 when kl−i−2 = 1

(4.24)

This proves Lemma 4.2.1.

4.2.2 Multiple Error Occurrences in ECSM/EDR

In practice, it is possible that more than one error occurs between two successive EDR

processes. But analysis in the case of multiple errors becomes complicated without knowing

how many errors occur and which operations they affect. According to Figure 5, errors may

affect any operations. Errors may occur in a single iteration or scattered in multiple iterations.

When errors affect both ECSM and EDR, the errors in EDR cannot be ignored any longer as

they may enable erroneous P1, P2 or/and Pv to pass the verification.

Analysis of error detection capability is similar to the single error case. We start with

a simple case in which two errors occurs in A1 and A2, respectively, in the same iteration.

Suppose the errors cause offsets O1 and O2. X ′3 and Z ′3 are the coordinates of P3 = P1 + P2

affected by the errors. According to Figure 5, we have

67

Z ′3 = (X1Z2 +O1 +X2Z1 +O2)
2 = Z3 + Fa(O1, O2)

X ′3 = xZ3 + (X1Z2 +O1)(X2Z1 +O2) = X3 + Fb(O1, O2)

(4.25)

where

Fa(O1, O2) = O1
2 +O2

2

Fb(O1, O2) = xO1
2 + xO2

2 +O1X2Z1 +O2X1Z2 +O1O2

(4.26)

When the value of the bit of k is 0, the errors will be missed if and only if

X2P4(Fb(O1, O2)Zv +XvFa(O1, O2))
2 =

Z2P4(x(Fb(O1, O2)Zv +XvFa(O1, O2))
2+

XvZv(X3Fa(O1, O2) + Fb(O1, O2)Z3 + Fa(O1, O2)Fb(O1, O2)))

(4.27)

The solutions should be 2-tuples (O1, O2). Since O1 and O2 are independent on each other

and evenly distributed in F2m , the solution can be obtained by randomly choosing an element in

F2m for one offset and then making the other offset satisfy Equation 4.27. Hence, the probability

of undetected error is

Prundetected error ≤ (2m − 1) · 1

2m − 1
· 4

2m
≈ 1

2m−2
(4.28)

Similarly, the probability of undetected error when the value of the bit of k is 1 is

Prundetected error ≤ (2m − 1) · 1

2m − 1
· 8

2m
≈ 1

2m−3
(4.29)

68

The probabilities of undetected error are the same with those in the single error case. In

fact, if n(n ≥ 2) errors occur and all of them are in the operations of one function, Fa and

Fb will become Fa(O1, O2, · · · , On) and Fb(O1, O2, · · · , On), respectively, where O1, O2, · · · , On

are n offsets caused by n errors. Since O1, O2, · · · , On are independent and evenly distributed,

the probabilities of undetected error will be equal to the the worst case of n errors analyzed in

the single error scenario.

Errors may occur in the operations of different functions. Without loss of generality, we

consider the case that errors occur in every function in an iteration (i.e., point addition in

ECSM, point doubling in ECSM and point addition in Pv accumulation) and in the operations

of the EDR process as well. Suppose n1 errors occur in the operations of point addition in

ECSM, n2 − n1 errors in the operations of point doubling in ECSM, and n3 − n2 errors in the

operations of point addition in Pv accumulation. Fa, Fb, · · · , Ff are the offset functions caused

by the errors.

The coordinates of P3 = P1 + P2 can be written as

Z ′3 = Z3 + Fa(O1, O2, · · · , On1)

X ′3 = X3 + Fb(O1, O2, · · · , On1)

(4.30)

The coordinates of P4 = 2P1 or 2P2 can be written as

Z ′4 = Z4 + Fc(On1+1, On1+2, · · · , On2)

X ′4 = X4 + Fd(On1+1, On1+2, · · · , On2)

(4.31)

69

The coordinates of Pv can be written as

Z ′v = Zv + Fe(On2+1, On2+2, · · · , On3)

X ′v = Xv + Ff (On2+1, On2+2, · · · , On3)

(4.32)

If the value of the bit of k is 0, the updated P1and P2 are PU1 = P4, P
U
2 = P3. The EDR

process verifies if PU2 + Pv = 2PU1 , that is P3 + Pv = 2P4. The coordinates are

Z ′P3+Pv
= ZP3+Pv +G(O1, O2, · · · , On3)

X ′P3+Pv
= XP3+Pv + xG(O1, O2, · · · , On3) +X3Zv(FaXv + FfZ3 + FaFf)+

Z3Xv(FbZv + FeX3 + FbFe) + Fh(On3+1, On3+2, · · · , On4)

Z ′2P4
= Z2P4 + (Z4Fd +X4Fc + FdFc)

2 + Fi(On4+1, On4+2, · · · , On5)

X ′2P4
= X2P4 + (Fd)

4 + b(Fc)
4 + Fj(On4+1, On4+2, · · · , On5)

where G(O1, O2, · · · , On3) = (FaXv + FfZ3 + FaFf + FbZv + FeX3 + FbFe)
2+

Fg(On3+1, On3+2, · · · , On4)

(4.33)

Fg, Fh, Fi, Fj are the offset functions when computing P3 +Pv and 2P4 in the EDR process,

n4 − n3 and n5 − n4 errors occurring, respectively. If Z ′P3+Pv
X ′2P4

= X ′P3+Pv
Z ′2P4

, the errors

will be missed. The solutions should be n5-tuples (O1, O2, · · · , On5). Since O1, O2, · · · , On5

are independent and evenly distributed in F2m , the solution can be obtained by randomly

choosing elements in F2m for n5−1 offsets and then making the last offset satisfy Z ′P3+Pv
X ′2P4

=

X ′P3+Pv
Z ′2P4

. Therefore, the probability of undetected error will be the worst case of all errors

analyzed in the single error scenario. Similarly, we can draw the same conclusion when the

70

value of bit of k is 1, that is, the upper bound of Prundetected error is 1
2m−3 when multiple errors

occur in a single iteration.

Now, we show briefly that the upper bound of Prundetected error error is still 1
2m−3 when

multiple errors are scattered in different iterations in ECSM and/or in the EDR process. The

idea is the same as above analysis. The offsets caused by errors will be accumulated over

iterations. The solutions of Z ′P3+Pv
X ′2P4

= X ′P3+Pv
Z ′2P4

(or Z ′P4+Pv
X ′2P3

= X ′P4+Pv
Z ′2P3

) can be

constructed in the following way. No matter how complicated the functions of offsets caused

by the errors are, all offset values except one can be chosen randomly from F2m. The last

offset value should be the one which makes Z ′P3+Pv
X ′2P4

= X ′P3+Pv
Z ′2P4

(or Z ′P4+Pv
X ′2P3

=

X ′P4+Pv
Z ′2P3

). As a result, the upper bound of Prundetected error is still around 1
2m−3 .

4.3 Resistance to Fault Attacks

LOEDAR, as an error detection and recovery scheme, can protect ECC cryptosystem against

the fault attacks by detecting and correcting errors. When an error is detected, the erroneous

result is prevented from being outputted. Without the erroneous result, an attacker is not able

to perform the corresponding analysis to reveal the secret information. The LOEDAR scheme

is based on the Montgomery ladder algorithm which does not have dummy operations, hence

it can prevent the safe error attacks in which erroneous result is not needed. The protection of

the LOEDAR scheme can be further enhanced by integrating curve integrity check into it.

4.4 Extendibility to Thwart Power Analysis Attacks

The LOEDAR scheme is resistant to SPA since it performs the same types of operations,

i.e., two point additions and one point doubling, independent on the value of k.

71

Countermeasures against DPA are essentially based on randomization. Table V summarizes

the countermeasures. We can extend the LOEDAR scheme with these countermeasures to

thwart power analysis attacks. If the countermeasure can be applied without modifications to

the LOEDAR scheme, we say the countermeasure is compatible with the LOEDAR scheme. Ta-

ble V shows LOEDAR’s compatibility with existing countermeasures against DPA and its vari-

ants, where “
√

” in the column “Compatibility with LOEDAR” indicates that the LOEDAR

scheme is compatible with the countermeasure while “×” indicates that the LOEDAR scheme

is not compatible with the countermeasure. From Table V, we can see that all the counter-

measures listed in the table can help extend LOEDAR to thwart power analysis attacks except

the method proposed by Mamiya et al. and its improved versions. The reason is that the com-

patible countermeasures do not impose any requirement on how to compute ECSM while the

method proposed by Mamiya et al. does. Their approach is based on the add-and-double-always

algorithm rather than the Montgomery ladder algorithm.

Inspired by the idea of random initial point (43), we present a method for LOEDAR to

thwart power analysis attacks by randomizing initial point, as shown in Algorithm 9. In Algo-

rithm 9, the initial points P1, P2 and Pv are blinded by a random point R. And a new point P3,

which is doubled in every iteration, can remove the increment caused by R after all iterations.

R is a point on the elliptic curve E, i.e., R = (xR, yR) ∈ E. The randomness of R is defined by

randomness of its coordinates. A simply way to generate R is to choose one coordinate (xR or

yR) randomly on F2m and then compute the other one (yR or xR) such that R = (xR, yR) ∈ E.

If there is no solution, repeat the procedure until a valid point is obtained. A more efficient

72

TABLE V

LOEDAR’S COMPATIBILITY WITH COUNTERMEASURES AGAINST POWER
ANALYSIS

Countermeasures against Resistance against Compatibility with
Power Analysis DPA RPA/ZPA LOEDAR
Random scalar splitting (48)

√ √ √

Scalar randomization (34)
√ √ √

Base point blinding (34)
√ √ √

Random field isomorphisms (35)
√

×
√

Random EC isomorphisms (35)
√

×
√

Random projective coordinates (34)
√

×
√

Binary expansion with a random
initial point and its improved ver-
sion (43) (44) (45)

√ √
×

Alogirthm 9
√ √ √

method is discussed in (43). The extended LOEDAR scheme can thwart DPA as well as RPA/

ZPA, since special points or zero-value registers used by RPA and ZPA will be randomized by

R.

Besides the proposed extended scheme in Algorithm 9, the countermeasures listed in Table V

can be used to extend the LOEDAR scheme. The costs of extending the LOEDAR scheme with

the countermeasures in Table V are compared and the result is given in Table VI where “A”

indicates point addition, “D” indicates point doubling, and l is the length of k. From Table VI,

we can see that extending the LOEDAR scheme with the scalar randomization technique does

not require additional point operations. But the random number r should be chosen large

73

Algorithm 9 The extended LOEDAR scheme

Input: An integer k ≥ 0, and a point P = (x, y) ∈ E
Output: Q = kP

Part 1: ECSM and Pv Accumulation
Choose a random point R
Set P1 ← P +R, P2 ← 2P +R, P3 ← −R, Pv ← R
for i from l − 2 to 0 do

P3 ← 2P3

if ki = 1 then
Pv ← Pv + P2

P1 ← P1 + P2

P2 ← 2P2

else
Pv ← Pv + P1

P2 ← P2 + P1

P1 ← 2P1

end if
end for
P1 ← P1 + P3

Return (Q = P1)

Part 2: Error Detection and Recovery (EDR)
Pauses Part 1 at the end of an iteration
if Pv + P2 = 2P1 then

save them as a new checked state;
else

retrieve the previous checked state;
end if
Resume Part 1

enough for security purpose (40). And the randomized scalar should be computed carefully

since it may leak useful information to an attacker to mount the carry-based attack (49).

74

TABLE VI

COMPARISON OF COUNTERMEASURES WHEN APPLIED TO LOEDAR

Countermeasures against Power Analysis Amount of Operations Overhead
LOEDAR without countermeasure

2(l − 1)A+ (l − 1)D −
against power analysis

Random scalar splitting (48) 4(l − 1)A+ 2(l − 1)D 100%
Scalar randomization (34) 2(l − 1)A+ (l − 1)D 0
Base point blinding (34) 4(l − 1)A+ 2(l − 1)D 100%

Alogirthm 9 2(l − 1)A+ 2(l − 1)D < 33%

4.5 The Experiments

We model the implementation of ECC based on the Montgomery ladder algorithm and the

proposed LOEDAR scheme using VHDL and synthesize it into netlist using the Synopsys Design

Vision and the TSMC 65nm library. The ECSM/EDR module consists of two multipliers, two

squarers and two adders, and the accumulation module consists of one multiplier, one squarer

and one adder. All operations are over F2163 . We use the MSD(Most Significant Digit)-first

digit serial multipliers over F2163 as in (50) with digit size d = 55. We implement squarers

instead of using multipliers for squaring operations to improve the performance. The squarers

are similar to the ones in (51). The divider used in the coordinate transformation module is

similar to the one given in (52). The maximum system frequency is above 200MHz.

4.5.1 Overhead

The area and delay of the arithmetic units are reported in Table VII. The hardware overhead

of the LOEDAR scheme compared to the regular ECSM based on the Montgomery ladder

75

algorithm is shown in Table VIII. The LOEDAR scheme costs around 37% hardware overhead.

The overhead is introduced by the accumulation module and the registers for intermediate

storage in the EDR process.

TABLE VII

THE AREA AND DELAY OF THE ARITHMETIC UNITS

Arithmetic Unit NAND2-equivalent Area Time (clock cycles)
Multiplier 27824 4
Squarer 559 1
Adder 408 1
Divider 8914 Depending on inputs

TABLE VIII

HARDWARE OVERHEAD

Schemes NAND2-equivalent Area Overhead
Regular ECSM 153127 0

LOEDAR 210696 37.6%

76

Table IX illustrates the time overhead and the switching activity overhead of the LOEDAR

scheme. The time overhead depends on how many times the EDR process is performed. Every

time the EDR process is performed, 0.68% time overhead will be introduced. Hence the total

time overhead can be expressed by n × 0.68% where n is the total number of times the EDR

process is performed during the computation of ECSM. The power overhead is reported in

the form of average switching activities. We use VSS to simulate the gate-level netlist and

capture the average switching activities over dozens of different inputs. The switching activities

produced by the LOEDAR scheme when EDR process is not performed are 69% more than the

regular ECSM. The overhead is caused by the accumulation module. Every time the EDR

process is performed, it results in 0.6% more switching activities.

TABLE IX

TIME OVERHEAD AND SWITCHING ACTIVITY OVERHEAD

Average Switching
Schemes Time (clock cycles) Activities (×103)

/Overhead /Overhead
Regular ECSM 3084/- 166408/-

LOEDAR

LOEDAR w/o EDR 3084 / 0% 281127 / 69%
Each EDR process 21 / 0.68% 1020 / 0.6%

LOEDAR w/ EDR
3084 + 21n 281127 + 1020n
/n× 0.68% / 69% + n× 0.6%

77

Note that we by no means claim the optimality or efficiency of our implementation of the

basic ECC architecture, since our major contribution is on developing a novel countermeasure

with low cost. As can be seen from the previous sections, the proposed scheme has the potential

to work with any architecture based on the Montgomery ladder algorithm, e.g., the architecture

in (53).

4.5.2 Comparison to Existing Schemes

In order to compare the LOEDAR scheme with the existing schemes in (25) that support

both error detection and recovery, we have ported our implementations to the same FPGA as

the one used in (25). In (25), three schemes have been proposed. The TMR(Triple Modular

Redundancy)-based ECSM scheme utilizes three ECSM modules to perform the same opera-

tion but with inputs encoded by the randomization technique and produces a correct output

by a majority voter. In the DMR PV(Double Modular Redundancy and Point Verification

)-based ECSM scheme, two ECSM modules and two point verification modules work in par-

allel with randomized inputs and their outputs are verified by the point verification modules.

The PRC(Parallel and Recomputation)-based ECSM scheme also uses two ECSM modules to

compute in parallel with randomized inputs but it improves error detection probability.

The areas of the arithmetic units are compared in terms of slices, and the result is shown

in Table X. Our multiplier uses the same architecture as (25).

Table XI compares the areas of the complete implementations. Our scheme uses less area

than all the schemes in (25).

78

TABLE X

COMPARISON OF THE AREAS OF THE ARITHMETIC UNITS

Arithmetic Unit
Area (slices)

LOEDAR Schemes in (25)
Multiplier 2273 2364
Squarer 84 165
Adder 94 94

TABLE XI

COMPARISON OF THE AREAS OF THE COMPLETE SCHEMES

Schemes Area (slices)
LOEDAR 10636

TMR ECSM (25) 17194
DMR PV ECSM (25) 12916

PRC ECSM (25) 13136

The comparison of the performance is shown in Table XII. The clock frequency is 52MHz

in our implementation and 66MHz in (25). The time required by each scheme can be computed

based on the clock frequency and the number of clock cycles needed to finish one ECSM oper-

ation. Since every EDR process in the LOEDAR scheme consumes additional 0.4 us, the total

time can be expressed by 59.3 + 0.4n us where n is the number of times the EDR process is

performed during the computation of ECSM.

79

We can see that the proposed scheme is much faster than the schemes in (25) even if the

EDR process is performed after every iteration, i.e., n = 162.

TABLE XII

COMPARISON OF PERFORMANCE

Schemes Freq. (MHz) Time (us)
LOEDAR w/ EDR 52 59.3 + 0.4n
TMR ECSM (25) 66 319.5

DMR PV ECSM (25) 66 294.7
PRC ECSM (25) 66 290.2

4.5.3 Error Detection and Recovery Test with Random Fault Injection

An attacker may have partial control over the location and timing of fault injection, however,

precise control is extremely difficult, if not impossible. In order to pass the verification, an

attacker has to solve the equation like Equation 4.11 or Equation 4.27 to obtain the value of

the offset and inject a fault to produce the offset. This may require the attacker to precisely

control the fault. To the best of our knowledge, existing fault injection techniques cannot

achieve it. Since we cannot predict the timing and location of the induced fault or the number

of bits affected by the induced fault, we simulate random faults to test the error detection

capability. We inject faults to the implementation of the LOEDAR scheme. Due to the scale

of hardware and running time we use RTL-level fault injection technique and the bit-flip fault

80

model. Random faults are injected into the VHDL model in a similar way to (54). The idea is

to XOR the content of a target register with a fault control signal of the same length such that

randomly selected bits are flipped and the erroneous data will be inputted to the corresponding

arithmetic unit for subsequent computations.

We simulate the following two cases. In the first case, we randomly set one bit of fault

control signal to 1 while keeping others to be 0. In the second case, we generate a random

number as fault control signal using the method described in (55). An iteration is randomly

chosen to induce the fault. The result is compared with the one in the fault-free case to test

the effectiveness of the LOEDAR scheme. We run the simulation on a computer with 3.4 GHz

CPU and 1.8 GB memory for several days. The results show that the LOEDAR scheme has

detected errors and recovered successfully in all test cases. The results are expected according

to the extremely small probability of undetected error given in §4.2.

CHAPTER 5

A NEW COUNTERMEASURE AGAINST FAULT ATTACKS FOR RSA

In this chapter, we present a novel Concurrent Error Detection (CED) scheme for RSA

to thwart fault attacks. An invariant based on the multiplicative homomorphic property is

exploited to detect errors. Specifically, the proposed CED scheme verifies if Πk
i=1E(mi) ≡

E(Πk
i=1mi mod N) mod N to detect errors, where E can be RSA encryption/decryption or

signing/verification process. The scheme has good error detection capability. The probability

of missing an error is extremely low. And it does not impose any requirement on how to

implement RSA, i.e., the modular exponentiation. It can work with any RSA implementation,

e.g., an implementation resistant to power analysis attacks. Hence, it is easy to make the

proposed CED scheme thwart other side channel attacks.

5.1 Overview

RSA can be used for encryption/decryption or signing/verification. For simplicity, we will

describe the proposed scheme assuming the application of encryption/decryption. More specif-

ically, we explain the scheme in the encryption scenario. In practice, however, the decryption

process may be the major concern since the private key is used in the process. The decryp-

tion process is the same as the encryption process from the perspective of computation. Both

of them compute modular exponentiation in spite of different inputs (base and exponent).

Hence, the proposed scheme can protect the decryption process against fault attacks. RSA in

81

82

signing/verification is the same as RSA in encryption/decryption except the roles of keys are

reversed. The scheme can also be applied in signing/verification.

The proposed CED scheme exploits the multiplicative homomorphic property of RSA to

detect errors. As a countermeasure against fault attacks, it has the following advantages over

the state-of-art countermeasures:

• It is simple and can work with any RSA implementation, which can be a high-performance

implementation that employs Residue Number System, the Montgomery ladder exponen-

tiation algorithm, pipelined datapath, or a fine-tuned one resistant to power analysis

attacks, timing attacks, etc. The proposed scheme enables an easy divide-and-concur

method to thwart other types of side channel attacks: any fine-tuned RSA implementa-

tion, e.g. an implementation resistant to power analysis attacks, can be made resistant to

fault attacks by applying the proposed CED scheme. The original properties, e.g. resis-

tance to power analysis attacks, will not be affected. Most of the existing countermeasures

against fault attacks, on the other hand, are implementation-specific. Extending them to

gain resistance to other types of side channel attacks may result in new leakage.

• Because it works with any RSA implementation, it can be used to protect both the

encryption process and the decryption process. The encryption process is of less interest

to an attacker since the public key is used in the encryption process. However, the

complexity of RSA datapath and the vulnerability of VLSI process technology raise the

concern of the reliability against accidental faults due to environment radiations (56).

The proposed CED scheme can be used to detect errors in the encryption process when

83

accidental faults occur. The existing countermeasures designed for CRT-RSA require to

know the secret primes p and q. Some of them even require the knowledge of both keys

e and d. Such knowledge, however, is often impractical to the encryption process, and

hence prevents the existing countermeasures being deployed to detect errors caused by

accidental faults.

• It has good error detection capability. With the single bit fault model, breaking the

proposed CED scheme is as hard as factoring the modulus N .

In order to achieve high performance, the CED scheme requires to process successive mes-

sages with the same key. It may not work efficiently when the RSA cryptographic device

constantly switches among sessions that use different keys. The memory required is not neg-

ligible, especially in the resource-constrained devices. But it is small compared to the large

datapath of RSA and can fit in most of the modern low-end FPGAs.

5.2 The Proposed Concurrent Error Detection Scheme

RSA is based on modular exponentiation which makes it multiplicative homomorphic. An

encryption is homomorphic if given E(m1) and E(m2) one can obtain E(m1Θ m2) without

decrypting m1 and m2 for some operation Θ. For example, an encryption is additive homo-

morphic if E(m1) + E(m2) = E(m1 +m2), e.g., Paillier encryption (57), and an encryption is

multiplicative homomorphic if E(m1) · E(m2) = E(m1 ·m2).

RSA encryption is multiplicative homomorphic since E(m1 · m2) = (m1 · m2)
e mod N =

(me
1 mod N) · (me

2 mod N) = E(m1) ·E(m2) mod N . This property can be exploited to detect

errors.

84

5.2.1 The Basic CED Scheme

Algorithm 10 shows a basic CED scheme based on the homomorphic property.

Algorithm 10 The basic CED scheme

Input: m1, m2, e, N
Output: c1 = (m1)

e mod N , c2 = (m2)
e mod N

c1 ← E(m1)
c2 ← E(m2)
c3 ← E(m1 ·m2 mod N)
if c3 ≡ (c1 · c2) mod N then

Output(c1, c2)
else

Signal error, suppress (c1, c2)
end if

The basic CED scheme encrypts two messages and buffers the results in c1 and c2, and

then it encrypts the product of the two messages and buffers the result in c3. According to the

multiplicative homomorphic property, E(m1 ·m2) = E(m1) ·E(m2), that is, c3 ≡ c1 · c2 mod N .

The relation is verified before outputting c1 and c2. A mismatch indicates an error.

The scheme performs one verification for every two encryptions. The time overhead is

mainly caused by computing m1 · m2 mod N , E(m1 · m2 mod N) and c1 · c2 mod N . The

modular multiplication can be computed fast and the computing time is negligible compared

to the modular exponentiation, i.e., E(m1 · m2 mod N). Hence, the time overhead can be

85

estimated by only considering the modular exponentiations. It is approximately 50% for the

basic CED scheme.

Due to the verification process, an error may not be detected immediately after it occurs.

We define error detection latency as the time delay between the time of error occurrence and

the time when it is detected. The error detection latency of the proposed CED scheme, in

the worst case, is approximately the time of three encryptions when an error occurs near the

beginning of the encryption of m1. The output latency for either message is increased too,

because the results c1 and c2 can be outputted only when the verification is passed.

The hardware overhead can be small since encrypting the product of the two messages can

be computed in the same datapath as encrypting a single message. Even sharing the datapath,

the CED scheme can detect errors in the case of permanent faults, as explained in §5.3. For

security purpose, c1, c2 and c3 should be kept unaccessible to an attacker before the verification

is passed. Buffering c1, c2 and c3 for verification incurs memory overhead.

When a comparator is used to compare c3 to the result of c1 · c2 mod N , it is important

to protect the comparator. A self-checking comparator (58) (59) or duplicate comparators can

be used to detect errors occurring inside the comparator. The duplicate comparators operate

in parallel. They are programmed to err on the side of caution and signal an error whenever

either of them detects a mismatch.

We illustrate the basic CED scheme using a simple example in which the inputs are quite

small, but the proposed CED scheme can be used for RSA with inputs of length of thousands

86

of bits. Let two primes p = 61 and q = 53, and N = p · q = 3233. Assume message m1 = 65

and message m2 = 504 are encrypted with the key (N = 3233, e = 17). The ciphertexts are

c1 = (m1)
e mod N = 6517 mod 3233 = 2790

c2 = (m2)
e mod N = 50417 mod 3233 = 866

The encryption of the product of m1 and m2 is computed as follows.

c3 = (m1 ·m2 mod N)e mod N = (65× 504 mod 3233)17 mod 3233 = 1089

Since c1 · c2 mod N = 2790 × 866 mod 3233 = 1089 = c3, the equation c3 ≡ c1 · c2 mod N

holds.

5.2.2 The Modified CED Scheme

The basic CED scheme shown in Algorithm 10 requires to process two messages at a time.

In this section, we present the methods to modify the basic CED scheme for the encryption of

a single message.

We consider the case that a single message m1 is encrypted. To take advantage of the

homomorphic property, we generate a second message and compute in the same way as the

basic CED scheme. The second message can be generated by a random number generator for

every execution or set constant. The corresponding CED schemes are given in Algorithm 11

and Algorithm 12, respectively.

The scheme in Algorithm 11 needs a random number generator, and the time overhead

increases to 200%. Using a constant message (Algorithm 12) has several advantages. It saves

the hardware of a random number generator and requires only a buffer to hold the constant

87

Algorithm 11 The modified CED scheme using a random message

Input: m1, e, N
Output: c1 = (m1)

e mod N

Choose a random number r, 0 < r < N
c1 ← E(m1)
cr ← E(r)
c3 ← E(m1 · r mod N)
if c3 ≡ (c1 · cr) mod N then

Output(c1)
else

Signal error, suppress (c1)
end if

Algorithm 12 The modified CED scheme using a constant message

Input: m1, mconst, cconst, e, N
Output: c1 = (m1)

e mod N

c1 ← E(m1)
c3 ← E(m1 ·mconst mod N)
if c3 ≡ (c1 · cconst) mod N then

Output(c1)
else

Signal error, suppress (c1)
end if

message mconst. The encryption of the constant message, i.e., cconst, can be pre-computed to

save the time of computing cr = E(r) in Algorithm 11, and thereby to reduce the time overhead

to 100%. But using a constant message may leak information. Existing attacks do not make

use of it to the best of our knowledge, though.

88

5.2.3 The Enhanced CED Scheme

The basic CED scheme incurs 50% time overhead and the modified CED schemes incurs

100% (using a constant message) or 200% (using a random message) time overhead. To reduce

the time overhead, we present an enhanced scheme in this section.

Since the multiplicative homomorphic property holds for more than two messages, the ver-

ification can be performed for every k messages, k > 2. The enhanced CED scheme is given in

Algorithm 13.

Algorithm 13 The enhanced CED scheme

Input: m1,m2, · · · ,mk, e, N
Output: c1 = (m1)

e mod N , c2 = (m2)
e mod N , · · · , ck = (mk)

e mod N

c1 ← E(m1)
c2 ← E(m2)

...
ck ← E(mk)
ck+1 ← E(Πk

i=1mi mod N)
if ck+1 ≡ (Πk

i=1ci) mod N then
Output(c1, c2, · · · , ck)

else
Signal error, suppress (c1, c2, · · · , ck)

end if

In Algorithm 13, k consecutive messages m1,m2, · · · ,mk are encrypted followed by the

encryption of the product of them, i.e., E(Πk
i=1mi mod N). According to the homomorphic

89

property, ck+1 ≡ (Πk
i=1ci) mod N holds. If it is not true, an error is detected and the results

c1, c2, · · · , ck will not be outputted.

The scheme reduces the time overhead to 1
k . The fault detection latency, in the worst case,

is approximately the time of k + 1 encryptions when an error occurs near the beginning of the

encryption of the first message. The output latency of each message depends upon its time of

arrival. For an application, the acceptable maximum output latency limits the value of k. We

call k the depth of the CED scheme. For example, a server responsible for distributing private

keys for bulk data encryption under severe time constraints should use a smaller k to meet the

individual deadlines, while a server responsible for supplying large size public certificates may

opt for a larger k in order to reduce the time overhead. When a message arrives, it can be

multiplied into the product of the previous messages. The result is buffered to multiply next

message until k messages have been processed. Then the encryption of the product is computed

and stored to the buffer. In addition, the ciphertexts of k messages need to be buffered before

verification. Hence, the memory overhead for k > 2 is increased. It is also a factor limiting the

depth of the CED scheme.

5.2.4 One for All: Unifying the CED Schemes

In fact, the basic scheme, the modified scheme and the enhanced scheme can be unified as

one, as shown in Figure 6. The depth, i.e., k, can be chosen based on the requirement of the

application.

The proposed CED scheme can be applied to the secure implementations of RSA which

convert a message m to f(m) before the encryption, where f is a nonlinear transformation such

90

Figure 6. The unified CED scheme

as hash functions based on either PKCS #1 or OAEP (7). For the secure implementations

of RSA, the proposed CED scheme will check if
∏k
i=1E(f(mi)) ≡ E(

∏k
i=1(f(mi) mod N)

(mod N) holds to detect errors.

5.3 Error Detection Capability and Resistance to Fault Attacks

There are two sources of faults in a circuit: environment-induced accidental faults and

attacker-induced intentional faults. The occurrence and location of accidental faults (e.g.,

environment radiation induced bit flips) depends on the sensitivity of the circuit nodes to

radiation. Without knowing the implementation details of the crpytographc device, accidental

91

faults are treated as random faults. A fault can occur at any location with the same probability.

On the other hand, intentional faults are deliberately induced by attackers to some specific

location at some point of time. Hence, we analyze the error detection capability of the proposed

CED scheme in the two scenarios.

5.3.1 Intentional Faults

We start the analysis by considering the basic CED scheme (k = 2 in the unified CED

scheme) and show that the conclusion is also true for the modified CED scheme (k = 1 in the

unified CED scheme) and the enhanced CED scheme (k > 2 in the unified CED scheme).

Lemma 5.3.1. The basic CED scheme detects errors by verifying if c1 · c2 ≡ c3 mod N holds,

where c1 = (m1)
e mod N , c2 = (m2)

e mod N , and c3 = (m1 ·m2 mod N)e mod N . Inducing a

fault such that the error will not be detected is as hard as factoring the modulus N .

In order to prove it, we assume that the the error can occur in any one of the four compu-

tations. There are two cases:

Case 1: the error occurring during the computation of c1 = (m1)
e mod N or c2 =

(m2)
e mod N .

Case 2: the error occurring during the computation of c3 = (m1 ·m2 mod N)e mod N

or (c1 · c2) mod N .

At the register transfer level, an error occurring in an operator can be modeled as an offset

from the correct output value, denoted by O. Assume that an erroneous RSA encryption with

message m, encryption key e, modulus N produces the output (c + f) mod N , where c is the

92

correct ciphertext, and f is a function of m, e, N and the offset O caused by the error. f

represents the accumulated effect of the error on the encryption.

For Case 1, without loss of generality, we assume that the error occurs during the compu-

tation of c1 = (m1)
e mod N and results in c1 f = c1 + f , where 0 < f < N . Hence,

(c1 f · c2) mod N = ((c1 + f) · c2) mod N = ((c1 · c2) mod N) + ((f · c2) mod N)

c3 = (m1 ·m2 mod N)e mod N = (me
1 ·me

2) mod N = (c1 · c2) mod N

The proposed CED scheme checks if c3 ≡ c1 f · c2 mod N is true, and the error will be

missed if and only if f · c2 = 0 mod N . This condition is satisfied if and only if (f = 0 mod p

and c2 = 0 mod q) or (f = 0 mod q and c2 = 0 mod p), where p and q are the prime factors of

N , i.e., N = p · q. Finding such a combination is essentially as hard as factoring the modulus

N .

For Case 2, the CED scheme checks if c3 + f ≡ c1 · c2 mod N is true when an error occurs

during the computation of c3 = (m1 ·m2 mod N)e mod N or checks if c3 ≡ c1 · c2 + f mod N

is true when an error occurs during the computation of (c1 · c2) mod N . In either case, the

equation is true only when f = 0 mod N . The error will never be missed since 0 < f < N and

f cannot be 0 or multiples of N .

Hence, Lemma 5.3.1 is proved.

Similarly, it can be proved that in the modified CED and the enhanced CED scheme missing

a fault is as hard as factoring the modulus N .

93

5.3.2 Accidental Faults

As analyzed in §5.3.1, for Case 1 when an error occurs during the encryption of m1, the error

will be missed only when (f = 0 mod p and c2 = 0 mod q) or (f = 0 mod q and c2 = 0 mod p).

Assume that the values of f and c2 are distributed uniformly in [1, N − 1]. The probability

of f or c2 being a multiple of p (i.e., f = 0 mod p or c2 = 0 mod p) is q−1
N−1 . Similarly, the

probability of f or c2 being a multiple of q is q−1
N−1 . Hence, the probability of missing an error

is 2·(p−1)·(q−1)
(N−1)2 = O(1

N) where N is of length at least 1024 bits. The same probability can be

obtained when an error occurs during the encryption of m2.

While a transient fault affects one operation, a permanent fault may affect more than

one operation. Without loss of generality, we add an offset to the result of any of the four

computations and the scheme checks if (c1 + f1) · (c2 + f2) ≡ (c1 · c2 + f3) mod N is true where

f1, f2, f3 ∈ [0, N − 1] and at least one of f1, f2, f3 is nonzero. We can prove that the upper

bound of the probability of missing errors is O(1
N). As the length of N increases, the probability

of approaches a negligible value fast.

5.4 Performance and Cost

In this section, we compare the proposed CED scheme to the straightforward CRT-RSA,

Giraud scheme (29) and Vigilant scheme (28) in terms of the time overhead, output latency, fault

detection latency and hardware overhead. Giraud scheme and Vigilant scheme are two typical

effective countermeasures against fault attacks. Since they are given for signature generation,

we make our comparison in the signature mode. Table XIII shows the major steps of the

94

schemes for execution time estimation. The time is consumed mainly by computing modular

exponentiation, and the time cost by other computations is negligible.

TABLE XIII

MAJOR STEPS OF CRT-RSA, VILIGANT ALGORITHM AND GIGRAUD ALGORITHM

CRT-RSA Viligant Scheme Giraud Scheme

Step 1 Sp = md mod (p−1) mod p
mp = m mod p · r2 (S′p, Sp)←

modified MLE algorithm

Step 2 Sq = md mod (q−1) mod q

m′p = apmp+ (S′p, Sp)←
bp(1 + r) mod p · r2 modified MLE algorithm

Check m′p

Step 3 S = CRT (Sp, S1)
Spr = (m′p)

d′p mod p · r2
S′ = CRTblinded(S

′
p, S
′
q)Check Spr

Step 4 S′p = Spr − bp(1 + d′p −R3) S′ = CRTblinded(Sp, Sq)

Step 5 mq = m mod q · r2 S′ ← m · S′ (mod p · q)
Check S′

Step 6
m′q = aqmq+

bp(1 + r) mod p · r2
Check m′q

Step 7
Spr = (m′q)

d′q mod q · r2
Check Sqr

Step 8 S′q = Sqr − bq(1 + d′q −R4)

Step 9
S = CRT (S′p, S

′
q)

Check S

95

Vigilant scheme extends the modulus by r2 where r is a 32-bit random number. Besides

r, the scheme requires four 64-bit random integers R1, R2, R3 and R4. It computes m̂p =

apmp + bp · (1 + r) mod pr2, where bp = p · (p−1 mod r2), ap = 1 − bp. The correctness of Spr

can be verified by checking if bpSpr ≡ bp(1 + d′pr) mod pr2 and d′p ≡ dp mod (p− 1) hold (i.e.,

the step 3 of Vigilant scheme). Similarly, the correctness of Sqr is verified in the step 7. The

scheme also protects the CRT process by checking S in the step 9.

Giraud scheme is based on the modified Montgomery ladder exponentiation algorithm. It

computes R[0] and R[1] in each iteration. After each iteration, R[0] and R[1] satisfy m ·R[0] =

R[1]. At the end of the last iteration, R[0] = md and R[1] = md+1, and Giraud scheme checks

whether m ·R[0] = R[1] holds to detect errors.

5.4.1 Performance

In order to compare the time overhead, we define the time consumed by a modular-

exponentiation with 32-bit base, 512-bit exponent, and 512-bit modulus as one time unit,

T0. The length of base is chosen to reflect the typical word size and the length of exponent

and modulus are selected based on the recommended minimum key length for RSA. To esti-

mate the execution time, we assume that modulus extension will increase the execution time to

(1+ lex/l)
2t, where l is the length of the original modulus, lex is the length of the modulus after

extension and t is the execution time without modulus extension. We also assume the time

cost by computing md+dex mod p is (1 + dex/d)t, where t is the execution time of computing

md mod p.

96

In the comparison, we only take into account the dominating factor, i.e., the modular

exponentiations. The results are shown in Table XIV.

TABLE XIV

PERFORMANCE COMPARISON OF CRT-RSA, VIGILANT ALGORITHM AND
GIRAUD ALGORITHM AND OUR CED SCHEME

Steps CRT-RSA Vigilant Giraud
The proposed CED schemes

k = 1 k = 2 k > 2
(modified) (basic) (enhanced)

1 T0 Tv1 1.50T0

see §5.2.2 see §5.2.1 see §5.2.3

2 T0 Tv2 1.50T0
3 TCRT 1.4283T0 Tg1
4 - Tv3 Tg2
5 - Tv1 Tg3
6 - Tv2 -
7 - 1.4283T0 -
8 - Tv3 -
9 - Tv4 -

Total Time 2T0 2.8476T0 3.0T0
Time Overhead 0 42.38% 50.00% 100% or 200% 50% 1/k

Worst-case
Latency per 2T0 2.8476T0 3.0T0 4T0 6T0 2(k + 1)T0
Encryption
Worst-case

Fault-detection 2T0 2.8476T0 3.0T0 4T0 6T0 2(k + 1)T0
Latency

97

CRT-RSA performs two modular exponentiations, i.e., Sp and Sq, and the time consumed

by each modular exponentiation is T0. In the step 3, S is computed by CRT combination which

is given in Algorithm 7. The time cost by CRT combination, denoted by TCRT , is negligible

compared to the time cost by modular exponentiations (i.e., TCRT � T0). Hence, the total

execution time is approximately 2T0. The output latency of an encryption in the worst case

equals the execution time 2T0. The fault detection latency in the worst case is also 2T0.

In Vigilant scheme, r is a 32-bit random number. In the step 3 and step 7, it performs

two modular exponentiations, i.e., Spr = (mp)
dp mod p · r2 and Sqr = (mq)

dq mod q · r2, where

the length of dp and dq is 512 + 64 = 576 bits. Therefore, the time cost by each modular

exponentiation is (1 + 64/512) × (1 + (32 × 2)/512)2 × T0 = 1.4238T0. The time consumed

by other steps is negligible, so the total time cost by Vigilant scheme is about 2.8476T0. The

overhead is (2.8476T0− 2T0)/(2T0) ≈ 42.38%. The latency of each encryption in the worst case

is 12.8476T0. The worst-case fault detection latency is also 2.8476T0.

Giraud scheme uses the modified Montgomery ladder exponentiation algorithm to compute

modular exponentiations. The length of the modulus is 512 + 32 = 544 bits. Compared to

the binary exponentiation algorithm (Algorithm 4), the Montgomery ladder exponentiation

algorithm costs 33% more time in average. Hence, it takes 1.33 × (1 + 32/512)2T0 ≈ 1.5T0 to

compute each modular exponentiation, and the time cost by the step 3, 4, 5 is negligible. The

execution time is approximately 1.5T0 + 1.5T0 = 3T0, resulting in an overhead of 50%. The

output latency and the fault detection latency in the worst case are both 3T0.

98

When k = 1 or k = 2, the proposed CED scheme does not perform better than Vigilant

scheme and Giraud scheme. Increasing k, the time overhead can be reduced to 1
k . Meanwhile,

the worst-case output latency and fault detection latency are increased. Hence, choosing the

value of k is a trade off between time overhead and output latency.

5.4.2 Cost

The hardware overhead mainly depends on the length of the modulus and the memory

required to store intermediate results. In order to compare the hardware overhead, we define

a hardware unit H to represent the hardware for computing a modular exponentiation with

32-bit base, 512-bit exponent, and 512-bit modulus. For example, the hardware of modular

exponentiation Sp = md (mod p−1) mod p is H, where the the base is m (32-bit), the exponent

is d (mod p − 1) (512-bit), and the modulus is p (512-bit), the factor of modulus N . Note

that the hardware for computing Sp = md (mod p−1) mod p increases when the length of p is

increased. Assume that there is only one module to compute modular exponentiation in the

implementation, and all modular exponentiations in the schemes are computed sequentially in

the same datapath. The hardware overhead is shown in Table XV.

TABLE XV

COMPARISON OF THE HARDWARE OVERHEAD OF MODULUS EXTENSION

CRT-RSA Vigilant Giraud The proposed CED Schemes
Total hardware H 1.156H 1.0625H H

Hardware Overhead 0 15.6% 6.25% 0

99

In CRT-RSA, the length of the modulus is 512-bit, it can be implemented with H hardware.

In Vigilant scheme, the largest modulus used is pr2 (or qr2), where r is 32-bit. Therefore, the

hardware needed by Vigilant scheme is (512 + 2 × 32)/512 × H ≈ 1.156H, and the hardware

overhead is around 15.6%. Giraud scheme uses 544-bit modulus to compute S′p, Sp, S
′
q, and Sq

in modified Montgomery ladder exponentiation algorithm. The hardware overhead caused by

modulus extension is around 6.25%. The proposed CED scheme does not extend modulus, and

hence needs no additional hardware.

The memories required by CRT-RSA, Vigilant scheme, Giraud scheme and the proposed

CED scheme for RSA-1024 are given in Table XVI. It is assumed that all algorithms reserve

dedicated memory space for the message to be encrypted. Hence the comparison ignores this

part.

TABLE XVI

COMPARISON OF THE REQUIRED MEMORY

CRT-RSA Vigilant Giraud Our Schemes
Memory (bits) 1.5K 3.0K 3.0K (k+1)K

The implementation of CRT-RSA has to buffer Sp, Sq, and iq. Each of them is of length 512

bits. Therefore, the memory required by CRT-RSA is 3× 512 = 1.5K bits. In Vigilant scheme,

100

the memory consumption peaks right before CRT combination, and the memory required is

around 3.0K bits. Giraud scheme needs 6 × 512 bits memory to store Sp, S
′
p, Sq, S

′
q, S and

S′. The proposed CED scheme does not change the implementation of CRT-RSA but needs to

buffer the k ciphertexts and the running product of messages (then the ciphtertext of product

of the messages). The total memory required is (k + 1)K bits.

CHAPTER 6

TOWARDS A COMPREHENSIVE COUNTERMEASURE AGAINST

MULTIPLE SIDE CHANNEL ATTACKS

In order to protect public key cryptosystems, researchers have proposed various counter-

measures, as discuss in Chapter 3. However, most of them target at preventing only single types

of side channel attacks. In practice, however, an attacker can exploit any kind of side channel

leakage to attack the cryptosystem. Vulnerability to any side channel attack will compromise

the security of the cryptosystem. Hence, a comprehensive protection scheme is expected to

thwart multiple side channel attacks.

6.1 Overview

Aware of the threat from multiple side channel attacks, researchers have proposed new

schemes to thwart more than one type of side channel attacks. Giraud proposed an approach

that can prevent SPA attacks and fault attacks (29). The approach is based on the modified

Montgomery ladder exponentiation algorithm (Algorithm 6) which is resistant to SPA. It com-

putes R[0] and R[1] which satisfy m ·R[0] = R[1] after each iteration and checks if the relation

holds at the end of the last iteration to detect errors. Fumaroli and Vigilant improved Girauds

approach by making it thwart DPA attacks (60). While keeping the basic method presented

by Giraud to thwart SPA attacks and fault attacks, they use a secret random number to mask

the message to break the correlation between power consumption and intermediate data. Kim

101

102

and Quisquater showed that the improved approach proposed by Fumaroli and Vigilant caused

new leakage which can be expoited to attack it, and they presented an improved one (14).

The scheme is based on the infective computation method in (31) rather than error detection

method. But the scheme was showed practically insecure in (61). The Bellcore attack (62) is

possible when a fault is induced to disturb the infective procedure. Fournaris and Koufopavlou

presented a countermeasure (63) which adds a mask and removes it in a similar way to Fumaroli

and Vigilant’s scheme, and hence the countermeasure suffers the same vulnerability as Fumaroli

and Vigilant’s scheme.

Moreover, computations are customized in most of the existing countermeasures to thwart

certain types of side channel attacks. An disadvantage of such schemes is that they are inflexible.

It can be difficult to make them thwart new side channel attacks. Careless modification can

cause new leakage compromising the expected security, as shown by Kim and Quisquater (14).

Designing a new scheme from scratch whenever resistance to new side channel attacks has be

to integrated is unrealistic.

Since there is a rich variety of single-purpose countermeasures which are designed to thwart

single types of side channel attacks, it is attractive to design a flexible comprehensive scheme

using them. Resistance to new side channel attacks can be easily integrated to the scheme.

With this motivation, we discuss the basic principles to construct comprehensive schemes by

integrating single-purpose countermeasures without compromising security. Followed the prin-

ciples, we construct a comprehensive scheme for RSA and then show how to improve it by

hardware architecture design. The architecture can enhance the resistance to DPA attacks by

103

hiding the power consumption of the two exponentiation executions in each other and improve

the performance of the implementation.

6.2 Basic Principles to Construct a Flexible Comprehensive Scheme

There are various single-purpose countermeasures. But simply combining them may lead

to new leakage enabling new attacks. In this section, we discuss the basic principles to con-

struct a comprehensive scheme using the single-purpose countermeasures without compromising

security. In order to keep the effectiveness of the single-purpose countermeasures, the counter-

measures integrated in one comprehensive scheme should not affect one another. Following this

principle, if the single-purpose countermeasures act on different levels of the design hierarchy,

they can be combined directly to a comprehensive scheme without interference. For example, a

comprehensive scheme can use Giraud’s algorithm-level error detection method (29) to thwart

fault attacks while using the dual-rail pre-charge logic in hardware implementation to thwart

DPA attacks. However, if the single-purpose countermeasures act on the same level, e.g., the

algorithm level, they can be combined safely in a comprehensive scheme if they can be arranged

in a nested way shown in Figure 7. The countermeasure of function scope included by another

is used as a non-modifiable safe block by the countermeasure of function scope covering it. As

a non-modifiable safe block, any modification to its internal computation flow is prohibitive.

In Figure 7, Countermeasure 1 is used as a non-modifiable safe block by Countermeasure 2,

and similarly, Countermeasure 2 by Countermeasure 3.

104

Figure 7. The nested structure of single-purpose countermeasures in a comprehensive scheme

6.3 A Comprehensive Protection Scheme for RSA

Based on the principles proposed in §6.2, we construct a comprehensive protection scheme for

RSA against fault attacks and power analysis attacks using the single-purpose countermeasures.

The scheme is shown in Algorithm 14. It uses random numbers to mask the exponent

and the message to thwart DPA attacks. The scope of the mask is the entire scheme. The

modified Montgomery ladder exponentiation algorithm (Modified MLE) given in Algorithm 15,

which can prevent SPA attacks, is used as a non-modifiable safe block to compute modular

exponentiations. The two results of the Modified MLE algorithm satisfy a certain relation

which can be checked to detect errors. Therefore, the Modified MLE algorithm followed by a

verification can thwart fault attacks. The verification process does not affect the mask.

The nested structure of single-purpose countermeasures in the comprehensive scheme is

given in Figure 8.

105

Algorithm 14 The comprehensive scheme for RSA

Input: m, d,N
Output: s = md mod N

Choose random numbers r, k
d1 ← d+ k · ϕ(N)
(s0 rm, s1 rm)← Modified MLE(r ·m, d1, N)
(s0 r−1 , s1 r−1)← Modified MLE(r−1, d1, N)
s← s0 rm · s0 r−1 mod N
if d1 ≡ d mod ϕ(N) and m · s ≡ s1 rm · s1 r−1 mod N then

Output s
else

Supress s, signal error
end if

Algorithm 15 Modified Montgomery ladder exponentiation algorithm (Modified MLE)

Input: m, d = (dl−1, . . . , d1, d0)2, N
Output: md mod N , md+1 mod N

R[0]← 1, R[1]← m
for i = l − 1 down to 0 do

R[di]← R[di] ·R[di] mod N
R[di]← R[di] ·R[di] mod N

end for
Return (R[0], R[1])

Now we explain why the scheme works. The inputs to the algorithm are the message to be

exponentiated, the exponent d, and the modulus N . It is assumed that d is securely preloaded

into the device prior to the RSA process. At the beginning of the algorithm, two random

numbers r and k are generated. The secret exponent is then masked by adding a random

106

Figure 8. The nested structure of the comprehensive scheme

multiple of ϕ(N) (i.e., k ·ϕ(N)), where ϕ(N) is Euler’s totient function ϕ(N) = (p− 1)(q− 1).

Then the Modified MLE algorithm is performed to compute two modular exponentiations. The

Modified MLE algorithm is given in Algorithm 15. It is the same as the Montgomery ladder

exponentiation algorithm (Algorithm 3) except outputting both R[0] and R[1]. One modular

exponentiation takes as inputs the masked exponent d1, the masked message r · m and the

modulus N , and the results are stored in The outputs are stored in s0 rm and s1 rm, respectively.

The other modular exponentiation takes r−1, d1 and N as inputs, where r · r−1 = 1 mod N .

The results are stored in s0 r−1 and s1 r−1 . Then s is computed by multiplying s0 rm and s0 r−1 .

Error is detected by checking if d1 ≡ d mod ϕ(N) and m · s ≡ s1 rm · s1 r−1 mod N are true.

Lemma 6.3.1. The comprehensive scheme for RSA outputs the correct result (i.e., md mod N)

if no error occurs.

107

Proof. The value of s is correct, i.e., s = md mod N when no error occurs, because

s = s0 rm · s0 r−1 mod N = (r ·m)d1 · (r−1)d1 mod N = rd1 · (r−1)d1 ·md1 mod N

= md1 mod N = md+k·ϕ(N) mod N = md mod N

(6.1)

Next we show that if no error occurs, the verification of d1 ≡ d mod ϕ(N) and m · s ≡

s1 rm · s1 r−1 mod N can always succeed. Since d1 = d+ k · ϕ(N), we have d1 ≡ d mod ϕ(N).

In the Modified MLE algorithm, R[0] and R[1] satisfy m ·R[0] = R[1]. Hence we have,

(r ·m) · s0 rm = s1 rm

(r−1) · s0 r−1 = s1 r−1

(6.2)

and therefore,

m · s mod N = m · s0 r−1 · s0 r−1 mod N

= md+1 mod N

= (r ·m)d+1 · (r−1)d+1
mod N

= s1 r·m · s1 r−1 mod N

(6.3)

6.4 Techniques to Improve Resistance and Performance

In this section, we will discuss the techniques to enhance the algorithm-level countermeasure

against power analysis attacks and the techniques to improve the performance of the imple-

mentation.

108

6.4.1 Register Transfer Level Techniques

There has been various implementations for RSA to improve performance, reduce hardware

overhead and/or lower power consumption (64) (65) (66) (67) (68), but no one exploits the

hardware architecture to thwart side channel attacks. The countermeasures against side chan-

nel attacks mainly rely on algorithmic techniques. In contrast, we focus the implementation of

RSA at Register Transfer Level and takes advantage of techniques at this level to enhance the

resistance to power analysis attacks. The basic idea is to implement the modular multiplier

based on the pipeline systolic array architecture but schedule the working cells to interleavingly

compute two modular multiplications to hide the power consumption. Unlike having two mul-

tipliers compute in parallel, it hides power consumption at the cell level. Each cell only consists

of several gates.

Modular exponentiation is computed by repeatedly performing modular multiplications and

modular squaring operations. Modular squaring operation is nothing but modular multiplica-

tion of two identical numbers. Hence the efficiency of modular multiplication will dominate the

performance of modular exponentiation. A modular multiplication x · y mod N can be com-

puted straightforwardly in two steps: multiplying x and y first and then reducing the product

by division-based modulation with modulus N . Since x and y are of the same length as N ,

their product is twice the length of N . The division-based modulation is expensive in terms of

computation and resource. To avoid it, the Montgomery Modular Multiplication (MMM) algo-

rithm performs modular reduction as multiplying progresses (69). An improved version of the

MMM algorithm (70), which avoids the final subtraction operation, is shown in Algorithm 16.

109

In the algorithm, the length of the intermediate results during the computation will not be

greater than the length of N . It is much more efficient than the straightforward multiplication

and hence is often used to implement high performance modular multiplier.

Algorithm 16 Montgomery Modular Multiplication (MMM) algorithm

Input: x = (xl, . . . , x1, x0)2, y = (yl, . . . , y1, y0)2, N = (nl, . . . , n1, n0)2
R = 2l+2, gcd(N, 2) = 1
Output: x · y ·R−1 mod N

T ← 0
for i = 0 to l + 1 do

a← (t0 + xi · y0) mod 2
T ← (T + xi · y + a ·N)/2

end for
return (t)

Note that the MMM algorithm does not compute x · y mod N directly. Rather it computes

x · y · R−1 mod N where R could be 2l where l is the length of x (or y). To compute modular

exponentiation using the MMM algorithm, conversions are needed before and after the compu-

tation of modular exponentiation. More specifically, as shown in Algorithm 17, R[0] and R[1]

will be initialized to R and m ·R, respectively, before the modular exponentiation starts. And

after all the iterations of the for loop, R[0] = mdR, and R[1] = md+1R. To remove R from the

results, each is multiplied by 1 using the MMM algorithm.

110

Algorithm 17 Modified MLE algorithm using MMM

Input: m, d = (dl−1, . . . , d1, d0)2, N
Output: md mod N

R[0]← R, R[1]←MMM(m,R2, N)
for i = l − 1 down to 0 do

R[di]←MMM(R[di], R[di], N)
R[di]←MMM(R[di], R[di], N)

end for
R[0]←MMM(R[0], 1, N)
R[1]←MMM(R[1], 1, N)
output (R[0], R[1])

In Algorithm 16, T+xi ·y is the partial product, and a is the LSB of the partial product. a is

used to adjust the value of the partial product to make it divisible by 2. After l+2 iterations, it

outputs x ·y ·R−1 mod 2N . Using it in the Modified MLE algorithm will result in all operations

performed modulo 2N , and it has been proved that after multiplying R[0] and R[1] with 1, the

results are smaller than N (66).

We use T (i) and a(i) to indicate the value of T and m after the ith iteration in the for loop

of the MMM algorithm, and T (i) is computed as follows.

T (i) = (T (i−1) + xi · y + a(i) ·N)/2 (6.4)

where i = 0, . . . , l + 1 and T (−1) = 0. And the jth bit of T (i) is written as t
(i)
j and T (i) =

(t
(i)
l . . . t

(i)
1 t

(i)
0).

111

Since modular multiplications are the major computation of modular exponentiation, the

hardware implementation of the MMM algorithm is the key to the performance of RSA. We

can implement the modular multiplier based on the systolic array architecture. To reduce

the hardware overhead, we can keep only one row of the systolic array and pipeline it. The

architecture is shown in Figure 9. It consists of l + 1 cells. Cell0 produces a, and other l

cells compute T . The cells (cellj , j = 1, 2, . . . , l) each computes one bit of T , with j = 1

for the LSB and j = l for the MSB. Since division by 2 is just a 1-bit right shift, dividing

T (i−1) +xi ·y+a(i) ·N by 2 is equivalent to storing the jth bit of (T (i−1) +xi ·y+a(i) ·N) to the

(j − 1)th bit of T (i). Suppose every cell takes one clock cycle to output a bit of T . Computing

T (i) will cost l + 1 clock cycles due to the data dependency. However, a cell does not have to

wait for the completion of T (i) to start computing for T (i+1), since a cell only takes one bit of

T as input. Cellj starts computing t
(i+1)
j−1 once t

(i)
j is outputted by cell j + 1.

Figure 9. The systolic architecture of modular multiplier

112

We given an example to show the working state of the cells with l = 4 in Figure 10. The

number in the cell columns indicate the number of iteration for which the cell is computing in

a certain clock cycle. For example, cell0 computes a(0) in the 1st clock cycle, and the result a(0)

is inputted to cell1 to compute t
(0)
0 in the 2nd clock cycle. Then cell2 uses t

(0)
0 to compute t

(0)
1

in the 3rd clock cycle. Meanwhile, cell0 uses t
(0)
0 to compute a(1). The outputs will be fed into

their left cells for computing in the 4th clock cycle and so on. The computation for a certain

iteration i moves along the chain of cells from the rightmost cell to the leftmost cell as time

elapses.

Figure 10. An example: the working state of cells in systolic array

113

From Figure 10, we can see that each cell only computes in alternate clock cycles due to the

data dependency. For instance, cell1 only computes in clock cycle 2, 4, 6, 8, We exploit this

property to implement a multiplier that interleaves two modular multiplications. One mod-

ular multiplication is computed in the gaps of the other. Therefore, each cell in the systolic

array is occupied in all clock cycles, computing for one modular multiplication in odd clock

cycles and for the other in even clock cycles. The schedule of cells for interleaved computing is

shown in Figure 11. We use Mul1 and Mul2 to indicate the two modular multiplications. By

interleaving computing, the multiplier takes 3l+ 4 clock cycles to compute two modular multi-

plications, only one more cycle than performing one modular multiplication. Therefore the time

cost by computing the modular exponentiations in the comprehensive scheme (Algorithm 14)

is significantly reduced.

The architecture of the interleaving modular multiplier is given in Figure 12. When input

signal start is set, the controller will enable registers to load input values and set T1 and T2

to 0. T1 and T2 hold the running products of the two modular multiplications, respectively.

The cells each uses either mul sel or mul sel to select the inputs for Mul1 or Mul2. When the

computations of T1 and T2 of an iteration completes, registers of x1 and x2 are shifted to the

right by one bit and the MSB is filled with bit 0. After 3l+ 4 clock cycles, the values stored in

T1 and T2 are the reduced products of the two modular multiplications.

The implementation of the interleaving modular multiplier is given in Figure 13. It is

based on the systolic architecture in Figure 9 with additional logics to interleave two modular

multiplications. Cell0 performs t0 + xi · y0 mod 2 to produce a, and the other cells compute for

114

Figure 11. The schedule of cells for interleaving modular multiplications

(T +xi · y+a ·N)/2. Dividing by 2 is just a right shift. Therefore, the cells mainly perform the

additions (i.e., T + xi · y + a ·N). The cells work like a carry ripple adder. But they “ripple”

two carry bits (i.e., c0 and c1) rather than one in order to add the three vectors. a(i) and xi

are passed through the cell chain since the cells do not synchronize to compute for the same

iteration, as we have explained, and they need to know the value of a and x of the iteration

they are computing for. Every cell computes for two modular multiplications in alternate clock

cycles. This is achieved by multiplexers which select inputs of Mul1 and Mul2 alternately and

store outputs to proper registers.

115

Figure 12. The architecture of the modular multiplier

We denote the carry bits produced by cellj−1 for the ith iteration as c0
(i)
j−1 and c1

(i)
j−1. And

we still denote T after the ith iteration as T (i) and T (i) = (t
(i)
l . . . t

(i)
1 t

(i)
0) with t

(i)
j indicating the

jth bit of T (i). For cellj (j 6= 0) computing for the ith iteration, it takes as input t
(i−1)
j , xi, yj ,

a(i), nj as well as the two carry bits produced by cellj−1 (i.e., c1
(i)
j−1 and c0

(i)
j−1) and computes

t
(i)
j−1, c0

(i)
j and c1

(i)
j such that

22 × c1 + j(i) + 2× c0(i)j + t
(i)
j−1 = t

(i−1)
j + xi × yi + a(i) × nj + 2× c1(i)j−1 + c0

(i)
j−1 (6.5)

The circuit of the cell is shown in Figure 14. It consists of two full adders, one half adder

and two AND gates.

116

Figure 13. Implementation of the interleaving modular multiplier

Figure 14. The circuit of a cell the modular multiplier

We use two modular multipliers to implement the comprehensive scheme (Algorithm 14).

One multiplier computes modular multiplications and the other computes modular squaring

117

operations. The hardware architecture is given in Figure 15. Both modular multipliers are

based on the systolic architecture in Figure 13 with scheduling method given in Figure 11.

Multiplier 1 interleaves the modular multiplications in Modified MLE(r ·m, d1, N) and Modified

MLE(r − 1, d1, N), and Multiplier 2 computes the modular squaring operations in the two

modular exponentiations.

Figure 15. The hardware architecture of the comprehensive scheme

6.5 Mask Reusing

The masks r and k prevent attackers from predicting the intermediate data and hence can

protect power analysis attacks. Besides masking the message with r, we also mask the secret

exponent using k to thwart the SEMD attack (37). While updating r and k for every message

118

result in good randomness, it will cause high computational overhead. In this section, we discuss

how to reuse the masks to improve the performance.

First of all, k can be reused for a number of modular exponentiations since SEMD attack

requires to perform a great number of modular exponentiations with the same exponent to

perform the attacks.

Second, we also consider reuse r. Generally speaking, if r is also reused when k is reused,

CPA may attack it by inputting messages X (mod N) and −X (mod N) and generating col-

lisions as described by Yen et al. (41). However, with our proposed Register-Transfer level

techniques, we show that reusing r is possible. An advantage of the proposed architecture of

the comprehensive scheme is that it interleaves two modular exponentiations and hence making

their power consumption indistinguishable. Based on this fact, a random number r can be used

for two consecutive executions.

The mask reusing scheme is given in Figure 16. Suppose there are n consecutive messages

to be exponentiated in the RSA application.

Figure 16. Mask reusing for consecutive messages

119

Before processing the first message, random numbers r1 and k1 are generated and (r1
−1)

(d1)

is computed, where d1 = d + k1ϕ(N). d is masked by k1 for the n messages assuming n is far

smaller than the number of exponentiations required by DPA attacks. And r1 is used to mask

messages m1 and m2. The modular exponentiation of masked m1, i.e., (r1 ·m1)
d1 , is interleaved

with the exponentiation of a new random number r−12 , i.e., (r−12)
d1

. Then (m1)
d1 is obtained

by multiplying (r−11)
d1

and (r1 ·m1)
d1 . r2 is used to mask messages m3 and m4. Modular expo-

nentiations (r1 ·m2)
d1 and (r2 ·m3)

d1 are interleaved. And (m2)
d1 and (m3)

d1 can be obtained

by computing (r−11)
d1 · (r1 ·m2)

d1 and (r−12)
d1 · (r2 ·m3)

d1 , respectively. Then modular expo-

nentiation of m4 masked by r2, i.e., (r2 ·m4)
d1 , is interleaved with the modular exponentiation

of a new random number r−13 , i.e., (r−13)
d1

. Similar arrangement of computations continues

until all the messages have been processed. The arrangement of the modular exponentiations

ensures that different random numbers are used in the two modular exponentiations computed

interleavingly. It can prevent attackers from predicting the relation between the two modu-

lar exponentiations. An attacker cannot generate useful collisions between executions by just

choosing inputs without knowing the values of the random numbers.

Mask reusing can reduce computational overhead and hence improve the performance of

RSA implementation. If the mask is updated every execution, two modular exponentiations,

i.e., (r ·m)d1 and (r−1)
d1 are computed for one message. Compared to the RSA implementation

without countermeasures where one modular exponentiation is computed for one message, the

computational overhead is around 100%. But if a mask is used for two messages, the compu-

tational overhead will be reduced to 50% because (r−1)
d1 is computed once for two messages.

120

Comparison of the computational overheads for different updating frequencies of the mask r is

summarized in Table XVII.

TABLE XVII

COMPUTATIONAL OVERHEADS OF DIFFERENT MASK UPDATING FREQUENCIES

Mask updating frequency Number of exponentiations Overhead
Updating r per message 2 100%

Updating r per two messages 3/2 50%

6.6 Security Analysis

In this section, we evaluate resistance of the proposed comprehensive scheme to fault attacks

and power analysis attacks.

6.6.1 Resistance to Fault Attacks

Fault attacks are prevented by error detection. Therefore, we analyze the error detection

capability to show that an attacker can hardly induce a fault without being detected.

The proposed scheme computes modular exponentiations using the Modified MLE algo-

rithm. The Modified MLE algorithm outputs R[0] and R[1] which satisfy m ·R[0] = R[1]. Ac-

cording to Algorithm 14, the two modular exponentiations output (s0 rm, s1 rm) = ((rm)d, (rm)d+1)

and (s0 r−1 , s1 r−1) = ((r−1)
d
, (r−1)

d+1
), respectively. As proved in §6.3, if no error occurs,

m · s0 rm · s0 r−1 ≡ s1 rm · s1 r−1 is true. Error is detected by checking this equivalence. In-

121

tuitively, if an error occurs during the computation of one modular exponentiation, the ex-

pected relation will be broken, resulting in (r · m) · s0 rm 6= s1 rm or r−1 · s0 r−1 6= s1 r−1

depending on which modular exponentiation is affected by the error. Consequently, equation

m · s0 rm · s0 r−1 ≡ s1 rm · s1 r−1 no longer holds. The error can be detected. We will prove that

the intuition is true.

Our analysis assumes a single transient fault. If a transient fault lasts within one clock

cycle, it may affect only one of the two modular exponentiations. If a transient fault lasts

longer than one clock cycle, it may affect both modular exponentiations. This is because the

modular multiplications of the two modular exponentiations are interleaved in the proposed

architecture.

We begin our analysis with the scenario of a transient fault lasting one clock cycle. According

to Algorithm 14, it may effect one of the following computations:

case 1: exponent masking, i.e., d1 ← d+ k · ϕ(N),

case 2: one of the two modular exponentiations, i.e., Modified MLE(r ·m, d1, N) and Mod-

ified MLE(r−1, d1, N),

case 3: the modular multiplication, i.e., s← s0 rm · s0 r−1 mod N ,

case 4: the verification, i.e., checking if d1 ≡ d mod ϕ(N) and m · s ≡ s1 rm · s1 r−1 mod N .

If an error occurs during the verification while the computations for RSA are correct, the

verification will result in a false alarm but it does not compromise the security. Hence, we will

focus on the error detection capability in case 1, 2 and 3.

122

In case 1, the error results in d1 6= d+ k · ϕ(N) and this error can be detected by checking

if equation d1 ≡ d+ k · ϕ(N) is true in the verification step.

In case 2, the error occurs during the computation of modular exponentiations.

Lemma 6.6.1. Inducing a fault during the computation of modular exponentiations such that

the error is undetected is as hard as factoring the modulus N .

Proof. The error can affect either of the two modular exponentiations. We will show that

whichever modular exponentiation is affected, the expected equivalence is broken. Without

loss of generality, suppose an error occurs in the ith iteration in the for loop of the Modified

MLE. Before the ith iteration, R[0] and R[1] satisfy m · R[0](i−1) = R[1](i−1) where R[1](i−1)

and R[1](i−1) indicate the value of R[0] and R[1] after the (i− 1)th iteration, respectively. If di

= 0, the algorithm computes in the ith iteration:

R[0](i) = (R[0](i−1))
2

R[1](i) = R[0](i−1) ·R[1](i−1).

(6.6)

If the error occurs in the modular squaring operation, the erroneous R[0] can be written as

R′[0]
(i)

= (R[0](i−1))
2

+ ε0 (6.7)

123

where ε0 is the error function. So after the ith iteration, we have

m ·R′[0](i) = m · ((R[0](i−1))
2

+ ε0) = m · (R[0](i−1))
2

+m · ε0

R[1](i) = R[0](i−1) ·R[1](i−1) = m · (R[0](i−1))
2
.

(6.8)

Hence, m · R′[0](i) 6= R[1](i) if m · ε0 6= 0 mod N . After all iterations, it will cause (r ·m) ·

s0 rm 6= s1 rm or r−1 · s0 r−1 6= s1 r−1 . Consequently, the error will be detected by coherence

checking since m · s0 rm · s0 r−1 6= s1 rm · s1 r−1 . If an attacker wants to find the solution to

m · R′[0](i) = R[1](i) to pass the verification, he/she needs to make m · ε0 be a multiple of

modulus N , i.e., m ·ε0 = α ·N , where α is an integer and α 6= 0. The modulus N is the product

of two large primes p and q, therefore the equation can be written as

m · ε0 = α · p · q (6.9)

Since m < N and ε0 6= 0 mod N , the solution to the above equation is

m = α1p

ε0 = α2q

(α1 · α2 = α) (6.10)

or
m = α′1p

ε0 = α′2q

(α′1 · α′2 = α) (6.11)

Since the solution requires to know p and q, manipulating a fault such that the error is

missed is as hard as factoring the modulus N .

124

If the error occurs in the modular multiplication, the erroneous R[1] can be written as

R′[1](i) = R[0](i−1) ·R[1](i−1) + ε1 = m · (R[0](i−1))
2

+ ε1 (6.12)

And m · R[0](i) = m · (R[0](i−1))
2 6= R′[1](i) since ε1 6= 0. The error will be detected by the

equivalence verification.

Similarly we can reach the same conclusion in the case of di = 1. Hence, an error occurring

during the computation of modular exponentiations can be detected. Inducing a fault such that

the error is missed is as hard as factoring the modulus N . It proves Lemma 6.6.1.

In case 3, the error occurs during the modular multiplication s0 rm · s0 r−1 mod N .

Lemma 6.6.2. Inducing a fault to the computation of s0 rm · s0 r−1 mod N such that the error

is undetected is as hard as factoring the modulus N .

Proof. The error affects the computation of s0 rm · s0 r−1 mod N , and the erroneous s can be

written as:

s′ = s0 rm · s0 r−1 + ε. (6.13)

The verification will not succeed since

m · s′ = m · s0 rm · s0 r−1 +m · ε (6.14)

125

Hence, m · s′ 6= c1 rm · s1 r−1 if m · ε 6= 0 mod N . The error will be missed when m · ε = α · p · q.

Applying the analysis method used in case 2, we can come to the same conclusion, that is,

inducing such a fault is as hard as factoring the modulus N . This proves lemma 6.6.2.

If a transient fault lasts longer than one clock cycle, it may affect the results of both modular

exponentiations. According to above analysis, an attacker can hardly induces a fault without

changing the relation of outputs of the Modified MLE. And it is even harder, if not impossible,

to induce a long-lasting fault and control the effect of the error to keep the relations of the

outputs.

Suppose the erroneous results of the modular exponentiations are (s′0 rm, s′1 rm) and (s′0 r−1 ,

s′1 r−1), respectively. s′1 rm and s′1 r−1 can be written as

s′1 rm = (r ·m) · s′0 rm + εrm

s′1 r−1 = r−1 · s′0 r−1 + εr−1

(6.15)

where εrm and εr−1 are the offsets caused by the errors, respectively, and εrm 6= 0 mod N ,

εr−1 6= 0 mod N .

The errors will be missed when

m · s′0 rm · s′0 r−1 = s′1 rm · s′1 r−1 mod N

= (r ·m · s′0 rm + εrm) · (r−1 · s′0 r−1 + εr−1) mod N

= s′0 rm · s′0 r−1 + rm · s′0 rm · εr−1 + r−1 · s′0 r−1 · εrm + εrm · εr−1 mod N .

(6.16)

126

Therefore, εrm and εr−1 need to satisfy

r ·m · s′0 rm · εr−1 + r−1 · s′0 r−1 · εrm + εrm · εr−1 = 0 mod N . (6.17)

Since r is unknown, an attacker can hardly form εrm and εr−1 to pass the verification.

Moreover, εrm and εr−1 are dependent on one another since the location of the fault is fixed

once it is induced. It makes fault injection even harder.

6.6.2 Resistance to Power Analysis Attacks

The proposed comprehensive scheme is based on the Montgomery ladder exponentiation

algorithm. Hence, it is resistant to SPA attacks.

The scheme is only subject to certain DPA attacks as some attacks assume certain modular

exponentiation algorithms other than the Montgomery ladder algorithm. The attack proposed

by Walter (71) assumed the exponentiation algorithm whose pattern of operations is dependent

on the value of secret exponent and performed power analysis to distinguish modular multipli-

cations and modular squaring operations based on the fact that a conditional subtraction in the

MMM algorithm with final subtraction is slightly more likely to occur in a modular squaring

operation than in a modular multiplication. The attack presented by Witteman et al. (39)

assumed the RSA was computed by the Square-and-multiply-always algorithm, and analyzed

the correlation between power consumption of two consecutive modular operations to identify

the dummy operation in the algorithm. Such power analysis approaches cannot be used to

attack the proposed comprehensive scheme.

127

For the DPA and CPA attacks which are effective to attack the proposed comprehensive

scheme, resistance to them is achieved by the masking at the algorithm level as well as the

power consumption hiding at the Register Transfer Level. Masking at the algorithm level

randomizes the intermediate data to prevent attackers from predicting it for power analysis.

And interleaving computing at the Register-Transfer Level can enhance the resistance to power

analysis attacks. We can see from Figure 11 that in any clock cycle except the first and the

last one, half cells are computing for Mul1 and the rest half for Mul2. As all computing cells

contribute to the power consumption of the modular multiplier, the power consumption in any

clock cycle is a mixed one of the computations of Mul1 and Mul2. The power consumed by

computing Mul1 is comparative to that by computing Mul2. Therefore, the power consumption

of modular multiplications is hided in each other. Consequently, it will be difficult to analyze

one of them given the power consumption traces of the modular multiplier.

The three attacks, SEMD, MESD and ZESD presented by Messerges et al. require different

capabilities of attackers (37). MESD and ZESD require exponentiating a constant message

using exponents chosen by the attacker. Therefore, message masking can prevent the MESD

and ZESD attacks. SEMD attack can be prevented by exponent masking since the attack

assumes that the attacker is able to ask for exponentiations with a known exponent. The

doubling attack (40) and Yen et al.s attack (41) require exponentiations with chosen messages.

The messages have to satisfy certain relations (i.e., X and X2 in doubling attack, and X, −X

in Yen et al.’s attack) to generate collisions. The generalized CPA attacks relax the relation

to (m1)
α = (m2)

β (42). The CPA attacks can be prevented by message masking which breaks

128

the relation between input messages. Exponent masking makes predicting intermediate data

even more difficult. The power consumption hiding provided at the Register Transfer Level

prevents attackers from exploiting relation between the two modular exponentiations within

one execution. The techniques used in the proposed scheme to thwart various power analysis

attacks are summarized in Table XVIII.

TABLE XVIII

RESISTANCE TO POWER ANALYSIS ATTACKS

Power Analysis Attacks Techniques
SPA Montgomery Ladder Algorithm

Walter’s attack (71) Montgomery Ladder Algorithm
Witteman’s attack (39) Montgomery Ladder Algorithm

MESD, ZESD (37) Message masking at algorithm level
SEMD (37) Exponent masking at algorithm level

Doubling attack (40)
Message masking at algorithm level

Hiding at Register-Transfer level

Yen et al.’s attack (41)
Message masking at algorithm level

Hiding at Register-Transfer level

CPA (42)
Message masking at algorithm level

Hiding at Register-Transfer level

While typical DPA attacks analyze the correlation between intermediate data and secret

information, Messerges et al. presented a DPA attack which analyzes the correlation between

the address values of registers and secret information (72). This attack is also called Address-bit

129

DPA (ADPA) attack. Itoh et al. (73) and Izumi et al. (74) showed the vulnerability of ECC

implemented by the Montgomery ladder algorithm. We did not find related work on RSA,

but apparently similar idea can be applied to attack RSA implemented by the Montgomery

ladder exponentiation algorithm. Countermeasures against such attacks are based on address-

bit randomization when accessing registers. Itoh et al. (73) and Izumi et al. (74) presented

countermeasures for ECC. Algorithm 18 shows the same idea applied to RSA.

Algorithm 18 ADPA-resistant Montgomery ladder exponentiation algorithm

Input: m, d = (dl−1dl−2, . . . , d1, d0)2, where dl−1 = 1, N
Output: md mod N

Generate a random number r = (rl−1 . . . r1r0)2
R[1⊕ rl−1]← m, R[rl−1]← m2

for i = l − 2 downto 0 do
R[2]← (R[di+1 ⊕ di ⊕ ri+1])

2

R[1⊕ ri]← R[0] ·R[1]
R[ri]← R[2]

end for
output (R[d0 ⊕ r0], R[1⊕ d0 ⊕ r0])

6.7 Experiment Results

We model the proposed RSA scheme with N = 1024 and N = 2048 using VHDL and

synthesize it into netlist using Synopsys Design Compiler with TSMC 65 nm library.

130

6.7.1 Hardware Cost and Performance

The area and performance are given in Table XIX, where TRSA, in the unit of millisecond,

indicates the time latency of processing one message.

TABLE XIX

THE AREA AND PERFORMANCE OF THE PROPOSED COMPREHENSIVE SCHEME

N Area (NAND2-equivalent) Max fclk (MHz) TRSA (ms)
1024 584786 289 10.931
2048 1016924 263 47.791

6.7.2 Simulation of Power Analysis Attacks

An IC circuit consumes both leakage power and dynamic power at runtime. From the

perspective of power analysis attacks, the dynamic power consumption is the signal and the

leakage power consumption is a part of noise. Dynamic power is consumed when a circuit

node toggles its state. Hence for a given circuit, the dynamic power consumption of a process

is directly related to the toggle activities of all circuit nodes during this process, and the

nodal capacitance of each node. Since our implementation does not use bus-like components,

we assume most of nodes have roughly the same nodal capacitance. This makes the toggle

activities the dominating part of dynamic power consumption.

131

We want to show that power analysis attacks cannot succeed even if the attackers can

make most use of power consumption traces. We remove the negative effect, the noises, caused

by measuring device, implementation, etc. We model the power consumption using toggle

activities. If power analysis attacks are impossible under this noise-less condition, it is even

harder for an attacker to mount the attack in the presence of the negative effect of noises.

We perform gate level simulation of our implementation and then record the toggle activities

of all circuit nodes in 3-clock-cycle interval, i.e., about 10 ns. It precisely reflects the transitions

in the circuit with zero noise. As we know noise cannot be completely removed in a practical

attack, the proposed simulated power consumption is hence the best information an attacker

can ever get. Considering the simulation speed, we used N = 256 RSA to illustrate the power

consumption of proposed scheme. Figure 17 shows a partial power trace with the details. The

trace clearly shows the power consumption of a conversion followed by six iterations for comput-

ing modular exponentiation. Prior to the iterations for computing modular exponentiation, a

modular multiplication is performed to convert initial values by multiplying it with R2 mod N .

Since only one modular multiplier is working during the conversion, the peak power during the

conversion is only about half of the peak power of iterations for computing modular exponen-

tiation. The six iterations correspond to a sequence of exponent bit 1, 1, 1, 0, 1, 0. From the

trace, it is hard to tell the value of the exponent bits. The power trace of subsequent iterations

continue this uniform pattern and no exponent bits can be derived.

Due to slow simulation speed as well as the large number of sampling points, we are not able

to simulate and show the power trace of the entire execution. But we show the power trace of

132

Figure 17. Similation of the power trace using toggle counts

a randomly-picked iterations in the middle of exponentiation in Figure 18. As can be observed,

just like the power traces of the initial iterations, the power trace of the middle iterations does

not exhibit exploitable pattern to reveal the value of the exponent. Hence it is resistant to SPA.

Resistance to DPA and CPA is gained by masking inputs at the algorithm level and hiding

power consumption at the Register Transfer Level. The masks break the correlation between

power consumption and intermediate data. Since the message and exponent are masked by

random numbers, attacks cannot predict intermediate data to perform statistical analysis to

test the hypotheses on the value of key. Hence, message and exponent masking can thwart

DPA attacks. Masking can also prevent CPA attacks. Without the knowledge of masks, at-

tackers cannot generate collisions as expected by choosing messages and hence cannot reveal

133

Figure 18. Power trace of middle iterations for computing modular exponentiation

the secret key by comparing the power consumption traces. The implementation, which inter-

leaves two modular multiplications, enhances the resistance to CPA attacks, especially when

reusing masks. An attacker cannot extract the power consumption of one modular exponenti-

ation from the mixed power consumption of two. And the scheduling method for mask reusing

prevents from predicting the relation between executions to thwart CPA attacks. We simulate

the doubling attack, a typical CPA attack and show its power consumption trace of exponent

bit sequence 1, 1, 1, 0 with chose message m and m2, respectively, in Figure 19.

The value of R[1] after the first iteration shown in the top power trace is equal to the

value of R[1] after the iteration right before the first iteration shown in the bottom power

trace. When exponent bit is 1, R[1] is used for computing the modular squaring operations

134

Figure 19. Power consumption of exponentiating m and m2

in both executions and hence the power consumption waveforms for the two modular squaring

operations are supposed to match. Therefore, the value of the exponent bit can be revealed

by waveform comparison. We denote the waveforms of four iterations in the top power trace

as S1, S2, S3, S4, respectively, and that in the bottom power trace as W1, W2, W3, W4,

respectively. Based on the value of the exponent bit, W1 is supposed to match S2. However,

we can see from Table XX that the two waveforms do not match as expected. The waveforms

of unrelated iterations have even smaller difference. The reason is that message masking and

exponent masking randomize the base as well as the exponent of the modular exponentiation.

Consequently, the relation of chosen messages are not reflected on the intermediate data. So

doubling attack fails.

135

TABLE XX

COMPARISON OF THE WAVEFORM

Comparison W1/S1 W1/S2 W1/S3 W1/S4
Difference (average number of toggles) 96 267 76 159

CHAPTER 7

CONCLUSION

In this dissertation, we present new error detection schemes for ECC and RSA to thwart

fault attacks. The schemes share the same design idea: exploiting an invariant during the

computation and checking the correctness of the invariant to detect errors. The invariants

is constructed from the mathematical property. In LOEDAR, the proposed low-cost error

detection and recovery scheme for ECC, a new point Pv is introduced into the Montgomery

ladder algorithm and updated in a way such that Pv + P2 ≡ 2P1. The error detection scheme

for RSA is based on the homomorphic property.

Both schemes have good error detection capability. The probability of undetected error is

quite small and negligible. The good error detection capability enables them to thwart fault

attacks. Inducing a fault such that the error is missed by the proposed error detection methods

is extremely difficult, if not impossible. Moreover, both schemes can be extended easily to

thwart power analysis attacks. The LOEDAR scheme is compatible with most of the existing

countermeasures against power analysis attacks. They can be used directly without modifying

the error detection method in the LOEDAR scheme to thwart power analysis attacks. The

error detection scheme for RSA does not impose any requirement on how to compute the

modular exponentiation and hence can work with any RSA implementation. A fine-tuned RSA

implementation to thwart other types of side channel attacks, e.g., power analysis attacks, can

be used in the error detection scheme.

136

137

Experiment results show that the LOEDAR scheme can achieve high performance by prop-

erly choosing the verification frequency. The time overhead of the LOEDAR scheme depends

on how frequently the EDR process is performed. Each execution of EDR process contributes

about 0.68% time overhead. The hardware overhead of the LOEDAR scheme is 37.6%, which is

much smaller than other error detection and recovery schemes. The time overhead of the error

detection scheme for RSA can be significantly reduced by processing consecutive messages. The

larger the number of the consecutive messages, the smaller the time overhead. But the number

of consecutive messages processed at a time is limited by output latency of single messages. It

should be chosen properly based on the requirement of the RSA application.

We also discuss the basic principles to construct a comprehensive scheme to thwart various

side channel attacks. It is important because the security of the public key cryptosystems will

be compromised if it can be broken successfully by any side channel attack. Following the prin-

ciples, a comprehensive scheme can be constructed by integrating the existing single-purpose

countermeasures without compromising the security. The constructing method allows coun-

termeasures against new side channel attacks to be integrated into the comprehensive scheme

at any time. Hence, it is flexible to extend the comprehensive scheme for new resistance. We

present a scheme for RSA to thwart both fault attacks and power analysis attacks. The scheme

is constructed by combining the countermeasure against fault attacks and the countermeasure

against power analysis attacks. And techniques at the Register Transfer Level are exploited

to improve the performance as well as resistance to power analysis attacks. Analysis and ex-

periment results show that the constructed scheme can effectively thwart fault attacks and

138

power analysis attacks. Based on the constructing principle, the scheme can integrate proper

single-purpose countermeasures to thwart other types of side channel attacks.

CITED LITERATURE

1. R. L. Rivest, A. Shamir, and L. Adleman: A Method for Obtaining Digital Signatures and
Public-key Cryptosystems. Communications of the ACM 21, pages 120–126, 1978.

2. N. Koblitz: Elliptic Curve Cryptosystems. Mathematics of Computation, 48:203–209, 1987.

3. V. Miller: Use of Elliptic Curves in Cryptography. In CRYPTO 85, pages 417–426, 1985.

4. National Security Agency: NSA Suite B Cryptography, 2009.

5. NIST: Recommendation for Key Management Part 1: General (Revision 3), NIST Special
Publication 800-57. Technical report, 2012.

6. W. Diffie and M. E. Hellman: New Directions in Cryptography. IEEE Transactions on
Information Theory, IT-22(6):644–654, 1976.

7. RSA Laboratories: PKCS#1. Technical report, 2012.

8. NIST: Digital Signature Standard (DSS), FIPS-186-4. Technical report, 2013.

9. D. Dolev, C. Dwork, and M. Naor: Non-Malleable Cryptography. SIAM Journal on
Computing 30(2), pages 391–437, 2000.

10. ANSI Standards Committee X9: Public Key Cryptography for the Financial Services
Industry - Key Agreement and Key Transport Using Elliptic Curve Cryptography,
ANSI X9.63, 2011.

11. T. Kleinjung, K. Aoki, J. Franke, A. K. Lenstra, E. Thomé, J. W. Bos, P. Gaudry, A.
Kruppa, P. L. Montgomery, D. A. Osvik, H. Riele, A. Timofeev, and P. Zimmer-
mann: Factorization of a 768-Bit RSA Modulus. In CRYPTO, pages 333–350,
2010.

12. J. W. Bos, M. E. Kaihara, T. Kleinjung, A. K. Lenstra, and P. L. Montgomery: Solving a
112-bit Prime Elliptic Curve Discrete Logarithm Problem on Game Consoles using
Sloppy Reduction. International Journal of Applied Cryptography, 2(3):212–228,
2012.

139

CITED LITERATURE (Continued) 140

13. J. Quisquater and D. Samyde: Electromagnetic Analysis (EMA): Measures and Coun-
termeasures for Smart Cards. In Smart Card Programming and Security (E-smart
2001), pages 200–210, 2001.

14. Kim, C. H. and Quisquater, J.-J.: How Can We Overcome Both Side Channel Analysis
and Fault Attacks on RSA-CRT? In Workshop on Fault Diagnosis and Tolerance
in Cryptography, pages 21–29, 2007.

15. López, J. and Dahab, R.: Improved algorithms for elliptic curve arithmetic in gf(2n). In
Proceedings of the Selected Areas in Cryptography, SAC ’98, pages 201–212, Lon-
don, UK, UK, 1999. Springer-Verlag.

16. P. Montgomery: Speeding the Pollard and elliptic curve methods of factorization.
Mathematics of Computations, 48:243–264, 1987.

17. J. Lopez and R. Dahab: Fast multiplication on elliptic curves over GF(2m) without
precomputation. In Proceedings of the Workshop on Cryptographic Hardware and
Embedded Systems, pages 316–327, 1999.

18. Boneh, D., Demillo, R. A., and Lipton, R. J.: On the Importance of Checking Crypto-
graphic Protocols for Faults. Computations Journal of Cryptology The Journal of
the International Association for Cryptologic Research, 1233:101–119, 1997.

19. I. Biehl, B. Meyer, and V. Muller: Differential Fault Attacks on Elliptic Curve Cryp-
tosystems. In Proceedings of Crypto 2000: Advances in Cryptology., pages 131–
146. Springer-Verlag, 2000.

20. M. Ciet and M. Joye: Elliptic Curve Cryptosystems in the Presence of Permanent and
Transient Faults. Designs Codes and Cryptography, 36(1):33–43, 2005.

21. P.-A. Fouque, R. Lercier, D. Réal, and F. Valette: Fault Attack on Elliptic Curve
with Montgomery Ladder Implementation. In Fault Diagnosis and Tolerance in
Cryptography (FDTC 08), pages 92–98. IEEE Computer Society, 2008.

22. J. Blömer, Otto, M., and Seifert, J.-P.: Sign Change Fault Attacks on Elliptic Curve Cryp-
tosystems. In Fault Diagnosis and Tolerance in Cryptography 2006 (FDTC 06),
volume 4236 of Lecture Notes in Computer Science, pages 36—-52. Prentice Hall,
2006.

CITED LITERATURE (Continued) 141

23. Yen, S.-M. and Joye, M.: Checking before output may not be enough against fault-based
cryptanalysis. IEEE Transactions on Computers, 49(9):967–970, 2000.

24. Coron, J.-S., Joux, A., Kizhvatov, I., Naccache, D., and Paillier, P.: Fault Attacks on
RSA Signatures with Partially Unknown Messages. In Proceedings of the 11th
International Workshop on Cryptographic Hardware and Embedded Systems,

CHES ’09, pages 444–456, Berlin, Heidelberg, 2009. Springer-Verlag.

25. A. Domı́nguez-Oviedo and M. A. Hasan: Error Detection and Fault Tolerance in
ECSM using Input Randomization. IEEE Transactions on Dependable and Secure
Computing, 6(3):175–187, 2009.

26. Shamir, A.: Improved Method and Apparatus for Protecting Public Key Schemes from
Timing and Fault Attacks, 1998.

27. C. Aumuller, P.Bier, W. Fischer, P. Hofreiter, and J.-P. Seifert: Fault Attacks on RSA
with CRT: Concrete Results and Practical Countermeasures. In Cryptographic
Hardware and Embedded Systems (CHES 2002), pages 260–275, 2002.

28. Vigilant, D.: RSA with CRT: A New Cost-Effective Solution to Thwart
Fault Attacks. In CHES ’08: Proceeding sof the 10th international workshop on
Cryptographic Hardware and Embedded Systems, pages 130–145, Berlin, Heidel-
berg, 2008. Springer-Verlag.

29. Giraud, C.: An RSA Implementation Resistant to Fault Attacks and to Simple Power
Analysis. Computers, IEEE Transactions on, 55(9):1116–1120, 2006.

30. S.-M. Yen, S. Kim, S. Lim, and S. Moon: RSA Speedup with Residue Number Sys-
tem Immune against Hardware Fault Cryptanalysis. In International Conference
on Information Security and Cryptology - ICISC 2001, pages 397–413. Springer-

Verlag, 2001.

31. J. Blömer, M. Otto, and J.-P. Seifert: A New CRT-RSA Algorithm Secure against Bellcore
Attacks. In ACM Conference on Computer and Communications Security, pages
311–320. ACM Press, 2003.

32. S.M. Yen and M. Joye: Checking Before Output may Not Be Enough against Fault-based
Cryptoanalysis. IEEE Transactions on Computers, pages 967–970, 2000.

CITED LITERATURE (Continued) 142

33. Kocher, P., Jaffe, J., and Jun Benjamin: Introduction to Differential Power Analysis and
Related Attacks, 1998.

34. Coron, J. S.: Resistance against Differential Power Analysis for Elliptic Curve Cryptosys-
tems. In Cryptographic Hardware and Embedded Systems, eds. c. K. Koç and C.
Paar, volume 1717 of Lecture Notes in Computer Science, pages 292–302. Springer,
1999.

35. L. Goubin: A Refined Power-Analysis Attack on Elliptic Curve Cryptosystems. In Public
Key Cryptography PKC 2003, ed. Y. Desmedt, volume 2567 of Lecture Notes in

Computer Science, pages 199–210. Springer, 2003.

36. T. Akishita and T. Takagi: Zero-Value Point Attacks on Elliptic Curve Cryptosystem. In
Information Security ISC 2003, eds. C. Boyd and W. Mao, volume 1 of Lecture
Notes in Computer Science, pages 218–233. Springer, 2003.

37. T. S. Messerges, E. A. Dabbish, and R. H. Sloan: Investigations of power analysis attacks
on smartcards. In USENIX Workshop on Smartcard Technology, 1999.

38. B. d. Boer, K. Lemke, and G. Wicke: A DPA Attack against the Modular Reduction within
a CRT Implementation of RSA. In CHES’02, pages 21–34, 2002.

39. M. F. Witteman, Jasper G. J. van Woudenberg, and F. Menarini: Defeating RSA Multiply-
always and Message Blinding Countermeasure. In International Conference on
Topics in Cryptology (CT-RSA 2011), pages 77–88, 2011.

40. A.P. Fouque and F.Valette: The Doubling Attack Why Upwards is Better Than Down-
wards. In Workshop Cryptographic Hardware and Embedded System (CHES03),
pages 269–280, 2003.

41. Yen, S.-M., Lien, W.-C., Moon, S., and Ha, J.: Power analysis by exploiting cho-
sen message and internal collisions - vulnerability of checking mechanism for
RSA-Decryption. In Proceedings of the 1st international conference on Progress
in Cryptology in Malaysia, Mycrypt’05, pages 183–195, Berlin, Heidelberg, 2005.
Springer-Verlag.

42. N. Homma, A. Miyamoto, T. Aoki, A. Satoh, and A. Samir: Comparative Power Analysis of
Modular Exponentiation Algorithms. IEEE Transactions on Computers, 59(6):795
– 807, 2010.

CITED LITERATURE (Continued) 143

43. H. Mamiya, A. Miyaji, and H. Morimoto: Efficient Countermeasures against RPA, DPA,
and SPA. In Proceedings of Cryptographic Hardware and Embedded Systems
CHES, eds. M. Joye and J.-J. Quisquater, volume 3156 of Lecture Notes in
Computer Science, pages 343–356. Springer, 2004.

44. C. Kim, J. Ha, S. Moon, S.-M. Yen, W.-C. Lien, and S.-H. Kim: An Improved and Efficient
Countermeasure against Power Analysis Attacks, 2005.

45. Y. Wang and L. M. Douglas: A Robust Algorithm for DPA-resistant ECC. In International
Symposium on Integrated Circuits, pages 667 – 670, 2009.

46. Kocher, P.: Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and Other
Systems. In Advances in CryptologyCRYPTO96, ed. N. Koblitz, volume 1109 of
Lecture Notes in Computer Science, pages 104–113. International Association for
Cryptologic Research, Springer, 1996.

47. S. N. Cirrus, S. Niranjan, and J. F. Frenzel: A Comparison of Fault-Tolerant State Ma-
chine Architectures for Space-Borne Electronics. IEEE Transactions on Reliability,
45:109–113, 1996.

48. M. Ciet and Joye, M.: (Virtually)Free Randomization Techniques for Elliptic Curve Cryp-
tography. In Information and Communication Security (ICICS), pages 348–359,
2003.

49. P. Fouque, D. Real, F. Valette, and M. Drissi: The Carry Leakage on the Randomized
Exponent Countermeasure. In Cryptographic Hardware and Embedded Systems
(CHES), pages 198–213. LNCS vol. 5154, Springer, 2008.

50. L. Song and K. K. Parhi: Low-Energy Digit-Serial/Parallel Finite Field Mul-
tipliers. Journal of VLSI signal processing systems for signal, image and video
technology, 19(2):149–166, 1998.

51. S. M. Shohdy, A. El-Sisi, and N. A. Ismail: FPGA Implementation of Elliptic Curve Point
Multiplication over GF(2ˆ191). In ISA ’09 Proceedings of the 3rd International
Conference and Workshops on Advances in Information Security and Assurance,
pages 619–634, 2009.

52. M. Morales-Sandoval and C. Feregrino-Uribe: GF(2ˆm) Arithmetic Modules for El-
liptic Curve Cryptography. In IEEE International Conference on Reconfigurable
Computing and FPGA’s, pages 1 – 8, 2006.

CITED LITERATURE (Continued) 144

53. X. Guo, J. Fan, P. Schaumont, and I. Verbauwhede: Programmable and Parallel
ECC Coprocessor Architecture: Tradeoffs between Area, Speed and Security. In
Cryptographic Hardware and Embedded Systems (CHES), pages 289–303, 2009.

54. H. R. Zarandi, S. G. Miremadi, and A. Ejlali: Dependability Analysis Using a Fault Injec-
tion Tool based on Synthesizability of HDL Models. In Defect and Fault Tolerance
in VLSI Systems, pages 485–492, 2003.

55. S. N. Chari, V. V. Diluoffo, P. A. Karger, E. R. Palmer, T. Rabin, J. R. Rao, P. Rohotgi, H.
Scherzer, M. Steiner, D. C. Toll, S. Chari, and P. Rohatgi: Designing a Side Chan-
nel Resistant Random Number Generator. In 9th IFIP WG 8.8/11.2 international
conference on Smart Card Research and Advanced Application, eds. D. Gollmann,
J.-L. Lanet, and J. Iguchi-Cartigny, volume 6035 of LNCS, pages 49–64. Springer,
2010.

56. R. Baumann: Soft Errors in Advanced Computer Systems. IEEE Design & Test of
Computers, 22:258 – 266, 2005.

57. P. Paillier: Public-key Cryptosystems based on Discrete Logarithms Residues. Eurocrypt,
1592:223–238, 1999.

58. J.C. Lo: A Novel Area-time Efficient Static CMOS Totally Self-checking Comparator.
IEEE Journal of Solid-State Circuits, 28:165 –168, 1993.

59. C. Metra, M. Favalli, and B. Ricco: Highly Testable and Compact Single Output Com-
parator. In Proceedings of 15th IEEE VLSI Test Symposium (VTS), 1997.

60. G. Fumaroli and D. Vigilant: Blinded Fault Resistant Exponentiation. In FDTC06, pages
62–70, 2006.

61. E. Dottax, C. Giraud, M. Rivain, and Y. Sierra: On Second-Order Fault Analysis
Resistance for CRT-RSA Implementation. In 3rd IFIP WG 11.2 International
Workshop on Information Security Theory and Practice, Smart Devices, Pervasive
Systems and Ubiquitous Networks, WISTP09, pages 68–83, 2009.

62. Boneh, D., Demillo, R. A., and Lipton, R. J.: On the importance of eliminating errors in
cryptographic computations. Journal of Cryptology, 14:101–119, 2001.

CITED LITERATURE (Continued) 145

63. Fournaris, A. P. and Koufopavlou, O.: Efficient CRT RSA with SCA Countermeasures.
In Proceedings of the 14th Euromicro Conference on Digital System Design, DSD
’11, pages 593–599, Washington, DC, USA, 2011. IEEE Computer Society.

64. C. McIvor, M. Mcloone, and J. McCanny: Modified Montgomery Modular Multiplica-
tion and RSA Exponentiation Techniques. In IEE Proceedings of Computers and
Digital Technques, pages 402–408, 2004.

65. K. Iwamura, T. Matsumoto, and H. Imai: Systolic-arrays for Modular Exponenti-
ation using Montgomery Method. In Advances in Cryptology: Proceedings of
EUROCRYPT92, pages 477–481, 1992.

66. S.B. Ors, L. Batina, B. Preneel, and J. Vandewalle: Hardware Implementation of a
Montgomery Modular Multiplier in a Systolic Array. In Parallel and Distributed
Processing Symposium, 2003. Proceedings. International, 2003.

67. S.-R. Kuang, J.-P. Wang, K.-C. Chang, and H.-W. Hsu: Energy-efficient High-throughput
Montgomery Modular Multipliers for RSA Cryptosystem. IEEE Transactions on
Very Large Scale Integration(VLSI), 21:1999–2009, 2013.

68. S.S. Ghoreishi, M.A. Pourmina, H. Bozorgi, and M. Dousti: High speed RSA Implemen-
tation based on Modified Booths Technique and Montgomerys Multiplication for
FPGA Platform. In Advances in Circuits, Electronics and Micro-electronics, pages
86–93, 2009.

69. P. L. Montgomery: Modular Multiplication Without Trial Division. Mathematics of
Computation, 44:519–521, 1985.

70. C.D.Walter: Montgomery Exponentiation Needs No Final Subtractions. Electronics
Letters, 35(21):1831 – 1832, 1999.

71. C. D. Walter: Longer Randomly Blinded RSA Keys May Be Weaker Than
Shorter Ones. In 8th International Workshop on Information Security Applications
(WISA’07), pages 303–316, 2007.

72. T. S. Messerges, E. A. Dabbish, and R. H. Sloan: Investigations of Power Analysis Attacks
on Smartcards. In USENIX Workshop on SmartCard Technology, 1999.

CITED LITERATURE (Continued) 146

73. K. Itoh, T. Izu, and M. Takenaka: A Practical Countermeasure against Address-Bit Differ-
ential Power Analysis. In Cryptographic Hardware and Embedded Systems CHES
2003, pages 382–396, 2003.

74. M. Izumi, J. Ikegami, K. Sakiyama, and K. Ohta: Improved Countermeasure against
Address-bit DPA for ECC Scalar Multiplication. In Design, Automation & Test in
Europe Conference (DATE), pages 981–984, 2010.

75. A. Matthews: Side-channel Attacks on Smartcards. Network Security, 2006(12):18–20,
2006.

76. Boscher, A.; Handschuh, H. T. E.: Blinded Fault Resistant Exponentiation Revisited
. In Fault Diagnosis and Tolerance in Cryptography (FDTC), 2009 Workshop on,
pages 3–9, 2009.

77. D. Agrawal, B. Archambeault, J. R. Rao, and P. Rohatgi: The EM Side-Channel(s).
In Cryptographic Hardware and Embedded Systems CHES 2002, eds. B. S. Kaliski
JR, c. K. Koç, and C. Paar, volume 2523 of Lecture Notes in Computer Science,
pages 29–45. Springer, 2002.

78. D. Boneh: Twenty years of attacks on the RSA cryptosystems. Notices of the American
Mathematical Society, 46:203–213, 1999.

79. D. Wagner: Cryptanalysis of a provably secure CRT-RSA algorithm. In CCS ’04
Proceedings of the 11th ACM Conference on Computer and Communications

Security, pages 92 – 97, 2004.

80. E. Biham and A. Shamir: Differential Fault Analysis of Secret Key Cryptosystems. In
Advances in Cryptology Crypto 97, ed. B. Kaliski, volume 1294 of Lecture Notes
in Computer Science, pages 513–525. Springer-Verlag, 1997.

81. J. F. Dhem, F. Koeune, P. A. Leroux, P. Mestré, J. Quisquater, and J. L. Willems: A
Practical Implementation of the Timing Attack. In Time, ed. J.-J. Quisquater,
volume 1820 of Lecture Notes in Computer Science, pages 167–182. Springer, 1998.

82. NIST: The Federal Information Processing Standard (FIPS) Publication 140-3: DRAFT
Security Requirements for Cryptographic Modules, 2013.

83. P. Golle, M. Jakobsson, A. Juels, and P. Syverson: Universal Re-encryption for Mixnets.
In RSA Conference Cryptographers’ Track, pages 163–178, 2004.

CITED LITERATURE (Continued) 147

84. R. Cramer, I. Damgard, and J. B. Nielsen: Multiparty Computation from Threshold
Homomorphic Encryption. In Advances in Cryptography, Eurocrypt, pages 280 –
300, 2001.

85. T. ElGamal: A Public-key Cryptosystem and A Signature Scheme based on Discrete
Logarithms. IEEE Transactions on Information Theory, IT-31:469–472, 1985.

86. W. Van Eck: Electromagnetic radiation from video display units: An eavesdropping risk?
Computers Security, 4(4):269–286, 1985.

VITA

NAME Kun Ma

EDUCATION Ph.D., Electrical and Computer Engineering, University of Illinois at
Chicago, Illinois, May 2014

M.S., Electrical Engineering, Beijing University of Posts and Telecom-
munications, May 2009

B.S., Electrical Engineering, Jilin University, July 2006

EXPERIENCE Research Assistant, Department of ECE, University of Illinois at
Chicago, 08/2009 - 05/2014

Teaching Assistant, Department of ECE, University of Illinois at
Chicago, 08/2009 - 12/2013.

PUBLICATIONS K. Ma, K. Wu, ”Error Detection and Recovery for ECC: A New Ap-
proach against Side-Channel Attacks”, to be published by IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems,
2013.

X. Cui, K. Ma, K. Wu, High-Level Synthesis for Hardware Trojan De-
tection and Recovery, Design Automation Conference (DAC), 2014.

K. Ma, H. Liang, K. Wu, ”Homomorphic Property Based Concurrent
Error Detection of RSA: A Countermeasure to Fault Attack”, IEEE
Transactions on Computers, vol. 61, pp. 1040-1049, July 2012.

K. Ma, K. Wu, ”LOEDAR: A Low Cost Error Detection and Recov-
ery Scheme for ECC”, in Proceedings of Design, Automation & Test in
Europe (DATE), 2011.

148

