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SUMMARY

Let M be a compact C∞ Riemannian manifold. Let Xt be a Brownian motion on the

manifold for t ≥ 0. We consider the volume element on the manifold and denote it by m. Let

m0 = m(M), the entire volume of the manifold. By classic ergodic theory,

lim
t→+∞

1

t

∫ t

0
f(Xs)ds =

1

m0

∫
M
f(x)m(dx) almost surely.

Hence,
∫ t

0 f(Xs) ds goes to infinity with a rate of t and scalar 1
m0

∫
M f(x)m(dx). The second

order leading term is given by

∫ t

0
f(Xs)ds−

t

m0

∫
M
f(x)m(dx),

and the rate that this term converges to infinity is given by the law of iterated logarithms.

Brosamler (1983), shows that

lim sup
t→+∞

∫ t
0 f(Xs)ds− t

m0

∫
M f(x)m(dx)

√
2t log log t

is equal to
√

2
m0

(f,Gf)L2 for all continuous bounded functions f with probability one. G is a

bounded linear functional such that G is, roughly speaking, the negative of the inverse Laplace

Operator, and, as such, is also self-adjoint.
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SUMMARY (Continued)

We consider the family of measures, µωt (·) (ω is usually suppressed in the notation) obtained

by

∫
M
f(x)µt(dx) = µt(f) =

∫ t
0 f(Xs)ds− t

m0

∫
M f(x)m(dx)

√
2t log log t

.

We study all of the accumulation points of µt in the mild sense; we say a sequence of measures

µt converges mildly to another measure µ if and only if
∫
M f(x)µt(dx)→

∫
M f(x)µ(dx) for all

smooth functions f . Define, as in Brosamler (1983), a bounded, linear, self-adjoint operator

G−1
1
2

in L2; G−1
1
2

is intuitively the square root of the negative of the Laplace Operator. We

show that for any subsequence of times t̃n, if µt̃n converges mildly to µ, then µ is absolutely

continuous with respect to the volume measure on the manifold and µ(M) = 0. Moreover,

denote by q(x) the density of µ with respect to m, i.e. µ(dx) = q(x)m(dx); µ will have the

characterization

∥∥∥∥G−1
1
2

q

∥∥∥∥
L2

≤
√

2

m0
.

We also show that if µ is a measure with density q, the characterization above, and µ(M) = 0,

then almost surely there exists a sequence of times tn such that µtn converges mildly to µ as n

goes to infinity.
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CHAPTER 1

INTRODUCTION

Baxter and Brosamler (2) and Brosamler (5) provide inspiration in finding a uniform law of

iterated logarithms. In these papers, the authors are able to prove the law of iterated logarithms

for Brownian Motion on a compact manifold for a fixed function f and for all f (simultaneously)

that are smooth functions. We show the law of iterated logarithms, as stated in Brosamler (5),

has accumulating points in a mild sense, and that these accumulating points have a specific

characterization.

1.1 History

The initial statement of the law of iterated logarithms was first described by A.Y. Khin-

chine in 1924 (11); his work utilized Bernoulli trials. He was further able to extend this to

“independent Poisson trials”. Kolmogorov (11) extended this in 1929 to sums of independent

random variables in the following way.

Theorem 1.1. (Kolmogorov, as stated in (11))

Let ξ1, ξ2, . . . , ξn be independent random variables with finite variances. Take D to be a constant

such that the series
∑∞

k=1
Dξk
k2

converges. If sn =
∑n

k=1 ξk, Bn = Dsn and, as n→ +∞

1. Bn → +∞,

2. |ξn| ≤ mn = o
(√

Bn
log logBk

)
,

1
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then

P

{
lim sup
n→+∞

|sn −Msn|
2Bn log logBn

= 1

}
= 1.

Note: In the equation above, Gnedenko originally had in the denominator 2Bn log logBk; we

have corrected the version above. In addition, D and ξ were not explicitly stated in the section

corresponding to the above items and final result in Gnedenko, and we have inferred their

meaning through earlier notation in Gnedenko’s paper.

We can visually display this law, as in the example below.

Example 1.1. Suppose Xi
iid∼ Ber(0.5) random variables, for i = 1, . . . , 100000. We take the law

of iterated logarithms to be

lim sup
n→+∞

Sn√
2n log log n

= 1,

for Sn = X1 + . . . + Xn. If we remove lim sup, and proceed to manipulate each side of the

equation, we can see that

Sn =
√

2n log log n⇒ Sn
n

=

√
2 log log n

n
.

Using R, we simulate this (the code appears in Appendix C) and compare Sn/n to
√

2 log logn
n

and 0.5 ×
√

1
n (the standard deviation of Sn/n using the central limit theorem). During the

simulation, to be able to see both positive and negative values, we took the values for each
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Bernoulli random variable to be either 1 or −1 instead of 1 or 0. Using Figure 1, we can see

that Sn/n is always in between ±
√

2 log logn
n .

Figure 1: Graph showing Sn/n (black) along with its standard deviation (blue) and the bounds

given by the LIL (red). The x−axis is on a log scale, and the y−axis is in ones.
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Following the initial statement of the law of iterated logarithms by Khinchine and its ex-

tended version by Kolmogorov, there have been many papers regarding the law of iterated

logarithms and what occurs in different scenarios. Some selected works are summarized.

Hartman and Wintner in 1941 discuss what occurs when the second condition in Kol-

mogorov’s Theorem is violated. In particular, they show that the law of iterated logarithms is

also true for “unbounded but equal, or nearly equal, distributions is nevertheless correct” (13).

Later that year, Hartman also shows that independent functions xn(t) defined on 0 ≤ t ≤ 1

that are normally distributed with mean 0 and unknown variance will also follow the law of

iterated logarithms (12).

In 1946, Feller was able to “characterize the upper and lower classes for all sequences

satisfying ∫ ∞
−∞

xdV (x) = 0,

∫ ∞
−∞

x2dV (x) = 1, ”

where {Xn} is a “sequence of mutually independent random variables having the same distri-

bution function V (x) = P (Xn ≤ x)” (10).

Cassels showed in 1951 that there is an upper and lower bound of the law of iterated

logarithms as n goes to infinity. In particular, this true almost always for fixed α and β

(described in more detail below). However, there is “zero probability that”

lim sup
N

RN (α, β)

N
1
2 log log

1
2 N

= ω (β − α)

lim inf
N

RN (α, β)

N
1
2 log log

1
2 N

= −ω (β − α) ,
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for all α, β “is false for any α, β [and] ω(y) = {2y (1− y)}
1
2 (< 1)” (7). In this scenario, “[l]et

x1, x2, . . . , xn, . . . be a set of independent variables each with a uniform probability distribution

in 0 ≤ x ≤ 1. If 0 ≤ α < β ≤ 1, we denote by FN (α, β) the number of x1, . . . , xN which satisfy

α < x ≤ β, and put RN (α, β) = FN (α, β)−N (β − α)” (7). According to Stackelberg, this was

the first paper to “establish a uniform iterated logarithm law, namely for a family of sequences

of independent Bernoulli variables” (29).

A relationship between the law of the iterated logarithm and the central limit theorem

(CLT) were discussed by Petrov (1966). In particular, “a sequence of independent random

variables {Xn}, n = 1, 2, . . . , defined on a probability space (Ω,F ,P), and without, in general,

a common distribution, with expectation equal to zero” may “satisfy CLT but fail to obey LIL”

(26). Petrov proceeds to show that “if a somewhat stronger condition than the applicability of

the CLT holds, then the sequence also obeys the LIL” (26).

The above work occurs for generic sequences of random variables. Strassen’s 1964 paper on

“An Invariance Principle for the Law of Iterated Logarithm” was applied the law of iterated

logarithms to Brownian Motion on a “Banach space of continuous maps from 〈0, 1〉 to Rk

endowed with the supremum norm ‖ ‖, using the euclidean norm in Rk” (30). After Strassen,

there were numerous papers that continued to extend results for the Law of Iterated Logarithms,

not only for Brownian Motion, but on manifolds as well.

Kuelbs and Lepage (1973) extend Strassen’s work to work for a “sequence of independent

Gaussian random variables with values in a Banach space” (18). Further, Kuelbs (1975) works

on a real separable Banach space B with the usual norm and rewrites the traditional form of the
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law of iterated logarithms to apply to “independent identically distributed B-valued random

variables” such that they have a mean of zero, and the expected value of the norm squared is

finite (17).

There has been a significant amount of work dealing with the law of iterated logarithms

since this time, but now we focus on some of the papers that directly led to our work.

Philipp’s 1969 paper focused on “sequences of random variables satisfying two kinds of

mixing conditions” and that the law of iterated logarithms may be applied in this scenario

(27). In 1971, Philipp further extended his results by relating the central limit theorem and

the law of iterated logarithms with several mixing conditions. In addition, he extends the law

of iterated logarithms so that “the ‘uniform’ law of the iterated logarithm holds if each random

variable xn(α) can be approximated rather closely by sums of random variables...provided

that the subclasses At do not contain too many members”, where At is a subset of A =

{〈xn(α), n = 1, 2, . . .〉}, and A is a “family of sequences of random variables of xn(α)” (28).

In 1976, Baxter and Brosamler show how energy relates to the law of iterated logarithms. In

particular, they use a Green operator on a compact manifold to include the energy component

(2). They use Philipp’s (27) log-log law to show that

Theorem 1.2. (Baxter and Brosamler (2))

For all x ∈M ,

Px

{
lim sup
t→+∞

∫ t
0 f(Xs)ds

(2t log log t)
1
2

= σf

}
= 1.
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{Xs, s ≥ 0} is a diffusion process on a smooth compact manifold M . f is a bounded Borel

function on M , f 6≡ constant λ-a.e. and σf = [2〈f, f〉]
1
2 such that 0 < σf < ∞, and 〈f, f〉 =

(fG, f)L2, where G is the Green operator.

They also provide several examples in the context of a Brownian Motion on a circle that gives

the same constant for σf that is stated in Stackelberg (29). Brosamler (5) uses the result in

Baxter and Brosamler (2) and furthers it so it works for all smooth functions f on the manifold.

To arrive at his result, he incorporates the Green function developed in Baxter and Brosamler

(2) as well as through functional analysis using the Laplace Operator. Our work follows from

this particular result.



CHAPTER 2

PRELIMINARY RESULTS

2.1 Riemannian Manifolds

Definition 2.1. (O’Neill Definition 8.4 (25))

An n-dimensional manifold M is a set furnished with a collection P of abstract patches (one-

to-one) functions x : D →M , D an open set in Rn satisfying

1. The covering property: The images of the patches in the collection P cover M .

2. The smooth overlap property: For any patches x,y in P, the composite functions y−1x

and x−1y are Euclidean differentiable–and defined on open sets of Rn.

3. The Hausdorff property: For any points p 6= q in M there are disjoint patches x and y

with p in x(D) and q in y(E).

Remark 2.1. Before we continue extending our definition of manifolds to a Riemannian manifold,

we require additional background on manifolds.

Definition 2.2. (Lee (19))

We write local coordinates on any open subset U ⊂M as
(
x1, . . . , xn

)
,
(
xi
)
, or x, depending on

context. ...[C]oordinates constitute a map from U to Rn, it is more common to use a coordinate

chart to identify U with its image in Rn, and to identify a point in U with its coordinate

representation
(
xi
)

in Rn.

8
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For any p ∈M , the tangent space TpM can be characterized either as the set of derivations

of the algebra of germs at p of C∞ functions [infinitely differentiable] on M (i.e., tangent

vectors are “directional derivatives”), or as the set of equivalence classes of curves through

p under a suitable equivalence relation (i.e., tangent vectors are “velocities”). Regardless of

which characterization is taken as the definition, local coordinates (xi) give a basis for TpM

consisting of the partial derivative operators ∂/∂xi. When there can be no confusion about

which coordinates are meant, we usually abbreviate ∂/∂xi by the notation ∂i.

Remark 2.2. In our case, we will be considering compact C∞ Riemannian manifolds. The term

C∞ was defined in Definition 2.2. We also require the manifold to be compact:

Definition 2.3. (Manetti Definition 4.35 (20))

A topological space is said to be compact if any open cover admits a finite subcover.

Remark 2.3. A Riemannian manifold has an additional condition in that it requires an inner

product.

Definition 2.4. (Lee (19))

A Riemannian metric on a smooth manifold M is a 2-tensor field g ∈ T 2(M) that is symmetric

(i.e., g(X,Y ) = g(Y,X)) and positive definite (i.e., g(X,X) > 0 if X 6= 0). A Riemannian

metric thus determines an inner product on each tangent space TpM , which is typically written

〈X,Y 〉 : = g(X,Y ) for X,Y ∈ TpM . A manifold together with a given Riemannian metric is

called a Riemannian manifold.
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Remark 2.4. We want to be able to integrate over the Riemannian manifold; we will integrate

with respect to the volume measure on the manifold.

Lemma 2.1. (Lee Lemma 3.2 (19))

On any oriented Riemannian n-manifold (M, g), there is a unique n−form dV satisfying the

property that dV (E1, . . . , En) = 1 whenever (E1, . . . , En) is an oriented orthonormal basis for

some tangent space TpM .

Remark 2.5. (Lee (19))

This n−form dV (sometimes denoted dVg for clarity) is called the (Riemannian) volume element.

2.2 Linear Algebra and a Semigroup on a Finite Space

2.2.1 Case 1: Non-Zero Eigenvalues

Let

A =



−λ1 0 0 0

0 −λ2 0 0

...
...

. . . 0

0 0 0 −λn


,

where 0 > −λ1 ≥ −λ2 ≥ −λ3 ≥ · · · ≥ −λn are the eigenvalues of A such that there are

no eigenvalues that are identically zero. Take these eigenvectors to be those of the standard
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basis for Rn, and denote them by ei, i = 1, . . . , n. Let x and y be vectors. Then 〈x,y〉 =

x1y1 + x2y2 + · · ·+ xnyn. By definition, Av = λv, i.e.

Ae1 = −λ1e1

Ae2 = −λ2e2

...

Aen = −λnen.

Recall that we can define ex in terms of a sum in the following manner: ex =
∑∞

n=0
xn

n! . Let

eAt : Rn → Rn be an operator defined by eAt =
∑∞

m=0
(At)m

m! , where t is a scalar. Clearly, eAt is

well defined. In particular,

eAt =

∞∑
m=0

(At)m

m!

=

∞∑
m=0

Amtm

m!

=
∞∑
m=0



(−λ1)m 0 0 0

0 (−λ2)m 0 0

...
...

. . .
...

0 0 0 (−λn)m


tm

m!
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=



∑∞
m=0

(−λ1t)m
m! 0 0 0

0
∑∞

m=0
(−λ2t)m

m! 0 0

...
...

. . .
...

0 0 0
∑∞

m=0
(−λnt)m

m!



=



e−λ1t 0 0 0

0 e−λ2t 0 0

...
...

. . .
...

0 0 0 e−λnt


.

Suppose we write v as a linear combination of unit vectors (in this case, these are the same

as our basis): v =
∑n

i=1 aiei. Then we can also rewrite Av as:

Av =



−λ1 0 0 0

0 −λ2 0 0

...
...

. . .
...

0 0 0 −λn


n∑
i=1

aiei

=



−λ1 0 0 0

0 −λ2 0 0

...
...

. . .
...

0 0 0 −λn





a1 0 0 0

0 a2 0 0

...
...

. . .
...

0 0 0 an





13

=



−λ1a1 0 0 0

0 −λ2a2 0 0

...
...

. . .
...

0 0 0 −λnan


= −λ1a1e1 − λ2a2e2 − · · · − λnanen

=

n∑
i=1

−λiaiei.

Therefore, if we look at eAtv, then

eAtv =



e−λ1t 0 0 0

0 e−λ2t 0 0

...
...

. . .
...

0 0 0 e−λnt


n∑
i=1

aiei

=
n∑
i=1

e−λitaiei.

It is interesting to note that eAtv is a semigroup of linear transformations (hereafter known as

a semigroup). Let s be a scalar. We show that eAt is operation preserving:

eAs
(
eAtv

)
= eAs

(
n∑
i=1

e−λitaiei

)
; by above work

= eAs ·
n∑
i=1

e−λitaiei; by the definition of our mapping
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=
n∑
i=1

e−λise−λitaiei; write as a linear combination of diagonal matrices

=
n∑
i=1

e−λi(s+t)aiei

= eA(s+t) ·
n∑
i=1

aiei

= eA(s+t)v.

Note that this is usually written as eAs · eAt = eA(s+t).

Now, we calculate derivatives:

d

dt
eAtv =

d

dt

n∑
i=1

e−λitaiei

=
n∑
i=1

d

dt
e−λitaiei

=

n∑
i=1

−λie−λitaiei

= A · eAtv

= A
(
eAtv

)
,

where the last line indicates that A acts on eAtv. Note that if derivatives were taken directly,

on the left hand side, the same result would occur. Now, take derivatives when t = 0.

d

dt
eAtv

∣∣∣∣
t=0

= AeAtv
∣∣
t=0

= Ae0v = Av.
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Hence, when we take the derivative of eAtv with respect to t and evaluate it at t = 0, we

will recover the original matrix A. Therefore, eAt is generated by A. To recover A after a

transformation given by eAt, we take derivatives.

Now, since A is a diagonal matrix such that the diagonal values are all non-zero, A has an

inverse. In particular, this inverse is

A−1 =



−λ−1
1 0 0 0

0 −λ−1
2 0 0

...
...

. . .
...

0 0 0 −λ−1
n


.

Now, suppose we do not know A, but we know eAt. Let Pt be a semigroup of linear

transformations. Then this family has the properties that, for fixed t:

1. t, s ≥ 0.

2. P0 = Identity.

3. PtPs = Pt+s.

4. Ptv→ P0v as t→ 0 and P0v = v.

Assume Ptv = eAtv. Let Gv =
∫∞

0 Ptvdt. We claim that G = −A−1.
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Proof.

Gv =

∫ ∞
0

Ptvdt

=

∫ ∞
0

eAtvdt

=

∫ ∞
0

n∑
i=1

e−λitaieidt

=

n∑
i=1

∫ ∞
0

e−λitaieidt; by Fubini’s Theorem

=
n∑
i=1

aiei

∫ ∞
0

e−λitdt; which is integrable since λi > 0

=
n∑
i=1

aiei

[
e−λit

−λi

∣∣∣∣∞
0

]

=

n∑
i=1

aiei

[
− 1

λi
(0) +

1

λi
(1)

]

=
n∑
i=1

1

λi
aiei

= −
n∑
i=1

− 1

λi
aiei

= −A−1v.

Therefore, G = −A−1.

2.2.2 Case 2: With One Zero Eigenvalue

Take λ1 = 0 and use the same setup as above. Originally we defined v = a1e1 + · · ·+ anen.

The major difference in this case is that A does not have an inverse because one of its eigenvalues
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is zero. We want to restrict ourselves to a smaller space, say W ⊂ Rn, such that A will have

an inverse.

To be able to find an inverse of A on W , we must remove the a1e1 term. To do this, we

can consider the projection of v onto e1. When we project onto this eigenvector, there is no

component on the e1 axis since −λ1 = 0. Hence, for any v, we only consider the projection P

to the other dimensions, i.e., look at Pv on the space spanned by {e2, e3, . . . , en}.

Suppose W is the space spanned by {e2, e3, . . . , en}. Then on W , Av = A(Pv).

Proof.

Av = A (a1e1 + a2e2 + · · ·+ anen)

= A (a1e1 + Pv)

= A (Pv) ,

since a1e1 and Pv are orthogonal to each other since the ei’s form an orthonormal basis.

On W , we will have

v = a2e2 + · · ·+ anen,
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and

A =



−λ2 0 0 0

0 −λ3 0 0

...
...

. . .
...

0 0 0 −λn


.

We can conclude from this that A will have an inverse on W .

The question that arises from this is how do we restrict ourselves to W and why is this a

concern? This is an issue because v may not necessarily be in W . However, we do know that

Pv ∈ W and W 3 Pv = (v − P1v), where P1v is the projection onto e1. In other words, all

we need to do is to take v and subtract out the component(s) that are associated with the zero

eigenvalues. Now, we can define

Gv =

∫ ∞
0

eAt (v − P1v) dt,

and with this construction,

G = −A−1

on W .
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2.3 Functional Analysis and a Semigroup on Infinite Dimensional Space

Assume we are working on a separable Hilbert space (an infinite space with a countable

basis). Let φi, i = 1, 2, . . ., be an orthonormal basis and A be a self-adjoint operator with φi

its eigenvectors and λi its corresponding eigenvalues. We also assume 0 > −λ1 ≥ −λ2 ≥ · · · .

Similar to the finite dimensional case, we can define eAt for each fixed t to be

eAt =
∞∑
n=0

(At)n

n!
=
∞∑
n=0

Antn

n!
.

In addition, we still have the property that

(
eAt
)
◦
(
eAsφ

)
= eA(t+s)φ,

where we interpret the right hand side as eA(t+s) is acting on φ.

Moreover, when taking the derivative of eAtφ at t = 0, we have that

d

dt
eAtφ

∣∣∣∣
t=0

= Aφ,

for φ ∈ Dom(A). We must have the domain restriction because A may not necessarily act on

every φ. We want

Aφ =

∞∑
i=1

ai (−λi)φi
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to converge. Note that in finite dimensions, we did not need this restriction because we already

knew that this would converge. In order to guarantee convergence, we require that the Hilbert

norm of
∑∞

i=1 ai (−λi)φi be finite, i.e.

∞∑
i=1

a2
i (−λi)2 <∞.

In the case where λ1 > 0, we do not need a subspace. We can define

Gφ =

∫ ∞
0

eAtφdt

and hence G = −A−1. In the case where λ1 = 0, we need to project φ down to a subspace, as

in Section 2.2.2. Let W be this subspace. Then on W , define

Gφ =

∫ ∞
0

eAt (φ− P1φ) dt,

and thus G = −A−1 on W .

2.4 The Laplace-Beltrami Operator on a Manifold

On a compact Riemannian manifold M , let ∆ be the Laplace-Beltrami operator, and m be

the volume measure on the manifold. Recall that the volume of the entire manifold is given by

m0. Note that ∆ will act in the same way A did in the above work due to the spectral theorem

for the Laplace-Beltrami operator.
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Theorem 2.2. (Buser Theorem 7.2.6 (6))

Let M be a compact connected Riemannian manifold without boundary. The eigenvalue problem

∆ϕ = λϕ

has a complete orthonormal system of C∞−eigenfunctions ϕ0, ϕ1, . . . in L2(M) with correspond-

ing eigenvalues λ0, λ1, . . .. These have the following properties.

(i) 0 = λ0 < λ1 ≤ λ2 ≤ · · · ≤ λn →∞ as n→∞.

(ii) pM (x, y, t) =
∑∞

n=0 e
−λntϕn(x)ϕn(y), where the series converges uniformly on M ×M for

each t > 0.

For additional references on the spectral theorem for the Laplace-Beltrami operator, see Dodziuk

Section 2 (9) and Milgram and Rosenbloom pages 183-184 (22).

We can formally define the Laplace-Beltrami operator as follows:

Definition 2.5. (Hsu (15))

Let Xi = ∂/∂xi and gij = 〈Xi, Xj〉. The matrix g = {gij} is positive definite at each point.

We take gij to be the inverse of gij . The Laplace-Beltrami operator may be defined in terms of

local coordinates [see Definition 2.2] as

∆f =
1√

det(g)

∂

∂xi

(√
det(g)gij

∂f

∂xj

)
.

∆ is a nondegenerate second order elliptic operator.
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The Hilbert space we are looking for/working with is L2 (M,m). Let f, g ∈ L2(M) be two

functions. Define their inner product as

(f, g)L2 = (f, g) =

∫
M
f(x)g(x)m(dx).

As in Brosamler (1983) (5), under the inner product stated above, there exists 0 > −λ1 >

−λ2 > · · · such that the corresponding eigenvalues for ∆ are 0,−λ1,−λ2, . . . and correspond

with the eigenvectors φ0 = c, φ1, φ2, . . . form an orthonormal basis of L2(M,m) (where c is

a constant function). Moreover, φ0, φ1, φ2, . . . are all smooth functions on M . Hence, every

function in L2(M,m) may be written as

f =

∞∑
i=0

aiφi.

We can also calculate the constant value in the following manner:

1 = ‖φ0‖

=
√

(φ0, φ0)

=

√∫
M
c2m(dx)

=

√
c2

∫
M
m(dx)

=
√
c2m0

= c
√
m0.
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Therefore, c = m
−1/2
0 .

Because we have a zero eigenvalue, we need to project φ down to a subspace, as in Section

2.3. Let W be this subspace. Then on W , we will have that

G = −∆−1.

2.5 Brownian Motion

Definition 2.6. (Hsu (14))

For Brownian motion on Rn, its transition density function is the Gaussian heat kernel

p(t, x, y) =

(
1

2πt

)n/2
e−|x−y|

2/2t,

and its infinitesimal generator is half of the Laplace Operator:

1

2
∆ =

1

2

n∑
i=1

∂2

∂x2
i

.

Remark 2.6. Brownian motion at time t in Rn, denoted by Bt, has the following properties (as

stated in Øksendal (24)):

1. Bt is a Gaussian process.

2. Bt has independent increments, i.e.

Bt1 , Bt2 −Bt1 , . . . , Btk −Btk−1
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are independent for all 0 ≤ t1 < t2 < · · · < tk.

3. Bt(ω) is continuous for almost all ω.

Remark 2.7. (Hsu (14))

It is useful to regard paths of Brownian motion [on Rn] as the characteristic lines of the Laplace

operator ∆. ... The counterpart of the Laplace operator on a Riemannian manifold M is the

Laplace-Beltrami operator ∆M , which will serve as the infinitesimal generator for Browmian

motion on M . For a definition of the Laplace-Beltrami operator, see Definition 2.5.

Remark 2.8. In this work, we will denote the Laplace-Beltrami operator as ∆ instead of ∆M ,

as in the remark above.

Remark 2.9. Intuitively, we can understand Brownian motion on a compact Riemannian man-

ifold as follows. Take a Brownian motion in R2. We take a sphere and roll it along the R2

surface, assuming that there is no slips while the ball is rolling. The path from R2 space is now

imposed on the sphere; this can be considered as Brownian motion on the sphere. For a more

comprehensive description, see McKean (21) page 122.

2.6 Relationship Between Functional Analysis and Probability

In this section, we relate the semigroup generated by the Laplace-Beltrami operator to

probability through expected values. Let Xt be Brownian Motion on our manifold M that

starts at x (denoted by Xx
t ). Let e∆t = Pt, then Pt is a semigroup of linear transformations.

Then the semigroup
(
e∆tf

)
(x) can be written as

(
e∆tf

)
(x) = (Ptf) (x) = Exf (Xt) ,



25

which is the semigroup generated by the Laplacian.

Now, since we have φ0, which is associated with a zero eigenvalue, we want to project down

as before. Let this projection be denoted by P. Similar to the other cases, we use the projection

that removes φ0:

f(x)− (P0f) (x) = f(x)− 1

m0

∫
M
f(x)m(dx). (2.1)

In this way, we can project f to a subspace W , where W = span {φ1, φ2, . . .}. Now, ∆ will have

an inverse in W . So

(Gf)(x) =

∫ ∞
0

e∆t (f(x)− P0f) dt

=

∫ ∞
0

e∆t

(
f(x)− 1

m0

∫
M
f(x)m(dx)

)
dt;

observe that the second term inside the integration is a number

=

∫ ∞
0

Ex

[
f (Xt)−

1

m0

∫
M
f(x)m(dx)

]
dt.

Take y to be a variable in pt(x, y), the transition density function of Xx
t . Then we know

P {Xx
t ∈ A} =

∫
A
pt(x, y)m(dy).

Hence,

Exf (Xt) =

∫
M
f(y)pt(x, y)m(dy).
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Continuing our calculations,

(Gf)(x) =

∫ ∞
0

Ex

[
f (Xt)−

1

m0

∫
M
f(x)m(dx)

]
dt

=

∫ ∞
0

{∫
M

[
f(y)− 1

m0

∫
M
f(x)m(dx)

]
pt(x, y)m(dy)

}
dt

=

∫ ∞
0

{∫
M

[
f(y)− 1

m0

∫
M
f(y)m(dy)

]
pt(x, y)m(dy)

}
dt;

a change in variable in the constant term is performed

=

∫ ∞
0

{∫
M
f(y)pt(x, y)m(dy)− 1

m0

∫
M
pt(x, y)

(∫
M
f(y)m(dy)

)
m(dy)

}
dt

=

∫ ∞
0

{∫
M
f(y)pt(x, y)m(dy)− 1

m0

∫
M
pt(x, y)m(dy)

∫
M
f(y)m(dy)

}
dt

=

∫ ∞
0

{∫
M
f(y)pt(x, y)m(dy)− 1

m0

∫
M
f(y)m(dy)

}
dt; because

∫
M
pt(x, y)m(dy) = 1

=

∫ ∞
0

{∫
M

[
f(y)pt(x, y)− 1

m0
f(y)

]
m(dy)

}
dt

=

∫ ∞
0

{∫
M
f(y)

[
pt(x, y)− 1

m0

]
m(dy)

}
dt

=

∫
M

{∫ ∞
0

f(y)

[
pt(x, y)− 1

m0

]
dt

}
m(dy)

=

∫
M
f(y)

{∫ ∞
0

[
pt(x, y)− 1

m0

]
dt

}
m(dy)

=

∫
M
f(y)g(x, y)m(dy), (2.2)

where we define g(x, y) to be the Green Kernel

g(x, y) =

∫ ∞
0

[
pt(x, y)− 1

m0

]
dt.
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Note that (Equation 2.2) “defines a bounded linear operator G : L2(M) → L2(M) which is

nonnegative and symmetric” (Brosamler (5)).

2.7 Definitions

We require several definitions for our work. Definition 2.7 defines several new spaces. Defi-

nition 2.8 extends (Equation 2.2) and lists several properties of G. Definition 2.9 defines a new

space for a special case of G.

Definition 2.7. (Brosamler (5))

L2
0(M) =

{
f(x) ∈ L2(M);

∫
M
f(x)m(dx) = 0

}
,

C∞0 (M) =

{
f(x) ∈ C∞(M);

∫
M
f(x)m(dx) = 0

}
,

B(M) = {f : M → R measurable and bounded} .

Definition 2.8. (Brosamler (5))

Let p : (0,∞)×M ×M → R be the fundamental solution of
1

2
∆ypt(x, y) =

∂

∂t
pt(x, y) where ∆

is the Laplace operator on M . Let

gα(x, y) = [Γ(α)]−1
∫ ∞

0
tα−1

{
pt(x, y)−m−1

0

}
dt
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for x, y ∈ M and x 6= y, and where pt(x, y) is the transition density function of Xx
t . For real

α > 0, let

(Gαf) (x) =

∫
M
gα(x, y)f(y)m(dy) (2.3)

such that Gα : L2
0 → L2

0. Hence ‖Gαf‖L2 ≤ ‖f‖2L · ‖g2α‖1/2L2 . We list several properties of Gα.

1. Gα = G when α = 1.

2. G = −∆−1. (For details, see Section 2.4.)

3. G is a self-adjoint operator.

4. Gα : L2 → B, where B is as in Definition 2.7, is a bounded linear operator if α > d
4 .

(Brosamler Lemma 2.14 (5))

Remark 2.10. An explanation of how Gα will be used in terms of functional analysis and our

work is given in Section 2.8.

Definition 2.9. (Brosamler Definition 2.12 (5))

Let Hα
0 = Gα

2

(
L2

0

)
for real α > 0. Let it have pointwise addition and pointwise multiplication

by scalars and with the inner product

〈Gα
2
f1, Gα

2
f2〉Hα

0
= 2α (f1, f2)L2 .

Hα
0 has several properties:

1. Hα
0 ⊆ L2

0.
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2. ‖·‖Hα
0

is the norm induced by 〈·, ·〉Hα
0

.

3. C∞0 ⊆ Hα
0 for real α > 0.

4. C∞0 is dense in Hα
0 for α > 0 so that the spaces Hα

0 are completions of C∞0 with the norm

‖·‖Hα
0

.

5. (Equation 2.3) is also a semigroup of bounded linear operators on each Hβ
0 for β > 0.

2.8 The Selection of Functions and the Operator Gα

We cannot guarantee that operators in L2 are invertible because one or more of their eigen-

values may be the zero eigenvalue. If we take L2
0 = L2 ∩W (where W is as defined in Section

2.4), any zero eigenvalue is removed; therefore, there exists an inverse of an operator in L2
0.

Consider the measure

µt(f) =

∫ t
0 f (Xs) ds− t

m0

∫
M f(x)m(dx)

√
2t log log t

,

where f ∈ L2. By Definition 2.7, if f ∈ L2
0, then

∫
M f(x)m(dx) = 0; this is directly related to

(Equation 2.1) from Section 2.6. This means that our measure is

µt(f) =

∫ t
0 f (Xs) ds√
2t log log t

, f ∈ L2
0.

Therefore, we only want to consider functions from W .
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In particular, recall that G = −∆−1. Assume f ∈W . Then

∆f =
∞∑
i=1

1

2
(−λi) aiφi

Gf
(Definition 2.8)

= −∆−1f =
∞∑
i=1

2 · 1

λi
aiφi. (2.4)

However, λ−1
i is not “nice enough”; we want the length of (Equation 2.4) to be as small as

possible. To accomplish this, take

Gαf =

∞∑
i=1

2α · 1

λαi
aiφi.

This changes the multiplicity of λi. In response, the ai’s become even smaller so that the length

of
∑∞

i=1 2α · 1
λαi
aiφi is

∞∑
i=1

22α · 1

λ2α
i

a2
i <∞.

Therefore, for f ∈ L2
0, Gαf is a “better” function because the functions will converge at a faster

rate. Also note that in this configuration,

Gα =
(
−∆−1

)α
.

Using Definition 2.9, the space of this family of functions will be given by Hα
0 , and

Gα
2

=
(
−∆−1

)α
2 . (2.5)



CHAPTER 3

STATEMENT OF THE PROBLEM

Let M be a compact C∞ Riemannian manifold. Let Ω be the sample space. Let B(M) be

the Borel σ-field on M such that B ⊆ M . Let Xt be a Brownian motion on the manifold for

t ≥ 0. We consider the volume element on the manifold and denote it by m. Let m0 = m(M),

the entire volume of the manifold. Let d be the dimension of M .

3.1 Ergodic Theory

Birkhoff (3) and von Neumann (31) “initiated a new field of mathematical-research called

ergodic theory” (Moore (23)).

Remark 3.1. (Baxter and Brosamler (2))

If

At =

∫ t

0
χA (Xs) ds

is the total time up to time t which the path spends in a Borel set A ⊆ M , we know from the

ergodic theorem that for all x ∈M ,

P

{
lim

t→+∞
t−1At = λ(A)

}
= 1,

31
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where λ is the invariant probability measure onM , associated with the diffusion. More generally,

if

At =

∫ t

0
f (Xs) ds,

for f ∈ L∞(dλ), one has for all x ∈M :

P

{
lim

t→+∞
t−1At =

∫
M
f(x)dλ(x)

}
= 1, (3.1)

which may be considered as a law of large numbers for the family of random variables

{f (Xs) , s = 0} .

Remark 3.2. The above remark from Baxter and Brosamler was also presented in Brosamler

(5) as Equation 1.2 with a modification in the integral over the manifold, as seen in the next

theorem.

Theorem 3.1. (Brosamler Equation 1.2 (5))

For all f ∈ L1(M), all x ∈M

P

{
ω; lim

t→+∞

1

t

∫ t

0
f (Xs) ds = m−1

0

∫
M
fdm

}
= 1, (3.2)

where m0 = m(M).

Remark 3.3. The reason for the difference between (Equation 3.1) and (Equation 3.2) is because

“ m
m(M) is the invariant probability measure for Brownian motion on M” (5). Brosamler (5)

mentions that one consequence of Theorem 3.1 is the following.
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Theorem 3.2. (Brosamler Equation 1.3 (5))

For all x ∈M ,

P

{
ω; lim

t→+∞

1

t

∫ 1

0
f (Xs) ds = m−1

0

∫
M
fdm, all f ∈ C(M)

}
= 1.

Remark 3.4. In the theorem above,
∫ t

0 f(Xs)ds goes to infinity with a rate of t and scalar

1
m0

∫
M f(x)m(dx). This is the result from classic ergodic theory.

3.2 Log-Log Results from Baxter and Brosamler (1976) and Brosamler (1983)

Using Definitions 2.7, 2.8, and 2.9, Baxter and Brosamler (2) provide a version of a log2-law

for Brownian motion on compact manifolds.

Theorem 3.3. (Baxter and Brosamler (2), as stated in Brosamler (5))

For bounded measurable f : M → R:

P

{
lim sup
t→+∞

∫ t
0 f(Xs)ds− t

m0

∫
M f(x)m(dx)

√
2t log log t

=

√
2

m0
(f,Gf)

}
= 1, ∀x ∈M. (3.3)

Here

(Gf)(x) =

∫
M
g(x, y)f(y)m(dy),

where the kernel g is unique and

∫
M
g(x, y)m(dy) = 0, x ∈M.
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Note that the derivation of (Gf)(x) in the above theorem may be found in Section 2.6. Brosam-

ler (5) extends this to all f ∈ C∞(M):

Theorem 3.4. (Brosamler Theorem 1.7 (5))

For any compact C∞ Riemannian manifold (M, g) and associated Brownian motion X we have

for all x ∈M

P

{
lim sup
t→+∞

∫ t
0 f(Xs)ds− t

m0

∫
M f(x)m(dx)

√
2t log log t

=

√
2

m0
(f,Gf), ∀f ∈ C∞

}
= 1, (3.4)

where m0 = m(M).

(Equation 3.4) is shown immediately from the following theorem:

Theorem 3.5. (Brosamler Theorem 3.16 (5))

For any compact C∞ Riemannian manifold (M, g) of dimension d = 1 and associated Brownian

motion X, we have

P

{
ω; cluster set

t→+∞

∫ t
0 f(Xs(ω))ds
√

2t log log t
=

[
−
√

2

m0
(f,Gf)L2 ,

√
2

m0
(f,Gf)L2

]
for all f ∈ Hα

0

}
= 1,

x ∈M , if α > max
(
d− 3

2 ,
d
2

)
.

3.3 Goals

View the left hand side of (Equation 3.4) as a collection of random measures. We make a

new definition of convergence similar to weak convergence, but works for all smooth functions.
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Definition 3.1. The signed measure µt converges mildly to another signed measure µ, written

as µt
mildly−−−−→ µ, if and only if

∫
fdµt →

∫
fdµ, ∀f ∈ C∞(M). This is a type of convergence

under the weak topology of signed measures.

Remark 3.5. Intuitively, weak convergence implies mild convergence. However, the reverse is

not necessarily true.

We will prove the following:

Theorem 3.6. Let (M, g) be a compact C∞ Riemannian manifold with associated Brownian

motion Xt. Let ω ∈ Ω. We define a signed measure µωt for fixed t and fixed ω by

µωt (f) =

∫ t
0 f(Xs)ds− t

m0

∫
M f(x)m(dx)

√
2t log log t

. (3.5)

Consider the family of measures {µωt , t ≥ 0}. For any subsequence of times t̃n, if µt̃n converges

mildly to µ then µ is a measure such that it is absolutely continuous with respect to the volume

measure on the manifold. Take Gα
2

as in Definition 2.8. µ is characterized by

∥∥∥∥G−1
1
2

q

∥∥∥∥
L2

≤√
2

m0
, where q is the density of µ(dx) such that q(x) ∈ L2, and µ(M) = 0.

Remark 3.6. Usually a measure would be written as µ(ω), but for the sake of notation, we put

ω as a superscript of the measure because we also require a function for our measure; within

the definition, the notation (ω) is suppressed (as for Xs(ω)).

Remark 3.7. Both
∫ t

0 f(Xs)ds and t
m0

∫
M f(x)m(dx) from (Equation 3.5) are measures. Some

proofs for the case when f = Indicator(A) may be found in Appendix A.



36

Theorem 3.7. Suppose there exists a measure µ, characterized by

∥∥∥∥G−1
1
2

q

∥∥∥∥
L2

≤
√

2

m0
with

µ(M) = 0. Then there exists a sequence of times tn such that µtn converges mildly to µ for

some ω.

Theorem 3.8. Assume µ is a measure with density q, characterized by

∥∥∥∥G−1
1
2

q

∥∥∥∥
L2

≤
√

2

m0
,

where G−1
α
2

is as in Definition 2.8 and µ(M) = 0. Then almost surely there exists a sequence

of times tn such that µtn converges mildly to µ as n→ +∞.

Remark 3.8. This work commenced when we asked the question of whether a characterization

of µ could be found (Theorem 3.6). Once we found a characterization, we needed to confirm

that the limiting measure existed (Theorem 3.7). For a more complete result, we then wanted

to show that if we started with the characterization of µ, we could find a sequence of times tn

of t so that µt would converge to µ for all ω.

The rest of this work is structured as follows. The proof of Theorem 3.6 is in Chapter 4.

The proof of Theorem 3.7 is in Chapter 5. The proof of Theorem 3.8 is in Chapter 6.



CHAPTER 4

PROOF OF THEOREM 3.6

To prove Theorem 3.6, we state and prove several lemmas. In combining all of these lemmas,

we give the conclusion of the proof in Section 4.4.

4.1 Bounds for µ(f)

Lemma 4.1.
∣∣∫
M f(x)µ(dx)

∣∣ ≤√ 2
m0
‖h‖L2, where h = G 1

2
f .

Proof. Suppose µ is an accumulating point of µt, in the mild sense. If f ∈ C∞, f is bounded

and measurable and f ∈ Hα
0 for all α > max

(
d− 3

2 ,
d
2

)
. Then we can write

∫
M
f(x)µt(dx) = µt(f)

(Equation 3.5)
=

∫ t
0 f(Xs)ds− t

m0

∫
M f(x)m(dx)

√
2t log log t

.

We know by (Equation 3.4) that

µt(f) ≤ lim sup
t→+∞

µt(f) = lim sup
t→+∞

∫ t
0 f(Xs)ds− t

m0

∫
M f(x)m(dx)

√
2t log log t

≤
√

2

m0
(f,Gf)L2 .

Since µ is a collection of accumulating points of µt, then there is a sequence tn such that

∫
M
f(x)µtn(dx)→

∫
M
f(x)µ(dx).

37
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Moreover,
∣∣∫
M f(x)µt(dx)

∣∣ is bounded, as in (Equation 3.4) so

−
√

2

m0
(f,Gf)L2 ≤

∫
M
f(x)µ(dx) ≤

√
2

m0
(f,Gf)L2 .

Hence

∣∣∣∣∫
M
f(x)µ(dx)

∣∣∣∣ ≤√ 2

m0
(f,Gf)L2

=

√
2

m0

√
(f,Gf)L2

=

√
2

m0

√
(f,G1f)L2 ; by Definition 2.8

=

√
2

m0

√
(f,G 1

2
G 1

2
f)L2 ; since Gα+β = Gα ◦Gβ

=

√
2

m0

√
(G 1

2
f,G 1

2
f)L2

=

√
2

m0

∥∥∥G 1
2
f
∥∥∥
L2

=

√
2

m0
‖h‖L2 ; where h = G 1

2
f. (4.1)

4.2 A Representation for
∫
M f(x)µ(dx)

Lemma 4.2.
∫
M f(x)µ(dx) is a bounded linear functional on L2(M,m).

Proof. First, we know that G is a bounded linear functional in L2 by Definition 2.8. Hence

∣∣∣∣∫
M
f(x)µ(dx)

∣∣∣∣ ≤√ 2

m0
(f,Gf); by Brosamler (5)
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≤
√

2

m0
‖f‖L2‖Gf‖L2 ; by Cauchy-Schwarz Inequality

≤
√

2

m0
c1‖f‖2L2 ; because G is bounded,

‖Gf‖L2 ≤ c1‖f‖L2 for some constant c1 <∞

≤
√

2c1

m0
‖f‖L2

<∞.

This means that
∫
M f(x)µ(dx) is a bounded linear functional and on L2 for all f ∈ C∞. Hence,

we can extend
∫
M f(x)µ(dx) to the entire L2 space.

We now state a general version of Riesz Representation Theorem, and a special case of it

for an L2 space:

Theorem 4.3. (General Case, as stated in Bogachev (4))

Let f be a continuous linear function on a Hilbert space H. Then, there exists a unique vector

v such that

f(x) = (x, v) for all x ∈ H.

Theorem 4.4. (Special Case when p = 2, as stated in Athreya and Lahiri (1))

Let 1 ≤ p <∞. Let q = p
p−1 for 1 < p <∞ and q =∞ if p = 1. [In particular, take p = q = 2.]

Let T : L2(µ) → R be linear and continuous. Then there exists a g ∈ L2(µ) such that T = Tg,

i.e.

T (f) = Tg(f) ≡
∫
fgdµ
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for all f ∈ L2(µ).

Lemma 4.5. µ(dx) can be written in terms of a density function, q(x) ∈ L2.

Proof. By Theorems 4.3 and 4.4, we can represent our bounded linear functional µ(dx) as

q(x)m(dx) such that q(x) is the density of µ(dx), and in particular, q(x) ∈ L2 by Theorem

4.4.

Remark 4.1. Rewriting our integral, we also can obtain the bounded linear functional,

∫
M
f(x)µ(dx) =

∫
M
f(x)q(x)m(dx). (4.2)

To characterize our measure, we need to rewrite
∫
M f(x)q(x)m(dx) in terms of h = G 1

2
f . First,

we find an upper bound in terms of h:

∫
M
f(x)q(x)m(dx) =

∣∣∣∣∫
M
f(x)µ(dx)

∣∣∣∣
≤
√

2

m0
(f,Gf)L2

=

√
2

m0

∥∥∥G 1
2
f
∥∥∥
L2

=

√
2

m0
‖h‖L2 by (Equation 4.1). (4.3)

Remark 4.2. Since the upper bound is in terms of the norm of h, we must also try to rewrite∫
M f(x)q(x)m(dx) in terms of ‖h‖L2 . However, we must first show the existence of G−1

α
2

and

whether or not this may be applied to q(x), our density function.
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4.3 Existence of G−1
α/2, the Self-Adjoint Property, and Application to q(x)

4.3.1 Existence and the Self-Adjoint Property

Earlier, in Definition 2.8, we observed that G = −∆−1. This means that G−1 = −∆. This

exists because the Laplacian exists. We also know that G is self-adjoint. The meaning of an

adjoint and a self-adjoint operator are given in Definitions 4.1 and 4.2, respectively.

Definition 4.1. (Kreyszig Definition 3.9-1 (16))

Let T : H1 → H2 be a linear operator, where H1 and H2 are Hilbert spaces. Then the Hilbert-

adjoint operator T ∗ of T is the operator

T ∗ : H2 → H1

such that for all x ∈ H1 and y ∈ H2,

〈Tx, y〉 = 〈x, T ∗y〉.

Definition 4.2. (Kreyszig Definition 3.10-1 (16))

A linear operator T : H → H on a Hilbert space H is said to be self-adjoint or Hermitian if

T ∗ = T . If T is self-adjoint, we have

〈Tx, y〉 = 〈x, Ty〉.
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Lemma 4.6. G−1
α
2

is self-adjoint.

Proof. We need the following definition and remark.

Definition 4.3. (Chen (8))

A family {E(λ);−∞ < λ <∞} of projection operators on H, a separable real Hilbert space, is

called a resolution of identity, if

1. E(λ) ◦ E(γ) = E (min {λ, γ})

2. E(−∞) is zero operator, E(∞) is identity operator, and E(λ+0) = E(λ) for every λ ∈ R,

where E(−∞), E(∞) and E(λ+ 0) are the linear operators defined as

E (±∞) = lim
λ→±∞

E(λ)(x),

E(λ+ 0)(x) = lim
γ→λ+

E(γ)(x),

for all x ∈ H.

Remark 4.3. (Chen (8))

In the light casted by the representation

ξ(A) =
N∑
k=1

ξ (λk) (E(k)− E(k − 1)) ,

given a self-adjoint operator A in the form of

A =

∫ ∞
−∞

λE(dλ)
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the function of A is defined as the self-adjoint operator

ξ(A) =

∫ ∞
−∞

ξ(λ)E(dλ),

where ξ(·) is a Borel function on R.

From the above remark, this means that any function of a self-adjoint operator will also be

self-adjoint. In equation (Equation 2.5), we stated that Gα
2

=
(
−∆−1

)α
2 , and this is a function

of ∆, the Laplacian. In fact, the Laplacian is self-adjoint (see Appendix B for an illustration

involving matrices). Gα
2

is a function of a self-adjoint operator, and hence must also be self-

adjoint. Since Gα
2

=
(
−∆−1

)α
2 , this means that G−1

α
2

= (−∆)
α
2 . Because G−1

α
2

is also a function

of the Laplacian, this means that G−1
α
2

must also be a self-adjoint operator.

4.3.2 Application to q(x)

Lemma 4.7.
∫
M f(x)q(x)m(dx) =

(
h,G−1

1
2

q

)
L2

, where h = G 1
2
f .

Remark 4.4. To show that Lemma 4.7 is true, we first show Lemma 4.8 holds.

Lemma 4.8. q(x) ∈ Dom

(
G−1

1
2

)
so that

(
G−1

1
2

h, q

)
L2

=

(
h,G−1

1
2

q

)
L2

.

Proof. We show this is true for G−1
α
2

, for any real α > 0. First, note that

(
G−1
α
2
h, q
)
L2

= (h, q∗)L2 ; q∗ ∈ Dom
(
G−1
α
2

)∗
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by the properties of an adjoint operator (see Definition 4.1) where ∗ denotes an adjoint operator,

and q∗ =
(
G−1
α
2

)∗
q. Because G−1

α
2

is self-adjoint, this means that

Dom
(
G−1
α
2

)∗
= Dom

(
G−1
α
2

)

which implies that

q∗ =
(
G−1
α
2

)∗
q =

(
G−1
α
2

)
q.

Proof of Lemma 4.7. Start with (Equation 4.3). Take α = 1.

∫
M
f(x)q(x)m(dx) =

∫
M
G−1

1
2

G 1
2
f(x)q(x)m(dx)

=

∫
M
G−1

1
2

h(x)q(x)m(dx); where h = G 1
2
f

=

(
G−1

1
2

h, q

)
L2

, (4.4)

= (h, q∗)L2 ; where q∗ =

(
G−1

1
2

)∗
q

Lemma 4.8
=

(
h,G−1

1
2

q

)
L2

. (4.5)
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4.4 Characterization

Remark 4.5. (Conclusion of the Proof of Theorem 3.6)

We want to try and rewrite
∫
M f(x)q(x)m(dx) in terms of the L2 norm and h. Recall that q(x)

is the density of our measure µ. Then

(
G−1

1
2

q, h

)
L2

(Equation 4.5)
=

(
G−1

1
2

h, q

)
L2

(Equation 4.4)
=

∫
M
f(x)q(x)m(dx)

(Equation 4.2)
=

∣∣∣∣∫
M
f(x)µ(dx)

∣∣∣∣
(Equation 4.3)

≤
√

2

m0
‖h‖L2 .

Therefore, it must be the case that

∥∥∥∥G−1
1
2

q

∥∥∥∥
L2

≤
√

2

m0

completely characterizes the measure.



CHAPTER 5

PROOF OF THEOREM 3.7

To prove Theorem 3.7, we first find an upper bound for |µt(f)|. We then state several

lemmas. Lemma 5.1 is a basic proof of Theorem 3.7, but must be extended to work for all

functions f . Lemma 5.2 extends Lemma 5.1 for f ∈ Hα
0 , and Lemma 5.3 extends Lemma 5.2

for f ∈ L2 and defines the particular measure we are looking for.

5.1 Bounds for µt(f)

Assume f : M → R is bounded and measurable such that f ∈ C∞. In particular, we let

f ∈ C∞0 to remove the constant term (similar to Theorem 3.5). For this f ,

µωt (f) =

∫ t
0 f(Xs)ds√
2t log log t

.

From (Equation 3.4), we know that

µωt (f) ≤ lim sup
t→+∞

µωt (f) = lim sup
t→+∞

∫ t
0 f(Xs)ds√
2t log log t

≤
√

2

m0
(f,Gf)L2 .

Similarly, by replacing f by −f ,

−
√

2

m0
(f,Gf)L2 ≤ lim inf

t→+∞

∫ t
0 f(Xs)ds√
2t log log t

= lim inf
t→+∞

µωt (f).
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We still have the property that for f ∈ C∞0 ,

∣∣∣∣∫
M
f(x)µt(dx)

∣∣∣∣ ≤√ 2

m0
(f,Gf)L2 .

5.2 Accumulating Points for Smooth f

Lemma 5.1. For any subsequence of times t̃k of t, µt̃k(fk) → afk for all k, where {fk} is a

countable dense subset of Hα
0 for all k.

Proof. To show that accumulating points exist, we use a diagonalization argument. First,

lim supt→+∞ µ
ω
t (f) is bounded above, so

af (ω) = lim sup
t→+∞

µωt (f) ≤
√

2

m0
(f,Gf)L2 ,

for af a constant number depending on f , and fixed ω. We will omit ω in the remainder of this

chapter for simplicity of notation. If we change our function from f to f1, we do not know if

we will have convergence for µt(f1). However, we can find a subsequence tn of t such that we

will have convergence. Let tn be any subsequence of t such that

µtn(f1)→ af1 , f1 ∈ C∞0 ,

where af1 is a constant number that depends on f1. Because this limit exists, we will have that

lim
tn→+∞

µtn(f1) = af1 .
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However, if we change our function from f1 to f2, we do not know if we will have convergence

for µtn(f2). We can find a subsequence tni of tn such that we will have convergence. Let tni be

any subsequence of tn such that

µtni (f2)→ af2 , af2 ∈ C∞0 ,

where af2 is a constant number that depends on f2. Because this limit exists, we will have that

lim
tni→+∞

µtni (f2) = af2 .

We can continue repeating this argument.

Next, pick t̃1 ∈ {tn}, t̃2 ∈ {tni}, t̃3 ∈
{
tnij

}
, . . . , t̃k ∈

tn...
k

 such that t̃1 < t̃2 < t̃3 <

· · · < t̃k and t̃k ↑ ∞. We know by Definition 2.9 that C∞0 ⊆ Hα
0 and that Hα

0 is the completion

of C∞0 . Because of this, Hα
0 contains a countable dense set. In particular, pick {fk} such that

it is dense in Hα
0 . Therefore, {t̃k} will be a sequence of times such that t̃1 < t̃2 < · · · < t̃k ↑ ∞,

then

µt̃k(fk)→ afk , ∀k. (5.1)
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A depiction of this selection is shown below:

Subsequences : {tn} {tni}
{
tnij

}
· · ·

tn...
k


Element: t̃1 < t̃2 < t̃3 < · · · < t̃k

Function Acted On: f1 , f2 , f3 , · · · , fk

The collection of all of these subsequences will be given by t̃k.

Remark 5.1. If we take different ω’s, we can choose a different subsequence such that this

construction holds.

Example 5.1. Let tn = {1, 2, 3, 4, . . .}. We can find a subsequence of this: {2, 4, 6, 8, . . .} = tni .

For this subsequence, there is a limit point: µtni (f2) → af2 . We can then find a further

subsequence: {4, 8, 12, . . .} = tnij such that it has a limit point: µtnij
(f3) → af3 . We can

continue this process such that

µtn
...

k

(fk)→ afk .

We then pick

t̃1 = 1 ∈ {1, 2, 3, 4, . . .} = tn
y

further subsequences

t̃2 = 2 ∈ {2, 4, 6, 8, . . .} = tni

t̃3 = 4 ∈ {4, 8, 12, . . .} = tnij

...

such that t̃k ↑ ∞.
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5.3 Extension to Hα
0

Lemma 5.2. µt̃k(f)→ af , ∀f ∈ Hα
0 , i.e. this sequence converges in Hα

0 for any f .

Proof. Suppose µt̃k(f) 6→ af for all f ∈ Hα
0 , and fixed ω. Then

if = lim inf
t̃k→+∞

µt̃k(f) < lim sup
t̃k→+∞

µt̃k(f) = sf .

This means that there is some notion of distance between if and sf , where i and s are constants

that depend on f .

Now, because Hα
0 contains a countable dense set, then for any ε > 0, there is a δ(ε) > 0

such that 0 < ‖f − fk‖Hα
0
< δ(ε) for fk ∈ Hα

0 . µt(f) is a bounded linear functional by Lemma

4.2.

Since this is true, then any subsequence t̃k of t will also have this same property. Hence, we

know that µt̃k(f) is a bounded linear functional. We then have

∣∣µt̃k(f)− µt̃k (fk)
∣∣ =

∣∣µt̃k(f − fk)
∣∣; since µt̃k is linear

≤ ‖f − fk‖Hα
0
· constant

< δ(ε) · constant.

This means that
∣∣µt̃k(f)− µt̃k (fk)

∣∣ is also bounded. Hence, we can conclude that

∣∣µt̃k(f)− µt̃k (fk)
∣∣ < ε.
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By (Equation 5.1), we know that µt̃k(fk)→ afk so that

∣∣µt̃k(f)− afk
∣∣ < ε.

As ε ↓ 0, then µt̃k(f) and afk are “close” and approximately the same as t̃k goes to infinity.

This means that µt̃k(f) has a limit point. If this is the case, then lim inf t̃k→+∞ µt̃k(f) and

lim supt̃k→+∞ µt̃k(f) should also be “close”, but because we assumed µt̃k(f) 6→ af , this is a

contradiction! Therefore, µt̃k(f)→ af for fixed ω and f ∈ Hα
0 .

5.4 Extension to L2

Lemma 5.3. There exists a measure µ∞ such that µ∞(f) = af .

Proof. We drop the subscript ‘∞’ on µ∞ for convenience of notation. Define µ such that

µ : f → af is a linear and bounded map. Combining the result from Section 5.3 along with our

definition for µ, we have

µt̃k(f)→ µ(f).

Now we must show that µ(f) is a measure.

In Section 4.2, we showed that |µt(f)| is a bounded linear functional. In particular, µt(f) is

a bounded linear functional for f ∈ Hα
0 , which is a dense set. A bounded linear functional on a

dense set can be extended to L2 and hence Hα
0 ⊆ L2

0 ⊆ L2 (as in Definition 2.9). If |µt(f)| is a
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bounded linear functional, than any subsequence of t will also have this same property. Hence∣∣µt̃k(f)
∣∣ is a bounded linear functional. As t̃k → +∞, we can see that

lim
t̃k→+∞

µt̃k(f) = lim
t̃k→+∞

∫
M
f(x)µt̃k(dx)

=

∫
M
f(x) lim

t̃k→+∞
µt̃k(dx)

=

∫
M
f(x)µ(dx)

= µ(f).

From this, it is easy to see that µ is a measure. In particular, this is the same measure that

we found in our characterization. In addition, we know that from Section 4.2 that µ(f) is a

bounded linear functional. This means that we can apply the Riesz Representation Theorem

and achieve the same result as in (Equation 4.2) and therefore µ(dx) = q(x)m(dx), for some

density function q(x) so that

µ (f) =

∫
M
f(x)q(x)m(dx), ∀f ∈ L2.

Remark 5.2. Because we were able to extend this result to L2, we could also take f =

Indicator(A) as in Appendix A.



CHAPTER 6

PROOF OF THEOREM 3.8

Assume f : M → R is bounded and measurable such that f ∈ C∞. In particular, we let

f ∈ C∞0 . Suppose that µ(f) is characterized by

∥∥∥∥G−1
1
2

q

∥∥∥∥
L2

≤
√

2

m0
,

where G−1
1
2

, q, and m0 are as previously stated. We require the following definition and theorems

from Brosamler (5).

Definition 6.1. (Brosamler Equation 3.5 (5))

For Brownian motion on a compact C∞ Riemannian manifoldM , define for bounded measurable

f : M → R1

Lt(f, ω) =

∫ t

0
f (Xs(ω)) ds, t = 0.

Definition 6.2. (Brosamler (5))

For f1, . . . , fn ∈ L2
0, the matrix

(
(fi, Gfj)L2 , i, j = 1, . . . , n

)
is nonnegative definite. It is positive

definite if and only if f1, . . . , fn are linearly independent. For linearly independent f1, . . . , fn ∈

L2
0 we define the ellipsoid Ef1,...,fn by

Ef1,...,fn =

(ζ1, . . . , ζn) ∈ Rn,
n∑

i,j=1

aijζiζj 5 1

 ,

53
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where
(m0

2
aij

)
is the inverse matrix of

(
(fi, Gfj)L2 , i, j = 1, . . . , n

)
.

Theorem 6.1. (Brosamler Theorem 4.1 (5))

For all n = 1, all linearly independent bounded measurable functions f1, . . . , fn : M → R we

have for all x ∈M

Px

{
Rn − cluster set

t→+∞

(Lt(f1), . . . , Lt(fn))√
2t log log t

= Ef1,...,fn

}
= 1.

The next theorem is the universal law for vector functions.

Theorem 6.2. (Brosamler Theorem 4.6 (5))

If α > max
(
d− 3

2 ,
d
2

)
, then for all x ∈M

Px

{
Rn − cluster set

t→+∞

(Lt(f1), . . . , Lt(fn))√
2t log log t

= Ef1,...,fn

all n = 1, all linearly independent f1, . . . , fn ∈ Hα
0 } = 1.

From Theorem 6.2, we can see that

Ef1,...,fn = cluster set
t→+∞

(Lt(f1), . . . , Lt(fn))√
2t log log t

= cluster set
t→+∞

(
Lt(f1)√

2t log log t
, . . . ,

Lt(fn)√
2t log log t

)
= cluster set

t→+∞
(µt(f1), . . . , µt(fn))

almost surely.
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Assume that for each fixed t,

V n
t =

(Lt(f1), Lt(f2), . . . , Lt(fn))√
2t log log t

= (µt(f1), . . . , µt(fn)) ∈ Rn,

and

V n = (µ(f1), . . . , µ(fn)) .

Suppose f1, . . . , fn, . . . is a dense and linearly independent set of functions in Hα
0 . To prove

Theorem 3.8, we need to show several things:

Claim 1. For any dense and linearly independent set of functions f1, . . . , fn ∈ Hα
0 and t ≥ 0,

V n ∈ Ef1,...,fn
a.s.
= cluster set

t→+∞
V n
t .

Claim 2. Assume the above claim is true so that for any V n we can find a sequence of times tnm

such that V n
tnm
→ V n. We can find a sequence of times t̄n such that V N

t̄n
→ V N for all N .

Claim 3. We can extend the above so that it works for all functions f ∈ Hα
0 instead of only for a

sequence of functions f1, f2, . . . in Hα
0 .
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6.1 Proof of Claim 1

For any given f ,

µ(f) =

∫
M
f(x)µ(dx)

=

∫
M
f(x)q(x)m(dx); because q(x) is the density of µ by assumption

=

∫
M
f(x)G 1

2
G−1

1
2

q(x)m(dx)

=

(
f,G 1

2
G−1

1
2

q

)
L2

=

(
G 1

2
f,G−1

1
2

q

)
L2

; since f ∈ Dom
(
G 1

2

)
=

∫
M
G 1

2
f(x)G−1

1
2

q(x)m(dx)

≤
∥∥∥G 1

2
f
∥∥∥
L2

∥∥∥∥G−1
1
2

q

∥∥∥∥
L2

; Cauchy-Schwarz Inequality

≤
√

2

m0

∥∥∥G 1
2
f
∥∥∥
L2

; by the characterization of µ(f)

=

√
2

m0

(
G 1

2
f,G 1

2
f
)
L2

=

√
2

m0
(Gf, f)L2 .

Remark 6.1. Brosamler (5) proves Theorem 6.1 for a special case when

Ef1,...,fn =

{
(ζ1, . . . , ζn) ∈ Rn,

n∑
i=1

ζ2
i 5

2

m0

}
. (6.1)
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In addition, he uses the fact that for some f

(fi, Gfj)L2 = δij =


1, i = j

0, i 6= j,

i, j = 1, . . . n. (6.2)

Lemma 6.3. For n = 2, (µ(f1), µ(f2)) ∈ Ef1,f2 .

Remark 6.2. To show that Lemma 6.3 is true, we first show Lemma 6.4 holds.

Lemma 6.4. Let u = (a1, a2)> be a unit vector such that a2
1 + a2

2 = 1, where a1 and a2 are

constants. Then

〈V 2,u〉 ≤
√

2

m0

for any projection, where 〈·, ·〉 denotes the inner product.

Proof.

〈V 2,u〉 = a1µ(f1) + a2µ(f2)

= µ(a1f1) + µ(a2f2); by the definition of a measure

= µ(a1f1 + a2f2); µ is linear

≤
√

2

m0
(G(a1f1 + a2f2), a1f1 + a2f2)L2

=

√
2

m0
(a1Gf1 + a2Gf2, a1f1 + a2f2)L2
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=

√√√√√√ 2

m0

a2
1 (Gf1, f1)L2︸ ︷︷ ︸

=δ1,1=1

+a2
2 (Gf2, f2)L2︸ ︷︷ ︸

=δ2,2=1

+a1a2 (Gf1, f2)L2︸ ︷︷ ︸
=δ1,2=0

+a2a1 (Gf2, f1)L2︸ ︷︷ ︸
=δ2,1=0


=

√
2

m0

[
a2

1 + a2
2

]
; by (Equation 6.2)

=

√
2

m0
; since we have the restriction that a2

1 + a2
2 = 1.

Proof of Lemma 6.3. Let a1 and a2 be constants. We want to show V 2 ∈ Ef1,f2 . Let ζ1 = µ(f1)

and ζ2 = µ(f2) from (Equation 6.1). Now, since we have n = 2, then Ef1,f2 is the same as

considering a ball of radius
√

2/m0. Therefore, we need to show V 2 is contained in the ball

of radius
√

2/m0. However, this is also the same as showing that V 2 has length ≤
√

2/m0.

Considering the vector V 2, we take the projection of V 2 to the line that has the same angle

as V 2; when we do this, we obtain exactly the length of V 2. Let u = (a1, a2)> such that

a2
1 + a2

2 = 1; this guarantees that u is a unit vector. Instead of showing that V 2 has length

≤
√

2/m0, we can show that

〈V 2,u〉 ≤
√

2

m0
,

for any projection, where 〈·, ·〉 denotes the inner product. By Lemma 6.4, Lemma 6.3 holds.

Remark 6.3. The previous proof can be generalized to n dimensions. When we consider

the unit vector u, we can take it such that u = (a1, a2, . . . , an)> for
∑n

i=1 a
2
i = 1. For

(a1Gf1 + · · ·+ anGfn, a1f1 + · · ·+ anfn)L2 , all the cross-terms will be removed because δij = 0

for i 6= j. Since (Gfi, fi)L2 = δii = 1, all that remains are the coefficients a2
i . Therefore,
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under the square root, we will have (2/m0)
∑n

i=1 a
2
i = 2/m0, which completes the proof for

n-dimensions.

6.2 Proof of Claim 2

By assumption, we know that for each fixed n, V n
tnm
→ V n as m → +∞. Start with n = 1.

Because V 1
t1m
→ V 1, then ∣∣∣V 1

t1m
− V 1

∣∣∣→ 0, m→ +∞.

In particular, can find t̄1 ∈ {t1m} such that

∣∣V 1
t̄1
− V 1

∣∣ < 1.

For n = 2, because V 2
t2m
→ V 2, then

∣∣∣V 2
t2m
− V 2

∣∣∣→ 0, m→ +∞.

In particular, we can find t̄2 ∈ {t2m} such that

∣∣V 2
t̄2
− V 2

∣∣ < 1

2
,

and

t̄1 < t̄2.
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For n = 3, because V 3
t3m
→ V 3, then

∣∣∣V 3
t3m
− V 3

∣∣∣→ 0, m→ +∞.

In particular, we can find t̄3 ∈ {t3m} such that

∣∣V 3
t̄3
− V 3

∣∣ < 1

3
,

and

t̄1 < t̄2 < t̄3.

We repeat this process for all n with V n
tnm
→ V n and choose t̄n ∈ {tnm} such that

∣∣∣V n
tnm
− V n

∣∣∣ < 1

n
, (6.3)

and

t̄1 < t̄2 < t̄3 < · · · < t̄n.

By this construction, we have found a sequence of times {t̄1, t̄2, t̄3, . . . , t̄n}, listed in ascending

order.
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For fixed N , we want to show that V N
t̄n
→ V N . Now, we know that V N

t̄n
contains the first N

components of V n
t̄n

for n > N and V N contains the first N components of V n for n > N . By

our construction, ∣∣V N
t̄n
− V N

∣∣ ≤ ∣∣V n
t̄n
− V n

∣∣ < 1

n
,

and hence V N
t̄n
→ V N as n→ +∞. Therefore, we have found a sequence of times t̄n such that

V N
t̄n
→ V N , for all N .

Example 6.1. V n
tnm

is a vector such that it converges to another vector V n. We have

V 1
t1m

=

(
z1
t1m

)
→ V 1 =

(
z1

)
; 1 dimension

V 2
t2m

=

z1
t2m

z2
t2m

→ V 2 =

z1

z2

 ; 2 dimensions

V 3
t3m

=


z1
t3m

z2
t3m

z3
t3m

→ V 3 =


z1

z2

z3

 ; 3 dimensions

...
...

where ztnm are constants that depend on tnm; the superscript denotes which component of V n
tnm

is

being considered. z1, z2, . . . are constants. In each vector on the right side, z1 is the same; z2

is the same, etc.
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For n = 1, we choose t̄1 so that z1
t1m

is close to z1. Note that V 1
t̄1

is one vector in V 1
t1m

. For

n = 2, we choose t̄2 so that z1
t2m

is close to z1 andz2
t2m

is close to z2 with t̄1 < t̄2. Note that V 2
t̄2

is one vector in V 2
t2m

. For n = 3, we choose t̄3 so that z1
t3m

is close to z1, z2
t3m

is close to z2, and

z3
t3m

is close to z3 with t̄1 < t̄2 < t̄3. Note that V 3
t̄3

is one vector in V 3
t3m

.

Now, for example, take n = 3 and N = 2 so that n > N . Notice that V 2
t̄3

contains

the first two components of V 3
t̄3

, and V 2 contains the first two components of V 3. We have∣∣∣V 2
t̄3
− V 2

∣∣∣ ≤ ∣∣∣V 3
t̄3
− V 3

∣∣∣ < 1
3 .

6.3 Proof of Claim 3

What we have shown with Claims 1 and 2 is that if µ has the specified characterization,

then µt(fn)
mildly−−−−→ µ(fn) for a sequence of functions f1, f2, . . . that is dense in Hα

0 . We need to

show that µt(f)
mildly−−−−→ µ(f) for any f ∈ Hα

0 . Note the following:

Definition 6.3. (Brosamler Equation 3.6 (5))

Define for α > d
2 the Hα

0 -valued process Lα(t, ω) by

Lα(t, ω) = 2−αGα
2

{∫ t

0
gα

2
(·, Xs) ds

}
= 2−α

∫ t

0
gα (x,Xs) ds. (6.4)

Theorem 6.5. (Brosamler Theorem 3.8 (5))

For any compact C∞ Riemannian manifold M of dimension d = 1 and associated Brownian

motion X, let the Hα
0 -valued process Lα(t) be defined by [ (Equation 6.4)] for α > d

2 . If α >

max
(
d− 3

2 ,
d
2

)
, then for all x ∈M , Px-a.a. ω the random set

{
Lα(t, ω)√
2t log log t

, t = 3

}
in Hα

0 is

conditionally norm-compact.



63

Lemma 6.6. (Brosamler (5))

By Theorem 6.5 we have for all x ∈M , Px-a.a. ω

C(ω) = sup
t=3

‖Lα(t)‖Hα
0√

2t log log t
<∞.

We conclude from
∣∣〈Lα(t), f〉Hα

0

∣∣ 5 ‖f‖Hα
0
‖Lα(t)‖Hα

0
that for all x ∈M , Px-a.a. ω

∣∣∣∣∣
∫ t

0 f (Xs) ds√
2t log log t

∣∣∣∣∣ 5 ‖f‖Hα
0
C(ω), t = 3, f ∈ Hα

0 . (6.5)

Suppose f ∈ Hα
0 . By (Equation 6.5), we know that µt (fn) → µt(f) uniformly in t if

‖f‖Hα
0
C(ω) is “small”. Next, we show that µ(fn)→ µ(f).

Similar to the proof of Lemma 5.2, Hα
0 contains a countable dense set. Thus for any ε > 0,

there is a δ(ε) > 0 such that 0 < ‖f − fn‖Hα
0
< δ(ε) for fn ∈ Hα

0 . This means that fn and f

are “close”. Recall that if fn, f ∈ Hα
0 , then fn, f ∈ L2 since by Definition 2.9, Hα

0 ⊆ L2
0 ⊆ L2.

We also know that µ is continuous on Hα
0 . Then

|µ(f)− µ(fn)| = |µ(f − fn)|; since µ is linear

=

∣∣∣∣∫
M

(f(x)− fn(x))µ(dx)

∣∣∣∣
=

∣∣∣∣∫
M

(f(x)− fn(x)) q(x)m(dx)

∣∣∣∣; by our characterization

≤
∫
M
|f(x)− fn(x)| · |q(x)|m(dx); by Jensen’s Inequality
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≤ ‖q‖L2 · ‖f − fn‖L2 ; by Hölder’s Inequality and q(x) ∈ L2

< ‖q‖L2 · δ(ε)

because f and fn are close in the L2-norm since Hα
0 ⊆ L2 and ‖f − fn‖Hα

0
< δ(ε). We can

conclude that |µ(f)− µ(fn)| < ε, and

µ(fn)→ µ(f).

Hence, we can say that

µt (fn) → µ (fn) by Question 2

↓ ↓

µt (f) µ (f) .

Therefore, we must have that µt(f)→ µ(f) for all f ∈ Hα
0 and we have completed the proof

of Theorem 3.8.
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Appendix A

ADDITIONAL PROOFS

It is possible to show that µt is a (possibly infinite) signed measure. For an example, we

consider the case for f = Indicator(A) in µωt (f). We show that µt is a measure by showing that

each part of the numerator of µt(f) are measures.∫ t
0 1A(Xs)ds is a measure.

Denote
∫ t

0 1A(xs)ds by γ.

1. γ(∅) = 0

Proof. We can see that

γ(∅) =

∫ t

0
1∅ (Xs) ds =

∫ t

0
0 ds = 0.

2. γ(A) ≥ 0 for all A ∈ B(M).

Proof. Assume 1A(Xs) = 0. Then γ(A) =
∫ t

0 0 ds = 0. Assume 1A(Xs) = 1. Then

γ(A) =
∫ t

0 1 ds = t ≥ 0. Therefore, γ(A) ≥ 0.
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Appendix A (Continued)

3. If A1, A2, . . . , An, . . . ∈ B(M) and disjoint, then γ (∪∞n=1An) =
∞∑
n=1

γ(An).

Proof. Assume A1, A2, . . . , An, . . . ∈ B(M) and disjoint. Then

γ (∪∞n=1An) =

∫ t

0
1∪∞n=1An

(Xs) ds =

∫ t

0
1A1∪A2∪···∪An∪···(Xs) ds.

As long as Xs ∈ An for some n, then 1∪∞n=1An
(Xs) = 1. Since the An’s are disjoint, if Xs

is in one of them, it cannot be in another one, so the other indicators are equal to 0. This

means that

γ (∪∞n=1An) =

∫ t

0
max {1A1(Xs), 1A2(Xs), . . . , 1An(Xs), . . .} ds

=

∫ t

0
[1A1(Xs) + · · ·+ 1An(Xs) + · · · ] ds

=

∫ t

0

[ ∞∑
n=1

1An(Xs)

]
ds

=
∞∑
n=1

∫ t

0
1An(Xs)ds; by the Monotone Convergence Theorem

=

∞∑
n=1

γ(An).
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Appendix A (Continued)

t
m0

∫
M 1A(x)m(dx) is a measure.

Denote t
m0

∫
M 1A(x)m(dx) by γ.

1. γ(∅) = 0

Proof.

γ(∅) =
t

m0

∫
M

1∅(x)m(dx) =
t

m0

∫
M

0 m(dx) = 0.

2. γ(A) ≥ 0

Proof. Assume x 6∈ A. Then

γ(A) =
t

m0

∫
M

1A(x)m(dx) =
t

m0

∫
M

0 m(dx) = 0.

Assume x ∈ A. Then

γ(A) =
t

m0

∫
M

1A(x)m(dx) =
t

m0

∫
M

1 m(dx) =
t

m0
·m0 = t ≥ 0.



69

Appendix A (Continued)

3. If A1, A2, . . . , An, . . . ∈ B(M) and disjoint, then γ((∪∞n=1An) =
∞∑
n=1

γ(An).

Proof. Assume A1, A2, . . . , An, . . . ∈ B(M) and disjoint. Then by the same reasoning as

in the proof for the first measure,

γ (∪∞n=1An) =
t

m0

∫
M

1∪∞n=1An
(x)m(dx)

=
t

m0

∫
M

max {1A1(x), 1A2(x), . . . , 1An(x), . . .}m(dx)

=
t

m0

∫
M

∞∑
n=1

1An(x)m(dx)

=
∞∑
n=1

t

m0

∫
M

1An(x)m(dx); by the Monotone Convergence Theorem

=

∞∑
n=1

γ(An).

Property: µt(1M ) = 0 for fixed t.

Proof.

µt(1M ) =

∫ t
0 1M (Xs)ds− t

m0

∫
M 1M (x)m(dx)

√
2t log log t

=

∫ t
0 1 ds− t

m0

∫
M 1 m(dx)

√
2t log log t

=
t− t

m0
m0√

2t log log t
=

t− t√
2t log log t

= 0.
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Appendix B

MATRIX REPRESENTATION OF A SELF-ADJOINT OPERATOR

Let A : Rn → Rn and have eigenvalues 0 < λ1 ≤ λ2,≤ · · · ≤ λn. We can write its spectral

decomposition as TDT>, where D = diag {λ1, λ2, . . . , λn}. We can also rewrite this:

Remark B.1. (Chen (8))

This representation can be rewritten as

A =
n∑
k=1

λk (E(k)− E(k − 1))

where E(0) = 0n×n, E(k) = TDkT
>, where Dk is an n × n diagonal matrix whose first k

elements on the diagonal are 1, and the rest of the elements are 0.

We illustrate a short example.

Example B.1. Take n = 3. Then A3×3 = TDT>. In particular,

A =
3∑

k=1

λk (E(k)− E(k − 1))

= λ1 (E(1)− E(0)) + λ2 (E(2)− E(1)) + λ3 (E(3)− E(2))

= λ1TD1T
> + λ2T (D2 −D1)T> + λ3T (D3 −D2)T>

= T (λ1D1 + λ2(D2 −D1) + λ3(D3 −D2))T>. (B.1)
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Appendix B (Continued)

We have

D1 = diag {1, 0, 0}

D2 −D1 = diag {1, 1, 0} − diag {1, 0, 0} = diag {0, 1, 0}

D3 −D2 = diag {1, 1, 1} − diag {1, 1, 0} = diag {0, 0, 1} .

Then (Equation B.1) will become

(Equation B.1) = T (λ1 · diag{1, 0, 0}+ λ2 · diag{0, 1, 0}+ λ3 · diag{0, 0, 1})T>

= T


λ1 0 0

0 λ2 0

0 0 λ3

T>.

Now, for each self-adjoint operator, we can write this as a function of the resolution of

identity:

Theorem B.1. (Chen (8))

Given a self-adjoint operator A, there is a unique resolution of identity

{E(λ);−∞ < λ <∞}, such that

A =

∫ ∞
−∞

λE (dλ) , (B.2)

Dom(A) =

{
x ∈ H;

∫ ∞
−∞
|λ|2µx (dλ) <∞

}
.
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Appendix B (Continued)

In fact, this representation is unique:

Theorem B.2. (Yosida (32))

A self-adjoint operator H in a Hilbert space X admits a uniquely determined spectral resolution.

We can also write the resolution of identity in terms of an integral or of a finite sum:

Remark B.2. (Chen (8))

When ξ is a step function supported on a finite interval [a, b] and is piece-wisely defined with

respect to a partition a = λ0 < λ1 < · · · < λn = b, we define

∫ ∞
−∞

ξ(λ)E(dλ) =

n∑
k=1

ck (E(λk)− E (λk−1))

where ck is the value of the function ξ(·) on the kth sub-interval (λk−1, λk].

In our work above, we can see that not only is the representation is unique, but for ξ(λ) = λ,

A =

∫ ∞
−∞

λE(dλ)

=

n∑
k=1

λk (E (λk)− E (λk−1)) ,

where the second equality is similar to the remark above, and

=
n∑
k=1

λk (E(k)− E(k − 1)) ,

when A is a matrix.
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Appendix B (Continued)

In our example above, when A was a matrix, Dk was a diagonal matrix made up of the

eigenvalues. In our scenario, the eigenvalues of −∆ will be the same as for A on L2
0. Therefore,

applying the same process to −∆, we will have that

−∆ =
n∑
k=1

λk (E(λk)− E(λk−1)) =

∫ ∞
−∞

λE(dλ),

where the first equality holds for a specific partition. In fact, because we only consider positive

eigenvalues for −∆, the integration will run from 0 to ∞. Because we can represent −∆ in this

form, it must be a self-adjoint operator because the representation of self-adjoint operators is

unique by Theorem B.2. We will also have

∆ =

∫ ∞
−∞

λE(dλ).
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Appendix C

R CODE FOR EXAMPLE 1

## Set Values

n <- 100000

p <- 0.5

seed <- 16

## Create Blank Matrices

S_matrix <- matrix(data = NA, nrow = 1, ncol = n, byrow = TRUE)

Xbar_matrix <- matrix(data = NA, nrow = 1, ncol = n, byrow = TRUE)

sqrt1 <- matrix(data = NA, nrow = 1, ncol = n, byrow = TRUE)

sqrt2 <- matrix(data = NA, nrow = 1, ncol = n, byrow = TRUE)

## Simulate from a binomial. When binomial = 0, change to -1.

set.seed(seed)

X_matrix <- t(as.matrix(rbinom(n, size = 1, prob = p)))

for(i in 1:n){ if(X_matrix[,i] == 0){X_matrix[,i] = -1} }

## Generate S_n matrix

for(i in 1:n){ S_matrix[,i] <- sum(X_matrix[,1:i]) }

## Generate S_n / n matrix

for(i in 1:n){ Xbar_matrix[,i] <- S_matrix[,i] / i }
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Appendix C (Continued)

## Generate boundary points

## LIL

for(i in 3:n){ sqrt1[,i] <- sqrt(2 * log(log(i)) / i) }

## Standard Deviation

for(i in 1:n){ sqrt2[,i] <- 0.5 * sqrt(1/i) }

## Plot Graph

plot(x = log(1:n), y = Xbar_matrix, type = "l",

xlab = "Sample Size (log scale)",

ylab = "y", ylim = c(-0.5,0.5), xlim = c(exp(1),11))

lines(x = log(1:n), y = sqrt2, col = "blue")

lines(x = log(3:n), y = sqrt1[,3:n], col = "red")

lines(x = log(1:n), y = -sqrt2, col = "blue")

lines(x = log(3:n), y = -sqrt1[,3:n], col = "red")

legend(x = 7, y = 0.4,

c("S_n / n", "sqrt(2 * log(log n)) / n)", "0.5*sqrt(1/n)"),

lty = c(1,1,1), col = c("black","red","blue"))
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