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PREFACE

In this work, multipath exploitation in radar target detection and parameter estimation is

considered. Multipath is a natural phenomenon present in almost every propagation environ-

ment and affects radar problems such as urban area sensing, through the wall radar imaging,

and low altitude target detection and parameter estimation. In the past thirty years multipath

has been viewed as a negative effect that needs to be mitigated; researchers have developed

many signal processing techniques in that regard. Recently however, our view on multipath is

changing: with the proper knowledge of the environment, multipath may be considered to be

an opportunity to obtain additional degrees of freedom by providing virtual radar sensors that

observe the target from different aspects. Thus, multipath exploitation has been receiving more

interest lately in order to achieve more robust performance and degrees of freedom in detection

and estimation problems. Although there is strong evidence that one can improve detection

and estimation performance in radar through multipath exploitation, the amount of improve-

ment still depends on the radar-target geometry, the corresponding multipath structure and the

available signal noise ratio (SNR) levels. Thus, a quantitative analysis of the target probability

of detection and parameter estimation accuracy with and without multipath exploitation, the

topic of this thesis, is needed in order to fully assess the performance improvement.
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SUMMARY

In this thesis, a novel approach is presented to evaluate the performance improvement of

a radar system exploiting multipath, as compared to a conventional system that exploits only

the direct path return. This novel approach to exploit multipath requires prior knowledge of

the radar target environment.

In Chapter 2, time delay estimation using the maximum likelihood principle is addressed

for the multipath exploitation problem and the corresponding Cramér-Rao bounds are derived.

A single wideband radar and a target in a known reflecting geometry are assumed. If the

multipath is indeed detectable and resolvable, it is show that multipath exploitation permits

estimating the angle of arrival (AoA) of the target with a single sensor and improves estimation

accuracy of the direct path time delay. These are both possible because the multipath time

delay is a deterministic function of the time delay of the direct path as well as its AoA, as it

is demonstrated here. The multipath caused from reflections from surfaces yields virtual radar

sensors observing the target from different aspects, thereby allowing AoA estimation.

In Chapter 3, a new method to address radar target detection problems in multipath environ-

ments is considered. The novelty of the proposed method is that it exploits prior knowledge on

the environment and combines it with electromagnetic modeling to determine some information

about the possible multipath structure. This information is used to separate the environment

into different regions based upon the behavior of the multipath components. Specifically, as a

case study, we consider a radar and a target in the presence of a reflecting ground. For this

xiv



SUMMARY (Continued)

environment, three regions are determined based upon the amount of overlap among the mul-

tipath components. For each region, receivers are designed exploiting the multipath structure.

Thus, a different viewpoint to analyze radar detection problems is suggested. The two main

results are the improvement in the target probability of detection, by properly accounting for

the multipath, and the a priori determination of the best performing detector based upon the

location of the target and the available signal-to-noise ratio.

xv



CHAPTER 1

INTRODUCTION

1.1 Motivation and Background Work

In radar problems, the effect of the surrounding environment has been widely studied and

well understood through advanced Electromagnetic (EM) modeling (1), (2). However detection

and estimation problems are still challenging in environments with a rich multipath structure

such as those present in urban area sensing and through the wall radar imaging applications.

This situation is due to the lack of integration between signal processing and EM modeling of

the environment under consideration. Diversity is considered to be one appropriate method in

which one can deal with multipath (3). In particular, with adaptive radars, it has been well

understood that prior knowledge of the environment and its effective parameters may be used to

enhance the detection, estimation and tracking performance of radar systems (4)-(11). Recently,

with the development of advanced and computationally efficient EM tools, EM propagation

models and simulations are being incorporated into radar and sensing problems as well (12)-

(15). Along these lines, this work investigates the problem of target detection and estimation in

a multipath environment. Our work considers diverse receiving strategies which improve their

performance by exploiting prior knowledge of the radar-target environment through advanced

EM modeling.

1
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Multipath is a natural phenomenon present in almost every propagation environment and

affects radar problems, particularly those involving urban area sensing, through the wall radar

imaging, and low altitude target detection and parameter estimation. In the past thirty years

multipath has been viewed as a negative effect that needs to be mitigated; researchers have

developed many signal processing techniques in that regard. Multipath may degrade the detec-

tion and estimation (of a target) performance in radar systems unless it is properly accounted

for. Through the years, several approaches have been presented that aim to diminish the effects

of multipath (16)-(19) and the references therein. In (19) Lo and Litva introduced the prior in-

formation in the Maximum Likelihood, ML, process to enhance the ML estimator performance.

The key feature of their approach is the use of a highly deterministic multipath signal model.

However, some researchers consider multipath to be an opportunity for obtaining more

degrees of freedom about the system by providing virtual radar sensors that observe the target

from different aspects. Bossé et al. have considered exploiting multipath information with

a deterministic specular multipath model for better tracking accuracy (20), (21). Sherman

first modeled the multipath interference pattern for low-angle tracking with a technique called

“complex indicated angle” (22), (23). The multipath exploitation problem has been studied

in the recent past as well in, e.g. (24) -(40), and references therein. Recently, the Defense

Advanced Research Projects Agency (DARPA) had initiated the Multipath Exploitation Radar

(MER) program to that aims to extend the coverage of airborne sensors by using the signals

reflected off the building in urban areas (24). Authors of (25) first provided the probabilities

of line-of-sight (LoS) and non-line-of-sight (NLoS) visibility of a target in a given multipath
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environment and evaluated the potential of multipath exploitation to increase the radar coverage

area and to improve the detection of moving targets in dense urban areas. Later, in (26)

the authors exploited multipath in the absence of the direct path return in ground moving

target indicator (GMTI) radar to detect and track ground targets in urban areas. The same

authors conducted a controlled outdoor experiment to collect X-band radar data to validate

the predicted multipath response, and the received multipath power in relation to the LoS

response (27). In their work, it is also emphasized that knowledge-based methods can be

utilized to either coherently or non-coherently process multipath returns, beyond the standard

GMTI processing, with the prior knowledge of the urban geometry. Furthermore, in (28) it is

shown that dismount classification, tracking, and localization of humans walking in an urban

environment can be enhanced via multipath exploitation when both direct and reflected path

returns are available. In (34) the authors demonstrated experimentally that indoor targets,

i.e. rotating fans and a walking person with metal reflectors, are detected via NLoS multipath

returns. The multipath exploitation paradigm is also integrated with adaptive waveform design

to enhance the target tracking capabilities and performance of a radar (29). A multipath

model and exploitation technique is addressed in (32), which properly utilizes the target ghosts

in through-the-wall and urban radar sensing applications. Using the multipath exploitation,

authors of (33) also demonstrated that localization can be achieved with a single sensor. In

(35) a bistatic synthetic aperture radar (SAR), which exploits multipath, is used for an imaging

scenario in a multipath environment where the final image of the target is obtained via coherent

superposition of multiple reconstructed images.
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This thesis considers radar target detection and parameter estimation in a multipath envi-

ronment. Multipath is a natural phenomenon present in most propagation environments such

as in urban areas and in low-angle radar target detection problems. Recently, multipath ex-

ploitation has been receiving more interest in radar problems in order to achieve more robust

performance and degrees of freedom in detection and estimation problems (29)-(40). Although

there is strong evidence that one can improve the detection and estimation performance in radar

through multipath exploitation, the amount of improvement still depends on the radar-target

geometry, the available SNR levels, the bandwidth (BW) and the correlation of mulltipath re-

turns (36). Thus, a quantitative analysis of the target probability of detection and accuracy of

parameter estimation with and without multipath exploitation is needed in order to fully assess

the performance improvements.

1.2 Organization

In Chapter 2, the time delay estimation using the maximum likelihood principle is addressed

for the multipath exploitation problem and corresponding Cramér-Rao bounds are derived.

A single wideband radar and a target in a known reflecting geometry are assumed. If the

multipath is indeed detectable and resolvable, it is shown that multipath exploitation permits

estimating the AoA of the target with a single sensor and improves the estimation accuracy

of the direct path time delay. Both these are possible because the time delay of the reflected

path is a deterministic function of the time delay of the direct path as well as its AoA, as it

is demonstrated here. The multipath caused from reflections from surfaces yields virtual radar

sensors observing the target from different aspects, thereby allowing AoA estimation.



5

In Chapter 3, we consider a basic case study to show how to conduct an electromagnetic

(EM) analysis that takes advantage of the prior knowledge of the environment where the radar

operates. As a result, we obtain the propagation time of each multipath component. Then, the

propagation time information is used to partition the environment into regions where diverse

receiving strategies are applied. The criterion to determine the regions is the amount of overlap,

in the time-domain, of the multipath components of the received signal. The amount of overlap

depends on the environment, locations of the radar and the target, and the duration of the

transmitted pulse. Accordingly, the general received signal model is specialized within each

region to account for the presence of significant overlap or its absence. Then, within each

region, a different receiver is devised thus justifying the statement of diverse receiving strategies.

Neyman-Pearson tests (NP) as optimum detectors, and Generalized Likelihood Ratio Tests

(GLRT) as sub-optimum detectors are devised for each region.

1.3 Research Contribution

Amethod is provided to increase the target detection and parameter estimation performance

of a radar in a multipath environment. The method exploits prior knowledge of the environment

and, through an appropriate EM modeling, integrates it into a statistical signal processing

framework. A qualitative analysis of the improvement in the target detection and parameter

estimation via multipath exploitation is provided. The proposed method is illustrated in a basic

case study scenario, however the approach is quite general and it could be extended to more

complex environments.



CHAPTER 2

MAXIMUM LIKELIHOOD TIME DELAY ESTIMATION AND

CRAMÉR-RAO BOUNDS FOR MULTIPATH EXPLOITATION

2.1 Introduction

The objective in multipath exploitation radar is improving the radar system performance

by incorporating the additional information, about either targets or their environments, em-

bedded in the multipath returns. The multipath exploitation hypothesis rests on the fact that

”multipath exists because of the environment,” which in turn requires that multipath returns

are distinguishable.

In this chapter, a single wideband radar sensor observes a target in a priori known reflecting

geometry, consisting of a ground plane. Accordingly, the multipath returns are caused by

specular reflections of the radar signal from a smooth surface, an assumption seen for example

in (29)-(40) and references therein.

The novelty of this approach is that, using a ray tracing analysis (49), the multipath time

delay is parameterized as a function of the geometrical direct path time-delay and its AoA; in

particular, this approach is applicable even when the direct path is obstructed. Since multipath

time delay on its own is not directly useful, by employing this parametrization, the maximum

likelihood estimator (MLE) and the Cramér-Rao lower bounds (CRLB) are derived for esti-

6
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mating the direct path time delay as well as its AoA. The CRLBs are derived in the frequency

domain, and are shown to be a function of the SNR as well as the operating bandwidth.

The multipath exploitation problem has been studied in the recent past in, e.g. (26)-

(38), and references therein. In (27), the authors conducted a controlled outdoor experiment

to collect X-band radar data to validate the predicted multipath response, and the received

multipath power in relation to the LoS response. In their work, they also emphasized that

knowledge-based methods can be utilized to either coherently or non-coherently process mul-

tipath returns, beyond the standard GMTI processing, with the prior knowledge of the urban

geometry. In (36)-(38), detection using the generalized likelihood ratio test (GLRT) was em-

ployed for the multipath exploitation problem, assuming the knowledge of the reflected and

direct path time delays, obtained from a priori knowledge of the environment where the radar

operates. A multipath model and exploitation technique, which properly utilizes the target

ghosts in through-the-wall and urban radar sensing applications, is addressed in (32). Using

multipath exploitation, the authors of (33) demonstrated that localization can be achieved

with a single sensor. Examples of targets in urban canyons and through-the-wall radar were

employed to demonstrate non-coherent localization. Target tracking and ground moving target

indication (GMTI) applications of exploitation were explored in (29) and (25), respectively.

This chapter is organized as follows, in Section II the model is presented, and in Section III

the problem is presented formally. The maximum likelihood (ML) technique and the CRLB are

presented in Sections VI and V, respectively. Representative simulation results and conclusions

are presented in Section VI and VII.
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Figure 1. Geometry of the problem: Radar-Target over a Ground Plane

2.2 Multipath Propagation Model

In this Section we describe the sample radar-target scenario that involves multipath propa-

gation. The geometry of the radar-target environment is illustrated in Figure 1. We formulate

the mathematical expression for the propagation model of the radar scene using ray-tracing

techniques. The advantage of the ray-tracing approach is that each individual trajectory is

explicitly associated with all the mechanisms of wave propagation so that a clear description of

all the physical phenomena is available (49). A two-ray model is considered at first to remain
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tractable. The radar is assumed to be located at the origin of a polar coordinate system. The

transmitted pulse is assumed to be

s(t) =






1√
Td

0 ≤ t ≤ Td

0 otherwise

so that the received signal is given as

rt =
2�

i=1

α̃i(t)s(t− τi) + w̃(t)

where rt, s(t) and w̃(t) are the baseband equivalents of the received signal, transmitted signal

and noise, respectively. Parameters α̃1(t) and α̃2(t), which are complex and deterministic, are

the strengths of the direct and reflected multipath returns, of time delays τ1 and τ2, respectively.

2.3 Problem Formulation

In this section, we assume w̃(t) is a stationary zero-mean complex circular white Gaussian

random process with power spectral density σ2. Since the pulse duration, Td, is considered small

compared to the coherence time of the radar-target channel, α̃1(t) and α̃2(t) are approximated

with unknown complex deterministic parameters α̃1 and α̃2, respectively. Then, rt can be

written as, (36),

rt =
2�

i=1

α̃is(t− τi) + w̃(t).
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In terms of geometric parameters, the time delays τ1 and τ2 are obtained as

τ1 =
2Rd

c
and τ2 =

2Rgr

c
,

where Rd and Rgr are the ranges of target with respect to the radar and radar image respectively.

Furthermore τ2 can be written as a function of τ1 and θt with a priori knowledge of hs, which

is the height of the radar from the planar reflecting surface.

τ2 = g(τ1, θt) =
�

(τ1 cos θt)
2 + (4hs/c+ τ1 sin θt)

2.

Thus, for the estimation problem, the received signal can be written as

rt = α̃1s(t− τ1) + α̃2s(t− g(τ1, θt)) + w̃(t)

= s̃1(t, Θ) + s̃2(t, Θ) + w̃(t),

where t ∈ [0, To] is the observation interval and Θ := [τ1, θt, α̃1, α̃2]T is the vector of parameters

to be estimated. It should be noted that Θ includes both real and complex parameters.

The novelty of this approach is that we estimate two geometrical parameters, [τ1, θt]T with a

single sensor by exploiting the multipath and a priori knowledge of the reflecting environment.

In other words, hs is assumed to be known.

2.4 Maximum Likelihood Estimation

The MLE formulation adopted here is similar to the one taken in (50), but unlike our

approach, the authors of (50) estimate the multipath time delay for multipath mitigation in
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global positioning systems (GPS). The log-likelihood function that needs to be maximized with

respect to Θ, and is readily shown to be

lnΛ[rt,Θ] ∝ − 2

σ2

�
To

0

�����rt −
2�

i=1

s̃1(t,Θ)

�����

2

dt (2.1)

In general, for an efficient unbiased estimator we must have (51), (52),

∂ lnΛ[rt,Θ]

∂Θi

= [�Θi(rt)−Θi]Jii(Θi), (2.2)

where Jij is the (i, j)-th element of the Fisher information matrix (FIM) J as in Equation 2.4,

�Θi is the i-th element of the estimator vector �Θ which is a function of the received data, whereas

Θi is the i-th element of unknown parameter vector Θ. In this particular problem, the equality

in Equation 2.2 does not hold for time-delay τ1 and angle of arrival θt estimation but only for

α̃1 and α̃2 (51), (52). Nevertheless, the maximum likelihood estimation is considered here due

to its asymptotically efficient properties.

As a comparison point, we recall the celebrated Cramér-Rao inequality

V ar
�
Θ̂ij(rt)−Θij

�
≥ J ij (2.3)
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where J ij is defined as the (i, j)-th element of the square matrix J−1 which is the inverse of the

FIM J. Elements of J are defined as, (51),

J = −E

�
∂2 lnΛ[rt,Θ]

∂Θ∂ΘT

�
(2.4)

where E{·} denotes the statistical expectation operator.

2.5 MLE of Amplitudes

From equation Equation 2.1, the MLE scores for α̃1 is obtained as

∂ lnΛ[rt,Θ]

∂α̃1
=

∂

∂α̃1



− 1

σ2

�
T0

0

�����rt −
2�

i=1

s̃i(t,Θ)

�����

2

dt





=
1

σ2

�
T0

0
s(t− τ1)

�
rt −

2�

i=1

s̃i(t,Θ)

�
dt

=
1

σ2

�
R̃rs(τ1)− α̃∗

1 − α̃∗
2Φ(τ1, τ2)

�
.

(2.5)

and, similarly, the MLE score for α̃2 is

∂ lnΛ[rt,Θ]

∂α̃2
=

∂

∂α̃2



− 1

σ2

�
T0

0

�����rt −
2�

i=1

s̃i(t,Θ)

�����

2

dt





=
1

σ2

�
T0

0
s(t− τ2)

�
rt −

2�

i=1

s̃i(t,Θ)

�
dt

=
1

σ2

�
R̃rs(τ2)− α̃∗

2 − α̃∗
1Φ(τ1, τ2)

�
,

(2.6)
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where

R̃rs(τ) =

�
To

0
rts

∗(t− τ)dt (2.7)

Φ(τi, τj) =

�
To

0
s(t− τi)s

∗(t− τj)dt. (2.8)

Thus, the MLE equations to be solved for �̃α1, and �̃α2 are

R̃rs(τ1)− α̃∗
1 − α̃∗

2Φ(τ2, τ1) = 0, (2.9)

R̃rs(τ2)− α̃∗
2 − α̃∗

1Φ(τ1, τ2) = 0. (2.10)

We can represent and solve Equation 2.9 to Equation 2.10 by letting Rrs = [R̃rs(τ1), R̃rs(τ2)]T ,

Ω = [α̃1, α̃2]†, and

A =




1 Φ(τ1, τ2)

Φ(τ1, τ2) 1



 . (2.11)

Then the MLE equation becomes

Rrs −AΩ = 0, (2.12)
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and can be easily solved as

�Ω = A−1Rrs, (2.13)

where �Ω = [�̃α1, �̃α2]†. The �Ω is the unbiased efficient estimator that satisfy the equality given

in Equation 2.2.

2.6 Estimation of Time Delay τ1 and Angle of Arrival θt

In this section we derive the MLE equations for τ1 and θt. In this case the estimation

problem is not linear as it was in the amplitude estimation. Although there is no efficient

unbiased estimator for τ1 and θt, MLE can be implemented numerically and it is asymptotically

unbiased and efficient.

The ML score for τ1 is found as

∂ lnΛ[rt,Θ]

∂τ1
= − 1

σ2

�
T0

0

∂

∂τ1

���rt −
2�

i=1

s̃i(t,Θ)
���
2
dt

=
2

σ2
�
��

To

0

�
rt −

2�

i=1

s̃i(t,Θ)

�
2�

i=1

∂s̃∗
i
(t,Θ)

∂τ1
dt

�
.

(2.14)

Thus, the MLE equation to be solved for �τ1 is

�
��

To

0

�
rt −

2�

i=1

s̃i(t,Θ)

�
2�

i=1

∂s̃∗
i
(t,Θ)

∂τ1
dt

�
= 0. (2.15)
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In a similar manner, the MLE score for θt is found as

∂ lnΛ[rt,Θ]

∂θt
=

�
T0

0

∂

∂θt

���rt −
2�

i=1

s̃i(t,Θ)
���
2
dt

=
2

σ2
�
��

To

0

�
rt −

2�

i=1

s̃i(t,Θ)

�
2�

i=1

∂s̃∗
i
(t,Θ)

∂θt
dt

�
.

(2.16)

and the MLE equation to be solved for �θt is

�
��

To

0

�
rt −

2�

i=1

s̃i(t,Θ)]

�
2�

i=1

∂s̃∗
i
(t,Θ)

∂θt
dt

�
= 0. (2.17)

There is no closed form expression for �τ1 and �θt. However, one can obtain �τ1ml and �θtml ,

respectively, by solving the equations Equation 2.15 and Equation 2.17 numerically.

In order to concentrate the likelihood function Equation 2.1 on τ1 and θt we insert �̃α1 and

�̃α2, which are given in Equation 2.13 into the likelihood function and maximize the resulting

likelihood function, with respect to τ1 and θt only, as

max
τ1,θt

�
lnΛ[rt,Θ]

�
= max

τ1,θt



 2

σ2

�
To

0

�����rt −
2�

i=1

�̃αis(t− τi)

�����

2

dt



 , (2.18)

where

τ2 = g(τ1, θt). (2.19)
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Closed form expressions for Equation 2.15-Equation 2.18 are intractable and the MLE must be

evaluated numerically.

2.7 Cramér Rao Lower Bound

In this section the CRLB for the estimates of Θ = [τ1, θt, α1, α2]T is derived. Here, we

assume the perfect knowledge of the noise variance σ2 and the phases of α̃1 and α̃2. α1 and

α2 are the magnitudes of the complex amplitudes α̃1 and α̃2, respectively. Since J is block-

diagonal matrix, having the perfect knowledge of σ2 and phase of the complex amplitudes does

not effect our CRLB analysis on the estimates of Θ = [τ1, θt, α1, α2]T . In order to assess the

CRLB Equation 2.3 for the estimates, we compute elements of the FIM, J, via Equation 2.4

and evaluate J−1 numerically.

For τ1 we differentiate Equation 2.15 and take the expectation as

E

�
∂2 lnΛ[rt,Θ]

∂τ21

�
= E

�
2

σ2
�
�

∂

∂τ1

�
To

0

�
rt −

2�

i=1

s̃i(t,Θ)

�
2�

i=1

∂s̃∗
i
(t,Θ)

∂τ1
dt

��

= E

�
2

σ2
�
��

To

0
−

2�

i=1

∂s̃i(t,Θ)

∂τ1

2�

i=1

∂s̃∗
i
(t,Θ)

∂τ1
dt

��

+ E

�
2

σ2
�
��

To

0

�
rt −

2�

i=1

s̃i(t,Θ)

�
2�

i=1

∂2s̃∗
i
(t,Θ)

∂τ21
dt

��
.

In the second term one can observe that

E

�
rt −

2�

i=1

s̃i(t,Θ)

�
= E [w̃(t)] = 0.
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The first term is a non-random term, thus

E

�
∂2 lnΛ[rt,Θ]

∂τ21

�
= − 2

σ2

�
To

0

����
2�

i=1

∂s̃i(t,Θ)

∂τ1

����
2

dt.

In a similar manner,

E

�
∂2 lnΛ[rt,Θ]

∂θ2
t

�
= − 2

σ2

�
To

0

����
2�

i=1

∂s̃i(t,Θ)

∂θt

����
2

dt.

Then J11 and J22 can be written respectively as

J11 = −E

�
∂2 lnΛ[rt,Θ]

∂τ21

�
=

2

σ2

�
To

0

����
2�

i=1

∂s̃i(t,Θ)

∂τ1

����
2

dt, (2.20)

and

J22 = −E

�
∂2 lnΛ[rt,Θ]

∂θ2
t

�
=

2

σ2

�
To

0

����
2�

i=1

∂s̃i(t,Θ)

∂θt

����
2

dt. (2.21)

It is also noted that J11 in Equation 2.20, which exploits multipath, is always greater than the

FIM element J11 in (50), which considers the multipath to be independent of the direct path,

and shown below

J11 = −E

�
∂2 lnΛ[rt,Θ]

∂τ21

�
=

2

σ2

�
To

0

����
∂s̃1(t,Θ)

∂τ1

����
2

dt.
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This implies that, for this geometry and assumptions, multipath exploitation improves the

accuracy of τ1 estimates, at least in the CRLB sense.

Through mathematical manipulations one can write J11 and J22 in a more explicit form,

respectively, as

J11 =
2

σ2

�
�
|α̃1|2 + |α̃2|2G2

1

� � ∞

−∞
(2πf)2|S(f)|2df

+ 2�
�
α̃1α̃

∗
2G1

� ∞

−∞
(2πf)2e−j2πf(τ1−τ2)|S(f)|2df

�� (2.22)

and

J22 =
2

σ2

�
�
|α̃2|2G2

2

� � ∞

−∞
(2πf)2|S(f)|2 df

�
(2.23)

where

G1 =
∂τ2
∂τ1

=
τ1 + 4 sin θhs/c�

(τ1 cos θt)
2 + (4hs/c+ τ1 sin θt)

2
,

G2 =
∂τ2
∂θt

=
4hsτ1 cos θt/c�

(τ1 cos θt)
2 + (4hs/c+ τ1 sin θt)

2
.

Through Equation 2.9-Equation 2.8 we find the Fisher information matrix elements for α1 and

α2 as

J33 = −E

�
∂2 lnΛ[rt,Θ]

∂α2
1

�
=

2

σ2
, (2.24)
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J44 = −E

�
∂2 lnΛ[rt,Θ]

∂α2
2

�
=

2

σ2
. (2.25)

The off-diagonal elements of the FIM are

J12 = −E

�
∂2 lnΛ[rt,Θ]

∂τ1∂θt

�

= − 2

σ2
�
��

To

0
E

�
−

2�

i=1

∂s̃i(t,Θ)

∂θt

2�

i=1

∂s̃∗
i
(t,Θ)

∂τ1

�
dt

�

− 2

σ2
�
��

To

0
E

��
rt −

2�

i=1

s̃i(t,Θ)

�
2�

i=1

∂2s̃∗
i
(t,Θ)

∂θt∂τ1

�
dt

�
.

(2.26)

Since

E

��
rt −

2�

i=1

s̃i(t,Θ)

�
2�

i=1

∂2s̃∗
i
(t,Θ)

∂θt∂τ1

�
= 0,

J12 =
2

σ2
�
��

To

0

2�

i=1

∂s̃i(t,Θ)

∂θt

2�

i=1

∂s̃∗
i
(t,Θ)

∂τ1
dt

�
. (2.27)

More explicitly, J12 is found as

J12 =
2

σ2
�
�
α̃2α̃

∗
1G2

� ∞

−∞
(2πf)2e−j2πf(τ2−τ1)|S(f)|2df

+
�
|α̃2|2G1G2

� � ∞

−∞
(2πf)2|S(f)|2df

�
.

(2.28)

Since the FIM J is Hermitian symmetric, J21 = J12.
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From Equation 2.4, J13 can be written as

J13 = −E

�
∂2 lnΛ[rt,Θ]

∂τ1∂α1

�
= −E

�
2

σ2

∂

∂α1
�
��

T0

0

�
rt −

2�

i=1

s̃i(t,Θ)

�
2�

i=1

∂s̃∗
i
(t,Θ)

∂τ1
dt

��

= −E

�
2

σ2
�
��

T0

0

∂

∂α1

�
rt −

2�

i=1

s̃i(t,Θ)

�
2�

i=1

∂s̃∗
i
(t,Θ)

∂τ1
dt

��

+ E

�
2

σ2
�
��

T0

0

�
rt −

2�

i=1

s̃i(t,Θ)

�
2�

i=1

∂2s̃∗
i
(t,Θ)

∂τ1∂α1
dt

��
.

The second term of the expected value equals to zero and the first term is non-random, thus

J13 = −E

�
∂2 lnΛ[rt,Θ]

∂τ1∂α1

�
=

2

σ2
�
��

T0

0
ejφ1s(t− τ1)

2�

i=1

∂s̃∗
i
(t,Θ)

∂τ1
dt

�
, (2.29)

where φi is the phase of complex ampiltude α̃i. In similar manner, we obtain J14, J23, J24 and

J34, respectively, as

J14 = −E

�
∂2 lnΛ[rt,Θ]

∂τ1∂α2

�
=

2

σ2
�
��

T0

0
ejφ2s(t− τ2)

2�

i=1

∂s̃∗
i
(t,Θ)

∂τ1
dt

�
(2.30)

J23 = −E

�
∂2 lnΛ[rt,Θ]

∂θt∂α1

�
=

2

σ2
�
��

T0

0
ejφ1s(t− τ1)

2�

i=1

∂s̃∗
i
(t,Θ)

∂θt
dt

�
(2.31)

J24 = −E

�
∂2 lnΛ[rt,Θ]

∂θt∂α2

�
=

2

σ2
�
��

T0

0
ejφ2s(t− τ2)

2�

i=1

∂s̃∗
i
(t,Θ)

∂θt
dt

�
(2.32)
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J34 = −E

�
∂2 lnΛ[rt,Θ]

∂α1∂α2

�
=

2

σ2
�
��

T0

0
ej(φ1−φ2)s(t− τ1)s

∗(t− τ2)dt

�
(2.33)

Through mathematical operations one can write the J13, J14, J23, J24 and J34 in frequency

domain, respectively, as

J13 =
2

σ2
�
�
α1

� ∞

−∞
j2πf |S(f)|2df + α2e

j(φ1−φ2)G1

� ∞

−∞
j2πfe−j2πf(τ1−τ2)|S(f)|2df

�
, (2.34)

J14 =
2

σ2
�
�
α2G1

� ∞

−∞
j2πf |S(f)|2df + α1e

j(φ2−φ1)
� ∞

−∞
j2πfej2πf(τ1−τ2)|S(f)|2df

�
, (2.35)

J23 =
2

σ2
�
�
α2e

j(φ1−φ2)G2

� ∞

−∞
j2πfe−j2πf(τ1−τ2)|S(f)|2df

�
, (2.36)

J24 =
2

σ2
�
�
α2G2

� ∞

−∞
j2πf |S(f)|2df

�
, (2.37)

J34 =
2

σ2
�
�
ej(φ1−φ2)

� ∞

−∞
e−j2πf(τ1−τ2)|S(f)|2df

�
.

(2.38)

Since J is Hermitian symmetric, Jij = Jji so that all the elements of J are provided.
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2.8 Simulations and Discussion

2.8.1 Simulation Results for CRLB

In this section, we provide the simulations results for CRLB for τ1 and θt. The actual

parameters are assumed to be τ1 = 2Rd/c and τ2 = 2Rgr where Rd = 26.92 m and Rgr =

194.74 m, θt = −0.2630 rad and α1 = α2 = 1. The radar is located at hs = 100 m above

the ground. From our convention, negative θt implies that the target is below the radar.

These values were chosen such that the multipath is resolvable with the direct path. Using

Equation 2.1 the following proves useful in simulating the CRLBS,

S(f) ∝ sinc(fTd), sinc(x) := sin(πx)/πx

Our convention is to let the bandwidth refer to 1/Td instead of the classical 2/Td. In all the

simulations thrice the Nyquist rate was used in simulating the rectangular radar pulses.
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In Figure 2, the CRLB on τ1 is shown when multipath is exploited as well as when it is not,

for varying radar bandwidths. In other words, we compare the CRLB(τ1) derived here and

denoted as CRLB(τ1)− exploited to the one derived in (50) but treating τ2 independent of τ1

and denoted as CRLB(τ1)−independent. It is readily seen that through multipath exploitation

the CRLB performs much better. For this simulation we choose the noise variance σ2 = 0.01

which is 20 dB on both the direct and multipath returns. The bandwidths are chosen starting

from 1 MHz to 1000 MHz in multiplicative increments of 10 MHz.
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Figure 2. CLRB Comparison: τ̂1 Multipath Exploited vs Single Path Exploited
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In Figure 3 the CRLB is shown for varying bandwidths starting from 1 MHz to 1000 MHz in

multiplicative increments of 10 MHz. It is readily seen that the CRLB decreases with increasing

bandwidths. For this simulation, the noise variance σ2 = 1.
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Figure 3. τ1CRLB and θtCRLB with respect to Bandwidth
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In Figure 4 the CRLB for τ1 and θt are shown for varying noise variance, σ2. As expected

the CRLB increases with increasing σ2. For this simulation, the bandwidth is 10 MHz.
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Figure 4. τ1CRLB and θtCRLB with respect to σ2
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In Figure 5, the CRLB for α1 and α2 are shown for varying noise variance, σ2. As expected

the CRLB increases with increasing σ2. For this simulation, we assume that |α1| = |α2|.
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Figure 5. α1CRLB and α2CRLB with respect to σ2

It is well known that the CRLB for time-delay estimation is highly optimistic. Previous

studies have shown that the MLE performance for time-delay estimation is much farther away

from the CRLB at low SNRs, see for example (53) and references therein. The MLE converges

to the CLRB only at reasonable SNRs. This behavior of the MLE for time-delay estimation has

prompted the use of other tighter variance bounds such as the Barankin and Ziv-Zakai bounds

which have shown to be much tighter than the CRLB. It remains to be seen however, if the
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multipath exploited MLE performance is much closer to the multipath exploited CRLB derived

here, than their traditional counterpart.

2.8.2 Simulation Results for MLE

In Figure 6 and Figure 7 multipath exploited and single path exploited τ1MSE and multipath

exploited θ̂t are presented, respectively, for the BW= 200 MHz and multipath returns are

resolvable in time-domain. It is shown that, particularly at higher SNR levels, multipath

exploitation is decreasing the mean squared error (MSE) of τ̂1. MLE is evaluated numerically

with Monte Carlo simulation.
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Figure 6. Multipath exploited τ̂1MSE and single path exploited τ̂1MSE with respect to
SNR= 10 log10 2|α1|2/σ2.
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Figure 7. Multipath exploited τ̂1MSE and θ̂tMSE with respect to SNR= 10 log10 2|α1|2/σ2.

In Figure 8, the MSE of α̂1 and α̂2 are presented with respect to noise variance σ2. As

expected increasing σ2 decreases the accuracy of the estimates but more over the MSE increases.
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Figure 8. α1CRLB and α2CRLB with respect to σ2

2.9 Conclusion

Maximum likelihood and the Cramér-Rao lower bounds were derived for the multipath

exploitation problem. A single wideband radar and a target in a known reflecting geometry

were assumed. It was shown here that multipath exploitation offers two advantages, it allows

estimation of the AoA and improves the estimation of the direct path time delay in the CRLB

sense, which was shown analytically. The former was possible as multipath gave rise to virtual

radar sensors, whereas the latter directly followed from parameterizing the multipath time delay

as a function of its direct path.



CHAPTER 3

DIVERSE RECEIVING STRATEGIES IN THE PRESENCE OF

MULTIPATH WITH PRIOR KNOWLEDGE OF THE ENVIRONMENT

3.1 Introduction

This chapter is focused on improving the probability of detection of a radar target by

taking advantage of prior knowledge of the radar-target environment and devising appropriate

detectors based upon the region where the target is located. The improvement is computed

with respect to a conventional detection problem based on a model of the return signal that

accounts only for the direct signal from the target.

Radar detection problems are still challenging in all environments where multipath effects

are present, notwithstanding the fact that they have been widely studied through advanced

electromagnetic modeling (1), (2). One approach to deal with multipath problems is to take

the advantage of diversity (3). In addition, with adaptive radars, prior knowledge about the

environment and its effective parameters enhance the detection performance of radar systems

(4)-(11).

This chapter is organized as in the following. First, we consider a basic case study to

show how to conduct an electromagnetic analysis that takes advantage of prior knowledge

of the environment where the radar operates. As a result, we obtain the propagation time

of each multipath component. Then, the propagation time information is used to partition

30
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the environment into regions where diverse receiving strategies are applied. The criterion to

determine the regions is the amount of overlap, in the time-domain, of the multipath components

of the received signal. The amount of overlap depends on the environment, the location of radar

and target, and the duration of the transmitted pulse. Accordingly, the general received signal

model is specialized within each region to account for the presence of significant overlap or its

absence. Then, within each region, a different receiver is devised thus justifying the statement of

diverse receiving strategies. Neyman-Pearson tests (NP) as optimum detectors, and Generalized

Likelihood Ratio Tests (GLRT) as sub-optimum detectors are devised for each region. Finally,

the performance of two detection strategies based on two distinct multipath structures of a

radar-target environment is presented under the assumption of a zero-mean complex circular

Gaussian noise (CWGN) with known power spectral density (PSD) σ2. One strategy, associated

with NP1 and GLRT1 receivers is considered for highly clumped multipath returns in the

time-domain, while the other strategy, associated with NP2 and GLRT2 receivers, which are

exploiting multipath in the target detection, is taken for entirely resolvable multipath returns

in time-domain. The performance comparison is conducted also particularly in a transition

region, where multipath components are neither entirely resolvable nor highly clumped in time-

domain. A qualitative analysis of the improvement in the target probability of detection with

multipath exploitation is provided.

There are two main contributions in this chapter. First, it is possible to improve the

probability of detection when the multipath components are distinguishable, compared to a

conventional detector that does not take multipath information into account. A qualitative
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analysis is provided for the improvement in the target probability of detection via multipath

exploitation when the multipath components are distinguishable and partially overlap in the

time-domain. Second, it is possible to design detectors that have the best performance based

upon a-priori knowledge of the region where the target is located.

Preliminary results were presented in (36)-(40).

3.2 Multipath Model and Time-Delay Analysis

3.2.1 Multipath Propagation Model

The geometry of the basic radar-target environment, which causes multipath propagation,

is illustrated in Figure 9. We focus on a propagation model that contains only a few parameters

to describe the environment, so as to enable an analytic discussion of the detection problem.

In Figure 9, the origin of the cartesian coordinate system is the location of the radar and the

target is located in a vertical plane at (xt, zt) so that we investigate a 2-D geometry.

A high frequency ray-tracing electromagnetic analysis of this geometry leads to a propaga-

tion model consisting of two rays, with propagation times τ1 and τ2, and provides the following

expression for the received signal of interest

r̃s(t) = α̃1(t)s(t− τ1) + α̃2(t)s(t− τ2), (3.1)

where r̃s(t) and s(t) are the baseband equivalents of the received signal of interest and trans-

mitted signal respectively, α̃1(t) and α̃2(t) are the complex unknown deterministic parameters
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Figure 9. Geometry of the problem: Radar-Target over a Ground Plane.

accounting for propagation and scattering effects, and τ1 and τ2 are the time delays along the

corresponding propagation paths.

The electromagnetic ray-tracing analysis of the environment is always capable to predict

the time-delays associated with each multipath component as shown, for example, in (41), (42),

(49).

3.2.2 Time-Delay Analysis Based on Target Location

In order to conduct a time-delay analysis over the region of interest, we compute time-delays

and associated time-delay differences for all hypothetical locations of the target. In Figure 9,

we have the following parameters:

• Rd: Radial range between radar and target
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• Rg: Ground range between radar and target

• Rgr: Radial range between image of the radar and the target (or between the radar and

image of the target)

• hs: Radar height above ground surface

• ht: Target height above ground surface

• θt: Elevation angle between radar and target

• γg: Grazing angle with ground surface

• βdr: Bistatic angle at target position between radar and its image.

Then, the time-delays and associated time-delay difference for all possible locations of the target

are, (36), (37),

τ1 =
2Rd

c
=

2

c

�
x2
t
+ z2

t
, (3.2)

τ2 =
2Rgr

c
=

2

c

�
x2
t
+ (ht + hs)2, (3.3)

|τ2 − τ1| =
2

c

����
�
x2
t
+ (hs + ht)2 −

�
x2
t
+ z2

t

���� . (3.4)

Based on Equation 3.2-Equation 3.4, we construct a map showing the value of |τ2 − τ1| for all

hypothetical target locations in the region of interest, as shown in Figure 10, to provide an

understanding of how |τ2−τ1| behaves at each range-cell for a given transmitted pulse duration

T = 10 ns.
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(a) Time-Delay Difference (b) Overlap Rate

Figure 10. Time-Delay Mapping Based on Target Location

Additionally, for a given T , we obtain the sub-regions where multipath signal components

overlap, when |τ2−τ1| ≤ T , and those where the multipaths are distinguishable, when |τ2−τ1| >

T . This is shown in Figure 11, when T = 10 ns, and it prompts us to diversify the detection

strategy within each region.
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3.3 Formulation of the Detection Problem

The signal representations and corresponding hypothesis testing problems for each region

are derived. Exploiting the useful received signal model given in Equation 3.1, we assume

s(t) =






1√
T

0 ≤ t ≤ T

0 elsewhere

, (3.5)

α̃1(t) =






unknown τ1 ≤ t ≤ T + τ1

0 elsewhere

, (3.6)

α̃2(t) =






unknown τ2 ≤ t ≤ T + τ2

0 elsewhere

. (3.7)



37

The pulse duration T is assumed to be small compared to the coherence time of the target, so

that α̃1(t) and α̃2(t) can be approximated with two unknown deterministic constants α̃1 and

α̃2, respectively.

Region-I is defined by |τ2 − τ1| � T and the received signal (under the hypothesis where

target is present) is represented as

r̃(t) = α̃1s(t− τ1) + α̃2s(t− τ2) + w̃(t)

� α̃s(t− τ1) + w̃(t)

(3.8)

without any significant loss of the received energy. α̃ is an unknown complex deterministic

parameter, r̃(t) and w̃(t) are the baseband equivalents of the received signal and noise, re-

spectively. Accordingly, the detection problem can be formulated as the following hypothesis

test

H0: r̃(t) = w̃(t)

H1: r̃(t) = α̃s(t− τ1) + w̃(t)

t ∈ [τ1, T + τ1] (3.9)

where [τ1, T + τ1] is the observation interval.
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Region-II is defined by |τ2 − τ1| ≥ T ; hence multipath components are resolvable in time-

domain and exploited in the receiver. Accordingly, the detection problem can be formulated

as

H0 : r̃(t) = w̃(t)

H1 : r̃(t) = α̃1s(t− τ1) + α̃2s(t− τ2) + w̃(t)

(3.10)

where t ∈ [τ1, T + τ2], which is the observation interval. Since |τ2 − τ1| ≥ T , s(t − τ1) and

s(t − τ2) are orthogonal signals, namely we have
�∞
−∞ s(t − τ1) s∗(t − τ2) dt = 0, where (.)∗ is

the complex conjugate operator.

The likelihood ratio test in both regions can be written as

Λ[r̃(t)|Θ] =
pr̃(t)|Θ,H1

(r̃(t)|Θ, H1)

pr̃(t)|H0
(r̃(t)|H0)

, (3.11)

where pr̃(t)|Θ,H1
(r̃(t)|Θ, H1) and pr̃(t)|H0

(r̃(t)|H0) are the likelihood functions, Θ is the vector

of unknown parameters, i.e.

Θ =






[α̃] in Region-I

[α̃1, α̃2]
T in Region-II.

(3.12)

In the Transition Region, the time-delay difference is shorter than the transmitted pulse

duration T but not as short as in region-I, i.e |τ2 − τ1| < T . Thus multipath return signals

along different paths are neither highly clumped nor resolvable in time-domain. The received

signal in the Transition Region under the hypotheses H0 and H1 are the same as Equation 3.10
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in region-II. However, s(t−τ1) and s(t−τ2) are no longer orthogonal signals since |τ2− τ1| < T

and we have
�∞
−∞ s(t− τ1) s∗(t− τ2) dt = ρ, which is a real number in this particular scenario.

3.4 Optimum and Sub-Optimum Detectors

The optimum and sub-optimum detectors are sought assuming that w̃(t) is a zero-mean

complex circular white Gaussian noise (CWGN), with known power spectral density (PSD)

σ2. A conventional approach is adopted based on projecting the received waveform along the

first M functions of an orthonormal basis and letting M diverge. Precisely, having chosen the

basis ß = {φi(t)}∞i=1, the received signal is represented by components Ri = �r̃(t), φi(t)�, where

�·, ·� denotes the scalar product in the space of finite energy signals. Then the likelihood ratio

Equation 3.11 can be written as

Λ[r̃(t)|Θ] = lim
M→∞

ΛM [rM (t)|Θ]

= lim
M→∞

pRM|Θ,H1
(RM|Θ, H1)

pRM|H0
(RM|H0)

,

(3.13)

where RM is the vector containing the first M coefficients of the received signal waveform and

rM (t) is the projection of the received signal on the subspace spanned by the first M functions

of the basis, (44), (51). Since we have zero mean CWGN with PSD σ2, Ri is complex Gaussian

with (i) µi mean and variance σ2 under H1 hypothesis; and (ii) zero mean and variance σ2

under H0 hypothesis. Thus, the likelihood function is readily found as

lim
M→∞

ΛM [rM (t)|Θ] = lim
M→∞

M�
i=1

1
πσ2 exp

�
− |Ri−µi|2

σ2

�

M�
i=1

1
πσ2 exp

�
− |Ri|2

σ2

� , (3.14)
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where µi is the expected value of Ri.

First we assume thatΘ is a known set of parameters in order to deduct the optimal detector.

Although this hypothesis is not realistic for real world radar and sonar problems, it provides

an upper bound for any receiver operating under the same signal model. It is also important

to observe whether a Uniformly Most Powerful (UMP) test exists or does not exist.

3.4.1 Region-I: Multipath returns are highly clumped

We formulate the detection problem, based on Equation 3.9, as

H1: Ri = �r̃(t), φi(t)� =






α̃+ w̃(1), i = 1

w̃(i), i > 1

H0: Ri = �r̃(t), φi(t)� = w̃(i)

(3.15)

where φ1(t) = s(t − τ1), so that µ1 = α̃ and µi �=1 = 0. By evaluating the likelihood ratio

Equation 3.14 with the knowledge of Θ and taking the logarithm, one obtains the log-likelihood

ratio, up to a constant and irrelevant factor, as

lnΛ[r̃(t)|Θ] =
|R1|2 − |R1 − α̃|2

σ2
. (3.16)

Then the corresponding NP test, which we call NP1, is given as, (51; 46),

�
��

2

σ2
α̃∗R1

�
H1

≷
H0

γ1, (3.17)
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where �{.} is the real part operator and γ1 is the threshold. This is a hypothetical test with

the perfect measurement or the knowledge of α̃ in the detector. Although Equation 3.17 is not

a UMP test with respect to α̃, it provides an upper bound to the performance of any practically

implementable detector. GLRT is a common technique to devise detectors with unknown pa-

rameters, particularly when no UMP test exists. GLRT uses the maximum likelihood estimates

(MLE) of unknown parameters under both hypotheses in the likelihood ratio (51), (46).

Thus, the corresponding GLRT detector with respect to α̃ is given as

2

σ2
|R1|2

H1

≷
H0

γ�1, (3.18)

which we call GLRT1. It can be realized with a standard matched-filter followed by square

modulus (51), (46).

3.4.2 Region-II: Multipath returns are entirely resolvable

The basis functions ß = {φi(t)}Mi=1 are selected as

φ1(t) = s(t− τ1) τ1 ≤ t ≤ T + τ1

φ2(t) = s(t− τ2) τ2 ≤ t ≤ T + τ2

(3.19)
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so that the detection problem for region-II becomes

H1: Ri = �r̃(t), φi(t)� =






α̃1 + w̃(1), i = 1

α̃2 + w̃(2), i = 2

w̃(i), i > 2

H0: Ri = �r̃(t), φi(t)� = w̃(i).

(3.20)

By evaluating the likelihood ratio Equation 3.14 in region-II with the knowledge of Θ and

taking the logarithm, we obtain the corresponding log-likelihood ratio, up to a constant and

irrelevant factor, as

lnΛ[r̃(t)|Θ] = −|R1 − α̃1|2 + |R2 − α̃2|2

σ2
+

|R1|2 + |R1|2

σ2
. (3.21)

After simple manipulations, the log-likelihood ratio test, which we call NP2, is derived as

�
��

2

σ2
[α̃∗

1R1 + α̃∗
2R2]

�
H1

≷
H0

γ2, (3.22)

where γ2 is the threshold. This is a hypothetical test with the perfect measurement or the

knowledge of α̃1 and α̃2 in the detector. Additionally, it is not a UMP test with respect to α̃1

and α̃2, thus GLRT approach is applied next.
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GLRT substitutes the unknown signal parameters with Θ̂ = [ˆ̃α1, ˆ̃α2]T in the log-likelihood

ratio Equation 3.21. Θ̂ is the MLE of Θ under H1 that maximizes the corresponding likelihood

function, (38) and (46), i.e.

Θ̂ = [ˆ̃α1, ˆ̃α2]
T = [R1, R2]

T . (3.23)

The corresponding GLRT, which we call GLRT2, can be written as

2

σ2

�
|R1|2 + |R2|2

� H1

≷
H0

γ�2. (3.24)

3.4.3 Transition Region

In the Transition Region, i.e. |τ2−τ1| < T , no particular detector is devised since there is no

stable structure of multipath returns, i.e.
�∞
−∞ s(t−τ1)s∗(t−τ2)dt = ρ where ρ ∈ [−1, 1]. Rather,

we analyze the performance of NP2 and GLRT2, which exploits multipath, in comparison with

NP1 and GLRT1, respectively, which exploits the direct path return only.

3.5 Performance Assessment

In this section, we assess the performance of the proposed detectors GLRT2 Equation 3.24

and NP2 Equation 3.22, which exploit multipath, as well as the conventional detectors GLRT1

Equation 3.18 and NP1 Equation 3.17, which only account for the direct return signals.

Before discussing the performance of these detectors, we need to define the corresponding

probabilities of false alarm and detection.
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3.5.1 Probabilities of False Alarm and Detection

The probability of false alarm of NP1 is

PFANP1 = Q

�
γ1�
|α̃|2

�
(3.25)

yielding the threshold,

γ1 = |α̃|Q−1 (PFANP1) (3.26)

and the corresponding probability of detection,

PDNP1 = Q

�
Q−1(PFANP1)−

�
|α̃|2
σ2/2

�
, (3.27)

where Q(.) and Q−1(.) are the Complementary Cumulative Distribution Function (CCDF), and

inverse CCDF of a standard Gaussian random variable, respectively, (46). The probability of

false alarm of GLRT1 is

PFAGLRT1 = Q
χ
2
2

�
γ�1
�

(3.28)

yielding the threshold

γ�1 = Q−1
χ
2
2
(PFAGLRT1) (3.29)
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and the corresponding probability of detection,

PDGLRT1 = Q
χ
�2
2 (λ)

�
Q−1

χ
2
2
(PFAGLRT1)

�
, (3.30)

where Q
χ
2
2
(.) and Q

χ
�2
2 (λ)(.) are the CCDF of a χ2

2, and a χ�2
2 (λ) where non-centrality parameter

λ = 2|α̃|2/σ2, respectively, (46).

The test statistics of NP2 under both hypotheses are Gaussian, thus the probability of false

alarm is obtained as

PFANP2 = Q

�
γ2�

(|α̃1|2 + |α̃2|2)

�
(3.31)

yielding the threshold,

γ2 = Q−1(PFA)
�
|α̃1|2 + |α̃2|2 (3.32)

and the probability of detection,

PDNP2 = Q

�
Q−1(PFANP2)−

�
|α̃1|2 + |α̃2|2

σ2/2

�
. (3.33)

When we consider GLRT2 under H0, the test statistics is the product between 2/σ2 and

the sum of the square magnitudes of two complex circular Gaussian variables with zero mean
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and variance σ2. It can be shown that this test statistics has χ2
4 distribution. Consequently,

the probability of false alarm can be written as

PFAGLRT2 = Q
χ
2
4

�
γ�2
�

(3.34)

yielding the threshold,

γ�2 = Q−1
χ
2
4
(PFAGLRT2) . (3.35)

However, when we consider GLRT2 under H1, the test statistics is the product between 2/σ2

and the sum of the square magnitudes of two complex circular Gaussian random variables with

non-zero mean and variance σ2. Again, it can be shown that the test statistics has a χ�2
4 (λ12)

distribution, (52). As a consequence, the probability of detection of GLRT2 can be written as

PDGLRT2 = Q
χ
�2
4 (λ12)

�
Q−1

χ
2
4
(PFAGLRT2)

�
(3.36)

where

λ12 =
2

σ2
(|α̃1|2 + |α̃2|2) = λ1 + λ2 (3.37)

where λ1 = 2|α̃1|2/σ2 and λ2 = 2|α̃2|2/σ2. It is also important to note that λ = λ1, i.e. α̃ = α̃1,

in Region-II.
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In the Transition Region no new detectors are devised, but rather we explore the use of

GLRT1 and GLRT2. Accordingly, we first determine their statistical characterizations. Then

the corresponding probabilities of false alarm and detection are provided.

The probabilities of false alarm of NP1 and GLRT1 in the Transition Region are the same

as Equation 3.25 and Equation 3.28, respectively, but the probabilities of detection change and

are obtained as

PDNP1T
= Q

�
Q−1 (PFANP1)−

|α̃1|2 + �{ρα̃∗
1α̃2}�

|α̃1|2σ2/2

�
(3.38)

and

PDGLRT1T
= Q

χ
�2
2 (λT )

�
Q−1

χ
2
2
(PFAGLRT1)

�
(3.39)

where

λT =
2

σ2
|α̃1 + ρα̃2|2. (3.40)

Based on the received signal definition in Equation 3.10 and the test statistics of the NP2

Equation 3.22 and GLRT2 Equation 3.24, the probabilities of false alarm and detection in

the Transition Region are not the same as Equation 3.31, Equation 3.33, Equation 3.34 and

Equation 3.36, respectively. The covariance of the random variables R1 and R2 in detectors has



48

to be taken into account to characterize the probability distribution functions. The covariance

of R1 and R2 is readily found by COV [R1, R∗
2] = ρσ2.

The probabilities of false alarm and detection of NP2 are obtained respectively as

PFANP2T
= Q

�
γ2�

|α̃1|2 + |α̃2|2 + 2ρ�{α̃1α̃∗
2}

�
, (3.41)

PDNP2T
= Q

�
Q−1(PFANP2T

)−

�
|α̃1|2 + |α̃2|2 + 2ρ�{α̃1α̃∗

2}
σ2/2

�
. (3.42)

The test statistics of GLRT2 is the sum of square magnitudes of two correlated complex

circular Gaussian random variables R1 and R2 with the covariance matrix CR, where

CR = σ2




1 ρ

ρ 1



 , (3.43)

by letting R = [R1, R2]T . We represent Equation 3.24 in the Transition Region with two

statistically independent random variables, obtaining

[(1 + ρ)Rs + (1− ρ)Rd]
H1

≷
H0

γ�2, (3.44)
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where Rs = |R1+R2|2
σ2(1+ρ) , and Rd = |R1−R2|2

σ2(1−ρ) . They are two independent random variables that

have χ2
2 distribution under H0, χ�2

2 (λs) and χ�2
2 (λd) distributions, respectively, under H1, where

λs =
(1 + ρ)|α̃1 + α̃2|2

σ2
(3.45)

λd =
(1− ρ)|α̃1 − α̃2|2

σ2
(3.46)

so that the test statistics of Equation 3.44 is

TR = (1 + ρ)Rs + (1− ρ)Rd. (3.47)

Now we can compute the probabilities of false alarm and detection for Equation 3.44. The

probability of false alarm can be obtained as

PFAGLRT2T
= P

�
TR|H0 > γ�2

�
= P

�
2�

k=1

ckχ
2
2 > γ�2

�
, (3.48)

where TR|H0 is the test statistics of Equation 3.44 under H0, c1 = 1 + ρ, and c2 = 1 − ρ are

the constant coefficients of two independent χ2
2 random variables. By the theorem for finite

linear combinations of independent central χ2 probabilities (see Appendix-B, (48)) we obtain

the probability of false alarm explicitly as

PFAGLRT2T
= F1(1 + ρ, γ�2) + F2(1− ρ, γ�2)

=
1 + ρ

2ρ
exp

�
− γ�2
2(1 + ρ)

�
− 1− ρ

2ρ
exp

�
− γ�2
2(1− ρ)

�
.

(3.49)
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In a similar manner, the probability of detection can be obtained as

PDGLRT2T
= P

�
TR|H1 > γ�2

�
= P

�
2�

k=1

ckχ
2
2(λ

�
k
) > γ�2

�
, (3.50)

where TR|H1 is the test statistics of Equation 3.44 under H1, c1 = 1 + ρ, c2 = 1 − ρ are the

constant coefficients of two independent χ�2
2 (λ

�
k
) distributions with non-centrality parameters

λ�
1 = λs and λ�

2 = λd, which are given by Equation 3.45 and Equation 3.46, respectively. The

cumulative distribution function of the sum of M independent χ2
vk
(λk) with different coefficients

is given in Appendix-C, (48). As a consequence, the probability of detection is obtained in

analytic form as

PDGLRT2T
=

1

2
+

1

π

� ∞

0

sin θ(u)

uρ(u)
du, (3.51)

where

θ(u) =
1

2

2�

k=1

�
2 tan−1(cku) + λkcku(1 + c2

k
u2)−1

�
− 1

2
γ2u,

ρ(u) =
2�

k=1

(1 + c2
k
u2)

1
2 exp

�
1

2

2�

k=1

λk(cku)2

(1 + c2
k
u2)

�
.

3.5.2 Simulation Results and Discussion

Now that the appropriate probabilities for the detectors in consideration have been intro-

duced, we are ready to compare the performance of these detectors. Since GLRT1 and GLRT2

are not optimum detectors, it is necessary to assess the performance loss with respect to NP1
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and NP2 which assume perfect knowledge of signal parameters. Thus, we first compare (i)

GLRT2 with NP2 and GLRT1 with NP1 to emphasize the behavior of the GLRT detectors

with the corresponding upper bound given by the NP detectors with a given set of probability

of false alarm (PFA) values. Then, we compare (ii) NP2 with NP1 to emphasize the relative be-

haviors of the two upper bound detectors; and, (iii) GLRT2 with GLRT1 to show that GLRT2

outperforms GLRT1 when multipath returns are resolvable in time-domain.
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Figure 12. Performance Assessment of GLRT2 with respect to NP2:
Detection performance of GLRT2 Equation 3.24 detector with PDGLRT2 Equation 3.36 and

NP2 Equation 3.22 clairvoyant detector with PDNP2 Equation 3.33.
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The performance of the proposed GLRT2 and NP2 are presented in Figure 12. The degra-

dation in detection performance is less than 2 dB in SNR for a low probability of false alarm,

i.e. PFA = 10−3. In practice, imperfect prior knowledge on τ1 and τ2 can lead to a further

performance loss.
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Figure 13. Performance Assessment of GLRT1 with respect to NP1:
Detection performance of GLRT1 Equation 3.18 detector with PDGLRT1 Equation 3.30 and

NP1 clairvoyant detector Equation 3.17 with PDNP1 Equation 3.27.

For the convenience of making a comparison, we provide also in Figure 13 the performance of
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the conventional GLRT1 and NP1, which are tested under the same multipath environment as

GLRT2 and NP2. The degradation in Figure 13 is 1 dB in SNR for the same PFA = 10−3. The

fact that the degradation between NP1 and GLRT1 is smaller than the degradation between

GLRT2 and NP2 is expected since GLRT2 requires the estimation of two unknown parameters.

3.5.2.1 Performance Comparison in Region-II

The primary goal of this chapter is to show that diverse receiving strategies can be utilized

in challenging multipath radar-target environments for better detection performances. In a

conventional approach, GLRT1 would be applied for all regions of a radar-target geometry

such as those described in this chapter. In the proposed approach, NP1 and GLRT1 are

devised as optimum and sub-optimum detectors in Region-I only, whereas NP2 and GLRT2 are

devised as optimum and sub-optimum detectors in Region-II. Thus it is important to assess

the performance improvement of (i) NP2 relative to NP1; and, (ii) GLRT2 relative to GLRT1,

particularly when multipath returns are resolvable as in Region-II.

In Figure 14 we compare NP2 and NP1 for various values of the ratio λ2/λ1 with respect

to the SNR value of the direct path return, namely SNR = 10 log10 2|α̃1|2/σ2. Both receivers

are tested under the same multipath environment. Despite of NP1, NP2 exploits the reflected

path return which is assumed to be proportional to the direct path strength. Thus, Figure 14

assesses the quantitative measure of the optimal performance improvement of the receiver that

exploits multipath compared to the traditional receiver that relies on the direct path return

only. We observe that (i) the performance of NP2 is always superior to the one of NP1 that

the improvement amount depends upon the ratio λ2/λ1 between the multipath returns; and,
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(ii) their performance merges when the second path return is weak compared to the direct path

return, i.e. λ2 = 0.01λ1.
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Figure 14. Performance Assessment of NP2 and NP1 at PFA = 10−2:
Detection performance of detectors NP2 Equation 3.22 with PDNP2 Equation 3.33 and NP1

Equation 3.17 with PDNP1 Equation 3.27 for various values of the ratio λ2
λ1

= |α̃2|2
|α̃1|2 .
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In Figure 15 we compare sub-optimum receivers GLRT2 and GLRT1, under the same

multipath environment, with respect to the SNR value of the direct path return. In general,

the performance of GLRT2 is also superior to the one of GLRT1, depending upon the SNR

value of the multipath returns. However, GLRT1 outperforms GLRT2 when the second path

return is weak compared to the direct path return. This is well understandable because GLRT2

has an extra cost of estimating a second unknown parameter, which requires a certain level of

SNR.
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Figure 15. Performance Assessment of GLRT2 and GLRT1 at PFA = 10−2:
Detection performance of detectors GLRT2 Equation 3.24 with PDGLRT2 Equation 3.36, and

GLRT1 Equation 3.18 with PDGLRT1 Equation 3.30 for various values of the ratio λ2
λ1

= |α̃2|2
|α̃1|2 .
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In Figure 16 we present another comparison for a lower value of the probability of false

alarm, in order to emphasize that GLRT2 outperforms GLRT1 unless λ2 � λ1. One can observe

that (i) for lower values of the probability of false alarm it is even more evident that GLRT2

outperforms GLRT1; and, (ii) the probability of detection is reduced when the probability of

false alarm is reduced, which is a general trend.
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Figure 16. Performance Assessment of GLRT2 and GLRT1 at PFA = 10−5:
Detection performance of detectors GLRT2 Equation 3.24 with PDGLRT2 Equation 3.36 and

GLRT1 Equation 3.18 with PDGLRT1 Equation 3.30, for various values of the ratio λ2
λ1

= |α̃2|2
|α̃1|2 .
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3.5.2.2 Performance Comparison in the Transition Region

The performance in the Transition Region depends upon the degree of overlap of the multi-

path returns. Therefore we perform a comparison of the two detection strategies based upon the

correlation coefficient of the multipath returns. In the following analysis we assume |α̃1| = |α̃2|,

so that direct and reflected path returns have same SNR value, i.e. λ1 = λ2.
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Figure 17. PDGLRT2T
versus PDGLRT1T

when ρ = 0.01.
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First, we compare the two detectors assuming very low and very high correlation of mul-

tipath signal returns: (i) ρ = 0.01 and (ii) ρ = 0.99. In these two extreme cases, we observe

that (1) when the correlation coefficient is very low the signals are essentially distinguishable

and the probability of detection behaves similar to what was found in Region-II, as shown in

Figure 17; and, (2) when the correlation coefficient is very high then the signals are essentially

highly clumped and the probability of detection behaves similar to what was found in Region-I,

as shown in Figure 18.

−4 −2 0 2 4 6 8 10 12 14 16 18 20 22
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

PDGLRT2T
vs PDGLRT1T

at PFA = 10−2; ρ = 0.99; α1 = α2

SNR (dB) 10log10(2|α1 + ρα2|2/σ2)

P
D

 

 

PDGLRT2T

PDGLRT1T

Figure 18. PDGLRT2T
versus PDGLRT1T

when ρ = 0.99.



59

In fact, ρ = 0.01 and ρ = 0.99 do not belong to the Transition Region but to Region-II

and Region-I, respectively. However, it is necessary with Figure 17 and Figure 18 to validate

the expressions of the probabilities of false alarm and detection in the Transition Region, i.e.

Equation 3.39, Equation 3.49 and Equation 3.51.
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Figure 19. PDGLRT2T
versus PDGLRT1T

when ρ = 0.5 andα̃1 = α̃2.

Second, we present the performance of the detectors when ρ = 0.5. Our results indicate

that the performance of the GLRT2 detector depends on the phase difference between the first
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Figure 20. PDGLRT2T
versus PDGLRT1T

when ρ = 0.5 and α̃2 = α̃1ejπ/2.

and second returns, since the correlation of multipath signal returns are non-negligible. Thus,

two extreme situations, in-phase and out-of-phase, are considered in Figure 19 and Figure 20,

respectively. When α̃1 and α̃2 are in phase, the performance of GLRT2 is always superior to

the one of GLRT1, while, when α̃1 and α̃2 are out-of-phase, the performance of GLRT2 is only

superior to GLRT1 for SNR values above 5 dB. This occurs because GLRT2 is affected by

the correlation coefficient since it accounts for two signals, while GLRT1 is independent of the

correlation coefficient because it exploits the direct signal only.
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Figure 21. Improvement in PD (PDGLRT2T
− PDGLRT1T

):

The GLRT2 detector threshold γ�2 is fixed when PFAGLRT2 = 10−5 by Equation 3.35.

In Figure 21, the increase in the target probability of detection, due to the multipath

exploited strategy, is presented on a map of the radar-target environment. Constructive and

destructive effects of multipath is also shown in the sense of PD at a certain SNR level. The

improvement in the target probability of detection of GLRT2 relative to GLRT1 at any hy-

pothetical target location in the multipath environment is presented when γ�2, which is the

threshold for GLRT2, is fixed at PFAGLRT2 = 10−5 by Equation 3.35. However, PFAGLRT2T

varies across the Transition Region since it depends on ρ as shown in Equation 3.49. Thus, in

order to compare two detectors at the same level of PFA we make PFAGLRT1T
= PFAGLRT2T
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Figure 22. Value PFAGLRT2T
over the Region of Interest when PFAGLRT2 = 10−5:

A map that shows the value of PFAGLRT2T
when GLRT2 threshold γ�2 is set via Equation 3.35

when PFAGLRT2 = 10−5.

across all regions by changing γ�1 of GLRT1. It is also assumed that |α̃1| = |α̃2| and SNR =

10 log10(2|α̃1|2/σ2) = 12 dB. For the convenience of a complete analysis, in Figure 22 we present

the pattern of PFAGLRT2T
across the area of interest with γ�2 set by PFAGLRT2 = 10−5. It is

noted that even if Constant False Alarm Rate (CFAR) property of the GLRT is incorporated

to GLRT2 by estimating the noise variance σ2, GLRT2 would not hold the CFAR property

in the transition region since PFAGLRT2T
depends on the correlation coefficient ρ between the

multipath returns.
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3.5.2.3 Performance Comparison in Region-I

We have not presented a particular performance comparison in Region-I. Rather, in Fig-

ure 17 and Figure 21 we have shown that both NP2 and GLRT2 merge to NP1 and GLRT1,

respectively, in Region-I.

3.6 Conclusion

We considered the detection of a target by a radar in a multipath environment. We showed

that by taking advantage of the multipath it is possible, in general, to increase the probability

of detection of the target, compared to a conventional detection problem based on a model of

the return signal that accounts only for the direct signal return from the target.

Multipath is accounted for by leveraging on prior knowledge of the environment where the

radar operates. Using this prior knowledge and electromagnetic high-frequency ray-tracing

analysis, we can predict the time of arrival of each multipath return depending upon the as-

sumed location of the target. In the case study considered, we show that the environment

can be divided into three regions: (1) Region-II where multipath components can be clearly

distinguished and where the probability of detection is improved by properly accounting for

the multipath; (2) Region-I where multipath components cannot be distinguished and there is

no possibility of improving the probability of detection; and, (3) the Transition Region where,

depending upon the SNR of each individual component and the correlation coefficient of the

multipath components, it is possible to improve upon a conventional detector. Thus, it is also

shown here that diverse receiving strategies, which are optimum in the particular regions of the

multipath environment, can be applied to exploit the best performing receivers.
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The performance comparison of two GLRT detectors which are devised based on two extreme

cases of a two-ray multipath scenario is presented. GLRT2 assumes that multipath returns are

entirely resolvable in time-domain while GLRT1 assumes highly clumped multipath returns in

time-domain. It is shown that the performance of GLRT2 depends on the signal strength at the

reflected path return as well as the correlation between the direct and reflected path returns.

In the transition region, where multipath returns are neither entirely resolvable nor highly

clumped in time-domain, a performance comparison of the GLRT2 and GLRT1 is conducted

at various values of correlation coefficient ρ. The probability of detection increase is presented

on a map of radar-target environment. Constructive and destructive effects of multipath is also

shown in the sense of PD at a certain SNR level.

We provide a quantitative analysis of the improvement in the target probability of detection

by multipath exploitation in the detection strategy assuming a complex Gaussian noise envi-

ronment. In general, when the signal returns are distinguishable, GLRT2 improves the target

probability of detection above GLRT1. This occurs notwithstanding the cost of estimating a

second unknown parameter and it requires the strength of the second multipath component to

be above a certain threshold.

This chapter provides a method to account for multipath as well as the quantitative analysis

of performance increase. The method was explained by referring to a basic case study scenario,

however the approach is quite general and it could be extended to more complex environments.
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Appendix A

MATHEMATICAL OPERATIONS ON FISHER INFORMATION

MATRIX

A.1 J11

From Equation 2.20 one can write
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We first deal with the first term
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The second term
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The third term
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As a result J11 can be written as

J11 =
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A.2 J22

In similar manner one can write J22 Equation 2.21 as
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A.3 J12
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A.4 J13

From Equation 2.29 we can write that
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A.5 J15
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FINITE LINEAR COMBINATIONS OF χ2 PROBABILITIES

Suppose constant coefficients c1 > c2 > · · · > cm > 0.

Theorem: If γ > 0, then
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CUMULATIVE DISTRIBUTION FUNCTION OF THE LINEAR

COMBINATION OF INDEPENDENT χ2
VK
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