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SUMMARY 

        Bending nanowires and nanoplates are widely used as flexible beams in Nano-Electro-

Mechanical Systems (NEMS) for force and mass sensors. Usually, the vertical deflection and 

resonant frequencies of the nanowires and plates are the most crucial parameters in these systems. 

Although the nanoscale beam-like structures have been designed and fabricated for various 

applications, deriving the mechanical theories specifically applicable to nanoscale materials and 

enhancing the accuracy of the mechanics of these nanoscale structures is still a bottle neck in 

designing nanotechnology. Typically, there are two different ways to accomplish the mechanical 

modeling for nanoscale materials, such as modeling with continuum mechanics by adding size 

effects and modeling from atomic scale theory. However, both of these methods have some 

fundamental issues or limitations and cannot be directly applied to accurately achieve accurate 

mechanical modeling for nanoscale materials.  

 A literature review on continuum mechanics, surface stress and surface elasticity 

modeling, nonlocal elasticity and molecular dynamics simulation has been introduced in this 

thesis. Nonlocal elasticity theory is a potential modeling method to study the mechanical 

properties of nanoscale materials. However, nonlocal elasticity has not been fully developed 

because the physical meaning of the nonlocal parameter e0 is unknown. The parameter e0 was 

studied to unify surface effects, nonlocal effects, and molecular dynamics simulations. These 

three methods should be consistent because they are different methods to study the same size 

effects at the nanoscale. The research goal is to develop mechanical modeling theories for 

nanoscale structures with critical dimensions of 1-100nm. To achieve this goal, the research aim 

is to test the hypothesis that Euler-Bernoulli or Timoshenko beam theory with surface effects, 

Eringen’s nonlocal elasticity, and the corresponding nonlocal beam theories, and MD simulation 
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SUMMARY (Continued) 

results can be unified for nanoscale structures with critical dimensions of 1-100nm. Three 

boundary conditions were considered in this thesis, such as cantilever, simply-supported and 

fixed-fixed. 

        First, a more general solution of continuum beam theories with surface effect has been 

obtained and developed to investigate the surface effect on bending nanowires with the “core-

shell” approach. Timoshenko beam theory with surface effects has been applied with 

consideration of shear effect and rotational inertia effect. Consequently, the limitation of aspect 

ratio of Euler-Bernoulli beam theory was eliminated. The modeling for the resonant frequencies 

of the first three vibration modes of nanowires with three boundary conditions was detailed. 

        Second, the solutions of the resonant frequencies with surface stress effect and nonlocal 

effect have been compared. A bridging theory by incorporating surface properties with the 

nonlocal elasticity theory parameter e0 has been developed to bridge the classical beam theories 

with nonlocal beam theory at the nanoscale. Two different modeling methods for the resonant 

frequencies of simply-supported nanowires were introduced.  The two methods are Timoshenko 

beam theory with surface effects and nonlocal Timoshenko beam theory. With the hypothesis 

that the solutions from the two methods are consistent, the theoretical relation between the 

surface stress τ and the nonlocal parameter e0 has been derived. It was found that e0  for a simply-

supported nanowire in flexural vibration is not a fixed number, but depends on the following 

parameters: the lattice length a, the elastic modulus E, the surface stress τ, the cross-section size 

w and shape (included in I and H), the length of the beam L and the vibration modes n. The 

nonlocal parameter e0 is based on eliminating the nearest neighbor assumption from classical 

elasticity theory and describes surface effects when the critical length (cross-section size for the 
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SUMMARY (Continued) 

nanowires) is comparable to the atomic structure (defined as a lattice unit length in this thesis). 

Additionally, by studying the analytical solution for e0, it was found to be an imaginary number 

when the surface effects increase the stiffness of the nanowires. This case corresponds to a 

positive surface stress effect on the simply-supported nanowires in the surface stress modeling. 

Hence, if the surface elasticity is negligible, the nonlocal parameter e0 has to be imaginary to 

match the modeling result of positive surface stress for nanowires with simply-supported 

boundary conditions.  

        Finally, molecular dynamics (MD) simulations have also been introduced to verify the 

above conclusions from the theoretical relation between the surface stress and nonlocal 

parameter. The MD simulations found the same trends as the theoretical modeling predicts. For 

example, MD simulations and theoretical modeling both found that e0 increased with increasing 

cross-sectional sizes. An imaginary e0 was also found by calibrating e0 with the resonant 

frequencies obtained from the MD simulations. Additionally, the surface stress was solved by the 

Timoshenko beam theory with surface effects by assuming that the resonant frequency and 

surface elasticity were known and the surface stress is unknown. The surface stress from the 

resonance MD simulations is almost a constant, which is more obvious for Ag(100) with 2% 

variation as compared to Ag(110) with a 20% variation. However, there is a difference between 

the calculated surface stress in our research and the values from references. The possible reasons 

for the shift and the future work have been discussed at the end of the thesis. 
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CHAPTER 1. Introduction 

 

1.1 Background and Motivation 

 

        Bending nanowires and nanoplates are widely used as flexible beams in Nano-Electro-

Mechanical Systems (NEMS) for force and mass sensors[1] to detect chemical[2] and 

biological[3] reactions or other parameters such as temperature change[4], liquid viscosity[5] and 

surface stress[6]. Usually, the vertical deflection and resonant frequencies of the nanowires and 

plates are the most crucial parameters in these systems. The measured shift of deflection[7, 8] or 

resonant frequencies can be used to predict the value of the force or mass change.[9, 10]  

        As shown in Figure 1.1, the most common force sensor design is a cantilever beam made 

with a nanowire, with a free end or with an applied load [11]. For example, nano- or macroscale 

cantilever sensors have been proven to be ideal structures for DNA detecting and analysis.[12, 13] 

A nanocantilever array coated with specific reagents can be used to detect and measure the 

presence of particular antigens or disordered DNA. The biosensor arrays are designed so that 

when specific bimolecular interactions occur on one surface of the cantilever, the cantilever 

bends. The deflection can be measured, and the presence of particular antigens and disordered 

DNA sequences can be detected in a given serum.[14] Nanocantilevers are also used to detect the 

change in proteins by measuring the difference of deflection when the protein was absorbed onto 

a Au surface.[15, 16] It can also be used to sense bioreactions and chemical reactions at the 

microlevel. The quantity and the speed of the mass changing implies that if the reaction has 

occurred and the rate of occurrence. Intermolecular forces arising from adsorption of small 

molecules are known to induce surface stress, directly resulting in the mechanical bending of a 
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solid surface or a cantilever.[17] Nanocantilever sensors have also been utilized to detect varying 

hydrogen levels in the environment. Analytic molecules diffuse into the cantilever coating and 

the coating swells with exposure to the analytical vapor. With mass absorption, an interfacial 

stress between the coating and cantilever occurs, which leads to bending.[18] Also, the “bending 

plate” method is a typical experimental method to measure the surface stress with the curvature 

and deflection of the beam.[6]  

 

 

 

Figure 1.1. A simple model of the cantilever force sensor. The red circles represent the target 

particles in the research environment and the yellow layer represents the reagent to detect the 

targets. The letter u represents the static deflection and f represents the resonant frequencies 

which are commonly used to sense the target particles. 

 

 

 

 

        Although the nanoscale beam-like structures have been designed and fabricated for various 

applications, deriving the mechanical theories specifically applicable to nanoscale materials and 

enhancing the accuracy of the mechanics of these nanoscale structures is still a bottle neck in 

designing nanotechnology.[19] As shown in Figure 1.2, typically, there are two different ways to 

accomplish the mechanical modeling for nanoscale materials. Similar to the nanoscale 

 

u(x,t), f 
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fabrication, these two approaches can be referred to as a top-down approach, which is from the 

macroscale to nanoscale, and bottom-up, which is from the atomic scale to nanoscale.[20]  

 

 

 

Figure 1.2. Illustration of the size ranges for different modeling methods across scales.  

 

 

 

        Macroscale (classical) mechanics, such as the Euler-Bernoulli beam theory and the 

Kirchhoff-Love plate theory are the most common methods to model the mechanical properties 

of nanoscale materials because of their convenience.[21] Classical continuum mechanics 

modeling is based on the assumption that the object is completely continuous and ignores the 

atomic structure. When the length scales are much larger than the dimensions of the particles and 

the corresponding chemical bond, such models are accurate. However, when the size of the 

object approaches the nanoscale, this assumption is questionable and the resulting theories based 

on continuum mechanics need to be validated. In general, atomistic properties such as van der 

Waals interaction [22, 23], surface effects [24-32], and nonlocal effects [33-44] can significantly 
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alter material behavior at the nanoscale. For example, as the size shrinks, the surface area to 

volume ratio becomes much larger than for a bulk material. Therefore, the surface effect, which 

is negligible in classical continuum mechanics, must be considered at the nanoscale.[24-30, 32] 

Surface effects, including surface stress and surface elasticity, have been well studied. [45-50] 

Yet, there are still some remaining questions, such as fully exploring boundary condition effects 

on the resulting behavior. 

        Additionally, the nearest neighbor assumption is not valid at the atomic and nanoscale, as 

the external length (e.g. cross-section size) is close to the internal length (lattice unit length).[51] 

Thus, nonlocal elasticity theory for nanobeams and nanoplates has been developed from lattice 

dynamics.[33-44] However, since nonlocal elasticity was not originally derived for nanoscale 

mechanics, bridging from the atomic scale to the nanoscale still has several unanswered 

questions. For example, an existing fundamental question is what is the physical meaning of the 

nonlocal parameter e0 in nonlocal elasticity? To date, this parameter is not well defined and the 

spectrum of value(s) for e0 of nanoscale structures is unknown.  

 Molecular dynamics (MD) simulation is also a modeling tool to predict the mechanical 

behaviors of nanoscale materials from the atomic scale to nanoscale.[52, 53] The basic concept 

incorporated in MD simulations is using Newton’s mechanics to describe the relation, for 

example velocity, force and potential energy, between pairs of particles in the investigated 

object.[54] MD simulation can be used to accurately depict the properties at the atomic scale, 

such as the displacement and velocity of particles and the potential and kinetic energy for a 

system of particles. Compared to the size and the time length needed to capture the mechanical 

properties of nanoscale structures, such as resonance, the size[55, 56] and time[57, 58] scale of 

MD is very small and the computational time and power required to bridge between MD 
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(Ångstrom and femtosecond) and the nanoscale (nanometers and nanoseconds) can be 

prohibitive. Therefore, MD simulation is typically still an expensive method which requires 

considerable computational power and simulation time due to the time step in the MD simulation 

and experimental time scale.[54]  

         Thus, a fundamental issue in modeling at the nanoscale is that nanoscale structures with 

critical dimensions from 1-100nm, which are too small for continuum mechanics but too large 

for MD. Deriving a series of optimized mechanical theories specifically for this size range would 

address a fundamental knowledge gap in theory development for nanoscale structures. 

 

1.2 Goal and Objectives 

 

        The research goal is to develop mechanical modeling theories for nanoscale structures with 

critical dimensions of 1-100nm. To achieve this goal, the research aim is to test the hypothesis 

that Euler-Bernoulli or Timoshenko beam theory with surface effects, Eringen’s nonlocal 

elasticity and the corresponding nonlocal beam theories, and MD simulations results should all 

be consistent for nanoscale structures with critical dimensions of 1-100nm. Thus, the approach 

will unify and further develop these theories and methods so that they describe the mechanical 

behavior nanostructures within the chosen size scale. The three methods will be studied to unify 

the three approaches by implementing surface properties with nonlocal elasticity. The resulting 

model will be tested by comparing with MD simulations.  

        Each method will be introduced individually in Chapters 3-5. The modeling procedures will 

be discussed in detail. The comparison among the three methods will be presented in Chapter 6. 

Briefly, in Chapter 3, the resonance modeling of Timoshenko beam theory with surface effects 
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will be introduced for cantilever, simply-supported and fixed-fixed boundary conditions. In 

Chapter 4, the solution of the resonant frequencies from the nonlocal Timoshenko beam theory 

will be derived. The numerical method for the three boundary conditions is presented. 

Additionally, the analytical solution of the simply-supported case is derived and the difference 

between the numerical and analytical solutions is tested. The procedures of MD simulation setup 

for the tensile and resonance tests of nanowires will be introduced in Chapter 5. In Chapter 6, the 

comparisons among the results from the three methods are discussed. The nonlocal Timoshenko 

beam theory is first compared to the surface effects to obtain the analytical relation between e0 

and τ for the simply-supported case. The nonlocal Timoshenko beam theory is also compared to 

the resonance MD simulations to obtain the e0 of the simulated structures for all the three 

boundary conditions.  

        The first research objective is to obtain and verify a more general solution of continuum 

beam theories with surface effect to investigate the surface effect on bending nanowires with the 

“core-shell” approach. In Chapter 3, the theoretical modeling of resonant frequencies and free 

undamped vibration of nanowires has been identified and analyzed with the dynamic form of 

Timoshenko beam theory with surface stress. Timoshenko beam theory includes shear effect and 

inertia of beams. It is a more accurate model for an arbitrary aspect ratio (i.e. <5). Hence, it is a 

more general theory than Euler-Bernoulli beam theory as used in some publications [29, 30, 32, 

45, 59]. Three boundary conditions, cantilever, simply-supported and fixed-fixed, were tested to 

study boundary condition effects. The Timoshenko model with surface properties will be 

discussed in detail and a study of boundary condition effects will be presented to compare with 

existing research on modeling with Euler-Bernoulli beam theory. The validation of the 

theoretical modeling is also presented in Chapter 3. As examples, the theoretical solution of 
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resonant frequency obtained from the Timoshenko beam theory with surface effect will be 

verified by comparing to the MD simulation of Au(100) with dimensions of 4.08x4.08x49nm, 

5.71x5.71x68.5nm and 7.34x7.34x88.1nm, as found in Reference [53].  

        The second objective of this research is to develop a bridging theory by incorporating 

surface properties with the nonlocal elasticity theory parameter e0 to bridge the classical beam 

theories with nonlocal beam theory at the nanoscale. To date, there are still several unanswered 

questions to the application of nonlocal elasticity at the nanoscale, in particular, an fundamental 

question that remains is what is the physical meaning of the parameter, e0? This question has 

hindered applying nonlocal elasticity to widely model nanoscale structures[39]. Some 

researchers have focused on answering this question.[60-62] However, the existing published 

works are still based on the nearest neighbor assumption. When the nearest neighbor assumption 

is included in the modeling, the outcome of the nonlocal parameter e0 does not contain nonlocal 

effects, such as surface properties, but other effects, such as the effect of higher order difference 

terms in the Taylor series expansion.[60-62] Thus, while there are published works on solving e0, 

they do not include nonlocal effects. To the best of our knowledge, there is no existing published 

research on calibrating e0 with nonlocal material properties, namely surface properties, although 

Eringen stated that the surface effect was a main source for nonlocal effects.[63] Therefore, it is 

hypothesized that by comparing the nonlocal effect to those of surface effect, e0 can be defined.  

        In Chapter 4, the numerical solution of nonlocal Timoshenko beam theory for the resonant 

frequencies of nanowires with the above mentioned three boundary conditions is introduced. The 

analytical solution of the resonant frequencies for a simply-supported beam is derived and 

verified by comparing to the numerical solution.  
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        In Chapter 5, the MD simulations to model the elastic modulus and resonant frequencies of 

nanowires are introduced. The MD simulations were used to obtain the mechanical properties of 

nanoscale materials, such as the elastic modulus. The results from the MD simulations were used 

to verify the bridging calculation between the beam modeling with surface effects and nonlocal 

effect. 

        In Chapter 6, the analytical solution of e0 is derived for the simply-supported boundary 

condition. The analytical solution of e0 is solved by equaling the resonant frequencies of 

nanowires from the Timoshenko beam theories with surface effects and with nonlocal effect. The 

resonant frequencies from the two methods should be equal with the hypothesis of this thesis that 

the Timoshenko beam theories with surface effects and with nonlocal effect are consistent. 

        One should also note that the parameter e0 is used to only describe a negative surface stress 

if it is restricted to a real value. Wang and et al. [39] and numerous other researchers [37, 39, 43, 

44] found that a real e0 always reduces the stiffness of a simply-supported beam or plate, which 

is identical to the effect of negative surface stress. However, materials can also have a positive 

surface stress, as commonly found in FCC metals.[64] Additionally, researchers have also found 

that certain combinations of boundary conditions and dimensions lead to an undetermined e0[65]. 

Herein, it is proposed that in these cases, e0 may be imaginary in value. In Chapter 6, the relation 

between surface stress τ and e0 for simply-supported nanowires is studied. The results indicate 

that including imaginary values of e0 widen the spectrum of nanostructures that can be modeled 

with nonlocal elasticity. 

        The third objective of the research is to validate the hypothesis that Timoshenko beam 

theory with surface effects, Eringen’s nonlocal elasticity and the corresponding nonlocal beam 

theories, and MD simulations results should be consistent at the nanoscale range of 1-100nm. 
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The hypothesis was tested by comparing beam theory with surface effect and beam theory with 

nonlocal effect with molecular dynamic simulations. In Chapter 5, MD simulations of the 

transverse vibration of Ag(100) and (110) nanowires with cross-section size 2-4nm and aspect 

ratio 10 is performed to obtain the resonant frequencies with cantilever, simply-supported and 

fixed-fixed boundary conditions. The nonlocal parameter e0 was calibrated by comparing the 

fundamental resonant frequency predicted for Ag(100) and Ag(110) from nonlocal Timoshenko 

beam theory with that calculated from MD simulations for three boundary conditions. The 

surface stress of the simulated material is also calibrated with the equations derived in Chapter 3. 

Therefore, the three methods as mentioned in the hypothesis are fully compared. 

        It was found that MD simulations support the proposition that e0 can be either real or 

imaginary with different combination of lattice orientation and boundary condition from the 

theoretical comparison between surface effect and nonlocal effect. The simulation data also 

agree with the e0 found by the analytical calibration. For example, the absolute value of e0 is 

found to increase with an increase in cross-section size from the analytical solution. The 

simulations also indicate the same trend for values of surface stress τ. However, the quantitative 

value for the surface stress from the resonance simulation and calibrated with the beam modeling 

is slightly different from the surface stress value from Ref. [64, 66]. The possible reasons for 

these differences and potential approaches that may address them will be discussed in the 

conclusions and the future work found in Chapter 7. 
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CHAPTER 2. Literature Review 

 

        Much research effort has focused on beam or plate modeling of nanoscale materials with 

surface or nonlocal effects. The fundamental theoretical framework has been extensively 

developed for both approaches. Yet, there are still critical fundamental knowledge gaps that 

prevent the two theories from being bridged. In this chapter, we summarize the literature on both 

theories and identify the fundamental knowledge gaps to bridging the theories. 

 

2.1 Surface Property Effects on the Mechanical Behavior of Nanoscale Structures 

 

        It is well known that as size scales approach the nanoscale, the surface area to volume ratio 

becomes large and the relative percentage of surface atoms increase as compared to bulk atoms. 

Surface properties different from the bulk material are due to the uncoordinated surface 

particles.[67, 68] On surfaces, these particles lack adjacent atoms and dangling bonds are 

present.[69] As a result, the surface has properties that are different from the bulk volume and 

these properties are commonly described with surface stress, surface elasticity, or surface energy 

[27, 70]. Researchers have found that the surface effect can have a significant influence on 

elastic properties[29, 47], fracture and yield strength[27], and melting of nanowires.[71] 

Typically, the surface effect on the mechanical properties of nanomaterials is studied with 

surface stress and surface elasticity or with surface energy [27, 70].  

 Surface stress is defined as the reversible work per unit area needed to elastically stretch 

a pre-existing surface.[68] Surface elasticity is the characteristic of the surface layer that has a 

different elastic property from that of the bulk material.[72] Surface energy is defined as the 
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reversible work per unit area involved in forming a surface.[68] Usually, the surface stress is 

used to describe a thin surface within continuum mechanics modeling.[29, 32, 47, 71] In addition, 

surface elasticity will affect mechanical behavior as nanoscale structures decrease in size. 

Surface energy is usually modeled with the surface Cauchy-Born model [27, 70], which is a 

quasi-continuum computational method to couple atomistic simulation to continuum simulation 

to obtain the overall mechanical behavior for discrete systems.[73, 74] This thesis mainly 

focuses on the first method, which is the surface stress and surface elasticity modeling with 

continuum mechanics methods to study nanoscale structures with critical dimensions from 1-100 

nm.  

        The effects of surface stress and surface elasticity properties on nanowires have been 

studied by applying the Young-Laplace equation into the classical beam theory (e.g., the Euler-

Bernoulli beam theory). [45-50] He and Lilley[47] applied this method to solve the overall 

elastic modulus of the nanowires with cantilever, simply-supported and fixed-fixed boundary 

conditions. It was found by studying the analytical solutions that, when considering a positive 

surface stress, the cantilever nanowires behaved softer and simply-supported and fixed-fixed 

nanowires behaved stiffer than the nanowires without surface stress. Thus, the behavior differed 

than that of nanowires modeled without surface stress and resulted in an apparent softening or 

stiffening of the nanowire depending on the boundary conditions. It was also found that these 

solutions agreed with the static bending tests for Ag and Pb nanowires, see Reference [75]. They 

also used the dynamic form of the Euler-Bernoulli beam theory to solve the resonant frequency 

of nanowires for the same boundary conditions.[29] The results were compared with the solution 

from the Surface Cauchy-Born model [27, 70] with surface energy. Their approach and the 

Surface Cauchy-Born model predict a similar trend in resonant frequency shift of Au nanowires, 
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where a cantilever has a lower resonant frequency than frequency calculated without surface 

stress, and the opposite trend occurs for the simply-supported and fixed-fixed nanowires.  

        Song demonstrated the importance of the effects of initial stresses in the nanowires that are 

caused by deformation due to surface stresses.[45] They derived a new formulation by 

incorporating the surface stress, the surface-induced initial stress and surface elasticity into the 

Euler–Bernoulli beam theory. They found that the surface-induced initial stress is usually 

neglected in the Young–Laplace model. However, it still has significant influence on the overall 

mechanical properties of nanowires. 

        The surface effect on axial buckling behavior of nanowires has also been studied with the 

governing equations of beam buckling theories. Wang and Feng [49] introduced a method based 

on the Timoshenko buckling theory to determine the critical compressive load of a nanowire 

with surface stress. It was found that the shear deformation lowered the critical compression 

force of buckling. However, a positive residual surface stress increased the critical force of 

buckling. A simply-supported Ag nanowire with a circular cross-section was used as an example 

and it was shown that the surface effect becomes more significant as the diameter decreases or 

when the aspect ratio increases. The shear effect becomes more significant for a nanowire when 

the aspect ratio is relatively smaller.  

        Wang and Feng also used a similar procedure to investigate the surface effects on the 

buckling behavior of piezoelectric nanobeams. [32] Surface elasticity, residual surface stress and 

surface piezoelectricity were included in modeling the mechanical behavior for the normalized 

critical electric potential to buckle a cantilever nanobeam. It was found that when the dimension 

of the cross-section approaches the nanoscale, the surface elasticity increases the critical electric 

potential of the piezoelectricity slightly. Conversely, as the surface stress increases, the critical 
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electric potential decreases. Relatively, the surface stress effect is much more significant than the 

surface elasticity.  

        Surface properties have also been considered when modeling plates. He et al. [46] derived a 

model based on Gurtin and Murdoch’s surface elasticity theory to study thin elastic films with 

nanoscale thickness. Lu et al. [76] referred to He’s derivation and derived the governing equation 

of static bending of thin plates with surface stress and elasticity. Assadi et al. [77] incorporated 

surface elasticity and residual stresses into Kirchhoff plate theory to solve for the resonant 

frequency of a simply-supported nanoplate. Si(100) with a negative surface stress and a negative 

surface elasticity was studied as an example. The negative surface stress and elasticity were 

found to reduce the resonant frequency of the nanoplates. 

        The vibration behavior of nanoplates with surface stress effects was studied by Ansari and 

Sahmani.[78] Classical plate theory and first order shear deformation theory are used to develop 

non-classical continuum plate models for free vibration analysis of the nanoplates including 

surface stress effects. A closed form analytical solution was derived to obtain the natural 

frequencies of nanoplates corresponding to various values of the axial half wavenumber, 

transverse half wavenumber, aspect ratios, and surface elastic constants.  

 As detailed above, although the surface stress and elasticity with continuum mechanics 

modeling has been studied widely, there are still two fundamental issues that remain. The first 

issue in beam modeling with surface effects is an ambiguous size limitation of aspect ratio for 

the application of surface properties. Park concludes that the aspect ratio is the key parameter 

that correlates the resonance frequency shift due to the surface energy with the surface Cauchy-

Born model.[27, 70] He introduced the method that combined the surface Cauchy-Born model 

and finite element method to investigate the resonant properties of Si nanowires of both fixed-
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fixed and cantilever boundary conditions with surface energy. [27, 70] The research 

demonstrates how surface effect cause variations in nanowire resonant frequencies from those 

expected from macroscale beam theory. We propose that the aspect ratio should also be a key 

parameter for the modeling with surface stress and elasticity. However, due to the assumption of 

ignoring the shear effects, Euler-Bernoulli beam theory has a limitation that the aspect ratio must 

be larger than 5, when the shear effect is negligible.[79] By using the Timoshenko beam theory, 

the shear effect and inertia of the beam is considered and the beam can be any aspect ratio. The 

model will directly address aspect ratio limitations and thus would be a more general solution.  

       The second issue in the current research of bending nanowires and nanoplates with a surface 

effect is that the boundary condition effect has not been fully studied. Due to convenience in 

obtaining analytical solutions, most researchers only model simply-supported nanostructures 

using various approaches.[32, 76-78] As found with Stoney’s equation, the additional loading 

due to surface stress is a function of the curvature.[31] Since  different boundary conditions lead 

to different directions and values of curvatures [79], the boundary condition effect is thus 

important when investigating the influence of the surface effect on the mechanical behavior of 

nanostructures. Thus, three boundary conditions, such as cantilever, simply-supported and fixed-

fixed, will be analyzed with the modified Timoshenko beam theory. The details of the 

Timoshenko beam modeling with surface properties and the effects of boundary conditions will 

be presented in Chapter 3. 
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2.2 Nonlocal Elasticity and Nonlocal Beam Modeling at the Nanoscale 

 

        When any dimension of a nanostructure approaches the atomic scale, long range atomic 

interactions result in nonlocal effects on the mechanical behavior. Thus, there is a breakdown in 

the assumed conditions for continuum mechanics modeling. In 1983, using lattice dynamics 

without the nearest neighbor assumption (shown in Figure 2.1), Eringen developed a new elastic 

stress-strain relationship for small scale materials, defined as having any dimension of the 

material close to the lattice length, and termed it as nonlocal elasticity.[51, 63] With nonlocal 

elasticity modeling, the interatomic interactions are considered (i.e. modeled) as nonlocal 

effects.[44] Nonlocal elasticity assumes that the stresses at a reference point are functions of the 

strains at all points of the body in the continuum. The stress strain relationship is described 

below as 

( ' , ) ( ') ( ') ( ' , ) ( ')ij V ijkl V ijt x x C x dV x x x dV x          .
   (2.1) 

Herein, t
ij
, σ

ij
, ε

ij
 and C

ijkl
 are the nonlocal stress, macroscopic (classical) stress, strain, and 

elasticity tensor, respectively. The variable  is the nonlocal modulus, which indicates the 

nonlocal effects at the reference point x produced by local strain at the source x’. The variable λ 

is defined as λ=e0a/l. The parameter e0 is the nonlocal parameter to bridge the internal and 

external characteristic lengths. The parameter a is the internal characteristic length (e.g., lattice 

parameter, granular distance, etc.), l is an external characteristic length (e.g., crack, length, 

wavelength, etc.), and V is the volume of the object.[39] This theory is based on classical 

continuum mechanics, while taking into account the discrete particle effect.[80] Since the critical 

parameter e0 is not well defined, nonlocal elasticity is still a developing theory and its application 

for modeling the nanoscale mechanics has significant limitations. 
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(a) 

 

(b) 

Figure 2.1. The illustrations of 1D lattice dynamics of 5 atoms for classical and nonlocal 

elasticity. Figure 2.1(a) Classical elasticity with nearest neighbor assumption. Figure 2.1(b) 

Nonlocal elasticity without nearest neighbor assumption. K is the stiffness between the nearest 

atoms and K’ is the stiffness between the atoms with one extra atom between them. 

 

 

     The nonlocal elastic modulus, α, must satisfy several conditions as described in Ref [63] and 

restated below. 

(1) α acquires its maximum at x’=x and attenuates with | x’-x |. 

(2) When λ→0, α must revert to the Dirac delta function so that classical (local) elasticity is 

included when the internal characteristic length vanishes (e.g. l→∞ or a→0 for 

macroscale materials). 
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(3) For small internal characteristic lengths (i.e., λ=1), nonlocal theory should approximate 

atomic lattice dynamics. 

        One of the widely accepted functions of α is [63] 

     
1

2

0 0, 2 /e a K l   


  
 

x x x
.
       (2.2) 

Where, the variable K0 is determined using the modified Bessel function shown below [81] 
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



    
    .      (2.3) 

The variable r is the variable of the modified Bessel function and can be either real or imaginary, 

and z is the variable of integration.  

        By applying Green’s function[81], the integral equation (Eq. 2.1) with  in the form of Eq. 

(2.2) can be simplified into a partial differential equation with the following relationship[63] 

 
2 2

01 ij ij ijkl ije a t C     
 

.       (2.4) 

        Early research on nonlocal elasticity by Eringen in 1980s and 1990s, was developed to 

model screw dislocation, surface waves[63] and wave propagation[82] of crystalline structures at 

the atomic scale. More recently, nonlocal elasticity has been developed to model the mechanical 

properties of nanoscale structures. To the best of our knowledge, Wang was the first person to 

extend the governing equation of nonlocal beam theory with the stress-strain relationship defined 

in Eq. 2.4 to study the wave propagation in carbon nanotubes in 2005.[83] In 2007, Reddy 

derived the equation of motion of Euler–Bernoulli, Timoshenko, Reddy, and Levinson beam 

theories with Eringen’s stress-strain relation (Eq. 2.4) for nanoscale materials. Analytical 

solutions of bending, vibration, and buckling for simply-supported nanowires were obtained to 

study the effect of the nonlocal behavior by using an assumed value for the nonlocal parameter 

e0.[33] Recently, by using Reddy’s equations and method, static deflection, free vibration, 
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uniaxial prestressed vibration and resonance of nanobeams and nanoplates have been studied 

with assumed values of e0.[33-44] 

        Papargyri et al. considered the surface effect and nonlocal effect by comparing the 

mechanical behavior of nanobeams in deflection and in buckling as predicted with nonlocal 

effects and with the surface energy effect.[34] They found that the beam deflection decreases and 

the buckling load increases with increasing e0. It was found that the surface energy effect is less 

significant for bending and buckling as compared to the nonlocal effect. However, herein it is 

hypothesized that such a difference should not exist since surface and nonlocal effects are two 

different ways to describe the same size effect. Specifically, Eringen stated that nonlocal effects 

would be able to model surface effects. Thus, it can be expected that the modeling results from 

both methods would be similar. It is postulated that the resulting difference found in Papargyri’s 

work between the nonlocal and surface energy effects is due to arbitrarily assuming values for 

the nonlocal parameter e0. Papargyri et al. also derived and solved the static bending of nonlocal 

Kirchhoff plates with the aid of the principle of virtual work with the boundary conditions of two 

opposite sides being clamped and the other simply-supported.[38] In this paper, they still 

arbitrarily assumed the value of e0, and the nonlocal effect is not clear because of lack of 

knowing the physical attributes that affect the value of e0. 

        Zhu and Dai solved the general solution for a nonlocal elastic bar in tension analytically and 

numerically for nanowires.[36] The governing equation of the 1D bar tensile problem was 

derived with Eq. 1.4. They found that the normal stress is not uniformly distributed in a bar with 

constant strain and nonlocal effects. This is different from the modeling with traditional elasticity, 

which has a linear relation between stress and strain (Hooke's law). Conversely, in local 

elasticity, the stress is constant if the applied strain is constant. In the nonlocal modeling, stress 
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concentrations were found at the two ends of the bar due to the nonlocal effect, even if the 

applied strain is uniform.   

       Murmu and Pradhan derived the nonlocal theory for nanoplates under uniaxial prestressed 

conditions, with the hypothesis that e0 should always be real.[37] Their model is a combination 

of a transverse vibration problem and a buckling problem. They concluded that the nonlocal 

parameter, aspect ratios, boundary conditions, and initial uniaxial prestress have significant 

effects on vibration response of the nanoplates. For example, the resonant frequencies of the 

nanoplates and the critical compressive load are reduced by the nonlocal effect for the simply 

supported boundary conditions. A similar conclusion has been found by other researchers, where 

the stiffness of simply-supported beams and plates are always reduced with real e0 values, i.e., 

resulted in lower resonant frequencies or larger deflections.[37, 39, 43, 44] However, a surface 

stress can either increase or decrease the stiffness of the beams and plates due to the boundary 

condition. In addition, a surface stress can be either positive or negative. The combination of 

simply-supported boundary condition and positive surface stress can result in an apparent 

stiffness increase[47]. Therefore, there seems to be a contradiction between the beam modeling 

with surface stress and nonlocal effect, although they are just different ways to describe the size 

effect and should be consistent. The ability for nonlocal theory to predict stiffness changes of a 

nanobeams or nanoplate is limited with a real e0, since it can only predict a lower stiffness.  

        A fundamental issue in the nanoscale nonlocal elasticity is that the physical meaning of the 

material parameter e0 is not well defined, which hinders its widespread application for nanoscale 

structures. Although nonlocal elasticity has been applied to nanoscale modeling of static 

bending[84], dynamic vibration[85-87], buckling[88] and wave propagation[83] of nanoscale 

materials, the bridging between the atomic scale and nanoscale has not been well studied. 
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Researchers usually assume a series of values for e0 when establishing their theories. [33-42] 

They also restrict e0 to a real number [33-42] which can only describe a negative surface and 

ambiguous size ranges.[39] This range is discussed in more detail in Chapter 6. To date, there 

has been limited research on the origin of e0, especially at the nanoscale. While some researchers 

have tried to develop e0 to enhance the accuracy of their calculations, but some results do not 

contain the true nonlocal effect with the nearest neighbor assumption. For example, Challamel 

and et al. derived a fixed solution to the nonlocal parameter material parameter e0 for buckling 

[60] and flexural vibration[61] models, i.e. e0=0.289 for buckling and e0=0.408 for flexural 

vibration of a beam without an applied external load (free vibration). Wang et al. continued their 

work and derived e0 for the situation between pure buckling and free flexural vibration, which is 

an axially forced vibrating beam.[62] However, their work on parameterizing e0 does not include 

nonlocal effects. In actuality, the difference between Wang and Hu’s model and classical linear 

elasticity is that they consider more terms for the finite difference approximation as shown in Eq. 

(2.5) and reproduced from Ref. [89].  
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 
          (2.5) 

        In Eq. 2.5, a is the distance between each atom and x is the location of the atoms. The first 

term at the right hand side of Eq. (2.5) is the finite difference approximation in classical elasticity, 

which is the second derivate of the displacement with respect to the location. The second 

additional term is used to calibrate e0 in Ref. [30-33], but it does not include nonlocal effects. 

Conversely, Eringen specified that nonlocal theory should account for surface physics, such as 

surface stresses, when he first developed the nonlocal elasticity theory.[34] Thus, the modeling 

includes nonlinear effects and not nonlocal properties. Thus, we propose that e0 can be 

parameterized by incorporating surface effects (i.e. nonlocal) on the mechanical behavior of 
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nanobeams as proposed by Eringen, rather than by incorporating local models with additional 

finite difference terms. The outcomes of this study would be an analytical solution to e0 that 

includes surface properties for nanoscale beams that have both positive and negative surface 

stresses. The approach will be based on solving the fundamental resonant frequency for simply-

supported nanowires with Timoshenko beam theory with surface stress and nonlocal 

Timoshenko beam theory. Furthermore, we will calibrate e0 with the calculated resonant 

frequencies of nanowires from molecular dynamics simulations for the other two boundary 

conditions and verify the analytical solution of e0 for the simply-supported case obtained from 

the theoretical comparison.  

 

2.3 The Evaluation and Verification of Classic Continuum Mechanics, Beam Theory with 

Surface Stress and Molecular Dynamics Simulations 

 

2.3.1 Classic Continuum Mechanics 

        Continuum mechanics is usually used to model the mechanical behavior of nanoscale 

system if the size effect is assumed to be negligible.[21] Govindjee and Sackman tested the size 

limitation of the Euler-Bernoulli beam theory with the following model for multi-wall carbon 

nanotubes as shown in Figure 1.[90] This calculation can also be applied to verify the beam 

theory on the multi-layer beams with other materials. Figure 1 shows the cross-section and the 

variable definition of the model. The beam is made up of n layers of atoms with a distance s. The 

thickness of each layer is t and the distance to the center of sheet j is defined Rj. 
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Figure 2.2. Cross-sectional dimensions for a multi-walled beam. 

 

 

        The elastic modulus 𝐸̅ is the variable to evaluate the validation of the assumption of the 

continuum materials. The assumption is that a limited number of atom layers can be assumed as 

a solid continuum media and the mechanics of the material can be described with Euler-

Bernoulli beam theory. The surface effect was not considered. It is found that if the moment of 

inertia is calculated by the polynomial    
4 4

2 2
4

n nI R t R t
     
 

and t << s, n has to be 

larger than 201 for the validity of the continuum cross-section hypothesis. In this case, 𝐸 ̅is 

between 0.99E to 1.01E, where E is the bulk scale Young’s modulus of the material. When n=2, 

𝐸 ̅=2.15E and the beam theory obviously does not work for such a small size. The break down 
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size of continuum mechanics with the polynomial moment of inertia is relatively large. However, 

the modeling can be improved if 
1 /2 /2

3

/2 /2
d

n

R t s

R t s
I r r

 

 
   and t << s. With the new defined I, n=2 leads 

to 𝐸 ̅=0.97E and the Euler-Bernoulli beam theory is relatively still valid for such a small size.  

        It can be seen that the break down size scale of continuum mechanics depends on many 

conditions. For example, with the model of Figure 1, the size limitation depends on n, s, t and Rn.  

For different materials with different chemical structures (n, s, t and Rn), the size limitations of 

the continuum mechanics are different. However, by improving the modeling equations (e.g., by 

changing the method of calculating the moment of inertia or adding surface effects), the 

amended continuum mechanics theories still work for much smaller size scales. In this thesis, we 

will apply two different ways to modify the continuum mechanics in order to describe the 

nanoscale mechanics. Surface effect and nonlocal effect will be added separately on the classical 

beam theories to describe the surface atoms of the nanowires. 

 

2.3.2 Beam Theory with Surface Stress Effect Modeling 

        Wang and Feng derived the equation to describe the surface stress effect from Young-

Laplace Equation.[31] Young-Laplace equation describes that the stress jump across a surface is 

related to the curvature tensor of the surface as shown in Eq. (2.6).  

s

ij ij i jn n                (2.6) 

Where ij   and ij    denote the stresses above and below the surface, respectively, ni is the unit 

vector normal to the surface, s

  is the surface stresses and   is the curvature tensor. 
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        If the surface stress effect of a nanowire can be described with the Young-Laplace 

Equation, the surface stress contributes a transverse load when the beam is in bending. The 

transverse load is expressed as 

 
2

2

d u
p x H

dx
              (2.7) 

where H is a parameter determined by the surface stress along the nanowire longitudinal 

direction and the nanowire cross-sectional geometry.[29] For a circular or rectangular nanowire, 

H is expressed as  

2 ...(circle)
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
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

     (2.8) 

where D is the diameter of the circular nanowire, w is the width of the rectangle nanowire and τ 

is the surface stress.  

        As defined in Eq. (2.7), by adding the additional distributed load from the surface stress to 

the continuum mechanics equation, (e.g., beam theories), the surface stress effect has been 

studied for the nanoscale materials for different types of problems. The surface stress effect on 

the static deflection [47, 91], resonant frequencies [26, 92-94], buckling[49, 95-99] and quality 

factor [30] of the nanowires have been studied. One straight forward way to check the validation 

of the surface stress modeling is the convergence to continuum mechanics for larger sizes. The 

trend and convergence can evaluate if the theory over-estimates the surface stress effect. All 

these models find that the surface stress effect vanishes when the cross-section size of the 

structures grows. For example, as the cross-section reach 100nm or above, the resonant 

frequency of the nanowires only has less than 1% shift as compared to the classical beam 

theories for all aspect ratios and boundary conditions. Therefore, this modeling method does not 

over-estimate the surface stress effect for larger sizes.[26, 29] However, the precision of Eq. (2.7) 
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for smaller size scale is still unclear and if the equation under-estimates the surface effect is not 

known. The pre-condition of Eq. (2.7) is that the surface stress can be described with the Young-

Lapalce equation, which is more commonly used for liquid and air interaction[100]. In order to 

verify Eq. (2.7), the comparison between different theoretical methods is not enough. 

Experimental data is better to verify Eq. (2.7). However,  due to the size limitation of the atomic 

force microscopy for the mechanical test of nanowires, the minimum size for the bending 

nanowire test is 20nm[101] or 30nm[75, 102]. Figure 2.2 shows the comparison of the overall 

elastic modulus of Ag(100) nanowires from the static deflections of fixed-fixed nanowires 

among the Euler-Bernoulli beam theory with surface stress[47], Timoshenko beam theory with 

surface stress[91] and the experimental data[101]. The lengths of the tested nanowires were fixed 

as 1μm and the diameters of the cross-section changed as labeled in Figure 2.2. In Figure 2.2, the 

theoretical modeling methods generally have good agreements with the experimental data. As 

the cross-section grows, the results based on the Timoshenko beam theory are closer to the 

experimental data due to the smaller aspect ratio. More experimental data with different 

boundary conditions, sizes and materials is needed in the future to further and completely test the 

break down size of Eq. (2.7) and the improved beam equations with surface stress effect.  
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Figure. 2.3. The comparison of the overall elastic modulus of Ag(100) nanowires from the static 

deflections of fixed-fixed nanowires among the Euler-Bernoulli beam theory with surface 

stress[47], Timoshenko beam theory with surface stress[91] and the experimental data[101]. 

 

 

 

        In Chapter 3 of the thesis, the resonant frequencies of fixed-fixed Au(100) nanowires are 

also compared to the molecular dynamics simulation results to verify the theoretical modeling. 

The aspect ratio is fixed as 12. The largest difference between the simulation and theoretical 

results is 7% for the smallest tested cross-section size of 4.08nmx4.08nm. Please refer section 

3.3 and table 3.I for the details of the comparison and the following section for the validation of 

MD simulations.  
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2.3.3 Molecular Dynamics Simulations 

        Computational physics, for example MD simulations, is the study and application of 

numerical analysis to solve problems for which a quantitative theory already exists.[103] The 

basic concept in MD simulations is incorporating classical multibody dynamics (Newton’s 

second law) and the potentials (energy) between pairs of particles at the atomic scale/resolution 

to model the properties, including mechanical behaviors of nanostructures.[54] The validity and 

accuracy of MD simulations depend on the interatomic potentials used as inputs.[104] The 

interatomic potentials, which are typically based on the experimental data, can directly depict the 

properties at the atomic scale, such as the displacement, velocity and the kinetic energy of 

particles. By imposing a dynamics rule (energy conservation or constant average temperature of 

the system), macroscale mechanical properties can be obtained from the atomic scale 

information.[105, 106] The application of MD simulations at the nanoscale includes determining 

material properties such as a nanostructure’s elastic modulus[107-110] and ultimate strength[107, 

110] or mechanical behavior such as static deflection[111] and resonant frequencies[53, 112].  

        In this section, the discussion about the MD simulations will be separated into two parts. 

The first part of the discussion focuses on the atomic scale potentials, which ensure that the MD 

simulations are valid at the atomic scale. The elastic constants from the Embedded Atom Model 

(EAM) potentials are compared. The ability of EAM potentials to describe the surface properties 

is also discussed. The nanomechanics should be an overall result of the atomic scale properties of 

all atoms in the body. Therefore, the second part presents the results and verification of the 

tensile, static bending and resonance tests for nanowires with MD simulations from literatures. 

Our MD simulation setups and results for these three types of tests will be introduced in Chapter 



28 

 

5 and 6. The MD simulation results will be finally applied to develop the theoretical modeling on 

nano mechanics.  

        A potential function (or usually just called potential) describes the force interaction between 

a pair or group of particles (atoms or molecules). A pairwise potential only considers the energy 

between two atoms, such as the Lennard-Jones potential. The expression of Lennard-Jones 

potential is [113] 

12 6

4V
r r

 

    

     
     

        (2.9) 

where, V is the intermolecular potential (energy) between the two atoms or molecules. ε is the 

well depth. σ is the distance at which the intermolecular potential between the two particles is 

zero. r is the distance of separation between both particles. 

        The 

12

r

 
 
 

term of the Lennard-Jones potential describes the short rage interaction of the 

chemical bonds, which is the major effect of the atoms. The 

6

r

 
 
 

term in the Lennard-Jones 

potential describes the long range effect of the atom interactions, mainly the van der Waals force. 

Therefore, the van der Walls force effect can be included in the MD simulations with the right 

choice of potentials. The verification of Lennard-Jones potentials was achieved by comparing the 

curves from Eq. (2.9) to the experimental data and can be found in Ref. [113, 114]. 

        The simulations introduced in this thesis were based on the EAM potentials. In addition to 

the pairwise potential, EAM considers the electron cloud contribution, as the first term in Eq. 

(2.10). In EAM models, an atom is assumed to locate in electron cloud which is uniform and thus 

spherical in shape. The embedding energy represents the energy required to place an atom into 

the electron cloud.[115] Therefore, EAM can be more accurate than the pairwise potentials if the 
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electron effect is significant. EAM is found to be particularly appropriate for the metallic 

systems studied in this thesis.[115, 116]. For the EAM model, the total energy of atom i can be 

expressed as the following: [117] 

1
( ) ( )

2
i i i ij ij

j i

E F r


  
.

            (2.10)   

Where, iF  is the embedding term, which is the energy to embed atom i into the background 

electron density; i  is the host electron density at atom i due to the remaining atoms of the 

system. The term
ij is the pair-wise addition of the interaction and 

ijr  is the distance between 

atoms i and j. Similar to Lennard-Jones potentials, 
ij can contain the van der Walls force effect 

if the long range effect of the atoms are considered. These parameters are generally obtained by 

fitting cohesive energy, equilibrium lattice constant, elastic constants, unrelaxed vacancy 

formation energy, bond length, and diatomic bond strength.[104] 

        Elastic constants of cubic crystals (C11, C12, C44) can be calculated with the derived EAM 

functions.[115, 118, 119]  The bulk mechanical properties, for example the elastic modulus, 

shear modulus and Poisson’s ratio, depend on the elastic constants of the crystals.[120] These 

three elastic constants are usually compared to the experimental data to verify the EAM 

potentials. Daw and Baskes derived and studied the Fi and Φij function for Ni and Pb (both are 

FCC crystals).[115] The elastic constants of Ni were C11=2.438dyn/cm
2
, C12=1.506dyn/cm

2
 and 

C44=1.278dyn/cm
2
 compared to C11=2.465dyn/cm

2
, C12=1.473dyn/cm

2
, and C44=1.247dyn/cm

2
 

from experiment. The elastic constants of Pb were C11=2.305dyn/cm
2
, C12=1.803dyn/cm

2
 and 

C44=0.755dyn/cm
2
 compared to C11=2.341dyn/cm

2
, C12=1.761dyn/cm

2
, and C44=0.712dyn/cm

2
 

from experiment. Baskes et al. derived the EAM potential for Ni3Al. The elastic constants of 

Ni3Al were C11=2.516dyn/cm
2
, C12=1.370dyn/cm

2
 and C44=1.262dyn/cm

2
 compared to 
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C11=2.302dyn/cm
2
, C12=1.493dyn/cm

2
, and C44=1.316dyn/cm

2
 from experiment.[118] Leach 

reported the comparison of the cubic elastic constants for Ag crystals. The values from the EAM 

calculation were C11=1.24dyn/cm
2
, C12=0.93dyn/cm

2
 and C44=0.46dyn/cm

2
, compared to 

C11=1.24dyn/cm
2
, C12=0.934dyn/cm

2
, and C44=0.461dyn/cm

2
 from experiment.[119]  

        From the above presented data of the cubic elastic constants, we can see that the EAM 

potential is an efficient way to model the elastic properties of the referenced crystals. The cubic 

elastic constants calculated with the published EAM potentials were close to the experimental 

data which supports that the EAM potentials can depict the elastic properties of the nanoscale 

materials. 

        Additionally, EAM potential can describe the surface properties of the materials. EAM 

potentials can be used to calculate the total energy for both bulk atoms and surface atoms using 

Eq. (2.10). Due to uncoordinated chemical bonds for surface atoms, the surface atoms are usually 

more active and have higher kinetic energy than the bulk atoms. Daw and Baskes also applied 

EAM potentials to calculate the surface energy and surface relaxation for Ni. It is found that the 

surface energy for Ni (100), (110) and (111) were 1550, 1740 and 1310 erg/cm
2
 compared to the 

measured 1725 erg/cm
2
.[115]  

        The surface stress can be calculated from the surface energy. The relation between surface 

energy and surface stress is  

 1A A                (2.11) 

where A is the area of the surface unit cell, γ is the surface energy, εαβ is the strain tensor.  

        With Eqs. (2.10) and (2.11), Wan et al. calculated the value and direction of surface stress 

and surface energy for FCC metals, e.g. Cu, Ag, Au, Ni, Pd, Pt, Al and Pb with different 

crystalline orientations.[64] Their results calculated with EAM were compared to the effective-
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crystal theory and experimental data and found in good agreement. The comparison data can be 

found in Ref. [64]. The calculation in Refs. [115] and [64] support that the EAM is an effective 

way to model the surface property of FCC metals. The MD simulations for the mechanical 

properties of nanomaterials with the EAM potential will incorporate surface properties. EAM is 

able to describe the nanomechanics for both bulk and surface atoms. The simulation results 

based on EAM potentials can be treated as a standard method to model mechanical properties of 

nanoscale materials. [104, 111, 121, 122] 

        With the rapid development of computational power, MD simulations are commonly used 

to predict the mechanical properties of nanoscale materials. However, due to the gap in size 

scales and time steps between the MD simulations and experiments, it is still difficult to compare 

experimental with theoretical results. Typically, as listed in Table 1, the cross-section sizes in 

MD simulations are less than 10nm, but the typical minimum experimental size for the nanoscale 

mechanical test is ~100nm, for example 80-300nm in Ref.[123]. Guenole discussed three reasons 

of the difficulties in comparing the simulation and experimental results. First, the mechanical 

properties, such as the elastic modulus or resonant frequencies of nanowires, strongly depend on 

the geometry and size as shown with the MD simulations. However, it is hard to precisely 

control the geometry and size in an experiment. Second, the experimental stress field inside a 

nanowire is much more complex than that applied in simulations. Finally, a real nanowire is 

rarely free of defects, which are commonly introduced during the fabrication process.[124] These 

three reasons lead the comparison between MD simulations and experiments difficult. Guenole 

et al. simulated the yield strain and stress for Si nanowires (with cross-section size between 

2.72x2.72nm and 43.45x43.45nm) along the [001] direction at 300K (room temperature).[124] 

They found a 20.2% yield strain and 14.3 GPa yield stress, as compared to 6% and 12 GPa 
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measured from experiment using 100x100nm cross-section[125] Si nanowires. The differences 

are caused by the size difference and the three abovementioned reasons.  

        The following table shows the validation of MD simulations for predicting the macroscale 

mechanical properties of nanoscale materials. EAM potential and FCC metals are emphasized. 

Both tensile test and bending (deflection and resonant frequency) test are included to show the 

different ways to verify the simulation result. 

        Table 2.I shows that the results of the mechanical properties for nanomaterials from MD 

simulations are close to the classical continuum theory prediction. However, there are some 

variations that need to be explained further. One fundamental issue of the existing MD 

simulations is that the simulation results are not compared with the theoretical modeling that 

includes nanoscale size effects. For example, the MD simulations and beam theory with size 

effects are usually studied independently, even if the MD simulation is a good way to support the 

theoretical modeling of the size effects, such as the surface stress effect or nonlocal effect. Ref. 

[111] mentioned that the difference between the MD simulation results and classical beam theory 

results is probably caused by the surface effect. But they did not calculate the surface effect and 

perform the comparison quantitatively. Since the EAM potential can model the surface effect, 

the MD simulation results with EAM should also contain the surface effect. The MD simulation 

results therefore can be applied to study nanomechanics, especially for surface properties. Herein, 

we will include surface effects in the beam modeling to study MD simulation results. 
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Table 2.I. The verification of MD simulations for predicting the mechanical properties of 

nanoscale materials. 

 

Model Material(s) Potential 
Verification 

method 
Verification result Reference 

Tensile 

Test 

(12x12x32 lattice 

units at 10, 300 

and 800K) 

Al 

Morse 

Potential 

(Pairwise 

Potential) 

Yield Stress 

from MD vs. 

Ab initio 

calculation 

 

2.30 GPa 

at a strain of 0.035 

vs. 

1.57 GPa at a strain of 0.040 

[107] 

Tensile 

Test 

(cross-section 

size=1.83x1.83n

m at 0K) 

Au EAM 

Elastic 

modulus from 

MD vs. 

Bulk values 

 

<100> 42.3GPa vs. 42.3GPa 

 

<110> 80.8GPa vs. 80.8GPa 

 

<111> 116.5GPa vs. 

116.2GPa 

 

[108] 

Tensile Test 

(cross-sction 

size=3x3nm-

6x6nm at 300K) 

Au(100) EAM 

Elastic 

modulus from 

MD vs. 

Bulk values 

 

33.2GPa 

vs. 

46.49Gpa 

 

[109] 

Resonant 

Frequency 

(120x20x1 lattice 

lengths at 300K) 

Ni EAM 

FFT of the 

Displacement 

from MD vs. 

Euler-Bernoulli 

Beam Theory 

Poor agreement 

2.4166GHz vs. 25.244GHz 

for simply-supported 

 

2.3271GHz 

vs. 57.22GHz for fixed-fixed 

[112] 

Tensile and Static 

Bending Tests 

(cross-section of 

2-8nm at 

unspecified 

temperature) 

Ag(100) 

and (110) 
EAM 

Elastic 

modulus from 

MD Tensile 

Test vs. MD vs. 

Bulk Values 

Normalized elastic moduli 

with respect to the bulk 

values were calculated. 

Ag(100) 0.95-1.05 for 

tensile test, 0.65-1.03 for 

cantilever bending test. 

Ag(110) 1.2-2.1 for tensile 

test and 1.4-2.3 for 

cantilever bending test. 

 

[111] 

Resonant 

Frequency Tests 

(10x10, 14x14, 

and 18x18 lattice 

lengths for the 

cross-section and 

aspect ratios are 

8-17 at 4.2 and 

300K) 

Au(100) EAM 

Resonant 

frequencies for 

first three 

vibration 

modes 

MD vs. 

Euler-Bernoulli 

and 

Timoshenko 

theories 

Timoshenko beam theory’s 

result is closer to the 

simulation result due to the 

shear effect. Shear effect is 

more significant for small 

aspect ratio and higher 

vibration mode. The 

difference between the 

simulation and theoretical 

results due to the size effects 

were not discussed. 

[53] 
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2.4 Summary of Literature Review 

 

        As discussed above, a fundamental knowledge gap for nonlocal beam theory is that the 

nonlocal parameter e0, which bridges the atomic scale and nanoscale, is not well defined or 

clearly understood. The hypothesis of this research is that Timoshenko beam theory with surface 

effects, Eringen’s nonlocal elasticity and the corresponding nonlocal beam theories, and MD 

simulations results should be consistent at the nanoscale for structures with critical dimensions 

from 1-100nm. To the best of our knowledge, no researchers have incorporated surface effects 

with nonlocal effects within a beam theory to study the nonlocal parameter e0. Since analytical 

solutions of the resonant frequency of simply-supported nanowires from both Timoshenko beam 

theory with surface effect or nonlocal effect exist, we propose to study the parameters of e0 by 

defining an analytical solution. Additionally, MD simulations will be performed to calculate the 

resonant frequencies of nanowires with cross-section 2-4nm from the free vibration. The 

simulation results can be used to verify the theoretical and analytical calibration for simply-

supported and investigate e0 for the cantilever and fixed-fixed boundary conditions.  
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CHAPTER 3. Modeling and Analysis of Nanowires with Timoshenko Beam Theory 

Incorporated with Surface Stress for Three Boundary Conditions 

 

3.1 Introduction 

 

 In this chapter, Timoshenko beam theory incorporated with surface stress was studied to 

model the resonant frequencies of nanowires. The procedure to develop the Timoshenko beam 

theory with surface stress is similar to previously found in Ref.[29], by incorporating the Young-

Laplace Equation with the Euler-Bernoulli beam theory. However, Timoshenko beam theory was 

applied in this thesis to eliminate the limitation of aspect ratio with Euler-Bernoulli beam theory. 

In addition, since it is known that the surface effect depends on the boundary conditions, 

cantilever, simply-supported and fixed-fixed nanowires will be studied to verify the modeling 

results. Finally, Face-Centered-Cubic (FCC) metal nanowires, Au(100) and Ag(100) with 

different cross-sectional sizes and aspect ratios, were studied. The resonant frequencies from 

nonlocal Timoshenko beam theory will be compared to the resonant frequencies derived from 

this chapter to solve for e0. 

        Euler-Bernoulli beam theory with surface stress effects to model static bending and 

transvers vibration of nanowires has been widely studied.[25, 28, 29, 32, 47] However, the 

Euler-Bernoulli beam theory is based on the assumption that the normal planes are always 

perpendicular to the neutral planes (Figure 3.1 (a)), but this is only true when the beam is slender 

(a length to diameter ratio, i.e. aspect ratio, greater than 10). However, the nanowire structures 

integrated into Nanoelectromechanical Systems (NEMS) sometimes have aspect ratios less than 

5 [49] and the shear force may become significant to the elastic behavior of these systems.[79] 
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Since the research objective is to study the size effect of the nanoscale materials with wider 

applicability, for example eliminating the aspect ratio limitation of Euler-Bernoulli beam theory, 

a more general beam theory is desired to include a larger range of parameters that may affect the 

nonlocal parameter e0.  

        Timoshenko beam theory considers shear deformation and is suitable for analyzing the 

elastic behaviors of either short or long beams. Contrary to the Euler-Bernoulli beam theory, the 

angular rotation of a beam, as shown in Figure 3.1(b), is not equal to du/dx due to the shear 

effect. Also, the shear force, V, is not equal to EId
3
u/dx

3
, where E is elastic modulus and I is the 

second moment of area. Instead, the shear force is equal the following expression  

( / )V AkG du dx         (3.1) 

where, A is the cross-sectional area, k is the Timoshenko shear coefficient which depends on the 

geometry, G is the shear modulus, φ is the angular displacement, u is the vertical displacement of 

the neutral axis and x is the axial position. For a circular and rectangular cross-section beam, the 

shear coefficients are:  

2 2(6 12 6 ) / (7 12 4 )...(circle)

(5 5 ) / (6 5 )........................(rectangle)
k

   

 

    
 

 

        (3.2)   

where υ is Poisson’s ratio.[15] 
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Figure 3.1. Illustration of the difference between the assumptions of the Euler-Bernoulli and 

Timoshenko beam theory. (a) In the Euler-Bernoulli theory, the angular displacement is equal to 

the derivate of the deflection with respect to the axial position x. (b) In the Timoshenko theory, 

the angular displacement has an additional term due to the shear effect. 

 

 

 

        By applying Eq. (3.1) and Newton’s second law, the dynamic form of the Timoshenko 

beam theory can be expressed with the following two partial differential equations (PDEs) [126]: 

2

2
( , ) [ ( )]

A u u
p x t AkG

t x x




  
  

  
       (3.3) 

and        
2 2

2 2
( )

I u
AkG EI

t x x

  


  
  

  
 .               (3.4) 
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    For Eqs. (3.3) and (3.4), ρ is the density of the nanowire material, t represents time, and p is 

the distributed load on the beam. 

    In addition to the shear effect for nanowires with aspect ratios less than five, the surface 

effect also has to be considered at the nanoscale. The surface effect is due to the uncoordinated 

surface atoms, where surface atoms lack adjacent atoms and dangling bonds are present.[28] As 

a result, the surface has properties that are different from the bulk volume and are commonly 

described with such parameters as surface stress, surface elasticity, or surface energy.[17] 

Researchers have found that surface effect can have a significant influence on elastic properties 

[29, 47], fracture and yield strength [27], and melting of nanowires.[71]  

    Previous research by He and Lilley incorporated surface stress and elasticity into the Euler 

Bernoulli beam theory to obtain an overall elastic modulus.[47]  They showed that surface stress 

has different effects for different boundary conditions. For example, for a positive surface stress 

and cantilever beam boundary conditions, the nanowires appear stiffer as compared to nanowires 

without surface stress. The opposite occurred for simply-supported and fixed-fixed beams with 

positive surface stress.[47] In addition, Cuenot et al. utilized an atomic force microscopy (AFM) 

to observe the surface tension effect on the mechanical properties of Ag and Pb nanowires and 

polypyrrole nanotubes.[75] Wang and Feng introduced a thin surface layer to investigate both 

surface elasticity and residual surface stress on the natural frequency of microbeams.[32] They 

also applied the Timoshenko’s beam theory to investigate both the static and dynamic behavior 

of buckling nanowires.[49] In addition, Zhang et al. modeled nanowires with rectangle cross-

sections for three different boundary conditions and applied pure bending moment at the end to 

study the stiffening effect of tensile surface stress.[25] Finally, Miller and Shenoy applied a 

continuum mechanics model with surface stress and elasticity to describe the size dependence of 
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the stiffness of plates and bars in either uniaxial tension or bending. [71]  However, the modeling 

of surface effects coupled with shear effects and boundary condition effects have not been 

widely studied. Thus, this chapter will include a detailed study on the combined effects of 

surface properties and shear effects on the resonant behavior of nanowires. 

 

3.2 Theoretical Modeling of the Timoshenko Beam Theory with Surface Stress 

 

    As seen in Figure 3.2, the surface effect is modeled with the “core-shell” approach where 

the surface is assumed as a thin layer. This thin layer has mechanical properties that differ from 

the bulk material and are typically characterized with the parameters surface energy or surface 

stress and surface elasticity. Surface elasticity has been found to have a negligible effect on the 

mechanical behavior for critical dimensions larger than 10 nm.[24] Thus, only surface stress will 

be considered in this discussion.  

 

 

 

Figure 3.2. Cross-sectional view of a circular nanowire modeled with the core-shell approach. 
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        By applying the Young-Laplace equation [31], the surface stress contributes a transverse 

load when the beam is in bending, as seen in Figure 3.3. The transverse load is expressed as [47] 

 
2

2

d u
p x H

dx
               (3.5) 

where H is a parameter determined by the surface stress along the nanowire longitudinal 

direction and the nanowire cross-sectional geometry.[47] For a circular or rectangular nanowire, 

H is expressed as  

2 ...(circle)

2 ...(rectangle)

D
H

w






 


       (3.6) 

where D is the diameter of the circular nanowire, w is the width of the rectangle nanowire and τ 

is the surface stress.  

 

 

 

 

Figure 3.3. A cantilever beam with a transverse load caused by surface stress. 

 

 

 

        From Eqs. (3.4) and (3.5), the Timoshenko beam theory can be expressed as two PDEs for 

both the deflection and angular displacement.[127] 
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4 2 2 4 2 4

4 2 2 2 2 4
(1 ) ( ) 0

H u u u EI IH u I u
EI A H I

AkG x t x kG AkG x t kG t

  
 

    
       

     
    (3.7) 

4 2 2 4 2 4

4 2 2 2 2 4
(1 ) ( ) 0

H EI IH I
EI A H I

AkG x t x kG AkG x t kG t
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 

    
       

     
    (3.8)             

        By using separation of variables and defining 
1

( , ) ( ) ni t

n

n

u x t X x e






  and 

1

( , ) ( ) ni t

n

n

x t x e






  ,  Eqs. (3.7) and (3.8) can be reduced to: 

4 4

4 2
0

X X
P Q R

x x

 
  

         (3.9) 

4 4

4 2
0P Q R

x x

   
  

 
                  (3.10) 

where the variables P, Q and R are defined as (1 )
H

P EI
AkG

  , 2( ) n

EI IH
Q I H

kG AkG
      and 

2

nR A  . The variable n is the nth mode circular resonant frequency. 

        The variables X and Φ are the spatial (time-independent) solutions of the vertical deflection 

and the angular displacement. Neglecting 
4

4

u

t





 [126], the solutions for X and Φ are  

1 1 2 1 3 2 4 2( ) cosh( ) sinh( ) cos( ) sin( )n n n n n n n n nX x C S x C S x C S x C S x          (3.11) 

 
1 1 2 1 3 2 4 2( ) cosh( ) sinh( ) cos( ) sin( )n n n n n n n n nx D S x D S x D S x D S x            (3.12) 

where,  the index n=1, 2, 3…,   

2

1

4

2
n

Q PR Q
S

P

 
   and 

2

2

4

2
n

Q PR Q
S

P

 
 . 

    Three different boundary conditions were studied, as shown schematically in Figure 3.4. 

They are cantilever (CA), simply supported (SS) and fixed-fixed (FF) and the corresponding 

boundary conditions are described as follows [79]: 

u(0)=φ (0)= M(L)=V(L)=0    (CA) 



42 

 

u(0)=u(L)= M(0)=M(L)=0   (SS) 

u(0)=u(L)=φ(0)= φ(L)=0    (FF) 

where M is the bending moment.  

 

 

 

 

Figure 3.4. Illustration of the three boundary conditions studied. (a) CA, (b) SS and (c) FF. 

 

 

 

3.2.1 Resonant Frequency Modeling 

    Applying the boundary conditions to Eqs. (3.11) and (3.12) above, the resonant frequency 

of a simply-supported nanowire can be obtained analytically as shown below in Eq. (3.13). [49] 

4 4 2 2
2 2

4 2 2

(1 ) ( )

[ ] / [ ]n

H EI HI
EIn n I

HnAkG kG AkGA
L L L

  


 
  

      (3.13) 
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    The resonant frequencies for a cantilever and fixed-fixed nanowire can be obtained 

numerically by solving Eqs. (3.14) and (3.15) respectively. 

1 2

1 1 1 1 2 2 2 2

2 2 2 2

1 1 1 1 2 2 2 2

0 0

1 0 1 0
0

sinh( ) cosh( ) sin( ) cos( )

cosh( ) sinh( ) cos( ) sin( )

n n

n n n n n n n n

n n n n n n n n

S S L S S L S S L S S L
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 

    (3.14) 

1 2
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1 1 2 2

0 0
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n n

n n n n n n n n

n n n n

S L S L S L S L

S L S L S L S L

 

   




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    (3.15) 

 Herein, δ1n and δ2n are defined as, 
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2
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2

n n
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AkG I EIS
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 


 
 .     

 Figure 3.5 is the plot of the determinant (3.15) with respect to resonant frequencies for 

Ag(100) with D=10nm, AR=2.5, a density of ρ=10500kg/m
3
, an elastic modulus of E=76GPa, a 

surface stress of τ=0.89N/m, and a Poisson’s ratio of υ=0.3.[5] The intersection points of the 

determinant curve and the horizontal axis are the solutions of the resonant frequencies of each 

mode (n=1, 2, 3…). The solution can be found in Table 3.V with D=10nm and AR=2.5. 
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Figure 3.5. Illustration of the values of determinant versus circular frequencies for fixed-fixed 

Ag nanowire with D=10nm and AR=2.5. 

 

 

 

 

3.2.2.   Free Vibration Modeling 

        In the free vibration models, an initial concentrated static force F is applied at the free end 

of  the cantilever, and at the midpoint of simply-supported and fixed-fixed nanowires. Thereafter, 

a complete solution of the nanowires’ vibration after removing the exciting point force F can be 

obtained. The vibration of the nanowires is a function of the displacement with respect to 

location and time. The vibration solution is achieved with the initial conditions and the resonant 

frequencies. 

        The initial condition of the vibration of the nanowires is the static deflection solution and 

zero velocity. The static bending solutions for the Timoshenko beam theory with surface stress 

and three boundary conditions are shown in Eq. (3.16) [91]. 
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1 1
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where,   ,       (3.17) 

and F is the applied force in the static bending to stimulate the initial condition. 

        From Eq. (3.11) and the determinants (3.14) and (3.15) for the cantilever and fixed-fixed 

nanowires respectively, the spatial solution is   

2
1 1 2 2

1

1
( ) cosh( ) sinh( ) cos( ) sin( )n

n n n n n n

n n n

X x C S x S x S x S x


  

 
    

 

    (3.18)

 

and for the simply-supported nanowires, the spatial solution is 

2( ) sin( )n n nX x C S x ,          (3.19) 

where n indicates nth mode of the vibration. 

        Cn are the unknown constants that need to be solved with respect to Eq. (3.16). For a 

cantilever boundary condition, 

  1
1 1 2 2 1 1 2 2

2

sinh( ) sin( ) / cosh( ) cos( )n
n n n n n n n n n
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S S L S S L S S L S S L
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


 
    

 

       (3.20) 

and for fixed-fixed boundary condition,  

 2
1 2 2 1

1

sinh( ) sin( ) / cos( ) cosh( )n
n n n n n

n

S L S L S L S L





 
   
  .               (3.21)

 

        If we consider a cantilever boundary condition, after applying the initial conditions, Eq. 

(3.22) can be obtained as stated below. 

1 1
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        The initial conditions can be expanded into a series of sine functions as shown in Eq. (3.23), 

where m indicates positive integers, such as 1, 2, 3… 

1

( , 0) sin( )m

m

m x
u x t B

L





                   (3.23)  

        The spatial term can also be expanded into a series of sine functions, as shown in Eq. 3.24.

2
1 1 2 2

1 11

1
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n n n n n n nm

n mn n n

m x
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 

 

 
    

 
  (3.24) 

        Finally, the initial condition can be applied to obtain Cn in Eq. (3.25). 

1 1 1 1 1

sin( ) sin( ) sin( )m n nm n nm

m n m n m

m x m x m x
B C b C b

L L L

      

    

                  (3.25) 

        Then the following linear relationship can be used to solve for Cn. 

                  (3.26) 

 

        The coefficients Cn for each resonant frequency can be calculated by this set of linear 

equations. Theoretically, a ∞ by ∞ matrix is needed to calculate the coefficient; thus, by limiting 

the number of frequencies, there are numerical errors that need to be tested to validate the results. 

The discussion of the error is discussed in section 3.4. 
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3.3. A Comparison of the Resonant Frequencies Calculated with Timoshenko Beam Theory 

with Surface Stress to those Calculated with MD Simulations 

 

        Table 3.I presents the comparison of the first three resonant frequencies for Au(100) 

nanowires calculated with MD simulations and Timoshenko beam theory with a tensile surface 

stress of 1.03N/m[128]. The boundary condition for the nanowires is fixed-fixed. The elastic 

modulus (E) were obtained from Reference [52] from tensile simulations with the indicated 

temperatures and geometries shown in Table 3.1. As can be seen, there is good agreement 

between the results from MD simulation and those calculated with Timoshenko beam theory 

with surface stress. The results of calculation are slightly larger than from the MD simulation 

particularly when the dimension is small. The maximum error for the calculated fundamental 

frequency is 7% for the 4.08x4.08x49 (nm) nanowire at 300K. As the dimension grows,  the 

fundamental frequencies approach the values from the MD calculations. In contrast, the resonant 

frequencies of the higher modes show smaller values than the values calculated with MD 

simulations. 

 

 

 

Table 3.I. The first three resonant frequencies for fixed-fixed Au nanowires with different 

geometry (density =19,300kg/m
3
 and Poisson’s ratio of  υ=0.44). The geometry, temperature, 

elastic modulus and MD results are from Ref. [53]. The surface stress value of Au(100) is from 

Ref. [128]. 

 

   From MD 
From the Timoshenko theory with 

surface stress (1.03N/m) 

Dimension(nm) T(K) E(Pa) f1(GHz) f2(GHz) f3(GHz) f1(GHz) f2(GHz) f3(GHz) 

4.08x4.08x49 4.2 39 2.71-2.78 7.28-7.33 13.8-13.9 2.96 7.06 12.39 

 300 33.8 2.56-2.63 6.87-6.95 12.9-13.2 2.82 6.69 11.67 

5.71x5.71x68.5 4.2 41.6 1.95-1.97 5.24-5.25 9.92-9.94 2.05 5.02 8.92 

 300 39.1 1.99 5.19-5.20 9.62-9.87 2.01 4.89 8.68 

7.34x7.34x88.1 4.2 42.9 1.53 4.09 7.74 1.56 3.88 6.95 

 300 41.8 1.54-1.55 4.05-4.19 7.5 1.55 3.83 6.87 
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3.4 The Free Vibration Solution 

 

        Ag was used to study the free vibration of nanowire beam. The material parameters for Ag 

are a density of ρ=10500kg/m
3
, an elastic modulus of E=76GPa, a surface stress of τ=0.89N/m 

[47], and a Poisson’s ratio of υ=0.3. Table 3.II below lists the values of C1 corresponding to the 

fundamental resonant frequency calculated with n number of resonant frequencies and the 

relative error for a free vibrating Ag cantilever nanowire. From Table 3.II, it can be seen that if 

30 frequencies and vibration modes are used to calculate the displacement, the error is 0.00007% 

and can be considered as negligible. Therefore, thirty vibration modes were used for the 

remaining calculations. 

 

 

 

Table 3.II. C1 Based on n frequencies and the associated calculation error (Cantilever Ag 

nanowire with D=20 nm, L=20D) for F=1nN (nano Newtons). C1,n is calculated by using Eq. 

(3.26),  with a nxn matrix. 

 

Number of ωn 

N 
C1,n C1,n-C1,n-1 (C1,n-C1,n-1)/C1,n 

2 3.647319×10
-8

 4.09×10
-10

 1.12142% 

5 3.650733×10
-8

 -5.76×10
-12

 -0.01579% 

10 3.651363×10
-8

 1.55×10
-12

 0.00424% 

20 3.651324×10
-8

 1.20×10
-13

 0.00033% 

30 3.651322×10
-8

 2.54×10
-14

 0.00007% 

 

 

 

        The free vibration solution of a cantilever, simply-supported and fixed-fixed Ag nanowires 

with a 20 nm diameter cross-section and aspect ratio (AR) of 20 are presented in Figure 3.6-3.8. 

The initial applied force was 1nN. As can be seen, the surface stress expands the amplitude of 
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deflection for a cantilever but reduces the amplitude of simply-supported and fixed-fixed 

nanowires, similar to the static deflection solution. As can also be expected, the vibration of a 

cantilever is slower when surface stress is included but simply-supported and fixed-fixed are 

faster as compared to the solution with bulk material properties due to the change in resonant 

frequency from the surface stress. 

        The normal stress and velocity of each point on the nanowire with respect to different time 

and position can be calculated and the kinetic and elastic potential energy can be derived with the 

vibration solution. 

 

 

 

 

Figure 3.6. The vibration displacement of a cantilever Ag nanowire (D=20nm, AR=20). 
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Figure 3.7. The vibration displacement for half (x∈[0, L/2]) of a simply-supported Ag nanowire 

(D=20nm, AR=20). 

 

 

 

 

 

 

Figure 3.8. The vibration displacement for half (x∈[0, L/2]) ) of a fixed-fixed Ag nanowire 

(D=20nm, AR=20). 
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3.5 Analysis of Shear and Surface Effects 

 

3.5.1 Influence of Shear and Surface Effects on the Fundamental Frequency 

        In order to compare the surface and shear effects, ten aspect ratios (AR) were studied, AR= 

2.5, 5, 7.5, 10, 12.5, 15, 17.5 and 20, for nanowires with diameters of 10 nm, 20 nm, 100 nm, and 

500 nm. A normalized resonant frequency ratio was used to study the effects of surface stress. 

This ratio is defined as Fi1=ωi1/ω1 where the fundamental resonant frequency, ωi. The subscript i 

is the theory used in the calculations and denoted as (1) for Timoshenko beam theory with 

surface stress, (2) for Timoshenko beam theory without surface stress, and (3) for Euler-

Bernoulli beam theory with surface stress. The fundamental frequency ω1 is calculated with the 

classical Euler-Bernoulli beam theory.  

        The numerical calculations were validated by studying the case of Timoshenko beam theory 

when τ=0, see Figure 3.9, for the three different boundary conditions. As can be seen, the 

normalized fundamental resonant frequencies approach the frequencies as those calculated with 

the Euler-Bernoulli beam theory without surface stress when the aspect ratios become large. By 

including the shear deformation, the Timoshenko beam theory predicts a larger bending 

deformation as compared to the Euler-Bernoulli beam theory. Therefore, in general, Timoshenko 

beams behave as more flexible beams and have lower fundamental resonant frequencies than 

those predicted with the Euler-Bernoulli beam theory. As can also be seen in Figure 3.9, the shift 

in resonant fundamental frequency due to the shear effect is independent of size (i.e. diameter 

independent) and depends only on the aspect ratios, where the shear effect becomes more 

pronounced for small aspect ratios. In addition, the change in the fundamental resonant  
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Figure 3.9.  The normalized fundamental frequencies versus aspect ratio for Ag nanowires from 

the Timoshenko beam theory for τ=0 and the three different boundary conditions: (a) cantilever, 

(b) simply-supported and (c) fixed-fixed. 

 

 

 

 

 

 

 

    Boundary condition effects were considered by comparing the normalized fundamental 

resonant frequencies, Fi1. The normalized fundamental resonant frequencies are calculated with 

(1) Timoshenko beam theory with surface stress (see Figures 3.10(a), 3.11(a), 3.12(a)) and (2) 

Euler-Bernoulli beam theory with surface stress (see Figures 3.10(b), 3.11(b), 3.12(b)) for the 

three different boundary conditions. Figure 3.10 illustrates the change in fundamental resonant 

frequency of a cantilever nanowire. The fundamental resonant frequency decreases as the 

diameter decreases for all three diameter nanowires due to surface stress for both the 

Timoshenko and Euler-Bernoulli beam theory with surface stress. It can also be seen that the 
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surface stress effect decreases with decreasing aspect ratios. The Timoshenko and Euler-

Bernoulli beam theory with surface stress predict similar resonant frequencies until the AR<5.  

 

 

 

 

Figure 3.10.  The normalized fundamental frequency versus aspect ratio for  cantilever Ag 

nanowires calculated with (a) Timoshenko and (b) Euler-Bernoulli beam theory with surface 

stress. 

 

 

 

 

 

 

        When the AR=2.5, the Timoshenko beam theory with surface stress predicts a lower 

resonant fundamental frequency (approximately 5.6% decrease) than the Euler-Bernoulli beam 

theory with surface stress. In this case, for small aspect ratios, the shear effect is greater than 

surface effects even for the smallest diameter nanowire (d=10 nm). 
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        Figures 3.11 and 3.12 illustrate the change in fundamental resonant frequency of a simply-

supported and fixed-fixed nanowire respectively. The fundamental resonant frequency increases 

for all three diameter nanowires due to surface stress for both the Timoshenko and Euler-

Bernoulli beam theory with surface stress. The increase in fundamental resonant frequency is 

greater for a simply-supported nanowire because it has only a negative curvature while the fixed-

fixed nanowire has both a positive and negative curvature. Also, the surface stress effect is more 

significant as the diameter decreases and the surface stress effect decreases with decreasing 

aspect ratios. The Timoshenko and Euler-Bernoulli beam theory with surface stress predict 

similar resonant frequencies until the AR<5. When the AR=2.5, the Timoshenko beam theory 

with surface stress predicts a lower fundamental resonant frequency, approximately 14.7% and 

37.8% decrease for a simply-supported and fixed-fixed nanowire respectively, than the Euler-

Bernoulli beam theory with surface stress. As the aspect ratio decreases, the shear effect 

increases and can be dominant as compared to the surface effects even for the smallest diameter 

nanowire. 
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Figure 3.11.  The normalized fundamental frequency versus aspect ratio for simply-supported 

Ag nanowires from (a) Timoshenko and (b) Euler-Bernoulli beam theory with surface stress. 

 

 

 

 

 
 

Figure 3.12.  The normalized fundamental frequency versus aspect ratio for fixed-fixed Ag 

nanowires from (a) Timoshenko and (b) Euler-Bernoulli beam theory with surface stress. 
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3.5.2 Analysis of higher order resonant frequencies 

        Tables 3.II-IV list the three lowest frequencies and corresponding frequency ratios for Ag 

nanowires with diameters D=10 nm and 500 nm, AR=2.5, 10 and 20, and with different boundary 

conditions. The values predicted with the Euler-Bernoulli theory without surface stress are also 

given. The classical Euler-Bernoulli beam theory shows that the frequency ratios depend on the 

boundary conditions. Thus, the frequency ratios between each modes are constants for bulk 

cantilever, simply supported, and fixed-fixed beams as listed in the last rows of Tables 3.III-3.V. 

However, if shear effects and surface stress are included in modeling the resonant behavior, the 

frequency ratios will change. Comparing a large nanowire, (D=500nm and AR=20) for the three 

boundary conditions, the frequency ratios are similar to the constants from the Euler Bernoulli 

beam theory because the influence of both shear and surface effects are limited. However, there 

is a shift with either small dimensions or small aspect ratios.  

        For a small aspect ratio (AR=2.5), the shear effect is dominant. The ratios ω2/ω1 and ω3/ω1 

are smaller than the constants obtained with the classical Euler Bernoulli beam theory. Thus, the 

shear effect not only reduces the fundamental resonant frequencies of the nanowires for the 

different boundary conditions, but also reduces the higher order frequencies. Furthermore, the 

influence on the higher order frequencies is more significant than on the fundamental frequency.  

        For a large aspect ratio (AR=20), the surface effect is dominant. For cantilever nanowires 

with small dimensions, ω2/ω1 is much larger than the bulk ratio. However, ω3/ω2 is slightly 

smaller than the bulk ratio given in Table 3.III. Figure 3.13 illustrates the shapes of the first three 

vibrating cantilever beam modes. As the number of modes increases, the beam contains more 

waves but the overall shape tends to a straight line with less influence from surface stress. The 

first cantilever mode exhibits a single curvature while the remaining modes contain mixed 
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curvatures (similar to the fixed-fixed beam in Figure 3.4). The mixed curvatures for the higher 

resonant frequencies are believed to cause the lower surface stress influence on other 

frequencies, e.g. ω2 and ω3. Thus, the higher resonant frequencies are expected to be closer to the 

bulk. Finally, as listed in Tables 3.IV and 3.V, the frequency ratios for simply-supported and 

fixed-fixed nanowires are smaller than the bulk values. Since the positive surface stress increases 

the fundamental frequencies of simply-supported and fixed-fixed nanowires, higher order 

frequencies are also predicted to be closer to the bulk values by the decreased ratios. The 

tendency of the ratios for the fixed-fixed nanowires agrees with the MD simulations [53],  where 

ω2/ω1 and ω3/ω1 are also smaller than the bulk values. 

 

 

 

Figure 3.13.  The shape of the vibration modes of a cantilever beam corresponding to different 

frequencies.[126] 
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Table 3.III. The three lowest frequencies and the corresponding ratio for the cantilever Ag 

nanowires calculated from the Timoshenko beam theory with surface stress. The ratios from the 

Euler-Bernoulli beam theory without surface stress are presented for comparison. 

 

D(nm) AR ω1(GHz) ω2(GHz) ω3(GHz) ω2/ω1 ω3/ω1 ω3/ω2 

10 2.5 35.460 165.328 396.949 4.662 11.194 2.401 

 10 2.018 15.312 39.695 7.589 19.673 2.592 

 20 0.332 4.512 11.311 13.598 34.086 2.507 

        

500 2.5 0.714 3.280 6.851 4.594 9.595 2.089 

 10 0.047 0.288 0.770 6.123 16.386 2.676 

 20 0.012 0.074 0.204 6.338 17.483 2.758 

    

Bulk slender beam (From the Euler-

Bernoulli theory without surface stress) 
6.276 17.578 2.801 

 

 

 

 

Table 3.IV. The three lowest frequencies and the corresponding ratio for the fixed-fixed Ag 

nanowires calculated from the Timoshenko beam theory with surface stress. The ratios from the 

Euler-Bernoulli beam theory without surface stress are presented for comparison. 

 

D(nm) AR ω1(GHz) ω2(GHz) ω3(GHz) ω2/ω1 ω3/ω1 ω3/ω2 

10 2.5 92.246 270.421 458.796 2.932 4.974 1.697 

 10 8.014 26.974 55.927 3.366 6.979 2.073 

 20 2.838 8.014 16.098 2.824 5.672 2.009 

        

500 2.5 1.812 5.370 9.131 2.964 5.041 1.700 

 10 0.132 0.508 1.086 3.855 8.237 2.137 

 20 0.034 0.132 0.292 3.910 8.650 2.212 

    

Bulk slender beam (From the Euler-

Bernoulli theory without surface stress) 
4.000 9.000 2.250 
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Table 3.V. The three lowest frequencies and the corresponding ratio for the fixed-fixed Ag 

nanowires calculated from the Timoshenko beam theory with surface stress. The ratios from the 

Euler-Bernoulli beam theory without surface stress are presented for comparison. 

 

D(nm) AR ω1(GHz) ω2(GHz) ω3(GHz) ω2/ω1 ω3/ω1 ω3/ω2 

10 2.5 150.871 298.852 453.139 1.981 3.003 1.516 

 10 15.244 38.752 70.284 2.542 4.611 1.814 

 20 4.508 11.233 20.692 2.492 4.590 1.842 

        

500 2.5 2.997 5.946 9.026 1.984 3.012 1.518 

 10 0.288 0.751 1.379 2.608 4.787 1.835 

 20 0.075 0.202 0.389 2.709 5.201 1.920 

        

Bulk slender beam (From the Euler-

Bernoulli theory without surface stress) 
2.756 5.405 1.961 

 

 

 

 

3.6 Conclusions  

 

        In summary, a theoretical study of the effects of surface stress and shear force on the 

resonant behavior and amplitude of the vibration of nanowires has been presented. The resonant 

frequencies for square cross-section Au(100) nanowires were compared to values calculated with 

MD simulations with good agreement. A continuum mechanics based approach results in 

accurate results with a high efficiency for resonant frequency calculations. It was shown that the 

nanowires modeled with the Timoshenko beam theory with surface effects had decreasing 

fundamental resonant frequencies due to the shear effect as the aspect ratios decreased. Also, it 

was found that the surface effect becomes negligible as compared to the shear effect for all 

nanowires diameters when the aspect ratio is small (i.e. <5). This is in comparison to nanowires 

modeled with the Euler-Bernoulli beam theory with surface effects. In the case of the Euler-
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Bernoulli beam theory, the surface effect is significant for all aspect ratios when the diameters 

are small (e.g. 10 nm and 20 nm) and decreases with increasing diameter. Finally, the ratios 

between the higher order frequencies and the fundamental frequencies demonstrate that the shear 

effect has larger influence on the higher order frequencies. Conversely, the surface effect has 

smaller influence on the higher order frequencies.  

        In summary, the resonant frequencies and vibration of nanowires have been modeled with 

Timoshenko beam theory with surface stress for different boundary conditions. The solutions 

from this chapter will be compared to the nonlocal Timoshenko beam theory in order to study 

and parameterize the nonlocal effect in the following chapters.  
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CHAPTER 4. The Modeling of Resonant Frequencies for the Transverse Vibration of 

Nanowires with Nonlocal Elasticity and Timoshenko Beam Theory  

 

4.1 Introduction 

 

        In this chapter, the resonant frequencies of the transverse vibration of nanowires are solved 

with nonlocal Timoshenko beam theory integrated with nonlocal elasticity by using the material 

parameter e0. The purpose of the calculation is to compare the nonlocal effect with the surface 

stress effect and MD simulations. The comparison can be used to determine e0 and further 

develop the nonlocal beam theory for nanoscale materials, based on the hypothesis that a surface 

effect is a nonlocal effect and thus both modeling approaches should give consistent results. The 

resonant frequencies for all the three boundary conditions, such as cantilever, simply-supported 

and fixed-fixed are solved numerically. The analytical solution of a simply-supported nanowire 

is obtained by neglecting higher order terms. The analytical solution is then compared to the 

numerical solution with higher order terms to test the accuracy of the analytical solution. The 

analytical solution can clearly show the relation between surface stress τ and nonlocal parameter 

e0 for the simply supported boundary condition. 
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4.2 Numerical Solution of the Resonant Frequencies of Nanowires Using Nonlocal 

Elasticity with Timoshenko Beam Theory for Three Different Boundary Conditions 

 

        Nonlocal elasticity states that the stresses at a reference point are functions of the strains at 

all points of the body in the continuum. This theory is based on the classic continuum mechanics, 

but adds discrete particle effects.[44, 63] With nonlocal elasticity, interatomic interactions are 

considered as nonlocal effects. The stress-strain relationship is described as 

( ' , ) ( ') ( ') ( ' , ) ( ')ij V ijkl V ijt x x C x dV x x x dV x          .
   (4.1) 

The variables tij, σij, εij and Cijkl are the nonlocal stress, macroscopic (classical) stress, strain, and 

elasticity tensor, respectively. The variable  is the nonlocal modulus which indicates the 

nonlocal effects at the reference point x produced by local strain at the source x’. The variable λ 

is defined as λ=e0a/l, where e0 is the nonlocal material parameter. The variable a is an internal 

characteristic length, and herein is assumed to equal the lattice length of the material. The 

variable l is an external characteristic length, herein defined as the cross-sectional size. Finally, V 

is the volume of the material.[63] 

        By applying Green’s function[81], the integral equation (Eq. 4.1) can be simplified into a 

partial differential equation with the following relationship[63], which is the basic stress-strain 

relationship in nonlocal elasticity, 

2 2 2(1 ) ij ij ijkl ijl t C      .        (4.2) 

        Using Eq. (4.2), the dynamic form of the governing equation of nonlocal Timoshenko beam 

can be expressed as the following[33]: 

2 2 4
2

02 2 2 2
( ) ( )

d du d d
EI AkG I e a I

dx dx dt dx dt

  
            (4.3) 
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and  

2 2 4
2

02 2 2 2
( )

d d u d u d u
AkG A e a

dx dx dt dx dt




   
     

   
.      (4.4) 

        The variables E, I, A, G, φ, u and x represent elastic modulus, the second moment of area, 

cross-sectional area, shear modulus, angular displacement, vertical displacement of the neutral 

axis, and the axial position of the beam, respectively. The variable ρ is the density of the material 

and t represents time. Here, k is the Timoshenko shear coefficient and depends on the 

geometry.[33] The definition of k is Eq. (3.2) in Chapter 3.  

         Eqs. (4.3) and (4.4) can be converted into two partial differential equations that contain 

either φ or u as shown below. 

4 2 2 2 28 6 6
20 0 0

04 4 4 2 2 4

4 2 4 4 2
2

0 2 2 4 4 2

( ) ( ) 2( )
( )

( ) 0

e a I e a EI e a I
e a I

kG x t kG x t kG x t

EI I
I A e a EI A

kG x t kG t x t

    


     
  

   
   

      

    
             

   (4.5) 

2 2 22 8 6 6
4 2 0 0

0 04 4 4 2 2 4

4 2 4 4 2
2

0 2 2 4 4 2

( ) 2( )
( ) ( )

( ) 0

e a EI e a II u u u
e a e a I

kG x t kG x t kG x t

EI u I u u u
I A e a EI A

kG x dt kG t x t

 


 
  

   
   

      

    
            

  (4.6) 

        From Eq. (4.3), the normal stress-strain relation of nonlocal elasticity, can be expressed as 

2
2

0 2
( ) xx

xx xx

d
e a E

dx


  

.       (4.7)

 

        Similarly, for the shear stress and strain, the relation is defined as 

2
2

0 2
( ) 2xz

xz xz

d
e a G

dx


   .

        (4.8)
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        With these stress-strain relationships, the external loads have the following relationship with 

the deformation [33]. For bending moment M(x,t) 

2 3
2

0 2 2
( , ) ( )

u
M x t EI e a A I

x t x t

 
 
   

   
     .      (4.9) 

        For the shear force, V(x,t), the equation is
 

3
2

0 2
( , ) ( ) ( )

u u
V x t AkG e a A

x x t
 

 
  

   .
       (4.10) 

        Eqs. (4.5) and (4.6) have the same coefficients attached to variables u and . Thus, the 

general solution to Eqs. (4.5) and (4.6) has the same form. Using separation of variables, the 

solutions for u and   are assumed to have the following form spatial and temporal definition as 

defined below  

1

( , ) ( ) ni t

n

n

u x t X x e






           (4.11)  

and 

1

( , ) ( ) ni t

n

n

x t x e






 
.         (4.12) 

        The variables Xn and Φn are the spatial (time-independent) solutions for the vertical 

deflection and angular displacement. The variable ωn is the nth mode circular resonant frequency. 

The index has values n=1, 2, 3… 

        Consequently, the spatial equations with ωn are

2 4
4 4 2 2 2

0 0 0 4

2 2 2 2
4 2 2 4 20

0 2

( ) ( ) ( )

2( )
( ) 0

n n

n n n n

I EI u
e a EI e a e a I

kG kG x

e a I EI u I
I e a A A

kG kG x kG

 
  

  
     

   
       

   
           

,

  (4.13) 
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and 

2 4
4 4 2 2 2

0 0 0 4

2 2 2 2
4 2 2 4 20

0 2

( ) ( ) ( )

2( )
( ) 0

n n

n n n n

I EI
e a EI e a e a I

kG kG x

e a I EI I
I e a A A

kG kG x kG

  
  

   
     

   
       

   
           

.

  (4.14)

 

        If we rename the coefficients as the following, 

2
4 4 2 2 2

0 0 0( ) ( ) ( )n n

I EI
P e a EI e a e a I

kG kG

 
  

 
    

 
,

     (4.15)

 

2 2
4 2 20

0

2( )
( )n n

e a I EI
Q I e a A

kG kG

 
   

  
      

  
,

     (4.16)

 

2
2 4

n n

I
R A

kG


  

 ,         (4.17)
 

The above equations can be expressed as 

4 2

4 2
0n nd X d X

P Q R
dx dx

      and    

4 2

4 2
0n nd d

P Q R
dx dx

 
   .

    (4.18, 4.19) 

The solution for Xn and Φn have the following forms 

1 1 2 1 3 2 4 2( ) cosh( ) sinh( ) cos( ) sin( )n n n n n n n n nX x C S x C S x C S x C S x   
,    (4.20)  

and 
1 1 2 1 3 2 4 2( ) cosh( ) sinh( ) cos( ) sin( )n n n n n n n n nx D S x D S x D S x D S x      .    (4.21) 

Where, S1n and S2n are the eigenvalues of Eq. 4.13 and 4.14 and are expressed as 

2

1

4

2
n

Q PR Q
S

P

 
   and 

2

2

4

2
n

Q PR Q
S

P

 
 .     (4.22, 4.23) 

The constants C and D are related by Eq. (4.4). If we assume 

1 1 2n n nC D , and 
2 1 1n n nC D

,       (4.24, 4.25)
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from Eq. (4.4),  

2 2 2 2 2

1 0 1
1

1

( )n n n n
n

n

AkG I EIS e a I S

AkGS

   


   
  .       (4.26) 

Similarly, If 

4 2 3n n nC D and 
3 2 4n n nC D 

       (4.27, 4.28) 

from Eq. (4.4),
 

2 2 2 2 2

2 0 2
2

2

( )n n n n
n

n

AkG I EIS e a I S

AkGS

   


   


.

      (4.29) 

        Now we can apply the boundary conditions to solve for the resonant frequencies for each 

case. For a fixed end, both deflection and angular displacement are zero, such that 

X=0, Φ=0.          (4.30, 4.31)  

        By applying separation of variables on Eq. (4.9), the spatial equation for the bending 

moment M  with the resonant frequencies is 

2 2

0( ) ( )n n
n nM x EI e a AX I

x x
  

  
       .     (4.32) 

        Integrating Eqs. (4.20) and (4.21) with Eq. (4.32), we have the equation for the bending 

moment 

 

 

2 2

0 2 1 1 1 1 1 4 2 2 3 2 2

2 2

0 1 1 2 1 3 2 4 2

( ) ( ) cosh( ) sinh( ) cos( ) sin( )
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n n n n n n n n n n n n n

n n n n n n n n n

M x EI e a I D S S x D S S x D S S x D S S x

e a A C S x C S x C S x C S x

 

 

      

   

 

(4.33)

 

        By using Eqs. (4.24)-(4.29), we can remove the coefficients C1n-C4n. Therefore, the 

remaining unknown constants are D1n-D4n as shown in Eq. (4.34). 
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 

 

2 2
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      

   

 .   

(4.34)

 

        The coefficients for D1n, D2n, D3n and D4n from the bending moment equation are presented 

in Eqs. (4.36-4.39), respectively. The coefficients are needed to further solve for the resonant 

frequencies for the simply-supported and cantilever boundary conditions. 

2 2 2 2
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    

    

    

 

   

   

    

   
2 2

0 2 2) cos( )n n na A S x  
        (4.35-4.38)

 

        By applying separation of variables on Eq. (4.10), the spatial equation for shear force is

2 2

0( ) ( ) ( )n n
n n

dX dX
V x AkG e a A

dx dx
   

       (4.39)
 

        Substituting Eqs. (4.20) and (4.21) into (4.39) gives 

 

 
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(4.40)

 

        Substituting Eqs. (4.24)-(4.29), into (4.40), we have the following equation for shear force 

with unknown constants with D1n-D4n  
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(4.41) 

 From the shear force equation, the coefficients of D1n, D2n, D3n and D4n from Eqs. (4.42)-

(4.45) are shown below, respectively. 
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      (4.42-4.45)  

        Four unknown constants D1n-D4n are needed to be determined for the solution of the 

vibration of the beam. Similar to the discussion found in Chapter 3 and Figure 3.4, the boundary 

conditions for the cantilever, simply-supported and fixed-fixed nanowires are: [79] 

Cantilever: X(0)=Φ (0)= ( )M L = ( )V L =0      (4.46) 

Simply-supported: X(0)= (0)M =X(L)= ( )M L =0     (4.47) 

Fixed-fixed: X(0)=Φ(0)=X(L)=Φ(L)=0.       (4.48) 

        For example, according to Eqs. (4.20) and (4.21) with (4.48), for fixed-fixed beams, in order 

to obtain nontrivial solutions for D1n-D4n, the determinant of the coefficient matrix for D1n-D4n 

must be equal to zero, see Eq. 4.49 below. The resonant frequencies can be derived numerically 

by solving the equation of the determinant. 
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     (4.49)  

        For cantilever beams, the first two lines of the determinant are the same as fixed-fixed 

beams, because of the zero deflection and angular displacement at the fixed end (i.e. x=0). At the 

free end where x=L, both the bending moment and shear force are zero. Therefore, the 

determinant for the cantilever boundary condition is 

 



69 

 

1 2

31 32 33 34

41 42 43 44

0 0

1 0 1 0
0

n n

CA CA CA CA

CA CA CA CA

 

         (4.50) 

Where, 
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    (4.55-4.58) 

        For simply-supported beams,  the displacement and bending moment are zero at both two 

ends (i.e. x=0 and x=L), thus, the corresponding determinant is 
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(4.59) 

Where 
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   (4.60-4.63) 
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4.3 Analytical Solution of the Resonant Frequencies of Nonlocal Timoshenko Beam Theory 

for the Simply-Supported Boundary Condition and the Comparison between the Analytical 

Solution and Numerical Solution 

 

       The solution of the vertical displacement for simply-supported boundary condition is 

assumed to have the form  

 
1

( , ) sin cos( )n n

n

u x t C n x L t 




 .        (4.64) 

Where, Cn are unknown constants depending on the initial conditions for vibration. The variable 

ωn is the nth mode of vibration frequency. 

        Similar to Ref. [129], if we assume that the terms
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and 
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   
in Eqs. (4.5) and (4.6) 

are negligible, the analytical solution of the resonant frequencies of simply-supported nanowires 

can thus be obtained as 
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        In order to test the accuracy of Eq. (4.65) when neglecting 
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and 
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u
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 
terms, the 

analytical solution Eq. (4.65) is compared to the numerical solution Eq. (4.59) of the resonant 

frequencies of the vibrating nanowires at the transverse direction. 

         Table 4.I. lists the frequency parameter, 
( Analytical or Numerical)

4

(Analytical or Numerical) ( )
n n
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EI



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term 

4

( )
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
 is introduced to normalize the resonant frequency as discussed in Ref. [130]. The 
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error is defined as ( Analytical )

( Numerical)

1 100%
n

n










 
   
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. As can be seen, the analytical solution is valid for 

the first 5 vibration modes, with an error of 1% or less, especially for the lower modes. Therefore, 

the accuracy of the analytical solution stated in Eq. (4.65), using the abovementioned 

assumptions, is acceptable. 

 

 

 

Table 4.I. The comparison of the analytical (A) and numerical (N) solutions for the frequency 

parameter η. e0 is chosen to be 0, 10 and 30. Other parameters are l=10a, L=100a, E=63GPa, 

a=0.409nm, ρ=10500kg/m
3
 and υ=0.3 as found for Ag<111>.[26, 131, 132]  

 
                       e0=0 e0=10 e0=30 

Vibration 

Modes 
ηωn(A) ηωn(N)  ηωn(A) ηωn(N)  ηωn(A) ηωn(N)  

1 3.1163 3.1164 -0.0048 3.0438 3.0439 -0.0048 2.6584 2.6585 -0.0048 

2 6.0920 6.0958 -0.0636 5.6057 5.6093 -0.0636 4.1704 4.1731 -0.0636 

3 8.8331 8.8550 -0.2480 7.5352 7.5540 -0.2480 5.1006 5.1133 -0.2480 

4 11.3056 11.3710 -0.5754 8.9212 8.9729 -0.5754 5.7246 5.7577 -0.5754 

5 13.5193 13.6572 -1.0094 9.9073 10.0083 -1.0094 6.1596 6.2224 -1.0094 

 

    

 

 

4.4 Conclusion 

 

        The resonant frequencies of Timoshenko beam theory are derived numerically with 

unknown nonlocal parameter e0 for three boundary conditions, such as cantilever, simply-

supported and fixed-fixed.  The analytical solution for the simply-supported boundary conditions 

is also solved with dropping some higher order differential terms. These terms are demonstrated 
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to have negligible influence (e.g. less than 1% difference) on the resonance of nanowires by 

comparing the analytical solution to the numerical solution. With the numerical and analytical 

solution of the resonant frequencies from nonlocal Timoshenko beam theory from in chapter, the 

comparison among the beam theory with surface effect, the beam theory with nonlocal effect and 

the MD simulation results will be used to test the hypothesis that these three methods model the 

same nonlocal effects and thus should be consistent.    
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CHAPTER 5. Molecular Dynamics Simulation Modeling 

 

5.1 Introduction to Molecular Dynamics Simulations 

 

        Molecular dynamics (MD) simulations are used to predict the mechanical behavior of 

structures from the atomic scale to the nanoscale.[52, 53] The basic concept incorporated in MD 

simulations is using Newton’s mechanics to describe the potential between pairs of particles in 

the investigated object.[54] MD simulations can be used to accurately depict the properties at the 

atomic scale, such as the displacement and velocity of particles and the potential and kinetic 

energy of particle systems. Compared to the size and the time length needed to capture the 

mechanical properties of nanoscale structures, such as resonance of nanobeams, the size[55, 56] 

and time[57, 58] scale of MD simulations is very small and the computational time and power 

required to bridge between MD (Ångstrom and femtosecond) and the nanoscale (nanometers and 

nanoseconds) can be prohibitive. Therefore, MD simulations are typically still an expensive 

method, which requires considerable computational power and simulation time due to the time 

steps required in MD simulations and the experimental time scale.[54] Thus, simulation sizes 

cannot be too large and to the best ability of the workstation in our laboratory, a nanowire with 

cross-section size of 10 lattice units with an aspect ratio of 10 is the largest structure that can be 

practically simulated.  

        Both tensile simulations for the elastic modulus and vibration simulations for the resonant 

frequencies of nanowires will be presented in this chapter. The surface effect is found to be 

associated with the bending curvature, as discussed in Chapter 3. Since there is no bending 

curvature in the tensile test, the elastic modulus from the tensile test should not include the 
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surface effects for the beam modeling. Thus, the elastic moduli used in the calculations of the 

resonant frequencies with surface effects or nonlocal effect in Chapters 3 and 4 will be obtained 

from the tensile simulations. Other researchers agree with this reasoning and have also applied 

the elastic moduli from tensile test simulations in their beam modeling. [52, 53, 112] 

        A potential function (or usually just called potential) describes the force interaction between 

a pair or group of particles (atoms or molecules) as shown in Eqs. (5.1) and (5.2).[133] For 

example, a pairwise potential only considers the interactions between two atoms. A pairwise 

potential only considers the energy between two atoms, such as Lennard-Jones and Morse 

potentials. The solution of the classical equations of motion (From Newton’s second law) can be 

obtained with the potential energy between the particles. [133] The expression of Lennard-Jones 

potential is [113] 

12 6

4V
r r

 

    

     
     

        (5.1) 

        where, V is the intermolecular potential (energy) between the two atoms or molecules. ε is 

the well depth. σ is the distance at which the intermolecular potential between the two particles is 

zero. r is the distance of separation between both particles. 

        The tensile test and the corresponding elastic modulus, yield strength, and strain rate effect 

of crystalline metals has been studied with MD simulations with pairwise potentials. Yuan et al. 

applied the stress-strain relationship for Al(111) nanowires with the Morse potential.[107] For 

the strain rate effect, they found that the lower strain rate will result in a lower yield stress, but 

does not affect the elastic modulus significantly from the linear fitting calculation. Conversely, 

for the temperature effect, they found that the elastic modulus decreases at higher temperature 

with the chosen Morse potential. Komanduri et al. applied the Morse potential to model the 

stress-strain relationship for both Face-Centered Cubic (FCC) and Body-Centered Cubic (BCC) 
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metals.[134] The FCC metals showed more obvious linear stress-strain relationship than the 

BCC metals. The hypothesis of their research is that that FCC and BCC metals should both 

behave linearly. Therefore, they concluded that the Morse potential cannot describe the BCC 

metals as well as FCC metals. Chang and Fang performed MD tensile and fatigue tests of 

nanoscale copper with the Lennard-Jones potential.[135] They found that the Lennard-Jones 

potential predicts larger elastic modulus than the Morse potential. Similar to Morse potential, the 

Lennard-Jones potential also predicts that the modulus decreases with increasing temperature.  

        Compared to the above mentioned pairwise potentials, the Embedded Atom Model (EAM) 

is more widely used to model the mechanical behavior of metals. EAM not only considers the 

nuclei’s pairwise effects, but also considers the contribution of energy from electrons to the 

nuclei. Therefore, EAM can be more accurate than the pairwise potentials unless the electron 

effect is negligible. EAM is found to be particularly appropriate for the metallic systems studied 

in this thesis.[115, 116] For the EAM model, the system’s total energy can be expressed as the 

following: [117] 

1
( ) ( )

2
i i i ij ij

j i

E F r


  
.

        (5.2) 

Where, iF  is the embedding term, which is the energy to embed atom i into the background 

electron density; i  is the host electron density at atom i due to the remaining atoms of the 

system. The term
ij is the pair-wise addition of the interaction and 

ijr  is the distance between 

atoms i and j.  

        Diao et al. used EAM to simulate the tensile deformation of Au nanowires with square 

cross-sections. An external tensile force was applied along the axial directions, which were in the 

<100> and <111> axial orientations.[108] The elastic moduli were obtained with the energy 
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method and the virtual stress method. Elastic moduli were found to increase with a decrease in 

cross-sectional area of the nanowires. Similar to Diao et al.’s work, Wang et al. performed MD 

tensile simulations with EAM for Au(100) nanowires with circular cross-section sizes from 2.85-

6nm [109] and a strain rate of 1.4x10
9
 1/s. The elastic moduli were found to decrease with 

decreasing cross-sectional size. Additionally, Wang et al. found that for the smaller cross-section 

sizes, for example 2.85nm and 2.97 nm, the nanowires experienced two elastic periods and two 

plastic periods, which are not common in most of the tensile simulations or experiments. 

However, the explanation of the two stages was not discussed. Mohan and Liang performed MD 

simulations of the tensile deformation of Ni nanowires using EAM potentials for different cross-

sectional sizes and strain rates at the temperature of 300K-900K.[112] The length of Ni 

nanowires was a fixed value of 60 lattice lengths (60x3.52 Å) in the <001> direction. The cross-

sectional sizes ranged from 5 to 20 lattice lengths. The strain rate applied ranged from 1.67x10
7
 

1/s to 1.67x10
10

 1/s. The authors found that the elastic modulus almost remained constant for the 

chosen cross-sectional sizes and strain rates. But the maximum yield stress increases as the 

cross-section increases.  

        MD simulations are also applied to model the bending behavior, such as deflection and 

resonant frequencies of nanomaterials. In Ref. [112], in addition to presenting results for tensile 

tests, Mohan and Liang also obtained the flexural deformation of Ni nanowires.[112] Single 

crystal Ni in the <001> (longitudinal direction) and with a dimension of 120×10×1 lattice units 

were simulated. Simply-supported and fixed-fixed boundary conditions were applied to obtain 

the resonant frequencies. The resonant frequencies were calculated and compared to the Euler-

Bernoulli beam theory with the elastic modulus obtained through the tensile test. They found that 
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the resonant frequencies from the simulations are at least one order lower than the theoretical 

results, but they did explain the reason for this difference.  

        McDowell et al. modeled the cantilever bending and tensile deformation of Ag(100) and 

Ag(110) nanowires using EAM potentials.[111] Euler-Bernoulli beam theory with a 

concentrated load at the free end of the cantilever was used to obtain the elastic modulus from 

the static bending test. The energy method was used to calculate the elastic moduli of the 

nanowires from the tensile test and Euler-Bernoulli beam theory with the cantilever boundary 

condition was used to calculate the elastic moduli from the bending simulations. They found a 

slight difference between the moduli calculated from tensile and bending tests. The authors 

discussed the possible reasons for the difference, such as a size effect, qualitatively. However, 

they did not apply any theory to explain the difference quantitatively. The same lattice 

orientations and energy method used by McDowell et al. will be referred to in order to calculate 

the elastic moduli for Ag in this thesis. The elastic moduli will be applied for the resonant 

frequency modeling with nonlocal effect to derive the true value of the nonlocal parameter e0. 

The details and discussion of the elastic modulus E and nonlocal parameter e0 from the MD 

simulations will be given in Chapter 6. 

        Bulk shear and rotary inertia effects on the resonant Au nanowires were also studied with 

molecular dynamics simulations using EAM potential by Olsson[53]. Timoshenko beam theory 

with the elastic modulus from the tensile simulations of Ref. [52] was applied to explain the 

simulation results. The resonant frequencies from the simulations were found to be lower than 

calculated by the Euler-Bernoulli beam theory. The author considered that the lower resonant 

frequencies were caused by the bulk effect such as the shear and inertia effects. However, we 

believe that the shear and inertia effects are not the only source of the shift. Nonlocal or surface 
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effects should also be considered to explain the shift for the size scale gap between nanoscale 

and the bulk scale for continuum mechanics. 

        It should be noted that in a survey of MD simulations for tensile and bending tests of 

nanowires, most researchers apply Euler-Bernoulli/Timoshenko beam theories, which are 

macroscale models, to analyze their simulation results. As such, many researchers can only 

predict trends with approximate agreements to the macroscale continuum theoretical modeling 

[53, 108, 109, 111, 112]. In addition, some researchers’ simulation results have little agreement 

with the theoretical modeling[109, 112]. As a result, the difference between the continuum 

mechanics modeling and MD simulation results for the elastic modulus and resonant frequencies 

is usually ignored and is not discussed. On the contrary, for the nanoscale materials, the 

difference between the MD simulation results and continuum mechanics modeling should be 

emphasized, because this difference is the unique behavior for nanomaterials and caused by the 

small size scale.  

        In the research presented in this thesis, Large-scale Atomic/Molecular Massively Parallel 

Simulator (LAMMPS) from Sandia National Laboratories[90] was employed to investigate the 

bending and tensile nanowires with cross-section sizes between 2 nm and 4 nm. The beam 

theories with surface effects and the nonlocal effect are compared to the resonance simulation 

results in order to derive the nonlocal parameter e0 in nonlocal elasticity.  

 

5.2 Initialization and Key Procedures in Molecular Dynamics Simulations  

 

        As seen in Figure 5.1, the FCC lattice single crystals of Ag nanowires are shown. The first 

nanowire is oriented with a <001> longitudinal direction along the z-axis, and a transverse 
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direction of <100> and <010> along the x- and y-axis, respectively. The second nanowire is 

oriented with a <110> longitudinal direction along the z-axis), and a transverse direction of <1̅10> 

and <001> along the x- and y-axis, respectively. Figure 5.2 shows the configuration of the tensile 

test, simply-supported and fixed-fixed nanowires with rectangular cross-sections. For simply-

supported and fixed-fixed boundary conditions, nanowires were divided into three sections to 

apply the appropriate boundary conditions. Specifically, at both ends, atoms in one lattice unit 

were grouped and the corresponding boundary conditions were applied to the atoms in this unit. 

The third section was the remaining atoms in the body of the nanowire. Cantilevers were divided 

into two sections, atoms in one lattice unit were grouped at one end to apply the fixed boundary 

condition, and the remaining atoms were grouped for the second section. The atoms for applying 

the boundary conditions were not included in defining the length for the theoretical modeling. 

For example, a nanowire with 7x7x72 lattice units (4.09Å) for fixed-fixed nanowires is 

considered as 7x7x70 in the theoretical modeling because one lattice unit at each end were fixed 

and did not contribute to the inertia of the vibration. It should be noted that the <110> and <1̅10> 

unit is √2 times as long as a <100> unit. Therefore the 7x7x70 Ag(100) is almost the same size 

as a 5x7x50 Ag(110) nanowire with a 1% difference in length (7 VS. 5√2). In the following 

simulations, the z direction is assumed to be the longitudinal direction and the transverse 

displacement of the vibration is obtained from the x direction, which is the direction of excitation 

for the applied loading. The details of the boundary condition setup and verification can be seen 

in section 5.4 with Eq. (5.6) and Figure (5.5) 
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(a) 

 
(b) 

Figure 5.1. The configuration of the lattice orientations (a) Ag(100) for 7x7x70 lattice units and 

(b) Ag(110) for 5x7x50 lattice units 
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Figure. 5.2. Illustration of the boundary condition set-up 

 

 

 

        After the step of setting the material and geometry of modeling, the Polak-Ribiere conjugate 

gradient (CG) algorithm was applied to achieve energy minimization.[136] According to the 

chemical bonding, crystalline structure, and temperature, energy minimization finds the positions 

and velocities of atoms, so the summation force on each atom is acceptably close to zero and the 

global potential energy of the system is close to the minimum. However, an absolute zero force 

in the simulation is not possible; instead, stopping criteria for the energy minimization is 

established. With the stopping criteria, the chemical structure of the model is assumed to be 

stable.[137] For the simulations presented in this thesis, the initial velocity of the atoms at 

temperature of 1K were first randomly set before the energy minimization. During the procedure 

of energy minimization, the atom coordinates were adjusted according to the CG algorithm for 

the minimum local potential energy at the target temperature (1K). Energy minimization is 
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terminated when one of the stopping criteria is satisfied. In our simulation, the stopping tolerance 

for energy was set at 1.0×10
-9

 (dimensionless units) and the stopping tolerance for force was 

1.0×10
-16

 (eV/Å) [136]. The details and numerical method of the Polak-Ribiere algorithm can be 

found in Ref. [138]. 

        A thermostat is a crucial step in MD simulations to ensure that the a group of atoms in the 

defined region follow predetermined physical laws through the time integration step and update 

the position and velocity for atoms after each time-step.[139] These physical laws include 

thermal dynamics equations to adjust the system from one temperature to another (or maintain 

the system at a constant temperature) and total energy conservation.[140-142] NVT and NVE are 

the most common thermostat methods in MD simulations, where N, V, T and E are defined as 

the number of the atoms, the volume, average temperature and energy of the defined group.[141, 

142]  

        The numerical method in LAMMPS to control temperature through velocity rescaling and 

achieve NVT thermostat is called Nose-Hoover algorithm. The NVT thermostat is also called a 

canonical ensemble.[143] By applying the NVT thermostat, the velocities and positions of the 

atoms are adjusted according to thermal dynamics equations. There are endothermic and 

exothermic processes of energy in NVT to adjust the average temperature of this group of atoms. 

It should be noted that, in MD simulations, the average temperature is a statistical quantity for 

the entire group of atoms and is calculated with the following equation from the kinetic energy or 

velocity of the atoms,[144] 

2

Bnk T
K  .          (5.3) 

Where T is the average temperature of the system; n is the number of degree of freedom in the 

system, kB is the Boltzmann constant and K is the kinetic energy of the system.  
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        The relation between the average velocity 𝑣̅, number of atoms in a group N and the mass m 

of the atoms and the kinetic energy is[144] 

2

2

Nmv
K             (5.4) 

        Usually, the constant temperature is considered to be close to the real experiment 

environment. If the simulated model needs to be maintained at a constant temperature, a NVT 

simulation is required.[145] The numerical method of Nose-Hoover style to achieve the velocity 

and position of the atoms at a given temperature can be seen in Ref. [139].  

        The NVE thermostat, which is also called a microcanonical ensemble, is applied to ensure 

that the total energy of the group of atoms is constant. Therefore, the system is considered to be 

heat insulated and there is no thermal exchange between the defined group of atoms and the 

external environment or other atoms not in this group. However, the energy exchange between 

kinetic energy and potential energy exist in the NVE thermostat, and there is temperature change 

in the NVE thermostat.[141, 142] The numerical integration for NVE thermostat to update the 

atoms’ velocity and position at each time-step can be found in Refs.[146, 147].  

        The time-step in the simulations was set to 1 femtosecond (fs). Before applying the tensile 

load or initial deformation for the resonance, the NVT thermostat was applied to set the average 

temperature of the system at 1K for 10,000 time-steps. After removing NVT, the NVE 

thermostat was applied for another 10,000 time-steps to output the temperature with the constant 

total energy of the system. If the output of the average temperature is at the range of 1±0.1K, the 

atoms are considered well initialized, because the system does not need an energy exchange to 

adjust the system’s average temperature. These initial relaxation procedures are found from the 

LAMMPS manual and reference [53]. 
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        After creating the atomic assembly with prescribed boundaries, the system was deformed. 

The NVT thermostat was enforced during the procedure of applying loads for both tensile and 

vibration tests. The reason to choose the NVT thermostat during the load application procedure 

is as follows. When there are external loads on the system, the energy of the system increases 

due to increasing elastic potential energy of the system from deformation. If the load is applied 

slowly, there should be no change in the average system temperature. Thus, a constant average 

temperature is enforced by applying the NVT thermostat. However, during the period of free 

vibration, the system should obey energy conservation since there should be no energy loss in the 

system (i.e. no damping, heat exchange, or external load is added to the system). The nanowires 

should vibrate freely. Therefore, the NVE thermostat was applied for the free vibration to 

enforce constant energy, and thus, there is a variable average temperature. 

 

5.3 Tensile Test and Boundary Condition Procedures for Molecular Dynamics Simulations 

 

        Two different types of simulations were performed and discussed in this thesis. Firstly, a 

tensile test was performed to obtain the elastic moduli of the nanowires to be used in the analysis 

of the vibration modeling. Similar to Ref. [148], a constant velocity was applied at the two ends 

of the nanowires to achieve a 10
7
 (1/s) strain rate for the tensile test. During the tensile test, the 

positions and velocities of the atoms at the middle were adjusted by the Nose-Hoover integration 

for a constant temperature of 1K. The relation between the constant strain rate and applied 

external velocity at the two ends of the nanowires is 𝜀̇ = 2𝑣0/𝐿, where  𝜀̇ is the targeted strain 

rate, 𝑣0 is the applied constant velocity at each end of the nanowire, and L is the total length of 

the nanowire. We applied a strain rate of 10
7
 (1/s) since strain rates from 1.67x10

7
 to 1.67x10

10 
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(1/s) in Ref. [112, 134, 149, 150] were found not to cause variations in elastic moduli values. In 

these papers, the strain rate does not affect the elastic modulus significantly, although a smaller 

strain rate is closer to a realistic experimental set-up. The 10
7
 (1/s) strain rate was applied until 

the nanowires fractured and necking was visible. Figure 5.3 shows the necking effect of the 

nanowire from tensile loading. The elastic modulus was calculated from the change of potential 

energy with a chosen strain ε using Eq. (5.5) below [111]. 

2 3

0

1 1

2 3

U
E

V
 

  
  

 
         (5.5) 

In the above equation, ∆U is the change in potential energy in the nanowires during the loading, 

E is the elastic modulus at the strain ε=0, V0 is the initial volume of the nanowire, and ζ is a 

constant from the third order polynomial fitting. The derivation of this equation can be found in 

Reference [108]. In this research, the elastic modulus was solved using Eq. (5.5) and applying a 

strain of ε=1%. The results of the elastic modulus from the tensile test will be presented in 

Chapter 6. 

 

 

 

 

Figure 5.3. The necking effect of the tensile test 
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        The boundary conditions for the resonance simulations are as follows. A fixed end is 

achieved by setting the initial velocity of the boundary atoms to zero, and then the force on these 

atoms is set to be zero at all times during the vibration. By checking the velocity of the fixed 

boundary atoms, we find that the velocity of the boundary atoms is always zero for the period of 

the vibration, so these atoms are fully fixed. To our best knowledge, we cannot find any 

references to explain how the simply-supported boundary condition is achieved in MD 

simulations. In our setup, a simply-supported end is obtained by setting the initial velocity of the 

boundary atoms to be zero, and then the linear momentum is set to be zero during the bending 

and vibration. Therefore, these atoms can only have rotational motion but do not move vertically. 

 

5.4 Boundary Condition Verification and Resonance Simulations 

 

        The three boundary condition set-ups were verified. The static bending simulations were 

compared to the fitting curves of the neutral axis from the Euler-Bernoulli beam theory. The size 

of 2.86x2.86x28.63nm (7x7x70 lattice units) was applied in the verification. The boundary 

condition set-ups should not be affected by the sizes. As seen in Figure 3.4 and Figure 5.4 (a-c), 

we added a gradually increasing vertical displacement to a horizontal row of atoms at the center 

of the free plane of a cantilever or to the mid-plane of a simply-supported and fixed-fixed 

nanowire. The location of the applied displacement is shown in Figure 5.5. The row of atoms is 

located at the intersection between the neutral plane in a beam in bending and the free end of a 

cantilever or mid-plane of a simply-supported and fixed-fixed nanowire. To the author’s best 

knowledge, this was the best method to apply the deformation because the load did not lock the 

free rotation of the free end of a cantilever and the load was distributed evenly at the depth (y) 
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direction for the simply-supported and fixed-fixed nanowire. After the angular displacement 

reaches 1%, we output the vertical displacement of the central atoms. The fitting functions for 

cantilever, simply-supported and fixed-fixed beams are polynomials described in Eq. 5.3, from 

Euler-Bernoulli beam theory. L and v are the length of the nanowires and the vertical deflection 

along the neutral axis, respectively. CCA, CSS and CFF, which are the constant amplitudes of the 

bending shape, are determined by the elastic modulus, size and boundary conditions. In the 

fitting test, CCA, CSS and CFF are calibrated by two points, such as (v=0, x=0) and (v=vmax, x=L) 

for the cantilever and (v=vmax, x=L/2) for simply-supported and fixed-fixed nanowires. 

According to Euler-Bernoulli beam theory, the shapes of the bending curves should be third 

order polynomials, which are associated with the boundary condition and the length of the 

nanowires, shown in the following expressions.  

 

 
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2 2
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2

FF
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(a) 

 

(b) 

 

(c) 

 

 Figure 5.4. Nanowires with a point force applied with (a) Cantilever (b) Simply-supported and 

(c) fixed-fixed boundary conditions. 
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Figure 5.5. Illustration the position of the applied load to achieve the bending displacement and 

the three different boundary conditions in MD simulations 

 

 

 

 

        Figs. 5.6 (a-c) show the fitting curves and boundary condition verification. Since the 

deformation of simply-supported and fixed-fixed nanowires are symmetric with respect to the 

midpoint, only half of the curves for these two boundary conditions are presented. The 

displacement curves from the simulations for the all three boundary conditions are presented in 

Eq.(5.4) with a coefficient of determination (R value) very close to 1. The proposed boundary 

condition set-ups are therefore considered as valid. The negligible differences between the 

simulations and fitting curves may be caused by the shear effect and size effect of the bending 

nanowires, which are ignored by the assumptions of Euler-Bernoulli beam theory. 
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(a) 

 

(b) 

 

(c) 

Figure 5.6. The simulation curves and fitting curves of the central atoms to verify the boundary 

condition set-up for (a) cantilever, (b) simply-supported and (c) fixed-fixed nanowires. 
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        After validating the boundary conditions, MD simulations were performed on the nanowires 

using free vibration of the nanowires to obtain the resonant frequencies. The resonance 

simulations were performed to obtain the resonant frequencies for each combination of lattice 

orientation, cross-sectional size and boundary condition as shown in Table 5.I. The flexural 

vibration of the nanowire after the initial relaxation (as introduced in the first paragraph of 

section 5.2) was achieved by the following steps, as shown in Figure 5.4. First, an incremental 

displacement was applied to the midplane of simply-supported and fixed-fixed nanowires and the 

free-end of cantilever nanowires, as indicated by the arrows in Figure 5.4 (a-c). At each loading 

step, the NVT thermostat was applied to adjust the average temperature of the atoms so that the 

positions and velocities of atoms can be determined. The incremental displacement was applied 

until the angular displacement reached 0.5% (2δ/L for fixed-fixed and simply-supported 

nanowires, and δ/L for cantilever nanowires). This small deformation was chosen to ensure that 

the nanowires’ vibration was within the purely elastic region. After the 0.5% initial deflection 

was reached, the deflection was held for a sufficient time (three times as long as the loading time 

in our simulations) with a NVT thermostat to ensure that the average temperature for the atoms 

of the nanowires were at 1K. Then, the applied deformation and NVT thermostat was removed to 

obtain the free vibration of the nanowire. During the free vibration period, the NVE thermostat 

was applied for enforce energy conservation. Similar procedures can be found in Reference [53] 

to obtain the resonant frequencies of FCC metals. 
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Table 5.I. The lattice orientations, sizes and boundary conditions in the resonance MD 

simulations 

 

Two different lattice orientations Ag(100) Ag(110) 

Three different sizes (lattice length 

η=4.09Å) for each orientations 

For Ag(100) 5x5x50η 7x7x70η 10x10x100η 

For Ag(110) 3.5x5x35η 5x7x50η 7x10x70η 

Three different boundary conditions Cantilever 
Simply-

supported 
Fixed-fixed 

 

 

 

 

 

 

 

        The transverse displacement of the central atoms at the free end for cantilevers and middle 

plane for simply-supported and fixed-fixed nanowires were stored to perform the Fast Fourier 

Transform (FFT) to calculate the resonant frequencies of the nanowires. Figure 5.7 shows the 

displacement of the central atom and FFT result for a 2.86x2.86x28.63nm nanowire with fixed-

fixed boundary conditions. Because the second mode of vibration is sometimes not very clear, 

we use the first (fundamental) resonant frequency to calibrate e0 in the following analysis. The 

complete FFT results are presented in Chapter 6 along with the corresponding discussion. 
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(a) 

 

(b) 

Figure 5.7. (a) The displacement of the middle atom for the excitement, holding and free 

vibration stages with the size of 2.86x2.86x28.63nm and fixed-fixed boundary condition. (b) The 

Fast Fourier Transform result of the displacement in the frequency domain for Figure 5.5 (a). 

Two peaks exist at the resonant frequencies of vibration mode 1 and 2. 
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5.5 Conclusions 

 

        This chapter first presents a summary of the MD simulations for the tensile tests and 

resonant frequencies calculations of the modeled nanowires. A common problem in these 

publications is that the results from MD simulations for nanoscale materials were not fully 

compared to mechanics models with size effects. However, size effects are unique for the 

nanoscale and are important when investigating the mechanical properties of nanomaterials. 

Therefore, the current analysis of the MD simulations of nanomaterials is lacking fundamental 

information on the origin of size effects. In the following chapter, a comparison among the MD 

simulations, Timoshenko beam theory with surface effects, and nonlocal Timoshenko beam 

theory will be presented.  

 In addition, the details of the procedures for the tensile tests and resonance tests with MD 

simulations using LAMMPS are introduced. The size effects will be studied with MD simulation 

results, obtained with the procedures introduced in section 5.2-5.4. The resonant frequencies of 

the transverse vibrating nanowires were calculated using FFT, and the results will be discussed 

in detail in Chapter 6. The fundamental resonant frequencies obtained in the MD simulations will 

be compared to the theoretical modeling in Chapter 4 to calibrate the nonlocal parameter e0 of 

nonlocal elasticity. This comparison will be used to test the hypothesis that MD simulations and 

nonlocal Timoshenko beam theory include the same surface effects and thus should be consistent. 

 

 

 

 



95 

 

CHAPTER 6. Calibration of e0 with Nonlocal Timoshenko Beam Theory, Timoshenko 

Beam Theory with Surface Effects, and MD Simulations 

 

6.1 Introduction 

 

        A fundamental problem of nonlocal elasticity is that e0 is not well defined.[39] Nonlocal 

elasticity was originally developed from the atomic scale lattice dynamics model without the 

nearest neighbor assumption[51], but not directly for nanoscale materials. Researchers to-date 

commonly assume arbitrary values for e0 to derive specific nonlocal mechanical theories at the 

nanoscacle. For example nonlocal beam theory has been derived to investigate the nonlocal 

effect of the static deflection and resonant frequencies of beams.[40-42] However, the 

significance of the nonlocal effect is ambiguous because the physical material parameters that 

affect e0 are unknown.  

        Some researchers have tried to calibrate e0 specifically for the nanoscale. Challamel [60] and 

Wang [62] derived e0 from the higher order lattice dynamic models, but they still included the 

nearest neighbor assumption in their derivation. Thus, their results do not contain the true 

nonlocal effect, but a higher order finite difference approximation. An alternative method is to 

calibrate e0 by comparing the results between molecular dynamics simulations and nonlocal 

theoretical calculation. Ref. [65] proposed a method which calibrates e0 of carbon nanotubes 

from the comparison between nonlocal elasticity and molecular dynamics simulations with the 

vibrating beam model. However, this calibration is incomplete, because for some combinations 

of sizes and boundary conditions, the solution of e0 was not determined. They considered that e0 

for these cases “does not exist” without giving an explanation of the mechanics that result in an 
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undetermined e0. In addition, to the best of our knowledge, there is no existing literature on the 

calibration of e0 for FCC metal nanowires with different types of lattice orientations and 

boundary conditions. However, in practice, FCC metal nanowires are commonly used in NEMS 

for those mass/force sensors with well-developed fabrication technologies.[9, 151, 152] 

Therefore, finding e0 for FCC metals is obligatory for contemporary nanotechnology, with the 

wide applications of metallic nanowires.  

        As shown in Figure 6.1, the hypothesis of this thesis is that Timoshenko beam theory with 

surface effects, nonlocal elasticity and the corresponding nonlocal beam theories, and MD 

simulations results model the same size scale effects for nanoscale beams with dimensions 

between 1 and100nm. With this hypothesis, e0 has been calibrated in two different ways. First, 

the analytical solutions of the resonant frequencies from Timoshenko beam theory with surface 

effects and nonlocal Timoshenko beam theory are compared for the simply-supported boundary 

condition.  The analytical solution of e0 for simply-supported nanoscale beams will be discussed 

in section 6.2. Thereafter, e0 for all the three boundary conditions, i.e. cantilever, simply-

supported and fixed-fixed, is calculated by calibrating the value to achieve the same resonant 

frequency as calculated with MD simulations to that predicted with nonlocal Timoshenko beam 

theory. The corresponding discussion is presented in section 6.3. Finally, by comparing the 

resonant frequencies from MD simulation results, the surface stress for Ag(100) and Ag(110) 

along the axial direction was calculated. The value of surface stress was found to have a slight 

difference from the value found in literature. The possible reasons for this difference will also be 

discussed. 
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Figure 6.1. The two different approaches used in this research to calibrate the nonlocal 

parameter e0 from nonlocal elasticity with beam vibration modeling. 

 

 

 

 

 

        In addition, the hypothesis that, for some combinations of lattice orientation and boundary 

conditions, e0 is an imaginary number will also be tested. Duan et al. states that a real e0 exists 

only when the maximum kinetic energy is larger than the maximum strain energy with the 

resonant frequencies obtained from the MD simulations for the fixed-fixed boundary 

condition.[65] Yet, in some instances, they found that the maximum kinetic energy was smaller 

than the maximum strain energy with the resonant frequencies obtained from MD simulations 

and they simply concluded that e0 does not exist in these cases. We believe that for these 

situations, e0 is imaginary. Furthermore, many papers indicated that a real e0 always reduces the 

stiffness of simply supported beams or plates [37, 39, 43, 80]. Yet, if one considers surface 

properties of metallic crystals, their surface stress can be either positive or negative and the 

mechanical stiffness of a beam or plate can decrease or increase depending on both the sign of 

e0 for Nonlocal Timoshenko 

Beam Theory 

ω1 from MD Simulations 

ω1 from Timoshenko Beam Theory with 

Surface Effects (τ) 
Simply-supported only 

(Analytical Solution of e0) 

All Three Boundary Conditions 

(Numerical Solution of e0) 

Solve τ for the Simply-supported 

Boundary Condition from the MD 

Simulations 
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the bending curvature and the boundary conditions. Thus, restricting e0 to a real value that 

always results in a lower stiffness contradicts mechanical beam theories with surface stress. MD 

simulations for Ag(100) and Ag(110), as shown in Figure 5.1, will be used to illustrate to the 

possible range in values for e0. It will be shown that both real and imaginary e0 values may be 

obtained from MD simulations for the simply-supported case. 

        The boundary condition has significant effect on the stiffness of the beam structures for the 

beam modeling with surface stress. For instance, a positive surface stress increases the stiffness 

of a simply-supported beam/plate but decreases the stiffness of cantilevers. [45-50] The 

boundary condition effect of beam with surface stress is the result of the bending curvature 

associated with the end boundaries. [31, 79] Similarly, the curvature for different boundary 

conditions also affects the nonlocal effect in the nonlocal beam theory. To our best knowledge, 

few researchers have applied the nonlocal beam theory with different boundary conditions. Most 

of the research on nonlocal beam theory only considered simply-supported nanowires/plates due 

to the convenience in calculations. [37, 39, 43, 44]  However, a cantilever is a more common 

beam structure in NEMS.[11-16] Additionally, the cantilever and fixed-fixed boundary 

conditions are typical models in realistic experiments and molecular dynamics simulations [53, 

111, 112]. However, analytical solutions for the cantilever and fixed-fixed resonant frequency 

cases have not yet been found. Therefore, MD simulations for all the three boundary conditions 

are introduced, and e0 will be calibrated for each condition. Since the resonant frequencies of the 

cantilever and fixed-fixed boundary conditions do not have existing analytical solutions, the 

analytical comparison between surface effects and nonlocal effects is restricted only to the 

simply supported case.   
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6.2 Analysis of the Material Parameter e0 Using Nonlocal Elasticity and Timoshenko Beam 

Theory with Surface Stress 

 

        The analytical solution of the resonant frequencies of simply-supported nanowires from 

nonlocal Timoshenko beam theory is expressed in Eq. (4.65), and rewritten for convenience 

below as Eq. (6.1). 

4
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0 0 0( ) ( ) ( )
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         Recall that in Eq. (4.7), the term 

4
2

0 2 2
( )

d u
A e a

dx dt
  is associated to the curvature of the 

beams and describes the surface stress effect. Also, the resonant frequency for simply-supported 

Timoshenko beam with surfaces stress, after ignoring the 4th order term in Eq. (3.13) [26], is 
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.  (6.2) 

        The resonant frequency from the two theories should be equal to each other when applying 

the hypothesis that surface effects and nonlocal effects can be used to model the same effect (i.e. 

surface properties), and, thus, they should be consistent, as shown in Eq. (6.3).  
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 (6.3) 

Therefore, a solution for (e0a)
2 

can be obtained and is as follows: 



100 

 

2 2 2 2

2

0 2 4 2

( ) 1

( )

1

n EI HI n H n n EI
EI A I EI H I A

L kG AkG L AkG L L kG
e a

n EI H n n
I A EI H

L kG AkG L L

      
   

   
 

                
                       

                     
           

             
            


 
  .

 (6.4) 

        If one considers that the shear effect is negligible when modeling a slender nanowire with 

an aspect ratio larger than 5, Eq. (6.4) leads to the expression for the relation between the 

nonlocal parameter e0 and surface stress, 
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.        (6.5) 

        The calculated values for e0 for Ag(111)and Ag(100) using Eqs. (6.4) and (6.5), will be 

presented in Table 6.I-II and 6.III-IV, respectively. The solution for e0 from Eq. (6.5) is therefore 
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.         (6.6) 

        It can be observed from Eq. (6.6) that e0 is a dimensionless quantity. 

        The Euler-Bernoulli and Timoshenko beam theories have been widely used and accepted in 

modeling the surface stress effect on the vibration of nanowires.[45-50] Therefore, the material 

parameter, e0, derived with the method introduced in this chapter is calibrated by including 

surface stress effects. From Eqs. (6.5) and (6.6), it can be seen that e0  for a simply-supported 

nanowire in flexural vibration is not a fixed number, but depends on the following parameters: 

the lattice length a, the elastic modulus E, the surface stress τ, the cross-section size w and shape 

(included in I and H), the length of the beam L and the vibration modes n. Duan et al. obtained 

values for e0 of carbon nanotubes by calibrating the molecular dynamics simulation and nonlocal 

beam theory in Ref. [65]. Similar to their findings, Eq. (6.6) also show that when the vibration 

mode, n, increases, then e0 decreases.  
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        In order to test the numerical value of e0, Ag(111) and Ag(100) with the following 

parameters will be used as examples and are shown in Figure 6.2 (a) and (b) respectively. The 

parameter values are: a lattice constant a=0.409nm[131], an elastic modulus, E=63GPa, for 

Ag(111) [132] and 89GPa for Ag(100) [26], n=1 for the first vibration mode, a surface stress of 

τ111=-0.2768N/m (-0.0173eVÅ
2
) for a Ag(111) surface, and τ100=0.1856N/m (0.0116 eVÅ

2
) for a 

Ag(100) surface [64].  

 

 

 

 

(a) 

 

(b) 

Figure. 6.2. Illustrations of (a) τ111=-0.2768N/m (-0.0173eVÅ
2
) for a Ag(111) surface, and (b) 

τ100=0.1856N/m (0.0116 eVÅ
2
) for a Ag(100) surface with left side views. 
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        The cross-section of the beam is a w by w square and I is defined as w
4
/12. The values for w 

were chosen to be 5, 50, and 100 nm and the aspect ratios were chosen to be 3, 5, 10, and 20 to 

study size and aspect ratio effects. With size scales above 5nm, the surface stress effect is 

demonstrated to have much more significant than the surface elasticity effect.[24] Therefore, the 

surface elasticity is neglected and the calibrated e0 only contains the surface stress information 

for this discussion. The normalized differences (ND) are defined as (e0,w/ surface stress-e0,w/o surface 

stress)/e0,w/o surface stressx100%. 

 

 

 

Table 6.I. e0 for Ag(111) calculated from Eq. (6.4) with shear effect. 

Aspect ratio 
Cross section size (w) 

5nm 50nm 100nm 

3 1.84 5.74 8.12 

5 4.85 14.93 21.08 

10 20.60 58.22 81.87 

20 192.89 238.73 329.94 

 

 

 

 

 

 

Table 6.II. e0 for Ag(111) calculated from Eq. (6.5) without shear effect and the normalized 

difference (ND). 

 

Aspect ratio 
Cross section size (w) 

5nm 50nm 100nm 

 e0                    ND e0                    ND e0                    ND 

3 1.63         -11.005% 5.12       -10.79%   7.24      -10.776% 

5 4.62         -4.739% 14.26      -4.498% 20.14    -4.485% 

10 20.29        -1.534% 57.50      -1.228% 80.88     -1.215% 

20 188.78        -2.132% 237.93     -0.335% 328.88    -0.320% 
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Table 6.III. e0 for Ag(100) calculated from Eq. (6.4) with shear effect, where i is the imaginary 

unit. 

 

Aspect ratio 
Cross section size (w) 

5nm 50nm 100nm 

3 1.24i 3.95i 5.59i 

5 3.20i 10.24i 14.49i 

10 11.94i 39.46i 55.95i 

20 41.90i 154.12i 220.13i 

 

 

 

 

 

 

 

Table 6.IV. e0 for Ag(100)  calculated from Eq. (6.5) without shear effect and the normalized 

difference with respect to the calculated values found in Table 6.III, i is the imaginary unit. 

 

Aspect ratio 
Cross section size (w) 

5nm 50nm 100nm 

 e0                    ND e0                    ND e0                    ND 

3   1.11i     -10.654%    3.53i       -10.753%   4.99i           -10.759% 

5 3.06i     -4.356% 9.78i       -4.460% 13.85i         -4.466% 

10 11.81i   -1.090% 38.99i     -1.190% 55.28i         -1.196% 

20 41.81i   -0.218% 153.67i    -0.294% 219.47i       -0.300% 

 

 

 

 

 

 

       The difference in values for e0 between Eq. (6.4) and (6.5) is presented to examine the shear 

effect in Tables 6.II and 6.IV. The shear effect mainly depends on the aspect ratio of the beam. 

As the aspect ratio increases, the shear effect is less significant and Eq. (6.4) converges to Eq. 

(6.5). For small aspect ratios, the shear effect increases the absolute value of e0 significantly and 

Eq. (6.4) should be used to calculate e0.         

        As can been seen from Tables 6.I-6.IV, for the analytical solutions of Eqs. (6.4) and (6.5), 

the negative surface stress of Ag(111) results in real values for e0 and the positive surface stress 
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for Ag(100) results in imaginary values for e0. As the cross-section size and aspect ratio grows, 

the magnitude of e0 also increases to match the surface stress for both positive and negative 

surface stress. The fact that the absolute value of e0 is an increasing function with respect to the 

cross-sectional size can also be demonstrated by taking the derivate of e0 with respect to w. From 

Eq. (6.6), the derivate of e0 with respect to w is 
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        It was found that only when τ is negative and the cross-section size w at the range of 
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dw
is negative and the 

absolute value of e0 is a decreasing function with respect to w. For the remaining intervals of w, 

the absolute value of e0 is an increasing function with respect to w, and also includes the cases 

where e0 is an imaginary number. This analysis demonstrates that e0 increases with an increasing 

cross-section. The same trend was found in Tables 6.I.-6.IV. Additionally, it can be seen in the 

MD simulations that e0 is an increasing function with respect to the cross-sectional size for the 

three chosen boundary conditions. The discussion of e0 from MD simulations will be presented 

in section 6.3.        
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        Finally, e0 can be a real number only when H is negative and larger than –EI(nπ/L)
2
 for a 

simply-supported beam. This conclusion indicates that a positive surface stress, or negative 

surface stress with a large absolute value cannot be described by nonlocal elasticity if we 

prescribe that e0 must be real. This may explain why for some combinations of aspect ratios and 

boundary conditions found in Ref. [65], the authors stated that e0 did not exist. They indicated 

that by substituting the resonant frequencies from the molecular dynamics simulation, when the 

maximum kinetic energy is larger than the maximum strain energy, only real values of e0 can be 

found. However, they did not discuss the situation when maximum kinetic energy is smaller than 

the maximum strain energy in detail. They just simply pointed out that e0 did not exist for these 

cases. However, we propose that an imaginary e0 is possible and necessary to describe the above 

cases. As shown in Eq. (6.8), the limitation of a real e0 is caused by the minus sign and the 

square of e0a. 

2 2

0( ) ij ije a t               (6.8) 

        This is from the corresponding differential operator of Eq. (4.2) according to Green’s 

function. For a positive Laplacian, 2

ijt , the additional stress ∆σij, is always negative as shown 

in Eq. (6.8). Therefore, if e0 is real, the elastic tensor Cijkl in Eq. (4.2) is always smaller than the 

bulk value and the stiffness of the nonlocal structure is always decreased by the nonlocal effect. 

However, this is contrary to beam theory with surface stress. Eq. (6.9) shows that the relation 

between the additional distributed load, Δp(x), and a surface stress.[47] Here, H, defined by Eq. 

(3.6), can be either negative or positive depending on the sign of the surface stress. The variable 

u is the deflection of the beam and 2 2d u dx  is the approximation of the bending curvature.  

 2 2 .H d u dx p x            (6.9) 
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        For a simply-supported beam, a positive surface stress increases the stiffness of the beam 

and a negative surface stress decreases the stiffness due to the bending curvature.[26, 29, 30, 47] 

The nonlocal strain-stress relation in Eq. (4.2) and the nonlocal beam theory in Eqs. (4.3) and 

(4.4) are commonly used in today’s nanoscale mechanics for the convenience and the advantage 

of differential (not integral) equations. Hence, we suggest that in order to make nonlocal beam 

theory describe a broader category of nanomaterials with surface effects, e0 should be expanded 

to include an imaginary value to account for positive surface stresses and negative surface 

stresses with a large absolute value. 

 

6.3 Analysis of the Nonlocal Parameter e0 Using Nonlocal Elasticity and MD Simulations 

 

6.3.1 The Elastic Moduli from MD Simulations 

        Table 6.V. lists the elastic moduli and the fundamental resonant frequencies for each 

combination of lattice orientation, cross-section size and boundary condition of nanowires. The 

elastic moduli were solved with the energy method using the data from the MD simulations of 

nanowire tensile tests. The fundamental resonant frequencies were calculated by performing FFT 

of the beam vibration obtained with MD resonance tests. The equation to fit the elastic modulus 

E is Eq. (5.2) and rewritten below as Eq. 6.10 for convenience. 

2 3

0

1 1

2 3

U
E

V
 

  
  

 
         (6.10) 

Here, ∆U is the change in potential energy in the nanowires during the loading and is obtained 

from the MD simulations’ output file. E, the variable to be solved for, is the elastic modulus at 

the strain ε=0. V0 is the initial volume of the nanowire, and ζ is a constant from the third order 

polynomial fitting.  
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        It can be seen in Table 6.V that the elastic modulus of Ag(100) along the <001> direction 

decreases as the cross-sectional size decreases. However, the elastic modulus of Ag(110) along 

the <110> direction behave as the opposite, i.e., the elastic modulus increases as the cross-

sectional sizes increase. At the size range of 2nm-4nm, Ag nanowires for both lattice orientations 

 

 

 

Table 6.V. The fundamental resonant frequency of the vibration of Ag nanowires from MD 

simulations for different cross-sectional size and lattice orientation. 

 

Ag(100) 
f1 for cantilever 

(GHz) 

f1 for simply-

supported (GHz) 

f1 for fixed-fixed 

(GHz) 

Elastic 

Modulus 

(GPa) 

4.09x4.09x40.9nm 0.854 2.441 5.676 52.96 

2.86x2.86x28.63nm 1.181 3.418 7.996 50.77 

2.045x2.045x20.45nm 1.587 4.639 10.986 47.80 

Ag(110)     

4.05x4.09x40.49nm 1.343 3.562 7.264 107.21 

2.83x2.86x28.34nm 1.831 5.127 10.254 111.08 

2.002x2.045x20.02nm 2.583 7.206 13.916 114.07 

 

 

 

behave stiffer than the bulk material. The bulk elastic moduli are 44GPa  for Ag(100) in the <001> 

direction and 84.1GPa for Ag(110) in the <110> direction.[111] A similar tendency for the 

relation between the elastic moduli and cross-sectional sizes was also found by Matthew et al. in 

Ref. [111] and shown in Figure 6.3.  Matthew et al. focused on the elastic modulus for both 

lattice orientations with cross-section sizes of 2nm-8nm. The energy method with Eq. (6.10) was 

applied to calculate the elastic modulus from the tensile test with 2% strain. They found that for 

Ag(110), 4 nm was the cross-sectional size with the largest elastic modulus of about 46 GPa (see 
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Figure 6.3) along the <001> direction, i.e., the elastic modulus decreases as the cross-sectional 

size deceases when it is smaller than 4 nm. However, for Ag(110), the <110> direction does not 

have a peak value for the elastic modulus. The elastic modulus always increases as the cross-

sectional size decreases at the range of 2nm-8nm. 

 

 

 

 

Figure 6.3. The elastic modulus from tensile and bending tests with MD simulations from Ref. 

[111]. The “tension” curves are used to compare to our values of elastic modulus from the MD 

tensile test as shown in Table 6.V.  

 

 



109 

 

6.3.2 The Fundamental Resonant Frequencies from MD Simulations and the Corresponding 

Values of e0 with Comparisons to the Analytical Solution for Simply-supported Boundary 

Conditions 

 

 Table 6.V shows the fundamental frequencies of each nanowire with an aspect ratio of 10 

and different cross-sectional sizes, lattice orientations, and boundary conditions. Table 6.VI lists 

the value of e0 with respect to the fundamental resonant frequency for each combination. The 

values for e0 are solved by the bisection numerical method [153] with the determinants 

introduced from Eq. (4.50-4.63), where n=1 and ω1 (=2πf1) as obtained from the FFT values 

shown in Table 6.V. The simply-supported case was also solved with the numerical method for 

higher accuracy by neglecting the assumptions used in the analytical solution. It can be clearly 

seen that e0 is not a constant and depends on the three parameters we choose to study here, 

namely the boundary conditions, cross-sectional size, and lattice orientation.  

 

 

 

Table 6.VI. The nonlocal parameter e0 of Ag nanowires for different cross-sectional size and 

lattice orientation. 

 

Ag(100) 
e0 for 

cantilever 

e0 for simply-

supported 

e0 for fixed-

fixed 

4.09x4.09x40.9nm 27.898i 2.496 10.484i 

2.86x2.86x28.63nm 23.65i 1.437 7.675i 

2.045x2.045x20.45nm 19.094i 1.250 5.840i 

Ag(110)    

4.05x4.09x40.49nm 33.175 6.622i 7.781 

2.83x2.86x28.34nm 8.221 3.413i 7.497 

2.002x2.045x20.02nm 1.102 1.127i 7.096 
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        Similar to the conclusion found from the analytical analysis, e0 has to be imaginary for 

some of the MD simulations cases. Wang et al. modeled the resonance of plates and found that a 

real e0 always reduces the stiffness of the plates, which has the same effect of negative surface 

stresses.[22] The conclusion that the real e0 reduces the stiffness of simply-supported plates and 

beams is also supported by numerous other researchers. [37, 39, 43, 44] Moreover, Duan et al. 

calibrated e0 by comparing the nonlocal Timoshenko beam theory and molecular dynamics 

simulation on the transverse resonance of carbon nanotubes. They did not find the solutions of e0 

for some combination of sizes and boundary conditions.[65] However, we believe that the 

imaginary solution of e0 does exist for these cases.  

 The MD simulations support the previous conclusions from the analytical analysis that e0 

has to be imaginary for some combinations of sizes, boundary conditions and materials. In our 

simulations, the simply-supported Ag(100) has real e0 and Ag(110) has imaginary e0 for all the 

sizes in our simulations. The MD simulations also support the trend that the absolute value of e0 

increases when the cross-sectional size increases. This matches the analytical relation between e0 

and surface stress τ. It should also be noted that surface elasticity is typically negligible in most 

studies of surface effects when the cross-sectional size is over 5 nm [24, 26, 29, 30, 32, 59, 78]. 

However, the size scales in the MD simulations presented here are smaller due to computational 

restrictions (i.e. 2nm-4nm). Therefore, it is proposed that the surface elasticity must also be 

considered in our analysis of the resonant frequency properties. Therefore, using Timoshenko 

beam theory with surface stress and surface elasticity, the calculated resonant frequencies are 

shown in Eq. (6.12). The method to incorporate surface elasticity is achieved by replacing EI in 

Eq. 6.2 with the term (EI)* found in equation (6.11) below: [47] 

 
* 32

3
sEI EI E w 

.
          (6.11) 
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Where, E is the elastic modulus from the tensile test MD simulations, Es is the surface elasticity 

of the corresponding material, and w is the cross-sectional size of a square. 

        Therefore, the resonant frequencies from Timoshenko beam theory with surface stress and 

surface elasticity is 

 
 

*4 2 2
*

(surface-stress and surface-elasticity) (1 )n

EIH n n HI n
EI H A I

AkG L L kG AkG L

  
  

          
              

             

(6.12)  

        From Timoshenko beam theory with the nonlocal effect, the resonant frequencies are 

4

4 2

2 2 2

0 0 0

(nonlocal)

( ) ( ) ( )

n

n
EI

L

EI n EI n
e a e a I I e a A A
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


   

   

 
 
 

       
          

       

 (6.13) 

        If (surface-stress and surface-elasticity) (nonlocal)n n  , the relationship between the 

nonlocal parameter, e0, and the surface stress, τ, can be obtained. The difference between Eqs. 

(6.4) and (6.12) is that Eq. (6.12) contains the additional surface elasticity information for e0 and 

should be used for the smaller size scale, such as 2nm-4nm, used in the simulations found in this 

thesis. 

 
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 (6.14) 

        If the aspect ratio is over 5 and the shear effect is negligible, Eq. (6.13) can be simplified to 

 
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 .            (6.15) 

Or equivalently,  
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      (6.16) 

        To study the properties of e0 with respect to w, we also take the derivative of e0 with respect 

to w and to obtain the following equations shown in Eq. (6.17). If the derivative is positive, the e0 

function is an increasing function with respect to w. 
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            (6.17) 

        It is found that only within the region of τ defined by 
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, 
0d e

dw
 is a decreasing function. For the 

remaining range of values for , the absolute value of e0 is an increasing function with respect to 

w, including the case when e0 is an imaginary number. The simulation results found in Table 

6.VI for a simply-supported Ag nanowire is consistent with the results found with Eq. (6.17), 

where e0 increases when the cross-sectional size w of the nanowires increases.  Therefore, e0 is 

an increasing function with respect to the cross-section size for both of the lattice orientations 

tested. 
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6.3.3 The Boundary Condition Effect on e0 

 Boundary conditions also have significant influence on the value of e0, as shown in Table 

6.VI. One significant finding is that the real/imaginary property of e0 is closely associated with 

the boundary condition. For example, for Ag(100), e0 is an imaginary number for a cantilever 

and fixed-fixed nanowire, but real for the simply-supported case. For Ag(110), the opposite trend 

occurs for e0. This phenomenon can be explained using Eq. (6.8) as follows. In Chapter 3, it has 

been found that the changed stiffness of bending nanowires due to the surface stress depends on 

the boundary condition. The analysis of surface stress effects on bending nanowires found in 

Refs. [6, 8, 46] demonstrate that the surface stress effect has the opposite influence on the 

cantilever and simply-supported beams because of the different directions in the bending 

curvatures. For example, a positive surface stress reduces the stiffness of a cantilever but 

enhances the stiffness of a simply-supported nanowire. For the nonlocal effect, an imaginary e0 

in Eq. (6.8) increases the stiffness and a real e0 decreases the stiffness of the material, regardless 

of the boundary conditions. The elastic tensor Cijkl in Eq. (4.2) is always smaller than the bulk 

value and the stiffness of the nonlocal structure is always decreased by the nonlocal effect, if 

2

ijt is positive in Eq. (6.8). Therefore, in order to match the result from the beam theory with 

surface stress modeling, the real/imaginary property (which means the value of e0 is real or 

imaginary) of e0 for cantilever and simply-supported nanowires must be the opposite. The MD 

simulations support the above analysis. As seen in Table VI, the e0 values from the MD 

simulations clearly have opposite real/imaginary values for cantilever and simply-supported 

boundary conditions.  

        As discussed in Refs. [26, 29] and as seen in Figure 3.4 (c) and 5.4 (c), the bending 

curvature for a fixed-fixed nanowire in flexure is different from the uniform bending curvatures 
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found in cantilever or simply-supported nanowire. A fixed-fixed nanowire has a combination of 

directions of bending curvatures. The changing stiffness due to the surface stress depends on the 

overall effect of these curvatures.[26, 29] The changing stiffness can be similar to a cantilever or 

simply-supported nanowire because of this overall curvature effect. For the selected materials 

and nanowire dimensions in the MD simulations performed for this research, the resonant 

frequencies indicate that the value of e0 for fixed-fixed nanowires have the same real/imaginary 

property as cantilever nanowires.  

 

6.3.4 The Conservation of Energy Verification for Real and Imaginary Values of e0 

        To the best of our knowledge, no researchers have proposed the existence of an imaginary 

value for the nonlocal parameter e0. Thus, we need to verify whether an imaginary e0 violates 

any fundamental rules of physics. It should be emphasized that the MD simulations for free 

vibration of the nanowires was performed with the NVE constraint. Thus, conservation of energy 

was enforced for these simulations. The energy of a nanowire with undamped free vibration is 

the summation of the kinetic energy and the potential energy, and at any time during the 

vibration should be a constant. The equation of the kinetic energy of the beam is the following 

[126], 

2 2

0 0

1 ( , ) 1 ( , )

2 2
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u x t x t

T A dx I dx
t t


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       (6.18) 

        The potential energy due to the bending moment (M) is 
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0
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        Additionally, the shear force (V) also provides a small portion of potential energy as defined 

in the following equation: 

2

shear

0
2

L

sf V
U dx

GA
  .         (6.20)  

Here, fs=6/5 for a rectangular cross-section. The formulas for the bending moment M and shear 

force V were defined using Eqs. (4.9) and (4.10) in Chapter 4.  

        Using separation of variables, the kinetic energy is in the form of Eq. (6.21),  
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Since the temporal portion of the kinetic energy is the first derivative of the temporal part of the 

deflection (Eq. 4.11) and angular displacement (Eq. 4.12) with respect to time t, 
2sin nt  is the 

temporal term in the potential energy. According to Eqs. (4.9) and (4.10), the temporal potion of 

the potential energy is 
2cos nt , and is shown in Eqs. (6.22) and (6.23).  
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        As a result, if the maximum kinetic energy (the amplitude of 
2sin nt ) of the beam is equal 

to the maximum potential energy (the amplitude of 
2cos nt ), conservation of energy 
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conservation can be proven with 
2 2cos sin 1n nt t   . Therefore, in the following discussion, 

we will focus on the comparison between the maximum kinetic energy and potential energy for 

the cases of real and imaginary e0.  

        The maximum kinetic energy in the vibrating nanowires is: 

2 2 2 2

max

0 0

1 1

2 2

L L

n nT AX dx I dx       .      (6.24) 

      The equations for the maximum potential energy of the bending moment and shear force are  
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And at the same time,  
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 (6.26)  

Simply put, max bending moment max shear force maxU U U        (6.27) 

        As a first step, the energy conservation of the macroscale beam theory is tested. The 

resonant frequency from Euler-Bernoulli beam theory is 

 
2

4n

EI
n

AL
 


          (6.28) 

Therefore the spatial solution of the vertical displacement is  

 sinnX C n x L
         (6.29) 

        And the spatial solution of the angular displacement is  

 cosnn C
n x L

L


 

        (6.30) 
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Therefore, 
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   (6.31) 

        It can be seen from Eq. (6.31) that the first term of Eq. (6.24) is equal to the first term of Eq. 

(6.25) for Euler-Bernoulli beam theory. However, it was found that the resonant frequencies 

from the MD simulations for nanowires have a shift from the bulk value and are not equal to 

those calculated with Eq. (6.28). The additional terms describe other effects which are not 

considered in the Euler Bernoulli beam theories.  The term 2 2

0

1

2

L

n I dx    is the kinetic energy 

from the rotational inertia. The term

24
2 2 40

0

0 0
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( )
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n n

e ad d
e a AX I dx AX I dx

x dx EI dx
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     

     
      

    
 

 

is the potential energy due to 

the nonlocal effect. Finally, the term shear force maxU is the potential energy due to the shear force 

with the nonlocal effect. The resonant frequencies from the MD simulations with corresponding 

values of the nonlocal parameter e0 are used in the calculation for kinetic energy and potential 

energy to check whether energy conservation is met. 

        The shear effect, rotational inertia and the nonlocal effect are all naturally included in the 

MD simulations. Two materials, Ag(100) and Ag(110), were used to calculate the energies. It 

should be noted that the unknown constant C1 (Cn) in eq. (4.64) is determined with the initial 

conditions of the vibrating beams. However, this constant does not affect the comparison 

between the kinetic and potential energy, because it is found in both energy calculations. For 

convenience, C1 is assumed to have a value of 1 in the presented calculations below. The kinetic 

energy and potential energy calculations obtained with the fundamental resonant frequency from 
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the MD simulations are shown in Table 6.VII. The maximum kinetic energy from Eq. (6.24), 

maximum potential energy with e0=0 and with e0 in Table 6.VI are compared.  

 

 

 

Table 6.VII. The calculation for the kinetic energy and potential energy with respect to the 

fundamental resonant frequencies from the MD simulation and e0 from the previously introduced 

calibration. The percentage is from max max

max

100%
U T

T


   (Umax-Tmax)/Tmaxx100%. 

Ag(100) 

f1 for 

simply-

supported 

(GHz) 

Max Kinetic 

Energy 

(J with C1=1) 

Max Potential 

Energy (J with 

C1=1)when 

e0=0 

Max Potential 

Energy (J with 

C1=1) using e0 

listed in Table 

6.VI 

4.09x4.09x40.9nm 2.441 0.42247 
0.42901 

(1.5475%) 

0.42378 

(0.31048%) 

2.86x2.86x28.63nm 3.418 0.28412 
0.28789 

(1.3267%) 

0.28551 

(0. 48909%) 

2.045x2.045x20.45nm 4.639 0.19073 
0.19360 

(1.5070%) 

1.9124 

(0.26602%) 

Ag(110)     

4.05x4.09x40.49nm 3.562 0.89959 
0.86846 

(-3.4607%) 

0.89213 

(-0.83016%) 

2.83x2.86x28.34nm 5.127 0.63926 
0.62987 

(-1.4697%) 

0.63507 

(-0.65647%) 

2.002x2.045x20.02nm 7.206 4.6202 
4.6021 

(0.3921%) 

4.6211 

(-0.02063%) 

 

 

 

        The following conclusions can be made from table 6.VII. When the maximum kinetic 

energy is smaller than the maximum potential energy with the resonant frequencies obtained 

from the MD simulations, as found in Ref. [65] for fixed-fixed boundary condition, real values of 

e0 exist. However, conservation of energy implies that the maximum kinetic and potential 
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energies are equal when there is not energy loss or external loads acting on the system. It should 

be noted that during the vibration MD simulations, the NVE thermostat was applied; thus, the 

positions and velocities of the atoms were adjusted based on the assumption that the energy of 

the system was constant. In addition, there are no external loads acting on the system during 

vibration. Thus, conditions for the MD simulations ideally satisfy energy conservation. As seen 

in Table 6.VII, an imaginary e0 is required to ensure that the maximum potential energy and 

maximum kinetic energy are equal for the cases discussed. Finally, it can be seen that the 

imaginary e0 does not violate the energy conservation rule. In fact, it adjusts the maximum 

potential energy so that is approximately equal to the maximum kinetic energy with an error of 

less than 0.5%. We have already discussed that the imaginary e0 should exist to describe the 

positive surface stress for the simply-supported case. The energy analysis also supports that an 

imaginary e0 does not violate the conservation of energy. 

 

6.3.5 Calibrating the Surface Stress τ with e0 or Resonant Frequencies from MD Simulations 

        The surface stress was calculated from the calibrated e0 with Eq. (6.32) as an additional 

analysis. 
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        If the shear effect is negligible (i.e. AR >5), then Eq. 6.32 reduces to Eq. 6.33. 
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      (6.33) 

        The surface stress value can therefore be solved from a known e0 and the results are listed in 

Table 6.VIII. The surface stress can also be calculated with Eq. (6.34) from Eq. (3.13) with the 

resonant frequencies obtained from MD simulations. Eqs. (6.32) and (6.34) are equivalent and 

have the same results. 
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Table 6.VIII. The surface stress of simply-supported Ag nanowires for different cross-section 

size and lattice orientation with surface elasticity, -0.216eV/Å
2
 for Ag(100) and -0.571eV/ Å

2
 for 

Ag(110). 

 

Ag(100) 
e0 for simply-

supported 

τ (N/m) from Eq. 

(6.18) and (6.20) 
τ from Ref. [64] 

4.09x4.09x40.9nm 2.496 0.1083 
0.1856N/m 

(0.0116 eV/Å
2
) 

2.86x2.86x28.63nm 1.437 0.1112 

2.045x2.045x20.45nm 1.250 0.1112 

Ag(110)  

4.05x4.09x40.49nm 6.622i 0.3821 
0.4336N/m 

(0.0271 eV/Å
2
) 

2.83x2.86x28.34nm 3.413i 0.3320 

2.002x2.045x20.02nm 1.127i 0.3054 
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        Table 6.VIII. lists the surface stress values from Eq. (6.32) for each cross-section size for 

Ag(100) and Ag(110) with surface elasticity values of -0.216eV/Å
2
 and -0.571eV/ Å

2
, 

respectively [66]. It was found that the surface stress for Ag(100) in the axial direction is 

approximately a constant with variation of 2% (0.1083N/m as compared to 0.1112N/m). 

However, the difference in surface stress for Ag(110) is larger, with a maximum difference of 20% 

(0.3821N/m as compared to 0.3054N/m). The calculation of the surface stress from the surface 

energy using the modified embedded atom method (MEAM) [64] is referred here as reference 

data listed in Table 6.VII. There is a shift between the calculated surface stress from the beam 

modeling method discussed above and the surface stress from the MEAM calculation. 

        There are several possible reasons for the differences in the surface stresses. The first reason 

is that the shift of the surface stress might be caused by the difference between the EAM and 

MEAM method. The electron density of the EAM is spherically symmetric, but the MEAM 

assumes that the electron density is a function of angles between atoms with additional angular 

forces.[154] However, it may not be necessary to consider angular forces for FCC metals.[155] 

To our best knowledge, we cannot find the surface stress value for Ag(110) with EAM. However, 

in order to present both real and imaginary e0, Ag(110) as modeled as a comparison to Ag(100).  

        Another reason of the difference for the surface stress shift is that the current modeling 

methods of the surface stress and surface elasticity on bending nanowires may not be sufficient 

for sizes below 4nm, i.e., the nonlocal effect is not completely equal to the summation of surface 

stress and surface elasticity effect as there may be other effects that have not been considered. 

The surface stress and surface elasticity modeling has been shown  to be appropriate for the size 

scale over 15nm.[90] However, validation of surface stress and surface elasticity modeling for 

cross-sectional size of 2-4 nm has not been verified numerically or experimentally. Therefore, 
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the hypothesis that the beam theories with surface effect and nonlocal effect may still be limited 

within the sizes tested since the nonlocal modeling is a more general method that also includes 

other size effects, such as van der Waals interaction [22, 23] and phonon dispersion [156-158]. 

Thus, it may be necessary to include these effects for dimensions from 1-5 nm. However, due to 

the limitation of computational resources, MD simulations for structures larger than 4 nm x 4 nm 

were time prohibitive. 

        A third reason for the difference in surface stress values may be due to the results being 

highly sensitive to the elastic moduli values used in the calculations. In this research, the elastic 

moduli were obtained by applying a fitting calculation to the MD simulations of a tensile test for 

the different sizes and lattice orientations using Eq. (6.10). However, as can be seen clearly in 

Table 6.IX, nanowires do not necessarily behave linearly elastic for the size scales used in the 

MD simulations. Therefore, the elastic modulus E is not a constant as found for linearly elastic 

materials. For MD simulations, different strains, ε, give different values of elastic modulus E, 

therefore, E is a function of ε and can be described as E(ε). To-date, it is still a challenge to 

determine which elastic modulus to use in the beam equation associated with a specific strain 

value, even for strain values less than 5%. However, in the linear modeling presented in this 

thesis, the elastic modulus E must be a constant. To the best of this author’s knowledge, most of 

the literature on MD simulations of tensile test for the elastic modulus, arbitrarily assume a strain 

range for linear fitting or polynomial fitting [111, 112, 134, 135, 149, 150]. In this paper, the 

elastic modulus with respect to strain ε=0.01 is chosen. However, other researchers use ranges of 

0.01-0.12 which result in different values of the moduli [111, 112, 134, 135, 149, 150]. More 

work is needed to investigate which elastic modulus value is the best for the linear beam 

modeling. Otherwise, the Hooke’s law assumption in linear elasticity may not be accurate 



123 

 

enough for the materials of this size scale. Thus, nonlinear mechanics may be needed for greater 

accuracy in modeling nanowires below 5nm.  

 

 

Table 6. IX. The elastic moduli values, E, with for different strain ε in Eq. (6.10). 

 

Ag(100) ε=0.01 ε=0.02 ε=0.05 

4.09x4.09x40.9nm 52.96 GPa 57.2 GPa 51.983 GPa 

2.86x2.86x28.63nm 50.77 GPa 55.75 GPa 53.217 GPa 

2.045x2.045x20.45nm 47.80 GPa 55.84 GPa 53.607 GPa 

Ag(110)  
 

 

4.05x4.09x40.49nm 107.21 GPa 95.4 GPa broken 

2.83x2.86x28.34nm 111.08 GPa 92.57 GPa 107.16 GPa 

2.002x2.045x20.02nm 114.07 GPa 88.73 GPa 103.56 GPa 

 

 

 

  

6.4 Conclusions 

 

        The relation between the nonlocal material parameter, e0, and surface stress, τ, is derived by 

solving the resonant frequencies of a simply-supported nonlocal Timoshenko beam and 

comparing to the solution from the Timoshenko beam theory with surface stress. The analytical 

analysis found that e0 is determined not only by the material constants (elastic modulus E and 

surface stress τ), but also by the dimensions (cross-section size and length) and the vibration 

modes of the beam. Furthermore, Eq. (6.8) indicates that an imaginary e0 is needed in order to 

describe a positive surface stresses or negative surface stresses with large absolute values, when 



124 

 

the surface elasticity is negligible. Otherwise, the application of nonlocal elasticity is limited to 

negative surface stresses and smaller problem definitions of nanoscale materials.    

        The resonant frequencies from molecular dynamics are also compared to the theoretical 

solution of nonlocal Timoshenko beam theory to calibrate the nonlocal parameter e0 of the 

nonlocal beam modeling. Similar to the analytical analysis with surface effects, the analysis with 

MD simulations also supports that e0 can be either an imaginary or real number with different 

combination of lattice orientation and boundary conditions. If e0 is real for a cantilever, it is real 

for fixed-fixed but imaginary for simply supported due to the curvature effects, as found for 

Ag(110). Conversely, Ag(100) has an imaginary e0 for the cantilever and fixed-fixed cases, but a 

real e0 for the simply-supported case. The reason for this inconsistency between the cantilever 

and simply-supported cases can be explained by applying beam theory with surface stress. For 

example, a positive surface stress decreases the stiffness of cantilever but increases the stiffness 

of simply-supported nanowires due to the opposite curvature and resulting transverse load as 

obtained with the Young-Laplace equation. The real/imaginary property of e0 agrees with the 

surface stress effect on bending beams. Therefore, the nonlocal stress-strain relation of Eq. (6.8) 

should be modified to allow imaginary values of e0 in order to describe materials with arbitrary 

surface stress and different boundary conditions. In addition, the absolute value of e0 increases 

with the cross-sectional size when the surface stress is not in the range of
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        Finally, the surface stress, τ for the materials used in the MD simulations presented in this 

research were also calculated. The surface stress can either be solved directly from the resonant 

frequencies of the nanowires (Eq. 6.29), or from the nonlocal parameter e0 (Eqs. 6.31). It was 
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found that there is a difference between the surface stress of the beam modeling developed in this 

thesis and the direct MEAM calculation found from Ref. [64]. The possible reasons for these 

differences were discussed. 
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CHAPTER 7. Conclusions and Future Work 

 

7.1 Conclusions   

 

        This thesis focuses on the modeling and analysis of size effects for nanoscale materials. The 

research goal was to develop mechanical modeling theories for nanoscale structures with critical 

dimensions of 1-100nm. To achieve this goal, the research aim was to test the hypothesis that 

Timoshenko beam theory with surface effects, Eringen’s nonlocal elasticity and the 

corresponding nonlocal beam theories, and MD simulations results should all be consistent for 

nanoscale structures with critical dimensions of 1-100nm.  

        There are three research objectives to test the hypothesis. The first research objective is to 

obtain and verify a more general solution of continuum beam theories with surface effect to 

investigate the surface effect on bending nanowires with the “core-shell” approach. Timoshenko 

beam theory with surface effects has been applied with consideration of shear effect and 

rotational inertia effect. Consequently, the limitation of aspect ratio of Euler-Bernoulli beam 

theory was eliminated. The modeling for the resonant frequencies of the first three vibration 

modes of nanowires with three boundary conditions was detailed. The fixed-fixed case was 

compared to published results from MD simulations of Au(100) to verify the validation of this 

method. The aspect ratio was studied with this theoretical modeling. 

        The second objective of this research was to develop a bridging theory by incorporating 

surface properties with the nonlocal elasticity theory parameter e0 to bridge the classical beam 

theories with nonlocal beam theory at the nanoscale. Two different modeling methods for the 

resonant frequencies of simply-supported nanowires were introduced in Chapters 3 and 4.  The 
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two methods are Timoshenko beam theory with surface effects and nonlocal Timoshenko beam 

theory. With the hypothesis that the solutions from the two methods are consistent, the relation 

between the surface stress τ and the nonlocal parameter e0 has been derived and shown in Eq. 

(6.4). It was found that e0  for a simply-supported nanowire in flexural vibration is not a fixed 

number, but depends on the following parameters: the lattice length a, the elastic modulus E, the 

surface stress τ, the cross-section size w and shape (included in I and H), the length of the beam L 

and the vibration modes n. Therefore, the physical meaning of the nonlocal parameter e0 has 

been explained for the first time to the best of this researcher’s knowledge. The nonlocal 

parameter e0 is based on eliminating the nearest neighbor assumption from classical elasticity 

theory and describes surface effects when the critical length (cross-section size for the nanowires) 

is comparable to the atomic structure (defined as a lattice unit length in this thesis). Additionally, 

by studying the analytical solution for e0, it was found to be an imaginary number when the 

surface effects increase the stiffness of the nanowires. This case corresponds to a positive surface 

stress effect on the simply-supported nanowires in the surface stress modeling. Hence, if the 

surface elasticity is negligible, the nonlocal parameter e0 has to be imaginary to match the 

modeling result of positive surface stress for nanowires with simply-supported boundary 

conditions.  

        The third objective of the research was to validate the hypothesis that Timoshenko beam 

theory with surface effects, Eringen’s nonlocal elasticity and the corresponding nonlocal beam 

theories, and MD simulations results should be consistent at the nanoscale range of 1-100nm. 

The hypothesis was tested by comparing beam theory with surface effects and beam theory with 

nonlocal effect with MD simulations. The MD simulations also had the same trends found with 

the nonlocal beam modeling using surface stress τ and the nonlocal parameter e0. For example, e0 
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was found to increase with increasing cross-sectional sizes. An imaginary e0 was also found by 

calibrating e0 with the resonant frequencies obtained from the MD simulations. Additionally, the 

surface stress was solved by the Timoshenko beam theory with surface effects by assuming that 

the resonant frequency and surface elasticity were known and the surface stress is unknown. The 

surface stress from the resonance MD simulations is almost a constant, which is more obvious 

for Ag(100) with 2% variation as compared to Ag(110) with a 20% variation. However, there is 

a difference between the calculated surface stress in our research and the values from the values 

found in in Ref. [64]. 

        There are several possible causes to these differences. One reason may be that Timoshenko 

beam theory with surface effect have more sources of error for the size scale of 2nm-4nm used in 

the simulations presented in this thesis. Other effects, such as van der Waals interaction [22, 23] 

and phonon dispersion [156-158] from quantum mechanics theory may be necessary to be 

considered at this smaller nanoscale range. The nonlocal parameter e0 should contain not only 

the surface effects at the quasi-continuum level, but also the atomic level effects which are 

considered in the embedded atom models in MD simulations, such as the effects of electrons. 

Therefore, quantum mechanics may be needed to further develop the nonlocal elasticity theory 

and calibrate the nonlocal parameter e0 more accurately for sub 5nm dimensions. A second error 

when calibrating the nonlocal parameter e0 is that the constant elastic modulus from the tensile 

test is difficult to obtain because the material at the chosen size scale does not behave linearly. It 

was found that the elastic modulus E depends on the strain ε. As a result, nonlinear beam theories 

with changing elastic modulus E with respect to the strain ε might be better to model the 

nanowires with cross-section size of 2-4nm or lower. 
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7.2 Recommendations for Future Work 

 

        In this thesis, the basic concept of nanoscale mechanics and the methods to develop the 

nanoscale mechanics are introduced. However, there are still several unanswered questions that 

need to be addressed. The size-scale gap between the MD simulations and the modified 

continuum mechanics for nanoscale materials should be better bridged. On one hand, the MD 

simulations should describe larger structures. Nanowires with cross-sectional sizes over 15nm by 

15nm have been shown to be accurate with the “core-shell” approach to describe surface 

effects.[90] Additionally, nanowires with  >15nm cross-sectional sizes may also behave more 

linearly than the sizes in this thesis. Thus, the difficulty to obtain the best elastic modulus for the 

beam modeling can be eliminated by using sizes larger than 15 nm. Ideally, experiments that 

measure the resonant frequencies of nanowires on real systems are also needed to verify the 

theoretical modeling and computational simulations. In addition to surface effects, other size 

effects may also need to be modeled to further improve the continuum mechanics at the 

nanoscale. For example, Van der Waals interaction[22, 23] and phonon dispersion [156-158] 

may result in the differences or errors observed when calibrating the values of e0. Therefore, 

quantum mechanics might be necessary to model some nanoscale materials with sub 5nm 

dimensions. The elastic modulus used in the beam modeling also needs to be further studied with 

nonlinear mechanics, due to the nonlinear mechanical deformation of the nanowires in tension 

for the sizes studied in this thesis. 

        Some other analysis and comparisons can be developed to more deeply understand 

nanoscale mechanics. Metals with different crystalline structures, for example Body-Centered 

Cubic (BCC) and Hexagonal Close Packed (HCP), should be modeled and compared to the 
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current Face Centered Cubic (FCC) structure to study the nonlocal parameter e0 on different 

crystalline structures. BCC and HCP metals are also common materials in practical NEMS for 

their unique properties. The fabrication of Fe (BCC metals) nanowires has been studied in order 

to study the size effects on the magnetic property[159]. Electrochemical synthesis of vertically 

aligned Zn (HCP metals) nanowires has been developed due to the superconducting magneto-

resistance and thermo-power properties of Zn.[160] Therefore, only focusing on the FCC metals 

have some limitation and cannot satisfy the widely application of different nanomaterial metals. 

        Different aspect ratios may also need to be tested in the MD simulations for e0. Researchers 

found from both the surface stress modeling and surface energy modeling that the aspect ratio is 

a significant parameter to determine the surface effects. The theoretical calibration (Eq. 6.4) also 

shows that e0 is a function of the aspect ratio (i.e., length) of the nanowires. Therefore, different 

aspect ratios may also need to be tested in the MD simulations to verify the theoretical modeling. 

However, it requires the MD simulations to model larger structures in the axial direction, and is 

not achievable with the current research conditions. 

        In this thesis, only the analytical relation between the surface stress τ and the nonlocal effect 

e0 for the simply-supported boundary condition was presented. The relation between nonlocal 

parameter e0 and surface stress τ for cantilever and fixed-fixed boundary conditions should also 

be derived, possibly numerically, to encompass all of the most common boundary conditions. 

For example, the cantilever boundary condition is a more widely used boundary condition in 

NEMS (examples can be seen in Chapter 1) and fixed-fixed boundary condition is common in 

the research modeling and MD simulations. 
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