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SUMMARY 

 

The annual epidemic caused by the influenza virus results in approximately 300,000-500,000 

deaths worldwide. Also, nearly 3 to 5 million severe cases of influenza are reported across the 

world every year. Vaccines are the most effective way to control the severity and spread of viral 

infections. However, there are a number of factors that limit the efficacy of influenza vaccines. 

Tools that facilitate an understanding of dynamic host-pathogen interactions support the design 

and optimization of interventions to prevent and treat viral diseases.  One excellent tool for 

characterizing interdependent dynamic phenomena such as host immune responses and viral 

infection and replication is mathematical modeling.   

 

The main aim of this work was to explicitly model natural killer cell response during influenza 

infection in humans with a minimum set of parameters. We estimated a physiologically valid range 

for a parameter governing the activity of natural killer cells with regard to lysis of infected cells. 

Natural killer cell activity that yielded the expected timing of maximum viral load and maximum 

natural killer cell population was not sufficient to resolve typical influenza infection during the 

expected 6-8 day timeframe. Hence, we included a simple antibody-based adaptive immune 

response to mediate viral clearance. A reasonable range of values for the antibody activation 

parameter was estimated subject to the constraint of three desired model outcomes: time to 

maximum viral load, virion clearance time, and time to maximum natural killer cell activity. 
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1. INTRODUCTION 

1.1. Overview of Viral Diseases 

Viruses are pathogens that cannot reproduce independently but replicate within the cells of 

another organism (i.e. the host).  Viruses hijack the cellular machinery of host cells to replicate the 

viral genome. The new viral material is packaged into particles (virions) that are released by the 

infected cell which can then infect other cells. In addition to the infectious agent being passed 

between individual cells of the host, viral infections are contagious and can be transmitted from 

one host to another. Possible routes of virus transmission include air-borne, water-borne, and direct 

contact with various body fluids.  

 

Viral infections can create a significant disease burden, with rapidly transmitted lethal 

strains having the potential to wipe out large populations – particularly prior to the advent of 

vaccines.  For example, smallpox was a highly contagious viral disease that caused about 100 

million to 300 million deaths in the 20th century.1 In 1918, the Russian Flu infected over 500 

million people worldwide, with a fatality rate of 10-20%.2 Influenza, human immunodeficiency 

virus (HIV), hepatitis B/C, and measles are all viral diseases that have caused high mortality rates 

in the 21st century.3-7 With the human population expanding geographically into areas that bring 

people into closer contact with wildlife, and the pace of world travel significantly increasing the 

geographic scope of transmission, the potential for rapid spreading of emerging viral diseases such 

as Ebola8 or Zika9 is of significant concern. In short, viral diseases pose a persistent and global 

threat to public health.    
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1.2. Mortality in Humans due to Influenza Infection  

Lower respiratory infections in particular pose a serious health concern, causing a greater 

number of diseases and deaths than viruses more commonly thought of as severe, such as HIV. In 

Figure 1, data is compared between lower respiratory infections (LRIs) and HIV in the year 

2013.10-12 This data clearly indicates that both the number of people infected and those who died 

from LRIs in 2013 far outnumbered those with HIV infections. According to the data published 

by World Health Organization (WHO), lower respiratory infections were the third leading cause 

of mortality in 2015 (3.2 million deaths), surpassed only by ischaemic heart disease (7.6 million 

deaths) and stroke (6.7 million deaths).13 

 

 

 

Figure 1. Infection and mortality rates of HIV and LRIs worldwide in 2013.  
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Epidemics of respiratory diseases occur frequently and with seasonal regularity.  Figure 2 

depicts the fraction of deaths across 122 cities in the United States that could be attributed to 

pneumonia and influenza between 2013 and early 2016.14 Each time the red frequency curve 

exceeds the region defined by black line (the epidemic threshold), the infectious disease has spread 

across a large enough population to be described as an epidemic. The epidemic threshold is 

exceeded shortly before the 10th week of each year despite preventive and clinical measures taken 

to control the seasonal outbreak of infection (such as flu vaccines).  

 

 

 

Figure 2. Morbidity and Mortality Weekly Report (MMWR) showing the percentage mortality in 

122 U.S. cities due to pneumonia and influenza infections. 
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The term pandemic is used to describe the spread of an infectious disease across more than 

one continent. The influenza virus has been responsible for several pandemics, including at least 

four in the 19th century and three outbreaks in the 20th century.15 The 1889-1890 flu pandemic 

affected roughly one-third of the world’s population2, while the first H1N1 influenza pandemic of 

the 20th century (the so-called Spanish Flu) killed at least 40 million people.16-18 The first pandemic 

flu of the 21st century is estimated to have caused 284,500 deaths in 2009.19 

 

1.3.  Challenges in Controlling Influenza Infection  

Vaccines provide immunity against viral infections by preparing the host to identify and 

eliminate a particular virus. They are the most effective way to control the severity and spread of 

viral infections. Several viral diseases, including small pox have been entirely or nearly entirely 

eradicated by vaccination.20 Unfortunately, vaccines are not effective in controlling influenza 

infection. Every year vaccines are distributed to control the seasonal outbreak of influenza 

infection. However, influenza has not been eradicated.  In fact, the vaccines circulated during last 

flu season were only 60% effective.21, 22 

 

There are a number of factors that limit the efficacy of influenza vaccines. For one, 

influenza occurs as multiple viral strains, and the virus undergoes rapid mutation (changes in the 

genetic make-up) yielding ever new viral variants. Seasonal influenza vaccines are designed to 

target only the most prominent viral strains. Rapid mutation increases the likelihood that vaccine-

resistant strains later emerge. Likewise, mutation increases the chance of the virus becoming 

resistant to antiviral drugs.  Neuraminidase inhibitors, the drugs typically used to treat influenza 
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infections in the United States, target and thereby inhibit a specific viral protein.  A single-residue 

genetic mutation can alter the nature of this protein sufficiently to render these drugs 

ineffective.23,24 Difficulties in controlling influenza result in approximately                                                                                                        

300,000-500,000 deaths globally each year.25 

 

1.4.  Characteristics of  Primary Influenza Infection  

Both vaccines and antiviral drugs represent attempts to modulate the host-pathogen 

interaction in a way that gives the host’s immune system a better chance to resist and control 

infection.  The influenza virus initially infects lung epithelial cells.  These cells produce further 

viral particles, but also release chemical signals (i.e., cytokines) that are part of the body’s first 

line of defense, the so-called innate or non-specific immune response.  The release of cytokines 

activates a cascade of events whose objective is to (i) protect as-yet uninfected cells, (ii) eliminate 

infected cells, and (iii) clear free virus particles. What follows is a highly simplified overview of 

the nature of the events that make up an immune response to viral infections.  

 

A key signaling protein involved in limiting the progress of infection across a population 

of cells is interferon type 1 (IFN-1). Interferon, when released by infected cells or phagocytic 

virus-clearing cells, alerts other cells to the presence of a pathogen. Cells that are susceptible to 

infection respond by adopting a resistant (anti-viral) state, expressing genes that will limit the 

ability of a virus to replicate successfully. 26 Interferon also activates cells of the immune system 

that are capable of lysing infected cells – thereby eliminating cells that are churning out additional 

virions. While cell-lysing immune cells come in a number of types, those that are activated by 
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interferon in the earliest stage of infection are called Natural Killer (NK) cells.27-29 The NK cells 

in turn produce a form of interferon signaling protein (IFN-) that activates other cells of the 

immune system that contribute to a pathogen-specific defense strategy.   

 

It is this pathogen-specific immunity (adaptive immunity) that is responsible for the 

efficacy of vaccines.  Having encountered a new pathogen, the immune system learns to recognize 

the particular virus and targets it for clearance both directly (by removal of virus particles) and 

indirectly (by augmented lysis of infected cells).  Adaptive immunity involves (i) presentation of 

virus antigens to lymph nodes and other sites of immune cell storage to inform lymphocytes as to 

the nature of the specific pathogen30, (ii) expansion of cytotoxic T lymphocytes (T-cells), immune 

cells equipped with specific receptors required to recognize and kill infected cells31,32, and (iii) 

expansion of B-cells, immune cells that produce antibodies to bind and inactivate viral 

particles33,34. These cellular immune effectors are accompanied by soluble effectors in the form of 

additional signaling chemicals that help to orchestrate the regulated growth of lymphocyte 

population and their targeting to sites of infection.  Memory T-cells linger within the body after 

the infection has been cleared, preserving that pathogen-specific immune function so that it can be 

rapidly implemented upon future challenge by the same virus.  

 

1.5.  Mathematical Models as a Tool to Interrogate Influenza Infection 

Tools that facilitate an understanding of the dynamic host-pathogen interactions support 

the design and optimization of interventions to prevent and treat viral diseases.  One excellent tool 

for characterizing interdependent dynamic phenomena such as host immune responses and viral 
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infection and replication is mathematical modeling.  Ideally, systems models of immune dynamics 

capture our best current understanding of the factors that contribute to success or failure in 

controlling the evolutions of viral load and allow for hypothesis testing and hypothesis formulation 

with regard to the value of intervention strategies – particularly as said strategies depend on the 

varying infectivity and virulence of the viral pathogen. Thus, mathematical models can be an 

important part of the toolkit for reducing the global burden of viral disease. Within-host viral 

kinetic models have been used to characterize the emergence of drug resistance and inter-

individual or viral strain-specific variability in infection duration and severity. Such models have 

also been used to analyze different aspects of immune responses and to evaluate treatment 

strategies in various viral diseases (e.g. HIV, hepatitis C virus, hepatitis B virus, measles35-48).   

 

The mathematical models used to study viral kinetics employ coupled differential 

equations whose state variables describe populations of key players in the process of infection and 

immune response (e.g. cells, virions, antibodies). The outcomes of these models are time courses 

revealing the dynamics of each population [Figure 3]. Model parameters may be adjusted to yield 

physiologically valid outcomes, as determined by experimental observations. 

 

 

 
Figure 3. Schematic representation of viral kinetic models.  
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At minimum, a dynamic model of viral infection should include cells that can be infected, 

free virions that may infect cells, viral replication by infected cells, and viral clearance from the 

organism in question.  In the case of influenza, lung epithelial cells are the primary population 

susceptible to infection.  Two major approaches are followed with regard to this cell population: 

models that allow for replenishment of these target cells and those that do not. The latter group of 

models is most common and is referred to as target cell-limited. They are so called because the 

progress of infection is limited only by the number of virus-susceptible cells available. Once all 

cells are infected, the infection must burn itself out over time due to the natural death of infected 

cells.  If a sufficiently robust immune response is represented, then progress of the infection may 

be halted before complete depletion of the susceptible cell population. Increasingly complex 

variations on this basic motif have been implemented to consider the role of host immune response 

and antiviral interventions in determining viral dynamics. A brief summary of models follows. 

 

The first mathematical model of influenza infection was designed by Larson et al.49 in 

1976. This simple model did not make any attempt to explicitly represent the various effectors 

(cellular or soluble) of the immune system, but rather connected four non-specific compartments 

to a virus accumulator compartment whose dynamics were fit to data obtained for H3N2 influenza 

viral load in mice. Fits were reasonable, yielding different parameter values for each of the 3 tissues 

considered.  Eighteen years after that initial attempt, a second mathematical model of influenza 

infection was reported by Bocharov and Romanyukha.50 While Larson et al. endeavored to create 

the simplest possible model that would capture observed viral dynamics, Bocharov and 

Romanyukha developed a model whose structure is grounded in the known biology and physiology 



 

9 

 

of host-pathogen interactions and the extant body of knowledge regarding the time course of 

‘normal’ influenza infection.  To date, this model of influenza A virus in humans is the most 

complex and comprehensive published example. It contains 60 parameters and attempts to build a 

very detailed description of important components of both the innate and adaptive immune 

responses. Ten state variables encompass the time-dependent viral load, virus-susceptible cells, 

virus-clearing phagocytic cells, activated B and T lymphocytes, and virus-neutralizing antibodies.  

 

Twelve years later, the pendulum swing was back in the direction of simplicity, with the 

2006 model of Baccam et al.51 Here a minimal model shaped around key biological processes was 

used to interrogate the relevance of a delay between cell infection and cell productivity vis-à-vis 

releasing new viral particles. Human influenza A virus (IAV) infection with and without an eclipse 

phase of infection (time lag between virus entry into a cell to new virus production by the cell) 

were modeled.51 A target-cell-limited model was employed and host immunity was represented by 

an interferon mediated inhibition of virion production by infected cells. This inhibition was 

considered either to slow the transition of cells from the eclipse phase to the virion producing phase 

or to slow the rate of production of virions by productively infected cells. Inclusion of the 

interferon effect allowed for bimodal concentration-time curves for viral load, an outcome 

occasionally observed in experimental studies.  This modeling effort also applied the viral kinetic 

approach to predicting the efficacy of antivirals.  

 

Likewise, Handel et al.52 extended the target-cell-limited model approach to examine the 

effectiveness of neuraminidase inhibitors during IAV infection in humans. Neuraminidase 
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inhibitors are anti-viral drugs that suppress the action of an enzyme (neuraminidase) essential for 

viral reproduction. For the purposes of examining how viral resistance to drugs evolves and the 

possibility of transfer of resistance to another host, Handel et al. chose to represent two different 

virus populations in their model: one sensitive to antiviral drug and one resistant to it. Host 

immunity was represented as an exponentially growing immune response capable of augmenting 

viral clearance (i.e. an antibody-like response).  The host-to-host spread of the drug resistant strain 

was found to depend on the robustness of individual host immune responses, timing of drug 

treatment (earlier is better), and efficacy of the drug. Despite several limitations, such as the large 

uncertainty in parameter estimates made based upon scarce data, the approach demonstrates that 

simple within-host target-cell-limited models can be valuable in predicting the efficacy of antiviral 

therapies vis-à-vis the spread of infection across a population.  

 

Dobrovolny et al.53 also attempted to analyze the efficacy of neuraminidase inhibitor, but 

chose to consider not multiple viral strains, but rather multiple cell populations of differing 

susceptibility to infection and differing rates of virion production.  Their aim was to consider 

whether neuraminidase inhibitors would have utility in human infections with avian influenza, and 

whether there is value to treatment with these antivirals at more than 48 hours post infection. The 

two-cell model was proposed as a possible explanation for the prolonged high levels of virus 

observed in patients infected with avian influenza.  This approach successfully reproduced the 

prolonged viral loads which is a characteristic of avian influenza and suggested that, while not of 

value in the case of human IAV, late intervention with antiviral drugs should impact health 

outcomes in the case of avian influenza – a promising conclusion for the case of a viral disease 
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where patients frequently do not receive prompt medical intervention.  Notably absent from the 

Dobrovolny model is any explicit immune response.  While reasonable fits to clinical data were 

obtained in most cases, in the cases of two patients, a rebound of virus levels was predicted to 

follow cessation of drug treatment.  This rebound was not observed in the clinical data, and is 

likely a direct consequence of the model failing to capture the multifaceted nature of host immune 

response. 

 

Hancioglu et al.54 likewise observed rebound of virus in their models of human IAV 

infection.  While the model included mechanisms of both innate and adaptive immunity in the 

form of interferon-induced protection of susceptible cells and antibody-mediated viral clearance, 

it also explicitly incorporated an evolution of antigenic specificity. That is, the model discriminates 

between existing antibodies that may have limited compatibility to the virus and strain-specific 

neutralizing antibodies.  Hence, the model explicitly accounts for time taken for the humoral 

component of immune response to give rise to antibodies specific to viral strain in question.  The 

resulting 10 differential equations and 27 parameters yielded a dynamic system whose outcome 

would be asymptomatic disease, typical disease, or severe disease depending on the initial quantity 

of virus. Furthermore, these authors demonstrated the relevance of a robust adaptive immune 

response that yields both high levels of antibodies and rapid development of antibody specificity, 

the absence of which led to a chronic reservoir of virus. The requirement for robust adaptive 

immunity in valid mathematical models of influenza infection has also been reported for mice.55  
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Recently, mathematical modeling efforts for influenza viral infection have turned toward 

the question of secondary bacterial infections. Researchers have examined how bacterial infections 

can drive rebounds of influenza viral loads in mice.56 Others have addressed the question of 

whether antiviral treatments help control secondary bacterial infections in mice.57  Still others have 

considered viral co-infection, choosing to design mathematical models that capture the competing 

dynamics of multiple influenza strains of varying pathogenicity58 or the potential for influenza 

virus to infect cells other than lung epithelial cells.59  

 

Though the state-of-the-art modeling of influenza infection is moving towards the 

modeling of secondary bacterial infections and different pathogenic strains of virus, fundamental 

questions remain as to the quantitative modeling of typical influenza infection. For example, there 

is evidence in the literature that natural killer cells play a crucial role in controlling the initial rise 

of influenza infection. Natural killer cells begin their activity within a few hours post infection and 

help in controlling the infection by lysing infected cells.60-64 Natural killer cells also secrete 

cytokines that aid in the activation of adaptive immune response.65-70 Furthermore, experimental 

studies show that the effectiveness of natural killer cell activity is a critical determinant of the 

severity of influenza infection. A strain of influenza that can evade the natural killer cell response, 

will result in the host experiencing chronic and prolonged infection.71-73 Although natural killer 

cells have been known to play a vital role in controlling influenza infection, none of the models 

discussed above attempt to explicitly capture this biological response. A first attempt to model 

natural killer cell activity in human IAV infection was demonstrated by Canini and Carrat (2011).74 

A target-cell-limited model was used in combination with a symptom dynamics modeling 
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approach to examine the evolution of infection and its interplay with an index of symptom severity. 

Natural killer cell activity was assumed to increase at a rate proportional to levels of immune 

signaling proteins (lumped cytokines). Cytokine levels were, in turn, said to grow with a rate 

dictated by the population of infected cells. Model parameters were estimated by fits to both 

experimentally determined viral loads and symptom severity scores, but no experimental measures 

of cytokine or natural killer cell levels were employed.  Furthermore, there was no adaptive 

component in this model, so the interplay between adaptive (late-acting) and innate (early acting) 

immunity was not examined.  

 

In this thesis, we identify a physiologically plausible range of natural killer cell activity 

against infected cells using viral kinetic modeling. The model parameter values are chosen to give 

outcomes that compare favorably with what is known about the normal course of human influenza 

infections. To the best of our knowledge, this is the first attempt to explicitly model natural killer 

cell populations in influenza dynamic models. We do so without invoking interferon or other 

cytokines as a mediator of natural killer cell activity, thereby limiting the total number of model 

parameters. In addition, we consider the necessity of accounting for natural death of cells that are 

in a non-productive infected state.  We then explore antibody activation as a minimal 

representation of the adaptive immune response, showing that this means of neutralizing free virus 

particles is necessary to ensure resolution of infection within a physiologically reasonable time 

frame, but has little impact on the initial severity of infection.  Thus, adaptive immunity may 

indeed need to be considered in any model that attempts to describe more than the first ~3 days of 

infection. We also demonstrate the complementary nature of the innate and adaptive immune 
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responses and highlight the difficulty this complementarity presents in the context of parameter 

estimation from one-dimensional data sets (e.g. from measures of viral load only).  

 

1.6.  Objectives and Goals of Current Study 

First, a simple target-cell-limited model (reference model) without any explicit immune 

response was developed. Next, we considered the relevance of accounting for natural cell death 

amongst cells in a latent phase of infection. Death of this cell population is typically neglected in 

viral kinetic models, while natural death of virion-producing infected cells is explicitly 

considered.51,53,74 Chen et al.75 do include a natural death term for infected cells in the latent phase. 

No justification is provided for either approach. With simple models being more amenable to both 

parameter estimation and scaling analyses, but more complex models allowing for more complete 

interrogation of biological mechanisms, it is important to assess the validity of including or 

excluding such a term.  We attempted to clarify the impact of this term on influenza dynamics by 

performing a comparative study of the two approaches.  

 

Finally, we developed a simple natural killer cell response model in which natural killer 

cell activation was assumed to be proportional to the population of infected cells. The effectiveness 

of natural killer cells with regard to elimination of infected cells was captured by a destruction 

parameter (rate constant). We determined upper and lower limits on the activity of natural killer 

cells by considering the ability of this single immunity effector to resolve viral load in a 

physiologically relevant time frame. Hence, we determine a physiologically plausible range of 

values for the destruction parameter. Within this range of activity, model predictions indicated that 
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natural killer cells should be successful in controlling influenza during the initial stage of infection. 

However, the action of natural killer cells alone was not sufficient to completely resolve the 

infection. A simple antibody response was introduced to explore the role of adaptive immunity in 

resolving the infection. The physiologically valid range of natural killer cell action on virus-

infected cells was reconsidered in the context of this adaptive response, and the upper and lower 

limits of antibody activation were also examined.   
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2. REFERENCE MODEL (MODEL 1) 

2.1.  Introduction 

We begin by establishing a reference model that represents the minimum features of 

infection. The model includes three variables, namely susceptible cells (S), free virus particles 

(virions, V), and infected cells (I) [Figure 4]. The model is target-cell-limited and similar to that 

reported by Baccam et al.51 for influenza infection in humans. 

 

Figure 4. Schematic representation of in Model 1. β, ρ, ϕ, and χ are rate constants governing mass 

action and exponential decay terms describing system fluxes. S – susceptible cells; I – infected 

cells; V – free virus particles. 
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The following assumptions are made in constructing this reference model. 

i. All susceptible cells are capable of becoming infected.  

ii. Infection requires one free virus particle to enter a susceptible cell.  The rate constant 

for infection is represented by the parameter β virion-1 day-1, and the rate of infection 

can be described using mass action kinetics considering the populations of susceptible 

cells and free virions. 

iii. Once infected, cells release new infectious virus particles at a rate of ρ virions per cell 

per day. 

iv. The number of free virions depleted during the process of cell infection is assumed to 

be negligible51.    

v. Infected cells have a finite natural lifetime and their death is described as an 

exponential decay with rate constant ϕ day-1. 

vi. Regeneration of susceptible cells can be neglected in the early stages of influenza 

infection, as the depletion of cells due to infection occurs at a rate 100 times greater 

than cell production (λ = 6.25×107 day-1).76  Baccam et al.51 included a regeneration 

term for susceptible cells and found that it did not result in a better fit to the 

experimental data. Similarly, the depletion rate of susceptible cells due to infection 

was found to be 10 times greater than the natural cell death rate of susceptible cells 

(φ = 0.0625 day-1).76 We choose here to neglect the death rate of susceptible cells.   

vii. No explicit immune response factors are considered, but free virions are cleared from 

the host via a non-specific first order mechanism with decay rate constant χ day-1.51 
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Based on these assumptions, the governing system of ordinary differential equations 

(ODEs) is as given in Equations 1-3. These equations were solved using the Simbiology toolbox 

in MATLAB 8.5 (R2015a) with ODE solver ode15s, which is an implicit multistep method.  

 

dS

dt
= −β[S][V]      [1] 

dI

dt
=  β[S][V] − ϕ[I]                       [2] 

dV

dt
=  ρ[I] −  χ[V]       [3] 

 

The model parameters were taken from Chang and Young76.  The values correspond to 

physiologically reasonable ranges originally estimated by Bocharov and Romanyukha50, who 

fitted their model to experimental data (viral load, immune cells and antibodies). Indeed much of 

the prior work on modeling influenza in humans has been parameterized based on the pioneering 

efforts of Bocharov and Romanyukha.50,54,75,76 The initial conditions and model parameters are 

outlined in TABLE I, and TABLE II, respectively. We initiate the model with 109 susceptible 

(healthy) cells, which corresponds to the steady-state level of cells in a healthy adult.  

 

 

TABLE I. Initial conditions for the differential equations discussed under reference model. 

 

 

 

Initial Conditions Value Units Reference 

Susceptible cells (S0) 109 cells 76 

Infected cells (I0) 0 cells 76 

Virus (V0) 107 virions 76 



 

19 

 

TABLE II. Parameters values for the differential equations discussed under reference model. 

 

 

 

 

 

 

2.2.  Results and Discussion 

Time courses for the model variables S, I, and V are shown in Figure 5 and Figure 6. The 

population of susceptible cells undergoes rapid decline during the first few days of infection. 

Within 3 days post infection, more than 90% of susceptible cells were infected, giving rise to a 

maximum in the number of infected cells at 2.44 days post infection [Figure 5]. The maximum 

number of infected cells occurs when the rate of infection is equal to the rate of natural cell death 

of infected cells, giving the following relationship for the maximum population of infected cells.    

 

Imax =
β

ϕ
([S][V])|t(Imax)     [4] 

 

This maximum is dictated by the relative values of rate constants β and ϕ.  If ϕ is dictated 

mainly by cell type and β is dictated by infectivity of the virus in question (i.e., ability to efficiently 

enter cells it encounter), then the number of cells infected is primarily determined by the viral 

strain in question. 

 

Model Parameters Value Units Reference 

Infection rate (β) 10-10  virion-1 day-1 76 

Natural death of infected cells (ϕ) 1 day-1 76 

Production of virus (ρ) 340 cell-1 day-1 76 

Non-specific clearance of virus (χ) 2 day-1 76 



 

20 

 

While the population of infected cells peaks at 2.44 days, the viral load (population of free 

virus particles) continues to increase. This is because each infected cell is capable of producing 

more than one progeny virion. The average rate of influenza virus production per infected cell (n) 

can be defined as the product of rate constant for virus production and life-time of an infected cell.  

 

 n =  ρ ∗ (
1

ϕ
) = 340      [5] 

 

Hence, for a peak population of 5.9×108 infected cells, one can expect ~ 1011 free virions to be 

produced over the course of the infection.  Indeed, the peak population of free virions is 7.68×1010, 

achieved at 2.87 days post infection [Figure 6]. The maximum in the viral load lags behind the 

maximum in the infected cells by 10 hours. 

 

After 2.44 days, despite continued growth in the population of free virions, the population 

of infected cells declines because the population of cells available for infection is substantially 

depleted.  
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Figure 5. Reference model: Time dependence of susceptible cell (solid green line) and infected 

cell (dashed blue line) populations over ten days post infection. 
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Figure 6. Reference model: Evolution of viral load over ten days post infection.  

 

 

2.3.  Summary 

The reference model demonstrates the minimal features of an IAV infection in humans. 

Model dynamics for the 3 state variables were briefly discussed. The model is target-cell-limited, 

so infection should only cease upon exhaustion of the susceptible cells. Virus production ceases 

only when all infected cells are depleted. In the 10 day timeframe considered, more than 95% of 

healthy susceptible cells were depleted, and the viral load remained non-zero at the 6-8 day time 

point when typical influenza infections is known to be resolved.  This prolonged presence of the 
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virus reservoir and exhaustion of susceptible cells is to be expected, as there are no mechanisms 

of immune response captured in the model. Therefore, the next step is to include specific immune 

response factors in the model and interrogate the effect of both innate and adaptive immune 

responses on the viral load (Chapter 4).  In the following chapter, we discuss a comparative study 

on the role of natural cell death in the context of a time lag occurring between initial infection of 

a cell and that cell becoming capable of producing new virus particles – i.e. a latent phase of 

infection.   
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3. LATENT PHASE MODEL (MODEL 2) 

3.1.  Introduction 

Experiments have shown that there may be a time lag of as much as 6-12 hours between 

the time that a cell is infected by the influenza virus and the time at which that cell displays 

neuraminidase enzymatic activity, a marker of virus reproduction.77 This biological delay in the 

virus production can be captured in a viral kinetic model by proposing two different population of 

infected cells: one that has been penetrated by a viral particle but has not yet synthesized and 

repackaged viral protein for excretion as a new free virion; and one that is actively secreting free 

virions.   We refer to these to populations as latent and active, and denote them with state variable 

I1 and I2, respectively [Figure 7]. The existence of a latent phase of infection has been considered 

in modeling approaches adopted by other researchers, but the relevance of including75 or 

disregarding death of latently infected cells has not been justified.51,53,74 The main objective of this 

chapter is to analyze the quantitative and qualitative differences (if any) in the model outcome 

when we include [Equation 7] or neglect [Equation 8] the possibility of natural cell death for cells 

in the latent phase of infection.  

 

The primary assumptions stated under the reference model 1 are assumed to be true for 

latent phase models, with minor changes in the model equations as formulated as below.  
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Figure 7. Schematic representations of equations discussed under latent phase model. The dashed 

arrow indicates that in case (a) the natural death of latently infected cells is included, but in case 

(b) it is assumed to be negligible.  

 

 
dS

dt
= −β[S][V]     [6] 

Case (a): 
dI1

dt
=  β[S][V] −  γ[I1] − ϕ[I1]         [7] 

Case (b): 
dI1

dt
=  β[S][V] −  γ[I1]    [8] 

dI2

dt
=  γ[I1] − ϕ[I2]                                 [9] 

dV

dt
=  ρ[I2] −  χ[V]                 [10] 
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The equation for susceptible cells [Equation 6], initial conditions, and parameter values are 

the same as in the reference model [TABLE I and TABLE II]. We assume that cells in the latent 

phase of infection (I1 cells) will start producing virions after 6 hours following virus entry into the 

cell. Hence I1 cells become actively infected cells with a rate constant of γ = 4 day-1 77 [Figure 7]. 

As in the reference model, parameter ϕ governs the rate of natural cell death of infected cells (same 

for both I1 and I2), and χ governs viral clearance. The rate of virus production is assumed to be 

directly proportional to the number of actively infected cells (I2 cells) [Equation 10]. 

 

3.2. Results and Discussion 

Time courses for the four state variables are shown in Figures 8-10. Assuming that the 

natural death term (ϕI1) to be negligible did not bring about any qualitative changes in the 

susceptible cell population. There is a rapid decline in the number of susceptible cells during the 

initial phase, and more than 95% of the cells were depleted within 10 days post infection in both 

cases (a) and (b). Within 4 days post infection, more than 90% of the susceptible cells were infected 

in both cases. However, neglecting the natural death of latently infected (I1) cells produced a 

slightly earlier decline in the population of susceptible cells [Figure 8].  
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Figure 8. Change in the number of susceptible cells with time in latent phase model: Case (a)-

solid black line and Case (b)-dashed blue line. 
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At the maximum of I1(t), the relations given in Equations 11 and 12 hold in the case of including 

and neglecting latent phase cell death, respectively.  

 

Case (a): I1,max = (
β

(γ+ϕ)
) [S][V]    [11] 

Case (b): I1,max = (
β

γ
) [S][V]                          [12] 

 

From this, it is clear that the effect of the natural death term is to reduce the maximum in 

the latent cell population. In the absence of latent (I1) cell death, the maximum number of latently 

infected cells is 24% greater [Figure 9-solid black line and dotted orange line]. This leads to a 

corresponding increase in the maximum number of actively infected (I2) cells – 22% greater in 

when latent phase cell death is neglected [Figure 9- dashed-dotted blue line and short dashed violet 

line]. The maximum in the I2 cell population lags behind the maximum in the I1 population by 11 

hours in both cases (a) and (b). The maximum in the latent phase cell population occurs 6 hours 

earlier when cell death is neglected. However, both time courses exhibit a single maximum, with 

a rapidly decreasing cell number thereafter. It is not trivial to state the likely impact of virus 

infectivity on the latently infected cell population.  The latent phase mathematical model includes 

two parameters that can be interpreted as being associated with viral pathogenicity, β and γ.  One 

governs the efficiency of initial infection, while the other describes how quickly an infected cell 

begins contributing to the free virion population.  Highly infective strains thus may be 

characterized by an increase in each of these parameters, which appear as a ratio in the expression 

for peak I1 cell population. The magnitude of the latently infected population is thus not 

particularly telling the case of acute infection. What is important for rapid establishment of 
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infection is a large flux towards the actively infected (I2) state, which is favored by increasing 

values of both β and γ. 

 

 
Figure 9. Population of I1 and I2 cells for both cases (a) and (b) discussed under latent phase model. 
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Figure 10. Viral dynamics observed when latent phase cell death is (a) included and (b) neglected. 

 

 

As the population of infected cells (both I1 and I2 cells) was higher in the absence of latent 

cell death, a higher viral load is expected. The virus maximum was achieved 4.6 hours earlier when 

cell death was neglected, and the viral load at the maximum was found to be 21% higher [Figure 

10].  

         

Finally, the quantitative differences between reference and latent phase models are 

compared in Figure 11. The virus maximum in the reference model was achieved at 2.87 days post 
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infection, but in the latent phase model it was achieved at ~4 days post infection. When compared 

to the reference model, the maximum virion population was 30 % and 11 % lower in the latent 

phase model for including and neglecting cell death, respectively. This decrease in the magnitude 

of maximum viral load is a consequence of splitting the infected cell population between latent 

and active phases [Figures 10 and 11]. 

 

 
Figure 11. Comparing viral loads between reference model (solid black line) and latent phase 

model (case (a)-dotted blue line and case (b)-dashed gray line). 
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Figure 12. Comparing the number of infected cells (I) in reference model (solid black line) with 

the actively virus producing infected cells (I2) in latent phase model (case (a)-dotted blue line and 

case (b)-dotted gray line). 

 

 

3.3.  Summary and Conclusions 

Influenza infection dynamics in latent phase models were compared in this chapter. Two 

cases, one with and without natural cell death of infected cells in a latent phase, were considered. 

Significant quantitative differences were observed between the two cases. In particular, neglecting 

a term for cell death yielded larger numbers of infected cells and a greater viral load. We note that 

the flux of cells from a latent state to an active state (governed by rate constant γ = 4 day-1) was 4 
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times greater than the flux from toward natural death (governed by rate constant ϕ = 1 day-1).  This 

suggests that most cells in the latent phase will be converted to an active state and produce progeny 

virions before they will undergo natural cell death.77 

 

Finally, when the latent phase models were compared with the reference model, we found 

that there was little or no change in the qualitative behavior of the model. For example, there was 

only one maximum observed in the viral load in both reference and latent phase models. As in the 

reference model, free virions in the latent phase model were not completely cleared within 6-8 

days (~108 virions remained at 10 days post infection, which is an order of magnitude greater than 

the initial viral load). Furthermore, in both the reference and latent phase models, more than 90% 

of susceptible cells are exhausted within 5 days post infection.  Clearly, even though significant 

quantitative differences were observed between the latent phase models and the reference model, 

the qualitative behaviors of time courses for susceptible cells, free virions, and infected cells are 

unchanged. This creates a challenge in discriminating between the existence and absence of a latent 

phase on the basis of model fitting to viral load data alone. 
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4. NATURAL KILLER CELL MODEL (MODEL 3) 

4.1.  Introduction 

Here we introduce a model which is again target-cell-limited, but contains a simple 

mechanism for innate immune response [Figure 13]. We adopt assumptions (i) to (vi) stated for 

the reference model chapter 2 and we use the same parameter values for β, ρ, ϕ, and χ. We add to 

this the following assumptions regarding natural killer cell activity in order to obtain Equations 13 

through 16, and introduce parameters , , and .  

i. Natural killer cells attempt to control infection by eliminating infected cells.  The 

rate of infected cell killing by natural killer cells can be described by mass action 

kinetics with rate constant  cell-1day-1, which will be referred to as a destruction 

parameter. 

ii. The activation of natural killer cells is assumed to be modulated by the presence of 

infected cells.  The dependence on I is first order with rate constant  day-1. 

iii. The half-life of natural killer cells is assumed to be 10 days.  Decay of natural killer 

cells is governed by rate constant  day-1.  

iv. The model parameters and initial conditions are outlined in the TABLE III and 

TABLE IV, respectively.  
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Figure 13. Schematic representation of the natural killer cell model. 

 

 

 

dS

dt
= −β[S][V]                       [13] 

dI

dt
=  β[S][V] − ϕ[I] −  ε[I][N]      [14] 

dN

dt
=  α[I] −  ψ[N]                    [15] 

dV

dt
=  ρ[I] −  χ[V]      [16] 
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TABLE III. Parameters values for equations given in Equations 13 through 16.  

 

 

TABLE IV. Initial conditions for equations given in Equations 13 through 16. 

Initial Conditions Value Units Reference 

Susceptible cells (S0) 109 cells 76 

Infected cells (I0) 0 cells 76 

Free virus (V0) 107 virions 76 

NK cells (N0)  0 cells 78 

   

 

4.2.Results and Discussion 

Susceptible cells (S) are rapidly infected, giving rise to infected cells (I). This increase in 

the population of infected cells generates new free virions (V) and triggers the activation of natural 

killer cells.  At first, we assumed the value of the destruction parameter (ε) to be 10-10 cell-1day-1, 

which is equal to the rate of T-cell response described in Chang and Young. 76 We chose this initial 

value because both natural killer cells and T-cells act by hastening the death of infected cells. 

Model Parameters Value Units Reference 

Infection rate (β) 10-10 virion-1 day-1 76 

Natural death of infected cells (ϕ) 1 day-1 76 

Production of free virus (ρ) 340 cell-1 day-1 76 

Non-specific clearance of free virus (χ) 2 day-1 76 

Activation of NK cells (α) 0.52 day-1 78 

Natural death of NK cells (ψ) 0.07 day-1 68,69 

Action of NK cells on infected cells (ε) 10-10 cell-1 day-1 See text 
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However, the viral dynamics observed using this parameter value was found to be 

indistinguishable from the reference model [Figure 14]. This would imply that the natural killer 

cell response is ineffective in controlling the infection; in other words, ε = 10-10 cell-1 day-1 is not 

large enough to make the natural killer cell response effective. Therefore, we sought to examine 

the physiologically reasonable limits of this destruction parameter by calculating the viral load as 

a function of time for a range of values of ε. 

 

 
Figure 14. Comparing the viral loads between reference model (solid black line) and natural killer 

cell model (dashed orange line) for 𝜀 = 10-10 cell-1 day-1.   
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4.2.1. Examining the Valid Range of the Destruction Parameter 

At the maximum in the time course for the population of infected cells, the following 

relationship can be derived from Equation 14. 

 

Imax =
βSV 

ϕ+εN
      [17] 

 

Here, the denominator represents two death mechanisms for infected cells, one natural, ϕ, and one 

mediated by the immune response, εN.  We therefore consider two limiting cases: (i) 𝛟 ≫  𝛆𝐍 and 

(ii) 𝛟 ≪ 𝛆𝐍. When ϕ ≫ εN, Equation 17 reduces to Imax = 
βSV 

ϕ
 which is same result obtained for 

the reference model. On the other hand, when ϕ ≪ εN, then Equation 17 reduces to Imax =

βSV 

εN
|
t(Imax)

. If the number of susceptible cells (S) and natural killer (N) cells were of similar 

magnitude, then for β = 10-10 virion-1 day-1 and ε = 10-10 cell-1 day-1, the maximum number of 

infected cells would have to be of similar order to the viral load. With each infected cell producing 

hundreds of free virions, this is not valid.  For a robust natural killer cell effect, either the value of 

 should be greater than 10-10 cell-1 day-1 or the natural killer cell population should far exceed the 

population of susceptible cells. 
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The case of ε = 10-10 cell-1 day-1 represents a worst case scenario wherein the innate immune 

response makes no difference to physiological outcomes.  We can use this case to estimate 

maximum activation of the natural killer cell population, as this term is dictated only by the 

population of infected cells, which will adopt its maximum value when natural killer cells fail to 

execute their role. We find the maximum natural killer cell count to be 1.57×108 cells. 

Reconsidering Equation 17, we propose that for natural killer cell response to take effect, the term 

εN should at least be equal to the natural cell death rate constant (ϕ). Thus, the lower limit of the 

destruction parameter (ε) can be taken as 10-8 cell-1 day-1. To find a corresponding upper limit the 

following analysis was performed.  

 

Considering the viral load (7.68×1010 virions) observed for ε = 10-10 cell-1 day-1 as a 

reference value, the parameter ε was increased until a 99% reduction in the maximum viral load 

was observed in which case, we found ε = 10-5 cell-1 day-1 [Figure 15 and TABLE V].  

 

 

TABLE V. Percentage decrease in maximum viral load as a function of destruction parameter. 

 

 

 

 

Destruction parameter ε (cell-1 day-1) % decline in Vmax 

10-10 0 

10-9 5 

10-8 30 

10-7 72 

10-6 95 

10-5 99 
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Figure 15. Viral load as a function of the destruction parameter (ε): (a) ε = 10-10 cell-1 day-1 to 10-

5 cell-1 day-1, (b) ε = 10-6 cell-1 day-1 to 10-5 cell-1 day-1. Viral load for ε = 10-5 cell-1 day-1 is zoomed 

in for more clarity (dashed green line).  

 

 

We further examined the variation observed in the maximum viral load as a function 

of ε starting from the lower limit of ε = 10-8 cell-1 day-1 to the upper limit of ε = 10-5 cell-1 day-1 by 

collecting more data between these limits [Figure 16]. The relationship between parameter ε and 

the decline in the maximum viral load was found to fit the following equation: 

 

% decrease in Vmax

Vlimit
=

εn

kn+εn
     [18] 

 

Where, Vlimit = 100 was fixed, and the constants n = 0.82 and k = 3.04×10-8 cell-1 day-1 were 

estimated by fitting the data [Figure 16].  
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Figure 16. Percentage of decline in maximum viral load with respect to destruction parameter ε. 

 

 

4.2.2. Estimation of Physiologically Relevant Range for Destruction Parameter (ε) 

To predict a physiologically relevant range of the parameter ε, two different model 

outcomes were compared with experimental observations reported in the literature. For typical 

influenza infection in humans, experimental studies suggest that a maximum in viral load is 

achieved between 2-3 days post infection79-85, and the maximum natural killer cell activity is 

observed after 3-4 days.60,71 The model results for ε = 10-8 cell-1 day-1 to 10-6 cell-1 day-1 were found 

to be consistent with the above experimental findings [Figure 15 and Figure 17]. Therefore, values 
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of this parameter between 10-8 and 10-6 cell-1 day-1 should be physiologically valid.  This 

corresponds to a 30-95% reduction in maximum viral load.  

 

 

 
 

Figure 17. Activity of natural killer cells as a function of ε: (a) ε = 10-8 to 10-6 cell-1 day-1 , (b) ε 

=10-6 cell-1 day-1. 

 

 

As seen in Figure 17, the number of natural killer cells decreases with an increase in 

the value of the destruction parameter ε. It stands to reason that the more effective natural killers 

are at eliminating infected cells, the fewer natural killer cells are required to control the influenza 

infection.  From the above discussion it is clear that an effective natural cell response should 

efficiently control the early stages of infection.  
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Figure 18. Viral load as a function of the destruction parameter ε (from 10-8 to 10-6 cell-1 day-1). 

 

 

Although the infection is controlled during the initial phase, we find that the natural 

killer cell response model is insufficient to explain the resolution of typical influenza infection 

within the physiologically valid timeline (6-8 days post infection) 79-85 [Figure 18]. The unresolved 

infection could be due to two interrelated reasons: 

i.  There is no specific immune component in the model to clear free virions, hundreds 

of which are being generated by each infected cell. 
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ii. An effective natural killer cell response prolongs the availability of susceptible 

cells, and these cells become infected by the persistent free virions [Figure 19].  

Therefore, we model a specific component of adaptive immune response to remove the free virions 

in the next section.  

 

 

 
Figure 19. Population of susceptible cells as a function of parameter ε.    
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4.2.3. Model 4: Addition of Antibody Response to Natural Killer Cell Model  

The natural killer cell response is insufficient, as modeled, to prevent eventual 

infection of all susceptible cells.  This is a logical consequence of the fact that this mechanism of 

innate immunity only addresses the population of infected cells. Cell lysis is only partially effective 

at controlling infection when each cell has the capacity to produce hundreds of virions.  Complete 

clearance of the virus is facilitated by a mechanism that directly hastens the clearance of free virus 

particles.  Antibodies, proteins that arise as part of the adaptive immune response, can neutralize 

and facilitate the clearance of virions.  Antibody formation is a feature of the humoral (or B-Cell) 

response. Activated B-cells secrete antibodies within a few days post infection. The antibodies 

bind with influenza virions, inhibiting their ability to contact surface receptors on cells as required 

for cell entry.  In addition the antibody-coated surface marks the virion for clearance.86,87  

 

While cytotoxic T-cells are also an important component of adaptive immunity, they 

function similarly to natural killer cells in that they cause infected cell death. In adding an adaptive 

immune component to our model, we chose to consider an antibody-like response, as a means of 

directly impacting the population of free virions. Unlike natural killer cells in which the maximum 

activity is observed within 5 days post infection, both T-cell and antibody responses become 

evident only after 5 days post infection. With this understanding of the physiology, we attempt to 

model a simple antibody response with the following assumptions:  

i. The number of antibody molecules is proportional to number of B-cells, hence only 

one of these populations need be explicitly represented in the model. 
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ii. Before the onset of infection, the antibody population is negligible (as when the host 

has no prior exposure to the specific influenza strain). 

iii. The activation of antibodies is proportional to the population of free virions with rate 

constant τ day-1.  

iv. Once activated, antibodies stimulate expansion of their own population with rate 

constant σ = 1 day-1. 52 

v. Antibody-mediated clearance of free virions can be described as mass action kinetics 

with rate constant  = 1 cell-1 day-1. 52 

 

Experimental studies show that antibodies specific to influenza infection can be 

detected even after 10 days post infection.87-89 Consequently, we can neglect the natural clearance 

of antibodies in our model, which is aiming for validity only to the point of viral clearance (6-8 

days for typical influenza infection). 

 

To the natural killer cell model, we now add Equation 19, which describes the 

dynamics of antibody activation and proliferation. We also modify the ODE for free virions to 

include an antibody-mediated clearance term [Equation 20]. 

 

 
dA

dt
=  τ[V] +  σ[A]      [19] 

dV

dt
=  ρ[I] −  χ[V] −  κ[V][A]             [20] 
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We based our initial estimate of the antibody activation parameter (τ = 10-9 day-1) on 

that observed in a study of IAV infection in mice59.  As all other parameters in our model are valid 

for influenza infection in humans, we have attempted herein to estimate a valid range of values for 

this activation parameter (τ) in humans. In establishing validity, we use the following criteria: 

(i) typical influenza infection is resolved within 8 days 79-85; (ii) maximum in viral load should 

occur between days 2 and 3 79-85; (iii) maximum natural killer cell activity should occur between 

3 and 4 days. 60,71  

 

Our fourth model combines both an innate (natural killer cell) and an adaptive 

(antibody) response mechanism. Although one of these is nominally active ‘early’ in infection and 

the other ‘late’ in the course of infection, there is likely to be an interaction between these two 

infection-controlling mechanisms.  Thus, our prior determination of a valid range for natural killer 

cell activity may need reconsidering.  We chose to begin our interrogation of antibody activity by 

employing the previously determined physiologically valid range of values for ε, the index of 

natural killer cell cytotoxicity (i.e., ε = 10-8 to 10-6 cell-1 day-1). By this we will be able to analyze 

different scenarios starting from a strong natural killer cell activity to weak natural killer activity. 

We chose to model the antibody response coupled with three different values of the natural killer 

cell destruction parameter: ε = 10-6 (strong response), 10-7 (moderate response), and 10-8 (weak 

response) cell-1 day-1. For this we first have to define the number of virions that corresponds to the 

resolution of infection. In experimental studies conducted in human volunteers during influenza 

infection the resolution of infection is defined as viral load between 1-10 TCID50/mL of nasal 

wash. 79-85 There is no accurate estimate for conversion of TCID50/mL to virus particles, so we 



 

48 

 

choose to employ herein the approximations presented by Handel et al. 52, wherein this measure 

of viral load in nasal wash is said to correspond to 102-105 virus particles at the site of infection. 

Henceforth, we will define resolution of the infection as a reduction in viral load to 100 virions.  

 

We begin our interrogation of antibody-mediated resolution by considering a scenario 

where natural killer cell cytolytic activity tuned to ε = 10-6 cell-1 day-1, which corresponds to a 

relatively strong innate immune response. We set τ = 10-9 day-1, the initial antibody activation 

value obtained from experiments on mice. First, we increased the value of the antibody activation 

parameter by 4 orders of magnitude to 10-5 day-1. We found that for τ = 10-9 day-1 or above, virion 

clearance was achieved within four days post infection, which is more rapid than desired given 

that the antibody response is part of adaptive immunity and is not expected to be effective before 

~5 days post infection. Hence, we chose τ = 10-10 day-1 as upper limit and decreased this value by 

3 orders of magnitude to 10-13. Clearance of the virus (100 virions) was achieved within 8 days 

only for values of  between 10-10 and 10-11 day-1 [Figure 20].  
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Figure 20. Viral load for different values of antibody activation parameter τ; ε = 10-6 cell-1 day-1. 

 

 

We followed a similar procedure for analyzing the effect of antibody activation on 

virus clearance for the case of a moderate innate immune response (ε = 10-7 cell-1 day-1). Again 

starting from the initial guess of τ = 10-9 day-1, we increased this value by four orders of magnitude. 

We found that for τ greater than or equal to 10-8 day-1, the maximum viral load was achieved within 

2 days post infection, which is faster than desired. Thus, τ = 10-9 day-1 was taken as the upper limit 

for this case. To estimate a lower limit, τ was decreased from 10-9 day-1 (initial value) to 10-13 day-
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1. The virus was cleared within 8 days post infection for values of 10-9 day-1 to 10-11 day-1. Also, 

maximum viral load and maximum natural killer cell activity were found to occur around 2-3 days 

post infection79-85 and 3-4 days post infection60,71, respectively. As all these model outcomes were 

found to be consistent with the physiological observations, 10-11 < τ < 10-9 day-1 can be considered 

a valid range for the antibody activation parameter during a moderate natural killer cell response 

[Figure 21].  

 

 
Figure 21. Viral load for different values of antibody activation parameter τ; ε = 10-7 cell-1 day-1.  
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Finally, we consider the antibody effect on free virions for the case of a weak innate 

immune response (ε = 10-8 cell-1 day-1). We found that for τ  10-8 day-1, the maximum in viral load 

was occurred too early ( 1.5 days post infection). Thus, we assigned an upper limit for this case 

of τ = 10-9 day-1. Then we decreased the value of τ by four orders of magnitude. Virions were 

successfully cleared (100 virions) within 8 days for 2×10-11  τ  10-9 day-1 [Figure 22].  The time 

to maximum viral load and the time of maximum natural killer cell activity also compared 

favorably with the established time course of typical influenza infection. Hence, 

2×10-11  τ  10-9 day-1 can be considered as appropriate to produce a typical time course of 

infection for the case of weak natural killer cell activity (ε = 10-8 cell-1 day-1).  
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Figure 22. Viral load for different values of activation parameter τ; ε = 10-8 cell-1 day-1.  
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TABLE VI. Timing of critical events over the course of simulated influenza infection, as predicted 

in model 4.  

Destruction 

parameter 

of NK cells 

(cell-1 day-1) 

Activity 

parameter of 

antibodies (τ) 

(day-1) 

Maximum 

viral load 

(days) 

Time of 

virus 

clearance 

(days) 

Maximum 

activity of 

NK cells 

(days) 

ε = 10-6 10-11 2 7-8 3 

10-10 2 5-6 4 

ε = 10-7 10-11 2 7-8 3 

10-10 2 5-6 3 

10-9 2 5-6 3 

ε = 10-8 2×10-11 2 7-8 3 

10-10 2 7-8 3 

10-9 2 7-8 3 

 

  

The results for different ε and τ, along with the model outcomes, are given in TABLE 

VI. The antibody response has little effect on the time to maximum viral load. However, antibody 

response has a significant effect on the clearance of free virions. The time at which virions are 

predicted to be completely cleared varies from 5-8 days post infection. Also, we note that when 

innate immune response is strong (ε = 10-6 cell-1 day-1), a less robust adaptive immune response 

(10-11 day-1 < τ < 10-10 day-1) is sufficient to clear the virus [TABLE VI].  
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TABLE VII. Percentage decrease in maximum viral load as a function of activity parameter. 

Destruction 

parameter of 

NK cells 

(cell-1 day-1) 

Activity 

parameter of 

antibodies (τ) 

(day-1) 

% decline in Vmax 

compared to 

reference model  

% decline in Vmax 

compared to NK 

cell model 

ε = 10-6 10-11 95 1 

10-10 95 9 

ε = 10-7 10-11 73 4 

10-10 79 24 

10-9 91 68 

ε = 10-8 2×10-11 39 14 

10-10 57 40 

10-9 87 82 

 

 

While not altering the time to maximum, antibody-mediated viral clearance does alter 

the predicted maximum viral load.  TABLE VII compares the decline in the maximum viral load 

(Vmax) in the antibody model to that in the reference and natural killer cell models. It is clear that 

increasing the antibody activation parameter decreases the Vmax. However, the relative importance 

of the innate and adaptive immune mechanisms differs as a function of the strength of the innate 

response.  There is a trade-off between the two defense mechanisms. When the innate response is 

strong, the reduction in peak viral load is attributable almost entirely to natural killer cell activity. 

Likewise, when the natural killer cell response is relatively weak, the decline in viral load is almost 

entirely attributable to the role of the antibody response.   
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Figures 23-25 show the antibody response for τ and ε values given in TABLE VI. The 

antibody population begins to rise after 4-5 days post infection. It increases 102-104 fold by 6-8 

days post infection.  The model results for antibody response were found to be consistent with both 

experimental observation and also with the previous modeling work of influenza infection in 

humans. 54, 95. 

 

 
Figure 23. Antibody response for different values of activation parameter τ; ε = 10-6 cell-1 day-1. 

  



 

56 

 

 
Figure 24. Antibody response for different values of activation parameter τ; ε = 10-7 cell-1 day-1. 

 

 
Figure 25. Antibody response for different values of activation parameter τ; ε = 10-8 cell-1 day-1. 
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4.3.  Summary and Conclusions 

The effect of innate immunity on influenza viral dynamics was interrogated using a simple 

natural killer cell response model. One major barrier in the modeling of influenza infection in 

humans is a lack of experimental data for cytokines and other immune response factors.  Here we 

adopt an alternative approach to characterizing a plausible range for the parameter governing 

natural killer cell cytolytic activity (ε). A suitable range for this parameter was estimated by 

comparing model outcomes with known physiology. In addition to this, a theoretical relationship 

between the destruction parameter (ε) and reduction in percentage of the maximum viral load 

(Vmax) was estimated. A strong natural killer cell response results in effective lysis of infected 

cells, hence virus production inside the host is reduced. While the simulated natural killer cell 

response proves to be effective in controlling the initial phase of infection (reducing viral load by 

30-95%), it does not by itself resolve the infection. A prolonged reservoir of free virions allows 

for continued infection of susceptible cells within the host. Hence, it was necessary to introduce 

another component of immune response to enable resolution of the infection in the physiologically 

reasonable timeframe of 7-8 days.  

 

When a simple antibody-based adaptive immune response was incorporated into the natural 

killer cell response model, appropriate parameter ranges were found to allow complete resolution 

of the infection. As the activation parameter for this simple model of antibody response had not 

been established in the literature for influenza infection in humans, we used three model outcomes 

(time to maximum viral load, time to maximum natural killer cell activity, and time to complete 

virion clearance) as our basis for selecting a valid range of values for this parameter. Irrespective 
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of the robustness of natural killer cell response (weak, moderate or strong), the physiologically 

plausible range for the antibody activation parameter can be taken to be from 10-11 to 10-9 day-1. 

We note here that these ranges were determined for fixed values of the remaining model 

parameters and acknowledge that many of these parameters are characterized by their own broad 

physiological ranges. 
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5.   SUMMARY AND CONCLUSIONS 

In the present work, a within-host viral kinetic modeling approach was used to depict 

influenza infection in humans. Simple target-cell-limited models were built with increasing 

complexity, starting from a simple reference model (chapter 2) with three variables and four 

parameters. In the next chapter (chapter 3) we performed a comparative study to determine the 

relevance of natural death of infected cells existing in a latent phase. A model without this term 

resulted in a higher population of infected cells (both latent and active), and higher viral load. 

While, biologically, it is clear that cells in the latent phase can die, the impact cell death has on the 

model outcome depends on the relative values of rate constants dictating the conversion of latently 

infected cells to the active phase (γ) and the natural rate of cell death (ϕ). Hence, the relevance of 

the natural cell death term in the context of latently infected cells depends on the duration of that 

phase for the specific virus of interest.  In order to minimize the number of model parameters, 

death of latent cells should be included if the time spent in the latent phase approaches the cell 

lifetime. However, this may need to be known a priori, as the qualitative nature of the time courses 

does not change in the presence or absence of the cell death term or in the presence or absence of 

a latent cell population. Discrimination between these biological mechanisms may not be clear 

from simple data fits to experimentally determined viral load. 

 

A component of innate immune response, natural killer cells, is modeled in chapter 4. Most 

of the modeling studies performed so far have attempted to model only interferon production as 

the mechanism of innate immunity. Recent literature suggests that natural killer cells are critical 

mediators of the innate immune response during influenza infection. This is a first attempt to 
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explicitly model natural killer cell population within a minimal framework. Here, we did not 

include interferon response to avoid two additional parameters and one additional variable. The 

physiological range the parameter governing natural killer cell cytolytic activity (ε) was estimated 

using a quantitative analysis with performance criteria based on the known physiology of typical 

influenza infection in humans. The appropriate range was found to be between 10-8 to 10-6 cell-1 

day-1. Also, a theoretical relationship between this parameter (ε) and reduction in the maximum 

viral load (Vmax) was presented. The maximum activity of natural killer cells was predicted to 

occur at ~3 days post infection for all cases (ε = 10-8 to 10-6 cell-1 day-1).   

 

Finally, an antibody response was added to the natural killer cell response model to mediate 

accelerated elimination of free virions.  This was necessary to achieve a model outcome consistent 

with the experimentally observed duration of influenza viral load. As in the case of our natural 

killer cell model, the antibody based immune response model was constructed with a minimum set 

of parameters based on a mechanistic framework capturing specific assumptions about the 

underlying biology. An initial guess for the parameter governing antibody activation was taken 

from a mathematical model of H1N1 infection in mice. A range of alternative values was then 

estimated to obtain an evolution of host and pathogen dynamics that is consistent with a range of 

activity for the natural killer cell response.  

 

While a robust natural killer cell response was required to control growth of the free virions 

population, the antibody response facilitates termination of the infection. A robust antibody 

response coupled with a weaker natural killer cell response was observed to achieve the same 
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outcome as a robust natural killer response and a more moderate antibody response – giving a clear 

indication of the compensatory nature of host immune mechanisms. It is this compensatory nature 

that makes it difficult to tease apart the detailed biological mechanisms of immunity from scarce 

data addressing only the relatively easily quantified measure of viral load.   
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6.   LIMITATIONS AND FUTURE WORK  

Although we have biological evidence for natural killer cell activity and antibody 

responses, more data in terms of virus strain specific antibody activity, and natural killer cell 

activity is required for detailed quantitative analyses, especially in humans. Many experiments are 

performed on animals (e.g. mice, horses, ferrets) to understand the immune responses exhibited 

by these hosts during influenza infection, but how far these results can be extrapolated to 

characterize the infection within humans still remains questionable and unclear. Thus, 

shortcomings in the sources of biological data for specific immune players remains a limiting 

factor for modeling influenza infection in humans.  

 

An important component of innate immunity, the natural killer cell response, was modeled 

with a minimum set of parameters. However natural killer cells are far from the sole mediator of 

innate immunity.  Extending the current work with more than one component of innate immunity 

can help to clarify the necessity of adaptive immune responses in the presence of a strong innate 

immune response. Further, such models can be used to interrogate the kinetics of infection for 

influenza viral strains of varying infectivity and virulence (e.g. H3N2 virus of human origin, 

H5N1, H5N2 strains of avian origin). Likewise the effect of natural killer cell activity in the case 

of wild-type and mutant viruses can be investigated using a natural killer cell model. For example, 

there is evidence that the recent H3N2 (1996-2003) influenza virus could have undergone mutation 

to evade the natural killer cell response.71  
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APPENDIX 

 

Please find below the e-mail stating that Figure 2 can be used in this thesis.   

 

---------------- 

CDC INFO <cdcinfo@cdc.gov>                                             Wed, Jun 29, 2016 at 12:31 PM  

To:  "akshsru12@gmail.com“ <akshsru12@gmail.com> 

 

Thank you for your inquiry to CDCINFO. We hope you find the following information 

about reproducing a figure from the CDC Weekly U.S. Influenza Surveillance Report 

website helpful. 

 

You may use the figure in your thesis. 

 

General text information, publications available for download, and graphs developed by 

CDC and found on the CDC website are works of the U.S. government and are in the 

public domain. These materials are meant for public use and a r e  not subject to copyright 

laws. Permission is not required for use of public domain items. But, CDC does ask that 

you credit the original institution and contributor, when known, whenever the item is used 

in publicly distributed media. 

 

You are also free to adapt and revise these materials, provided the information is distributed 

free of cost; however, you must remove the CDC name and logo if changes are made. 

Additionally, in accordance with 42 U.S.C. Section 1320b 10, no person may, for a fee, 

reproduce, reprint, or distribute any item consisting of a form, application, or other 

publication of the U.S. Department of Health and Human Services (HHS) unless such 

person has obtained specific, written authorization to do so. Therefore, if you wish to sell 

CDC materials presented on the CDC website, you must first obtain permission from 

CDC. 

 

Contact CDC 

www.cdc.gov/contact/index3.htm 

 

Thank you for contacting CDCINFO. For more information, please call 1800CDCINFO 

(8002324636), visit www.cdc.gov and click on “Contact CDCINFO,” or go to 

www.cdc.gov/info. This email is being sent from an unmonitored mailbox and 

CDCINFO will not respond. If you have questions or comments, please send them via 

our online form at www.cdc.gov/info. 

 

  

mailto:cdcinfo@cdc.gov
mailto:akshsru12@gmail.com
mailto:akshsru12@gmail.com
http://www.cdc.gov/contact/index3.htm
http://www.cdc.gov/
http://www.cdc.gov/info
http://www.cdc.gov/info
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CDCINFO is a service of the Centers for Disease Control and Prevention (CDC) and the 

Agency for Toxic Substances and Disease Registry (ATSDR). This service is provided 

by Verizon and its subcontractors under the Networks Universal contract to CDC and 

ATSDR. 

 

Original Message  

 

From: 

[cdcinfoforms@cdc.gov] 

Sent: 6/28/2016 11:02 AM 

To: cdcinfo@cdc.gov 

Subject: CDCINFO: 

Inquiry 

Subject: Reproducing figure from CDC website 

From: General Public 

Email Address: akshsru12@gmail.com 

Your Question: 

Dear Team, 
 

I am a graduate student at  University of Il l inois at  Chicago (UIC) and I would like 

to use one of the figures given in the following link on CDC website in my thesis. 

 

Link:  http://www.cdc.gov/flu/weekly/ 

Title of figure: 122 Cities Mortality Reporting System 

 

I will be including the above link in my citation and I will state in my text that source of 

the figure is from CDC web page. Please let me know if I  require any other permission 

to use this figure other than citing the webpage in my thesis. Waiting for your reply. 

 

Thanks & Regards,  

Akshaya Polaepalli 

Graduate student, dept. of chemical engineering  

University of Illinois at Chicago (UIC) 

Chicago, IL-60607 

----------------  

http://www.cdc.gov/flu/weekly/
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