
      Study of Spectral function scaling property of High Temperature 

                                                 Superconductors 
 

 

 

 

 

                                                                                      BY 

                                                                  DINGFEI AI 

                                             B.S, Wuhan University 2006 

 

 

                                                              THESIS 
                                       Submitted in partial fulfillment of the requirements 
                                        for the degree of Doctor of Philosophy in Physics 
                                                        in the Graduate College of the 
                                                   University of Illinois at Chicago, 2011 
 

 

                                                          Chicago, Illinois 
 

 

Defense Committee: 

  Juan Carlos Campuzano, Chair and Advisor 
                           Anjum Ansari 
  Mark Schlossman 
  Wai- Yee Keung 
                           Robert Klie, Physics Department University of Illinois at Chicago 
  Michael Norman, Argonne National Laboratory 



ACKNOWLEDGMENTS

All the result and works presented in this thesis are the crystal of more than five years of

my work. And it would not have been possible without the guidance and support from many

people. First and foremost, I would like to thank my parents for being the constant source

of emotional and material support all through graduate school years, no matter it is good or

difficult time.

Thanks to all of my colleagues in the group, for their indelible contributions and support that

resulted in many of the results presented in this thesis. To Dr. Utpal Chatterjee who introduced

me to the world of experimental physics, who acted as guidance through my transition from

fresh graduate student to experimentalist, who took the role of big brother in personal life. To

Dr. Ming Shi for being always like a father to me and for teaching me about experimental

technics and data analysis method. To Dr. Junjing Zhao for experiment and data discussions,

for generous help during our long experiment time in Synchrotron Radiation Center. Thanks

to Fanny R, Jim for joining me during our experiment time at Synchrotron Radiation Center.

Thanks to all the stuffs in the machine shop at UIC, for their professional design and works

on our experiment setup,. Special thanks to Greg Rogers and Mike Fisher at SRC for helping

us to solving alot of problem in experiment setup during our experiment time. Thanks to Dr.

Tom Miller for always helping me during tough times at Synchrotron Radiation Center.

iii



ACKNOWLEDGMENTS (Continued)

Thanks to Prof Dirk Morr whom I indebted so much for teaching me advanced concepts in

Condensed matter Physics from which I benefit alot through my condensed matter experimental

study.

Many thanks to the senior collaborators of our group — Prof M. Randeria, Prof M. Norman.

Every discussiong with them is always a precious experience as they always brought up some

insightful opinions and innovational ideas.

Finally my largest gratitude to my advisor Prof Juan Carlos Campuzano. This thesis could

not have ever been a reality without his help and support. During my PhD studies in his lab,

he not only taught me about Physics knowledge, but also taught mehow to think independently

and rationally in order to hurdle all the obstacles in the research work.

iv



TABLE OF CONTENTS

CHAPTER PAGE

1 ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 SEVERAL FEATURES OF HIGH TC SUPERCONDUC-
TORS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Superconductivity . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Conventional Superconductivity . . . . . . . . . . . . . . . . . . 4
2.4 SC order parameter . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.5 High Temperature(High Tc) Superconductor . . . . . . . . . . 15
2.6 Common features among different HTSC materials . . . . . . 19
2.7 Crystal Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.8 The parent compound . . . . . . . . . . . . . . . . . . . . . . . . 21
2.9 Doping the parent compound . . . . . . . . . . . . . . . . . . . 23
2.10 Pseudogap Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.11 Superconducting state . . . . . . . . . . . . . . . . . . . . . . . . 31

3 EXPERIMENTAL TECHNIQUES:ANGLE RESOLVED PHO-
TOEMISSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.1 Basics of Photonemission Spectroscopy . . . . . . . . . . . . . . 34
3.2 Energetics of Angle Resolved Photoemission Spectroscopy . . 37
3.3 Spectral Function formalism of ARPES data . . . . . . . . . . 40
3.4 Different representations of ARPES data . . . . . . . . . . . . . 46

4 ELECTRONIC PHASE DIAGRAMOFHIGH-TEMPERATURE
COPPER OXIDE SUPERCONDUCTORS . . . . . . . . . . . . . 49
4.1 ARPES measurement and data analysis . . . . . . . . . . . . . 50
4.2 T ∗ and Tcoh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.3 Quantative determination of T ∗ and Tcoh line . . . . . . . . . . 59
4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5 OBSERVATION OF AD-WAVENODAL LIQUID IN HIGHLY
UNDERDOPED BI2SR2CACU2O8+δ (BI2212) . . . . . . . . . . 63
5.1 Samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.2 How to measure the energy gap using ARPES . . . . . . . . . 64
5.2.1 Symmterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.3 Gap anisotropy in the PG state and in the SC state . . . . . . 67
5.4 Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

v



TABLE OF CONTENTS (Continued)

CHAPTER PAGE

5.5 Anisotropic gap of insulating and superconducting samples . . 72
5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6 SCALING CHARACTERISTIC OF SPECTRAL FUNCTION
OF UNDER-DOPED CUPRATES . . . . . . . . . . . . . . . . . . . . 78
6.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.2 Methodolog and results . . . . . . . . . . . . . . . . . . . . . . . 79
6.2.1 Temperature term . . . . . . . . . . . . . . . . . . . . . . . . . . 82
6.2.2 K parallel term . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

CITED LITERATURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

vi



LIST OF FIGURES

FIGURE PAGE

1 Resistivity versus Temperature of Mercury superconductor . . . . . . . 6

2 (A) A regular conductor is placed in a magnetic field and consequently
some magnetic flux gets trapped inside it. (B) and (C) shows how su-
perconductivity is different from the state of just perfect conductivity. . 8

3 Temperature dependence of SC gap . . . . . . . . . . . . . . . . . . . . . . 16

4 History of discovery from Superconductor to of higher Tc Superconductor 18

5 Crystal Structure for three different families of HTSC materials. (a)La2(1−x)Sr2CuO4,
(b) YaBa2Cu3O7+δ, (c)Bi2Sr2CaCu2O8+δ . . . . . . . . . . . . . . . . . . 21

6 Phase diagram of hole doped cuprates . . . . . . . . . . . . . . . . . . . . 25

7 Energetics of the photoemission process . . . . . . . . . . . . . . . . . . . 36

8 Mechanism of ARPES experiment . . . . . . . . . . . . . . . . . . . . . . 38

9 Energy Momentum Relation from ARPES data . . . . . . . . . . . . . . 41

10 Graphic of One step and Three step process . . . . . . . . . . . . . . . . 42

11 EDC and MDC intepretation of ARPES data . . . . . . . . . . . . . . . 47

12 Phase diagram schematics:(A) Schematic phase diagram for a quantum
critical point near optimal doping. (B) Schematic phase diagram for a
doped Mott insulator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

vii



LIST OF FIGURES (Continued)

FIGURE PAGE

13 Spectra at constant temperature as a function of doping. (A) Dots
indicate the temperature and doping values of the spectra of the same
color plotted in BD. (B) Spectra at T/sim300K for several samples
measured at the antinode, where the d-wave superconducting gap below
Tc is largest. The spectra are normalized to high binding energy and
symmetrized in energy to eliminate the Fermi function. The doping
values are indicated by the top row of dots in A. (C) Same as in B, but
at T/sim150K, with the dopings indicated by the middle row of dots in
A. (D) Same as in B, but at T = 100K, with the dopings indicated by
the bottom row of dots in A. . . . . . . . . . . . . . . . . . . . . . . . . . 53

14 Additional signatures of spectral coherence. a Spectra for a small range
of binding energy for different temperatures, showing the break visible
when the coherent component merges with the incoherent component.
The straight lines are guides to the eye. These spectra are for an over-
doped 67K sample. b Derivative of the top spectrum shown in a. The
sharp change in the slope at the break point is indicated by the arrows.
c Spectra at constant energy (integrated over 10mev around the Fermi
energy) as a function of momentum. The different curves are from the
same sample, for increasing temperatures from bottom to top. At low
T, four peaks are observed due to the splitting of the CuO2 states into
bonding and antibonding combinations. These two combinations merge
at Tcoh into a single broad peak. b Intensity map of the dispersion,
with the bottom panel corresponding to the bottom spectra in c, and
the top panel to the top spectra in c. . . . . . . . . . . . . . . . . . . . . . 54

15 Spectra at constant doping as a function of temperature. (A) Dots in-
dicate the temperature and doping values of the spectra of the same
color plotted in BD. (B) Symmetrized antinodal spectra for two opti-
mally doped samples (/delta = 0.16). The temperature values are indi-
cated by the left row of dots in A. (C) Same as in B, but for a doping
of/delta = 0.183, with the temperatures indicated by the middle row of
dots in A. (D) Same as in B, but for a doping of/delta = 0.224, with
the temperatures indicated by the right row of dots in A. Gray lines in
B and C mark the location of the gap. . . . . . . . . . . . . . . . . . . . . 58

viii



LIST OF FIGURES (Continued)

FIGURE PAGE

16 Fermi function divided spectra. (A) Antinodal spectra for two optimally
doped samples, /delta = 0.16, showing sharp peaks with an energy gap
(green curves) below T, but broad gapless spectra (purple curve) above
T. Colored lines show Fermi function-divided data, with symmetrized
data superimposed as sharp black lines. (B) Spectra for an overdoped
sample, /delta = 0.183, showing that, unlike in A, the spectral gap is lost
above 100 K, whereas the sharp peak persists to higher temperature. (C)
Data for an overdoped /delta = 0.224 sample. The sharp spectral peak
decreases in intensity with increasing temperature. By T = 250K, the
spectral line shape is broad and temperature independent. (D) Linearly
decreasing intensity of the sharp spectral peak relative to the broad
Lorentzian with increasing T for three values of /delta. Tcoh is where
this intensity reaches zero. (E) Momentum distribution curves (MDCs)
for an overdoped /delta = 0.224 sample, showing that a qualitative
change in spectral shape occurs near Tcoh. (F) Comparison of the MDC
of an OP doped sample, to that of an OD sample at a similar T. (G)
T-independence of the spectral shape for an OP sample above Tcoh. . . 60

17 Electronic phase diagram of Bi2Sr2CaCu2O8+δ versus hole doping, /delta.
Brown dots indicate incoherent gapped spectra, blue points coherent
gapped spectra, green dots coherent gapless spectra, and red dots inco-
herent gapless spectra. The brown double triangles denote T, and the
green double triangles Tcoh.Tc denotes the transition temperature into
the superconducting state (shaded gray and labeled D − wave SC). . . 62

18 Symmetrized EDCs for underdoped samples along the Fermi surface.
(a)Tc = 90K sample in the superconducting state at T = 40K, and (b)
the same sample in the pseudogap phase at T = 140K. The bottom
EDC is at the node, while the top is at the anti-node, as defined in
(d). (c) Variation of the gap around the Fermi surface extracted from
(a) and (b). (d) Location of the momentum cuts (red lines), Fermi
surface (blue curves), and special points (node and anti-node) in the
zone. (e) Symmetrized EDCs for a very underdoped, Tc = 25K, sample
(corresponding to kF points 4 through 15), measured at 55K in the
pseudogap state. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

19 Data for non-superconducting samples. (a) Schematic phase diagram
ofBi2Sr2CaCu2O8+δ in the hole-doping (δ), temperature (T ) plane. The
arrow indicates the doping level of the non-superconducting thin film
samples whose data are shown in subsequent panels. (b) T-dependence
of the resistance showing an insulating upturn. (c) Low-energy ARPES
intensity at T=16K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

ix



LIST OF FIGURES (Continued)

FIGURE PAGE

20 Spectral function vs. doping. (a) The doping levels δ of the four samples
whose spectra are shown in panels (d) through (g). The determination
of δ is described in the Supplemental section. (b) Nodal spectrum and
background (see text) for the non-superconducting sample D in (a) at
T = 16K. c Backgroundsubtracted, symmetrized intensity for sample
D at the antinode (θ= 0) showing a gap and node (θ = 45) with zero
gap. (d) through (g) show symmetrized EDCs, without background
subtraction, for (d) the non-superconducting thin film at T = 16K, (e)
an underdoped Tc = 33K thin film at T = 16K; (f) an underdoped Tc
= 69K single crystal at T = 20K, and (g) a near-optimal Tc = 80K
thin film at T = 40K. In each panel (d) through (g) the spectra are
plotted with increasing from 0 (antinode) at the top to 45 (node) at the
bottom. Note the highly anisotropic gap seen at all four doping levels,
with sharp quasiparticle peaks at the gap edge at all KF , with weight
diminishing with underdoping for all superconducting samples. Even
after superconductivity is lost, we see in (d) a clear low-energy gap scale
as emphasized by the red lines drawn in the top spectrum. . . . . . . . . 73

21 The spectral gap as a function of angle around the Fermi surface and
doping. (a) The spectral gap ∆(θ), normalized by its maximum value at
the antinode, plotted as a function of the Fermi surface angle θ. Different
colors are used for various superconducting samples (single crystals and
thin films), while an open symbol is used for the non-superconducting
sample. The energy gap at all doping levels is consistent with the d-wave
form cos( 2θ) shown as a black curve. (b) Maximum gap as a function of
hole-doping. Gaps of the superconducting samples are denoted by filled
symbols (blue for thin films and red for single crystals measured in this
work, and green for published data), while open circles are used for the
non-superconducting samples. . . . . . . . . . . . . . . . . . . . . . . . . . 77

22 Background subtraction procedure. (a) intensity map of energy and
momentum. (b) EDC far away from kF (c) the spectrum before the
background subtraction (d) the spectrum after background subtraction. 81

23 Fermi function divided intensity map . . . . . . . . . . . . . . . . . . . . . 83

24 Raw data for under-doped (Tc=78K), EDCs at different temperatures . 85

25 Scaled data for under-doped (Tc=78K), EDCs at different temperatures 86

26 Scaling result for larger energy range from -600meV to 0meV . . . . . . 87

x



LIST OF FIGURES (Continued)

FIGURE PAGE

27 Comparison of different scaling parameter values (a) α = 0.3 (b) α = 0.5
(c) α = 0.6 (d) α = 0.9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

28 Chi-square value as function of scale parameter . . . . . . . . . . . . . . 89

29 Scaled data for under-doped (Tc=47K), EDCs at different temperatures 90

30 Scaled data for under-doped (Tc=85K), EDCs at different temperatures 91

31 Tight-binding fit of the Fermi surface . . . . . . . . . . . . . . . . . . . . . 94

32 Intensity and k|| value in 3D map (a) the intensity (b) the k|| . . . . . . 95

33 Intensity and k|| value in 2D map (a) the intensity (b) the k|| . . . . . . 96

34 Raw data for under-doped (Tc=68K), MDCs for different temperature . 99

35 Scaled data for under-doped (Tc=68K), MDCs for different temperature 100

36 Unscaled and scaled data for under-doped (Tc=80K), MDCs for different
temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

37 Momentum lines chosen for Fig.33, 34 . . . . . . . . . . . . . . . . . . . . 102

38 Scaling parameter versus Fermi-surface cut . . . . . . . . . . . . . . . . . 103

39 Scaling result for different value of z (a) result for z=1 (b) result for z=2
(c) result for z=8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

40 Scaling result for different value of z (a) result for z=1.1 (b) result for
z=0.6 (c)result for z=0.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

41 Scaling result for smaller k|| range . . . . . . . . . . . . . . . . . . . . . . . 107

42 Scaled data for over-doped (Tc=67K) and chi-square (a) scaled data (b)
chi-square value vs parameters . . . . . . . . . . . . . . . . . . . . . . . . . 108

43 Measured samples in phase diagram . . . . . . . . . . . . . . . . . . . . . 109

xi



LIST OF ABBREVIATIONS

ARPES Angle Resolved Photoemission Spectroscopy

CMR Colossal Magneto Resistance

DC Direct Current

SC Superconducting

Tc Critical Temperature

PG Pseudogap

HTSC High Temperature Superconductor

FL Fermi Liquid

PG Pseudogap

HTSC High Temperature Superconductor

BCS Bardeen Cooper Schrieffer

Bi2212 Bi2Sr2CaCu2O8+δ

CuO2 Copper Oxygen

Cu Copper

O Oxygen

Bi Bismuth

BiO Bismuth Oxygen

xii



LIST OF ABBREVIATIONS (Continued)

FS Fermi Surface

PES Photoemission Spectroscopy

UHV Ultra High Vacuum

EDC Energy Distribution Curve

MDC Momentum Distribution Curve

xiii



CHAPTER 1

ABSTRACT

High Temperature Superconductors (HTSCs) were first discovered in 1986, but despite

enormous amount of research for last two decades, these materials are still not yet completely

understood. HTSCs exhibit very complicated three dimensional phase diagram parameterized

by temperature, magnetic filed and carrier concentration. Up to now we do not know how to

properly characterize all of their different phases, in particular the so-called pseudogap (PG)

phase where the system is not macroscopically a superconductor but shows properties similar

to the superconducting (SC) state. Angle Resolved Photoemission Spectroscopy (ARPES) that

probes the momentum space structure of a system has greatly contributed to our understanding

of the electronic structure of HTSCs. In this thesis I will present various ARPES studies on

HTSCs.

In order to understand the origin of high temperature superconductivity in copper ox-

ides, we must understand the normal state from which it emerges. I will present the evolu-

tion of the normal state electronic excitations with temperature and carrier concentration in

Bi2Sr2CaCu2O8+δ using ARPES data. I will show that unlike conventional superconductor, the

high temperature superconductors exhibit two additional temperature scales which are pseudo-

gap scale T ∗, below which electronic excitations exhibit an energy gap, coherence scale Tcoh,

below which sharp spectral features appear due to increased lifetime of the excitations. And

T ∗ and Tcoh are strongly doping dependent, and cross each other near optimal doping.
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I will also present ARPES observation of the electronic excitations of the non-superconducting

state that exists between the antiferromagnetic Mott insulator at zero doping and the super-

conducting state at larger dopings in Bi2Sr2CaCu2O8+δ (Bi2212). I will show that the state is

a nodal liquid whose excitation gap becomes zero only at points in momentum space, and the

material has the same gap structure as the d-wave superconductor despite that it has resistivity

characteristic of an insulator and the absence of coherent quasiparticle peaks. And there is a

smooth evolution of the spectrum across the insulator-to-superconductor transition

At the end I will show our scaling analysis of ARPES data across the phase diagram. From

the scaling analysis, we find that there is a 2-D scaling relation in the pseudogap phase, but not

in the normal states in the over-doped phase. Thus the states in the pseudogap phase share

the same properties that are different from over-doped phase. And also because of the scaling

relation, there is quantum critical line along the Fermi-surface in the pseudogap phase.



CHAPTER 2

SEVERAL FEATURES OF HIGH TC SUPERCONDUCTORS

2.1 Introduction

One crucial challenge in condensed matter physics is to understanding the collective behavior

of vast assemblies of interacting particles systems, which could be anything from an organic

bio-molecule to a piece of metal. It is natural to think that if we knows the physical properties

of each of the constituents and the fundamental laws, then understanding the behavior of the

whole system would be quite trivial. But unfortunately this kind of reductionist hypothesis is

not true in reality. As a simple example, let us consider the case of a gold wire, made of a very

large number of gold atoms. Although a single gold atom does not conduct electricity, the gold

wire itself is a very good conductor. Hence for an interacting many-body system, the very fact

that the system has large number of degrees of freedoms thus requires new physical concepts to

understand it. In this context, one of the most fundamental aspects of a many body system is

that the symmetry of the whole system generally does not follow the symmetry of the laws which

govern it; on contrast the whole system usually has lower symmetry. This brought up one of the

most important and recent ideas in physics, which is called the concept of broken symmetry.

For instance if we consider the case of a crystal: the microscopic laws binding atoms into a

crystalline structure have perfect spatial homogeneity, while on the hand crystal itself does not.

Because in the crystalline state the system loses its continuous translational symmetry. It is

3
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quite important to note that by using the fundamental laws of quantum mechanics, one could

not explain such a spontaneous translational symmetry broken in crystals. There are a lot

of extraordinary and fascinating physical phenomena in nature which occur on a macroscopic

scale, e.g. superconductivity, ferromagnetism, anti-ferromagnetism, ferroelectricity, the kondo

effect, colossal magneto resistance(CMR) and so on. These special properties are a direct

consequence of the fact that the collective behavior of a system which is consist of many particle

is qualitatively different from that of its constituents, in other words the whole system becomes

not only more than but very different from the sum of the parts. In this thesis we will focus

our discussions only on superconductivity.

2.2 Superconductivity

As their name stated, superconductors have absolutely zero resistance to electric currents

below a certain temperature, so called the critical temperature (Tc) and below a certain critical

value of magnetic field Hc. Superconductors have the following unique features that different

from perfect conductor:

(i) the superconductor has absolutely zero resistance to DC Electric current

(ii) the superconductor perfectly excludes magnetic flux

2.3 Conventional Superconductivity

For conventional metals, because of the reduction of inelastic scattering of electrons by

phonons, the resistivity usually decreases as the the temperature decrease. The temperature

dependence of the resistivity in a metal can be writen as ρ(t) = ρ0 +cT 5 where ρ0 is the residual
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resistivity due to lattice imperfections and impurities in the sample and T is the temperature.

One might ask what would happens to the resistivity as T approaches zero. It was the year

of 1911 when Kammerlingh Onnes and his assitant Holst were measuring the resistance of

mercury. To their surprise they discovered that below 4.1K, the resistivity of mercury became

exactly zero (Fig. 1)[2]. It took quite a while for both Holst and Onnes to understand that

the zero resistivity property of mercury below 4.1K, was not an experimental artifact but the

manifestation of a new electronic phase namely superconductivity. It also took many decades

for the scientific community to pay attention to Holst’s contribution to this discovery. Soon

after this discovery, superconductivity was observed in other materials such as thallium, tin

and so on.

Other than absolute zero resistance, the perfect diamagnetism of the superconducting (SC)

state makes it a unique thermodynamic state which is more than just a state of perfect conduc-

tivity (Fig. 2). In order to prove this point, let us consider a hypothetical transition in which

a regular conductor turns into a perfect conductor (conductivity ∼ ∞) for T 6 TN . If we put

this conductor in a magnetic field, some magnetic flux will be trapped inside it (Fig. 2A). Now,

let us first cool down the conductor below TN , then put it in a magnetic field. There would be

no magnetic flux inside (Fig. 2B), because the system is in a state where the conductivity,and

hence the magnetic permeability (µ), is infinite. Then we put the system in a magnetic field

at some temperature T > TN . As a result some of the field will be trapped inside it, as its

conductivity above TN is finite. Afterwards if we cool it down through TN , the field will still

remain trapped inside, even though the system is in a state of perfect conductivity. Therefore
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Figure 1. Resistivity versus Temperature of Mercury superconductor
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the two processes (a) first cooling down through TN and then apply of the field, (b)first apply

the field and then cooling down through TN , do not lead to same state. On the contrary,

as shown in Fig. 2C, in the case of the superconducting transition, those two processes will

always lead to same state because of perfect diamagnetism. Hence the superconducting state

is not just a state of perfect conductivity, but rather a new state of matter. Another peculiar

phenomenon associated with the superconducting state is that of flux quantization, where the

magnetic flux enclosed within a hollow superconducting sample is an integral multiple of the

fundamental unit hc
2 . where, h is Planck’s constant and c is velocity of light.

After the discovery of the superconductor, a great deal of experiment were conducted and

followed by many attempts from theoreticians between 1930 and 1950 to understand the mech-

anism behind superconductivity. Major progress was made with the two fluid model proposed

by the London theory [7] in 1935 and then by the Ginzburg-Landau theory in 1950 [8]. Eventu-

ally the microscopic theory for superconductivity, known as the BCS theory, was proposed by

Bardeen, Cooper and Schrieffer in 1957 almost half a century after the discovery of supercon-

ductivity [9]. The most important concept of the BCS theory is that electrons form pairs. The

electron pairs which are paired via electron-phonon interactions are called Cooper pairs, and

they condense into a single coherent ground state. An electron attracts ions in the lattice and

will cause a slight increase in positive charge density around it. This increase in positive charge

density will, in turn, attract another electron and the two will form a pair. The Cooper pairs

are held together by a certain ”binding energy”, and can only undergo scattering in the ion

lattice if the energy associated with the scattering process is sufficient to split up the Cooper
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Figure 2. (A) A regular conductor is placed in a magnetic field and consequently some
magnetic flux gets trapped inside it. (B) and (C) shows how superconductivity is different

from the state of just perfect conductivity.
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pairs into their constituent electrons. Otherwise, the Cooper pairs will move through the lattice

unscattered. One possible source of energy that could break the binding energy of a Cooper pair

is the thermal vibrations of the ion lattice. However, at low temperatures the thermal energy

of the lattice is much lower than it is at higher temperatures. Therefore, at low temperatures,

the energy to break up the Cooper pairs is not available, and so the Cooper pairs remain stable.

The paired electrons have (a) equal and opposite momenta and (b) opposite spins.

Two of the main experimental facts which provided the motivations behind BCS theory are:

(i) The density of states is gapped around the Fermi surface. This was experimentally ob-

served in terms of exponential variation of specific heat with temperature, near critical

temperature Tc [11], [12]. This lead to the idea that some kind of pairing is necessary for

superconductivity.

(ii) Phonons play a major role [13]. This was experimentally demonstrated by isotope effects,

as the critical temperature Tc was found to vary as the inverse square root of the nuclear

mass.

Superconductors which are well explained by the framework of BCS theory or its mod-

ified forms, are commonly known as conventional superconductors or BCS superconductors.

Thallium, lead are few examples of conventional superconductors.

In order to motivate the discussions of our reseach in high TC superconductors (different

from conventional superconductors), we consider the formalism of the BCS theory in more

detail.
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Let us consider a normal metallic system which undergoes a superconducting transition

below certain critical temperature Tc. We will assume the system to be translationally invariant.

Thus the state of an electron inside the system can be labelled by (k, σ) where k and σ are the

electron’s momentum and spin respectively. We will refer the normal metallic state as normal

state, i.e. not superconducting. An electron is a spin 1
2 particle. Hence, the spin σ of the

electron would be such that the z component of the spin is either +1
2 or −1

2 . The spin σ of the

electron corresponding the first case will be denoted by ↑ and the second case by ↓. We would

like to know the correlation between a pair of electrons labeled by (k, ↑), (k′, ↓) respectively. Up

to a good approximation, the only correlation between different pairs of electrons in the normal

state is just the statistical correlation in terms of the Pauli exclusion principle. Hence, the

correlation function PN
k,k′ = 〈N |ĉ†k,↑ĉk,↑ĉ

†
k′,↓ĉk′,↓|N〉, will be just a smoothly varying function

of k and k′, where |N〉 is some normal state wave function. In case of superconducting (SC)

state the correlation function PS
k,k′ = 〈S|ĉ†k,↑ĉk,↑ĉ

†
k′,↓ĉk′,↓|S〉, will also be a smoothly varying

function of k and k′ except for those cases in which k and k′ are related to each other by some

special condition—known as pairing condition [14] . Two electrons having their states related

to each other by the pairing condition form Cooper pairs. It turns out that in the SC state, the

pairing condition allows two electrons in states (k + q
2 , ↑) and (−k + q

2 , ↓) respectively to form

Cooper pairs. From the energy minimization point of view, pairing is most favored for q = 0

as it corresponds to zero center of mass momentum. Hence, in the SC state, an electron in the

state (k, ↑) forms Cooper pair with another electron in the state (−k, ↓).
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In the framework of BCS theory, the SC state is explained by a Hamiltonian operator:

ĤBCS =
∑
k,σ

εkĉ
†
k,σ ĉk,σ +

∑
k,k′

Vkk′ ĉ†k,↑ĉ
†
−k,↓ĉk′,↓ĉ−k′,↑ (2.1)

where:

(i) ĉ†k,σ are fermionic creation operators, i.e. ĉ†k,σ creates an electron with momentum and spin

(k, σ) and ĉk,σ are the corresponding fermionic annihilation operators, i.e. ĉk,σ destroys

an electron with momentum and spin (k, σ).

(ii) εk is the kinetic energy of the electron having momentum k with respect to the Fermi

energy εF

(iii) Vk,−k is interaction between two electrons via lattice deformation (i.e. electron-phonon

interaction), which causes scattering, in which two paired electrons at initial states (k, ↑),

(−k, ↓) get scattered to final states (k′, ↑), (−k′, ↓), will remaining paired. Note that, this

kind of interaction does not conserve the total number of particles. Hence, in principle,

any number of cooper pairs can be formed in the SC state.

Now one could solve the above Hamiltonian in mean-field approximation. In order to do that

let’s define two parameters, namely ∆∗k and ∆k, such that ∆∗k =
∑

k′〈Vk,k′ ĉ†
k′,↑ĉ

†
−k′,↓〉 and

∆k =
∑

k′〈Vk,k′ ĉ−k′,↓ĉk′,↑〉, where 〈〉 means that expectation values of operators are taken in

the ground state. The parameter ∆k is known as the energy gap in the system. Now one can

write,
∑

k′ Vk,k′ ĉ†
k′,↑ĉ

†
−k′,↓ = ∆∗k − δ1, where δ1 = ∆∗k −

∑
k′ Vk,k′ ĉ†

k′,↑ĉ
†
−k′,↓. Similarly, one has∑

k′ Vk,k′ ĉ−k′,↓ĉk′,↑ = ∆k − δ2 where δ2 = ∆k −
∑

k′ Vk,k′ ĉ−k′,↓ĉk′,↑ . Now we linearize ĤBCS ,
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considering δ1 and δ2 to be small. By doing the process of linearization we will keep only those

terms in ĤBCS which are linear in δ1, δ2 . Upon linearization ĤBCS becomes Ĥ linearized
BCS where:

ĤLinearized
BCS = ĤMeanfield =

∑
k

(
εk(ĉ†k,↑ĉk,↑ + ĉ†k,↓ĉk,↓) + ∆kĉ

†
k,↑ĉ

†
−k,↓ + ∆∗kĉ−k,↓ĉk,↑

)
(2.2)

. In order to diagonalize ĤLinearized
BCS , we carry a Bogoliubov transformation introducing new

fermionic operators α̂†k,↑ and α̂†−k,↓such that:

α̂†k,↑ = ukĉ
†
k,↑ + vkĉ−k,↓ (2.3)

α̂†−k,↓ = −vkĉk,↑ + ukĉ
†
−k,↓ (2.4)

. The anticommutation of fermionic operators gives u2
k + v2

k = 1. The quantities u2
k and v2

k are

called coherence factors. And finally the Hamiltonian becomes:

ĤMeanfield =
∑
k,σ

{
{α̂†k,σα̂k,σ

√
ε2k + ∆2

k} − {
√
ε2k + ∆2

k − εk}

}
(2.5)



13

. In the above equation, (a)the first term gives the modified dispersion(Ek) of the system, such

that E2
k = ε2k + ∆2

k and (b) the second terms shows that there is a net loss of energy in the

pairing process. One could show that:

u2
k =

1

2

{
1 +

εk
Ek

}
(2.6)

v2
k =

1

2

{
1− εk

Ek

}
(2.7)

. It has already been mentioned that, ∆k is the energy gap in the system. We can relate the

gap ∆k to the interaction potential Vk,−k as follows:

∆k =
∑
k′

{
1− 2nF (Ek′)

}
−Vk,k′∆k′

Ek′
(2.8)

where nF (Ek′) is the Fermi function, i.e. nF (Ek′) = 1

1+exp(
EF ′
kBT

)
. The equation above is known

as the BCS gap equation. By solving the BCS equation self-consistently, we can determine the

energy gap in the system. There will be always a trivial solution to the BCS gap equation,

∆k′ = 0 In order to obtain a non trivial solution to the BCS gap equation, Vk,k′ needs to be

negative. BCS made the following assumption about Vk,k′ :

(i) Vk,k′ = −V0 if |εk|, |εk′ | < ~ωD

(ii) Vk,k′ = 0 otherwise
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where, ωD is Debye frequency. Under (a) above assumption and (b) making an approximation

that only density of states around EF i.e. N(EF ) = N(0) (since the reference level for energy

is EF ) are involved, the BCS gap equation becomes,

∆k = ∆0 =
ωD

sinh[ 1
N(0)V0

]
(2.9)

Once the interaction potential is assumed to be momentum independent, ∆k becomes mo-

mentum independent, too. The momentum independent gap is ∆0. If one assumes that V0 is

quite small, then one gets,

∆0 ≈ 2ωDexp[
1

N(0)V0
] (2.10)

The striking feature of the above expression is that ∆0 has an essential singularity at V0 = 0

and therefore results of BCS theory could have never been found treating the interaction in

perturbative approach. This is one of the canonical examples where perturbation theory does

not work.

2.4 SC order parameter

When we decrease the superconductor from high temperature T to a low temperature (< Tc),

the sample undergoes a second order phase transition at T = Tc. Different from a first order

phase transition, in which the order parameter changes discretely, in a second order phase

transition the order parameter changes continuously at the transition Tc. It turns out that

one can choose the superconducting order parameter as a complex scalar function. Hence

the superconducting order parameter has (a) a magnitude and (b) a phase. Magnitude of
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the complex order parameter is proportional to the gap size ∆0 and the phase of the order

parameter embodies the fact that the system behaves like one giant condensate below Tc. One

could write the order parameter as ∆0 exp(iθ). We have already known that ∆0 is momentum

independent, and the phase θ of a conventional superconductor is momentum independent

as well. Such an order parameter for conventional superconductor is called as s-wave order

parameter and the symmetry of the order parameter is called s-wave symmetry. One could

use the BCS gap equation to find out how the superconducting gap, and hence the magnitude

of the order parameter, changes as a function of temperature through Tc. From the BCS gap

equation one can get:

∆T→0 = 1.76kBTc (2.11)

∆T→Tc ∼ 3.2kBTc

{
1− T

Tc

} 1
2

(2.12)

. There are two lessons to learn from these equations—(a) superconducting gap at T = 0

is directly proportional to Tc and (b) as T → Tc superconducting gap approaches zero in a

meanfield fashion. In Fig. 3, we show how the SC gap changes as a function of temperature.

2.5 High Temperature(High Tc) Superconductor

Because superconductors have many unique properties and potential applications in a num-

ber of areas, people are continuously trying to discover superconducting materials with higher

Tc. In spite of a lot of effort, the highest Tc remained around 20K for couple of decades. By
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Figure 3. Temperature dependence of SC gap
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1970, almost all the existing theoretical issues regarding superconductivity were understood by

the BCS theory and the Ginzburg-Landau theory. Therefore, many people thought it is quite

the dead end for research in the field of superconductivity. But in 1986, an astonishing dis-

covery brought a real breakthrough in the field of superconductivity research. Two researchers

Benorz and Muller from IBM in Switzerland, discovered a new class of superconductors starting

with LaBaCuO, whose Tc could be as high as 30K [15] . The following year, a new record in

Tc was set in terms of the discovery of another superconductor YaBa2Cu3O7+δ, superconduct-

ing at 90K [16]. Soon a whole new series of related materials, e.g. Bi2Sr2CanCun+1O6+2n+δ

(BISCO− 2201,−2212,−2223), Tl2Ba2CanCun+1O6+2n+δ, HgBa2CanCun+1O2n+4+δ (Hg-1201,

-1212, -1223) and so on, were found. Collectively all these new classes of materials are called

High Temperature Superconductors (HTSC), because the Tcs’ of these materials are much

higher than that of conventional superconductors. A history of the increase in Tc is shown in

Fig. 4 . In the following sections, we will briefly discuss some topics of the fascinating physics

of the HTSCs. Details can be found in large volume of literature available on the subject, for

example [17], [18],[19], [20], [21], [22].

Superconductivity in HTSC materials is really different for conventional superconductivity

for different reasons.

(i) Before these materials, there was no known case of superconductivity in oxide materials.

(ii) The parent compounds for all these materials are Antiferromagnetic insulators. On the

contrary, conventional superconductors are metallic in normal state, at least not insulat-

ing.
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Figure 4. History of discovery from Superconductor to of higher Tc Superconductor
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(iii) Conventionally, magnetism and superconductivity do not go together. For example in

their pioneering work, Abrikosov and Gorkov showed that the presence of magnetic im-

purities in conventional SC system destroys superconductivity.[23], [24].

(iv) With δ-doping and temperature changing, the HTSC materail will experience many dif-

ferent phases,(i.e antiferromagnetic, pseudogap, strange metal, superconducting, conven-

tional metal). And those phase, which are key to HTSC study, are still not well under-

stood.

Hence, even without going into details, one could easily tell that the physics of supercon-

ductivity in HTSC materials is quite different from the ones in conventional superconductors.

All these astonishing physics of HTSC materials attract an enormous amount of research efforts

in this field during the last two decades, but even today the physics of superconductivity in

HTSC materials is not completely understood.

2.6 Common features among different HTSC materials

There are very wide variety of materials which are high temperature superconductors. Hence

the first step in the process to understand HTSC is to look for common features, if there are

any. All these materials, irrespective of having very different chemical composition, share quite

a large number of common features, such as:

(i) All of them have layered perovskite crystal structures containing one or more CuO2 planes

separated by block layers. Hence, in general these materials are called cuprates. It is

commonly believed that the universal physics behind sperconductivity in HTSC should

be related to the properties of the CuO2 planes.
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(ii) The basic features of the phase diagrams for all of them are similar. We will discuss this

in later section.

(iii) Generic features of the electronic structures for example superconducting state, pseudogap

state, strange metal state of them are also very similar.

In the following sections we will briefly discuss the common feature among cuprates.

2.7 Crystal Structure

The crystallography of the HTSC is by itself a complicated research field. All the work

presented in this thesis was carried out on Bi2Sr2CaCu2O8+δ (Bi2212), therefore we discuss the

crystal structure of Bi2212 only. In order to make a comparison, we show crystal structures of

two other families of HTSC, in Fig. 5. By looking at Fig.5, one can see that all of these different

HTSC materials have very anisotropic crystal structures, and one or more CuO2 planes that

are seperate from each other by charge reservoir layers. For instance, there are Bi2Sr2CuO6+δ

(Bi2201), Bi2Sr2CaCu2O8+δ (Bi2212), Bi2Sr2Ca2Cu3O10+δ (Bi2223) one, two and three CuO2

layers in the unit cell, respectively. Collectively, all these Bi based HTSC materials are known as

BISCO. The layers are called reservoir layers because usually they remove electrons from CuO2

layer, they are insulating and have no contribution to the low energy electronic excitations.

Typically in BISCO systems, the bonding between two BiO unit cells layers is the quite weak

Van-der-Waals interaction. Hence, it is easy to cleave BISCO samples and BiO layer emerges

as the topmost layer in each piece. In Fig. 5c we can see that the orthorhombic unit cell

of Bi2212 has lattice parameters a = 5.4, b = 5.4, c = 30.7Å. This is an extremly tall unit

cell. However, the structure in the figure is not the real structure.The BiO layer is distorted
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Figure 5. Crystal Structure for three different families of HTSC materials.
(a)La2(1−x)Sr2CuO4, (b) YaBa2Cu3O7+δ, (c)Bi2Sr2CaCu2O8+δ

with an incommensurate wave vector directed along the b direction. The periodicity along

the b direction is about 27Å. The actual structure is obtained by displacing atoms primarily

perpendicular to the BiO plane, but there is some displacement of all other atoms as well.

This distortion is called superlattice, because is induce replica of excitation of the CuO2 planes.

Effects of the superlattice can be seen in spectroscopy experiments.

2.8 The parent compound

In contrast to conventional superconductors, the undoped parent compounds for all high

temperature superconductors are insulators. And unlike the conventional metallic supercon-

ductor, we can dope the HTSCs by either removing or adding electrons to the CuO2 planes and



22

these will change the properties of the materials, and as the outcome the materials show some

special characteristics. Superconductivity originates in the CuO2 planes and therefore we will

only consider the electronic structure of the CuO2 planes. The active energy states which are

close to the Fermi energy are the Cu 3dx2−y2 electrons of Cu hybridized with the O 2p electrons.

Cu is divalent with electronic configuration d9. Among all 9 d electrons, only one needs to be

considered active for explaining low energy properties of the system. Because of crystal field

splitting and Hund’s rules, the other states are fully occupied anddo not participate in con-

ductivity. For example let’s consider the high temperature superconductor La2(1−x)SrxCuO4

which has the simplest crystal structure among all HTSC. The parent compound for this ma-

terial would correspond to x = 0—La2CuO4. In La2CuO4, Cu is divalent, ie, Cu is in the

d9 configuration. Hence there is one d electron per unit cell. The system should be a metal,

as from standard band theory, that any crystal with odd number of electrons per unit cell

has an incompletely filled band of electronic states. But, in fact, this material is a very good

insulator. This kind of insulator is known as a Mott insulator. A Mott insulator is qualitively

different from a conventional band insulator. In a band insulators, the conductivity is blocked

by a band gap. Electrons cannot move because all orbitals are filled. On the other hand, for a

Mott insulator, the conductivity is inhibited by repulsion between electrons. When the highest

occupied state has one electron per atom, the creation of a doubly occupied site is required for

electron motion. The electron motion is blocked if the Coulomb repulsion between electrons

is very strong. Hence a Mott insulator is a direct consequence of local correlations between

electrons in the system.
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2.9 Doping the parent compound

In the last section we have seen that the parent compounds of the HTSC are Mott insula-

tors. Now if we consider the spin degrees of freedom of electrons, because of various possible

orientations of electronic spins with respect to each other, there should be a huge degeneracy in

ground state . But it turns out that the system condenses in a unique ground state, the antifer-

romagnetic state. By removal of some of the electons, the antiferromagnetism is destroyed, and

depending on the amplitude of charge removal, these materials exhibit spectacularly different

phases. As electrons are removed, holes are created. Electrons are able to move by hopping

into the unoccupied holes. An electron hopping into a hole is equivalent to a hole moving into

an electron site, so the holes become charge carriers in the system. The dynamic process of

changing carrier concentration in the system is called doping.Operationally, doping in these

materials can be done in various ways such as:

(i) by adding oxygen interstitially (e.g. Bi2Sr2CaCu2O8+δ)

(ii) by substituting a monovalent atom with a trivalent atom (e.g. by replacing La with Sr in

(La2(1−x)Sr2CuO4)

(iii) by removing oxygen atoms from their corresponding stoichiometric positions (e.g YaBa2Cu3O7+δ)

and so on.

All these different processes of removing electrons to create holes in the CuO2 planes are called

hole doping. On the other hand there are other materials which can be dope by adding electrons
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to the CuO2 planes. These materials are known as electron doped materials. In this thesis we

will not discuss electron doped materials.

Fig. 6 shows a schematic phase diagram of the hole doped HTSCs. The parent material

(i.e. δ = 0) are antiferromagnetic insulators with Neel temperature of the order of 300K. As

doping increases, the antiferromagnetism is destroyed very quickly and the system starts to

become a conductor. But this conducting phase is very different from the metallic state in

conventional metals. This phase has many unusual properties, and it is rather poorly under-

stood. It is called the pseudogap phase. With further increase in doping the conducting phase

becomes Fermi liquid like, close a usual metal. At low temperatures, for 0.07 < δ < 0.25, (for

Bi2Sr2CaCu2O8+δ), the system becomes superconducting. The maximum Tc is achieved for

δ ∼ 0.15, known as optimal doping. As shown in Fig. 6, there is another new phase in the

conducting state, in between the so called pseudogap phase and the conventional Fermi-liquid

like phase and at higher temperature, called the strange metal phase. As the name states,

even now we do not have any proper understanding of the underlying physics for the strange

metal phase. Especially the regime right above the superconducting dome and in between the

pseudogap, conventional metal and strange metal phase. Fig. 7 shows the Tc versus hole doping

of HTSCs. For δ = 0.07 at low temperature, the system become superconducting. With doping

increase, the Tc increase till δ = 0.15 when it reaches its highest value. For further increase in

doping, Tc decrease till δ = 0.25, and then the system become metallic.
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2.10 Pseudogap Phase

The pseudogap (PG) state and the strange metal state(Fig. 6) [17], [25], [26] are poorly

understood. Here we will discuss only about the PG state. There is a partial suppression

of the low energy excitations in the PG state. As low energy excitations are not completely

suppressed there is a partial energy gap opens up in the excitation spectrum of the PG state.

Unlike the SC state, in the PG state the energy gap is not a hard gap hence it is called

pseudogap. Both spin and charge excitations are partially gapped in the PG state. In certain

cases, the system could develop the PG even at a temperature of the order of couple of hundred

kelvin. The temperature below which the PG starts to appear is called as T ∗. Unlike Tc, T
∗

does not define a well defined phase transition, rather T ∗ is associated with some cross over.

Pesudogap effect was first observed in Inelastic Neutron Scattering(INS) experiment. After that

pseudogap effect has been found in static magnetic susceptibility, Knight Shift, Hall effect, AC

conductivity, specific heat and ARPES experiments [27], [28], [29], [30], [25]. It is important to

know that in all of these experiments, pseudogap effect is always associated with a characteristic

temperature T ∗ but the actual value of T ∗ which obtained in different experiments for the same

sample, could be quite different from each other. But all these experiments share one feature

in common—with decrease in doping in the underdoped side T ∗ increases. Quite surprisingly,

T ∗ and Tc are not related to each other in any obvious way.

The result of transport measurements in the PG state are quite surprising. As HTSCs

have layered structures, one can measure both their in-plane and the out-of-plane resistivity.

The in plane resistivity, commonly known as the ab plane resistivity (ρab), and out of plane
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resistivity, commonly known as the c axis resistivity (ρc), show qualitatively different properties

as sample-temperature T is changed. Generally for metals resistivity goes down as T decreases.

And resistivity in insulators grows exponentially as T goes down. At higher temperatures

(T � T ∗), both ρab and ρc decrease as T decreases. Hence, qualitatively both ρab and ρc

show metallic behaviors at higher temperatures. But as T → T ∗ temperature dependence

of ρab starts to look different from that of ρc. As T becomes lower than T ∗ , ρc exhibits

insulating behavior, although ρab always shows metallic behavior. With further decrease in T ,

at Tc the sample undergoes superconducting phase transition and becomes a three dimensional

superconductor. Hence it might be quite tempting to conclude that, in the PG state, HTSCs

are metallic in plane but insulating out of plane. But in order to determine whether some

system behaves like a conventional insulator, one needs to find out whether the resistivity of

the system grows exponentially as T goes down. It turns out that in between T ∗ and Tc, as T

is decreased ρc grows monotonically but never grows exponentially. So strictly speaking even in

between T ∗ and Tc, ρc does not show insulating behavior. By doing transport measurements,

at the presence of high magnetic filed, one can probe the PG state at very low temperatures as

superconductivity gets suppressed by magnetic field. Such field-dependent mesurements show

that at low temperatures ρab goes down as T goes down and finally gets saturated to some

residual value, but ρc always grows monotonically. Considering all these results, we can say

HTSCs are metallic in the plane but neither metallic nor insulating along c axis.

The ratio between ρc to the ρab is pretty large—of the order of couple of thousands as

ρab is of the order of couple of hundred µΩ.cm and ρc is of the order of couple of Ω.cm for
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samples in the PG regime. In order to appreciate the different properties between c axis and

ab-plane resistivity, let’s introduce the concept of Mott maximum resistivity (ρmax). Electrical

resistivity in a system has a natural quantum scale, corresponding to the mean free path (l)

of current relaxing collisions becoming short enough to equal to DeBroglie wave length(λDB)

which is of the order of the lattice constants. When the resistivity of a system approaches

ρmax, electrical conduction process changes from random scattering of propagating electrons to

that of hopping or localized electrons. For c axis transport, ρmax ∼ mΩ. cm which is couple

of hundred times smaller than ρc. In terms of mean free path for electrons, ρab corresponds

to around 10 lattice spacing, whereas ρc corresponds to around 0.01 lattice spacings! It means

somehow, electronic states are extended in ab plane but localized in the c direction. This is

almost impossible to understand in terms of disorder-dominated electronic propagation along

c axis. In order to compare the unconventional physics in the normal state of cuprates with

conventional metallic state, we will simplely discuss about Landau’s fermi-liquid theory(FL),

one of the most important foundations of modern condensed matter physics. Let’s assume that

we have an interacting system to deal with. In general, in order to treat the system quantum

mechanically one needs to deal with the full Hamiltonian and hence to take into account of

all the interactions between all the particles in the system. As long as the number of particle

becomes larger than two, there is no way to treat the problem exactly. Even with the most

powerful computer in the world, it is not possible to take into account of the interactions

between particles in a macroscopic interacting system. As a remedy, Landau came up with

an effective theory, known as Fermi-liquid (FL) theory. The essential ingredients of FL theory
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is that if (a) the interaction is not too strong and (b) the system does not go through phase

transition, interaction between electrons lead to only quantitative changes in the system—no

qualitative change happens to the interacting system compared to the non interacting ones. For

example the mass of electrons get renormalized to some effective mass in the interacting system

and the interacting system still can be treated as a collection of non interacting particles—

only with different effective mass. Such renormalized particles are called quasiparticles. As

a result, one can exam excitations of electrons in the non-interacting system with one-to-one

correspondence to the ones of quasiparticles in the inetarcting system. By using this powerful

theory, one can calculate various attributes of a system which obeys FL theory. These results

are quite general and they do not depend upon the specifics of the system—e.g electronic specific

heat as a function of temperature shown linear behavior, magnetic susceptibility is constant,

scattering(Γ) as a function of energy(ω)/Temperature(T ) goes as(ω2)/T 2 and so on. FL theory

has spectacular success in understanding regular standard solid-state systems, e.g. conventional

metals, band insulators, semiconductors. Hence whenever FL theory breaks down for a system,

some kind of unconventional physics is needed to understand it. Theoretically, to do controlled

calculation in the framework of non fermi liquid behavior is always a tough challenge.

In conventional case, resistivity in metals are due to scattering of electrons with some kind

of excitations, such as phonons . Therefore, if the excitations have some characteristic energy

scale (ω0), the resistivity would depend on some higher power of T for kBT 6 ~ω0 and linearly

with T for kBT > ~ω0. Hence there is some kind of a crossover temperature in the temperature

dependence of ρ in standard FL systems. But in the PG state over a huge temperature range,



30

ρab ∼ T which is a clear violation of standard FL theory. Unlike FL systems, the absence of a

crossover temperature in the temperature dependence of resistivity for HTSC materials in the

PG state, implies that excitations in the system have zero energy scale. This fact motivated

people to bring forward the concept of quantum critical point as the underlying Physics for

pseudogap phenomenon in HTSCs. In the quantum critical point scenario, some hidden order

is associated with the PG state and until now no body knows how to detect such hidden

orders experimentally. In addition the fact that d
dT (ρab) does not depend upon Tc, implies that

whatever process causes the resistivity in the plane does not depend upon Tc.

For regular metals the fermi surface forms closed contours. But ARPES experiment shows

that in the PG state there is disconnected fermi surface which continuously expand with tem-

perature increase into a complete fermi surface only above T ∗. This kind of disconnected fermi

surface is known as fermi arc. Until now no body knows the underlying Physics behind the

formation of fermi arc [31].

All of these unconventional properties of PG state make the Physics of Pseudogap state

very complicated and as well very interesting. Hence it is quite naturally believed, that one

of the major reasons for the absence of a microscopic theory for superconductivity in HTSC

materials, is lack of our understanding of the underlying physics in the PG state. If we can

understand the normal state of HTSCs, especially the PG state, it will be quite possible that

we can crack the natures behind the superconductivity of HTSCs.
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In the later chapter we will discuss about the PGs in more details. Specifically the T ∗ line,

the region right above the superconducting dome, and the low temperature PG staes as there

is little spectroscopic data about it.

2.11 Superconducting state

In the last section, we have discussed, about various abnormal properties in the so called

normal state of HTSC materials. But as the system goes to SC state, some sort of sanity comes

into existence, in the sense that HTSCs share same macroscopic underlying properties with

conventional superconductors—perfect diamagnetism and perfect conductivity. But there are

certain striking differences between SC state in the conventional superconductors and that in

HTSC [17]. Below we will glance through a few of them:

(i) The most striking contrast between the SC state in HTSCs and that in the conven-

tional superconductors, is in terms of momentum anisotropy in SC order parameter. In

HTSC, the SC order parameter has huge anisotropy in momentum space—both ampli-

itude and phase vary strongly with momentum. Superconducting gap (∆k) for HTSC

materials has the form, ∆k = ∆max
2

{
cos(kx)− cos(ky)

}
, where k = (kx, ky). Because of

this specific form of superconducting gap, it vanishes exactly at four points on the fermi

surface—known as nodes. In ARPES experiment one can not see the phase of the order

parameter. But in Josephson interference experiments, one can clearly see that phase of

the superconducting order parameter varies and really changes sign. Such order param-

eters are known as d-wave order parameters and the symmetry of the order parameter

is called as d- wave symmetry. In conventional superconductors, order parameter has
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s-wave symmtery. The existence of an anisotropy of the order parameter in HTSC ma-

terials, is most probably directly related to the anisotropy in electronic structure and to

the anisotropy in the interaction as well.

(ii) Like BCS superconductors, a HTSCs also have cooper pairs. Typically the coherence

length(ξ) is a measure of the extent Cooper pairs. For a clean, conventional supercon-

ductor, ξ = ~vF
kBTc

, where vF is the velocity of electrons at the Fermi level . For regular

BCS superconductors, coherence length is of the order of 1000A0. For HTSCs, one can

define the in plane coherence length(ξab) and the out of plane coherence((ξc). In the zero

temperature limit ξab is of the order of 15A0, whereas ξc is of the order of 3A0. It is worth

mentioning ξc is smaller than the smallest relevant length scales along the c axis, namely

the interlayer spacing(d), where d ∼ 7A0 for single layer compounds(one CuO2 plane per

unit cell) and d ∼ 12A0 for bilayer compounds(two CuO2 planes per unit cell).

(iii) Like conventional superconductors the HTSCs also show the meissner effect. HTSCs are

type two superconductors. In the context of meissner effect, an important parameter is the

London penetration depth(λL) which basically measures the distance over which magnetic

field can penetrate the sample. Without taking into account of non-local effects, one could

write λL =

√√√√{ mc2

4πnse2

}
. For HTSC, could define penetration depth associated with ab

plane and c axis as λabL and λcL respectively. Typically for conventional superconductors,

λL ∼ 500A0. On the other hand λabL ∼ 1500A0 and λcL can be even much higher.

(iv) It is mentioned previously, that in case of conventional superconductors, one can success-

fully use the two fluid model to explain many properties in the superconducting state. In
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zero temperature limit, for a clean BCS superconductor, ns = n where ns is the superfluid

density and n is total electron density in the system. It basically implies that in the zero

temperature limit, all the electrons become super electrons in the superconducting state

for conventional superconductors. Now for HTSC, one can think of doping(δ) as the ana-

log of n. Now using Uemura’s empirical relation one could relate superfluid density(ns)

to the doping(δ) of a HTSC sample, at least in the underdoped side. It turns out that for

HTSCs, in the undedoped side ns < δ. Most likely this means that unlike regular super-

conductors, or HTSCs (at least in the underdoped side)the phase of the order parameter

is not very rigid—rather the phase is soft.

(v) In conventional superconductors, ∆ ∼ Tc. But in case of HTSCs, atleast in the under-

doped side, there is no such obvious relation between ∆k and Tc. Quite surprisingly in

the underdoprd side, as δ is decreased ∆k goes up but Tc goes down.

(vi) Unlike conventional superconductors, quite generically for all HTSC materials, collective

modes related to magnetic excitations, appear in the superconducting state. There is a

huge debate in literature whether this collective mode is a cause or effect of superconduc-

tivity in HTSC materials.

Above, we mention a few among many many unusual properties of the SC state in HTSCs.

Until now the mechanism of superconductivity in HTSCs is an unsolved riddle.



CHAPTER 3

EXPERIMENTAL TECHNIQUES:ANGLE RESOLVED

PHOTOEMISSION

This chapter is a brief introduction to angle resolved photoemission (ARPES), a leading

and direct method of studying the electronic structure of solids. The main goals of this thesis

is to understand the excited states of electrons in the high temperature superconductors

3.1 Basics of Photonemission Spectroscopy

Photoemission Spectroscopy(PES) is a general term which refers to set of experimental

techniques that are based on the photoelectric effect. The photoelectric effect was originally

observed by Frank and Hertz in 1887 and subsequently Einstein [32] came up with his famous

quantum treatment of electromagnetic radiation to explain it.The technique of photoemission

spectroscopy has been used extensively in a range of fields, starting from Atomic Physics to

surface science, to chemistry, to Solid State Physics, with completely different perspectives.

In this thesis we will confine our discussion about the technique in the context of Solid State

physics . The idea behind the photoemission process is quite simple. The light shines on the

sample, electrons in the sample absorb the photons and are emitted from the sample. Let us

consider a solid sample. Assume that the sample is hit by a photon of energy hν and an electron

34
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that has binding energy EB, with respect to the Fermi level (EF ), absorbs the photon and

escapes from the sample. Then conservation of energy leads to,

Ekin = hν − EB − φ (3.1)

where φ is the work function for the sample of interest, Ekin is the kinetic energy of the emitted

electron. The work function is the energy required for an electron to reach the surface of the

material from the Fermi level , i.e. φ = Evac − EF . In experimental set ups, both the sample

and electron energy analyzers are electrically connected and hence the kinetic energy of the

electrons is measured with respect to EF . Therefore one can rewrite the above equation as,

Ekin = hν − EB (3.2)

where Ekin is the kinetic energy of the emitted electron with respect to EF . Hence, by

measuring kinetic energy of the emittion electron one can obtain the energy of the electron

inside the solid. This is the working principle for Fig 7, which shows how one can relate the

energy distribution of a photo emitted electron to the energy-levels inside the solid. For this

case, the fermi energy EF is at the top of the valence band whose minimum is E0 such that

the difference between E0 and vacuum level EV is V0 = EB +φ. If photoabsorption takes place

in a core level with binding energy EB (EB = 0 at EF ), photoelectrons can be detected with

kinetic energy Ekin = hν − EB − φ in the vacuum. Inside the solid the reference level is EF ,

whereas outside the reference level is Evac.
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Figure 7. Energetics of the photoemission process
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3.2 Energetics of Angle Resolved Photoemission Spectroscopy

Angle Resolved Photoemission Spectroscopy (ARPES) is PES,with addition that the di-

rection of emission of the electron is also measured . A beam of monochromatized radiation

supplied either by a gas-discharge lamp or by a synchrotron beamline is incident on a sample.

Electrons escape into the vacuum in all directions. By collecting the photoelectrons with an

electron energy analyzer characterized by a finite acceptance angle, one measures the kinetic

energy Ekin of the photoelectrons for a given emission angle.Once the kinetic energy Ekin of

the electrons and angle of emission (polar angle θ, azimuthal angle φ ) of the electron with

respect to the normal to sample surface are known, the momentum((p)) or wave vector((K))

of the photoelectron is also known. Quite generally K can be written as K=(K||, K⊥), where

K||=(Kx, Ky) and K⊥=Kz correspond to the components of wave vector parallel and perpen-

dicular to the sample surface respectively. A typical geometry for an ARPES experiment is

shown in Fig. 8 and for this geometry one could write:

Kz =

√
2mEkin

~2
cos(θ) (3.3)

Kx =

√
2mEkin

~2
sin(θ) cos(φ) (3.4)

Ky =

√
2mEkin

~2
sin(θ) sin(φ) (3.5)

.
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Figure 8. Mechanism of ARPES experiment
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These relation give us a direct relation between energy, and momentum of electrons in

the sample, provided we know how to relate the momentum and energy of the photoemitted

electron to those of the electronic state inside the solid. For most experiments ultraviolet light

is used as the impinging radiation and hence one can neglect the momentum associated with

the electromagnetic radiation. For a real three dimensional system it is quite non-trivial to

relate the momentum K of the photoemitted electron to the momentum k of a state inside the

system, since kz is conserved only to a reciprocal lattice vector at the surface, because the solid

differs from the bulk at the surface. But for a translationally invariant quasi-two-dimensional

system kz is irrelevant and k||=(kx, ky) is conserved. For such systems one could simply relate

E = −EB and k (the attributes of the electronic state inside the system) with Ekin and K

which are measured kinetic energy and momentum of photoelctron, as follows:

E = Ekin − hν (3.6)

kx = Kx =

√
2mEkin

~2
sin(θ)cos(φ) (3.7)

ky = Ky =

√
2mEkin

~2
sin(θ)sin(φ) (3.8)

Hence ARPES gives direct information about the relation between E and K for electronic

states inside the system. The high temperature superconductors which we study are transla-

tionally periodic quasi-two-dimensional systems. Thus for our systems of interest, the above
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simple minded formulation. In Fig. 9 we show how one can implement this formulation to find

the energy-momentum relations inside a physical system using ARPES.

3.3 Spectral Function formalism of ARPES data

In order to connect ARPES data with some important microscopic attributes of the system,

we use a formal description of the photoemission process. As we discussed previously the

photoemission process is associated with the removal of an electron from the system. Let us

consider a system that it has N electrons initially. Then after one of the electrons is removed

there are (N − 1) electrons left.The initial state (i.e the state at which the electron was not

emitted from the system) is one of the N particle bulk Bloch eigen states. The final state of

the system together with the photoemitted electron, is basically a combination of one of the

(N − 1) particle bulk Bloch eigen states and the wave function of the emitted electron. Hence

the exact treatment of the process will be to figure out how the system goes from the initial

state to the final state in the presence of proper boundary condition at the surface. However,

due to the complexity of looking at the whole process as a one step process [33], [34]. With the

impulse approximation, which assume that the outgoing photo-electron is moving so fast that

it has no time to interact with the photo-hole, one can take some phenomenological approach

in which the whole process is composed of three sequential steps:

(i) optical excitation of the solid in the bulk, i.e the transition of the bulk from its initial

state to its final state,

(ii) Travel of the excited electron to the surface.

(iii) Escape of the photonelectron into vacuum.
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Figure 9. Energy Momentum Relation from ARPES data



42

 

Figure 10. Graphic of One step and Three step process
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This approximation is called as three step model [35]. We show the comparison between the

one-step and three-step model in Fig.10. We would like to understand the process in which

there is a transition of the bulk initial state to the bulk final state as the electron gets excited by

the impinging electromagnetic radiation. Note that in this formalism we don’t have to deal with

the photoemitted electron separately, we will always work with the N particle wave function

for the system. Let us assume that the initial state bulk wave function is ΨN
i , final state bulk

wave function is ΨN
f and the interaction between the electron and photon is Hint. From Fermi’s

golden rule we can write the transition amplitude Wfi as:

Wfi =
2π

~
|〈ΨN

f |Hint|ΨN
i 〉|

2
δ(ENf − ENi − hν) (3.9)

where, ENi = EN−1
i −Ek

B and ENf = EN−1
f +Ekin are the initial and final state energies of the

N particle system and the binding energy for the electron is Ek
B. Treating the interaction with

the photon as a perturbation, we could write the interaction term as follows:

Hint =
e

2mc
(A · p + p ·A) =

e

mc
A · p (3.10)

where, A is the electromagnetic vector potential and p is the momentum operator of the excited

electron.
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Now we can write the initial state N particle wave function as a combination of a one

electron wave function and a (N − 1) particle wave function. For example, one could write ΨN
f

as follows:

ΨN
f = AφkfΨN−1

f (3.11)

where, φkf is the single particle wave function of the final state having momentum k and ΨN−1
f

is the final state wave function for (N −1) particles. The wave function of a system of fermions

needs to be antisymmetric and the antisymmetrization operator A takes care of that. By the

same token, one could write ΨN
i as follows:

ΨN
i = Aφki ΨN−1

i (3.12)

where, φki is single particle wave function of the initial state having momentum k and ΨN−1
i is

the initial state wave function for (N − 1) particles. The total photomeimission cross section

can be written as:

I(k, Ekin) =
∑
i,f

Wf,i. (3.13)

One can consider that after the removal of an electron the system will be in an energy eigen-

state ΨN−1
m with total energy EN−1

m . Hence, the total cross section will be sum of all the

transition amplitudes corresponding to all possible values of m. If we replace ΨN−1
f by some
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energy eigenstate ΨN−1
m with energy EN−1

m , then we could write the total photoemission cross

section as follows:

I(k, Ekin) =
∑
f,i

|Mk
f,i|2

∑
m

|αm,i|2δ(Ekin + EN−1
m − EN−1

i − EB − hν) (3.14)

where the overlap integral αm,i = |〈ΨN−1
m |ΨN−1

i 〉|2 is the probability that the removal of an

electron from state i will leave the system having (N − 1) electrons to the excited state m with

energy EN−1
m and Mk

f,i = |〈φkf |φki 〉|
2

is the one—electron dipole matrix element.

In the discussions of photoemission on many body system, the Green’s function formalism

G(k, t)formalism [36] is the most powerful and commonly used approach. The Green’s function

G(k, t) can be treated as the probability amplitude that an electron having momentum k added

to the system will still be in the same state after time t. The Fourier transform of G(k, t) is

G(k, ω). One can write G(k, ω)=G+(k, ω) + G−(k, ω). Now let us consider the operators

ck
+ (creation operators) and ck (annihilation operators) such that ΨN−1

i =ckΨN
i . In the zero

temperature limit one can write:

G±(k, ω) =

∑
m |〈ΨN±1

m |ck±|ΨN
i 〉|

2

ω − EN±1
m + ENi ± iη

. (3.15)

One defines the single particle spectral functionA(k, ω) = −(1/π)ImG(k, ω) = −(1/π)(G+(k, ω)+

G−(k, ω)) = A+(k, ω) +A−(k, ω). Then one can show that

A±(k, ω) =
∑
m

|〈ΨN±1
m |ck±|ΨN

i 〉|
2
δ(ω − EN±1

m − ENi ). (3.16)
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Now if we compare Eq 2.16 and Eq 2.14, it is easy to see that ARPES intensity can be related

toA−(k, ω) if we identify ω as the energy of the electron in the system with respect to the Fermi

energy EF . Hence one could finally write

I(k, ω) = M(k, ω, hν)f(ω)A(k, ω) (3.17)

where

(i) M(k, ω, hν) = |Mk
f,i|2, dipole matrix element which is general a function of k, ω and

photon energy hν

(ii) k is electronic momentum parallel to the sample surface

(iii) ω is the energy of the electron with respect to the Fermi level EF

(iv) f(ω) is Fermi function which makes sure that the photoemission intensity is related to

only A−(k, ω)

3.4 Different representations of ARPES data

As we saw in the previous section ARPES data is a function of both k and ω, therefore one

can represent ARPES data as:

(i) a function of ω for a fixed k, known as Energy Distribution Curve (EDC),

(ii) a function of k for a fixed ω, known as Momentum Distribution Curve (MDC).

For a non-interacting system EDC and MDC should be equivalent. But for an interacting

system like a High Temperature Superconductor, EDC and MDC are not equivalent as shown
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Figure 11. EDC and MDC intepretation of ARPES data
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in Fig.11. EDC and MDC have different functions in data analysis. For example, when we

want to measure the energy gap size, to find the sample temperature, the electron life time we

usually use EDC. When we want to determine the Fermi momentum, to find the self-energy,

we always use MDC.



CHAPTER 4

ELECTRONIC PHASE DIAGRAM OF HIGH-TEMPERATURE COPPER

OXIDE SUPERCONDUCTORS

We have already seen that in conventional superconductors there is only a single temperature

scale Tc separating the normal state from the superconducting state, the high temperature

superconductors exhibit two additional temperature scale. One is the psudogap scale T ∗[37],[38]

below which electronic excitation exhibit an energy gap. The second is the coherence scale

Tcoh[39], below which sharp spectral features appear due to increased lifetime of the excitations.

Keep in mind all these experimental result, in this chapter we will address following questions:

(i) There are two major schematics about the phase diagram for cuprates. As shown in

Fig.12, a. is the phase diagram in which T ∗ and Tcoh intercept at single quantum critical

point near optimal doping. b. is the phase diagram of doped mott insulator. What is

the relation between T ∗ and Tcoh line. Do they have crossing point or there is a single

quantum critical point where T ∗ and Tcoh meets .

(ii) What is the doping dependent of T ∗ and Tcoh.

For the discussion we will show the result of ARPES measurements on fourteen Bi2Sr2CaCu2O8+δ

(Bi2212) samples, range from UD 67K to OD 55K. The crystal samples were grown in traveling

solvent floating zone furnaces, and the thin film samples were grown using an RF sputtering

process. The Tc of the samples were defined either by where the diamagnetism reaches satu-
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ration, or where the resistance becomes zero, within the uncertainty of the measurement. For

all the samples, both films and single crytals Tmaxc ∼ 91K. All samples were characterized

by x-ray diffraction. The samples were doped by changing their oxygen content through an

annealing process. Superconducting transition widths of < 5K were obtained. The doping

value was determined from the Presland et al.

4.1 ARPES measurement and data analysis

ARPES measurements were carried out at the Synchrotron Radiation Center, Wisconsin,

and the Swiss Light Source, using Scienta R2002 and R4000 analyzers. 22eV photons with

polarization parallel to (0, 0)(π, 0) were used, in order to maximize the signal at the antinode.

The energy resolution was 15 - 20 meV (FWHM) with a k-resolution of 0.0055 1. For a given

cut, we divide the photoemission data by a resolution broadened Fermi function and determine

kF from the spectrum which (a) has a peak at chemical potential when the system is gapless,

or (b) the peak is closest to the chemical potential when the system is gapped, both in the

superconducting and pseudogap states. If the symmetrized EDC (i.e. ARPES intensity I(k,ω)

as a function of ω for a fixed k) at some kF is peaked at ω = 0, the corresponding point on the

fermi surface has no gap, otherwise it is gapped. The energy gap at a point on the fermi surface

is the peak-to-peak separation of the symmterized EDC at the corresponding k = (kx, ky).

4.2 T ∗ and Tcoh

General features of the phase diagram of the copper oxide superconductors have been known

for some time. The superconducting transition temperature Tc has a dome-like shape in the

doping-temperature plane with a maximum near a doping δ ∼ 0.164. While in conventional
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metals the electronic excitations for T > Tc, are (i) gapless and (ii) sharply defined at the Fermi

surface, the cuprates violate at least one of these conditions over much of their phase diagram.

These deviations from conventional metallic behaviour are most easily described in terms of

two crossover scales T ∗ and Tcoh, which correspond to criteria (i) and (ii), respectively.

To address the role of these energy scales in defining the phase diagram,we concentrate on

spectra at the antinode ((π, 0)− (π, π) Fermi crossing), where the spectral changes with doping

and temperature are the most dramatic. In Fig. 13, we show spectra at fixed temperature

as a function of doping. Data points are indicated in Fig. 13a. Initially, we show spectra

at fixed momenta as a function of energy (energy distribution curves, or EDCs) that have

been symmetrized about the Fermi energy to remove the effects of the Fermi function[60].

Later, we show that equivalent results are obtained from division of the EDCs by a resolution-

broadened Fermi function. In Fig. 13b the spectra at the highest temperature (∼ 300K)

show two remarkable features: they are extremely broad in energy, exceeding any expected

thermal broadening, and their lineshapes, well described by a lorentzian, are independent of

doping. The large spectral widths indicate electronic excitations that cannot be characterized

by a well defined energy, implying that the electrons are strongly interacting. The incoherent

behavior of the spectra at 300 K is consistent with the strange metal regime in two model

phase diagrams popular in the literature, shown schematically in Fig. 12 a. If Fig. 12a applies,

there would be strong evidence for a single quantum critical point near optimal doping which

dominates the behavior to high temperatures[44],[43].In addition to identifying the sharp peak

via a decomposition of the spectrum into a broad lorenzian and a sharp gaussian, the presence
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Figure 12. Phase diagram schematics:(A) Schematic phase diagram for a quantum critical
point near optimal doping. (B) Schematic phase diagram for a doped Mott insulator.
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Figure 13. Spectra at constant temperature as a function of doping. (A) Dots indicate the
temperature and doping values of the spectra of the same color plotted in BD. (B) Spectra at
T/sim300K for several samples measured at the antinode, where the d-wave superconducting
gap below Tc is largest. The spectra are normalized to high binding energy and symmetrized
in energy to eliminate the Fermi function. The doping values are indicated by the top row of
dots in A. (C) Same as in B, but at T/sim150K, with the dopings indicated by the middle
row of dots in A. (D) Same as in B, but at T = 100K, with the dopings indicated by the

bottom row of dots in A.
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Figure 14. Additional signatures of spectral coherence. a Spectra for a small range of binding
energy for different temperatures, showing the break visible when the coherent component

merges with the incoherent component. The straight lines are guides to the eye. These
spectra are for an overdoped 67K sample. b Derivative of the top spectrum shown in a. The

sharp change in the slope at the break point is indicated by the arrows. c Spectra at constant
energy (integrated over 10mev around the Fermi energy) as a function of momentum. The
different curves are from the same sample, for increasing temperatures from bottom to top.
At low T, four peaks are observed due to the splitting of the CuO2 states into bonding and

antibonding combinations. These two combinations merge at Tcoh into a single broad peak. b
Intensity map of the dispersion, with the bottom panel corresponding to the bottom spectra

in c, and the top panel to the top spectra in c.
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of a sharp peak can also be deduced directly from the raw spectra. A sharp break in the slope

of the raw spectra is present at the binding energy where the coherent region of the spectra

merges into the incoherent part, as shown in Fig. 14a. For T > Tcoh, no break is discernible. For

spectra with sufficiently high signal-to-noise ratio, the break can also identified from the sudden

increase in the derivative of the spectra, as shown in Fig. 14b, A consequence of coherence in

bi-layer cuprates such as Bi2Sr2CaCu2O8+δ is a coupling of the states from each layer into a

bonding and an antibonding combination, as discussed in earlier work. Here we show a detailed

temperature evolution of the spectra as a function of momentum, but at fixed energy in Fig.

14c, at chemical potential, but integrated over an energy range of mev. Below Tcoh, two peaks

can be seen on either side of the CuO2 bond direction, the inner-most corresponding to the

antibonding and the outermost to the bonding combinations. As the temperature increases,

the antibonding component merges into the bonding one, after which one one broad peak is

observed above Tcoh. Similar results can be are found from the intensity maps in Fig.14d. We

note that in previous work we did not observe the merging of the bonding and antibonding

combinations, due to the reduced momentum resolution of earlier experiments. T ∗ would be

the transition temperature for a competing order, with Tcoh its ‘mirror’ corresponding to where

Fermi liquid behaviour sets in. The non-Fermi liquid behaviour in the strange metal phase

above both scales would then arise from fluctuations in the quantum critical region[45]. These

same fluctuations presumably mediate superconducting pairing. On the other hand if Fig. 12a

applies, the phase diagram would arise from strong correlation theories based on doped Mott

insulators[81],[47],[70],[48]. The T ∗ line is where spin excitations become gapped, whereas Tcoh
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is the temperature below which doped carriers become coherent. Superconductivity emerges

below both scales, where spin and charge excitations become gapped and coherent. Which of

these two phase diagrams is the appropriate one has critical implications for our understanding

of the cuprates. To study this, we reduce T. In Fig. 13c we show that at ∼ 150K, the

spectra has marked changes with doping, and three regions can be identified. At low δ, the

spectrum (red curve) remains broad as in Fig. 13b, but now a spectral gap is present - the

pseudogap. This results in a reduction of the low-energy spectral weight as probed by various

experiments[50]. On increasing δ, the spectral gap becomes less pronounced, and disappears

just below optimal doping (purple and brown curves), where the spectra now resemble those

in Fig. 13b. Increasing δ beyond 0.17, the spectra exhibit a sharp peak centred at zero energy

(Ef ) (blue and green curves). These spectra are now similar to what one would expect for a

more conventional metal. The doping dependences near 150K are again consistent with either

Fig. 12a or 12b. A completely different behaviour emerges at a lower temperature, 100K (Fig.

13d). The pseudogap is still present for low δ (red and purple curves). But near optimal doping,

the spectra change, now exhibiting sharp peaks separated by an energy gap (brown, blue and

light blue curves). These sharp peaks indicate that the lifetimes of excitations have increased

dramatically, in contrast to the spectra at 150K for optimal doping (brown curve in Fig. 13c).

For still higher δ, a single sharp peak centred at EF appears (green and black curves). Notice

that all the spectral changes are limited to an energy scale of less than 200 meV; outside this

energy range, the spectra follow the same broad lorentzian shape as in Fig. 13b. Fig. 13d

demonstrates that the spectral gap and coherence (manifested by sharp spectral peaks) coexist
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in the normal state near optimal doping, implying that the T ∗ and Tcoh lines cross each other,

as in Fig. 12c. To further determine where the crossing appears, we plot spectra at fixed doping

as a function of temperature, with the various data points indicated in Fig. 15a. Fig. 15b shows

spectra for an optimally doped sample. At T = 90K (blue curve) the sample is just emerging

from the superconducting state. Increasing T, the sharp peaks at the edge of the gap decrease

in intensity, while the gap magnitude remains constant. Finally, for T > 108K, the sharp peaks

disappear, while the spectral gap remains (red and black curves). This indicates that the Tcoh

line has been crossed, but not the T ∗ line. For T > 138K, the spectral gap has completely filled

in (green and orange curves), and the spectra have regained the broad lineshape characteristic

of the strange metal phase of Fig. 13b. In contrast, upon increasing the doping, the crossing of

the pseudogap and coherence temperatures are reversed, as illustrated in Fig. 14c. Starting in

the superconducting state at 40K (blue curve), one can see the same features as in Fig. 15b, but

now the spectral gap is smaller. Once Tc is crossed at 87K, the spectral gap and sharp peaks

persist (bronze curve). But at higher T, the gap disappears, and we are left with a relatively

sharp peak at EF (red curve), in contrast to Fig. 15b. For higher temperatures (not shown),

peaks broaden as in Fig. 13b. If the doping is now increased even further (Fig. 14d), a spectral

gap is no longer observed at any T > Tc. In this highly overdoped region, the superconducting

transition is similar to that of conventional superconductors, as the spectral gap closes very

near Tc. The peak at EF initially remains sharp, but at high enough temperatures, the strange

metal returns (purple and brown curves).
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Figure 15. Spectra at constant doping as a function of temperature. (A) Dots indicate the
temperature and doping values of the spectra of the same color plotted in BD. (B)

Symmetrized antinodal spectra for two optimally doped samples (/delta = 0.16). The
temperature values are indicated by the left row of dots in A. (C) Same as in B, but for a

doping of/delta = 0.183, with the temperatures indicated by the middle row of dots in A. (D)
Same as in B, but for a doping of/delta = 0.224, with the temperatures indicated by the right

row of dots in A. Gray lines in B and C mark the location of the gap.
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4.3 Quantative determination of T ∗ and Tcoh line

In Fig. 16, we show that dividing the EDCs by a resolutionbroadened Fermi function[52]gives

equivalent results to symmetrizing them. To quantitatively determine the T ∗ line, we note that

it is easily identified by where the spectral gap disappears[62]. For Tcoh we need to identify

where the sharp peak disappears. We find that we can model the broad, incoherent part

of the spectrum with a lorentzian, and the sharp, coherent piece with a gaussian (a similar

decomposition has been used in the very different context of the analysis of critical scattering).

In Fig. 16d, we plot the height of the sharp component of the spectra above that of the

constant Lorentzian. One clearly sees a linear decrease with T, from which we determine Tcoh.

Tcoh can also be observed in plots of the angle-resolved photoemission (ARPES) signal as a

function of momentum for a fixed energy, the momentum distribution curves shown in Fig.

16 EG. In Fig. 16E, we show that a significant change in width occurs upon crossing Tcoh,

which clearly indicates that this is not a simple temperature broadening effect. The spectra

remain relatively unchanged both below and above Tcoh, with significant changes limited to

temperatures close to Tcoh. Furthermore, Tcoh is strongly doping dependent. In Fig. 16F, we

show spectra at similar T for an optimally doped sample and an overdoped one with Tc = 65K,

showing that the spectral widths depend on the region of the phase diagram, and not simply

the temperature. This is emphasized in Fig. 16G, where no spectral changes are observed in

the strange metalregion over a wide range in temperature.
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Figure 16. Fermi function divided spectra. (A) Antinodal spectra for two optimally doped
samples, /delta = 0.16, showing sharp peaks with an energy gap (green curves) below T, but

broad gapless spectra (purple curve) above T. Colored lines show Fermi function-divided data,
with symmetrized data superimposed as sharp black lines. (B) Spectra for an overdoped
sample, /delta = 0.183, showing that, unlike in A, the spectral gap is lost above 100 K,

whereas the sharp peak persists to higher temperature. (C) Data for an overdoped
/delta = 0.224 sample. The sharp spectral peak decreases in intensity with increasing

temperature. By T = 250K, the spectral line shape is broad and temperature independent.
(D) Linearly decreasing intensity of the sharp spectral peak relative to the broad Lorentzian
with increasing T for three values of /delta. Tcoh is where this intensity reaches zero. (E)

Momentum distribution curves (MDCs) for an overdoped /delta = 0.224 sample, showing that
a qualitative change in spectral shape occurs near Tcoh. (F) Comparison of the MDC of an

OP doped sample, to that of an OD sample at a similar T. (G) T-independence of the
spectral shape for an OP sample above Tcoh.
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4.4 Conclusion

The phase diagram shown in Fig. 17 summarizes our results. The solid dots are based on

the antinodal spectra and are colour coded to correspond to the four different regions in the

normal state phase diagram. These correspond to antinodal spectra that are: (1) incoherent

and gapped, in the underdoped pseudogap region, (2) incoherent and gapless, in the high

temperature strange metal, (3) coherent and gapless, in the overdoped metal, and finally (4)

coherent and gapped, in the triangular region above optimal doping formed as a result of the

crossing of T ∗ and Tcoh. In addition, we also plot T ∗ and Tcoh as defined above by double

triangles. We emphasize that below Tc, we find coherent and gapped antinodal spectra for all

doping values, even for very underdoped samples.
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Figure 17. Electronic phase diagram of Bi2Sr2CaCu2O8+δ versus hole doping, /delta. Brown
dots indicate incoherent gapped spectra, blue points coherent gapped spectra, green dots

coherent gapless spectra, and red dots incoherent gapless spectra. The brown double triangles
denote T, and the green double triangles Tcoh.Tc denotes the transition temperature into the

superconducting state (shaded gray and labeled D − wave SC).



CHAPTER 5

OBSERVATION OF A D-WAVE NODAL LIQUID IN HIGHLY

UNDERDOPED BI2SR2CACU2O8+δ (BI2212)

High temperature superconductivity in the cuprates occurs by doping a Mott Insulator

whose antiferromagnetic ground state and low-energy excitations are well understood[54]. By

adding carriers, the parent insulator turns into a superconductor for dopings that exceed 0.05

holes per CuO2 plane. The d-wave nature of the superconducting ground state[55] and its

low-lying excitations are also well understood. In between these two phases lies an electronic

ground state whose nature is poorly understood. As the temperature is raised, this intermediate

pseudogap state occupies a larger and larger region of the phase diagram (Fig. 19a). It is

from this phase that the superconducting state emerges for all but the most highly doped

samples. Consequently, the nature of this phase holds the key to the origin of high temperature

superconductivity. While the electronic excitations in the high temperature pseudogap region

have been studied extensively, there is little spectroscopic data at low temperatures, as there

is only a very narrow window of dopings where neither superconducting nor antiferromagnetic

order occurs. In this chapter we present angle-resolved photoemission spectroscopy (ARPES)

data on single crystals and thin films[56] whose doping levels range all the way from the insulator

to the over-doped superconductor.
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5.1 Samples

We focus in particular on non-superconducting thin films, just to the left of the supercon-

ducting Tc dome (see Fig. 19a), with an estimated hole doping 0.04[56]. These samples have

an insulating upturn in resistance R(T) with decreasing temperature shown in Fig. 18b, that

is well described by 2D-variable range hopping[57],[58]. We have measured the diamagnetic

susceptibility down to 1.5 K, and found no trace of superconductivity, with a sensitivity of 1

5.2 How to measure the energy gap using ARPES

We will consider Fermi energy of the system EF as the reference level for energy. It has

been already approved that I(k, ω) = M(k, ω, hν)f(ω)A(k, ω), where:

(i) I(k, ω) is the ARPES intensity corresponding to photoemission of an electron with mo-

mentum k and energy ω (relative to EF), using photons of energy hν.

(ii) M(k, ω, hν) is the corresponding matrix element discussed in Chapter 2.

(iii) f(ω) is the fermi function.

(iv) A(k, ω) is known as the spectral function.

The ARPES intensity as a function of energy at a fixed value of momentum k1, an EDC at k1

and (b) I(k, ω = ω1) i.e. the ARPES intensity as a function of momentum for a fixed value

of energy ω1, an MDC at ω1. The energy gap is defined in terms of the spectral function.

The energy gap at any point on the fermi surface is given by the peak energy of A(k = kF, ω)

where kF is the momentum coordinate for the corresponding point on the fermi surface. If

A(k = kF, ω) is peaked at ω = 0 then we say that energy gap is zero at that point, otherwise
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not. If the energy gap is non-zero we find out the peak position ∆ of A(k = kF, ω) and ∆ gives

the energy gap at that point. In actual ARPES experiment we can not find the whole fermi

surface in one single measurement, rather we need to take a series of measurements to obtain

the whole fermi surface.We stack the data from different measurements one after the another in

order to construct the whole fermi surface. Essentially each measurement, commonly referred

as a cut, gives the data in a momentum window (depends on the finite acceptance angle of

the detector) around some specific point on the fermi surface, i.e. around some specific kF.

We need to identify the kF corresponding to each cut for gap measurement. We know that

I(k, ω) is not exactly A(k, ω) because of the factors f(ω) and M(k, ω, hν). Actually, if one is

not interested in the quantitative details of A(k, ω), one can think M(k, ω, hν) as some overall

factor because M(k, ω, hν) does not vary much with energy. For the determination of the gap,

we are not interested in quantitative details of the spectral function, rather we would like to

know only its peak position. So we will simply ignore the matrix elements.

Hence, to find out the energy gap we need to (a) first determine the fermi momentum kF,

(b) then get rid of the effect of fermi function from the EDC at kF and (c) finally look for the

peak position of the fermi function free EDC at kF. There are several ways to do this. For our

analysis we have used one of them—namely symmterization. Without going into detail, below

we will briefly discuss this procedure.

5.2.1 Symmterization

Let us start with a cut, i.e. a number of EDCs at different k points around some kF. We

know that an EDC at k is f(ω)A(k, ω). For reasons explained before we do not take into account
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of the matrix elements. The fermi function behaves like a step function at zero temperature.

Hence, at zero temperature, ARPES can not access any state having positive energy. But at

finite temperature the fermi function has some width and hence, ARPES can probe states with

small positive energies consistent with the finite temperature width of the the fermi function.

Let us assume that each EDC is defined in an energy window, −ω2 < ω < +ω1. Using

experimental data for each k we define a new EDC in the energy window −ω1 < ω < +ω2

which is the the mirror image of the old EDC (which is directly obtained from experimental

data) at every k, with respect to ω = 0. Afterwards, at each k, we add the old EDC with

the new EDC for the corresponding k and we call the sum as the symmetrized EDC at that

k. Note that, due to the way the symmterized EDC is constructed, it would be defined in an

energy window −ω1 < ω < +ω1. Hence, in general, the symmterized EDC will have two peaks.

If we find that for some k peak-to-peak separation for the corresponding symmetrized EDC is

zero, then we say that the system has no gap, otherwise the system is gapped. If the system is

gapped, we look for the k for which peak-to-peak separation is minimum, the corresponding k

is the kF. The gap value will be the peak-to-peak separation of the symmterized EDC at that

kF. Below we show why this procedure works.

Since an old EDC at k is f(ω)A(k, ω) and hence the corresponding new EDC at k is

f(−ω)A(k,−ω). The corresponding symmetrized EDC is, f(ω)A(k, ω) + f(−ω)A(k,−ω). If

one considers the identity f(−ω)=1 − f(ω) and the assumption that A(k,−ω) = A(k, ω), it is

easy to see that the symmetrized EDC at the corresponding k is simply A(k, ω). The specific

assumption we made here, is known as particle-hole approximation. Hence, by looking at the
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energy dependence of the symmterized EDC, the gap can be found out. Strictly, speaking

particle-hole approximation is only valid at k = kF, but it turns out that one can quite safely

use this approximation for any k as long as |k− kF| is not too large.

5.3 Gap anisotropy in the PG state and in the SC state

The SC order parameter in HTSC materials has d-wave symmetry. Hence SC the gap (which

is basically the amplitude of the SC order parameter) in HTSC materials is highly anisotropic

in momentum space, too. In particular, the SC gap has the form, ∆k = ∆max
2

(
cos(kx)−cos(ky)

)
where the momentum k = (kx, ky).There are four points on the fermi surface where SC gaps

are exactly zero—known as nodes. Points on the fermi surface where the SC gap reaches its

maximum value, are called antinodes. The energy gap in the PG state is highly anisotropic

too . But the gap anisotropy in the PG state is different from that in the SC state. Below

we contrast the SC state with the PG state in terms of the gap anisotropy. In Figs. 18a

and 18b we present data for a slightly underdoped sample of Bi2Sr2CaCu2O8+δ (Bi2212) with

a Tc = 90K, for (a) the superconducting state at 40K, and (b) the pseudogap phase at 140K.

Shown are EDCs at the Fermi momentum kF, which have been symmetrized to remove the

effects of the Fermi function on the spectra (as explained before). Fifteen momentum cuts

were measured, as shown in Fig. 18d. These momentum cuts cover one-quarter of the whole

Brillouin zone. We can easily see from Fig. 18a, that among all fifteen different cuts,only at

one cut peak-to-peak separation for symmetrized EDC is zero. Hence, in the SC state only at

one single point on the fermi surface, does the energy gap vanish, and this is consistent with

the fact that the SC state has point nodes. On the contrary, in the PG state (Fig. 18b, Fig.
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Figure 18. Symmetrized EDCs for underdoped samples along the Fermi surface. (a)Tc = 90K
sample in the superconducting state at T = 40K, and (b) the same sample in the pseudogap

phase at T = 140K. The bottom EDC is at the node, while the top is at the anti-node, as
defined in (d). (c) Variation of the gap around the Fermi surface extracted from (a) and (b).

(d) Location of the momentum cuts (red lines), Fermi surface (blue curves), and special points
(node and anti-node) in the zone. (e) Symmetrized EDCs for a very underdoped, Tc = 25K,
sample (corresponding to kF points 4 through 15), measured at 55K in the pseudogap state.
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18d) there are more than one cuts at which the peak-to-peak separation for symmetrized EDC

is zero. Hence in the PG state, unlike the SC state, the energy gap vanishes over a finite length

along the fermi surface. This is manifestation of the disconnected fermi surface in the PG state,

known as fermi arc. In order to compare the gap anisotropy in the PG state to the one in the

SC state, we have plotted corresponding energy gaps as a function of fermi surface angle(φ) in

Fig. 18c. We can identify any point on the fermi surface either by specifying k = (kx, ky) of

the point or equivalently by specifying φ as shown in Fig.18d. It is quite evident that the SC

gap( shown as black dots in Fig. 18c) varies quite smoothly as a function of φ, more specifically

it goes approximately like cos(2φ). It is still not clear whether the SC gap as a function of φ,

goes like cos(2φ) for all doping level. But for our discussions, we do not need to worry about

the exact functional form of the SC gap. In contrast to the SC state, the gap in the PG state,

opens quite abruptly as for a number of points (cuts 8 through 15 in Fig. 18b) on the Fermi

surface energy gap vanishes.

5.4 Result

In Fig. 19d we show the energy distribution curves (EDCs, spectra at constant momentum

k as a function of binding energy ). Despite the low temperature, no sharp, coherent features

are discernable in the spectra. This is not surprising, since earlier work had found a strong

suppression of coherent spectral weight in the superconducting state with underdoping[59]. In

contrast, the momentum distribution curves (MDCs) in Fig. 19e at π= 0 show clearly visible

peaks. Thus the excitations are much better defined in k-space than they are in energy, and

are sharper near the zone diagonal than near its boundary (the Brillouin zone is shown in Fig.
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19c). Remarkably, despite the insulating-like nature of the resistivity, the MDC peaks indicate

a locus of minimum energy excitations similar to that of the superconductors, clearly visible in

the ARPES intensity map in Fig. 19c at π= 0. These Fermi momentum (KF ) values were in

fact used to generate the EDCs in Fig. 19d. In Fig. 19f we show the ARPES intensity as a

function of energy and k for another sample at the same doping, which shows that there is a

well-defined dispersion despite the incoherent nature of the EDCs. To better understand

the electronic excitations in the non-superconducting sample in Fig. 20d, we plot its raw EDCs

at kF , symmetrized to remove the effects of the Fermi function[60], and compare them with

superconducting state spectra (Figs. 20e, f, and g) at various doping indicated in Fig. 20a. In

each panel d through g, the top curve corresponds to kF on the zone boundary (θ= 0), while

the lowest curve to Kf on the zone diagonal (θ= 45), with the Fermi surface angle θ increasing

from top to bottom. In the non-superconducting sample (Fig. 20d) we see a highly anisotropic

energy gap which decreases monotonically from a maximal value at θ= 0, to zero at θ= 45

Even though there are no sharp coherence peaks at any angle, there is a clearly discernable

lowenergy gap. This is the pseudogap at low temperature (16 K) in the non-superconducting

sample. With increasing doping we move from the non-superconductor (Fig. 19d) to the highly

underdoped superconductor (Fig. 20e), whose EDCs look qualitatively similar to those in Fig.

20d, except for the appearance of observable coherent quasiparticle peaks at the gap edge at

each angle on the Fermi surface. These peaks grow in strength with increasing doping (Fig.20f

and g). We note that the energy gap evolves smoothly going from the insulator (Fig. 20d)

to the optimally doped superconductor (Figs. 20e to g) as the doping increases. Much of the
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Figure 19. Data for non-superconducting samples. (a) Schematic phase diagram
ofBi2Sr2CaCu2O8+δ in the hole-doping (δ), temperature (T ) plane. The arrow indicates the

doping level of the non-superconducting thin film samples whose data are shown in
subsequent panels. (b) T-dependence of the resistance showing an insulating upturn. (c)

Low-energy ARPES intensity at T=16K
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intensity of the EDCs in Fig. 20d can be traced to the existence of a large background that

is present for all ks in the zone. The origin of this background is not entirely clear, though it

can be readily identified as the ARPES spectra for unoccupied states (k much beyond Kf ), or

extracted from the flat (k-independent) part of the MDCs[61], and is plotted in Fig.20b. We

note that following the signal, the intensity of the background also continuously decreases as

the doping decreases (See supplemental information). If this background is subtracted from the

data in Fig. 20d, we obtain the symmetrized results shown in Fig. 20c, which further emphasize

the presence of a low energy pseudogap (θ= 0) and the node (θ= 45).

5.5 Anisotropic gap of insulating and superconducting samples

In Fig. 21 we show the angular anisotropy of the spectral gap for all our thin film and

single crystal samples. The superconducting samples were measured at temperatures between

16K and 40K, well below their Tc; the non-superconducting sample was measured at 16 K.

The energy gap for superconducting samples was determined from half the spacing between co-

herence peaks in symmetrized spectra at their corresponding kF. For the non-superconducting

sample, we determine the low energy gap from the raw data (as indicated by the intersection of

red straight lines in Fig. 3d), from the background subtracted data (Fig. 20c), and also from

lineshape fits. All three methods lead to the same gap estimates within error bars. Our results

confirm an earlier extrapolation[62], based on ARPES measurements above Tc for underdoped

superconducting samples, that the low temperature pseudogap phase should be characterized

by a node along the zone diagonal. They are also consistent with thermal conductivity (κ

measurements[63] in highly underdoped YBa2Cu3O6+δwhich show that the low temperature
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Figure 20. Spectral function vs. doping. (a) The doping levels δ of the four samples whose
spectra are shown in panels (d) through (g). The determination of δ is described in the

Supplemental section. (b) Nodal spectrum and background (see text) for the
non-superconducting sample D in (a) at T = 16K. c Backgroundsubtracted, symmetrized

intensity for sample D at the antinode (θ= 0) showing a gap and node (θ = 45) with zero gap.
(d) through (g) show symmetrized EDCs, without background subtraction, for (d) the

non-superconducting thin film at T = 16K, (e) an underdoped Tc = 33K thin film at T =
16K; (f) an underdoped Tc = 69K single crystal at T = 20K, and (g) a near-optimal Tc = 80K
thin film at T = 40K. In each panel (d) through (g) the spectra are plotted with increasing

from 0 (antinode) at the top to 45 (node) at the bottom. Note the highly anisotropic gap seen
at all four doping levels, with sharp quasiparticle peaks at the gap edge at all KF , with weight
diminishing with underdoping for all superconducting samples. Even after superconductivity
is lost, we see in (d) a clear low-energy gap scale as emphasized by the red lines drawn in the

top spectrum.
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κof the insulating phase proximate to the superconducting dome is the same as that in the

d-wave superconducting phase, where it is dominated by nodal excitations. Many experiments

report a node in the superconducting state but a gap that deviates from the simple cos(2θ)

form with underdoping. This behavior is attributed to two different order parameters[64], with

an energy gap in the antinodal region (near θ= 0)larger than what would be inferred by ex-

trapolating the gap from the nodal region (θ= 45). Our own work[65] a decade ago found

evidence for a flattening of the gap around the nodes, but at that time the detectors had at

least an order of magnitude lower k resolution and sparser angular sampling compared to the

present study. Recent ARPES studies[66][67][68] and scanning tunneling microscopy[69][70]

have also reported two gap behavior. The present results are not consistent with a two gap

picture. Several other experiments also find evidence for a simple d-wave gap. These include

thermal transport data[71], where the nodal gap slope extrapolated to the antinode was con-

sistent with the maximum gap, and ARPES data on underdoped La2xSrxCuO4[72], 1/8 doped

La2xBaxCuO4 [73], and Bi2201[74][75]. Why some experiments and/or samples show two-gap

behavior while others show a simple d-wave gap is not presently understood. We must em-

phasize here that we observe coherent quasiparticle peaks at the gap edge at all Kf for all

superconducting samples down to the lowest Tcs. If, however, quasiparticle peaks were absent

near the antinodes, one would erroneously estimate much larger gap values in the vicinity of

these k-points. Another important question in highly underdoped samples is the possible exis-

tence of hole pockets, reported in a recent ARPES measurement[77]. We have not found any

evidence for such pockets. Our MDCs always trace out a large underlying Fermi surface as in
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Fig. 19c. This brings us to the implications of our main result, the observation of a d-wave

like gap in a non-superconducting state that persists through the insulator-to-superconductor

transition. One possibility is that our insulating sample is highly inhomogeneous and has a

small fraction of superconducting regions that dominate the low-energy signal, while the less

doped insulating regions produce the large spectroscopic background and dominate the trans-

port. This inhomogeneity should be intrinsic, and not a surface phenomenon, since we have

found very similar results in the superconducting samples for thin films and single crystals of

Bi2Sr2CaCu2O8+δ, as well as single crystals of La2xSrxCuO4[72] (which involved a completely

different surface preparation). We emphasize that our diamagnetic susceptibility measurement

puts a bound of 1Our observations imply that the sharp quasiparticles of the d-wave supercon-

ducting state exist down to the lowest doping levels while rapidly loosing spectral weight, but

are no longer visible on the insulating side. Nonetheless, a low energy d-wave like gap survives

the phase-disordering transition. Obviously, the node must disappear as the Mott insulator

is approached, as indicated by some photoemission studies[80]. We note that we are unable

to make low temperature measurements at a smaller doping than that presented here due to

sample charging, suggesting a fully gapped insulator.

5.6 Conclusion

Summarizing, we have found spectroscopic evidence for a d-wave nodal liquid ground state

in the narrow doping regime between the high Tc superconductor and the undoped Mott anti-

ferromagnet. This quantum liquid has no superconducting order, the transport characteristics

of an insulator, no sharp quasiparticles, and yet it has an energy gap that looks just like that
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of a d-wave superconductor. Since the spectral gap evolves smoothly through the insulator-to-

superconductor phase transition, the d-wave superconductor appears to be just a phase-coherent

version of the d-wave nodal liquid[81][82][83].
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Figure 21. The spectral gap as a function of angle around the Fermi surface and doping. (a)
The spectral gap ∆(θ), normalized by its maximum value at the antinode, plotted as a

function of the Fermi surface angle θ. Different colors are used for various superconducting
samples (single crystals and thin films), while an open symbol is used for the

non-superconducting sample. The energy gap at all doping levels is consistent with the
d-wave form cos( 2θ) shown as a black curve. (b) Maximum gap as a function of hole-doping.
Gaps of the superconducting samples are denoted by filled symbols (blue for thin films and

red for single crystals measured in this work, and green for published data), while open circles
are used for the non-superconducting samples.



CHAPTER 6

SCALING CHARACTERISTIC OF SPECTRAL FUNCTION OF

UNDER-DOPED CUPRATES

6.1 Motivation

We have already discussed the phase diagram of cuprates high Tc superconductor in the last

chapter. As the phase diagram manifest itself, there are a pseudo-gap and conventional metal

states, and in between there is stange metal state. If the single quantum critical point model

shown in Fig. 12 is not evident, there must be a quantum critical part in between the metal and

pseudo-gap phases, although it is hidden by the superconducting dome. In order to examine if

there are any quantum critical properties, we use ARPES data to check for a proposed scaling

relations in the pseudogap region. Right at the critical point, the spectral function A(k, ω) is

expected to have a universal singular dependence on ω and k|| when these are both small. It is

expectd that this singular structure is described by a scaling ansatz of the form[84]:

A(k, ω) ∼ c0

ω
α
z

∗ F0(
c1 ∗ ω
kz||

,
ω

T
,
ω

∆
) (6.1)

Where c0 and c1 are scaling coefficients, k|| is the deviation from the closest Fermi-surface

point, T is the temperature, and α and z are the scaling parameters. In order to examine this

scaling function assumption, we use ARPES data measured on under-doped and over-doped

Bi2Sr2CaCu2O8+δ (Bi2212) samples. The function depends on three variables. If we choose

78
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the data points where the gap value is zero, which is the Fermi-arc region in the pseudogap

state, the number of variables will decrease to two. And by keeping the value of one variable

constant, we can examine the scaling properties of the spectral function as a function of one

variable. (The data should overlap with each other if we rescale the data as a function of scaling

variables)

6.2 Methodolog and results

We used the following procedures to treat the raw data:

(i) Normalization of the data. Because the absolute intensity of the spectrum we measure

depends on the number of scans we did for each momentum cut in the brillouin zone. If

we want to compare all the spectra together, we need to normalize the data. We use the

assumption that the area under a small range of high energy away from the excitation

peak should be equal for all the EDCs. Thus we can normalize the data by dividing the

spectral intensity by the area under a small high energy range. This will not change the

line shape of the data, but as a result we can compare data together even if the absolute

intensity for each data set are quite different.

(ii) Subtraction of the background. As we know, there is always some background in the raw

ARPES data. We can subtract the background from our data to remove its effect. Here we

determine the background by a spectrum that is far away from the Fermi momentum. As

shown in Fig.22 (a) is the intensity map of energy and momentum (b) is the background

which is the energy distribution curve at fixed momentum that far away from kF (c) is
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the spectrum before the background subtraction (d) is the spectrum after background

subtraction.

(iii) Division of the data by a resolution broadeded Fermi function to remove the effects of the

Fermi function. Because ARPES measures electrons, which are fermions, there is always

a Fermi function cut off experimental data. The data we measure from the ARPES mea-

surement I is proportional tof(T, ω) ∗A(k, ω), if we want to know the information about

spectal function A(k, ω), we need to remove the effect of Fermi function. We can remove

it by symmtrization as we discussed in previous chapter or we can divide the raw data by

Fermi function. We measure the spectra of gold which is polycrystalline and therefore has

no momentum dependence, and fit the data with Fermi-function to determine the effective

temperature of the sample, and then use the temperature to calculate the Fermi-function

we need to divide the data by.
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Figure 22. Background subtraction procedure. (a) intensity map of energy and momentum.
(b) EDC far away from kF (c) the spectrum before the background subtraction (d) the

spectrum after background subtraction.
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6.2.1 Temperature term

By choosing the data points right at the Fermi-momentum at different temperatures, we

can fix the value of k|| at zero, therefore the first term in the scaling function ω
k||

equals to

infinity. (we can treat a variable equal to infinity in the function as irrelavant). We can vary

the temperature related term to check the scaling property of the function. We can find kF

by looking for the smallest gap locus, therefore we need to plot the symmetrized EDCs and

compare gap value. But here we measure the Fermi-arc part where there is no energy gap at

kF , after Fermi function division we can determine the kFby the point where the dispersion

cross the zero energy line. As shown in Fig. 23, the Y-axis is energy and X-axis is momentum

channel. In the intensity map, red means high intensity, blue means low intensity. Therefore,

the intensity map give us information about the dispersion of energy states, and the arrow

points to the Fermi-momentum.

In Fig. 24 we show the intensity of A(k, ω) ( data as function of energy at fixed momentum)

all taken at the same Fermi momentum, at different temperatures for an under-doped Tc=78K

sample. It is clear that using raw data, all the lines deviate from each other. In Fig. 25 we show

the rescaled result of Fig. 24 by changing the raw data’s x and y axis into the scaling function

variables and choosing the right value of scaling parameters α and z. ( the x-axis (energy)

is rescaled to ω
T , and y-axis (intensity) is rescaled to intensity*ω

α
z ). The data we present are

within the energy range from -100meV to 0 meV. The scaling function works very well in this

range, but if we try to examine the larger energy range, the scaling relation is not expected to

work and it does not. We showed the data from -600meV to 0meV in Fig. 26 and it is obvious
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Figure 23. Fermi function divided intensity map

that within -150meV range, the spectral overlap with each other, but below that, to -600meV,

the spectra are quite different from each other even after rescaling. It is worth mentioning that

the values of scaling parameters are also critical for scaling to work. As discussed in reference

[84], the value of α is always smaller than z, and from our analysis, z = 1 is the best value

for scaling. In Fig. 27 we show a set of results for different scaling parameter values. One

can see from the figure that there is always a best value of parameters that scales the data.

In order to find the best parameter value, we carried out a chi-square analysis for the rescaled

data explained below:
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(i) We fit one of the rescaled spectrum with a fitting function. For example assume that

we have four rescaled EDCs at different tempertures, and we fit the rescaled EDC at

highest temperture with a power function a ∗ (abs(ωT )b). After determine the fitting

coefficients a and b, we can calculate the chi-square value for rest of the three rescaled

EDCs with respect to the fitting function. The formular we use for chi-square calculation

is (intensity*ω
α
z -a ∗ (abs(ωT )b))2.

(ii) After the chi-square calculation for each rescaled EDC, we calculate the average value of

the chi-square and plot them as a function of scaling parameter α in Fig. 28. We also

calculate the confidence interval for the minimum chi-square by calculate the standard

deviation of minimum chi-square. Then with the assumption that he chi-square is line

near the minimun value, we find the confidence interval on two sides are 0.0190231 and

0.0707679. As we can see, there is a minimum chi-square at α
z=0.3. In figures 29 and

30, we show scaled results for other two under-doped samples, with Tcs of 85K and 47K.

One can see that the data along the Fermi momentum scale with temperature for all the

samples we showed. In Fig. 29, showed scaled data for an optimal-doped sample with Tc

of 85K. it does not scale as well as the last two samples but it does scale better than the

over-doped sample data in Fig. 30, because as we discussed in the chapter 4, the sample

with Tc=85K already exhibits coherence electron, therefore the scaling function no longer

describe the data very well.
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6.2.2 K parallel term

For k|| related term in the scaling function, we can fix the temperature term constant

and change the k|| related term. But this time, it is more complicated. Because ω, T

and k|| are independent variables, therefore if we want to fix one variable in the scaling

function at same value for two data we want to compare, we need to measure the spectral

function A(k.ω) for two different temperatures. We measured one sample at two different

temperature known as T1 and T2. Then we choose a pair of energies ω1 and ω2, which
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meet the criteria that ω1
T1

= ω2
T2

. For each temperature we have a full Fermi-surface plot as

shown in Fig. 31 from which we can calculate the value of k|| of every momentum point.

Other than the Fermi-surface plot, we have constant energy plot for each temperature as

well, from which we can obtain the intensity for each momentum point at fixed energy.

Now with all the data above, we choose the constant energy plot (ω = ω1) at temperature

T = T1 and constant energy plot (ω = ω2) at temperature T = T2, the temperature

related term ω
T for two data are fixed and equal. And as energy ω is also fixed for two

data, we can change the k parallel related term by varying the k||. And as we can see from

the Fig. 31 when we choose different Fermi-momentum points to determine the k|| value,

the range of avaliable k|| is different, thus there will be some different in the x-axis value

when we compare the data for different Fermi-momentum points. We use the following

steps to obtain the data discussed above:

(i) From each 3-D intensity map, we choose the data as function of mometum at fix

energy zero. After that we combine the data to build the zero energy contour at fixed

energy zero which is the Fermi-surface. In the meantime, we make the Fermi-surface

plot by the tight-binding simulation. By rrotation and translation of our experiment

results (caused by sample and detector orientation), we can fit the data with the

tight-binding calculation and find the required momentum and energy points for our

scaling analysis.

(ii) Then, we plot the intensity and momentum value of our experimental data.
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In Fig.31 we show the tight-binding Fermi-surface fit with our results. Fig.32 shows some

examples of the calculated k|| and intensity. Fig.32 (a) is the intensity for momentum

points in b Fig.32 (b) is the k|| for one specific Fermi momentum ( the colors are value

related) In Fig.33 we plot intensity and k|| in 2-D, the x-axis is the point number on the

line which normal to the Fermi-surface.
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In the Fig.34, we show the intensity versus k|| data for four pairs of momentum lines at T1

with energy ω1 and T2 with energy ω2 for an under-doped sample whose Tc is 68K. The

momentum lines is shown in Fig.37 by different color arrows. It is obvious that for the

raw data all the lines are deviate from each other. In Fig.35 we show the rescaled result of

Fig.34 by changing the raw data’s x and y axis into the scaling function variables. (x-axis

k|| rescaled to ω
kz||∗vF

, and y-axis intensity rescaled to intensity*ω
α
z ). Here we make the

x-axis unitless by dividing it by Fermi velocity vF . And in Fig.36 we show the unscaled

and scaled result for an under-doped sample whose Tc is 80K. For the momentum term

scaling, we also find the value of scaling parameter for best scaling, and plot them as a

function of Fermi surface cut as shown in Fig.38 (each red line means one degree). Because

this time the value of z is also taken into account. We find out that the best value of z

for the scaling function to work is around one. We plot the different scaling result for

different value of z in figures 39 and 40. As we can see, when z is larger than one, because

thek|| value increases as times of unit momentum value, the difference between first few

k|| with others is already very large. Therefore if we use large z value, this difference will

increase exponentially, and as a result we can only have very few ω
kz||∗vF

value to compare

which will make the scaling meaningless. And for small z value, from the result in Fig.

40, with the value of z decrease, the rescaled spectral will deviate from each other more

and more which means the scaling relation does not work for smaller z value. For the

temperature term scaling as we discussed in the last section, the scaling function only

works very well in a certain range of energy. Same as the temperature term scaling for
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the k|| term scaling, in Fig.41 we also show the scaling result for smaller range of k|| than

result in Fig.35. We can see that after a certain range of k|| the rescaled data begin to

deviate and not as good as the result for smaller range of k||.
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Figure 37. Momentum lines chosen for Fig.33, 34
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Figure 38. Scaling parameter versus Fermi-surface cut



104

2.5

2.0

1.5

1.0

0.5

0.0

In
te

ns
ity

*w
^(

α/
z)

-5x10
12

-4 -3 -2 -1 0
ω/(k^(z)*Vf)

z=8  '100K_cut100_energy70mev'
 '120K_cut100_energy88mev'

2.0

1.5

1.0

0.5

0.0

In
te

ns
ity

*w
^(

α/
z)

-15 -10 -5
ω/(k^(z)*Vf)

z=1  '100K_cut100_energy70mev'
 '120K_cut100_energy88mev'

10
8
6
4
2
0

In
te

ns
ity

*w
^(

α/
z)

-800 -600 -400 -200 0
ω/(k^(z)*Vf)

z=2
 '100K_cut100_energy70mev'
 '120k_cut100_energy88mev'

a

b

c

Figure 39. Scaling result for different value of z (a) result for z=1 (b) result for z=2 (c) result
for z=8



105

1.5

1.0

0.5

In
te

ns
ity

*w
^(

α/
z)

-20 -15 -10 -5
w/(k^(z)*Vf)

 '100K60meVcut108'
 '150K90meVcut108'

z=1.1,α=0.1

1.2

0.8

0.4

In
te

ns
ity

*w
^(

α/
z)

-3.0 -2.0 -1.0
w/(k^(z)*Vf)

 '100K60meVcut108'
 '150K90meVcut108'

z=0.6,α=0

1.2

0.8

0.4

In
te

ns
ity

*w
^(

α/
z)

-0.7 -0.6 -0.5 -0.4 -0.3
w/(k^(z)*Vf)

 '100K60meVcut108'
 '150K90meVcut108'

z=0.2,α=0.1

a

b

c

Figure 40. Scaling result for different value of z (a) result for z=1.1 (b) result for z=0.6
(c)result for z=0.2



106

In order to show that the scaling property is the special characteristic of the pseudogap

states. We did the same analysis for an over-doped sample with a Tc=67k. As shown in

Fig. 42, the data for this over-doped sample does not scale. Also, the chi-square value,

the over-doped sample has much higher chi-square value compare to under-doped sample.

We can see that the ChiSquare decreases indefinitely as the value of α
z increase. We also

do not find scaling in the gapped region for the Brilliumn Zone. This might because as

α
z increase, the energy effect is more dominant. The reason is that the value of energy

is very small near the peak, so if α
z is large ω

α
z is smaller and it will depress the curve

feature. Thus we think scaling for a large value of α
z is an artificial effect.
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Figure 43. Measured samples in phase diagram

6.3 Conclusion

In summary, we use the Bi2Sr2CaCu2O8+δ (Bi2212) sample data to evaluate the scaling

function. We found that, for five different under-doped samples in the Fermi-Arc region

the scaling function works very well. And for the over-doped sample, the data shows that

the scaling function does not work. In Fig. 43, we show the samples we measured in the

HTSCS phase diagram. Therefore, there is a universal scaling relation is only shared by

under-doped Bi2Sr2CaCu2O8+δ.
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