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SUMMARY

Gene regulation is one of the most important functions in the cell. This process is responsible

for differentiation within tissues of a single entity as well as diversity between organisms. It

allows for adaptation to stimuli in the environment and for more efficient use of environmental

resources. Changes in the way a gene is regulated can either increase the versatility and

adaptability of an organism or it can be detrimental. Cells have mechanisms to deal with

gene deletions and mutations while accepting beneficial changes. In this work we study gene

regulation from three perspectives.

Firstly, we focus on nucleic acid-binding prediction, both on the protein and the residue

levels. We predict DNA-binding proteins with 88% accuracy. On the residue level, we cre-

ate an ensemble classifier based on C4.5, bootstrap aggregation, and a cost-sensitive learning

algorithm. We demonstrate that by using this method with a number of residue attributes,

we obtain balanced sensitivity, specificity, and precision with high accuracy when training and

testing on unbalanced data sets.

Secondly, we turn our attention toward DNA-binding sites and two current bioinformatics

problems concerning protein binding: transcription factor binding site prediction and DNA

methylation prediction. We define a knowledge-based binding potential for genome-wide tran-

scription factor binding site prediction. In an application using this potential to search for

142 experimentally-determined binding sites for the CRP protein in E. coli, 59% of the true

binding sites are ranked as one of the top 5 sites with the strongest potential. Next, we use an

xv



SUMMARY (Continued)

alternating decision tree to shed light on sequence patterns that are characteristic of methylated

CpG islands. We find highly discriminating rules that differentiate between methylated and

non-methylated islands in human DNA.

Thirdly, we take a global perspective and study human molecular networks in the context of

disease, focusing on transcription factor and protein-protein interaction networks. We examine

the number of partnership interactions between transcription factors and how it scales with the

number of target genes regulated. In several model organisms, we find that the distribution

of the number of partners vs. the number of target genes appears to follow an exponential

saturation curve. We also find that our generative transcriptional network model follows a

similar distribution in this comparison. We then analyze human disease and its relationship to

two molecular networks. We first identify conserved motifs in the human transcription factor

network and pinpoint the location of disease- and cancer-related genes within these structures.

We find that both cancer and disease genes occupy certain positions more frequently. Next, we

examine the human protein-protein interaction (PPI) network as it relates to disease. We are

able to predict disease genes with 79% area under the ROC curve (AUC) using ADTree with

10 topological features. Additionally, we find that a combination of several network character-

istics including degree centrality and disease neighbor ratio help distinguish between these two

classes. Furthermore, an alternating decision tree (ADTree) classifier allows us to see which

combinations of strongly predictive attributes contribute most to protein-disease classification.

Finally, we create a co-occurrence matrix for 1854 diseases based on shared gene uniqueness

and find both previously known and potentially undiscovered disease relationships. This matrix

xvi
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will be useful for making connections between diseases with very different phenotypes, or for

those disease connections which may not be obvious. It could also be helpful in identifying new

potential drug targets through drug repositioning.

xvii



CHAPTER 1

INTRODUCTION

In 1944 Erwin Schrödinger made the keen observation that all living beings share a common

goal: to fight decay into equilibrium (144). This implies that what is alive must make a constant

effort to resist destructive forces which would seek to reduce it to its lowest energy state. Life,

then, is a struggle, and each living thing must constantly monitor, control, and modify its

cellular components in order to fight this tendency to decay. Luckily, organisms are equipped

with mechanisms that help to maintain internal stability, or homeostasis, and to adapt to

changes in the environment. Attempts to understand these processes began with the discovery

of a peculiar molecule.

1.1 The Discovery of DNA

The molecule we know today as deoxyribonucleic acid (DNA) was first observed in 1869

by Swiss biologist Friedrich Miescher, who stumbled upon a substance which was resistant to

protein digestion. At the time he referred to the molecule as “nuclein” (137). Though Miescher

remained in obscurity, Russian biochemist Phoebus Levene continued work with this substance

and in 1919 discovered the three major components of a nucleotide: phosphate, sugar, and

base. He noted that the sugar component was ribose for RNA and deoxyribose for DNA, and

he proposed that nucleotides were made up of a chain of nucleic acids (109). He was largely

correct, and in 1950 Erwin Chargaff, after reading a paper by Oswald Avery in which Avery

1
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identified the gene as the unit of hereditary material (13), set out to discover whether the

deoxyribonucleic acid molecule differed among species. In contrast to Levene’s proposal that

nucleotides are always repeated in the same order, he found that nucleotides appear in different

orders in different organisms. These molecules did however maintain certain characteristics.

This led him to develop a set of rules (known as “Chargaff’s Rules”) in which he states that the

total number of purines (Adenine and Guanine) and the total number of pyrimidines (Cytosine

and Thymine) are almost always equal in an organism’s genetic material. In 1952 Rosalind

Franklin and Maurice Wilkins used X-ray crystallography to capture the first image of the

molecule’s shape, and in 1953 James Watson and Francis Crick finally proposed the three

dimensional model for DNA (178). The four main tenants of their discovery still hold true

today: 1) DNA is a double-stranded helix, 2) the majority of these helices are right-handed, 3)

the helices are anti-parallel, and 4) the DNA base pairs within the helix are joined by hydrogen

bonding, and the bases can hydrogen bond with other molecules such as proteins.

1.2 The Central Dogma of Molecular Biology

The Central Dogma of Molecular Biology, first proposed by Francis Crick (50), describes

the directional processes of conversion from DNA to RNA and from RNA to protein. The

gene expression process starts with DNA, a double-stranded molecule consisting of base-paired

nucleic acids adenine (A), cytosine (C), guanine (G), and thymine (T) on a sugar-phosphate

backbone. This genetic material serves as the information storage for life, a dictionary of

sorts that provides all of the necessary tools for an organism to create the components of

itself. During the process of transcription, the DNA molecule is used to make messenger RNA
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(mRNA), which carries a specific instance of the DNA instructions to the machinery that will

make protein. Proteins are synthesized during translation using the mRNA molecule as a guide.

Gene expression is a deterministic process during which each molecule is manufactured using

the product of the previous step. The end result is a conversion from the genetic code into a

functional unit which can be used to perform the work of the cell. As you can imagine, this

process must be controlled by an organism in order to make efficient use of resources, respond

to environmental changes, and differentiate cells within the body. Gene regulation, as it is

sometimes called, occurs at all stages along the way from DNA to protein.

1.3 Types of Gene Regulation

Regulation falls into four categories: 1) epigenetic (methylation of DNA or protein, acetyla-

tion), 2) transcriptional (involves proteins called transcription factors), 3) post-transcriptional

(sequestration of RNA, alternative splicing of mRNA, microRNA (miRNA) and small inter-

fering RNA (siRNA)), and 4) post-translational modification (phosphorylation, acetylation,

methylation, ubiquitination, etc. of protein products). Epigenetic regulation of DNA involves

a reversible, heritable change that does not alter the sequence itself. DNA methylation occurs on

the nucleic acid cytosine. Arginine and lysine are the most commonly methylated amino acids.

When proteins called histones contain certain methylated residues, these proteins can repress

or activate gene expression. Often this occurs on the transcriptional level, and thus prevents

the cell from manufacturing messenger RNA (mRNA), the precursor to proteins. Proteins are

often referred to as the workhorse of the cell and are responsible for everything from catalyzing

chemical reactions to providing the building blocks for skeletal muscles. Some proteins, called
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transcription factors, help to up- or down-regulate gene expression levels. These proteins can

act alone or in conjunction with other transcription factors and bind to DNA bases near gene

coding regions.

1.4 Motivation

What can be gained by studying gene regulation? In general, it allows us to understand

how an organism evolves and develops, both on a local scale (42; 180), and on a more global

network level (15; 162; 16; 72; 84). There are, however, more specific reasons to investigate this

process closely. Failure in gene regulation has been shown to be a key factor in disease (157).

Additionally, learning how to interrupt gene regulation may lead to the development of drugs

to fight bacteria and viruses (124). A clearer understanding of this process in microorganisms

may lead to possible solutions to the problem of antimicrobial resistance (49).

There are two major factors that motivate the studies herein. Firstly, the size and quality

of biological data sets has increased dramatically in the last several years. This is due to

high-throughput experimental techniques and technology, both of which have provided large

amounts of interaction data, along with X-ray crystallography and nuclear magnetic resonance

(NMR) experiments which have given us the solved three-dimensional structure of proteins.

Secondly, machine learning has become an increasingly popular tool in bioinformatics research

because it allows for more sound gene and protein annotation without relying solely on sequence

similarity. If a collection of attributes which distinguish between two classes of proteins can be

assembled, function can be predicted.
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Figure 1: This is a general schema for gene expression. DNA is a double-stranded
molecule consisting of base-paired nucleic acids A, C, G, and T on a sugar-
phosphate backbone and is used as information storage. mRNA is made during
transcription and carries a specific instance of the DNA instructions to the ma-
chinery that will make the protein. Proteins are synthesized during translation
using the information in mRNA as a template. This is a deterministic process
during which each molecule is manufactured using the product of the previous
step. mRNA requires a 5’ cap and a 3’ poly(A) tail in order to be exported
from the nucleus. The cap ensures that the mRNA will be recognized by the
ribosome and protected from enzymes called RNases that will break down the
molecule. The poly(A) tail helps protect it from degradation by enzymes called
exonucleases. DNA: http://www.biologycorner.com/bio1/DNA.html, protein:
http://ucsdnews.ucsd.edu/graphics/images/2008/03-08M1protein.png.
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In this work we focus mainly on regulation at the transcriptional level and the components

which play a commanding role in this operation. So-called nucleic acid-binding (NA-binding)

proteins, a group which includes transcription factors, are involved in this and many other

cellular processes. Disruption or malfunction of transcriptional regulation may result in dis-

ease. We identify these proteins from representative data sets which include many categories of

proteins. Additionally, in order to understand the underlying mechanisms, we predict the spe-

cific residues involved in nucleic acid binding using machine learning algorithms. Identification

of these residues can provide practical assistance in the functional annotation of NA-binding

proteins. These predictions can also be used to expedite mutagenesis experiments, guiding

researchers to the correct binding residues in these proteins.

1.5 Project Overview

Toward the ultimate goal of attaining a deeper understanding of how nucleic acid-binding

proteins facilitate the regulation of gene expression within the cell, the research described here

focuses on three particular aspects of this problem. We begin by examining the nucleic acid-

binding proteins themselves, both on the protein and residue levels. Next, we turn our attention

toward protein binding sites on DNA molecules and a particular type of modification of DNA

that can affect protein binding. We then take a global perspective and study human molecu-

lar networks in the context of disease, focusing on regulatory and protein-protein interaction

networks. We examine the number of partnership interactions between transcription factors

and how it scales with the number of target genes regulated. In several model organisms, we

find that the distribution of the number of partners vs. the number of target genes appears
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to follow an exponential saturation curve. We also find that our generative transcriptional

network model follows a similar distribution in this comparison. We show that cancer- and

other disease-related genes preferentially occupy particular positions in conserved motifs and

find that more ubiquitously expressed disease genes have more disease associations. We also

predict disease genes in the protein-protein interaction network with 79% area under the ROC

curve (AUC) using ADTree, which identifies important attributes for prediction such as degree

and disease neighbor ratio. Finally, we create a co-occurrence matrix for 1854 diseases based on

shared gene uniqueness and find both previously known and potentially undiscovered disease

relationships.

1.5.1 Chapter 3: DNA-binding Protein Prediction

The goal for this project is to predict nucleic acid-binding on both the protein and residue

levels using machine learning. Both sequence- and structure-based features are used to distin-

guish nucleic acid-binding proteins from non-binding proteins, and nucleic acid-binding residues

from non-binding residues. A novel application of a costing algorithm is used for residue-level

binding prediction in order to achieve high, balanced accuracy when working with imbalanced

data sets.

1.5.1.1 Protein-level Prediction

In order for a protein to perform its function, it must interact with other molecules in the en-

vironment. Due to the ever-increasing number of crystallized protein structures available from

databases such as the Protein Data Bank (PDB) (http://www.rcsb.org), a corresponding

structural annotation approach to the identification of these interactions is warranted. Concur-
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rently, machine learning has gained popularity in bioinformatics and provides robust annotation

for genetic elements without relying solely on sequence homology. In this work we describe a

machine learning protocol used to identify DNA-binding proteins. Because there is no general

set of rules for choosing the best machine learning algorithm, we run a systematic comparison of

several classification algorithms known to perform well over various protein data sets. We find

that a tree classifier used in conjunction with a boosting algorithm gives the best performance,

achieving 88% accuracy when discriminating between non-homologous DNA-binding proteins

and non-binding proteins, significantly outperforming all previously published works.

This section is based on the following publication:

1. Langlois, Carson, Bhardwaj, and Lu. Learning to translate sequence and structure to

function: identifying DNA-binding and membrane binding proteins. Annals of Biomed-

ical Engineering. 2007 June; 35(6):1043-1052.

1.5.1.2 Protein Residue-level Prediction

In this section we present a method for the identification of amino acid residues involved

in DNA and RNA binding using sequence-based attributes. This method, which combines the

C4.5 algorithm with bootstrap aggregation and cost-sensitive learning, has been implemented

in a publicly-available server. Given a protein sequence, the server returns a list of binding and

non-binding residues within the protein along with a score, which measures the confidence in

the prediction. In our prediction trials, the DNA-binding model achieved 79.1% accuracy, while

the RNA-binding model reached an accuracy of 73.2%. In comparison with five other commonly

used algorithms for NA-binding residue prediction, we find that our ensemble method performs
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better for sequence-based prediction of both DNA and RNA binding. Additionally, we built

our classifiers over several DNA- and RNA-binding protein data sets from previous works and

found that we are able to improve on the previously published results. The NAPS web server

is freely available at http://bioinformatics.bioengr.uic.edu/NAPS.

This section is based in part on the following publication:

1. Carson, Langlois, and Lu. NAPS: A Residue-level Nucleic Acid-binding Prediction

Server. Nucleic Acids Research. 2010. July; 38:W431-5.

1.5.2 Chapter 4: DNA Binding Site and Methylation Prediction

This project has two parts. Firstly, we describe a method used to recognize the location on

a DNA molecule at which regulating proteins bind. We develop interaction potentials which are

able to assess protein-DNA interactions and test them on known binding sites of a transcription

factor. Secondly, we predict the location of a particular type of epigenetic modification of

DNA called methylation which can affect protein binding. We use an alternating decision

tree (ADTree) to discover which DNA sequence patterns are characteristic of methylated CpG

islands, and search for rules that differentiate between methylated and non-methylated CpG

islands in human DNA.

1.5.2.1 DNA-binding Site Prediction Using Interaction Potentials

Gene regulation requires specific protein-DNA interactions. Detecting the short and variable

DNA sequences in gene promoter regions to which transcription factors (TFs) bind is a difficult

challenge in bioinformatics. Here we have developed two-body and three-body interaction
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potentials that are able to assess protein-DNA interaction and achieve a higher level of specificity

in the recognition of TF-binding sites. The potentials were calculated using experimentally

characterized 3-D structures of protein-DNA complexes. We implemented two approaches in

order to evaluate the potentials. Using the first method, we calculated the Z-score of the

potential energy of a true TF-binding sequence when compared to 50,000 randomly generated

DNA sequences. The second method allowed us to take advantage of the ability of statistical

potentials to recognize novel TF-binding sites within the promoter region of genes. We found

that the three-body potential, which takes into account the interaction between a DNA base

and a protein residue with regard to the effect of a neighboring DNA base, had a better

average Z-score than that of the two-body potential. This neighbor effect suggests that the

local conformation of DNA does play a critical role in specific residue-base recognition. In all

cases, the potentials developed here outperformed published results. The two sets of potentials

were tested further by applying them in genome-scale TF-binding site prediction for the CRP

protein in E. coli. Out of the 142 cases, 28% of the true binding sites ranked first (i.e., had the

lowest Z-score), while in 59% of cases the true binding site ranked in the top 5. We show with

these results that statistical potentials can be used in genome-scale TF-binding site prediction.

This section is based in part on the following publication:

1. Zhao, Carson, and Lu. Prediction of specific protein-DNA recognition by knowledge-based

two-body and three-body interaction potentials. Engineering in Medicine and Biol-

ogy Society, Proceedings of the 29th Annual International Conference of

the IEEE EMBC. 22-26 August. 2007 Pages:5017-5020.
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1.5.2.2 Predicting Methylation of CpG Islands within DNA

CpG island (CpGI) methylation is an epigenetic modification that occurs in eukaryotes

and is based on the addition of a methyl group to the number 5 carbon of the pyrimidine

ring of cytosine. When methylation of a CpGI occurs, the associated gene (if any) is not

expressed (86). Aberrant methylation is thought to be a causative agent in disease (168) and

drug sensitivity (158; 148). In this work, we have predicted the methylation status of CpGIs in

human chromosome 21 using sequence patterns. These patterns showed a significantly different

distribution between methylated and unmethylated islands in a previous work (30). Using C4.5

with bagging and cost-sensitive learning, we achieved 85.6% accuracy, 82.8% sensitivity, and

86.4% specificity. We then constructed 1000 alternating decision trees using a bootstrapping

method and analyzed conserved nodes between the trees. This allowed us to find specific

combinations of sequence patterns that distinguished between methylated and unmethylated

CpGIs. Analysis of these characteristics offers certain insight into the conditions that permit

or prevent methylation.

This section is based on the following publication:

1. Carson, Langlois, and Lu. Mining Knowledge for the Methylation Status of CpG Islands

Using Alternating Decision Trees. Engineering in Medicine and Biology Society,

Proceedings of the 30th Annual International Conference of the IEEE

EMBC. 20-25 August. 2008 Pages:3787-3790.
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1.5.3 Chapter 5: Gene Regulation and Network Models

Through combinatorial regulation, transcriptional regulators partner with each other to

control common targets. This allows a small number of regulators (e.g., transcription factors)

to control a large number of targets (e.g., target genes). How does the number of regulators

scale with the number of targets? We answer this question by creating and analyzing co-

regulation networks related to transcription and phosphorylation that describe partnerships

between regulators controlling common genes. We perform analyses across six diverse species

from Escherichia coli to Homo sapiens. These reveal many properties of partnership networks,

such as the absence of a classical power-law degree distribution despite the existence of nodes

with many partners. We also find that the number of co-regulatory partnerships follows an

exponential saturation curve in relation to the number of targets, except for the prokaryotes E.

coli and B. subtilis for which only the beginning linear part of the curves are evident due to

arrangement of genes into operons. In order to gain insight into the saturation process, we relate

biological regulation to more commonplace social contexts where a small number of individuals

can form an intricate web of connections on the Internet. We find that the size of partnership

networks saturates even as the complexity of output increases. Then, we build a more general

simulation of network growth and find agreement with a wide range of real networks.

This chapter is based in part on the following publication:

1. Bhardwaj, Carson, Abyzov, Yan, Lu, and Gerstein. Analysis of Combinatorial Regula-

tion: Scaling of Partnerships between Regulators with the Number of Governed Targets.

PLoS Computational Biology. 2010. May 27; 6(5): e1000755.
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1.5.4 Chapter 6: Molecular Networks and Human Disease

During the past few decades, the amount of biological data available for analysis has grown

exponentially. Along with this vast amount of information comes the challenge to make sense of

it all. One subject of immediate concern to us as humans is health and disease. Why do we get

sick, and how? Where do our bodies fail on a molecular level in order for this to happen? How

are diseases related to each other, and do they have similar modes of action? These questions

will require many researchers from multiple disciplines to answer, but where do we start?

We take a bioinformatics approach and examine disease genes in a network context. In this

chapter we analyze human disease and its relationship to two molecular networks. Firstly, we

identify conserved motifs in the human transcription factor network and identify the location

of disease- and cancer-related genes within these structures. We find that both cancer and

disease genes occupy certain positions more frequently. Next, we examine the human protein-

protein interaction (PPI) network as it relates to disease. We find that we are able to predict

disease genes with 79% AUC using ADTree with 10 topological features. Additionally, we find

that a combination of several network characteristics including degree centrality and disease

neighbor ratio help distinguish between these two classes. Furthermore, an alternating decision

tree (ADTree) classifier allows us to see which combinations of strongly predictive attributes

contribute most to protein-disease classification. Finally, we build a matrix of diseases based

on shared genes. Instead of using the raw count of genes, we use a uniqueness score for each

disease gene that relates to the number of diseases with which a gene is involved. We show

several interesting examples of disease relationships for which there is some clinical evidence
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and some for which the information is lacking. This matrix will be useful in finding relationships

between diseases with very different phenotypes, or for those disease connections which may

not be obvious. It could also be helpful in identifying new potential drug targets through drug

repositioning.

This chapter is based in part on the following publications:

1. Carson and Lu. Network-based Knowledge Mining For Disease Genes. submitted.

2. Carson, Kibbe, and Lu. Discovering Disease Relationships Using a Co-occurrence Ma-

trix. to be submitted.



CHAPTER 2

BACKGROUND

The processes described in the Central Dogma of Molecular Biology dictate the course of

gene expression and the path toward cellular development. The regulation of this process is fun-

damental for organisms at all levels of complexity. From adaptation to changing environments

to the development of new functions, gene regulation provides several advantages to the cell.

By choosing which genes to express at a particular time, an organism can increase versatility

and adaptability to its environment. Gene regulation allows for more efficient use of resources.

For example, if an organism is able to metabolize both lactose and glucose but only glucose is

available, the organism can shut down the machinery responsible for the uptake and metabolism

of lactose, thereby conserving energy. Gene expression allows for adaptation to stimuli in the

environment, such as exposure to extreme heat or cold, and gives the organism protection from

these potential hazards. In higher level eukaryotes, gene regulation assists the differentiation

process, which produces specific cell types such as liver, kidney, lung, etc. Control over gene

expression can be exerted by the cell at the transcriptional, post-transcriptional, translational,

and post-translational levels, as well as epigenetically through the addition of specific com-

pounds to nucleic acids. This wide range of regulation types allows cells to construct very

complicated and extensive regulation mechanisms.

15
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2.1 Nucleic Acid-binding Proteins

NA-binding proteins are involved in gene regulation at many levels, and understanding

how they perform their tasks is crucial to understanding the regulatory process. DNA-binding

proteins are an integral part of the gene regulation process and are also responsible for DNA

repair. A particular subclass of these proteins, transcription factors, help control both the

initiation and the level of transcription, which is currently the most studied and best under-

stood type of regulation. RNA-binding proteins are directly involved with activities such as

protein synthesis, regulation of gene expression, and RNA splicing and editing, as well as other

post-transcriptional activities. Both DNA- and RNA-binding proteins are essential to the repli-

cation of specific types of viruses. The mechanisms underlying the behavior of these proteins

require an understanding of the interactions that occur between specific amino acid residues

within proteins and the nucleic acids to which they bind. Prediction of NA-binding residues

can provide practical assistance in the functional annotation of NA-binding proteins. Predic-

tions can also be used to expedite mutagenesis experiments, guiding researchers to the correct

binding residues in these proteins. Identifying these residues is a complex and difficult problem.

The characteristic traits of a residue which enable binding are largely unknown. Whether or

not certain characteristics of its neighbors affect a residue’s binding capability is also poorly

understood, further complicating the issue. Because of this, machine learning has often been

employed in an attempt to discover precisely which residues confer binding functionality.
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2.2 Machine Learning

Machine learning is a subcategory of artificial intelligence and involves “teaching” computers

to make informed decisions based on prior data. These data points often have hundreds or even

thousands of characteristics, or attributes, associated with them. Finding connections between

these characteristics is a highly complex problem, and finding these connections “manually”

is next to impossible. Often, the learning problem is one of pattern recognition, in which, by

exposing the machine to an increasing amount of data with relevant attributes, we increase

its ability to recognize complex patterns that may not at first be obvious. There are several

categories of learning including supervised, unsupervised, semi-supervised, multiple instance,

reinforcement, and others. In this work we focus on binary classification in supervised learning

problems (e.g., a protein does/does not bind DNA, a residue does/does not bind RNA, a

cytosine is/is not methylated, etc.). The goal for these types of problems is for the algorithm,

after having been shown many instances belonging to both classes, to classify a new, unseen

example as belonging to one class or the other, preferably with high confidence. The classifier

makes a decision as to which class the example belongs by assigning a confidence score between

0 and 1 or -1 and 1 for each example in the data set. This score reflects the level of certainty

in the assigned class. For instance, if the upper bounds of the score are 0 and 1 respectively,

an example with a confidence score between 0 and 0.5 would be assigned to the negative class,

and one with a score between 0.5 and 1 would be placed in the positive class (using 0.5 as

the threshold). For a positive example, a larger number indicates a higher level of confidence.
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Likewise, a lower score indicates a higher confidence that the example belongs to the negative

class.

Many algorithms have been developed for different types of learning problems. It is impor-

tant to note that the appropriate algorithm for a particular prediction problem depends entirely

on the nature of the problem as well as the types of attributes associated with the examples.

No one algorithm works well in all cases, although some are more widely used than others.

In this work we focus mainly on several versions of the decision tree algorithm, as well as an

implementation of the support vector machines (SVM) algorithm called libSVM (41). These al-

gorithms are included in the machine learning workbench Malibu, which was developed in-house

by Robert Langlois (102).

2.2.1 Supervised Learning

Supervised learning requires that the data points have both an input value (usually a vector

of features) and an output value, often referred to as the class label, which indicates the desired

outcome of the prediction. The data is usually divided into two sets, one for training and one

for testing. Once the algorithm observes the training data set, it builds an inferred function

called a classifier (in the case of discrete output). This classifier should predict the correct

output for each of the inputs, and, ideally, would correctly identify the class label for each of

the previously unseen data instances in the testing set as well. In order for this process to work

correctly, the classifier must be able to generalize and apply what it learned during the training

phase to the testing set. Below we describe some specific algorithms for supervised learning

that have been used in this work.
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2.2.2 Support Vector Machines (SVM)

SVM (47) is binary classifier that can perform both linear and non-linear comparisons. It

attempts to separate two classes of data by the widest margin, or hyperplane, possible. The

training examples that lie on this hyperplane are called support vectors, and test examples

compared to the resulting training model are classified based only on these support vectors.

The wider the margin is, the better the classifier performance. While SVM has been shown to

perform very well on high-dimensional data sets (i.e., those with a large number of attributes), it

has a significant drawback for our purposes. Given a set of inputs, the classifier returns output

without details related to the procedure it followed to arrive at its decisions. Therefore, we will

gain no knowledge of which features were important in making these decisions. Often referred

to as the Black Box Effect, this phenomenon prevents us from identifying the most important

characteristics (or combination thereof) separating the two classes. Since our ultimate goal is

to identify the importance of the features related to our examples, we choose to focus primarily

on decision tree variants in our predictions.

2.2.3 Decision Trees

A decision tree is a general graphical model for displaying an algorithm. The tree-like

structure is composed of internal nodes (each is an attribute), branches (each indicating the

outcome of a test on an attribute), and leaf nodes (each is a class label). Each internal node

represents a decision made on an attribute that successfully separates the data into two groups.

At least one of these groups must contain an overrepresentation of one class or the other. The

criterion for this split is the information gain that results from the choosing of each attribute.
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The attribute associated with the largest information gain value is chosen, and subsequent

nodes represent recursive splits on subsets of this data. Several variations on the decision tree

are described below.

2.2.3.1 The C4.5 Decision Tree Algorithm

The C4.5 decision tree is a classification tree developed by Ross Quinlan (139). An im-

provement on his earlier ID3 algorithm, C4.5 has several advantages. It handles large data sets

efficiently and does not require data preprocessing (unlike other algorithms such as SVM). It

can handle both discrete and continuous attributes, and can handle training examples which

may be missing values for these attributes. Additionally, the algorithm avoids overfitting the

data, which causes the generated model to produce artificial, high-quality results and conse-

quently makes it a poor predictor. The C4.5 tree is pruned in order to keep the model as simple

as possible and avoid this problem.

2.2.3.2 Adaptive Boosting (AdaTree, AdaC4.5, and AdaStump)

A recurring problem in supervised machine learning problems is that of data set bias. As it

turns out, a set of “weak learners”, i.e., those that make mistakes by misclassifying examples,

can be used to create a “strong learner” through a process known as boosting. Originally

proposed by Freund and Schapire (66), the adaptive boosting (AdaBoost) algorithm constructs

a collection of weak learning algorithms over several iterations using various distributions of

the data set. First, a weak learning algorithm is trained over a uniform distribution of the

data. During the next training iteration, a different distribution of the data set is used, one

which places a higher weight (indicating greater importance) on misclassified examples from



21

the previous cycle, and a lower weight on correctly classified examples. This process is repeated

for a predetermined number of iterations. This meta-algorithm has several advantages. It is

relatively easy to implement and can be used in concert with other machine learning algorithms.

In addition, it is fairly easy to tune compared to algorithms such as SVM and artificial neural

networks. For DNA-binding protein prediction we use three algorithms enhanced with adaptive

boosting: AdaTree (a custom implementation of the ID3 algorithm developed in-house by

Robert Langlois (102)), AdaC4.5 (AdaBoost with the C4.5 algorithm (139)), and AdaStump

(AdaBoost with a one-level decision tree serving as the weak learning algorithm).

2.2.3.3 C4.5 with Bagging and Cost-Sensitive Learning

One of the disadvantages of decision tree algorithms is that small changes to the data set

may result in a different feature being chosen at a certain node, which will affect the structure

of the tree in subsequent nodes and thus lead to instability. In this work we use the C4.5

algorithm with sub-sampling aggregation, which is similar to bagging, or bootstrap aggregating

(32). This method attempts to offset this instability by building many different trees from

the training data set using random sampling with replacement through a uniform probability

distribution. The resulting classifier then uses majority voting to decide to which class the

example belongs. When used in combination with an unstable classifier such as a decision tree,

bagging can help to improve accuracy by reducing variance. For DNA-binding residue and CpG

island methylation prediction, we used 200 trees to build our model, setting aside half of the

negative examples as a training set and half as a testing set. The exact number of positive
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examples used was determined by a positive class weight, or cost, which was equal to the class

distribution.

Cost-sensitive learning (191) is useful for problems in which, as is the case with CpGI

methylation and NA-binding residue prediction, one class is more highly represented than the

other. The costing algorithm determines the importance of an example by considering its class

label and performs an importance-weighted classification by applying weights to each class based

on class distribution (191). The final classifier is created from an average of multiple rounds

of rejection sampling. For DNA-binding residue and CpG island methylation prediction, we

performed 10-fold stratified cross validation over the training set for one run during both the

selection and the validation cycles.

2.2.3.4 Alternating Decision Trees

Alternating decision trees, or ADTrees (65), provide the benefits of the decision tree algo-

rithm with the added advantage of the ability to generate an intuitive graphical model. This

algorithm builds decision trees over a user-defined number of iterations using confidence-rated

boosting, which results in an option tree (37). We used a bootstrapping method with ADTree

which allowed us to find those rules that were conserved among multiple trees. In order to find

the optimum number of iterations at which to grow the trees, we performed parameter selection

on the data set using accuracy as our standard.
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2.2.4 Classifier Evaluation

2.2.4.1 Metrics

We use the following metrics to evaluate the binary classifiers developed in our work. Sen-

sitivity (or recall) (Equation 2.1) and specificity (Equation 2.2) measure the correct number

of true positive examples and true negative examples, respectively. Accuracy (Equation 2.3)

measures the proportion of true positives and true negatives correctly identified by the clas-

sifier. Precision, also called positive predictive value, measures the fraction of positive results

that are truly positive (Equation 2.4). Matthews Correlation Coefficient (MCC) (Equation 2.5)

provides a reliable way of measuring accuracy for both balanced (the number of positive and

negative examples are equal) and imbalanced (more examples of one class than the other) data

sets. A predictor that is always correct would have a MCC of 1.0; a predictor that is always

incorrect would have the value -1.0. A random prediction would be 0. The Receiver Operating

Characteristic (ROC) curve measures the ability of a classifier to separate positive examples

from negative examples, and is generally considered a good measure of overall performance.

The curve is created by sorting the continuous-valued outputs (corresponding to the likelihood

for an example to belong to the positive class) from the generated model and plotting the false

positive rate (FPR, which is equal to 1 − specificity, Equation 2.6) vs. the true positive rate

(TPR, Equation 2.7) for each example in the data set. An area under the ROC curve (AUC) of

0.5 is considered random, and an AUC equal to 1 would be characteristic of a flawless model.

The AUC gives an idea of the tradeoff between sensitivity and specificity, and it is a good

predictor of how a classifier will perform on future data sets.
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Sensitivity (Recall) =
TP

TP + FN
(2.1)

Specificity =
TN

TN + FP
(2.2)

Accuracy =
TP + TN

TP + TN + FP + FN
(2.3)

Precision =
TP

TP + FP
(2.4)

MCC =
TP ∗ TN − FP ∗ FN

√

(TN + FN)(TN + FP )(TP + FN)(TP + FP )
(2.5)

ROC plot, X axis : FP =
FP

FP + TN
(2.6)

ROC plot, Y axis : TP =
TP

TP + FN
(2.7)

2.2.4.2 Cross-validation

In this work we evaluate our classifiers using two types of cross-validation. The n-fold

cross-validation (n-CV) method first partitions a data set into n subsets. The classifier is then

trained n times, leaving out a subset of the data for each round of training. The withheld

subset is used to test the model and to calculate a designated metric (usually accuracy in our

work). Each value in the data set makes a contribution to this calculation and an average is

taken. n-CV has been found to work well for small data sets (76). For protein-level NA-binding
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prediction we also use leave-one-out cross-validation (LOO CV). In this technique, n is equal

to the number of examples in the data set, i.e., each example is used for one testing cycle. This

method has several drawbacks (92), but does at times perform well. We use it here in order to

make comparisons with previous work.

2.2.5 Nucleic Acid-binding Protein Prediction

Previous attempts have been made using machine learning to identify whether or not a

protein binds DNA or RNA (38; 2; 24; 67; 79), still others have tried to identify the residues

on DNA- (101; 129; 166; 167; 3; 4; 25; 187) and RNA-binding proteins (85; 99; 165; 177; 164)

which bind nucleic acids. Each previous attempt made toward the identification of binding

residues in NA-binding proteins has used different combinations of binding residue attributes

and machine learning classifiers. Some examples of classifier types include SVM (38; 101; 129),

neural networks (4; 85), and Näıve Bayesian methods (187; 165). Both sequence- and structure-

based attributes have been used including amino acid composition, hydrophobicity, predicted

secondary structure, local tertiary structure, both non-position-specific (BLOSUM, (81)) and

position-specific (PSSM) measures of evolutionary information, and others.

2.2.6 Using Costing to Overcome Data Set Imbalance

NA-binding proteins almost always contain a smaller number of binding than non-binding

residues. This means that any residue-level data set calculated from these proteins will be

imbalanced in terms of these two classes, and thus prediction results will be imbalanced in

terms of sensitivity and specificity due to degeneracy, or the tendency during prediction for

a classifier to assign examples to the most common class. For instance, if binding residues
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made up the positive class in a training set and non-binding residues comprised the negative

class, validation results would reveal much lower sensitivity than specificity, indicating that

less true positive examples had been found. To get around this problem, many in the past

have removed a number of non-binding residues from the data set in order to achieve a class

balance. However, balancing a training set would seem to remove important information about

the non-binding class and prevent the classifier from developing a clear distinction between the

two types of examples, and in fact has been shown to result in a less robust model and to cause

poor test performance (130). Therefore, results using models built with balanced training sets

may not actually provide reliable results. Ideally, we would like to provide machine learning

classifiers with as much of the data set as possible in order to increase accuracy, while avoiding

the problem of degeneracy. One way to do this is to force the developed classifier to apply

a weight to the examples in the underrepresented class. This method, called cost-sensitive

learning or costing, has been used in previous research to improve prediction. Sorzano et al.

used a Näıve Bayes algorithm to improve recognition of particles in images from cryo-electron

microscopy experiments (153). Fan, Lee, Stolfo, and Miller used their own version of costing

to improve accuracy for intrusion detection systems (60).

2.3 Protein-DNA Interaction

Protein-DNA interactions play crucial roles in the cell. Many proteins are involved in the

processes of DNA replication, repair, recombination, transcription and their regulation. His-

tones help to condense chromosomal DNA into a compact structure in eukaryotic cells. Restric-

tion enzymes in bacteria aid in host defense by recognizing and cutting foreign DNA. Transcrip-
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tion factors recognize and bind specific DNA sequences to activate or repress the transcription

of regulated genes depending on environmental factors and cell requirements. Transcription

factor binding sequences are usually short and degenerate, which allows one transcription fac-

tor to regulate several genes. Identifying targets of a transcription factor may help to discover

the number of genes under its regulatory control and how this regulatory process is carried

out. Many experimental and in silico methods have been developed to detect whether or not

a protein binds DNA and at which sites this binding occurs (36). Many experimental methods

are complicated, time-consuming, and expensive, which makes a computational approach to the

prediction of protein-DNA interaction sites highly desirable. Results from such computational

methods may also be used to compliment experimental techniques.

2.4 Development of Protein-DNA Interaction Potentials

Current computer modeling techniques for calculating protein-DNA interaction potentials

fall into two categories: sequence- and structure-based. Sequence-based methods commonly use

evolutionary information collected from a statistical analysis of the transcription factor binding

sites. In general, these methods begin with the collection of DNA sequences known to bind

specific transcription factors, followed by statistical analysis of these sequences. One common

analysis protocol involves the creation of a multiple sequence alignment (MSA), which can then

be used to build a position-specific scoring matrix (PSSM). Genomic sequence is subsequently

scanned with the PSSM to identify additional binding sequences for this transcription factor.

The main drawback of these methods is that they require many examples in order to gain useful

information, and a sufficient number of examples are often unavailable.
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In contrast, structure-based methods use three-dimensional structures obtained by X-ray

crystallography and NMR to describe protein-DNA interactions at the atomic level and can

clearly explain binding recognition and binding affinity (86). An ever-increasing number of

experimentally-solved three-dimensional structures provide new models for protein-DNA in-

teraction. These structures allow for a much clearer explanation of binding recognition and

binding affinity. Much effort has been focused on the development of a statistical potential for

protein structure and protein-protein interaction prediction (115; 197; 116; 114).

Although there is not a one-to-one recognition code between amino acids and DNA bases,

protein-DNA interaction preferences have been found and knowledge-based potentials imply

that such interaction propensities can be used for protein-DNA binding prediction. A statisti-

cal potential, based on hydrogen bonding and hydrophobic contacts, has been used to describe

interaction preferences between 20 amino acids and 4 bases. This potential was subsequently

used to evaluate the binding affinity of a protein-DNA complex (120). Only short-distance

contacts were included in that computation. A distance-dependent statistical potential, which

takes into account both long-range interactions up to 15Å and multi-body interactions, has

also been built (113). A grid-based potential, which has a different spatial partition than a

distance-dependent potential, has been shown to perform quite well in evaluating binding affin-

ity, predicting cooperative binding, and predicting binding specificity of protein-DNA complexes

(142; 95). In these works, Cα atoms were used to represent the position of the amino acid and

two-body interactions (those involving one amino acid and one DNA base) were considered.
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Figure 2: The methylation of DNA, which usually occurs in GC-rich regions
called CpG islands (CpGIs), provides signals for recruitment of a histone deacety-
lase complex (HDAC). The HDAC deacetylates the lysine residues of histones,
which increases the protein’s affinity for the negatively charged backbone of
DNA (not shown). This initiates the formation of heterochromatin, which re-
sults in the suppression of transcription due to lack of access by transcription
factors. DNA: http://www.dk.co.uk/static/clipart/uk/dk/future/image_
future007.jpg.
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2.5 Methylation of DNA in CpG Islands

2.5.1 Biological Function

CpG island (CpGI) methylation is a type of epigenetic DNA modification. It occurs in

eukaryotes and, in human DNA, is based on the addition of a methyl group to the nucleic

acid cytosine. The methyl group is added to the number 5 carbon of the pyrimidine ring of

a cytosine which is followed by a guanine (CpG). This action is performed by enzymes called

DNA methyltransferases, of which there are two types. DNA methyltransferase 1 (Dnmt1)

performs maintenance methylation during which methyl groups are added to cytosines of the

daughter strand in exactly the same pattern as the parent strand. DNA methyltransferases

3a and 3b (Dnmt3a, Dnmt3b) are involved in de novo methylation during which cytosines at

new positions in the DNA strand are methylated. This changes the methylation pattern in a

localized region of the DNA, and the new methylation pattern is a reversible, heritable change

that does not alter the DNA sequence itself or the genotype. This type of modification is called

epigenetic.

The generally accepted definition of CpGIs involves three criteria (70; 160). Firstly, the

GC content of a CpGI must be ≈60% or greater. Secondly, the observed vs. expected number

of CpG dinucleotides should be above ≈0.65. Thirdly, the length of the island itself should

fall within the range of 200 to 3000 nucleotides. This last characteristic is a matter of some

debate and varies within the literature. CpGIs account for ≈1% of the human genome and were

initially thought to be located primarily in the 5’ region of expressed genes in higher eukaryotes.

While CpGIs overlap with the promoter region of 50-60% of human genes, including most
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housekeeping genes, recent high-throughput and genome-wide studies indicate as many as 50%

of CpGIs occur inter- or intragenically in human DNA (83). Conventional wisdom says that in

the human genome CpGs within promoters regions are usually unmethylated, while most CpG

dinucleotides in non-coding regions are methylated (29) (there are several exceptions, including

X-chromosome inactivation (52)). It has been shown recently, however, that more than one

third of CpGs within transcribed regions of Arabidopsis DNA may be methylated (194).

Methylation of CpGIs can affect gene expression in the following manner (35): Methylation

of an island upstream (5’) of a gene by DNA methyltransferase signals the methyl-CpG-binding

protein (MeCP) components of a histone deacetylase complex (HDAC). The action of deacety-

lation by HDAC of the lysine residues of histone restores their positive charge, which increases

the affinity of histone for the negatively charged backbone of DNA. HDACs are associated

with the formation of heterochromatin through this process. The formation of heterochromatin

generally down-regulates DNA transcription by blocking access for transcription factors to the

promoter region of genes.

2.5.2 Previous Work In CpGI Methylation Prediction

A number of previous attempts have been made to predict CpGI methylation. Feltus et

al. (64) used hierarchical clustering and seven DNA sequence patterns to distinguish between

methylation-prone and methylation-resistant CpGIs with an accuracy of 82%. They later used

a linear discriminate method and achieved 87% accuracy (63). Fang, Fan, Zhang, and Zhang

(61) used SVM with DNA sequence properties and transcription factor binding site (TFBS)

information to reach a result of 85% accuracy, 77% sensitivity, and 86% specificity. Bhasin,
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Zhang, Reinherz, and Reche (27) attempted to predict specific cytosines within CpGIs that

were methylated. This group used an SVM classifier and sequence composition attributes

and reported 75% accuracy, 72% sensitivity, and 77% specificity as their best results. The

most comprehensive paper written on this subject is that of Bock et al. (30), in which they

use 1184 DNA attributes to classify 132 CpGIs from human chromosome 21 as methylation-

prone or methylation-resistant. In their study they find that specific sequence patterns, DNA

repeats, and DNA structure have a high correlation to methylation. They report that ≈66% of

the attributes that are differentially distributed between methylated and unmethylated CpGIs

are 4-mer DNA sequence patterns, both strand- and non-strand-specific. Additionally, other

work has shown that certain DNA motifs may affect susceptibility to aberrant methylation in

human fibroblast clones (64). Further evidence indicates that repetitive sequences can affect

the methylation status of CpGIs (117; 189). These studies highlight the importance of sequence

patterns and characteristics in CpGI methylation.

2.6 Gene Regulation in a Network Context

Each of the abovementioned areas of study focuses on a particular component of the nucleic

acid binding process. While important, none of these individual components gives us a broad

understanding of how the system of transcriptional regulation operates as a whole. To achieve

this, much focus has been placed in recent years on the study of gene regulation or transcrip-

tional networks, with the goal of understanding how these networks evolve and function. These

works include the creation of logical models, continuous models, and single-molecule methods

(for a review see (90)). Statistical models of protein-protein interaction networks have also
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been created in order to study their evolution (22). This type of global approach is necessary

to understand how the individual components function in concert to regulate gene expression.

Recently, the topics of network organization and robustness within biological networks have

come into the spotlight. How do gene regulation and protein-protein interaction networks man-

age to stay robust to genetic changes, some of which are deleterious or mutational in nature?

How does an organism maintain fitness? Parallels between gene regulation networks and com-

munication networks have been drawn, focusing on failure and attack tolerance in biological

networks (5). In 2005, Wagner discussed two main hypotheses on the mechanistic causes of

robustness: redundancy and distributed robustness (172). He pointed out that while there is

evidence that duplicate genes play an important role in an organism’s tolerance to change, many

systems, including metabolic and gene regulation networks, show no gene redundancy but are

still able to tolerate removal of highly-connected nodes. Subsequently, the transcription factor

co-regulation network in yeast was shown to possess a distributed node degree distribution (18),

which is thought to lend a level of robustness to the scale-free gene regulation network. However,

the same co-regulation network architecture was not found in E. coli (17), which highlights the

possibility that there are multiple pathways for achieving fitness. In 2007, Wagner and Wright

observed that many regulator-target gene pairs in more than a dozen biological networks had

intermediate regulators between them. These ‘alternative routes’ could be a possible cause of

robustness (173).

Many in the past have postulated that the connectivity distribution P (k) of gene regulation

networks is scale-free, that is, the probability that a node is connected to k other nodes is
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inhomogeneous, with a few nodes having a large number of edges (20; 5; 18). It has also been

shown that the removal of nodes with large numbers of connections (hubs) can cause the network

to be fatally fragmented (5). Interestingly, some scale-free networks are not vulnerable to the

removal of hubs (54; 59). Balaji, Iyer, Aravind, and Babu highlighted an interesting paradox

in the yeast genome. They found that although ≈1/2 of the regulatory interactions in yeast

are controlled by hubs in the gene regulation network, only 5/33 were essential for survival.

Furthermore, only 9/157 transcription factors examined were found to be essential under the

conditions provided in the experiments. In addition, they identified a ‘co-regulation network’

of transcription factors underlying the gene regulation network which appears to possess a

distributed architecture (18). This leads to an interesting question: How did the gene regulation

network form, and could the method of formation provide for an emergent property such as

the formation of this underlying partnership network? Analysis of regulation networks has led

to the hypothesis that the evolution of these networks has been incremental rather than being

formed by the copying or transfer of motifs or circuits.

Several evolutionary models have been created to study robustness. Ciliberti, Martin, and

Wagner showed that robustness is an evolvable trait (43). Crombach and Hogeweg showed

that the evolution of gene regulation dynamics can lead to increased efficiency of creating well-

adapted offspring, while maintaining a robustness to most mutations (51). Krishnan, Tomita,

and Giuliani showed that robustness evolves along with networks and is an emergent property

even without selective pressure (97).
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2.7 Gene Regulation and Disease

In recent years, researchers have produced a body of work that has given us a clearer (albeit

more complicated) picture of how a disease such as cancer comes to be, how it develops, and

how it can be treated. The roles of genetics in the form of single-nucleotide polymorphisms

(SNPs) (57), epigenetics (147), miRNA (171), copy number variation (98), chromatin structure

(33), and protein biomarkers (69) in cancer have been shown. While great scientific advances

have been made in the understanding and treatment of this disease in the last 50 years, we

still do not have clear knowledge of the ‘how’ and ‘why’. Given a set of initial conditions

in the body defined by genetics, lifestyle, environmental exposure, etc., cancer begins and

proceeds to develop through an evolutionary process. This results in all cancers having unique

characteristics (77). Clearly, cancer is a multi-dimensional problem for which we have an

enormous amount of data. Gaining knowledge from the existing data, however, is a non-trivial

task.

In the last several years, bioinformatics and computational biology have made a variety of

contributions to disease analysis using existing data in an attempt to increase our understand-

ing. Popular topics include the discovery, prediction, and analysis of genes related to disease

(176), statistical analysis of SNPs and disease (110), the prediction and discovery of new drug

targets (159), the development of the disease ontology (DO) and its application to the human

genome (132; 133), the analysis of protein-protein interaction networks as they relate to dis-

ease (82), and many others. Of particular interest is the development of ‘disease networks’

(74; 192), which are in most cases bipartite graphs describing disease-disease as well as disease-
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gene relationships (see Figure 3). These edges may signify one or more shared genes, metabolic

pathways, miRNAs, or a number of other data types.

Figure 3: An example subgraph of the disease-gene bipartite graph. This pro-
jection of the network describes disease-disease relationships. Nodes indicate
diseases; edges between nodes represent disease relationships. Edges may signify
one or more genes, metabolic pathways, miRNAs, or a number of other data
types. This network was visualized using Cytoscape (151).

The disease network reveals the interconnected nature of various diseases, which begs the

question; can we gain new knowledge of a disease such as cancer by studying ‘connected’, non-

cancer diseases? Many diseases including obesity (100; 161), various infections (9), diabetes
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(174), and possibly even psychological stress (71) have been reported to have some relationship

to cancer. Often the relationship type is unknown or partially known, which indicates that a

deeper understanding of these relationships is needed. Furthermore, these relationships have

not yet been explored as a whole, but rather as individual links.

2.8 Disease Gene Prediction

There have been several previous attempts at predicting gene-disease association. Özgür,

Vu, Erkan, and Radev used SVM, text mining, and several network metrics to rank potential

disease genes (134). Gonzalez et al. predicted atherosclerosis-related genes by creating a PPI

and adding weights to certain proteins based on text mining of PubMed abstracts (75). Xu and

Li used a KNN classifier to predict hereditary disease genes from OMIM over the human PPI

network with an overall accuracy of 76%. They found that these hereditary disease proteins

tended to have a larger number of interactions and tended to have more shared neighbors than

non-disease proteins (185). Wu, Jiang, Zhang, and Li developed CIPHER, a software tool that

prioritizes disease genes (182).

Due to the complicated nature of many diseases, which may involve the failure of multiple

levels of biological function including DNA repair, gene regulation, epigenetic and histone mod-

ifications, metabolic pathways, etc., elucidation of disease relationships requires a systematic

and computational solution. Though there may be a plethora of data available to quantify this

problem, the data itself does nothing for us unless we can turn that data into knowledge (a

similar problem arose after the sequencing of the human genome). Merely combining sources

of data is not sufficient. We must identify patterns within the data, which is manually in-
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feasible when the number of data points and characteristics to be compared is large. Clearer

understanding could be gained by finding, among all attributes of a relationship, those that

characterize it most accurately. Several existing machine learning algorithms can help achieve

this including multiple instance learning (53), positive/unlabeled (PU) learning (112), Bayesian

inference (28), ADTree (65), and others. We have used the ADTree algorithm to analyze methy-

lation patterns on DNA (39) and to predict DNA-binding proteins (103). In both cases, this

algorithm helped us to understand what characteristics have the most influence on determining

the class to which the examples belonged. A similar method of rule discovery is needed in the

case of the disease network.



CHAPTER 3

DNA-BINDING PROTEIN PREDICTION

Figure 4: A) Which of these proteins binds DNA? B) Given that a particular
protein binds DNA, which residues are involved in binding? DNA: http://www.
dk.co.uk/static/clipart/uk/dk/future/image_future007.jpg.

39
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3.1 Project Goals

We approach the DNA-binding prediction project in two ways, illustrated in Figure 4. We

asked two questions: 1) Given a set of proteins, which of the proteins in this set binds DNA

(104)? 2) Given that a particular protein binds DNA, which residues are involved in binding

(40)? Though these are two very different questions, the prediction strategy used during the

implementation of these ideas is very similar.

3.2 Prediction Strategy

Our prediction strategy (Figure 5) starts with either a protein structure or protein sequence.

We then gather features for either the entire protein or each residue depending on what type

of prediction we are making. Next, we follow one of two paths: 1) calculate structure-based

features, which are attributes of three-dimensional structures acquired using X-ray crystallogra-

phy or NMR, or 2) calculate sequence-based features. These features are collected and possibly

normalized or converted in some way depending on the algorithm. We then train models us-

ing this attribute information and subsequently test our models with new data (for which we

calculate the same features) in order to predict either binding or non-binding.

3.3 Protein-level Prediction

3.3.1 Data Set

In Langlois, Carson, Bhardwaj, and Lu (104), our data set for DNA-binding prediction

included two classes of proteins; those that bind DNA (positive class) and those not known to

bind DNA (negative class). It consisted of 75 DNA-binding proteins and 214 others not known

to bind DNA including membrane-binding proteins, chaperones, and enzymes. This negative
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Figure 5: NA-binding prediction strategy
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set is a subset of one used by Stawiski, Gregoret, and Mandel-Gutfreund (154). These sets were

culled using the PISCES web server (174) and only structures with a sequence identity of ≤

20% and a resolution of ≤ 3Å were included in our experiments.

3.3.2 Calculated Attributes

For protein-level binding prediction, we used a set of 42 features related to protein structure

and sequence. The sequence-based features included the amino acid composition (20 features)

and the net charge calculated using the CHARMM (34) force field (1 feature). Two structure-

based features were included. Firstly, we calculated the surface amino acid composition (20

features) as follows. Residues were identified as ‘surface’ if the solvent accessible surface area

(ASA) was ≥ 40%, otherwise they were considered ‘internal’. This distinction was made by first

adding hydrogen atoms to the resolved structures using REDUCE (181), and then calculating

the ASA for these modified structures using DSSP (88). The second structural feature we used

was the size of the largest positively charged patch (24; 26) (1 feature).

3.3.3 Classifier Evaluation

Refer to the section “Classifier Evaluation Metrics” in Chapter 2 for details on our evalu-

ation methods.

3.3.4 Results

We performed DNA-binding protein classification using sequence- and structure-based fea-

tures with several algorithms (Table I). We varied the size of the data sets via 2- and 5-fold cross

validation. These results demonstrate our ability to distinguish between DNA-binding and non-

DNA-binding proteins. AdaTree performed the best with 88.5% accuracy, 66.7% sensitivity,
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96.3% specificity, and an AUC of 88.7%. These results can be interpreted in the following way.

Given a random data set of proteins with the same class distribution, AdaTree should correctly

assign ≈88% of these proteins to the correct class. If we know that a protein binds DNA, our

classifier will correctly categorize it ≈66% of the time. Similarly, if we have prior knowledge

that a protein that does not bind DNA, we can correctly predict this ≈96% of the time. All of

these metrics are dependent on class distribution with the exception of the AUC, and because

our data set was imbalanced, we placed more confidence in the AUC. As mentioned earlier, the

AUC gives an idea of the tradeoff between sensitivity and specificity and is a good predictor

of how a classifier will perform on future data sets. One interesting finding is that the results

for SVM (a very slow algorithm to train) and the second fastest (AdaStump) were fairly close.

This tells us that we can use a fast tree algorithm such as this and not sacrifice much accuracy.

This is useful because the SVM algorithm ran at a rate ≈25 times slower than AdaStump.

3.4 Residue-level Prediction

After identifying DNA-binding proteins, we calculated features for each amino acid residue

in a set of proteins and predicted whether that residue binds either DNA or RNA (40). We

follow the same protocol for prediction as we did for protein-level prediction (Figure 5). We

then created an ensemble classifier using C4.5 with bootstrap aggregation (bagging) and cost-

sensitive learning (costing).

3.4.1 Data Sets

The proteins comprising our data sets were extracted from the PDB database (http://

www.rcsb.org) and culled using the PISCES web server (174) with a sequence identity of ≤
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CV Metric AdaTree AdaC4.5 AdaStump SVM C4.5

2-fold

ACC 86.5 86.3 83.6 84.5 79.4

SEN 61.4 61.5 60.5 57.5 59.8

SPE 95.3 95.0 91.7 94.0 86.3

AUC 88.0 88.8 81.6 84.4 61.3

5-fold

ACC 87.2 86.6 84.1 85.7 79.4

SEN 63.8 61.4 61.2 59.1 59.9

SPE 95.4 95.4 92.2 95.0 86.3

AUC 88.4 89.6 82.7 85.9 54.1

LOO

ACC 88.5 86.5 85.1 86.3 80.0

SEN 66.7 61.3 62.7 62.7 65.3

SPE 96.3 95.3 93.0 93.9 85.0

AUC 88.7 89.8 84.6 86.3 74.0

TABLE I: Comparison of four metrics and three different cross validation tech-
niques using five different classifiers for protein-level prediction over the protein-
DNA data set.

25%. All structures were determined by X-ray diffraction and had a resolution of ≤ 3.0Å. Our

sequence-based DNA-binding residue data set consisted of 54 proteins and 14,780 residues, 2,083

of which were identified as DNA-binding and 12,697 considered non-binding based on distance

from the DNA molecule in the bound structure (class ratio of ≈1/6). The RNA-binding residue

data set used for sequence-based prediction contained 84 proteins and 60,016 residues, 5,934

classified as RNA-binding and 54,082 as non-binding (class ratio of ≈1/9).

In order to compare our strategy with previous works, we collected two DNA-binding sets

(PDNA-62 (146) and 274 proteins from Ofran, Mysore, and Rost (129)) and one RNA-binding

set (109 protein chains used by Terribilini et al. (165)). We calculated both structure- and

sequence-based features for these sets (described below).
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3.4.2 Definition of Binding Residues

Because we have formulated residue prediction in this case as a binary classification problem,

each residue in the data set must be defined as DNA-binding or non-DNA-binding. As with

previous studies (3; 4; 101), we based this class distinction on a residue’s distance from the

DNA molecule in the crystallized protein-DNA complex. A residue was defined as binding if

any heavy atom (carbon, nitrogen, oxygen, or sulfur) belonging to the residue fell within a

distance of 4.5Å of any atom in the DNA molecule. In agreement with Kuznetsov, Gou, Li,

and Hwang (101), we found that this distance provided the best accuracy for predictions. Any

residues without atomic coordinates in the PDB file were not included in the data set.

3.4.3 Definition of Surface Residues

For structure-based data sets, residues were identified as ‘surface’ if the solvent accessible

surface area (ASA) was ≥ 40%, otherwise they were considered ‘internal’. This distinction was

made by first adding hydrogen atoms to the resolved structures using REDUCE (181), then

calculating the ASA for these modified structures using DSSP (88). Only surface residues were

included when calculating structural features over the data set (≈38% for DNA-binding, ≈34%

for RNA-binding).

3.4.4 Structure-based Attributes

In this work we used 24 structure-based attributes, which we define as any residue feature

that requires a protein crystal structure in order for it to be calculated. These features describe

a residue environment in the natural three-dimensional space. Further details of these features

are described below.
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3.4.4.1 Solvent-accessible Surface Area (ASA)

For each residue, the ASA was calculated using DSSP (88). This attribute is a real number

between 0 and 1 and represents the percentage of the total surface area of the residue that is

exposed on the surface of the protein (1 feature).

3.4.4.2 Predicted Secondary Structure

The predicted local secondary structure to which each amino acid belongs was also predicted

using DSSP (88). The secondary structure was identified as either ‘helix’, ‘beta’, or ‘extended’

(3 features).

3.4.4.3 Structural Neighbors

In order to represent the local tertiary structure within the protein, we incorporated distance-

based neighborhood information into our prediction. This feature identifies the neighbors of

each residue. Any amino acid y lying within 12Å of another amino acid x was identified as

a neighbor of x (as used by Kuznetsov, Gou, Li, and Hwang (101)). The number of neigh-

bors of each type were recorded and represented as a 20-dimensional array for each residue (20

features).

3.4.5 Sequence-based Attributes

We calculated a total of 301 sequence-based attributes for each residue in our data sets. We

considered a ‘sequence-based attribute’ any residue feature that can be calculated without the

use of a crystal structure (i.e., only protein sequence). The individual descriptors are described

below.
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3.4.5.1 Residue ID

A 20-dimensional feature vector representing the 20 common amino acids was used to iden-

tify each residue, where a single non-zero entry indicates the current residue (20 features).

3.4.5.2 Residue Charge

Since DNA molecules are negatively charged, basic amino acid residues with a positive

charge can play an important role in nucleic acid binding. Accordingly, we included a charge

attribute for each residue. Arginine and lysine residues were assigned a charge of +1, histidines

+0.5, and all others 0 (1 feature).

3.4.5.3 Measures of Evolutionary Conservation

In order to consider the level of evolutionary conservation of each residue and its sequence

neighbors, we created a position-specific scoring matrix (PSSM) for each residue in the test

protein. Along with the NCBI-NR90 database (4), which contained ≤ 90% sequence identity

between any two proteins, PSI-BLAST (8) was used to create a matrix representing the dis-

tribution of all 20 amino acids at each position in the protein sequence. A 7-residue sliding

window, which represented the distribution of amino acid residues at the positions occupied

by three sequence neighbors on either side of the central residue, was subsequently created.

This resulted in a 140-element feature vector for each residue. A similar 7-residue window was

created using a BLOcks SUbstitution Matrix (81). We chose BLOSUM62, which was built

using sequences with ≤ 62% sequence identity, in order to capture non-position-specific evolu-

tionary conservation information for the sequence neighborhood of each residue. This feature

contributed another 140-element feature vector (280 features total).
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3.4.6 Classifier Evaluation

Refer to the section “Classifier Evaluation Metrics” in Chapter 2 for details on our evalu-

ation methods.

3.4.7 Results

3.4.7.1 Classifier Comparisons Using Sequence-based Features

We evaluated the performance of our C4.5BAGCST models against five other classification

algorithms (SVM, ADTree, WillowBoost, C4.5 with AdaBoost, and C4.5 with bootstrap ag-

gregation). We built two models for each using sequence-based features: one for DNA-binding

proteins and one for RNA-binding proteins. Figure 6 describes the results for this comparison

and shows the performance of each algorithm in terms of accuracy, sensitivity, specificity, pre-

cision, Matthews Correlation Coefficient (MCC), and the area under the Receiver Operating

Characteristic Curve (AUC). The AUC provides a measure of a model’s ability to separate

positive and negative examples and is generated from a plot of the true positive rate versus the

false positive rate for each example in the data set (Figure 6). A perfect model would have an

AUC of 1, while a random model would have an AUC of 0.5.

3.4.7.2 Evaluation Using Previous Data Sets

In order to demonstrate the stability of our classifiers, we built models using previously

compiled data sets for both DNA- and RNA-binding residue predictions. Figure 7 shows the

comparisons between the original classifier and ours using two previously compiled DNA-binding

protein data sets and one RNA-binding protein data set used in seven publications (4; 99; 101;

129; 165; 175; 177). The classifiers were created using 10-fold cross-validation for both selection
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Figure 6: Receiver Operating Characteristic (ROC) curves comparing six classi-
fiers for A) DNA-binding residue prediction models and B) RNA-binding residue
prediction models. C) Results of a 10-fold cross validation over the binding
residue data sets. Six metrics describe the performance of each of the 12 classi-
fiers: ACC = accuracy, SEN = sensitivity, SPE = specificity, PRE = precision,
AUC = area under the ROC curve, MCC =Matthews Correlation Coefficient. Al-
gorithms: SVM (Support Vector Machines), ADTree (alternating decision tree),
WillowBoost (in-house-developed tree algorithm w/ boosting), C4.5ADA (C4.5
decision tree w/ AdaBoost), C4.5BAG (C4.5 decision tree w/ bootstrap aggrega-
tion), C4.5BAGCST (C4.5 decision tree w/ bootstrap aggregation and costing).
The highlighted classifiers (C4.5BAGCST) are those used for the NAPS web
server. These figures appear in Carson, Langlois, and Lu (40).
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Figure 7: The results shown are from 10-fold CV using a C4.5BAGCST classifier
(unless otherwise indicated) built using each of the previous data sets for DNA-
and RNA-binding residue prediction. White rows indicate the performance of
our classifier over a particular data set; gray rows indicate the performance of
the classifiers reported in the original publication. Gaps identify metrics which
were not reported. str: sequence- + structure-based predictor; seq: sequence-
based predictor; b: balanced data set; ub: imbalanced data set.
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and validation. For the costing algorithm, the weight assigned to each class was equal to the

class distribution and 200 costing iterations were run. Net accuracy was used to find the best

model. The prediction metrics from previous works shown are either those reported as the best

results from the publications, or if the author’s intended best result is unclear, the results with

the best accuracy or MCC.

Overall we found that, based on the metrics reported in these previous publications, we

were able to improve on those results over each of three previously compiled data sets. We first

built our own classifier with the PDNA-62 data set, which was originally compiled by Selvaraj,

Kono, and Sarai (146) and used for binding residue prediction in three subsequent publications

(4; 101; 175). Our C4.5BAGCST model achieved ≈78% accuracy, ≈80% sensitivity, ≈77%

specificity, ≈86% AUC, and an MCC of 0.57, which is an improvement of +0.12 in the MCC for

the best previous result (101). The second data set we tested was compiled and used by Ofran,

Mysore, and Rost (129) and consisted of 274 proteins. Our classifier reached ≈86% accuracy,

≈85% sensitivity, ≈88% specificity, ≈93% AUC, and an MCC of 0.725. The only directly

comparable metric reported in this previous work is accuracy. While our accuracy is slightly

lower than that reported by Ofran (129), we believe that our model actually offers a more reliable

result. In their work, they used sequence to derive evolutionary profiles, sequence neighborhood,

and predicted structural features. Their SVM classifier gave its best performance at 89%

accuracy. However, their ‘positive accuracy’ (precision) and ‘positive coverage’ (sensitivity)

were imbalanced. For example, at a sensitivity rate of ≈80% (the number of true positive

examples correctly classified), the precision rate is quite low (≈55%), which indicates that the
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classifier has low confidence that the predicted positive examples are actually positive. Finally,

we tested 109 RNA-binding protein chains originally collected by Terribilini et al. (165) and

used in three works (99; 165; 177). Our model achieved ≈76% accuracy, ≈75% sensitivity,

≈77% specificity, ≈83% AUC, and an MCC of 0.523 over this set, which is an improvement of

+0.07 in the MCC over the best result (177).

The feature sets used in the previous publications varied between works, as did the type of

classifier used for prediction and the type of validation performed. Unequal comparisons of this

type are not ideal. However, each of the classifiers we have built using C4.5 with bagging and

costing provided consistent results in terms of overall accuracy when trained over various data

sets, thus increasing our confidence in this ensemble method.

3.4.7.3 A Prediction Test Case: GP16

In order to validate our method, we predicted the binding residues of the gene-16 protein

(GP16), a DNA-packing motor protein in Bacillus phage phi29, for one of our collaborators.

This protein contains an ABC transporter nucleotide-binding domain and is known to bind

ds-DNA. However, the DNA-binding residues for GP-16 are unknown, and there are no highly-

related crystallized protein structures available. Our collaborator had some prior evidence

that pointed toward two particular regions of interest in the protein. Using our methods, we

were able to focus the costly experimental validation of nucleic acid binding residues on a few

key locations in the sequence. We predicted the binding residues of this protein using our

sequence-based DNA-binding classifier based on a Platt-calibrated version of the cost-sensitive

method described above, which was built using residue charge, identity, and sequence homology
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Figure 8: Predicted binding residues of GP16. Yellow boxes indicate regions with
potential DNA-binding residues as identified by our collaborator. Pink boxes in-
dicate binding residues predicted by our classifier. Light blue boxes indicate
regions which align to the DNA-binding region of the FtsK protein (PDB ID:
2IUS, (122)) in E. coli. At the time of this work, FtsK was the most closely-
related protein to GP16 having an experimentally-determined 3-D structure in
the Protein Data Bank (PDB). FtsK is a multifunctional protein that acts in cell
division and chromosome segregation. ≈55% of the predicted binding residues lie
within the DNA-binding region of FtsK. Red boxes indicate regions of GP16 hav-
ing ≥ 50% sequence conservation among the 181 sequences in the ABC ATPase
superfamily. This multiple sequence alignment was created using ClustalW (105).
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information. Figure 8 shows that our predicted binding residues overlap significantly with the

collaborator’s residues of interest.

3.4.8 The Nucleic Acid Prediction Server: NAPS

The Nucleic Acid Prediction Server (NAPS, http://bioinformatics.bioengr.uic.edu/

NAPS) is a publicly-available web server that performs NA-binding residue prediction using

sequence-based attributes. NAPS takes a DNA- or RNA-binding protein sequence as input and

calculates a set of 301 sequence-based attributes (as described above) for each residue in the test

protein. It then returns a list of residues, the predicted class (binding or non-binding), and a

score indicating the classifier’s confidence in the decision (Figure 9). The model classifier assigns

a confidence score between 0 and 1 for each residue in the test protein. This score reflects the

level of certainty in the assigned class with a threshold of 0.5. Residues with a confidence score

between 0 and 0.5 are classified as non-binding residues; those with a score between 0.5 and

1 are classified as binding residues (Figure 9C). A table of calculated statistics, including the

total number of residues binned by confidence score, the number of binding and non-binding

residues in the protein, the percentage of each class, and the mean confidence value, is also

returned.
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Figure 9: NAPS (http://bioinformatics.bioengr.uic.edu/NAPS) screen
shots. A) The NAPS home page; B) example output from the DNA-binding
prediction of GP16; C) an illustration of the confidence score used by NAPS to
determine residue class.



CHAPTER 4

DNA BINDING SITE AND METHYLATION PREDICTION

4.1 DNA Binding Site Prediction Using Interaction Potentials

Figure 10: A) At which sites on DNA does this protein bind? B) The two-body
potential considers one AA and one DNA base, while the three-body potential
considers one AA and two DNA bases. DNA: http://www.dk.co.uk/static/
clipart/uk/dk/future/image_future007.jpg.

56
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4.1.1 Project Goals

After pinpointing the binding residues within NA-binding proteins, our next step was to

identify the sites on DNA to which these residues bind (196). Our goal in this work was to

develop a statistical potential based on hydrogen bonding and hydrophobic contacts in order to

improve the recognition of protein-DNA interactions. By creating and applying these potentials,

we were able to locate the sites on DNA where proteins bind (Figure 10 part A). We adopted

a grid-based potential strategy similar to previous works (142; 95). However, we also tested

other amino acid representation methods such as Cβ, side chain center of mass (SCM), and the

nearest atom to DNA. We also calculated potentials for both two-body interactions (one amino

acid, one base) and three-body interactions (one amino acid, two bases) (Figure 10 part B).

4.1.2 Data Set

We selected protein-DNA complexes with a resolution of ≤ 3 Å from the PDB database and

removed single-stranded binding proteins and those complexes with bound DNA sections less

than 5 base pairs. BLAST (7) was used to keep protein sequence redundancy below 35%. We

also checked each complex and discarded all repeated units. This selection process resulted in

a final data set of 111 protein-DNA complexes.

4.1.3 Local Coordinate System

Two coordinate systems were used in this work: distance-based interactions and spatial grid-

based interactions. While distance-based interactions can be calculated in a straight-forward

manner, spatial grid-based interactions require the superposition of DNA bases. To calculate

the spatial relationship between a base and an amino acid, one must attach a local coordinate
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system to each base. The origin of this local system is placed on the N9 atom for purines

and the N1 atom for pyrimidines. The X-axis of this local coordinate system runs from N9

towards C4 for purines and from N1 towards C2 for pyrimidines. The X-Y plane is formed by

the N9-C4-N3 atoms for purines and the N1-C2-N3 atoms for pyrimidines. The Y-axis points

from N9/N1 to the side where N3 is located. The Z-axis is chosen to complete a right-handed,

orthogonal coordinate system. Within this coordinated local environment for each DNA base,

we divided the space into cubic boxes of the same size.

4.1.4 Two-body and Three-body Potentials

In our method, we built two-body (one amino acid, one DNA base) and three-body (one

amino acid, two DNA bases) knowledge-based potentials from 111 protein-DNA complexes.

First, we placed these complexes in a spatial grid-based coordinate system. Then, for the

two-body potential we used the expression

P(i,j,g) = −RTln(
Nobs(i,j,g)

Nexp(i,j,g)
), (4.1)

where Nobs(i,j,g) is the observed number of residue i in grid g interacting with base j at the

origin, and Nexp(i,j,g) is the expected number of residue i in grid g interacting with base j

at the origin in the reference states. R and T are the Boltzmann constant and the absolute

temperature, respectively. The expected number of interacting pairs can be calculated from

the quasi-chemical approximation

Nexp(i,j,g) = xixjNobs(g), (4.2)
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where xi is the percentage of residue type i, xj is the percentage of residue type j, and Nobs(g)

is the total number of interaction pairs in grid g. The three-body potential, designed to explore

the effects of neighboring DNA bases on contact residue-based recognition, was calculated in a

similar manner with the addition of a second base.

The two-body propensity was collected by examining the spatial distribution of each amino

acid around each of the four DNA bases. Each base was superimposed on a three-dimensional

axis, and amino acid residues were collected based on their relative position to that DNA base.

Four kinds of centroids were used to represent the position of the amino acid: Cα, Cβ, side

chain center of mass (SCM), and the nearest atom to DNA. The three-body interaction was

analyzed through the spatial distribution of each amino acid with respect to a DNA base using

the neighboring DNA base as an extra index. The neighboring base could be 5’ or 3’ with

respect to the current base in the DNA sequence, depending on where the amino acid centroid

was located. Three types of statistical potentials were calculated: 1) distance-dependent two-

body potentials, 2) grid-based two-body potentials, and 3) grid-based three-body potentials.

These potentials were evaluated by Z-score and TF-binding site recognition.

4.1.5 Potential Validation

We validated our results in two ways. In the first method, we calculated a Z-score for the

native structure complex compared to randomly generated sequences. These random sequences

were created using uniform base composition throughout. Fourteen protein-DNA structures

from the PDB and 50,000 DNA sequences were used to evaluate the current potentials in order
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to compare our results with previously published data (95). The Z-score was calculated using

the equation

(Enative − < E >)

(σ)
, (4.3)

where < E > is the average of the potentials for all random sequences, Enative is the potential of

the complex, and σ is the standard deviation. A lower Z-score for the native binding sequence

indicates a more successful potential (Table II). The second validation method, which we

consider a more significant test, involved the recognition of true binding sites among gene

regulation sequences using one-dimensional threading. This method utilizes a sliding window

that moves along the upstream and downstream regions of a gene. At each position a statistical

potential is calculated for each possible binding sequence. The ranking of the potential for a true

binding sequence was used to evaluate our potential. Ideally, the true binding site should have

the strongest binding affinity in the regulatory region and its associated developed potential

should rank first. We used two data sets for this method. The first, 17 known binding sites for

the CRP protein in E. coli, was used for comparison with previous results (119). The second set

included 142 experimentally-determined transcription factor binding sites for the same protein

(198).
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Potential 14-2-6-2 13.5-3-6-3 9-3-6-3

two-body Cα –3.91 –3.63 –3.5

two-body Cβ –3.97 –3.91 –3.74

two-body SCM –4.11 –3.9 –3.74

two-body nearest –4.11 –3.9 –3.85

three-body Cα –5.01 –4.76 –4.2

three-body Cβ –4.82 –5.64 –4.54

three-body SCM –5.24 –4.89 –4.26

three-body nearest –5.18 –5.05 –4.52

TABLE II: The average Z-scores for 14 protein-DNA complexes with different
categories of reaction centers and different types of spatial partitions are shown.
Four types of centers were used to represent an amino acid at the residue level: Cα
coordinate, Cβ coordinate, side chain center of mass (SCM), and the coordinates
of the nearest atom to DNA. Three types of grid systems were used to partition
space: 14-2-6-2 (cubic size of 2x2x2 Å3), 13.5-3-6-3 (cubic size of 3x3x3 Å3), and
9-3-6-3 (cubic size of 3x3x3 Å3).

4.1.6 Results

4.1.6.1 Z-score Evaluation

The Z-score of the complex was calculated from the distribution of the potential generated

from 50,000 random sequences. Table II lists the average Z-scores for the 14 complexes with

different categories of reaction centers and different types of spatial partitions. Four types

of centers were used to represent an amino acid at the residue level: 1) Cα coordinate, 2)

Cβ coordinate, 3) side chain center of mass (SCM), and 4) coordinate of the nearest atom

to DNA. In the spatial partition, three types of grid systems are compared. In general, the

three-body potentials have a significantly better Z-score than that of the two-body potentials.
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The improvement of the Z-score for three-body potentials ranges from 0.7 to 1.7, depending on

which grid and which amino acid reaction centers were used.

Next, we determined which reaction center/spatial partition combination for an amino acid

residue gave the best performance. Three types of spatial partitions were used: 1) 14-2-6-2,

where the grid cubic size was 2x2x2Å3, 2) 13.5-3-6-3, where the grid cubic size is 3x3x3Å3,

and 3) 9-3-6-3, where the grid cubic size is 3x3x3Å3. For the two body potential, when the

same centroid was used, the grid 14-2-6-2 consistently had the best performance. The grid

13.5-3-6-3 showed median performance among the three. The grid 9-3-6-3 consistently had the

worst performance among the three. These results show that in a two-body potential, the grid

size of 2Å performed better than 3Å, which indicates that the data distribution varied in the

scale below 3Å. The long-range interactions also played an important role, since the box with

14Å outperformed the box with 9Å. Among the same spatial partition, using the nearest atom

as the interaction site yielded the best performance, and using center of mass as the centroid

gave very similar performance. Using Cβ was preferable to using Cα. The results showed that

the nearest atom and center of mass best represent the interaction between a residue and a

DNA base at the residue level, and Cα does not represent the interactions adequately.

For the three-body potentials, the results were more complicated. When using Cα, SCM,

or nearest atom as the centroid, the 14-2-6-2 grid generated the best performance, followed by

the 13.5-3-6-3 grid and the 9-3-6-3 grid. However, when the Cβ atom was used as the reaction

center, the 13.5-3-6-3 grid ranked first.
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Using Table II, we can also compare the performance of the two-body and three-body

potentials under the same conditions of grid size and centroid used. In every comparison, the

three-body potential gives a better Z-score than that calculated from the two-body potential.

The largest increase came from the 13.5-3-6-3 grid using the Cβ atom as the centroid. The

three-body potential outperformed the two-body potential by a Z-score value of 1.73. The

smallest increase resulted from the 9-3-6-3 grid using SCM as the centroid, where the three-

body potential was better by a Z-score of 0.52. We also calculated the Z-scores for individual

protein-DNA complexes using both two-body and three-body potentials with grid 13.5-3-6-3

and the nearest atom as the centroid, then compared them to the Z-scores from published

results in which two-body potentials were used for calculation (95). The average Z-score of

our two-body potential was 3.9, which is an improvement over the published result of 2.86. In

nine of the cases, our potential performed better, and in two cases, our potential performed

worse. The performance was the same for the remaining five cases. Our three-body potential

had an average Z-score of 5.05 among the proteins in our data set. The three-body potential

outperformed the previously published two-body potential in 12 cases, while falling behind in

one case and performing equally in another.

4.1.6.2 Recognition of TF Binding Sites

The most important goal in building a statistical potential for protein-DNA binding is to

recognize the TF binding site in the promoter region of a regulated gene. We evaluated our

potential using the E. coli cyclic AMP receptor protein (CRP) as a validation case. CRP is

an important transcription factor that regulates more than 100 genes primarily involved in
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Ranking Two-body Number Two-body % Three-body Number Three-body %

1 38 27% 40 28%

2–5 45 58% 43 59%

6–10 26 76% 17 71%

11–20 14 86% 10 78%

21–50 18 99% 19 91%

51–100 1 100% 9 97%

>100 0 100% 4 100%

TABLE III: The statistical potential for 142 CRP binding sites from E. coli is
shown. The ranking of the potential for a true binding sequence was used to
evaluate our potential. ‘Two-body Number’ and ‘Three-body Number’ indicate
the raw counts of true binding sites ranked at a given level. ‘Cumulative %’
indicates the percentage of the total number of binding sites.

the glucose-depleted pathway. The contact map was calculated from the protein-DNA complex

structure (PDB ID: 1J59, (135)). To test our potential, we scanned upstream sequence from the

gene promoter region. Each frame was evaluated with a statistical potential, and the ranking

of the known binding site was recorded. The results of the ranking of 17 known CRP-binding

sites using the current grid potential are as follows. In seven cases using the two-body potential,

the true binding site ranked first, and in 14 others the true site ranked in the top five. Using

the three-body potential, in nine of the cases the true binding site ranked at the top, and in 14

cases the true site ranked in the top five. For comparison, the previously published distance-

dependent potential (119) has three and nine cases ranked in top one and top five, respectively.

Both of our two-body and three-body potentials outperformed this previous result. In addition,

we have tested our potential on a larger data set (Table III). We predicted 142 experimentally-
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identified binding sites of CRP in E. coli (198). When using the two-body potential, in 38 cases

the true binding site ranked number one in the promoter region, and in 83 cases the true site

ranked in the top five. When using the three-body potential, in 40 cases we were able to rank

the true site at the top, and in 83 cases the site fell within the top five. This shows the advantage

of our structure-based potential; we do not need to rely on a large number of known binding

sites of this transcription factor in order to identify other potential binding sites. Rather, once

we have a small number of experimentally-determined structures of protein-DNA complexes,

we can glean information such as general binding propensity and recognition of TF-binding

DNA sequences from these complexes to predict novel TF-binding sites. Also demonstrated

here is that the neighboring effect, represented here as the three-body potential, can be used

to improve TF-binding site prediction.

4.2 Prediction of CpG Island Methylation In Human DNA

4.2.1 Project Goals

In Carson, Langlois, and Lu (39) we classified CpGIs as being methylated or unmethylated

by analyzing DNA sequence patterns. This was done by training machine learning classifiers

from the Malibu machine learning workbench (102) using characteristics from experimentally

studied CpGIs. Once the classifiers were trained on known examples, we performed cross-

validation over the model. We then identified which combinations of attributes were most

important for predicting the methylation status of the CpGIs by analyzing an ADTree built

from these attributes. By finding specific combinations of attributes of these islands that

determine the state of methylation we may be better able to understand aberrant methylation
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Figure 11: Which DNA sequences will be methylated? DNA: http://www.dk.
co.uk/static/clipart/uk/dk/future/image_future007.jpg.

of CpGIs. We predicted the methylation status of CpGIs in human chromosome 21 and analyzed

specific sequence patterns found to be significantly differentially distributed between methylated

and unmethylated islands. These patterns showed a significantly different distribution between

methylated and unmethylated islands in a previous work by Bock et al. (30). Using C4.5 with

bagging and cost-sensitive learning, we achieved 85.6% accuracy, 82.8% sensitivity, and 86.4%

specificity. We then constructed 1000 alternating decision trees using a bootstrapping method

and analyzed the nodes that were conserved between the trees.

4.2.2 Data Set and Attributes

The data set for this work was calculated using the DNA sequence of the CpGIs from human

chromosome 21, which were originally identified by Yamada et al. (186) and used by Bock et

al. (30). We used 27 4-mer sequence patterns that were both strand- and non-strand-specific.
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The frequency of occurrence of each sequence pattern within the CpGIs was used as the actual

descriptor value.

4.2.3 Machine Learning Algorithm Parameters

For C4.5 with bagging and costing (C4.5BAGCST), we used a 10-fold, stratified cross val-

idation was performed over the training set for one run during both the selection and the

validation cycles. For the ADTree classifier, we performed parameter selection on the data set

using accuracy as our standard in order to find the optimum number of iterations at which to

grow the trees. We found that the best parameters were reached between 20 and 26 iterations.

For the purpose of displaying the ADTree, we chose 20 iterations for readability. A total of

1000 trees were created during the bootstrap process, and each tree was run for 20 iterations.

4.2.4 Classifier Evaluation

Refer to the section “Classifier Evaluation Metrics” in Chapter 2 for details on our evalu-

ation methods.

4.2.5 Results

The results from our two classifiers are shown in Table IV, along with results from Bock

et al. (30) for comparison. Our models achieved a similar accuracy to those of Bock with

more balanced sensitivity and specificity. C4.5BAGCST was able to find many more true

positive examples, outperforming the other models by up to 20%. The bootstrapped ADTree

achieved a significantly higher MCC than that of the three models reported by Bock. The AUC

(area under the ROC curve) for both C4.5cst and ADTree is significantly large. However, no

comparison can be made because the AUC was not reported for the Bock models. Though the
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metrics allowed us to evaluate the performance of these particular models, they provided little

in terms of knowledge about why a particular CpGI is predicted methylated or unmethylated.

This was the primary motivation for using a decision tree. The ADTree was chosen for its

high accuracy in predicting the methylation status of CpGIs. The intuitive, graphical nature

of the ADTree allowed us to find possible (anti-) correlations between sequence features and to

elucidate the interdependencies between 4-mer patterns present in the CpGIs. It also allowed

us to discover whether repeated patterns of these 4-mers were important in distinguishing

between the classes, and if so, how many of the repeated patterns were required to make a

decision. Using the ADTree bootstrapping method, we built a tree which shows conserved

attribute nodes, decision thresholds, and the number of examples from each class that followed

a particular decision path (Figure 12(a)). The most conserved node, the pattern CCGC, was

present in ≥ 70% of the trees. This agrees with the results from Bock et al., wherein they find

that CCGC is the most differentially distributed pattern between methylated and unmethylated

CpGIs, with a higher significance for the unmethylated islands (30). However, we can see from

the ADTree that if a CpGI contains 6 or more of these patterns, it is highly likely to be

methylated (confidence = 1.56). This is underscored by the fact that ≈62% (18/29) of the

positive examples fit this criterion, in comparison to only 0.1% (1/103) of the negative examples.

Furthermore, if a CpGI has less than 6 CCGC patterns and 36 or more strand-independent

CACC patterns (UNI CACC, as per the convention used by Bock et al. (30)), it is highly

likely that the island is unmethylated, since ≈97% (100/103) negative examples followed these

criteria. One possible reason for both the large number of the UNI CACC patterns in CpGIs
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Classifier ACC SEN SPE AUC MCC

ADTreea 90.63 75.00 95.83 89.06 0.742

C4.5BAGCSTa 85.60 82.76 86.41 93.54 0.672

libSVMb 89.80 61.03 97.96 - 0.684

AdaBoostb 89.20 59.83 97.52 - 0.664

C4.5b 85.20 65.52 90.73 - 0.566

TABLE IV: The performance of five classifiers over the CpGI methylation data
set is shown. aThe results from our work. bThe results from Bock et al., reported
as being obtained from classifiers built using sequence patterns and the frequency
distribution of cytosines, guanines, CpGs, and of the observed/expected ratio of
these (426 attributes). ACC = accuracy; SEN = sensitivity; SPE = specificity;
AUC = area under the ROC curve. These four metrics are reported in percent
form. MCC = Matthews Correlation Coefficient.

and the conservation of this particular rule is that methylated cytosine has a propensity to

mutate to thymine. This leads to a tendency for CpG dinucleotides to become TpG or CpA

(87).
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(a) An ADTree describing rules for CPG Island methylation

(b) A highly-discerning positive rule (c) A highly-discerning negative rule

Figure 12: (A) An ADTree created using bootstrap validation is shown. The root
node indicates the bias in the data set, i.e., the ratio of positive to negative class
examples (in this case methylated vs. unmethylated CpGIs). The number in
parentheses within each node indicates the order in which the rules were found.
The amount of node conservation between each of the 1000 trees generated is
indicated by the color of the box (orange: ≥ 70%; yellow: ≥ 50%; green: ≥ 30%;
blue: ≥ 10%; black: ≤ 10%). The ratios at the bottom of the figure indicate the
number of examples from each class that followed that particular decision path
(red = methylated, black = unmethylated). Those patterns occurring on either
strand are designated as UNI [pattern] in accordance with Bock et al. (30). An
example of a highly-discerning positive rule (B) and negative rule (C) is also
shown. A variation of these figures appears in Carson, Langlois, and Lu (39).



CHAPTER 5

GENE REGULATION AND NETWORK MODELS

Most previous work with gene regulation network models attempts to capture snapshots

of a gene regulation network in action through (usually stochastic) simulation, with the focus

being on the explicit relationship between a transcription factor and a target gene. However,

transcription factors often share regulation responsibilities with other transcription factors.

This process, called combinatorial regulation, allows relatively few regulators to control the

entirety of the transcriptional program. A different type of network can be derived from a gene

regulation network, one which describes the relationship between transcription factors that

regulate common target genes. This partnership network could be analyzed to gain insight into

how transcription factor partners co-regulate their target genes.

We examined how the number of partnership interactions between transcription factors

scaled with the number of target genes (23). We analyzed the transcription factor partnership

networks of six organisms (E. coli, B. subtilis, yeast, mouse, rat, and human) and the phos-

phorylation network for yeast (Figure 14). We noticed two interesting properties in particular.

Firstly, the partnership networks lacked the often-observed power law-like degree distribution

despite the existence of hubs. Secondly, we found that the number of transcription factor part-

ners varied with the number of target genes and appears to follow an exponential saturation

curve of the form f(x) = a(1−e−bx), with the exception of E. coli and B. subtilis, for which the

71



72

Figure 13: In our work we represent transcriptional regulation in a network
context as follows. Given a protein-coding region, a regulatory region, and a
protein product from a transcription factor, these three elements are grouped and
represented as a single node. From here, two types of graphs can be constructed.
A gene regulation network (GRN) describes a set of interactions involving the
protein product of one transcription factor binding to the regulatory region of
another (or its own) gene and performing some type of regulatory role. This is
a directed network. A transcription factor partnership or co-regulation network
(CRN) describes the relationship between transcription factors, where an edge
between two nodes indicates that these two transcription factors have one or
more regulated genes in common. This type of network is undirected. Inspired
by a figure from the presentation “Understanding gene regulation from a network
perspective” by Gabor Balazsi, PhD, 7/02/2008.



73

relationship is linear (we show that this could possibly be explained by the operon structure of

prokaryotes).

Figure 14: The number of partners vs. the number of target genes for each
regulator is shown. (a-e) The transcription network for five species; (f) the phos-
phorylation network in yeast; (g) the transcription network of B. subtilis and
(h) the generative model. Black and gray lines correspond to real and random
networks respectively. Random networks were generated by shuffling the edges
in real networks while maintaining the in- and out-degree of each node. The best
fit line and corresponding R2 value is indicated for each sub-graph. This figure
appears in Bhardwaj et al. (23).

In order to find possible explanations of this saturation relationship, we created a generative

network model to see if the same co-regulation characteristics appear in a simulated evolution-

ary environment. Starting with one regulator and one target, generative networks were grown
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over 10,000 iterations using a probability-based move set. Possible moves included the addition,

deletion, or duplication of regulators and targets as well as the addition or deletion of inter-

actions between a regulator and a target. The resulting co-regulatory network (Figure 14h)

showed a similar trend to that in the model organisms. At a certain point, the number of

regulatory partners levels off even as the number of regulated targets increases, leading to

the characteristic saturation curve. This indicates that the saturation curve seen in these co-

regulatory networks could be a product of evolutionary development, during which regulators

gain and lose interactions with targets over time. With our model we simulated the evolution of

a transcription factor/target gene network in order to observe its development over time. Our

model simulates conditions similar to those used to study the development of social networks,

which have been studied previously (126; 107), by building the network incrementally.

5.1 Model Development

We describe the generative transcription factor network model we created below.

5.1.1 Overview

Our generative model creates networks with three node types: transcription factors (TFs),

target genes (TGs), and transcription factor/target genes (TF-TGs). Each model begins with

one TF, one TG, and one edge between the two nodes. Models are allowed to develop over

a predetermined number of cycles. One move from a move set derived from prior biological

knowledge is applied during each cycle on the basis of a predetermined probability. Essentiality

will be defined in terms of network architecture, e.g., ‘target gene X must be regulated by at

least two transcription factors’ or ‘genes X, Y, and Z must always be regulated by the same
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transcription factor(s)’. If the essential condition for that particular model is not met after

removal of the transcription factor with the highest degree in the current network (i.e., the

largest hub), the network fails. If the condition continues to be met after failure, we proceed

with development. In this way we hope to gain some insight into co-regulation behavior. Each

move in our move set and the reasoning behind it is described in more detail below.

5.1.1.1 Addition of a New TF/TG

In order to grow the network, nodes must be added. There are two options in the move set:

’Add TF’ and ’Add TG’. Both of these moves are constructors; they merely add one node to

the set of current nodes of that type. No ingoing or outgoing edges are added during this move.

Besides being necessary for growing the network, these moves also help our model account

for known biological phenomena. The addition of new nodes allows each network to develop

uniquely. Balaji, Iyer, Aravind, and Babu showed that evolutionary conservation and node

connectivity showed no correlation in several yeast species, meaning that regulatory hubs are

not essential in these organisms. Each organism has developed its own set of highly connected

regulators, allowing it to survive in different types of environments (18). This interpretation is

supported by independent studies that show that different lineages of eukaryotes have evolved

their own set of transcription factors and regulating hubs (14; 108; 48). Additionally, E. coli

and yeast only have two DNA-binding domain families in common (162), further indicating

that each organism has its own model for gene regulation. Addition of nodes also mimics an

important phenomenon in prokaryotes; the horizontal transfer of genes between organisms. This

phenomenon causes bacteria to acquire new functions from other bacteria in close proximity.
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Gelfand points out that horizontal transfer of bacterial enzymes outnumber duplications by as

much as 10 times (72).

5.1.1.2 Deletion of TF/TG

Our model also accounts for the possibility that a gene could become inactive due to muta-

tion(s). If some type of deleterious DNA mutation occurs within a gene, the gene may become a

pseudogene (i.e., an inactive gene). As in the case of the addition moves, a separate probability

is assigned to the deletion of a TF and the deletion of a TG This move simulates random failure

within the network as defined by Balaji, Iyer, Aravind, and Babu as well as Albert, Jeong, and

Barabási (18; 5).

5.1.1.3 Duplication of TF/TG with Partial Edge Inheritance

Two main theories exist for the formation of gene regulation networks (44). The first involves

the duplication of a gene and subsequent diversification of interaction from the parent gene.

This phenomenon, which is referred to as the duplication and divergence model, is thought to

be ubiquitous in nature. Both yeast and E. coli show extensive gene duplication, which implies

that this phenomenon is not biased by prokaryotic horizontal transfer or operon structure.

Additionally, the duplications appear to be gene-by-gene instead of by genetic circuit or module.

Most duplicated genes have interactions in common with their parent (77% E. coli, 69% yeast)

(162). Our model allows both TFs and TGs to be duplicated with separate probability. The

duplicate copy inherits a certain percentage of the parent interaction (currently 30% for both

TFs and TGs).
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Transcription factor/target gene interactions are represented in a network model by directed

edges. The second theory for the development of the gene regulation network hypothesizes that

regulation motifs arose independently through recruitment of unrelated genes. Conant and

Wagner observed that regulatory motifs do not have a common ancestry and that duplicate

regulatory genes have a random distribution in relation to different motif types, which implies

that these regulators can easily gain/lose interactions with target genes (44). It has also been

observed that up to 1/2 of the interactions between TFs and TGs have been gained after a gene

has been duplicated, and that roughly 10% of regulatory interactions are innovations, meaning

they appear to have been gained randomly (162).

5.1.1.4 Transformation from TF to TF-TG

In order to allow for the multiple levels of transcriptional control seen in model organisms,

we allow TFs to become target genes themselves without losing their current regulatory inter-

actions. During this move, a TF is picked at random to become a target gene, and a second

TF is chosen to become the first transcription factor’s regulator.

5.1.1.5 Self Interactions

This type of regulation involves the protein product of a gene performing a regulatory action

on its own gene. These auto-regulatory loops are the only example of feedback loops that have

been observed in the E. coli regulatory network (149). We do not include a separate move in

our model for adding a self-regulating interaction. Self-interactions can still be acquired during

the transformation from TF to TF-TG if a transcription factor is chosen to be its own regulator.
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5.1.1.6 Attack on Highly-connected Nodes

To simulate a direct attack on the networks, we include a move which removes the most

highly-connected node in the network during the current cycle. Networks with an inhomoge-

neous degree distribution are known to vulnerable to direct attacks such as this (18; 5). By

applying this move we hope to ‘weed out’ those networks which do not provide backup vertices

and edges, the idea being that if there is no backup path to our defined essential interactions,

the network will be non-viable. This parameter can also be varied to mimic a harsh environment

in order to analyze any differences that may exist in either the partnership network between

transcription factors or the gene regulation network when attacks are more prevalent.

5.2 Saturation Curves In Other Partnership Networks

5.2.1 Social Networks

The World Wide Web has made available a vast amount of interaction data. The number

of social networks of all types, email exchanges, and blogs provide a rich source for comparative

analysis with biological networks. To see how the saturation curve fit social data, we examined

partnership in two directed social networks. We studied a blog linkage network that consisted of

inter-linked blog entries where the nodes are blogs. An edge exists between two nodes if the two

blogs link to a common blog. We also studied an email network obtained using a set of emails

exchanged among users. Nodes are email users, and a link exists between them if they have

sent an email to a common user. We found that both these networks displayed the same kind of

exponential saturation relationship between the output (the number of out-going links or email

recipients) and the number of partners (co-linked blogs or co-senders of email) (Figure 15). This
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suggests that in social networks as well, the size of partnership network saturates at a certain

value even as the output of the group gets exponentially complex, highlighting the similarities

between the organizational structure of social and biological networks.

Figure 15: (A) A plot of the number of blogs linked to a user’s blog (X-axis)
versus the number of blogs which point to the same blogs (Y-axis). Each data
point corresponds to a blog in the blogs network. (B) A plot of the number of
recipients of a user’s email versus the number of other users who email the same
recipients. Each data point corresponds to a user who sends an email in the email
network. This figure appears in Bhardwaj et al. (23).

A limit on the size of the social network an individual can develop has been reported

previously as well. It has been suggested before that a human brain allows a stable network

of about 150 contacts (known as the Dunbar number) (56). Similarly, the average number

of “friends” on social networking sites like Facebook (https://www.facebook.com/) has been
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observed to be 120 (10). These observations and our results above are indirectly related:

setting a cap on the number of individuals one interacts with loosely limits the number of other

individuals (or partners) that interact with the same group.

5.2.2 Human Disease Network

We examined another type of partnership network related to human disease. Disease-gene

associations have been found and documented using such constructs as the Online Mendelian

Inheritance In Man (OMIM) database (78), the Disease Ontology (143), and NCBIs GeneRIF

(http://www.ncbi.nlm.nih.gov/projects/GeneRIF/). Using a consolidated version of the

Disease Ontology termed DOLite (55), we created a map for the human “diseasome” similar

to that from Goh et al. (74). From this bipartite network we extracted two projections: 1)

a disease partnership network and 2) a disease-gene partnership network. We then performed

curve fitting analysis on the two networks using MATALB (123). For the disease partnership

network, which compares the number of diseases that share a gene (disease partners) to the

number of genes associated with that disease, the saturation curve f(x) = a(1 − e−bx) fits

the data with an adjusted R2 value of 0.77 (16(a)). The disease-gene partnership graph, which

compares the number of genes sharing a disease relationship with gene x to the number of disease

associated with gene x, fits with an adjusted R2 value of 0.69 (16(b)). The similarity of these

graphs to those of the social networks above suggests that there may be a similar phenomenon

underlying disease relationships. We will look more closely at the disease partnership and

disease-gene relationships in the next chapter.
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(a) Disease Partnership: the number of genes associated with disease x vs. other
diseases sharing gene(s) with disease x.

(b) Gene Partnership in Disease: the number of diseases associated with gene x vs.
other genes sharing disease(s) with gene x.

Figure 16: Curve fitting analysis for two projections of the human disease net-
work. (a) The exponential saturation equation f(x) = a(1− e−bx) fit the disease
partnership network with R2 = 0.77. (b) The disease-gene partnership relation-
ship follows this distribution with R2 = 0.69. This figure was created using
MATLAB (123).



CHAPTER 6

MOLECULAR NETWORKS AND HUMAN DISEASE

6.1 A Data Warehouse for Human Molecular Networks

In order to facilitate our work with human disease networks, we created a human molecu-

lar data warehouse (Figure 17). We collected human molecular and disease data from several

categories including gene annotation, protein sequence, structure, and interaction, TF targets,

functional and metabolic data, miRNA targets, drug target information, disease, and data sets

from papers of interest. Sources for this data warehouse include NCBI’s Entrez Gene (118)

and Reference Sequence (RefSeq) (138) databases, the HUGO Gene Nomenclature Committee

data set (HGNC) (145), the Human Protein Reference Database (HPRD) (93), EBI’s Univer-

sal Protein Resource Knowledgebase (UniProtKB) (46), Gene Ontology (GO) (11), the Kyoto

Encyclopedia of Genes and Genomes (KEGG) (89), DrugBank (94), the Transcriptional Reg-

ulatory Element Database (TRED) (195), the Database of Interacting Proteins (DIP) (184),

the OMIM MorbidMap database (78), Disease Ontology and Gene Reference Into Function

(DORIF) (133), Disease Ontology Lite (DOLite) (55), and others. In addition, we created sev-

eral ID conversion tables in order to relate our data sets to one another and perform complex

queries. This data warehouse allows us to integrate public databases with data sets from pa-

pers and collaborators, facilitating mining for potential connections between data (e.g., genes

involved in the same disease and metabolic pathway).

82
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Figure 17: The Human Data Warehouse is currently composed of twenty eight
tables from several categories including gene annotation, protein sequence, struc-
ture, and interaction, TF targets, functional and metabolic data, miRNA targets,
drug target information, disease, and data sets from papers of interest. Also in-
cluded are various ID conversion tables which allow us to relate data sets to one
another to facilitate complex queries. Stored queries, or views, are displayed at
the bottom of the figure in yellow. This figure was created using the MySQL
Workbench (http://dev.mysql.com/doc/workbench/en/).
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6.2 Disease-related Genes in Conserved Human TF Network Motifs

A transcription factor network provides a map of interactions between regulating proteins

(transcription factors) and regulated genes (target genes). Within this network lie patterns

of connections between these two. These patterns, or motifs, give transcription factors (TFs)

a variety of tools for regulation depending on how much or how little of a protein product is

needed at any given time or within a particular tissue. Having looked into the relationship

between co-regulating partners and their target genes (TGs), we now examine more closely

how these TFs regulate their targets. We are also curious to know how disease-related genes

relate to the transcriptional regulatory network. Past analysis has shown that certain changes

in transcriptional regulation can lead to disease phenotypes such as infertility (58), ocular

diseases such as glaucoma (1), several developmental diseases, (45), and cancer (68). One way

to examine this problem is to identify the presence and location of disease genes in conserved

motifs within the human transcription factor network. Are disease genes, specifically those

that are cancer-related, overrepresented in statistically significant motifs? Are they regulated

by common mechanisms in the TF network? Do cancer genes occupy a particular position

within these motifs more often than other disease genes or non-disease genes? What about for

specific diseases such as breast, colon, and lung cancer?

6.2.1 Construction of the Network

Following the procedure in Figure 18, we first obtained 154 TFs and 2948 TGs with a total

of 6883 interactions from the Transcriptional Regulatory Element Database (TRED, http:

//rulai.cshl.edu/TRED/) (195). TRED is a collection of cis- and trans-regulatory elements
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for mouse, rat, and human. It also contains a curated list of 36 families of transcription factors

and experimental evidence linking them to their target genes. Although this network does not

represent a comprehensive account of human transcription factor/target gene interactions, the

proportion of TFs to TGs (≈5.2%) is very close to the observed value of 6% across 32 human

tissues as shown by Vaquerizas, Kummerfeld, Teichmann, and Luscombe (170).

Figure 18: Our protocol for the identification of disease genes in transcription
factor network motifs is shown. We began by building a human transcription
factor network using the TRED database. The resulting network included 154
TFs, 2948 TGs, and 6883 interactions. We then identified overrepresented net-
work motifs using mFINDER by comparing the human TF network to 1000
random networks. Next, we added gene annotation from NCBI’s Entrez Gene
database along with disease annotation from the Disease Ontology (560 disease
categories). We subsequently calculated network statistics using Cytoscape and
Network Analyzer. Finally, we searched for example clusters in the network using
ClusterONE.
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Our second step was to identify common motifs in the network. We used Motif Finder

(mFINDER) (91), a network-centric algorithm capable of creating exhaustive sub-graph lists.

mFINDER uses concentration, the ratio of the number of occurrences of a motif versus other mo-

tifs of the same size in the real network, as a significance metric. We identified overrepresented

patterns in the real network compared to 1000 randomly generated networks. The random net-

works were created using the same number of incoming, outgoing, and mutual edges as the real

network. Each begins as an identical copy of the original TF network. The source and targets

of the edges are then randomly switched between nodes, resulting in a randomly-connected set

of nodes. The number of times this switching occurs is an arbitrary number between 100 and

200 times the number of edges in the real network.

We then obtained gene annotation from NCBI’s RefSeq database (138) and disease infor-

mation from DOLite (55). DOLite contains 560 disease categories which are a collection of

aggregated disease terms from the Disease Ontology (http://do-wiki.nubic.northwestern.

edu/do-wiki/index.php/Main_Page). Next, we visualized the network using Cytoscape (151)

and subsequently identified example network clusters using the Cytoscape plug-in ClusterONE

(127) in order to find examples of the overrepresented motifs in the real network.

6.2.2 Results

We found that 4029 human genes have an associated disease according to DOLite. We

identified 1217 genes (≈39% of the human transcriptome) which have a known association with

at least 1 of these 560 disease categories (see Figure 19). 622 genes (≈20%) were associated

with one or more types of cancer, 176 genes (≈5%) with breast cancer, 106 genes (≈3%) are
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Figure 19: A global view of the human transcription factor network is shown. 154
TFs and 2948 TGs with a total of 6883 regulatory interactions acquired from the
TRED database are shown. Left: 1217 genes (≈39% of the human transcriptome)
have a known association with at least 1 of 560 disease categories from DOLite
(yellow). Right: 622 genes (≈20%) were associated with one or more types of
cancer (green), 176 genes (≈5%) with breast cancer, 106 genes (≈3%) with colon
cancer, and 97 genes (≈3%) with lung cancer. 48 transcription factors (≈31% of
TFs in the database) were associated with cancer (not shown). These networks
were visualized using Cytoscape (151).
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with colon cancer, and 97 genes (≈3%) with lung cancer. 48 transcription factors (≈31% of

TFs in the database) were associated with some type of cancer.

According to our analysis, one 3-node motif and seven 4-node motifs were overrepresented

in the human TF network (Table V). Three examples, one 3-node and two 4-node motifs,

are shown in Figure 20. Motif 46 (A) is a regulating feedback motif with a feed-forward loop

(FFL). This motif is common in developmental and signaling transcription networks (6) and

allows for a rapid response to signals (e.g., ON to OFF) while providing a delayed reaction to

move in the opposite direction (OFF to ON). This is important for filtering noisy input and

ignoring small fluctuations while allowing for a rapid response to stimuli. The most common

variations of this pattern are the coherent regulating double positive feedback motif (all interac-

tions enhance transcription) and the coherent double negative feedback motif (all interactions

repress transcription). Motif 222 (B) is a combination feedback/bi-fan. This pattern allows for

combinatorial control depending on the input function of each gene. The bi-fan is a pattern of

joint regulation which usually generalizes to dense overlapping regulons (DORs) in the larger

network. Genes in DORs share a global function such as nutrient metabolism and biosynthesis

(6). Motif 2206 (C) is a combination feedback/multi-FFL, which is useful for sign-sensitive

delay/acceleration and pulse generation. This allows the genes to be expressed in a particular

order, and can act as a persistence detector for each output (6).

One interesting observation is the high percentage of disease- and cancer-related genes in

the motif unit as a whole. In all three motifs, a large percentage of the disease genes are cancer-

related. For motif 46, 42% of genes are disease-related and 32% of genes are cancer-related,
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Motif ID Motif Type Occur (Real) Occur (Rand) p-value UV [ ]

46 3-node 470 332.305+-26.5104 0 9 0.4832

222 4-node 4913 2968 0 8 0.029

904 4-node 1800 1446 0 13 0.0106

908 4-node 950 626 0 7 0.0056

922 4-node 298 216.1667 0 5 0.0018

972 4-node 703 361 0 4 0.0042

2206 4-node 486 300 0 5 0.0029

2462 4-node 264 155 0 4 0.0016

TABLE V: Significant motifs in the human transcription factor network are
shown. We identified 8 types of overrepresented 3- and 4-node motifs. ‘Oc-
cur (Real)’ indicates the number of times the motif occurred in the real network,
‘Occur (Rand)’ is the mean number of occurrences in random networks, ‘UV’ is
the unique value, which is the number of times a motif appears in the real net-
work with a completely different (disjoint) set of genes, ‘[ ]’ is the concentration,
which is the ratio of the number of occurrences of a motif versus other motifs of
the same size in the TF network.

as compared with the percentage of these categories over the entire network (39% and 20%,

respectively). Notably, 76% of disease genes in this motif are involved in at least one type of

cancer. The same scenario applies to the other two motifs, with motif 222 having 42% disease-

related genes, 32% cancer-related genes, and 76% cancer-related disease genes, and motif 2206

having 44% disease-related genes, 36% cancer-related genes, and 81% cancer-related disease

genes.

If we look at specific positions within the motifs, several characteristics apply to each ex-

ample. Firstly, the number of transcription factors in the first and second positions of motifs

46 and 222 and the first, second, and third positions of motif 2206 are larger than that of the
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Figure 20: Three examples of significant motifs in the human transcription fac-
tor network. Each circle represents a node, and the number inside the circle
represents the position of a gene within the motif. Being that the transcription
network is directed, the position number is determined by the in-degree of the
node in the real network (dashed arrows) so that a lower position number indi-
cates a lower in-degree and thus a higher-level regulatory position. This applies
to the two 4-node examples as well; the arrows are left out for simplicity. The
total number of genes, the number of disease-related and cancer-related genes,
and their percentage is shown, along with the statistical significance at each po-
sition. Nodes for which there is a statistically significant number of disease- and
cancer-related genes (i.e., p ≤ 0.05) are shown in red. p-values were calculated
using a standard one-tail t-test. q-values were calculated using the false discovery
rate (FDR) method of Pike (136).
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downstream positions (values not shown). This is expected and is due to the regulatory activity

occurring in these locations (indicated by out-going edges). Some TFs occupy the third position

of motif 46, the third and fourth positions of motif 222, and the fourth position of motif 2206.

This is also expected, since these patterns do not exist in isolation but are part of the larger

graph, and, in the real network, these TFs most likely regulate other proteins in motifs located

downstream from these examples. For motif 2206, positions 1, 2, and 3 are each regulatory

in nature and follow a top-down hierarchy. Positions 2 and 3 are both the second node in a

feed-forward loop, and we would expect each of these positions to have similar number of TFs,

which they do. Secondly, position 3 in motif 46 and positions 3 and 4 in motifs 222 and 2206 are

associated with a larger overall number of genes. This too is anticipated, since one transcription

factor may regulate many genes. Thirdly, there is one particular position in each of these motifs

that is associated with a larger percentage of disease- and cancer-related genes relative to the

other positions. In motif 46, 13/22 (59%) of genes in position 1 are associated with at least

one disease compared to 35% and 41% for positions 2 and 3, respectively. Cancer-related genes

are also more common in position 1, with 11/22 (50%) genes having a cancer association while

the equivalent value for positions 2 and 3 are 29% and 30%, respectively. This pattern holds

for motif 222 as well, and to a lesser extent for motif 2206. For this last motif, the more equal

distribution of disease- and cancer-related genes may be a result of the nature of the motif itself

as mentioned above.

Figure 21 illustrates a comparison between the number of disease- and cancer-related genes

at motif positions versus the percentage over the entire network. Position 1 in motif 46 is
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Figure 21: A log-scale graph of the number of genes in three motifs by the position
these genes occupy (in parentheses). Five categories are shown: disease, cancer,
breast cancer (BC), colon cancer (CC), and lung cancer (LC). Each column is
normalized by the percentage of each category in the entire TF network.

occupied by more disease- and cancer-related genes, as well as genes involved in breast and

colon cancer. A similar pattern holds at position 1 of motif 222 and position 2 of motif 2206.

Interestingly, cancer-related genes are more common in all motif positions relative to both

other disease genes at that particular position and the network as a whole. This could be due

to the effects of signaling cascades in cancer pathways, with down-stream genes being affected

by aberrant signaling upstream, whereas other diseases may be caused by mutations or other

malfunctions which remain isolated.

To assess the significance of disease- and cancer-related genes occupying specific positions

within these motifs, we calculated the p-values for each. Using a p-value threshold of 0.05,
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(a) Transcription Factor Co-regulation and Disease

(b) Transcription Factors and Disease Number

Figure 22: A) The mean and median values for the target genes and co-regulators
of transcription factors as they relate to disease. The number of both target genes
and co-regulators is greatest for cancer-related TFs. B) A similar comparison on a
log scale with the number of associated diseases shown. Cancer genes are related
to a larger number of total diseases compared with non-cancer-related disease
genes.
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(a) Target Gene Co-regulation and Disease

(b) Transcription Factors versus Target Genes: Disease Association

Figure 23: A) The mean and median values for the transcription factors and
diseases as they relate to target genes. The number of both transcription factors
and diseases is greater for cancer-related TGs. B) A comparison of TFs and
TGs and the number of associated diseases of different types. Cancer genes are
related to a larger number of total diseases compared with non-cancer-related
disease genes.
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we found that none of the positions in motif 46 were occupied by a statistically significant

number of disease- or cancer-related genes. For motif 222, position 1 has a p-value = 0.03

for disease-related genes and a p-value = 0.02 for those that are cancer-related (Figure 20,

in red). Similarly, the second position of motif 2206 has a p-value = 0.04 for both disease-

and cancer-related genes. We subsequently performed error correction using the false discovery

rate method (136; 125) and found that these significant p-values do not translate to significant

q-values. A test for significance of specific cancer-related genes (breast, colon, and lung) were

similarly high q-values. Therefore, the results on whether disease- and cancer-related genes

occupy specific positions within these regulatory motifs are inconclusive.

Example clusters from the human TF network are shown in Figures 24(a) and 24(b). These

were identified using ClusterONE (127) in combination with Cytoscape (151). For each cluster,

a combination of the identified significant motifs in Figure 20 is apparent. For the cluster

in Figure 24(a), the combination of multi-output FFLs and bi-fan motifs provide for complex

and precise regulation of target genes. In Figure 24(b), multi-output FFLs are noticeable, but

this time in conjunction with multiple bi-fan motifs, resulting in the DOR pattern mentioned

previously. It is important to emphasize that the individual motifs identified here overlap in real

networks, and that analyzing these regulatory interactions in the context of small sub-graphs

is done in order to reduce complexity and to try to understand the transcription factor’s modes

of action.

Next, we identified the tissues in which the genes in our data set were expressed using the

UniProt database (46). A total of 97 tissue types were represented. The number of genes
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(a) PGR/Jun cluster (b) USF1,2/SP3 cluster

Figure 24: Key: TFs: diamonds, TGs: ellipses, cancer-related: red, non-cancer-
related: blue. Left: A portion of the signaling pathway of the progesterone
receptor PGR (breast cancer), which involves direct DNA-binding and regula-
tion of target genes. These include the oncogene JUN as well as IFNB1 (colon
and prostate cancer). A combination of multi-output FFL and bi-fan motifs can
be seen. Right: Upstream stimulating factors (USF1 and USF2) are evolution-
arily conserved and ubiquitously expressed. These TFs are major players in the
transcriptional regulation of chromatin remodeling enzymes. USF2 and TGFB1
have been linked to tumor growth, while SP3 and ACACA have been linked to
breast cancer. SP3 can act as an activator or repressor and is involved in cell-
cycle regulation, hormone-induction, and housekeeping. Clusters were identified
using the ClusterONE (127) plug-in with Cytoscape (151).
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Figure 25: A log-scale graph of the number of disease- and cancer-related genes
expressed in the three most common tissue sources for our data set. ‘+n’ indicates
that the genes are also expressed in n additional tissues.

originating in each tissue varied from 3 to 630 (mean: 63.6, median: 316). Figure 25 shows the

three most common tissues in our data set: placenta, 630 genes (20% of data set, 1.8% of the

genome), liver, 488 genes (16% of data set, 1.4% of the genome), and lung, 482 genes (16% of

data set, 1.4% of the genome). We found that genes were more likely to be associated with

both general disease and cancer as the number of associated tissues increased. Interestingly,

the number of genes related to cancer surpassed the level for other disease-related genes as they

become more ubiquitously expressed, especially for those found in 3 or more tissues. This is in

line with the observation from Goh et al. that cancer genes which acquire somatic mutations
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are more ubiquitously expressed, while inherited diseases do not show the same expression

pattern (74). Many cancer genes also often have house-keeping functions or are involved in cell

signaling, either by direct DNA-binding or through a signaling pathway activated by kinases.

We then looked at the transcription factor co-regulation network and its relationship to

disease (Figure 22). We found that cancer-related TFs regulated a higher number of target

genes than non-disease-related TFs, and that they also had more co-regulating partners. This

seems logical given what we know about the cascading effects of cancer development, and that

cancer-related genes often have a larger number of interactions with other genes than non-

disease genes (74). We also found that cancer-related TFs were associated with more diseases

of any type than non-cancer-related TFs. This highlights the connection between cancer and

other diseases. The primary disease in a patient is often accompanied by secondary diseases, a

phenomenon known as co-morbidity (163).

Additionally, we identified the number of TFs associated with each target gene and found

that target genes associated with cancer were regulated by a higher average number of TFs than

both non-disease and non-cancer disease genes (Figure 23). Furthermore, these cancer-related

target genes were involved in a higher than average number of diseases, similar to what we

observed for TFs. When comparing the number of disease associations for TFs versus TGs, we

found that TGs were related to a higher number of diseases on average than TFs.

6.3 Disease and Protein-protein Interaction Networks

In this project we analyzed the currently-known human protein-protein interaction (PPI)

network and its relationship to disease using ADTree. We examined the topological properties
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of this network in order to discover differences between proteins which are known to be disease-

related and those with no disease association. We also looked for conserved rules over multiple

trees in order find the most differentiating characteristics of disease-related proteins in a network

context.

In previous work, Gonzalez et al. collected disease genes from NCBI’s PubMed database

(http://www.ncbi.nlm.nih.gov/pubmed/), identified disease-related proteins in the protein-

protein interaction network, and weighted protein interactions based on connectivity (75). Wu,

Jiang, Zhang, and Li acquired disease-related genes from OMIM (78), identified these in the

PPI network using HPRD (93), and then used linear regression and a concordance score to

measure the functional relatedness and the phenotypic similarities between genes (182). Özgür

Vu, Erkan, and Radev also extracted disease genes from OMIM (78), overlaid the PPI network,

and then used an SVM classifier with four centrality measures as features (degree, eigenvector,

betweenness and closeness) to predict unknown disease genes (134).

6.3.1 Data Set

We analyzed protein-protein interactions using the Human Protein Reference Database

(HPRD) (93) Release 9, which contained 9616 proteins and 39,240 binary interactions. We

again used disease information from the DOLite database in order to create two groups for

binary classification: those proteins with known/suspected disease association as determined

by DOLite (positive class) and proteins with no annotation in the DOLite database (negative

class). 3104 of the genes identified in DOLite corresponded to a protein product in the PPI
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Data Set DR Proteins NDR Proteins +/- Ratio

HPRD/DO ≥1 disease 3104 6512 ≈1/2

HPRD/DO ≥2 disease 2119 6512 ≈1/3

HPRD/DO ≥3 disease 1401 6512 ≈1/4.6

HPRD/DO ≥4 disease 1026 6512 ≈1/6.4

HPRD/DO ≥5 disease 792 6512 ≈1/8.2

TABLE VI: We created five versions of the PPI data set. ‘≥ n’ in the data set
name indicates the number of diseases that must be associated with a protein for
it to be a member of the positive class. ‘DR’ indicates the number of disease-
related proteins (+ class), ‘NDR’ indicates the number of non-disease-related
proteins (- class).‘+/- Ratio’ indicates the ratio of positive and negative class
examples for a data set.

network, resulting in ≈32% of HPRD proteins having a disease association. Within this positive

class the average number of diseases associated with a given protein was 4.3.

We created 5 versions of the data set, each with a different minimum number of disease asso-

ciations required for the positive class (Table VI). We analyzed the protein-protein interaction

network using Cytoscape (151) and generated the node parameters using Network Analyzer

(12). The average number of neighbors for the entire network was ≈7.7, the diameter of the

network was 14, and the characteristic path length was ≈4.2.

6.3.2 Prediction of Disease-related Proteins Using ADTree

We used ADTree to predict disease-related proteins in the HPRD database (Figure 26).

We found that, using accuracy as our parameter selection standard, 20 iterations provided the

best results. Ten-fold cross validation was used for both the parameter selection and validation
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steps. Finally, we used a bootstrap sampling method in order to find conserved rules among

multiple trees. These conserved rules correspond to the most important features in determining

the class to which a sample belongs.

6.3.3 Features

We used ten topological features to build our ADTree model. Each is described below.

6.3.3.1 Degree Centrality

The degree of a vertex is its total number of edges. In a protein-protein interaction network,

which is undirected, edges represent molecular interactions between proteins. The degree k of

vertex i can be described in this case as

ki =

n
∑

j=1

Aij (6.1)

where n is the number of nodes in the network, and A represents an adjacency matrix

with elements i and j. This measure has been shown in several works to be a distinguishing

characteristic between disease and non-disease genes (21; 62; 131; 111).

6.3.3.2 Closeness Centrality

Closeness centrality measures the average distance between a given node and other nodes in

the network. Because it is an inverse measure, a larger value indicates lower level of centrality.

It can be thought of as a measure of the rate at which information spreads to neighboring
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nodes (128). This measure has been used by Ortutay and Vihinen (131) to identify primary

immunodeficiency-related genes. Closeness can be defined as

Cc(n) =
1

avg(L(n,m))
(6.2)

where L(n,m) indicates the distance of the shortest path between nodes n and m. This metric

yields a value between 0 and 1.

6.3.3.3 Betweenness Centrality

This metric indicates the number of shortest paths passing through each vertex. Nodes

with high betweenness centrality (often called bottlenecks) have been shown to correspond to

essential genes in directed networks (21). The betweenness centrality of a node can be written

as

Cb(n) =
∑

s 6=n 6=t

(
σst(n)

σst
) (6.3)

where s and t are vertices other than n, σst represents the count of shortest paths from s

to t, and σst(n) is the count of shortest paths from s to t with which n is involved.

6.3.3.4 Clustering Coefficient

The clustering coefficient (CC) of a node n is the ratio of existing edges between n and its

neighbors and the number of possible connections. This is a measure of edge density for the
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node’s neighborhood (82; 62; 111). For undirected networks, the clustering coefficient of n can

be written as

CCn =
2en

(kn(kn − 1))
(6.4)

where kn is the total number of neighbors of node n and en is the count of linked pairs of nodes

between the neighbors of n (179; 19).

6.3.3.5 Stress Centrality

The stress centrality (31; 150) for a node n corresponds to the total number of shortest

paths passing through it. If the number of shortest paths is large, the stress will be large as

well. This metric is described in the following way:

Cs(n) =
∑

s 6=n

∑

t 6=n,s

σst(n) (6.5)

where s and t are network vertices other than n, σst indicates the number of shortest paths

from vertex s to vertex t, and σst(n) is the count of shortest paths from s to t passing through

n.

6.3.3.6 Neighborhood Connectivity

The neighborhood connectivity of a vertex is equal to the average degree of its neighbors

(121).
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6.3.3.7 Topological Coefficient

This metric describes the average number of shared connections between a node and other

nodes. In a social context this would measure the number of mutual friends two people share.

The topological coefficient (156) can be represented as

Tn =
avg(J(n,m))

kn
(6.6)

where kn indicates the neighbors of node n and J(n,m) is the count of neighbors that n and

m share, plus one if there is an edge between n and m. J(n,m) is defined only for all nodes m

that have at least one neighbor in common with n.

6.3.3.8 Eccentricity

Eccentricity is the longest path between a node n and another node. The eccentricity value

is 0 for isolated nodes. The maximum value for eccentricity is the diameter of the network.

Cecc(n) =
1

max {dist(v, w) : w ∈ V }
(6.7)

6.3.3.9 Radiality

Radiality is a measure of centrality (169; 31). It is the average shortest path length of

a vertex n minus the diameter of the connected component to which n belongs plus 1. The
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resulting value is a number between 0 and 1. A high radiality value indicates that a vertex can

easily reach other vertices (96).

Crad(n) =

∑

w∈V (∆G + 1− dist(v, w))

n− 1
(6.8)

6.3.3.10 Disease Neighbor Ratio

This metric describes the local environment of a node in terms of its disease-related neigh-

bors. We represent the disease neighbor ratio (DNR) as

DNRi =
ndisease

ki
(6.9)

where ndisease is the number of neighbors of node i identified as disease-related proteins and ki

is the degree of i.

6.3.4 Results

Using Receiver Operating Characteristic (ROC) curves, we found that the classifier created

using proteins associated with ≥5 diseases yielded the best results (Figure 27). We predicted

1622 disease-related proteins using the ADTree classifier. We then created a bootstrapped

ADTree for the PPI-disease network (Figure 26) using this model. As indicated by the order in

which the rules were found and by the conservation of rules discovered during the bootstrapping

process, the attributes which are the most effective for distinguishing disease- from non-disease

proteins are degree, disease neighbor ratio, eccentricity, and neighborhood connectivity. The

next most conserved feature, present in at least 50% of the trees, is betweenness centrality.
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This feature is conserved when used in conjunction with degree and disease neighbor ratio. The

remaining rules are conserved in ≤ 50% of the bootstrapped trees. Degree, disease neighbor

ratio, and neighborhood connectivity were expected to play an important role, particularly

given some recent analysis (80; 193). However, the ADTree illustrates a pathway by which

rules work together to discriminate between disease- and non-disease-related proteins.

Figure 28 shows box plots for the first two rules in the bootstrapped tree (created using

the R Statistical Environment (140)). Disease-related proteins had a higher degree centrality

and disease neighbor ratio compared to non-disease proteins. To test the importance of the

most discerning features, we ran the algorithm four more times, each time removing one of

these important attributes. Removing the disease neighbor ratio resulted in an 11% decrease

in sensitivity (which measures the ratio of true positive examples and those correctly identified

as positive). Removal of the degree centrality, neighborhood connectivity, and self interaction

features reduced sensitivity by 3%, 3%, and 1% respectively. These results along with the

ADTree in Figure 26 make it clear that while individual attributes may contribute more or less

to a prediction problem, the combination of these features gives us a multi-dimensional view of

how the two classes are separated.

6.3.5 Comparisons with Previous Data Sets

Using our ADTree classifier, we correctly identified 17/17 disease-related proteins which

Gonzalez et al. (75) mined from literature. Our classifier also correctly predicted 14/16 known

breast cancer genes identified by Wu, Jiang, Zhang, and Li (182). Additionally, we were able

to correctly classify 15/16 known disease genes found in literature by Özgür et al. (134).
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Figure 26: An ADTree created using 10-fold CV and bootstrapping. The root
node indicates the bias in the data set, i.e., the ratio of positive to negative
class examples (disease-associated proteins versus non-disease-associated pro-
teins). The square nodes contain the feature name and the number in parentheses
within each square node indicates the order in which the rule was found. The
amount of node conservation between each of the trees generated in the valida-
tion step is indicated by the color of the box (red: ≥90%, orange: ≥70%, yellow:
≥50%, green: ≥30%, blue: ≥10%, black: ≤10%). The oval nodes show the value
for the weighted vote, where a positive number indicates a prediction for disease-
association. The numbers next to the arrows correspond to the threshold for the
prediction. If the attribute value exceeds this number, the right path is followed.
Otherwise the prediction follows the left path.
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Figure 27: ROC curves for five ADTree classifiers. The performance of the models
increases with the removal of proteins associated with few diseases, which affects
only the positive class in the prediction. The area under the ROC curve (AUC)
is ≈67% for ≥ 1 disease, ≈71% for ≥ 2 diseases, ≈75% for ≥ 3 diseases, ≈76%
for ≥ 4 diseases, and ≈79% for ≥ 5 diseases.
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Figure 28: Box plots (created using R (140)) showing two of the most distin-
guishing features between disease and non-disease proteins: degree centrality
and disease neighbor ratio. These features correspond to the first and second
rules found using the ADTree model, respectively.

6.3.6 Identification of Potential Disease Genes

Our classifier predicted 98 non-disease-related proteins (i.e., those that lack DORIF anno-

tation) to be members of the positive class with a confidence score ≥ 0.5 (threshold = 0). This

indicated that these examples have attribute values which qualify them as potential disease-

related proteins. We examined a subset of these examples more carefully and found that there

is evidence linking many of these proteins to disease. Table VII shows the top 15 in this group

ranked by confidence. Only two proteins (PTCH1 and TCF4) have associated MIM numbers

(indicating disease involvement). 9/15 proteins (CDH5, DPP4, GZMB, FGR, FLT1, PECAM1,

SREBF2, STAT6, and TOP1) have moderate to strong evidence of disease association, while

4/15 (STAMBPL1, MDH2, GRK5, and CD74) have light evidence. Interestingly, 12/15 are

linked to some form of cancer or tumor development.
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Conf. Score OS DORIF OMIM Suspected Disease Relations

6.24096 CDH5 none none melanoma, tumor metastasis

5.81860 PTCH1 none 109400, 605462, 610828 basal cell nevus syndrome and carcinoma

5.19721 STAMBPL1 none none light evidence, Alzheimer’s

5.14813 MDH2 none none light evidence, tumor development

1.09972 DPP4 none none diabetes, NIDDM (55), colon cancer (3)

1.09972 GRK5 none none light evidence, heart failure

0.907016 GZMB none none lymphoma (30), tumors (92)

0.898631 TCF4 none 610954 Pitt-Hopkins syndrome

0.705929 FGR none none breast cancer (3), prostate cancer (1)

0.705929 FLT1 none none cancer, various

0.705929 PECAM1 none none cancer, various

0.705929 SREBF2 none none prostate cancer (2)

0.705929 STAT6 none none prostate cancer (3)

0.705929 TOP1 none none leukemia, colon cancer, ovarian cancer

0.664823 CD74 none none light evidence, lymphoma

TABLE VII: This is a subset of proteins which belonged to the non-disease group
(lacking DORIF annotation) but were predicted to be disease-related. These 15
proteins are sorted by the confidence score assigned by the ADTree classifier. Two
proteins (PTCH1 and TCF4) have associated OMIM disorders. 9/15 proteins
(CDH5, DPP4, GZMB, FGR, FLT1, PECAM1, SREBF2, STAT6, and TOP1)
have moderate to strong evidence of disease association, while 4/15 (STAMBPL1,
MDH2, GRK5, and CD74) have light evidence linking them to disease. (n) in-
dicates the number of PubMed IDs connecting a protein to a particular disease.
‘Conf. Score’ is the confidence score assigned by the ADTree classifier, ‘OS’ is the
official symbol of the gene/protein, ‘DORIF’ is Disease Ontology + Gene Refer-
ence Into Function, ‘OMIM’ is the MIM number associated with the gene/protein,
‘light evidence’ is defined as having a predicted disease association according to
the MalaCards database (141). Disease information for this table was acquired
from the GeneCards database (155).
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Figure 29: The five most common diseases associated with the first neighbors
of DPP4 (those proteins with a direct interaction). DPP4 has 55 PubMed IDs
which associated it with non-insulin-dependent diabetes mellitus (NIDDM). In-
terestingly, NIDDM is often accompanied by beta cell autoimmunity, where the
beta cells of the pancreas are destroyed by an autoimmune disorder (190).
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Figure 30: The five most common diseases associated with the second neighbors
(i.e., neighbors of neighbors) of FGR. There are 3 PMIDs associating this gene
with breast cancer and 1 PMID linking it to prostate cancer.

We examined two of these proteins more closely to find out which diseases were associated

with PPI network neighbors. We identified the first neighbors (i.e., proteins with a direct

interaction) of dipeptidyl-peptidase 4 (DPP4, Figure 29). This gene product is a glycoprotein

receptor involved in the signaling pathway for T-cell receptor (TCR)-mediated T-cell activation

(155). DPP4 has 55 PubMed IDs associating it with non-insulin-dependent diabetes mellitus

(NIDDM). Figure 29 shows the five most common diseases of DPP4 first neighbors by Disease

Ontology ID (DOID). ‘Diabetes mellitus’ ranks third, while ‘Autoimmune disease’ ranks second.

Interestingly, NIDDM is often accompanied by beta cell autoimmunity, where the beta cells of

the pancreas are destroyed by an autoimmune disorder (190). We used a similar method
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for the Gardner-Rasheed feline sarcoma viral (v-fgr) oncogene homolog (FGR), but this time

we identified the second neighbors of the protein (i.e., neighbors of neighbors). There are

three PMIDs associating this gene with breast cancer and one PMID linking it to prostate

cancer. Figure 30 shows the top five diseases related to the second neighbors of FGR. ‘Prostate

Carcinoma’ and ‘Breast Cancer’ are the second and third most common diseases, respectively,

only behind the general category of ‘Cancer’.

These two examples illustrate how the PPI network can be used in a post-processing step

to examine the network neighborhood of potential disease-related proteins and to identify dis-

ease(s) with which these proteins may be associated. This provides a useful filter for experi-

mentalists searching for candidate targets for drug repositioning. This method could also be

extended to include other network and biological data types in order to refine these predictions.

6.4 A Disease Co-occurrence Matrix

In order to analyze disease relationships, we built a disease co-occurrence matrix based on

shared genes between each pair of diseases. We first calculated the uniqueness of each gene i

as follows:

ui =

√

di

dn
(6.10)
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where di is the number of diseases associated with each gene i and dn is the number of

diseases in the data set. Next, we created an N X N matrix. Then, for each pair of diseases we

added the uniqueness score of each shared gene:

dij = (us1 + us2 ...usn) (6.11)

where dij is a disease pair and usn is the uniqueness value for each gene shared between the

two. The diagonal elements of the disease co-occurrence matrix, where i = j for dij , contain

the sum of the uniqueness values for all genes related to disease di.

Next, we applied symmetric approximate minimum degree permutation to the disease co-

occurrence matrix. This algorithm was developed by Stefan I. Larimore and Timothy A. Davis

and incorporated into MATLAB (123). This reordering algorithm first creates a permutation

vector p from a symmetric positive definite matrix A. This permutation vector, which contains

a list of reordered columns from A, is then used to create a new matrix S such that S = (p,p)

has a sparser Cholesky factor than the original matrix A. The end result is that the reordered

matrix S is less sparse near the lower diagonal and more sparse near the upper diagonal. For

our disease co-occurrence matrix, this effectively clusters highly-related diseases in the lower

right quadrant around the diagonal.

We first applied this strategy to the OMIM MorbidMap database (78) (http://omim.org/).

Figure 31 shows the resulting reordered disease co-occurrence matrix for 5224 diseases. While
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Figure 31: A co-occurrence matrix showing the relationship between 5224 diseases
from the OMIM MorbidMap is shown. Matrix elements colored blue indicate a
relationship between two diseases, white elements indicate no relationship. Each
blue matrix element contains the sum of the uniqueness values for genes related to
diseasei and diseasej , white elements are equal to 0. Diagonal elements indicate
the identity relationship for each disease, i.e., the sum total uniqueness values
for all genes associated with diseasei. This figure was created using MATLAB
(123).
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there are well-defined clusters, many of the cluster members are variations of the same disease

phenotype or very closely related phenotypes. This is due to the high level of specificity of

the OMIM disease categories. For example, the disease “46XY complete gonadal dysgenesis”

is listed as two separate disease phenotypes, each with a different MIM identifier. While this

distinction is important (the two phenotypes refer to mutations on different chromosomes), it

does not serve our purposes in this case. We would like to see more relationships between phe-

notypically different diseases, and we would like very closely-related phenotypes to be grouped

together.

To address this problem, we created another matrix using gene-disease relationships gath-

ered from Disease Ontology (143) and the GeneRIFs (Gene Reference Into Function) database

(http://www.ncbi.nlm.nih.gov/gene/about-generif). This combination of data sources

was used recently by Osborne et al. to annotate the human genome (133) for disease (referred

to hereafter as DORIF, (http://projects.bioinformatics.northwestern.edu/do_rif/)).

They found that DORIF annotation provided a much higher recall rate when compared to

OMIM data for validation gene sets. Additionally, the Disease Ontology provides a hierarchical

structure in which more specific diseases can be grouped into broader categories, which allows

us to compare phenotypically divergent diseases more easily.

The DORIF annotation included 88,343 entries for 5,376 genes. There were 1,854 diseases

and 48,436 PubMed references for gene-disease relationships (http://www.ncbi.nlm.nih.gov/

pubmed/). The DORIF co-occurrence matrix (Figure 32) shows the comparisons between these

diseases. There are two notable differences from the OMIM matrix. Firstly, there are noticeably
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Figure 32: A co-occurrence matrix showing the relationship between 1854 diseases
using DORIF data is shown. Matrix elements colored blue indicate a relationship
between two diseases, white elements indicate no relationship. Each blue matrix
element contains the sum of the uniqueness values for genes related to diseasei
and diseasej , white elements are equal to 0. Diagonal elements indicate the
identity relationship for each disease, i.e., the sum total uniqueness values for all
genes associated with diseasei. This figure was created using MATLAB (123).
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Figure 33: This matrix is a subset of the disease co-occurrence matrix and shows
the relationships between 23 diseases beginning with malaria (top) and ending
with cancer (bottom). Disease labels for the rows apply to the columns as well.
The value of each element i,j is the sum of the uniqueness values of each gene re-
lated to both diseasei and diseasej . Darker squares indicate a higher uniqueness
value. This figure was created using MATLAB (123).
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Figure 34: This matrix is a subset of the disease co-occurrence matrix and shows
the relationships between 23 diseases beginning with cancer (top) and ending with
hypercholesterolemia (bottom). Disease labels for the rows apply to the columns
as well. The value of each element i,j is the sum of the uniqueness values of each
gene related to both diseasei and diseasej . Darker squares indicate a higher
uniqueness value. This figure was created using MATLAB (123).
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more disease relationships. Secondly, the DORIF matrix appears noisier; the relationships are

not as tightly clustered as they are in the OMIM matrix. However, these “gray areas” may

actually be a benefit if the goal is to find hidden relationships between diseases. A closer look

at the individual clusters provides some interesting information.

Figure 33 and Figure 34 show a closer view of two different subsections of a dense cluster.

Each of these figures is a 23 X 23 square submatrix of disease relationships from the solid blue

cluster in the lower right-hand corner of the matrix in Figure 32. The majority of the diseases

in these submatrices are various types of cancers. There are some notable and interesting ex-

ceptions, however. For example, in the case of the relationship between malaria and cancer,

the uniqueness value is close to that of those genes only related to malaria (0.47 and 0.57,

respectively). Recent research provides some interesting findings about these two diseases. A

clinical study showed that the mortality rate in patients with any type of cancer was increased

after malarial infection (106). Additionally, the malaria drug chloroquine has been shown to

reduce tumor size in pancreatic cancer patients (188). Another example is the relationship

between hypertension induced by pregnancy and cancer. Recent work has shown that VEGF

(Vascular endothelial growth factor) may be the connection. When taking anti-VEGF can-

cer drugs, patients develop very similar symptoms to pregnancy-induced hypertension. When

VEGF expression levels are reduced in solid tumors, growth slows due to the lack of vascular

development within. As a side effect, hypertensive symptoms occur (73). Dental plaque and

cancer appear to be highly related according to their uniqueness values as well; 0.77 (Dental

plaque) and 0.72 (Dental plaque and cancer). Several past studies have made the connection



121

between oral health and chronic illness. Earlier this year, however, a clinical study spanning

the last 24 years was released (152). During this period, researchers followed 1,400 adults.

They found that these subjects with high levels of dental plaque were 79% more likely to die

prematurely from cancer. This work shows only an association between the two diseases, and

thus the true nature of the relationship is yet to be discovered. Other relationships from our

matrix share a high uniqueness score, but there is little or no experimental evidence linking

them. For example, migraine headaches and large intestine carcinoma have a shared uniqueness

score of 0.403, while migraine alone is 0.498 (not shown in figures). Despite this, we could not

find research references linking the two. This matrix can be used to identify potential disease

relationships and to motivate further study into the elucidation of causal mechanisms in disease.



CHAPTER 7

CONCLUSIONS

7.1 DNA-binding Protein Prediction

We have demonstrated that the boosted decision tree algorithm outperforms other classi-

fiers, achieving 88% accuracy for DNA-binding prediction. This study also provided a rigorous

benchmark comparison for five classifiers over a set of four important metrics by varying the

size of the training set. The boosted decision trees had the best performance on nearly every

metric and for each training set size tested. Additionally, we discussed the area under the ROC

curve and how it serves as a better metric for imbalanced data sets due to the fact that it is

unaffected by the underlying class distribution. This is important for future work since many

types of data sets, including those created for use in DNA-binding and RNA-binding residue

prediction, are imbalanced. Furthermore, a larger AUC indicates that the learning algorithm

will produce more accurate confidence values and make more robust predictions because it

measures the relative ordering of those predictions.

7.2 DNA-binding Residue Prediction

Using imbalanced data sets, we developed classifiers for DNA- and RNA-binding residue

prediction based on C4.5 (139), bootstrap aggregation (32), and cost-sensitive learning (191)

which produce balanced sensitivity, specificity, and precision with high accuracy. We compared

these results to those from five commonly-used algorithms built using balanced training sets

122
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and found that our classifiers achieve higher accuracy than any of the other algorithms. We also

compared the results of our classifiers to those from previous works over previously-compiled

data sets. We showed that we are able to achieve more accurate results by training on an

unbalanced data set. We believe that using this method, as opposed to artificially balancing

the data set, provides more realistic results for testing, due to the fact that nearly all NA-binding

proteins have many more non-binding than binding residues.

We also created the Nucleic Acid Prediction Server (NAPS, http://bioinformatics.

bioengr.uic.edu/NAPS), a publicly-available web server based on our C4.5BAGCST classifiers

that performs NA-binding residue prediction using sequence-based attributes. NAPS takes a

DNA- or RNA-binding protein sequence as input, calculates a set of 301 sequence-based at-

tributes for each residue in the test protein, and returns a list of residues, the predicted class

(binding or non-binding), and a confidence score. This web utility provides a convenient tool

for researchers to identify potential NA-binding residues from proteins which do not yet have

a crystal structure available.

7.3 DNA-binding Site Prediction

We have developed two-body and three-body interaction potentials which are able to assess

protein-DNA interaction and achieve a higher level of specificity in the recognition of TF-binding

sites. We implemented two approaches in order to evaluate the potentials. We found that

the three-body potential, which takes into account the interaction between a DNA base and a

protein residue with regard to the effect of a neighboring DNA base, had a better average Z-score

than that of the two-body potential. This neighbor effect suggests that the local conformation
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of DNA plays a critical role in specific residue-base recognition. In all cases, the potentials

developed here outperformed published results. The two sets of potentials were tested further

by applying them in genome-scale TF-binding site prediction for the CRP protein in E. coli.

We showed with these results that statistical potentials can be used in genome-scale TF-binding

site prediction.

This work improved protein-DNA statistical potentials by performing two tasks: 1) system-

atically evaluating the space partition and residue representations, and 2) taking into account

the conformational effects of local DNA on the statistical potential. In summary, we found

that the grid-based potential outperformed the distance-based potential, that using Cβ as a

representative point for an amino acid improved the results, and that three-body potentials

provided better specificities than two-body potentials.

7.4 Prediction of CpG Island Methylation In Human DNA

We predicted the methylation status of CpGIs from human chromosome 21 with high,

balanced accuracy using an ensemble classifier trained with 27 4-mer sequence patterns that

were both strand- and non-strand-specific. In addition, we created an ADTree classifier which

allowed us to evaluate the relationships between sequence patterns in CpGIs. One highly-

conserved sequence pattern, CCGC, was present in ≥ 70% of the bootstrapped trees. This

was identified as the most highly-discriminating sequence pattern for distinguishing between

methylated and non-methylated CpGIs in a previous work (30). We found that if a CpGI

contains six or more of these patterns, it is highly likely to be methylated. However, if a

CpGI has less than six CCGC patterns and 36 or more strand-independent CACC patterns, it
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is highly likely that the island is unmethylated. We show a possible biological reason for this

observation. This highlights the fact that by using ADTree we are able to identify cooperativity

between features in classification problems.

7.5 Partnership Networks

We analyzed several transcription and phosphorylation networks and examined the prop-

erties of co-acting partners. We found that this partnership follows an exponential saturation

curve when related to the number of targets. We also developed a generative transcription

factor network model which followed rules consistent with current evolutionary theory. We

found that the model created transcription factor networks with very similar characteristics to

that of real networks, and that the co-regulatory relationships within followed the exponential

saturation curve as well. This suggested that these properties may be inherent in regulatory

networks. A comparison with sets of blog and email interactions as well as two projections of

the bipartite disease-gene network highlighted similarities in organizational structure. Like the

biological networks, these social and disease networks displayed limits on partnership even as

the number of interactions grew. It is possible that comparable rules exist in the formation of

these networks as well, leading to their architectural similarities.

7.6 Disease-related Genes in Conserved Human TF Network Motifs

We built a human transcription factor network from currently available data and identi-

fied eight statistically significant regulatory motifs. We found that both general disease-related

genes and cancer-related genes were present more frequently in these motifs when compared

to the network as a whole. Disease and cancer genes appeared often in a combination of the
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feed-forward loop, regulating feedback, and bi-fan motifs. For two thirds of the motif exam-

ples shown, one position within the motif was occupied by a statistically significant number of

disease- and cancer-related genes. We identified two clusters from the human transcription fac-

tor network that exhibited a combination of statistically significant motifs and disease-related

genes. We also made a number of interesting observations. Firstly, we found that more ubiqui-

tously expressed genes were more likely to be associated with both general disease and cancer.

Secondly, we found that cancer-related TFs regulated a higher number of target genes than non-

disease-related TFs, and that they also had more co-regulating partners. Thirdly, we found that

cancer-related TFs were associated with more diseases of any type than non-cancer-related TFs.

This highlights the connection between cancer and other diseases. Finally, we identified the

number of TFs associated with each target gene and found that target genes associated with

cancer were regulated by a higher average number of TFs than both non-disease and non-cancer

disease genes. Furthermore, these cancer-related target genes were involved in a higher than

average number of diseases, similar to what we observed for TFs. When comparing the number

of disease associations for TFs versus TGs, we found that TGs were related to a higher number

of diseases on average than TFs.

7.7 Disease and Protein-protein Interaction Networks

We analyzed the human protein-protein interaction network and its relationship to disease

and found that both the number of neighbors and whether or not a protein lies in a ‘disease

neighborhood’ contribute greatly to its identity as a disease- or non-disease-related protein.

Our classifier predicted 98 non-disease-related proteins to be members of the positive class with
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a confidence score ≥ 0.5 (threshold = 0). This indicated that these examples have attribute

values which qualify them as potential disease-related proteins. We looked closer at two of

these proteins and found that neighbors in the PPI network could be used to identify specific

disease associations. These two examples illustrate how the PPI network can be used in a

post-processing step after disease-gene prediction. This method could provide a useful filter for

experimentalists searching for candidate targets for drug repositioning. This method could also

be extended to include other network and data types in order to refine these predictions.

As we have learned from our work, diseases share interactions through molecular networks.

One of the next steps in disease-gene analysis could be to study connections between diseases;

for instance, various types of cancers as they relate to other illnesses such as diabetes (174),

various infections (9), and obesity (100; 161). Though the type or nature of this relationship

may be unknown, we may be able to shed light on the subject using these knowledge mining

methods along with molecular data such as protein metabolic pathways, regulation networks,

and others. We believe that as more complete data sets become available, a higher level of

knowledge will be attainable by utilizing this method.

7.8 Disease Relationships in Co-occurrence Matrices

We developed a co-occurrence matrix based on gene uniqueness in order to examine the

relationships between diseases from the OMIM and DORIF databases. We found examples of

known disease relationships as well as connections with no available evidence. This matrix can

be used as a jumping off point for identifying disease-disease associations, providing a map of

the connections between diseases and directing focus toward those associations which may not
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otherwise be obvious. It could also provide a first step in drug repositioning research, directing

focus to new potential protein or DNA targets.

7.9 The Future: Gaining Knowledge from Data

The key to understanding the disease network is to enrich the value of existing edges and to

infer new ones based on this enriched value. There is a wealth of information concerning disease,

metabolism, gene ontology, drug targets, miRNA, protein-protein interaction, gene regulation,

and gene expression. Unfortunately, there are large areas of missing and overlapping data as

well as many false positives and even more false negatives. This makes it difficult to assemble

the puzzle and gain knowledge. One can use algorithms such as ADTree which can filter

through noisy data to find the most informative and conserved characteristics of a disease-

disease relationship. Cancer A and non-cancer disease B, though they may not share a causal

gene or genes according to OMIM, may be related at some distance through common metabolic

pathways, co-regulating transcription factors, or negative regulation by one or more miRNAs.

Any of these could be a false positive association. When analyzed together along with other

available data, however, a more complete biological picture comes into focus and the noise

problem can be mitigated. ADTree allows us to easily visualize which biological processes

contribute most to the disease relationship, eliminating the ‘black box’ effect of many machine

learning algorithms.

In conclusion, we believe complex diseases such as cancer are both unique and related to

other diseases. By studying all diseases as a system in a network context we believe we can

generate many pertinent results. For instance, drugs used for the treatment of related non-
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cancer diseases may help to treat the side effects of cancer drugs. Another example lies in the

complex relationship between bacteria and cancer: bacteria can be both beneficial and cancer-

causing. Disease network research could provide new ideas about cancer and its relationship to

infection. Additionally, this research could help clarify the mechanisms and tissue-specificity

of non-cancer diseases and how they may prime the cellular environment for metastasis. We

expect that in the near future, due to the availability of an enormous amount of genotypic and

phenotypic data related to disease, there will be a novel view point for cancer research emerging

from disease network study.



130

CITED LITERATURE

1. Moulinath Acharya, Lijia Huang, Valerie C. Fleisch, W. Ted Allison, and Michael A.
Walter. A complex regulatory network of transcription factors critical for ocular
development and disease. Human Molecular Genetics, 20(8):1610–1624, April 2011.

2. S. Ahmad and A. Sarai. Moment-based prediction of DNA-binding proteins. Journal of
Molecular Biology, 341(1):65–71, 2004.

3. Shandar Ahmad, M. Michael Gromiha, and Akinori Sarai. Analysis and prediction of
DNA-binding proteins and their binding residues based on composition, sequence
and structural information. Bioinformatics, 20(4):477–486, 2004.

4. Shandar Ahmad and Akinori Sarai. PSSM-based prediction of DNA binding sites in
proteins. BMC Bioinformatics, 6:33, 2005.

5. Reka Albert, Hawoong Jeong, and Albert-Laszlo Barabasi. Error and attack tolerance of
complex networks. Nature, 406(6794):378–382, July 2000.

6. Uri Alon. An Introduction to Systems Biology: Design Principles of Biological Circuits.
Chapman and Hall/CRC, 1st edition, July 2007.

7. S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. Basic local alignment
search tool. Journal of Molecular Biology, 215(3):403–410, October 1990.
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multiple instance problem with axis-parallel rectangles. Artificial Intelligence,
89(1-2):31–71, 1997.



135

54. John C. Doyle, David L. Alderson, Lun Li, Steven Low, Matthew Roughan, Stanislav
Shalunov, Reiko Tanaka, and Walter Willinger. The “robust yet fragile” nature of
the internet. Proc. Natl. Acad. Sci. USA, 102(41):14497–14502, October 2005.

55. P. Du, G. Feng, J. Flatow, J. Song, M. Holko, W. A. Kibbe, and S. M. Lin. From disease
ontology to disease-ontology lite: statistical methods to adapt a general-purpose
ontology for the test of gene-ontology associations. Bioinformatics, 25(12):i63–8,
2009.

56. R. Dunbar. Coevolution of neocortex size, group size and language in humans. Behavioral
and Brain Sciences, 16(4):681–735, 1993.

57. A. Dutt and R. Beroukhim. Single nucleotide polymorphism array analysis of cancer.
Curr. Opin. Oncol., 19(1):43–9, 2007.

58. Peter J. Ellis, Robert A. Furlong, Sarah J. Conner, Jackson Kirkman-Brown, Masoud
Afnan, Christopher Barratt, Darren K. Griffin, and Nabeel A. Affara. Coordinated
transcriptional regulation patterns associated with infertility phenotypes in men.
Journal of Biomedical Informatics, 44(8):498–508, August 2007.

59. Annette M. Evangelisti and Andreas Wagner. Molecular evolution in the yeast transcrip-
tional regulation network. Journal of Experimental Zoology. Part B, Molecular
and Developmental Evolution, 302(4):392–411, July 2004.

60. Wei Fan, Wenke Lee, Salvatore J. Stolfo, and Matthew Miller. A multiple model cost-
sensitive approach for intrusion detection. In Machine Learning: ECML 2000:
Proceedings of the 11th European Conference on Machine Learning, Barcelona,
Catalonia, Spain, volume 1810, pages 3–14. Springer Berlin/Heidelberg, May/June
2000.

61. F. Fang, S. Fan, X. Zhang, and M.Q. Zhang. Predicting methylation status of CpG islands
in the human brain. Bioinformatics, 22(18):2204–2209, September 2006.

62. I. Feldman, A. Rzhetsky, and D. Vitkup. Network properties of genes harboring inherited
disease mutations. Proc. Natl. Acad. Sci. USA, 105(11):4323–8, 2008.

63. Alex F. Feltus, Eva K. Lee, Joseph F. Costello, Christoph Plass, and Paula M. Vertino.
DNA motifs associated with aberrant CpG island methylation. Genomics,
87(5):572–579, May 2006.



136

64. F. A. Feltus, E. K. Lee, J. F. Costello, C. Plass, and P. M. Vertino. Predicting aber-
rant CpG island methylation. Proc. Natl. Acad. Sci. USA, 100(21):12253–12258,
October 2003.

65. Yoav Freund and Llew Mason. The alternating decision tree learning algorithm, 1999.

66. Yoav Freund and Robert E. Schapire. Experiments with a new boosting algorithm. In
Proceedings of the 13th Annual International Conference on Machine Learning,
pages 148–156, Bari, Italy, 1996.

67. Kosuke Fujishima, Mizuki Komasa, Sayaka Kitamura, Haruo Suzuki, Masaru Tomita,
and Akio Kanai. Proteome-wide prediction of novel DNA/RNA-binding proteins
using amino acid composition and periodicity in the hyperthermophilic archaeon
Pyrococcus furiosus. DNA Research, 14(3):91–102, 2007.

68. P. Andrew Futreal, Lachlan Coin, Mhairi Marshall, Thomas Down, Timothy Hubbard,
Richard Wooster, Nazneen Rahman, and Michael R. Stratton. A census of human
cancer genes. Nature Reviews Cancer, 4(3):177–183, March 2004.

69. A. Gagnon and B. Ye. Discovery and application of protein biomarkers for ovarian cancer.
Curr. Opin. Obstet. Gynecol., 20(1):9–13, 2008.

70. M. Gardiner-Garden and M. Frommer. CpG islands in vertebrate genomes. Journal of
Molecular Biology, 196(2):261–282, July 1987.

71. B. Garssen. Psychological factors and cancer development: evidence after 30 years of
research. Clin. Psychol. Rev., 24(3):315–38, 2004.

72. M. S. Gelfand. Evolution of transcriptional regulatory networks in microbial genomes.
Curr. Opin. Struct. Biol., 16(3):420–429, June 2006.

73. Gh Gluhovschi, A. Gluhovschi, Ligia Petrica, D. Anastasiu, Cristina Gluhovschi, and Sil-
via Velciov. Pregnancy-induced hypertension–a particular pathogenic model: Sim-
ilarities with other forms of arterial hypertension. Romanian Journal of Internal
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Löwe. Double-stranded DNA translocation: structure and mechanism of hexameric
FtsK. Molecular Cell, 23(4):457–469, August 2006. PDB ID: 2IUS.

123. MATLAB. version 7.14.0 (R2012a). The MathWorks Inc., Natick, Massachusetts, 2012.

124. M. J. McCauley, L. Shokri, J. Sefcikova, C. Venclovas, P. J. Beuning, and M. C. Williams.
Distinct double- and single-stranded DNA binding of E. coli replicative DNA poly-
merase III alpha subunit. ACS Chemical Biology, 3(9):577–587, September 2008.

125. Christopher J. Miller, Christopher Genovese, Robert C. Nichol, Larry Wasserman, An-
drew Connolly, Daniel Reichart, Andrew Hopkins, Jeff Schneider, and Andrew
Moore. Controlling the false discovery rate in astrophysical data analysis. The
Astronomical Journal, 122(6):3492–3505, July 2001.

126. James Moody. The structure of a social science collaboration network: Disciplinary cohe-
sion from 1963 to 1999. American Sociological Review, 69:213–238, April 2004.



142

127. T. Nepusz, H. Yu, and A. Paccanaro. Detecting overlapping protein complexes in protein-
protein interaction networks. In preparation.

128. M. E. J. Newman. Networks: An Introduction. Oxford University Press, Inc., New York,
NY, USA, 2010.

129. Yanay Ofran, Venkatesh Mysore, and Burkhard Rost. Prediction of DNA-binding residues
from sequence. Bioinformatics, 23(13):i347–i353, Jul 2007.

130. David L. Olson. Data set balancing. In Data Mining and Knowledge Management, volume
3327, pages 71–80. Springer Berlin/Heidelberg, 2005.

131. C. Ortutay and M. Vihinen. Identification of candidate disease genes by integrating gene
ontologies and protein-interaction networks: case study of primary immunodefi-
ciencies. Nucleic Acids Research, 37(2):622–628, November 2008.

132. J. D. Osborne, S. Lin, W. A. Kibbe, L. Zhu, M. I. Danila, and R. L. Chisholm. GeneRIF
is a more comprehensive, current and computationally tractable source of gene-
disease relationships than OMIM. Associated with the DOLite project, 2007.

133. John Osborne, Jared Flatow, Michelle Holko, Simon Lin, Warren Kibbe, Lihua Zhu, Maria
Danila, Gang Feng, and Rex Chisholm. Annotating the human genome with disease
ontology. BMC Genomics, 10(Suppl 1):S6+, 2009.
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