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Summary

Restriction varieties are a fundamental class of subvarieties of orthogonal flag va-

rieties. They parameterize isotropic partial flags satisfying certain rank conditions

with respect to a flag that is not necessarily isotropic. Orthogonal Schubert varieties

are examples of restriction varieties when the flag is isotropic. The intersection of a

generic Type A Schubert variety with the orthogonal flag variety is also an example

of a restriction variety. These two examples serve as two extremal cases; restriction

varieties interpolate between these two examples. This thesis focuses on restriction

varieties in the orthogonal Grassmannian OG(k, n), we will refer to them as restriction

varieties for brevity. The goal of this thesis is to study the singularities of restriction

varieties.

We introduce a resolution of singularities for restriction varieties that is inspired by

the Bott-Samelson/Zelevinsky resolution for Schubert varieties but is necessarily more

complicated due to the richer geometry of restriction varieties. We use the resolution

of singularities to study the singularities of a restriction variety. Our results rely on

studying the exceptional locus of the resolution; we categorize the orbits in the image

of the exceptional locus and we compute the dimension of the fibers of the resolution

over each orbit.

Using a lemma that relates the image of the exceptional locus to the singularities

of the restriction variety when the resolution is not a divisorial contraction, we show

that certain components of the exceptional locus have images inside the singular locus.

For the components that are excluded from these results, we study the tangent space

to the restriction variety at a point. We find conditions for when the images of the
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SUMMARY iii

components lie inside the singular locus. We conclude by illustrating how the results

presented can be used to describe the singularities of a restriction variety.
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[
L1 ⊆ Q3

6 ⊆ Q1
8

]
35

7 Definition of Ṽ for V =
[
L6 ⊆ L7 ⊆ Q2

15

]
37

8 Definition of Ṽ for V =
[
L7 ⊆ Q5

15 ⊆ Q2
25

]
38

9 Definition of Ṽ for V =
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CHAPTER 1

Introduction

There are several ways of defining Schubert varieties in G(k, n). Here we define

them in a setting that is not common in the literature but that will generalize to

restriction varieties in a straight-forward way: We use sequences whose steps corre-

spond to rank conditions giving the Schubert variety. Let W be an n-dimensional

vector space over the complex numbers C and consider G(k,W ) = G(k, n), the Grass-

mannian of k-planes on W . We define a Schubert variety Σ in G(k, n) in terms of a

fixed complete flag, that is, a nested sequence of subspaces

0 ⊆ W1 ⊆ · · · ⊆ Wn−1 ⊆ Wn = W

with dimWi = i. Consider a subsequence W• of length k:

Wn1 ⊆ · · · ⊆ Wnk .

The Schubert variety Σ associated to W• is defined as the closure of the locus

Σ(W•)
0 = {Λ ∈ G(k, n) | dim (Λ ∩Wni) = i for all 1 ≤ i ≤ k} .

If there are steps in W• with consecutively increasing dimensions, the number of

independent rank conditions is less than the number of steps in the sequence. In this

case, the Schubert variety Σ(W•) can be defined in a more concise way by considering

only the largest dimensional step in each group of steps with consecutively increasing

dimensions.

1



1. INTRODUCTION 2

EXAMPLE 1.1. Let Σ be the Schubert variety in G(5, 17) associated to the se-

quence

W8 ⊆ W9 ⊆ W10 ⊆ W11 ⊆ W12 .

Then Σ is defined as the closure of the locus

Σ0 = {Λ ∈ G(5, 17) | dim (Λ ∩W12) = 5} .

In other words, Σ is just the variety of 5-planes Λ contained in W12; it is isomorphic

to G(5, 12). Such Λ necessarily intersect W11 in dimension 4, W10 in dimension 3

and so on. In this example, the defining sequence gives only one independent rank

condition.

EXAMPLE 1.2. Let Σ be the Schubert variety in G(5, 17) associated to the se-

quence

W2 ⊆ W3 ⊆ W4 ⊆ W11 ⊆ W12 .

This means Σ is defined as the closure of the locus

Σ0 = {Λ ∈ G(5, 17) | dim (Λ ∩W4) = 3 and dim (Λ ∩W12) = 5} .

The rest of the steps are naturally satisfied for such k-planes Λ, so there are only two

independent rank conditions defining Σ.

EXAMPLE 1.3. Let Σ be the Schubert variety in G(7, 17) given by the sequence

W2 ⊆ W6 ⊆ W7 ⊆ W11 ⊆ W12 ⊆ W13 ⊆ W15 .

This variety is defined as the closure of the locus

Σ0 = {Λ ∈ G(7, 17) | dim(Λ ∩W2) = 1, dim(Λ ∩W7) = 3,

dim(Λ ∩W13) = 6, dim(Λ ∩W15) = 7} .

Four independent rank conditions define Σ in this example.



1. INTRODUCTION 3

In order to define Schubert varieties in G(k, n) in a concise way by just not-

ing the independent rank conditions, we introduce partitions. Define the partition

(nα1
a1
, . . . , nαtat ) associated to W• : Wn1 ⊆ · · · ⊆ Wnk as

αl =
∣∣∣ {ni in W•

∣∣ ni ≤ nal , al − i = nal − ni
} ∣∣∣ for all 1 ≤ l ≤ t .

In other words, al marks the largest dimensional step in each group of steps with

consecutively increasing dimensions and αl counts the number of steps in the group.

Note that we have al =
∑l

i=1 αi and at = k. The Schubert variety Σ in G(k, n)

associated to the partition (nα1
a1
, . . . , nαtat ) is given by t independent rank conditions

and is defined as the closure of the locus

Σ0 =
{

Λ ∈ G(k, n)
∣∣ dim

(
Λ ∩Wnal

)
= al for all 1 ≤ l ≤ t

}
.

Being homogeneous under the action of GL(n), the open cell Σ0 is smooth.

EXAMPLE 1.4. The partition associated to the Schubert variety in G(5, 17) given

by the sequence

W8 ⊆ W9 ⊆ W10 ⊆ W11 ⊆ W12

is (125).

EXAMPLE 1.5. The partition associated to the Schubert variety in G(5, 17) given

by the sequence

W2 ⊆ W3 ⊆ W4 ⊆ W11 ⊆ W12

is (43, 122).

EXAMPLE 1.6. The partition associated to the Schubert variety in G(7, 17) given

by the sequence

W2 ⊆ W6 ⊆ W7 ⊆ W11 ⊆ W12 ⊆ W13 ⊆ W15

is (21, 72, 133, 151).
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The following proposition recalls the dimension of a Schubert variety in the se-

quence and the partition notations.

PROPOSITION 1.7. The dimension of a Schubert variety Σ in G(k, n) associ-

ated to the sequence W• : Wn1 ⊆ · · · ⊆ Wnk or the partition (nα1
a1
, . . . , nαtat ) is given

by

dim Σ =
k∑
i=1

(ni − i) =
t∑
l=1

αl(nal − al) .

Proof. The second equality is just the translation between the sequence notation

and the partition notation. We prove the first equality using induction on k. If k = 1

then Σ is isomorphic to the projective space of dimension n1 − 1 and the equality

holds. Now suppose the proposition holds up to k − 1. Let Σ′ be the Schubert

variety of (k − 1)-planes defined by the sequence obtained by omitting Wnk from

W• . Consider the map f : Σ → Σ′ defined by f : Λ 7→ Λ ∩ Wnk−1
. The map f

maps Σ onto Σ′. By the theorem on the dimension of the fibers of a morphism, we

have dim Σ = dim Σ′ + dim f−1(L) for a general point L in Σ′. For general L ∈ Σ′,

the inverse image f−1(L) = {Λ ⊆ Wnk | L ⊆ Λ} is isomorphic to the Grassmannian

G(1, nk − (k − 1)) and hence has dimension nk − k. This proves the proposition. �

1. The Bott-Samelson/Zelevinsky Resolution

Schubert varieties in the Grassmannian admit a natural resolution π : Σ̃→ Σ such

that the image of the exceptional locus of π is equal to the singular locus of Σ. Let Σ

be given by the partition (nα1
a1
, . . . , nαtat ) and let Σ̃ be the Schubert variety in the flag

variety F (a1, . . . , at;n) defined by

Σ̃ =
{

(T 1, . . . , T t) ∈ F (a1, . . . , at;n)
∣∣ T l ⊆ Wnal

for all 1 ≤ l ≤ t
}
.

Since Σ̃ is an iterated tower of Grassmannians, it is smooth and irreducible. The

natural projection π : F (a1, . . . , at;n)→ G(k, n) given by (T 1, . . . , T t) 7→ T t maps Σ̃

onto Σ and the map is injective over the smooth open cell Σ0. The inverse image
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π−1(Λ) of a general point Λ ∈ Σ0 is determined uniquely as

T l = Λ ∩Wnal
, 1 ≤ l ≤ t .

By Zariski’s Main Theorem, π is an isomorphism over Σ0 and hence a resolution of

singularities of Σ.

The map has positive dimensional fibers over the locus of k-planes Λ with the

property that dim(Λ ∩Wnal
) > al for some 1 ≤ l ≤ t − 1. Let Σsl be the closure of

the locus

Σ0
sl

=
{

Λ ∈ Σ
∣∣ dim

(
Λ ∩Wnal

)
= al + 1

}
.

The exceptional locus of π consists of the union of the inverse images of Σsl for all

1 ≤ l ≤ t − 1. Let us study the codimension of the components of the exceptional

locus of π. Over each Σsl , the inverse image Σsl is irreducible of codimension

codim
(
π−1(Σsl)

)
= codim (Σsl)− dim

(
π−1(Λ)

)
for a general Λ ∈ Σsl . By Proposition 1.7 we have

codim (Σsl) = αl(nal − al) + αl+1(nal+1
− al+1)

− (αl + 1)(nal − al − 1)− (αl+1 − 1)(nal+1
− al+1)

= nal+1
− nal − (al+1 − al) + αl + 1 .

On the other hand, for a general Λ ∈ Σsl we have

π−1(Λ) = {(T 1, . . . , T t) | T g = Λ ∩Wnag for all 1 ≤ g ≤ t, g 6= l

and T l−1 ⊆ T l ⊆ Λ ∩Wnal
}

So, for an element of π−1(Λ), the coordinate T l is the only one that is not determined

uniquely and it can be parameterized by G(al−al−1, al+1−al−1). This Grassmannian
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has dimension al − al−1 = αl. Therefore we have

codim
(
π−1(Σsl)

)
= nal+1

− nal − (al+1 − al) + 1 ≥ 2

since nal+1
− nal ≥ al+1 − al + 1.

This shows that a component of the exceptional locus of π has codimension larger

than 1. This observation with the following lemma determines the singular locus of

a Schubert variety.

LEMMA 1.8. ([7], Lemma 2.3) Let f : X → Y be a birational morphism from a

smooth, projective variety X onto a normal projective variety Y . Assume that f is

an isomorphism in codimension one. Then p ∈ Y is a singular point if and only if

f−1(p) is positive dimensional.

COROLLARY 1.9. The image of the exceptional locus of the resolution of sin-

gularities π : Σ̃→ Σ is equal to the singular locus of Σ.

EXAMPLE 1.10. The Schubert variety Σ in G(5, 17) associated to the partition

(125) or the sequence

W8 ⊆ W9 ⊆ W10 ⊆ W11 ⊆ W12

is smooth, this is the Grassmannian G(5, 12). In this case, the resolution of singular-

ities has no positive dimensional locus. The variety Σ̃ is given by

Σ̃ =
{
T 1 ∈ G(5; 17)

∣∣ T 1 ⊆ W12

}
and is identical to Σ.

EXAMPLE 1.11. Consider the Schubert variety Σ in G(5, 17) given by the parti-

tion (43, 122). The variety Σ̃ is given by

Σ̃ =
{

(T 1, T 2) ∈ F (3, 5; 17)
∣∣ T 1 ⊆ W4 and T 2 ⊆ W12

}
.
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The projection π : (T 1, T 2) 7→ T 2 maps Σ̃ onto Σ. The map π is positive dimensional

over the locus

{Λ ∈ G(5, 17) | dim(Λ ∩W4) > 3}

which also equals the singular locus of Σ.

EXAMPLE 1.12. For the Schubert variety given by the partition (21, 72, 133, 151),

the variety Σ̃ is defined as

Σ̃ = {(T 1, T 2, T 3, T 4) ∈ F (1, 3, 6, 7; 17) | T 1 ⊆ W2, T 2 ⊆ W7,

T 3 ⊆ W13, T 4 ⊆ W15} .

The projection π : (T 1, T 2, T 3, T 4) 7→ T 4 maps Σ̃ onto Σ. The exceptional locus

consists of the union of the inverse images of the closures of the following loci:

Σ0
s1

= {Λ ∈ G(7, 17) | dim(Λ ∩W2) = 2, dim(Λ ∩W7) = 3,

dim(Λ ∩W13) = 6, dim(Λ ∩W15) = 7} .

Σ0
s2

= {Λ ∈ G(7, 17) | dim(Λ ∩W2) = 1, dim(Λ ∩W7) = 4,

dim(Λ ∩W13) = 6, dim(Λ ∩W15) = 7} .

Σ0
s3

= {Λ ∈ G(7, 17) | dim(Λ ∩W2) = 1, dim(Λ ∩W7) = 3, dim(Λ ∩W13) = 7} .

Consequently the singular locus of the Schubert variety Σ is given by

Σsing = Σs1 ∪ Σs2 ∪ Σs3 .

REMARK 1.13. The subvarieties Σsl of the Schubert variety Σ correspond to the

hooks in the Young diagram of Σ.
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2. Outline of Results

This thesis presents a resolution of singularities and gives a partial description of

the singularities of restriction varieties in OG(k, n). The Bott-Samelson/Zelevinsky

resolution and the picture described in the previous section for Schubert varieties in

G(k, n) serve as a starting point.

One of the major differences of the restriction varieties from Schubert varieties

in this study is that a component of the exceptional locus of the resolution of sin-

gularities introduced here does not have codimension larger than 1 in general. We

describe components with this property and give examples in our discussion. Also,

since restriction varieties are much more general than Schubert varieties, their com-

binatorial nature is more involved. This is reflected in the complicated statements

of the results; we hope to remedy this by presenting lots of examples that unveil the

intuition behind the general formulations.

In Chapter 2, we review restriction varieties. The definition and properties of

restriction varieties are governed by basic facts about quadrics. We recall these prop-

erties and explain the conditions required to define restriction varieties. We introduce

the partition notation for restriction varieties which is central in the statements of

our results. We also introduce basis sequences which give a convenient point of view

for studying the tangent space to a restriction variety.

In Chapter 3, we introduce a resolution of singularities for restriction varieties. We

start by giving examples that illustrate the ideas behind the construction and then

give the general definition. The definition of the resolution of singularities becomes

more apparent when considered via a diagram; we explain this diagram throughout

our discussions and emphasize that it can be used to define the resolution of singu-

larities in general.

In Chapter 4, we study the exceptional locus and determine which components

have codimension larger than 1. We prove a lemma that allows us to show that the
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image of a component of the exceptional locus with codimension larger than 1 lies

in the singular locus of the restriction variety. This gives a partial description of the

singular locus. We also observe that there are components of the exceptional locus

with codimension 1 in general.

In Chapter 5, we study the components of the exceptional locus with codimension

equal to 1. We present conditions under which the image of a component of the ex-

ceptional locus with codimension 1 is contained in the singular locus of the restriction

variety. We study arcs contained in the restriction variety through a point to show

singularity at a point, and hence along the orbit that contains the point.

In Chapter 6, we present examples where we describe the singular locus of several

restriction varieties, presenting concrete cases of our previous observations. We con-

sider orthogonal Schubert varieties and show the overlap between our notation and

the permutation notation which the existing literature on Schubert varieties usually

uses.



CHAPTER 2

Restriction Varieties in OG(k, n)

1. Preliminaries on Restriction Varieties

In this chapter, we define restriction varieties and review their basic properties.

Let W be an n-dimensional vector space over the complex numbers C and Q a non-

degenerate symmetric bilinear form on W . A linear space Λ ⊆ W is called isotropic

with respect to Q if γT1 Qγ2 = 0 for all γ1, γ2 ∈ Λ. Let FQ denote the quadratic

polynomial associated to Q. A k-plane Λ is isotropic with respect to Q if and only

if its projectivization is contained in the quadric hypersurface defined by FQ. The

orthogonal Grassmannian OG(k, n) parameterizes k-dimensional subspaces of W that

are isotropic with respect to Q. Equivalently this is the Fano variety of (k−1)-planes

contained in a quadric hypersurface in PW .

Let Lnj be an isotropic linear space of vector space dimension nj. In case 2nj = n

we denote isotropic linear spaces in different connected components as Lnj and L′nj .

Let Qri
di

denote a subquadric of corank ri cut out by a di-dimensional linear section

of Q and denote this linear space by Qri
di

. Let FQrd denote the restriction of F to Qri
di

so that Qr
d is given by the zero locus of FQrd . We denote the singular locus of Qri

di

by Qri,sing
di

. We use the same notation for projectivizations contained in PW . For

convenience, let r0 = 0 and d0 = n.

We use sequences of the form

Ln1 ⊆ . . . ⊆ Lns ⊆ Q
rk−s
dk−s
⊆ . . . ⊆ Qr1

d1

10
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consisting of isotropic linear spaces Lnj and sub-quadrics Qri
di

of Q to define restric-

tion varieties. The restriction variety V defined via this sequence parameterizes k-

dimensional isotropic linear spaces that intersect Lnj in a subspace of dimension j for

all 1 ≤ j ≤ s and Qri
di

in a subspace of dimension k − i+ 1 for all 1 ≤ i ≤ k − s. We

require the isotropic linear spaces and the singular loci of sub-quadrics to be in the

most special position. This is expressed in the conditions

• Qri−1,sing
di−1

⊆ Qri,sing
di

for every 1 ≤ i ≤ k − s and

• dim
(
Lnj ∩Q

ri,sing
di

)
= min(nj, ri) for every 1 ≤ j ≤ s and 1 ≤ i ≤ k − s.

This gives a motivation for counting the sub-quadrics Qri
di

from the right; the

singular loci form a nested sequence of subspaces Qr1,sing
d1

⊆ . . . ⊆ Q
rk−s,sing
dk−s

. Note

that by the corank bound, Q
ri−1,sing
di−1

⊆ Qri,sing
di

implies ri+1 − ri ≤ di − di+1. In

particular, the corank of a sub-quadric in Q is bounded by its codimension. We note

the effect on our sequence as

• ri+1 + di+1 ≤ ri + di for every 1 ≤ i ≤ k − s.

This positioning of isotropic linear spaces and sub-quadrics has an effect on the

k-planes V parameterizes as well. Let xi be the number of isotropic linear spaces Lnj

of the sequence contained in Qri,sing
di

. We require the (k− i+ 1)-dimensional subspace

of a k-plane Λ contained in Qri
di

to intersect Qri,sing
di

in a subspace of dimension xi.

The largest dimensional isotropic linear space with respect to a quadratic form Qr
d has

dimension
⌊
d+r
2

⌋
. Therefore a linear space of dimension k − i + 1 intersects Qri,sing

di

in a subspace of dimension at least max
(
0, k − i+ 1−

⌊
d−r
2

⌋)
. Hence we get the

condition

• For every 1 ≤ i ≤ k − s,

xi ≥ k − i+ 1− di − ri
2

.
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Another crucial requirement we make is the irreducibility of the sub-quadrics. A

sub-quadric Qr
d is irreducible if and only if its rank is at least 3. The following

condition ensures that Q
rk−s
dk−s

and consequently every Qri
di

is irreducible.

• rk−s ≤ dk−s − 3.

The next condition concerns the variation of tangent spaces to a singular quadric.

Let M be a codimension j linear subspace of a linear space L. Let Qr
d be singular

along M . Then the tangent spaces to Qr
d along L \M vary at most in a (j − 1)-

dimensional family. In other words, the image of the Gauss map of Qr
d restricted to

the smooth points of L has dimension at most j − 1. Therefore, if there is nj, ri in a

sequence with nj = ri + 1, then Qri,sing
di

⊆ Lnj is a codimension 1 linear subspace and

the tangent spaces to Qri
di

are constant along Lnj . Hence the (k − i+ 1)-dimensional

subspace contained in Qri
di

are actually contained in Qri+1
di−1 with singular locus Lnj .

Since the latter reflects the geometry of the k-planes in V better, we impose the

following condition on our sequence.

• For any 1 ≤ j ≤ s, there does not exist 1 ≤ i ≤ k − s such that nj − ri = 1.

The following technical condition puts a restriction on the singular loci of the

sub-quadrics in the sequence; it disallows a sudden gap between Qri,sing
di

.

• For every 1 ≤ i ≤ k − s either ri = r1 = x1 or rl − ri ≥ l − i − 1 for every

l > i. Furthermore, if rl = rl−1 > x1 for some l, then di − di+1 = ri+1 − ri

for all i ≥ l and dl−1 − dl = 1.

We use sequences satisfying these conditions to define restriction varieties in order

to make sure the resulting subvarieties of OG(k, n) are geometrically meaningful. A

sequence satisfying these conditions is called an admissible sequence.
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DEFINITION 2.1. Let (L•, Q•) be an admissible sequence for OG(k, n). A re-

striction variety V (L•, Q•) is the subvariety of OG(k, n) defined as the closure of

V 0 (L•, Q•) =
{

Λ ∈ OG(k, n)
∣∣ dim

(
Λ ∩ Lnj

)
= j, 1 ≤ j ≤ s,

dim
(
Λ ∩Qri

di

)
= k − i+ 1,

dim
(
Λ ∩Qri,sing

di

)
= xi, 1 ≤ i ≤ k − s

}
.

EXAMPLE 2.2. Schubert varieties in OG(k, n) are restriction varieties defined

via a sequence satisfying di+ri = n for all 1 ≤ i ≤ k−s, that is, when the quadrics in

the sequence are as singular as possible. The restriction of a general Schubert variety

in G(k, n) to OG(k, n) is also a restriction variety associated to a sequence with s = 0

and ri = 0 for all 1 ≤ i ≤ k − s. Hence, restriction varieties interpolate between the

restrictions of Schubert varieties in G(k, n) to OG(k, n) and Schubert varieties in

OG(k, n).

When the inequality xi ≥ k − i + 1− di−ri
2

is an equality for an index i, then the

di+ri
2

-dimensional linear spaces in Qri
di

form two irreducible components.

EXAMPLE 2.3. V defined by

Q0
3 ⊆ Q0

4

in OG(2, 5) parameterizes lines on a smooth quadric surface Q0
4 in P3 and consists of

two irreducible components.

The (k − i + 1)-dimensional subspaces contained in Qri
di

may be distinguished by

their parity of the dimension of their intersection with linear spaces in each of these

components.

DEFINITION 2.4. Let (L•, Q•) be an admissible sequence. An index 1 ≤ i ≤ k−s

such that

xi = k − i+ 1− di − ri
2
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is called a special index. For each special index, a marking m• of (L•, Q•) designates

one of the irreducible components of di+ri
2

-dimensional linear spaces of Qri
di

as even

and the other one as odd, such that

• If di1 + ri1 = di2 + ri2 for two special indices i1 < i2 and the component

containing a linear space Γ is designated even for i2, then the component

containing Γ is designated even for i1 as well; and

• If 2ns = di+ri for a special index i, then the component to which Lns belongs

is assigned the parity of s; and

• If n = 2k, m• assigns the component containing lk the parity that character-

izes the component OG(k, 2k). A marked restriction variety V (L•, Q•,m•) is

the Zariski closure of the subvariety of V 0(L•, Q•) parameterizing k-dimensional

isotropic subspaces W , where, for each special index i, W intersects subspaces

of dimension di+ri
2

of Qri
di

designated even (respectively, odd) by m• in a sub-

space of even (respectively, odd) dimension.

We will use the next proposition when we compare dimensions of the restriction

variety and its tangent space in various orbits in the next section.

PROPOSITION 2.5. ([4], Prop 4.16) The marked restriction variety V (L•, Q•,m•)

associated to a marked admissible sequence is an irreducible variety of dimension

dim (V (L•, Q•,m•)) =
s∑
j=1

(nj − j) +
k−s∑
i=1

(di + xi − 2s− 2i)

=
s∑
j=1

(nj − j) +
k−s∑
i=1

(di + xi − 2(k − i+ 1))

Note that this expression does not depend on the marking m•. The restriction

variety V (L•, Q•) has an irreducible component for every marking m• and every

irreducible component of V (L•, Q•) has this dimension.
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2. Basis Sequences

In this subsection we associate a sequence of vectors, brackets and braces to an

admissible sequence. Examples of similar sequences can be found in [4], [5] and [6].

We will use basis sequences when we study an example illustrating future research

ideas in the last chapter.

Recall that we denote the quadratic polynomial corresponding to the symmetric

bilinear form Q by FQ and the smallest dimensional linear space containing a sub-

quadric Qr
d by Qr

d. We take FQ to be

m∑
i=1

xiyi if n = 2m and x2m+1 +
m∑
i=1

xiyi if n = 2m+ 1 .

Similarly, the restrictions of the bilinear form FQrd to Qr
d are

r+m∑
i=r+1

xiyi if d− r = 2m and x2r+m+1 +
r+m∑
i=r+1

xiyi if d− r = 2m+ 1 .

Let the dual basis for xi, yi be ei, fi such that

xi(ej) = δji , yi(fj) = δji and xi(fj) = yi(ej) = 0 .

Using ei, fi we give a basis for each Lnj and Qri
di

as follows:

Lnj =
〈
e1, . . . , enj

〉
Qri
di

=
〈
e1, . . . , eri , eri+1, fri+1, . . . , eri+m, fri+m

〉
if di − ri = 2m

Qri
di

=
〈
e1, . . . , eri , eri+1, fri+1, . . . , eri+m, fri+m, eri+m − fri+m + eri+m+1

〉
if di − ri = 2m+ 1

Given an admissible sequence

Ln1 ⊆ . . . ⊆ Lns ⊆ Q
rk−s
dk−s
⊆ . . . ⊆ Qr1

d1

we form a sequence of vectors ei, fi, brackets and braces as follows: For each isotropic

linear subspace Lnj , we write down enj−1+1, , . . . , enj followed by a bracket and for
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each sub-quadric Qri
di

, we write down the remaining vectors in the basis of Qri
di

followed

by a brace.

In this sequence, the first nj vectors span Lnj and the first di vectors span Qri
di

.

EXAMPLE 2.6. To Q0
5 ⊆ Q0

6 we associate the sequence

e1 f1 e2 f2 (e2 − f2 + e3)
}
f3
}
.

EXAMPLE 2.7. To L2 ⊆ L5 ⊆ Q2
12 ⊆ Q0

14 we associate the sequence

e1 e2
]
e3 e4 e5

]
f3 f4 f5 e6 f6 e7 f7

}
f1 f2

}
.

3. Partitions for Restriction Varieties

Restriction varieties can be parameterized by triads of partitions. These partitions

will allow us to define restriction varieties using only the independent rank conditions,

that is, the conditions that are not automatically satisfied as a result of the others.

For an admissible sequence

Ln1 ⊆ . . . ⊆ Lns ⊆ Q
rk−s
dk−s
⊆ . . . ⊆ Qr1

d1

write down the increasing sequences (n1, . . . , ns), (dk−s, . . . , d1) by grouping the con-

secutive integers as follows:

(n1, . . . , ns) = (nα1
a1
, . . . , nαtat ) and (dk−s, . . . , d1) = (dβ1b1 , . . . , d

βu
bu

)

where

αl =
∣∣∣ {nj in the sequence | nj ≤ nal , al − j = nal − nj}

∣∣∣ and

βl =
∣∣∣ {di in the sequence | di ≤ dbl , i− bl = dbl − di}

∣∣∣.
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Here ag (resp. bh) is the largest dimensional isotropic linear subspace (resp. the

largest dimensional sub-quadric) in each group and αg (resp. βh) counts the steps

in the group for all 1 ≤ g ≤ t (resp. 1 ≤ h ≤ u). Restriction varieties can be

parameterized by partitions

(nα1
a1
, . . . , nαtat ), (d

β1
b1
, . . . , dβubu ), (rb1 , . . . , rbu).

The restriction variety given by the partitions (nα1
a1
, . . . , nαtat ), (d

β1
b1
, . . . , dβubu ), (rb1 , . . . , rbu)

is defined as the closure of the locus

V 0 =
{

Λ ∈ OG(k, n)
∣∣ dim

(
Λ ∩ Lnag

)
= ag, 1 ≤ g ≤ t,

dim
(

Λ ∩Qrbh
dbh

)
= k − bh + 1,

dim
(

Λ ∩Qrbh ,sing

dbh

)
= xbh , 1 ≤ h ≤ u

}
.

EXAMPLE 2.8. To the sequence L2 ⊆ L3 ⊆ L6 ⊆ L7 ⊆ L8 ⊆ Q17
11 ⊆ Q17

12 ⊆ Q13
18

we associate the partitions (32, 83), (122, 181), (17, 13).

We have ag =
∑g

l=1 αl and k − bh + 1 = s +
∑h

l=1 βl for every 1 ≤ g ≤ t and

1 ≤ h ≤ u. Note that nat = ns, dbu = d1,
∑t

l=1 αl = s and
∑u

l=1 βl = k − s.

OBSERVATION 2.9. In terms of these partitions Proposition 2.5 gives the di-

mension of a restriction variety by

dim (V (L•, Q•)) =
t∑

g=1

αg
(
nag − ag

)
+

u∑
h=1

βh∑
t=1

(dbh + xbh − 2 (k − bh + 1) + (t− 1))

=
t∑

g=1

αg
(
nag − ag

)
+

u∑
h=1

βh

(
dbh + xbh − 2(k − bh + 1) +

βh − 1

2

)

EXAMPLE 2.10. The restriction variety
[
L6 ⊆ L7 ⊆ L8

]
is isomorphic to the

Grassmannian G(3, 8) which parameterizes planes contained in a projective space of

dimension 7. This variety is given by (83), (), () in terms of partitions and has di-

mension α1(na1 − a1) = 3(8− 3) = 15.
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EXAMPLE 2.11. The restriction variety
[
Q4

11 ⊆ Q3
12 ⊆ Q2

13

]
is the Fano variety

of planes contained in a quadric 11-fold in P12 singular along a line. In terms of

partitions it is given by (), (133), (2) and has dimension β1(db1 + xb1 − 2(3) + β1−1
2

) =

3(13 + 0− 6 + 1) = 24.

EXAMPLE 2.12. The restriction variety
[
L2 ⊆ L3 ⊆ Q7

17 ⊆ Q6
18

]
parameterizes

3-dimensional projective linear spaces that are contained in a quadric hypersurface

in P17 of corank 6 and that intersect a plane contained in the singular locus of the

quadric along a line. In terms of partitions this variety is given by (32), (182), (6) and

has dimension α1(na1−a1)+β1(db1+xb1−2(5)+ β1−1
2

) = 2(3−2)+2(18+2−8+ 1
2
) = 27.



CHAPTER 3

The Resolution of Singularities

In this chapter, we present a resolution of singularities for restriction varieties.

We first illustrate the resolution on a few examples and then introduce the general

definition.

EXAMPLE 3.1. Let V be the restriction variety in OG(1, n) defined by the se-

quence Q4
11 of length 1. This variety is a singular quadric contained in a projective

space of dimension 10 whose singular locus is isomorphic to the projective space of

dimension 3. Consider the flag variety Ṽ defined by

Ṽ =
{

(T, Z) ∈ OF (1, 5;n) | Q4,sing
11 ⊆ Z ⊆ Q4

11

}
⊆ OG(1, n)×OG(5, n).

The second projection map π2 : (T, Z) 7→ Z maps Ṽ onto
{
Z ∈ OG(5, n) | Q4,sing

11 ⊆

Z ⊆ Q4
11

}
which is isomorphic to OG(1, 7). Over such Z, the map has fibers

G(1, 5) of dimension 4 so Ṽ is irreducible of dimension 9. The first projection map

π1 : (T, Z) 7→ T maps Ṽ onto V where the inverse image is determined uniquely over

the smooth locus of V . By Zariski’s theorem, π1 : Ṽ → V is a resolution of sin-

gularities for V where the image of the exceptional locus gives the singular locus of

V .

EXAMPLE 3.2. Let V =
[
L7 ⊆ Q4

11

]
, V parameterizes the lines in a singular

quadric intersecting a fixed linear space that contains the singular locus of the quadric.

Consider the variety defined by

Ṽ =
{

(T 1, T 2, O, Z) | T 1 ⊆ T 2, Q4,sing
11 ⊆ O ⊆ Z, T 1 ⊆ O ⊆ L7 and T 2 ⊆ Z ⊆ Q4

11

}
19
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where dimT j = j, dimO = 5 and dimZ = 6. The properties defining the variety Ṽ

can be visualized by the following diagram:

Figure 1. Definition of Ṽ for V =
[
L7 ⊆ Q4

11

]
Q4,sing

11⊆

T 1 ⊆ O ⊆ L7⊆ ⊆ ⊆
T 2 ⊆ Z ⊆ Q4

11

Consider the following forgetful maps:

(T 1, T 2, O, Z) 7→ (T 1, O, Z) 7→ (T 1, O) 7→ (O).

We show Ṽ is an iterated tower of G(l, n) and OG(l, n) bundles via these maps.

The linear space O satisfies Q4,sing
11 ⊆ O ⊆ L7 and hence can be parameterized by

G(5 − 4, 7 − 4) = G(1, 3). For fixed O, the linear space T 1 satisfies T 1 ⊆ O and

hence can be parameterized by G(1, 5). On the other hand, Z satisfies O ⊆ Z ⊆ Q4
11.

Since Z has to lie in the quadric cut out on Q4
11 by the linear space tangent to Q4

11

everywhere along O, Z is contained in a quadric of projective dimension 8 with a

singular locus of projective dimension 4. Then Z can be parameterized by OG(1, 5).

Finally, the linear space T 2 satisfies T 1 ⊆ T 2 ⊆ Z and hence can be parameterized

by G(1, 5). Thus Ṽ is a tower of the discussed G(1, 3), G(1, 5), OG(1, 5) and G(1, 5)

bundles. This also shows that Ṽ is irreducible of dimension 13. The second projection

map

π : (T 1, T 2, O, Z) 7→ T 2

maps Ṽ onto V with fibers determined uniquely for a general point Λ contained in V 0.

Therefore the map π : Ṽ → V is a resolution of singularities by Zariski’s theorem.
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EXAMPLE 3.3. Let V =
[
L5 ⊆ Q7

10 ⊆ Q2
20

]
. For this restriction variety we

consider Ṽ defined by

Ṽ =
{

(T 1, T 2, T 3, O1, O2, Z1, Z2) | Q2,sing
20 ⊆ O1 ⊆ O2 ⊆ Z2, Q7,sing

10 ⊆ Z1,

T 1 ⊆ O1 ⊆ L5, T
2 ⊆ O2 ⊆ Q7

10 and T 3 ⊆ Z2 ⊆ Q2
20

}
where dimT j = j, dimO1 = 3, dimO2 = 4, dimZ1 = 8 and dimZ2 = 5. The

corresponding diagram is:

Figure 2. Definition of Ṽ for V =
[
L5 ⊆ Q7

10 ⊆ Q2
20

]
Q2,sing

20 Q7,sing
10⊆ ⊆

T 1 ⊆ O1 ⊆ L5⊆ ⊆ ⊆

T 2 ⊆ O2 ⊆ Z1 ⊆ Q7
10⊆ ⊆ ⊆

T 3 ⊆ Z2 ⊆ Q2
20

We consider the following forgetful maps:

(T 1, T 2, T 3, O1, O2, Z1, Z2) 7→ (T 1, T 2, O1, O2, Z1, Z2) 7→ (T 1, T 2, O1, O2, Z1)

7→ (T 1, O1, O2, Z1) 7→ (T 1, O1, Z1) 7→ (T 1, O1) 7→ (O1).

The linear space O1 is parameterized by G(1, 3) and for fixed O, T 1 is parameterized by

G(1, 3). The linear space Z1 is parameterized by OG(1, 3). For fixed Z1, O2 satisfies

O1 ⊆ O2 ⊆ Z1 and hence can be parameterized by G(1, 5). Then T 2 is parameterized

by G(1, 3). In the last row, as O2 ⊆ Z2 ⊆ Q2
20, Z

2 is parameterized by OG(1, 14).

Then T 3 is parameterized by G(1, 3). Thus Ṽ is a tower of the discussed G(1, 3),

G(1, 3), OG(1, 3), G(1, 5), G(1, 3), OG(1, 14) and G(1, 3) bundles. Thus Ṽ is an

irreducible smooth variety of dimension 25. The third projection map

π : (T 1, T 2, T 3, O1, O2, Z1, Z2) 7→ T 3
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gives the resolution of singularities in this example.

EXAMPLE 3.4. As a final example, let us consider the restriction variety in

OG(10, 70) given by the sequence

L2 ⊆ L6 ⊆ L13 ⊆ L14 ⊆ L19 ⊆ Q17
30 ⊆ Q11

40 ⊆ Q8
45 ⊆ Q7

46 ⊆ Q3
50.

In this case Ṽ satisfies the following diagram. The dimensions of the T , Z and O’s

are noted as subscripts.

Figure 3. Definition of Ṽ for V =
[
L2 ⊆ L6 ⊆ L13 ⊆ L14 ⊆ L19 ⊆

Q17
30 ⊆ Q11

40 ⊆ Q8
45 ⊆ Q7

46 ⊆ Q3
50

]
T 1
1 ⊆ L2⊆ ⊆

Q3,sing
50 ⊆ Q7,sing

46 ⊆ Q11,sing
40 ⊆ Q17,sing

30⊆ ⊆ ⊆ ⊆

T 2
2 ⊆ O

4,na1
4 ⊆ L6⊆ ⊆ ⊆

T 3
4 ⊆ O

4,na2
6 ⊆ O

3,na2
9 ⊆ O

2,na2
13 ⊆ L14⊆ ⊆ ⊆ ⊆ ⊆

T 4
5 ⊆ O

4,na3
7 ⊆ O

3,na3
10 ⊆ O

2,na3
14 ⊆ O

1,na3
18 ⊆ L19⊆ ⊆ ⊆ ⊆ ⊆ ⊆

T 5
6 ⊆ O

4,rb1
8 ⊆ O

3,rb1
11 ⊆ O

2,rb1
15 ⊆ Z1

19 ⊆ Q17
30⊆ ⊆ ⊆ ⊆ ⊆

T 6
7 ⊆ O

4,rb2
9 ⊆ O

3,rb2
12 ⊆ Z2

16 ⊆ Q11
40⊆ ⊆ ⊆ ⊆

T 7
9 ⊆ O

4,rb3
11 ⊆ Z3

14 ⊆ Q7
46⊆ ⊆ ⊆

T 8
10 ⊆ Z4

12 ⊆ Q3
50

The variety Ṽ is a tower of G(k, n) and OG(k, n) bundles via 25 successive forgetful

maps in this case. Starting with an element of Ṽ , the forgetful maps trail each row

from left to right going from the bottom row to the top row.

Let us fix terminology before giving the definition. In the following we say a

sequence A =
[
A1 ⊆ . . . ⊆ Ak

]
is contained in a sequence B =

[
B1 ⊆ . . . ⊆ Bk

]
if
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Ai ⊆ Bi for all 1 ≤ i ≤ k. We will denote by A both the sequence
[
A1 ⊆ . . . ⊆ Ak

]
and the ordered set (A1, . . . , Ak).

Let V (L•, Q•) be a restriction variety defined by the sequence

Ln1 ⊆ . . . ⊆ Lns ⊆ Q
rk−s
dk−s
⊆ . . . ⊆ Qr1

d1
,

or equivalently, by the partitions (nα1
a1
, . . . , nαtat ), (d

β1
b1
, . . . , dβubu ), (rb1 , . . . , rbu). For each

Q
rbh
dbh

, let V (Q
rbh
dbh

) be the subsequence consisting of isotropic linear subspaces Lnaθ

and sub-quadrics Q
rbθ
dbθ

that strictly contain Q
rbh ,sing

dbh
and are strictly contained in

Q
rbh
dbh

. We introduce a subsequence O(Q
rbh
dbh

) of the same length contained in V (Q
rbh
dbh

)

that consists of isotropic linear subspaces O.

V (Q
rbh
dbh

) : · · · ⊆ Lnaθ ⊆ · · · ⊆ Q
rbθ
dbθ

⊆ · · ·

⊆ ⊆ ⊆
O(Q

rbh
dbh

) : · · · ⊆ Oh,naθ ⊆ · · · ⊆ Oh,dbθ ⊆ · · ·

Also, the subsequence
[
L1 ⊆ . . . ⊆ Q

rbu−1

dbu−1

]
obtained by omitting the last βu sub-

quadrics from the defining sequence will have a crucial role in the following definition.

Define:

Ṽ (L•, Q•) :=
{ (

T 1, . . . , T t+u, Z1, . . . , Zu, O(Q
rb1
db1

), . . . , O(Q
rbu
dbu

)
) ∣∣∣

Q
rbh ,sing

dbh
⊆ O(Q

rb1
db1

) ⊆ Zh ⊆ Q
rbh
dbh
,

Oh,naθ ⊆ Lnaθ for all Lnaθ in V (Q
rbh
dbh

),

Oh,naθ ⊆ Oh+1,naθ for all Lnaθ that lies in both V (Q
rbh
dbh

) and V (Q
rbh+1

dbh+1
),

Oh,rbθ ⊆ Q
rbθ
dbθ

for all Q
rbθ
dbθ

in V (Q
rbh
dbh

),

Oh,rbθ ⊆ Oh+1,rbθ for all Q
rbθ
dbθ

that lies in both V (Q
rbh
dbh

) and V (Q
rbh+1

dbh+1
),

T 1 ⊆ . . . ⊆ T t+u for all 1 ≤ g ≤ t and 1 ≤ h ≤ u

( T 1, . . . , T t+u−1 ) ⊆
[
L1 ⊆ . . . ⊆ Q

rbu−1

dbu−1

]
and T t+u ⊆ Zu

}
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where dimT g = ag, dimT t+h = k − bh + 1, dimZh = rbh + (k − bh + 1) − xbh ,

dimOh,naθ = rbh + aθ − xbh and dimOh,rbθ = rbh + (k − bθ + 1)− xbh for all 1 ≤ g ≤ t

and 1 ≤ h ≤ u.

Drawing a diagram, as in the examples above, puts this construction in a more

approachable framework. Let Lna1 ⊆ . . . ⊆ Lnaω be the isotropic linear subspaces

in the defining sequence contained in Q
rbu ,sing
dbu

, thus contained in the singular locus

of all the sub-quadrics. The defining properties of Ṽ are visualized in the following

diagram. Here, the linear spaces Oh,• that lie in the column of Q
rbh
dbh

form the sequence

O(Q
rbh
dbh

) in the definition of Ṽ above.

Figure 4. Definition of Ṽ for general V

T1 ⊆ Lna1⊆ ⊆

···

···

Tω ⊆ Lnaω⊆ ⊆

Q
rbu ,sing
dbu

⊆ Q
rbu−1

,sing

dbu−1
⊆ · · · ⊆ Q

rb2 ,sing

db2
⊆ Q

rb1 ,sing

db1⊆
Tω+1 ⊆ Ou,naω+1 ⊆ · · · Lnaω+1⊆ ⊆ ⊆

···

···

···⊆ ⊆ ⊆

Tt ⊆ Ou,nat ⊆ · · · Lnat⊆ ⊆ ⊆

Tt+1 ⊆ Ou,rb1 ⊆ Ou−1,rb1 ⊆ · · · ⊆ O3,rb1 ⊆ O2,rb1 ⊆ Z1 ⊆ Q
rb1
db1⊆ ⊆ ⊆ ⊆ ⊆ ⊆

Tt+2 ⊆ Ou,rb2 ⊆ Ou−1,rb2 ⊆ · · · ⊆ O3,rb2 ⊆ Z2 ⊆ Q
rb2
db2⊆ ⊆ ⊆ ⊆ ⊆

Tt+3 Z3 ⊆ Q
rb3
db3⊆ ···

··· · · ·

⊆

···

···⊆ ⊆ ⊆ ⊆

Tt+u−1 ⊆ Ou,rbu−1 ⊆ Zu−1 ⊆ Q
rbu−1

dbu−1⊆ ⊆ ⊆

Tt+u ⊆ Zu ⊆ Q
rbu
dbu
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There is a natural projection from Ṽ (L•, Q•) to V (L•, Q•) given by

π :
(
T 1, . . . , T t+u, Z1, . . . , Zu, O(Q

rb1
db1

), . . . , O(Q
rbu
dbu

)
)
7→ T t+u.

PROPOSITION 3.5. Let V (L•, Q•,m•) be a marked restriction variety. The

variety Ṽ (L•, Q•,m•) associated to V (L•, Q•,m•) is a smooth irreducible variety of

the same dimension as V (L•, Q•,m•).

Proof. Consider the successive forgetful maps omitting one coordinate of Ṽ at

a time, going from left to right in each row, starting at the bottom row and going up.

The proof of this proposition is based on constructing a tower of G(l, n) and OG(l, n)

bundles via these forgetful maps. In the following, we study the four possible types

of rows in a diagram:

(1) For Lnag ( Q
rbu
dbu

, we have T g−1 ⊆ T g ⊆ Lnag . Hence T g is parameterized

by G(ag − ag−1, nag − ag−1) which has dimension (ag − ag−1)(nag − ag) =

αg(nag − ag).

(2) Suppose for Lnag , the sub-quadrics whose singular loci lie between Lnag and

Lnag−1
are Q

rbη+c
dbη+c

, . . . , Q
rbη
dbη

for some number c, that is,

Q
rbu ,sing
dbu

⊆ . . . ⊆ Q
rbη+c+1

,sing

dbη+c+1
( Lnag−1

⊆ Q
rbη+c ,sing

dbη+c
⊆ . . . ⊆ Q

rbη ,sing

dbη
( Lnag .

Note that xbη = . . . = xbη+c = ag−1 in this setting. The row consisting of

T g, O•,nag , Lnag satisfies:

Q
rbu ,sing
dbu

⊆ . . . ⊆ Q
rbη+c+1

,sing

dbη+c+1
⊆ Q

rbη+c ,sing

dbη+c
⊆ . . . ⊆ Q

rbη ,sing

dbη
⊆ . . .

⊆ ⊆ ⊆

···

···

···

⊆ ⊆ ⊆ ···

T g−1 ⊆ Ou,nag−1 ⊆ · · · ⊆ Oη+c+1,nag−1 ⊆ Lnag−1⊆ ⊆ ⊆ ⊆

T g ⊆ Ou,nag ⊆ · · · ⊆ Oη+c+1,nag ⊆ Oη+c,nag ⊆ · · · ⊆ Oη,nag ⊆ Lnag···

···

···

···

···

···
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We start by choosing Oη,nag . The linear space Oη,nag satisfying Q
rbη ,sing

dbη
⊆

Oη,nag ⊆ Lnag is parameterized by the Grassmannian G((rbη + ag − xbη) −

rbη , nag−rbη). In a similar fashion, the parameterization of T g, Ou,nag , . . . , Oη,nag

are given by Grassmannians whose dimensions add up to αg(nag −ag) as fol-

lows:

Coordinates of Ṽ in the g-th row: Dimensions of the corresponding Grassmannian:

Q
rbη ,sing

dbη
⊆ Oη,nag ⊆ Lnag (ag − xbη)

(
nag − ag − (rbη − xbη)

)
Q
rbη+1

,sing

dbη+1
⊆ Oη+1,nag ⊆ Oη,nag (ag − xbη+1)

(
(rbη − xbη)− (rbη+1 − xbη+1)

)

···

···

Q
rbη+c ,sing

dbη+c
⊆ Oη+c,nag ⊆ Oη+c−1,nag (ag − xbη+c)

(
(rbη+c−1 − xbη+c−1)− ((rbη+c − xbη+c)

)
Oη+c+1,nag−1 ⊆ Oη+c+1,nag ⊆ Oη+c,nag (ag − ag−1)

(
(rbη+c − xbη+c)− ((rbη+c+1 − xbη+c+1)

)

···

···
Ou,nag−1 ⊆ Ou,nag ⊆ Ou−1,nag (ag − ag−1)

(
(rbu−1 − xbu−1)− ((rbu − xbu)

)
T g−1 ⊆ T g ⊆ Ou,nag (ag − ag−1)

(
rbu − xbu

)

(3) Consider the row that corresponds to Q
rb1
db1

. Depending on rb1 , there are

two possibilities for the diagram. If rb1 ≥ nat then Z1 is determined by

Q
rb1 ,sing

db1
⊆ Z1 ⊆ Q

rb1
db1

. Explicitly, suppose Lnat is positioned as Q
rbc+1

,sing

dbc+1
(

Lnat ⊆ Q
rbc ,sing
dbc

⊆ . . . ⊆ Q
rb1 ,sing

db1
for some number c. Note that xb1 = . . . =

xbc = t in this setting. The diagram is of the form:

Q
rbu ,sing
dbu

⊆ · · · ⊆ Q
rbc+1

,sing

dbc+1
⊆ Q

rbc ,sing
dbc

⊆ · · · ⊆ Q
rb2 ,sing

db2
⊆ Q

rb1 ,sing

db1⊆ ⊆ ⊆ ⊆ ⊆

···

···

···

⊆ ⊆ ⊆ ···

T t ⊆ Ou,nat ⊆ · · · ⊆ Oc+1,nat Lnat⊆ ⊆ ⊆ ⊆

T t+1 ⊆ Ou,rb1 ⊆ · · · ⊆ Oc+1,rb1 ⊆ Oc,rb1 ⊆ · · · ⊆ O2,rb1 ⊆ Z1 ⊆ Q
rb1
db1···

···

···

···

···

···

···

We start by choosing Z1. The linear space Z1 satisfies Q
rb1 ,sing

db1
⊆ Z1 ⊆

Q
rb1
db1

and dimZ1 = rb1 + (k − b1 + 1) − xb1 = rb1 + β1. Hence Z1 can be

parameterized by OG(β1, db1 − rb1). The linear spaces T t+1, Ou,rb1 , . . . , O2,rb1
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can be parameterized by Grassmannians whose dimensions add up to β1(db1+

xb1 − 2(k − b1 + 1) − β1−1
2

) by the following. Note that dimOG(k, n) =

k(n− 2k + k−1
2

) (see [4] for a proof).

Coordinates of Ṽ in the (t+ 1)-st row: Dimensions of the corresponding Grassmannian:

Q
rb1 ,sing

db1
⊆ Z1 ⊆ Q

rb1
db1

β1(db1 + xb1 − 2(k − b1 + 1)− (rb1 − xb1) + β1−1
2

)

Q
rb2 ,sing

db2
⊆ O2,rb1 ⊆ Z1 (k − b1 + 1− x2)((rb1 − xb1)− (rb2 − xb2))

Q
rb3 ,sing

db3
⊆ O3,rb1 ⊆ O2,rb1 (k − b1 + 1− x3)((rb2 − xb2)− (rb3 − xb3))···

···

Q
rbc ,sing
dbc

⊆ Oc,rb1 ⊆ Oc−1,rb1 (k − b1 + 1− xc)((rbc−1 − xbc−1)− (rbc − xbc))
Oc+1,nat ⊆ Oc+1,rb1 ⊆ Oc,rb1 (k − b1 + 1− at)((rbc − xbc)− (rbc+1 − xbc+1))···

···

Ou,nat ⊆ Ou,rb1 ⊆ Ou−1,rb1 (k − b1 + 1− at)((rbu−1 − xbu−1)− (rbu − xbu))
T t ⊆ T t+1 ⊆ Ou,rb1 (k − b1 + 1− at)(rbu − xbu)

(4) As another case for the row that corresponds to Q
rb1
db1

, if rb1 < nat , then

Z1 is determined by O1,nat ⊆ Z1 ⊆ Q
rb1
db1

. The linear space Z1 has to

be contained in the quadric cut out on Q
rb1
db1

by the linear space every-

where tangent to O1,nat , that is, Z1 ⊆ Q
rb1+(at−xb1 )
db1−(at−xb1 )

. Hence Z1 can be

parameterized by OG(β1, db1 − rb1 − 2(at − xb1)). The parameterizations

of T t+1, Ou,rb1 , . . . , O2,rb1 are similar to the previous case, the total dimen-

sion is β1(db1 + xb1 − 2(k − b1 + 1) − β1−1
2

) as before. The diagram and the

parameterizations in this case are as follows:

···

···

···

···

···

T t ⊆ Ou,nat ⊆ · · · ⊆ O2,nat ⊆ O1,nat ⊆ Lnat⊆ ⊆ ⊆ ⊆ ⊆

T t+1 ⊆ Ou,rb1 ⊆ · · · ⊆ O2,rb1 ⊆ O1,rb1 ⊆ Q
rb1
db1···

···

···

···

···

Coordinates of Ṽ in the (t+ 1)-st row: Dimensions of the corresponding Grassmannian:

O1,nat ⊆ Z1 ⊆ Q
rb1
db1

β1(db1 + xb1 − 2(k − b1 + 1)− (rb1 − xb1) + β1−1
2

)

O2,nat ⊆ O2,rb1 ⊆ Z1 (k − b1 + 1− x2)((rb1 − xb1)− (rb2 − xb2))···

···

T t ⊆ T t+1 ⊆ Ou,rb1 (k − b1 + 1− at)(rbu − xbu)
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(5) Finally, the (t + h)-th row for some h ≥ 2 is similar to the case above. The

parameterizations are given by a tower of Grasmanninans contained in an

orthogonal Grassmannian and the total dimension adds up to dbh + xbh −

2(k− bh + 1)− βh−1
2

. The diagram and the parameterizations are as follows:

···

···

···

···

···

···

T t+h−1 ⊆ Ou,rbh−1 ⊆ · · · ⊆ Oh+1,rbh−1 ⊆ Oh,rbh−1 ⊆ Zh−1 ⊆ Q
rbh−1

dbh−1⊆ ⊆ ⊆ ⊆ ⊆

T t+h ⊆ Ou,rbu ⊆ · · · ⊆ Oh+1.rbh ⊆ Zh ⊆ Q
rbh
dbh···

···

···

···

···

Coordinates of Ṽ in the (t+ h)-th row: Dimension of the corresponding Grassmannian:

Oh,rbh−1 ⊆ Zh ⊆ Qrbh βh(dbh + xbh − 2(k − bh + 1)− (rbh − xbh) + βh−1
2

)

Oh+1,rbh−1 ⊆ Oh+1,rbh ⊆ Zh (bh−1 − bh)((rbh − xbh)− (rbh+1
− xbh+1

))···

···

T t+h−1 ⊆ T t+h ⊆ Ou,rbh (bh−1 − bh)(rbu − xbu)

The variety Ṽ is smooth as it is an iterated tower of the ordinary and the orthogonal

Grassmannian bundles observed above. The inverse image π−1(Λ) of a point Λ in V is

irreducible by the same observations, hence Ṽ is irreducible for a marked restriction

variety. Furthermore, combining the results from each row of the diagram, dim Ṽ is

given by

dim Ṽ =
t∑

g=1

αg
(
nag − ag

)
+

u∑
h=1

βh

(
dbh + xbh − 2(k − bh + 1)− βh − 1

2

)
= dimV

which concludes the proof. �

Over V 0(L•, Q•), the inverse image of a point π−1(Λ) is determined uniquely by

T g = Λ ∩ Lnag , T t+h = Λ ∩Qrbh
dbh
,

Oh,rbθ = Q
rbh ,sing

dbh
, Λ ∩Qrbθ

dbθ
, Oh,naθ = Q

rbh ,sing

dbh
, Λ ∩ Lnaθ and

Zh = Q
rbh ,sing

dbh
, Λ ∩Qrbh

dbh
for all 1 ≤ g ≤ t, 1 ≤ h ≤ u.
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V 0(L•, Q•) is in the smooth locus of V (L•, Q•) since it is homogeneous under the

action of SO(n). Then, Zariski’s main theorem shows that π is an isomorphism over

V 0(L•, Q•). Therefore we have

THEOREM 3.6. The map π : Ṽ (L•, Q•) → V (L•, Q•) is a resolution of singu-

larities.



CHAPTER 4

The Exceptional Locus

We now study the exceptional locus of π. More specifically, we are interested in

the codimension of the components of the exceptional locus.

Corresponding to the three types of conditions in Definition 2.1, namely,

dim(Λ ∩Qri,sing
di

) = xi, dim(Λ ∩ Lnj) = j, and dim(Λ ∩Qri
di

) = k − i+ 1,

we consider three types of orbits where π has positive dimensional fibers. The follow-

ing loci Σ categorize the closures of these orbits. The central orbits of any two Σ are

disjoint if one is not contained in the other. This ensures that the fibers of π have the

same dimension throughout each central orbit. The image of the exceptional locus of

π is equal to the union of Σ’s.

I: Σrbh
: The closure of the locus of k-planes Λ such that dim(Λ∩Qrbh ,sing

dbh
) = xbh + 1

for some 1 ≤ h ≤ u and all the remaining conditions of V 0 are unchanged.

II: Σnag : The closure of the locus of k-planes Λ such that dim(Λ ∩ Lnag ) = ag + 1

for some 1 ≤ g ≤ t and all the remaining conditions of V 0 are unchanged.

III: Σdbh
: The closure of the locus of k-planes Λ such that dim(Λ∩Qrbh

dbh
) = k−bh+2

for some 1 ≤ h ≤ u−1 and all the remaining conditions of V 0 are unchanged.

Note that these loci do not always exist. There are natural numerical restrictions

resulting from the rank conditions defining a restriction variety.

EXAMPLE 4.1. The locus Σrb1
does not make sense for the restriction variety

given by
[
Q0

8 ⊆ Q0
9

]
since Q0,sing

9 is empty. Similarly the locus Σrb1
does not exist

30
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for the restriction variety given by
[
L1 ⊆ Q1

7

]
since x1 = 1 and it is not possible to

intersect Q1,sing
7 in a higher dimension.

EXAMPLE 4.2. The locus Σna1
does not exist for the restriction variety given by[

L1 ⊆ L7 ⊆ L8

]
; lines contained in L8 containing L1 cannot intersect L8 or L1 in

higher dimension. Similarly, Σrb1
does not exist for the restriction variety given by[

Q2
7 ⊆ Q1

8

]
.

A special case for the existence of Σnat
is when the restriction variety V lies in

OG(k, 2k). The orthogonal Grassmannian OG(k, 2k) has two connected components

and two linear spaces belong to the same connected component if and only if their

intersection is equal to k mod 2. Thus, when defining Σnat
, it must be checked that

the linear spaces in Σnat
lie in the same component of the restriction variety.

EXAMPLE 4.3. Let V =
[
L2 ⊆ Q0

4

]
, the variety of lines contained in a smooth

quadric surface intersecting a fixed line on the surface. This is one of the components

of the lines on the quadric surface. The fixed line in the partial flag, namely L2, or

equivalently the restriction variety given by the sequence
[
L1 ⊆ L2

]
, would be the

locus defined as Σna1
in this case and this does not lie in V . The variety V is actually

isomorphic to P1 and hence smooth.

EXAMPLE 4.4. Let V be the restriction variety in OG(4, 8) given by
[
L1 ⊆ L3 ⊆

L4 ⊆ Q1
7

]
. A general element Λ of V satisfies dim(Λ ∩ L4) = 3, therefore L4 and Λ

lie in different components of OG(4, 8). This shows that the restriction variety given

by the sequence
[
L1 ⊆ L2 ⊆ L3 ⊆ L4

]
, which is a single point in OG(4, 8), namely

L4 itself, does not lie in the closure of V . Thus the locus Σna2
is not in the image of

the exceptional locus of π in this case.

EXAMPLE 4.5. Let V be given by
[
L3 ⊆ L4 ⊆ Q1

7 ⊆ Q0
8

]
. A general element Λ

of V satisfies dim(Λ∩L4) = 2, and hence L4 lies in the same component of OG(k, 2k)

as V . Using the same observation, since we have dim(Λ ∩ L4) = 4 mod 2 for linear
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spaces Λ in the same component as L4, we conclude dim(Λ ∩ L4) must be either 2 or

4. Therefore, in this case we have Σna1
=
[
L1 ⊆ L2 ⊆ L3 ⊆ L4

]
.

More generally, the same consideration applies to Σnat
when rb1 is a special index

(Definition 2.4).

EXAMPLE 4.6. Let V =
[
L3 ⊆ L4 ⊆ Q1

7

]
. Then the locus Σnat

does not exist

foe V since L4 and the span Λ, Q1,sing
7 of a general element Λ in V with the singular

locus of Q1
7 lie in different components of the 4-dimensional linear spaces contained

in Q1
7.

The following remark combines the observations we have made above about the

definition of each type of locus Σ.

REMARK 4.7. The numerical conditions for the definition of each type of locus

Σ in the image of the exceptional locus of π can be given as:

I: The locus Σrbh
, for some 1 ≤ h ≤ u, exists if rbh > xbh.

II: The locus Σnag , for some 1 ≤ g ≤ t, exists if nag > ag. Moreover, if db1 + rb1 = 2nat

and b1 is a special index, then Σnat
exists if nat > at + 1 and k > at + 1.

III: The locus Σdbh
, for some 1 ≤ h ≤ u− 1, exists if u > 1.

Over each Σ, π−1(Σ) is irreducible of codimension

codim(π−1(Σ)) = codim(Σ)− dim(π−1(Λ))

for a general point Λ in Σ. We now consider each Σ separately and study codim(π−1(Σ))

in each case. We summarize our computations in Observation 4.24.

I: Σrbh
: dim(Λ ∩Qrbh ,sing

dbh
) = xbh + 1 for some 1 ≤ h ≤ u
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Given the corank rbh , we divide this case into sub-cases depending on the

relation between rbh and the dimensions nag of the isotropic linear spaces appearing

in the sequence defining V . The sub-cases we consider in the following are:

I.A: rbh > ns

I.B: rbh < ns and rbh 6= nj for all j

I.C: rbh = nj for some nj < ns

I.D: rb1 = ns

I.A: Suppose rbh > ns. A general element of Σrbh
is obtained by specializing Λ ∈ V 0

so that it intersects Q
rbh ,sing

dbh
in one more dimension. Equivalently, this is the

restriction variety associated to the sequence obtained by putting Lrbh to the

right of Lns , in the place of Q
rk−s
dk−s

. Note that Σrbh−1
contains Σrbh

, so all Σrbh
with

rbh > ns are contained in Σrb1
. Therefore it is sufficient to consider Σrb1

.

EXAMPLE 4.8. Let V be the restriction variety given by the sequence[
L3 ⊆ Q7

10 ⊆ Q5
20

]
. The loci Σrb1

and Σrb2
are defined as the closures of the

following loci:

Σ0
rb1

:=
{

Λ ∈ V
∣∣ dim(Λ ∩Q7,sing

10 ) = 2 with other conditions of V 0 unchanged
}

Σ0
rb2

:=
{

Λ ∈ V
∣∣ dim(Λ ∩Q5,sing

20 ) = 2 with other conditions of V 0 unchanged
}

Equivalently, they are given by the sequences Σrb2
=
[
L3 ⊆ L5 ⊆ Q7

18

]
and Σrb1

=[
L3 ⊆ L7 ⊆ Q5

20

]
. Since Σrb2

is contained in Σrb1
, it is sufficient to consider

codim(π−1(Σrb1
)).

As a result of the specialization, xi increases by 1 for β1 − 1 sub-quadrics,

namely, for Qri
di

with b1 ≤ i < k − s. These are the sub-quadrics that are in the

same group as Q
rb1
db1

; the newly introduced Lrbh is the isotropic linear space in the

modified sequence that is contained in Qri
di

for b1 ≤ i < k − s. The difference

between the dimensions of the varieties obtained by the original and the modified
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sequence can be calculated using Observation 2.9.

codim(Σrb1
) =

(
dk−s + xk−s − 2(s+ 1)

)
−
(
(rb1 − (s+ 1))− (β1 − 1)

)
= dk−s − rb1 − β1

since xk−s = s by our assumption that rb1 > ns.

Now we study the inverse image π−1(Λ) of a general point Λ in Σrb1
. By as-

sumption there is no O containing Q
rb1 ,sing

db1
and O’s contained in Q

rb1 ,sing

db1
are deter-

mined uniquely by Λ. We have T t+1, Q
rb1 ,sing

db1
⊆ Z1 ⊆ Q

rb1
db1

where dim(T t+1, Q
rb1 ,sing

db1
) =

rb1 + (k − b1 + 1)− (xb1 + 1) and dimZ1 = dim(T t+1, Q
rb1 ,sing

db1
) + 1. Since Z1 has

to lie in the orthogonal complement of T t+1, Q
rb1 ,sing

db1
, we have T t+1, Q

rb1 ,sing

db1
⊆

Z1 ⊆ Q
rb1+(k−b1+1−xb1−1)
db1−(k−b1+1−xb1−1)

. Such Z1 can be parameterized by OG(1, db1 − rb1 −

2(k − b1 + 1− xb1 − 1)). Therefore

codim(π−1(Σrb1
)) = dk−s − rb1 − β1 −

(
db1 − rb1 − 2(k − b1 + 1− xb1 − 1)− 2

)
= dk−s − db1 + 2(k − b1 + 1− xb1)− β1

= 1

since db1 − dk−s = β1 − 1 and k − b1 + 1− s = β1.

EXAMPLE 4.9. Let V =
[
L3 ⊆ Q7

10 ⊆ Q5
20

]
, then

Ṽ = {(T 1, T 2, T 3, Z1, Z2, O2,rb1 ) | Q5,sing
20 ⊆ O2,rb1 ⊆ Z2, Q7,sing

10 ⊆ Z1,

T 1 ⊆ L3, T2 ⊆ O2,rb1 ⊆ Z1 ⊆ Q7
10, T 3 ⊆ Z2 ⊆ Q5

20 , }

equivalently, the diagram is the following.
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Figure 5. Definition of Ṽ for V =
[
L3 ⊆ Q7

10 ⊆ Q5
20

]
T 1 ⊆ L3⊆ ⊆

Q5,sing
20 ⊆ Q7,sing

10⊆ ⊆

T 2 ⊆ O2,rb1 ⊆ Z1 ⊆ Q7
10⊆ ⊆ ⊆

T 3 ⊆ Z2 ⊆ Q5
20

The subvariety Σrb1
=
[
L3 ⊆ L7 ⊆ Q5

20

]
⊆ V has codimension 2. In the inverse

image π−1(Λ) of a general point Λ in Σrb1
, we have T 3 = Λ, T 2 = Λ ∩Q7

10 = Λ ∩ L7,

T 1 = Λ ∩ L3, O2,rb1 = Q5,sing
20 ,Λ ∩Q7

10, Z
2 = Q5,sing

20 ,Λ and Q7,sing
10 ⊆ Z1 ⊆ Q7

20

where dimZ1 = 8. The linear space Z1 is parameterized by a smooth plane quadric,

or equivalently, OG(1, 3). Thus dim(π−1(Λ)) = 1 and codim(π−1(Σrb1
)) = 1.

EXAMPLE 4.10. Let V =
[
L1 ⊆ Q3

6 ⊆ Q1
8

]
, an orthogonal Schubert variety

in OG(3, 9). The following diagram defines Ṽ .

Figure 6. Definition of Ṽ for V =
[
L1 ⊆ Q3

6 ⊆ Q1
8

]
T 1 ⊆ L1⊆ ⊆

Q3,sing
6⊆

T 2 ⊆ Z1 ⊆ Q3
6⊆ ⊆

T 3 ⊆ ⊆ Q1
8

The subvariety Σrb1
=
[
L1 ⊆ L3 ⊆ Q1

8

]
has codimension 2. In the inverse

image π−1(Λ) of a general point Λ in Σrb1
, only Z1 is not determined uniquely.

We have dimZ1 = 4 and Q3,sing
6 ⊆ Z1 ⊆ Q3

6, from which we conclude Z1 is

parameterized by OG(1, 3). Thus dim(π−1(Λ)) = 1 and codim(π−1(Σrb1
)) = 1.
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I.B: Next we consider Σrbh
such that there are Lnj in the sequence with rbh < nj

but no Lnj with nj = rbh . Let nj] := min{nj | rbh < nj}. If rbh−1
satisfies

rbh < rbh−1
< nj] then Σrbh−1

contains Σrbh
. Therefore it is sufficient to consider

rbh such that rbh < nj] < rbh−1
. Note that in this case max{ri | ri < nj]} =

rbh − (βh − 1) = rbh−1+1.

Specializing Λ so that it intersects Q
rbh ,sing

dbh
in one more dimension is equivalent

to making two changes: The first one is changing Lnj] to Lrbh , an isotropic lin-

ear subspace of dimension rbh , so that the condition for Σrbh
is satisfied, that

is, dim(Λ ∩ Qrbh
dbh

) increases by one. The second one is changing Q
rbh−1+1

dbh−1+1
to

Q
nj]
dbh−1+1−(nj]−rbh−1+1)

induced by the other conditions of V 0. The linear space Lrbh

is an additional isotropic linear space in the modified sequence that is contained

in Q
nj] ,sing

dbh−1+1−(nj]−rbh−1+1)
; this increases xbh−1+1 by 1. Comparing the modified se-

quence’s dimension with the original one’s, we have

codim(Σrbh
) = nj] − rbh + nj] − rbh−1+1 − 1.

EXAMPLE 4.11. Let V =
[
L7 ⊆ Q5

15 ⊆ Q2
25

]
, then Σrb1

=
[
L5 ⊆ Q7

13 ⊆

Q2
25

]
. Specializing a general element Λ of V so that it intersects L5 increases x2

by 1. In this example, codim(Σrb1
) = 2 + 2− 1 = 3.

REMARK 4.12. Changing Q
rbh−1+1

dbh−1+1
to Q

nj]
dbh−1+1−(nj]−rbh−1+1)

ensures that the

rest of the conditions of V 0 remain unchanged in Σrbh
. In the previous example,

in the sequence of Σrb1
, we have Q7

13 instead of Q5
15 to ensure that for general Λ,

dim(Λ∩L7) = 1 which is one of the conditions of V 0 that remains unchanged for

a general element in Σrb1
.

Note that the linear space Lnj] may not be among Lnag , that is, the largest

dimensional isotropic linear space in a group with consecutively increasing dimen-

sions. Let Lnag] be the smallest Lnag containing Lnj] . In the inverse image π−1(Λ)

of a general point Λ in Σrbh
, all coordinates are determined uniquely except for
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O
h,nag] and Zh. We have Q

rbh ,sing

dbh
,Λ ∩ Lnag] ⊆ O

h,nag] ⊆ Lnag] thus O
h,nag] can

be parameterized by G(1, nag] − (rbh + ag] − xbh) + 1). Then Zh is determined

uniquely as O
h,nag] ,Λ ∩Qrbh

dbh
. Thus dim(π−1(Λ)) = nag] − (rbh + ag] − xbh) and

codim(π−1(Σrbh
)) = nj] − rbh + βh(nj] − rbh−1+1)− βh − (nag] − (rbh + ag] − xbh))

=
(

(nj] − rbh)− (nag] − (rbh + ag] − xbh))
)

+ βh(nj] − rbh−1+1 − 1)

≥ 2

since
(

(nj] − rbh)− (nag] − (rbh + ag] − xbh))
)
≥ 1 and there is no nj, ri such that

nj − ri = 1 by the condition on variation of tangent spaces.

EXAMPLE 4.13. Let V =
[
L6 ⊆ L7 ⊆ Q2

15

]
, then Ṽ is given by the following

diagram.

Figure 7. Definition of Ṽ for V =
[
L6 ⊆ L7 ⊆ Q2

15

]
Q2,sing

15⊆

T 1 ⊆ O1,na1 ⊆ L7⊆ ⊆ ⊆

T 2 ⊆ Z1 ⊆ Q2
15

The subvariety Σrb1
=
[
L2 ⊆ L7 ⊆ Q2

15

]
has codimension 7. In the inverse

image π−1(Λ) of a general point Λ in Σrb1
, we have T 2 = Λ, T 1 = Λ∩L7. As above,

Z1 is determined as Z1 = O1,na1 ,Λ so the nontrivial part is the parametrization of

O1,na1 . We have Q2,sing
15 ,Λ ∩ L7 ⊆ O1,na1 ⊆ L7 which is parameterized by G(1, 4).

Thus dim(π−1(Λ)) = 3 and codimπ−1(Σrb1
) = 7− 3 = 4.

EXAMPLE 4.14. Let V =
[
L7 ⊆ Q5

15 ⊆ Q2
25

]
, then Ṽ is given by the follow-

ing diagram.
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Figure 8. Definition of Ṽ for V =
[
L7 ⊆ Q5

15 ⊆ Q2
25

]
Q2,sing

25 Q5,sing
15⊆ ⊆

T 1 ⊆ O2,na1 ⊆ O1,na1 ⊆ L7⊆ ⊆ ⊆ ⊆

T 2 ⊆ O2,rb1 ⊆ Z1 ⊆ Q5
15⊆ ⊆ ⊆

T 3 ⊆ Z2 ⊆ Q2
25

The subvariety Σrb1
=
[
L5 ⊆ Q7

13 ⊆ Q2
25

]
has codimension 3. In the inverse

image π−1(Λ) of a general point Λ in Σrb1
, we have T 3 = Λ, T 2 = Λ ∩ Q5

15 =

Λ∩Q7
13, T 1 = Λ∩L7 = Λ∩L5, O2,na1 = Q2,sing

25 ,Λ ∩ L7, O2,rb1 = Q2,sing
25 ,Λ ∩Q5

15,

Z2 = Q2,sing
25 ,Λ. The linear space O1,na1 satisfies Q5,sing

15 ⊆ Q5
15 ⊆ L7 and hence

can be parameterized by G(1, 2). Then Z1 is determined uniquely as Z1 = O1,na1 ,Λ ∩Q5
15.

Thus dim(π−1(Λ)) = 1 and codim(π−1(Σrb1
)) = 2.

I.C: Now we consider rbh such that there is Lnj with nj < ns in the defining sequence

satisfying nj = rbh . Since there is no Lnj in the sequence with nj = rbh+1, we have

rbh = nag for some 1 ≤ g ≤ t−1. Specializing Λ so that it intersects Q
rbh ,sing

dbh
= Lnj

in one more dimension is equivalent to making two changes: The first one is

moving the group of αg isotropic linear spaces Lnag−αg+1, Lnag−αg+2, . . . , Lnag one

position to the right and putting Lnag−αg in the sequence to the left of these linear

spaces. The second one is changing Qri
di

to Q
ri+(nag+1−rbh−1+1)

di−(nag+1−rbh−1+1)
for all i such that

bh ≤ i < bh−1. This increases xi by 1 for bh ≤ i < bh−1 as Lnag−αg is an additional

isotropic linear space in the modified sequence that is contained in the singular

locus of each Q
ri+(nag+1−rbh−1+1)

di−(nag+1−rbh−1+1)
with bh ≤ i < bh−1.

Note that even if there is a sub-quadric Q
rξ
dξ

in the sequence with a singular

locus of dimension nag − αg − 1, this change turns it into Q
rξ+(αg+1)

dξ−(αg+1). Then xξ

increases by (αg + 1) and the dimension of Σrbh
does not change.
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Observation 2.9 can be used to calculate the dimensions of both sequences, we

have

codim(Σrb1
) = αg

(
nag − ag

)
+ αg+1

(
nag+1 − ag+1

)
− (αg + 1)

(
nag − ag − 1

)
− (αg+1 − 1)

(
nag+1 − ag+1

)
+ βh(nag+1 − rbh−1+1)− βh.

In the inverse image π−1(Λ) of a general point Λ in Σrbh
, all coordinates are

determined uniquely except for Oh,nag+1 , Zh and the coordinates in the g-th row.

We have Q
rbh ,sing

dbh
,Λ ∩ Lnag+1

⊆ Oh,nag+1 ⊆ Lnag+1
thus Oh,nag+1 can be parameter-

ized by G(1, nag+1 − (rbh + ag+1 − xbh) + 1) = G(1, nag+1 − nag − αg+1 + 1). Then

Zh is determined uniquely as Oh,nag+1 ,Λ ∩Qrbh
dbh

. On the other hand, the g-th

row is determined uniquely once T g is determined. The linear space T g satisfies

T g−1 ⊆ T g ⊆ Λ ∩ Lnag and hence can be parameterized by G(αg, αg + 1). Thus

dim(π−1(Λ)) = nag+1 − nag − αg+1 + αg and

codim(π−1(Σrbh
)) = βh(nag+1 − rbh−1+1 − 1) + 1

which is greater than 1 as there is no nj, ri such that nj − ri = 1 in the defining

sequence.

EXAMPLE 4.15. Let V =
[
L2 ⊆ L4 ⊆ Q2

7

]
, an orthogonal Schubert variety

in OG(3, 9). The definition of Ṽ is given by the following diagram.

Figure 9. Definition of Ṽ for V =
[
L2 ⊆ L4 ⊆ Q2

7

]
T 1 ⊆ L2⊆ =

Q2,sing
7⊆

T 2 ⊆ O1 ⊆ L4⊆ ⊆ ⊆

T 3 ⊆ Z1 ⊆ Q2
7
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The subvariety Σrb1
is given by the sequence

[
L1 ⊆ L2 ⊆ L4

]
as Q2

7 becomes

L4 if its corank is increased by 2. The variety Σrb1
has codimension 4. In the

inverse image π−1(Λ) of a general point Λ in Σrb1
, the coordinates T 3 and O1

are determined uniquely as T 3 = O1 = Λ and T 2 = L2. The coordinate T 1

satisfies T 1 ⊆ L2 and is parameterized by G(1, 2). The coordinate Z1 satisfies

O1 ⊆ Z1 ⊆ Q3
7 and is parameterized by OG(1, 3). Thus dim(π−1(Λ)) = 2 and

codim(π−1(Σrb1
)) = 2.

EXAMPLE 4.16. Let V =
[
L5 ⊆ L10 ⊆ Q6

19 ⊆ Q5
20 ⊆ Q2

30

]
, then Ṽ is given

by the following diagram.

Figure 10. Definition of Ṽ for V =
[
L5 ⊆ L10 ⊆ Q6

19 ⊆ Q5
20 ⊆ Q2

30

]
Q2,sing

30 ⊆ Q5,sing
20⊆ ⊆

T 1 ⊆ O2,na1 ⊆ L5⊆ ⊆ ⊆

T 2 ⊆ O2,na2 ⊆ O1,na2 ⊆ L10⊆ ⊆ ⊆ ⊆

T 3 ⊆ O2,rb1 ⊆ Z1 ⊆ Q5
20⊆ ⊆ ⊆

T 4 ⊆ Z2 ⊆ Q2
30

The subvariety Σrb1
=
[
L4 ⊆ L5 ⊆ Q10

15 ⊆ Q9
16 ⊆ Q2

30

]
has codimension 12.

In the inverse image π−1(Λ) of a general point Λ in Σrb1
, we have T 4 = Λ,

T 3 = Λ ∩ Q9
16 = Λ ∩ Q5

20, T 2 = Λ ∩ L5 = Λ ∩ L10, O2,na2 = Q2,sing
30 ,Λ ∩ L10,

O2,rb1 = Q2,sing
30 ,Λ ∩Q5

20, Z2 = Q2,sing
30 ,Λ. The linear space O1,na2 satisfies

Q5,sing
20 ,Λ ∩ L10 ⊆ O1,na2 ⊆ L10 and hence can be parameterized by G(1, 5). Then

Z1 is determined uniquely as Z1 = O1,na2 ,Λ ∩Q5
20. On the other hand, T 1 satisfies

T 1 ⊆ Λ ∩ L5 and hence can be parameterized by G(1, 2). Then O2,na1 = Q2,sing
30 , T 1.

Thus dim(π−1(Λ)) = 5 and codim(π−1(Σrb1
)) = 12− 5 = 7.
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I.D: The only remaining case is when rb1 = nat . Specializing Λ so that it intersects

Q
rbh ,sing

dbh
= Lnat in one more dimension is equivalent to making two changes: The

first one is moving the group of αt isotropic linear spaces Lnat−αt+1, Lnat−αt+2, . . .

, Lnat one position to the right and putting Lnat−αt in the sequence to the left of

these linear spaces. The second one is omitting Q
rk−s
dk−s

from the sequence. This

increases xi by 1 for b1 ≤ i < k − s as Lnat−αt is an additional isotropic linear

space in the modified sequence that is contained in the singular locus of each Qri
di

with b1 ≤ i < k − s. We have

codim(Σrb1
) = αt (nat − at) +

β1∑
t=1

(db1 + xb1 − 2(s+ β1) + t− 1)

− (αt + 1) (nat − at − 1)−
β1−1∑
t=1

(db1 + xb1 − 2(s+ β1) + t− 1)− (β1 − 1)

= αt + db1 − ns − 2β1 + 1

Note that by assumption there is no O containing Q
rb1
db1

and other O’s are deter-

mined uniquely as there is no change in the relevant rank conditions. The only non-

trivial parameterizations are observed for Z1 and the coordinates in the t-th row.

As in (I.A), we have T t+1, Q
rb1 ,sing

db1
⊆ Z1 ⊆ Q

rb1
db1

where dim(T t+1, Q
rb1 ,sing

db1
) =

rb1 + (k − b1 + 1)− (xb1 + 1) and dim(Z1) = dim(T t+1, Q
rb1 ,sing

db1
) + 1. Since Z1

has to lie in the orthogonal complement of T t+1, Q
rb1 ,sing

db1
, we have

T t+1, Q
rb1 ,sing

db1
⊆ Z1 ⊆ Q

rb1+(k−b1+1−xb1−1)
db1−(k−b1+1−xb1−1)

. Such Z1 can be parameterized by

OG(1, db1 − rb1 − 2(k − b1 + 1 − xb1 − 1)). On the other hand, the t-th row can

be determined once T 1 is determined. The linear space T 1 satisfies T t ⊆ Λ ∩ Lnat
and hence can be parameterized by G(αt, αt + 1). Thus dim(π−1(Λ)) =

db1 − rb1 − 2(k − b1 + 1− xb1 − 1)− 2 + αt and we have

codim(π−1(Σrb1
)) = 1.

EXAMPLE 4.17. Let V =
[
L2 ⊆ L3 ⊆ Q3

7

]
, an orthogonal Schubert variety

in OG(3, 9). The following diagram defines Ṽ .
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Figure 11. Definition of Ṽ for V =
[
L2 ⊆ L3 ⊆ Q3

7

]
T 1 ⊆ L3⊆ =

Q3,sing
6⊆

T 2 ⊆ Z1 ⊆ Q3
6

The subvariety Σrb1
=
[
L1 ⊆ L2 ⊆ L3

]
, which consists of a single point,

has codimension 4. In the inverse image π−1(Λ) of a general point Λ in Σrb1
,

we have T 1 ⊆ L3 whih is parameterized by G(2, 3). Also, dim(Z1) = 4 with

Q3,sing
6 ⊆ Z1 ⊆ Q3

6, so Z1 is parameterized by OG(1, 3) which has dimension 1.

Thus dim(π−1(Λ)) = 3 and codim(π−1(Σrb1
)) = 1.

EXAMPLE 4.18. Let V =
[
L5 ⊆ Q5

10 ⊆ Q2
30

]
, then Ṽ is given by the follow-

ing diagram.

Figure 12. Definition of Ṽ for V =
[
L5 ⊆ Q5

10 ⊆ Q2
30

]
Q2,sing

30 ⊆ Q5,sing
10⊆ ⊆

T 1 ⊆ O2,na1 ⊆ L5⊆ ⊆ ⊆

T 2 ⊆ O2,rb1 ⊆ Z1 ⊆ Q5
10⊆ ⊆ ⊆

T 3 ⊆ Z2 ⊆ Q2
30

The subvariety Σrb1
=
[
L4 ⊆ L5 ⊆ Q2

30

]
has codimension 7. In the inverse

image π−1(Λ) of a general point Λ in Σrb1
, we have T 3 = Λ, T 2 = Λ∩L5 = Λ∩Q5

10,

O2,rb1 = Q2,sing
30 ,Λ ∩Q5

10, Z2 = Q2,sing
30 ,Λ. We have Q2,sing

30 ⊆ O2,na1 ⊆ L5 which

can be parameterized by G(1, 3). Then the linear space T 1 which satisfies T 1 ⊆

O2,na1 can be parameterized by G(1, 3). On the other hand, Z1 satisfies Q5,sing
10 ⊆

Z1 ⊆ Q5
10 and hence can be parameterized by OG(1, 5). Thus dim(π−1(Λ)) = 6

and codim(π−1(Σrb1
)) = 1.
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II: Σnag : dim(Λ ∩ Lnag ) = ag + 1 for some 1 ≤ g ≤ t

Depending on nag , we divide this case into the following two subcases:

II.A: g = t

II.B: g < t

II.A: Σnat
: dim(Λ ∩ Lnat ) = at + 1 (or equivalently, dim(Λ ∩ Lns) = s+ 1)

If rb1 = nat , then Σnat
corresponds to Σrb1

. If rb1 > nat then Σrb1
contains

Σnat
. So we assume rb1 < nat in the following. Specializing Λ is equivalent to

moving the group of αt isotropic linear spaces Lnat−αt+1, Lnat−αt+2, . . . , Lnat one

position to the right, putting Lnat−αt in the sequence to the left of these linear

spaces and omitting Q
rk−s
dk−s

from the sequence. We have

codim(Σrb1
) = αt (nat − at) +

β1∑
t=1

(db1 + xb1 − 2(s+ β1) + t− 1)

− (αt + 1) (nat − at − 1)−
β1−1∑
t=1

(db1 + xb1 − 2(s+ β1) + t− 1)

= αt + db1 + xb1 − s− nat − β1

The only nontrivial parameterizations in the inverse image π−1(Λ) of a general

point Λ in Σnat
are in the row of T t and once T t is fixed, the rest of the row can

be determined uniquely. The linear space T t satisfies T t−1 ⊆ T t ⊆ Λ ∩ Lnat and

hence can be parameterized by G(αt, αt + 1). Thus we have

codim(π−1(Σnat
)) = db1 + xb1 − s− nat − β1

≥ db1 + rb1
2

− nat

using the property xi ≥ k − i + 1 − di−ri
2

for all 1 ≤ i ≤ k − s. Note that

codim(π−1(Σnat
)) may be 1 in this case.
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EXAMPLE 4.19. Let V =
[
L5 ⊆ Q2

8

]
, then Ṽ is given by the following

diagram.

Figure 13. Definition of Ṽ for V =
[
L5 ⊆ Q2

8

]
Q2,sing

8⊆

T 1 ⊆ O1,na1 ⊆ L5⊆ ⊆ ⊆

T 2 ⊆ Z1 ⊆ Q2
8

The subvariety Σna1
=
[
L4 ⊆ L5

]
has codimension 2. In the inverse image

π−1(Λ) of a general point Λ in Σrb1
, we have T 2 = Λ and Z1 = Λ, Q2,sing

8 . The

linear space T 1 satisfies T 1 ⊆ Λ ∩ L5 and hence can be parameterized by G(1, 2).

Then O1,na1 is determined uniquely as O1,na1 = Q2,sing
8 , T 1. Thus dim(π−1(Λ)) = 1

and codim(π−1(Σrb1
)) = 2− 1 = 1.

EXAMPLE 4.20. Let V =
[
L4 ⊆ Q1

8

]
, an orthogonal Schubert variety in

OG(2, 9). The following diagram gives the definition of Ṽ .

Figure 14. Definition of Ṽ for V =
[
L4 ⊆ Q1

8

]
Q1,sing

8⊆

T 1 ⊆ O1,na1 ⊆ L4⊆ ⊆ ⊆

T 2 ⊆ Z1 ⊆ Q1
8

The subvariety Σna1
=
[
L4 ⊆ L5

]
has codimension 3. In the inverse image

π−1(Λ) of a general point Λ in Σrb1
, we have T 2 = Λ and Z1 = Λ, Q1,sing

8 . The

linear space T 1 satisfies T 1 ⊆ Λ ∩ L4 and hence can be parameterized by G(1, 2).

Then O1,na1 is determined uniquely as O1,na1 = Q1,sing
8 , T 1. Thus dim(π−1(Λ)) = 1

and codim(π−1(Σrb1
)) = 3− 1 = 2.
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II.B: Σnag : dim(Λ ∩ Lnag ) = ag + 1 for some 1 ≤ g ≤ t− 1

We have already discussed in I.C the case when there is some Q
rbh
dbh

in the

defining sequence with rbh = nag . Also, if there is Q
rbh
dbh

in the sequence with

rbh > nag then Σnag will be contained in Σrbh
. So it is sufficient to consider the

case when nag > rbh for all 1 ≤ h ≤ u, equivalently, when nag > rk−s.

Specializing a k-plane Λ so that it intersects Lnag in one more dimension is

equivalent to moving Lnag−αg+1, Lnag−αg+2, . . . , Lnag one position to the right,

putting Lnag−αg to the left of these isotropic linear spaces and changing Qri
di

to

Q
ri+(nag−rk−s)
di−(nag−rk−s)

for all i with b1 ≤ i ≤ k − s. Note that this increases xi by αg + 1

for all i with b1 ≤ i ≤ k − s. We have

codim(Σnag ) = αg
(
nag − ag

)
+ αg+1

(
nag+1 − ag+1

)
− (αg + 1)

(
nag − ag − 1

)
− (αg+1 − 1)

(
nag+1 − ag+1

)
+ β1(nag − rk−s)− β1(αg + 1)

The only nontrivial parameterizations in the inverse image π−1(Λ) of a general

point Λ in Σnag are in the g-th row of the diagram of Ṽ and once T g is parameter-

ized the remaining coordinates can be determined uniquely. The linear space T g

satisfies T g−1 ⊆ T g ⊆ Lnag and hence can be parameterized by the Grassmannian

G(αg, αg + 1). Thus we have

codim(π−1(Σnag )) = nag+1 − nag − (ag+1 − ag) + 1 + β1(nag − αg − rk−s − 1).

Note that nag+1 − nag ≥ ag+1 − ag + 1 and nag − αg ≥ k − s + 1 by assumption.

Therefore codim(π−1(Σnag )) ≥ 2 in this case.

EXAMPLE 4.21. Let V =
[
L2 ⊆ L4 ⊆ Q0

9

]
, an orthogonal Schubert variety

on OG(3, 9). The following diagram gives the definition of Ṽ .
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Figure 15. Definition of Ṽ for V =
[
L2 ⊆ L4 ⊆ Q0

9

]
T 1 ⊆ L2⊆ ⊆

T 2 ⊆ L4⊆ ⊆

T 3 ⊆ Q0
9

The subvariety Σna1
=
[
L1 ⊆ L2 ⊆ Q2

7

]
has codimension 3. In the inverse

image π−1(Λ) of a general point Λ in Σna1
, the coordinates T 3 and T 2 are de-

termined uniquely as T 3 = Λ and T 2 = Λ ∩ L4. The coordinate T 1 satisfies

T 1 ⊆ L2 and hence is parameterized by G(1, 2). Thus dim(π−1(Λ)) = 1 and

codim(π−1(Σrb1
)) = 3− 1 = 2.

EXAMPLE 4.22. Let V =
[
L5 ⊆ L7 ⊆ Q3

20

]
, then Ṽ is given by the following

diagram.

Figure 16. Definition of Ṽ for V =
[
L5 ⊆ L7 ⊆ Q3

20

]
Q3,sing

20⊆

T 1 ⊆ O1,na1 ⊆ L5⊆ ⊆ ⊆

T 2 ⊆ O1,na2 ⊆ L7⊆ ⊆ ⊆

T 3 ⊆ Z1 ⊆ Q3
20

The subvariety Σna1
=
[
L4 ⊆ L5 ⊆ Q5

18

]
has codimension 3. In the inverse

image π−1(Λ) of a general point Λ in Σna1
, we have T 3 = Λ, T 2 = Λ ∩ L5 =

Λ ∩ L7, Z
1 = Q3,sing

20 ,Λ and O1,na2 = Q3,sing
20 ,Λ ∩ L7. The linear space T 1 satisfies

T 1 ⊆ L5∩Λ and hence can be parameterized by G(1, 2). Then O1,na1 is determined

uniquely as O1,na1 = Q3,sing
20 , T 1. Thus dim(π−1(Λ)) = 1 and codim(π−1(Σrb1

)) =

3− 1 = 2.
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III: Σdbh
: dim(Λ ∩Qrbh

dbh
) = k − bh + 2 for some 1 ≤ h ≤ u

A locus of type Σdbh
is contained in a locus of type Σrbh

when Σrbh
exists. We

are interested in when this is not the case. A locus of type Σrbh
does not exist if and

only if rbh = xbh . This is possible if either Q
rbh
dbh

is smooth or all sub-quadrics have

the same singular locus and the k-planes Λ all contain this locus. The latter case

is equivalent to the restriction variety of (k − rbh)-planes defined by the sequence

that contains only the smooth parts of the sub-quadrics. Therefore it is sufficient

to consider the case when rbh , and consequently every ri with i ≤ bh is zero.

Let θ1 = s +
∑h

l=1 βl and θ2 = βh+1. Consider the restriction variety V]

given by the partitions (0), (dθ1bh , d
θ2
bh+1

), (0, 0). This is the transverse intersection of

OG(k, n) and the Type A Schubert variety Z in G(k, n) defined as the closure of

Z0 = {W ∈ G(k, n) | dim(W ∩ Fdbh ) = θ1 and dim(W ∩ Fdbh+1
) = θ1 + θ2} where

Fdbh and Fdbh+1
are linear spaces of dimensions dbh and dbh+1

in a general full flag

F• . Let V s
] be the closure of the locus of k-planes Λ in V] with the property that

dim(Λ ∩Qrbh
dbh

) = θ1 + 1. We have

codim(π−1(Σdbh
) ⊆ Ṽ ) = codim(π−1(V s

] ) ⊆ Ṽ]).

Let Z̃ be the Schubert variety in the flag variety F (θ1, θ1 + θ2;n) defined

by Z̃ = {(W1,W2) ∈ F (θ1, θ1 + θ2;n) | W1 ⊆ Fbh ,W2 ⊆ Fbh+1
}. We de-

note the projection from Z̃ onto its second coordinate by φ : (W1,W2) 7→ W2.

This is the Bott-Samelson resolution for the ordinary Schubert variety Z. Fur-

thermore, the resolution of singularities π for V] has the transverse intersections

Ṽ] = Z̃ ∩OF (θ1, θ1 + θ2;n) and π−1(V s
] ) = φ−1(Zsing) ∩OF (θ1, θ1 + θ2;n). The

singular locus of Z is the closure of the locus of k-planes in Z with dim(Z∩Fdbh ) =

θ1 + 1. In partition notation Z is given by (F θ1
dbh
, F θ2

dbh+1
) and Zsing is given by
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(F θ1+1
dbh

, F θ2−1
dbh+1

). We have

codim(Zsing) = θ1 (dbh − θ1) + θ2
(
dbh+1

− θ1 − θ2
)

− (θ1 + 1) (dbh − θ1 − 1)− (θ2 − 1)
(
dbh+1

− θ1 − θ2
)

= dbh+1
− dbh + θ1 − θ2 + 1

In order to find codim(φ−1(Zsing)), we consider fibers of φ as before: For a

general W in Zsing, φ−1(W ) = (W1,W2) satisfies W1 ⊆ W ∩ Fdbh . Such W1 can

be parameterized by the Grassmannian G(θ1, θ1 + 1). Therefore

codim(φ−1(Zsing)) = codim(Zsing)− dimφ−1(W ) = dbh+1
− dbh − θ2 + 1.

Note that this is always greater than 1.

Considering the action of GL(n) on F (θ1, θ1 + θ2;n), Kleiman’s Transversality

Theorem shows that

dim(π−1(V s
] )) = dim(φ−1(Zsing))− codim(OF (θ1, θ1 + θ2;n) ⊆ F (θ1, θ1 + θ2;n)) and

dim(V s
] ) = dim(Zsing)− codim(OG(k, n) ⊆ G(k, n)).

Since we have

dimOF (θ1, θ1 + θ2;n) = dimOG(θ1 + θ2, n) + θ1θ2

dimF (θ1, θ1 + θ2;n) = dimG(θ1 + θ2, n) + θ1θ2

we can conclude

codim(π−1(Σdbh
) ⊆ Ṽ ) = codim(π−1(V s

] )) = codim(π−1(Zsing)) = dbh+1
−dbh−θ2+1 ≥ 2.

EXAMPLE 4.23. Let V =
[
L2 ⊆ Q0

7 ⊆ Q0
10

]
. In this case V] =

[
Q0

6 ⊆ Q0
7 ⊆

Q0
10

]
and the Type A Schubert variety Z is given by

[
L6 ⊆ L7 ⊆ L10

]
in G(3, 10).
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By the argument above, we have

codim(π−1(Σdb1
) ⊆ Ṽ ) = codim(π−1(V s

] )) = codim(π−1(Zsing)) = 10− 7 = 3.

The following observation summarizes our computations.

OBSERVATION 4.24. A component of the exceptional locus of π with image of

one of the types

• Σrbh
with rbh < ns

• Σnag with 1 ≤ g ≤ t− 1

• Σdbh
for all 1 ≤ h ≤ u− 1

has codimension larger than 1 (by I.B, I.C, II.B and III).

A component with image of type Σrbh
with rbh ≥ ns has codimension equal to 1 (by

I.A and I.D).

A component with image of type Σnat
has codimension given by codim(π−1(Σnat

)) =

db1 + xb1 − s− nat − β1 which may be larger than or equal to 1.

REMARK 4.25. Observation 4.24 gives a characterization of the divisorial con-

tractions of π.

The following lemma allows us to give a partial description of the singular locus

of a restriction variety. It is based on Lemma 1.8.

LEMMA 4.26. The singular locus of a restriction variety V (L•, Q•) is contained in

the exceptional locus of π. Furthermore, a subvariety Σ satisfying codim(π−1(Σ)) > 1

is in the singular locus of V (L•, Q•).

Proof. The open set V 0(L•, Q•) is the locus where π−1(Λ) is a single point.

V 0(L•, Q•) is smooth since it is homogeneous under the action of SO(n). Conversely,
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suppose codim(π−1(Σ)) > 1 and Λ ∈ Σ is a point such that π−1(Λ) is positive

dimensional. If Λ is smooth, then in order to check that π is a local isomorphism,

it suffices to check that the Jacobian does not vanish. Since codim(π−1(Σ)) > 1 and

the vanishing locus of the Jacobian is a divisor, we conclude that the Jacobian does

not vanish. On the other hand, since π is not a local isomorphism around π−1(Λ), we

conclude that Λ is a singular point. �

COROLLARY 4.27. Let V (L•, Q•) be a restriction variety and π : Ṽ (L•, Q•)→

V (L•, Q•) the resolution of singularities in Theorem 3.6. The components of the

exceptional locus whose images are of the form

• Σrbh
with rbh < ns

• Σnag for all 1 ≤ g ≤ t− 1

• Σnat
such that db1 + xb1 − s− nat − β1 > 1

• Σdbh
for all 1 ≤ h ≤ u− 1

are in the singular locus of V (L•, Q•).



CHAPTER 5

More Observations On the Exceptional Locus

Note that the results of the previous chapter are inconclusive about the image of a

component of the exceptional locus of π with codimension equal to 1. By Observation

4.24, the subvarieties Σ that fall under this category are the following:

• Σrbh
with rbh ≥ ns

• Σnat
such that db1 + xb1 − s− nat − β1 = 1

Under certain conditions, we can say more by studying the tangent space to the

restriction variety V at a general point Λ in Σ. In this chapter, we study the type

• Σrbh
with rbh ≥ ns

when the sub-quadric Q
rbh
dbh

has even rank, that is, dbh − rbh is even.

We will eventually show that this type is contained in the singular locus. Our

strategy is to use the basis sequence of V in order to construct arcs through a point

Λ in V by moving the basis elements of Λ. The arcs found this way give independent

elements in the tangent space. Therefore, if we find more arcs through a given Λ than

the dimension of V , we can conclude that Λ is a singular point. If Λ is a general point

in Σ, this also implies that V is singular along Σ.

Let us illustrate this idea with examples before stating the proposition.

EXAMPLE 5.1. Let V be the restriction variety contained in OG(2, 10) given

by the sequence
[
L1 ⊆ Q3

7

]
. By Remark 4.7, the only locus where π has positive

dimensional fibers, hence the only locus that may be in the singular locus of V , is

Σrb1
=
[
L1 ⊆ L3

]
. By I.A, we know that codim(π−1(Σrb1

)) = 1, which is inconclusive

51
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about whether V is singular along Σrb1
. In the following we use basis sequences to

study the arcs contained in V through a general point in Σrb1
.

The basis sequence of V is given by

e1
]
e2 e3 e4 f4 e5 f5

}
f1 f2 f3 .

Here the sub-quadric Q3
7 is the zero locus of the polynomial x4y4 +x5y5. Let us pick a

general point from Σrb1
as Λ =

〈
e1, e3

〉
. Then the following arcs Γi(t) are contained

in V :

Γ1(t) =
〈
e1, e3 + te2

〉
, Γ2(t) =

〈
e1, e3 + te4

〉
, Γ3(t) =

〈
e1, e3 + tf4

〉
,

Γ4(t) =
〈
e1, e3 + te5

〉
, Γ5(t) =

〈
e1, e3 + tf5

〉
.

These are 5 independent arcs contained in V passing through Λ which implies that

the tangent space to V at Λ has dimension at least 5. Since the dimension of V is 4,

we conclude that Λ is a singular point of V . Thus Σrb1
is in the singular locus of V .

This allows us to describe the singular locus of V .

V sing = Σrb1
=
[
L1 ⊆ L3

]
.

EXAMPLE 5.2. Let V be the restriction variety contained in OG(2, 12) given

by the sequence
[
L4 ⊆ Q4

8

]
. By Remark 4.7, Σrb1

=
[
L3 ⊆ L4

]
is the only lo-

cus where π is positive dimensional. By I.B, we know that the locus Σrb1
satisfies

codim(π−1(Σrb1
)) = 1, so the results of the previous chapter do not determine whether

V is singular along Σrb1
.

The basis sequence of V is given by

e1 e2 e3 e4
]
e5 f5 e6 f6

}
f1 f2 f3 f4 .
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The sub-quadric Q4
8 is given by the polynomial x3y3+x4y4. Let us pick a general point

from Σrb1
as Λ =

〈
e3, e4

〉
. The following Γi(t) are independent arcs contained in V

passing through Λ:

Γ1(t) =
〈
e3 + te1, e4

〉
, Γ2(t) =

〈
e3 + te2, e4

〉
, Γ3(t) =

〈
e3 + te5, e4

〉
,

Γ4(t) =
〈
e3 + tf5, e4

〉
, Γ5(t) =

〈
e3 + te6, e4

〉
, Γ6(t) =

〈
e3 + tf6, e4

〉
,

Γ7(t) =
〈
e3, e4 + te1

〉
, Γ8(t) =

〈
e3, e4 + te2

〉
, Γ9(t) =

〈
e3, e4 + te5

〉
,

Γ10(t) =
〈
e3, e4 + tf5

〉
, Γ11(t) =

〈
e3, e4 + te6

〉
, Γ12(t) =

〈
e3, e4 + tf6

〉
.

Since the dimension of V is 8, this shows that V is singular along Σrb1
. This allows

us to conclude

V sing = Σrb1
=
[
L3 ⊆ L4

]
.

EXAMPLE 5.3. Let V be the restriction variety contained in OG(3, 12) given

by the sequence
[
L2 ⊆ Q4

8 ⊆ Q2
10

]
. In the following we show that Σrb1

, which is

defined by the sequence
[
L2 ⊆ L4 ⊆ Q2

10

]
, and Σrb2

, which is defined by the sequence[
L1 ⊆ L2 ⊆ Q4

8

]
, are both in the singular locus of V . Note that the results of the

previous chapter are inconclusive for both of these loci.

The basis sequence of V is given by

e1 e2
]
e3 e4 e5 f5 e6 f6

}
f3 f4

}
f1 f2.

The sub-quadric Q4
8 is the zero locus of the polynomial x5y5 + x6y6. Let us pick

a general point in Σrb1
as Λ =

〈
e2, e4, f3

〉
. The following are independent arcs

contained in Σrb1
passing through Λ.

Γ1(t) =
〈
e2 + te1, e4, f3

〉
, Γ2(t) =

〈
e2, e4 + te1, f3

〉
, Γ3(t) =

〈
e2, e4 + te5, f3

〉
,

Γ4(t) =
〈
e2, e4 + tf5, f3

〉
, Γ5(t) =

〈
e2, e4 + te6, f3

〉
, Γ6(t) =

〈
e2, e4 + tf6, f3

〉
,

Γ7(t) =
〈
e2, e4, f3 + te1

〉
, Γ8(t) =

〈
e2, e4, f3 + te5

〉
, Γ9(t) =

〈
e2, e4, f3 + tf5

〉
,
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Γ10(t) =
〈
e2, e4, f3+te6

〉
, Γ11(t) =

〈
e2, e4, f3+tf6

〉
, Γ12(t) =

〈
e2, e4, f3+t(e3−f4)

〉
.

Since the dimension of V is 11, this shows that V is singular at Λ, and hence along

Σrb1
.

The sub-quadric Q2
10 is the zero locus of the polynomial x3y3 + x4y4 + x5y5 + x6y6.

Let us pick a general point in Σrb2
as Λ =

〈
e1, e2, f4

〉
. The following are independent

arcs contained in Σrb1
passing through Λ.

Γ1(t) =
〈
e1 + te3, e2, f4

〉
, Γ2(t) =

〈
e1 + te5, e2, f4

〉
, Γ3(t) =

〈
e1 + tf5, e2, f4

〉
,

Γ4(t) =
〈
e1 + te6, e2, f4

〉
, Γ5(t) =

〈
e1 + tf6, e2, f4

〉
, Γ6(t) =

〈
e1, e2 + te3, f4

〉
,

Γ7(t) =
〈
e1, e2 + te5, f4

〉
, Γ8(t) =

〈
e1, e2 + tf5, f4

〉
, Γ9(t) =

〈
e1, e2 + te6, f4

〉
,

Γ10(t) =
〈
e1, e2 + tf6, f4

〉
, Γ11(t) =

〈
e1, e2, f4 + te3

〉
, Γ12(t) =

〈
e1, e2, f4 + te5

〉
,

Γ13(t) =
〈
e1, e2, f4 + te5

〉
, Γ14(t) =

〈
e1, e2, f4 + te6

〉
, Γ15(t) =

〈
e1, e2, f4 + tf6

〉
.

Since this is larger than the dimension of V , we conclude V is singular along Σrb2
.

Therefore, the singular locus of V is given by

V sing = Σrb1
∪ Σrb2

=
[
L2 ⊆ L4 ⊆ Q2

10

]
∪
[
L1 ⊆ L2 ⊆ Q4

8

]
.

The pattern seen in these examples generalizes in a straight-forward way. In the

proof of the following proposition, we observe that a restriction variety V is singular

at a point by establishing more tangent vectors at that point than the dimension of

V . We use basis sequences to study the arcs through a point similar to the examples

above.
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PROPOSITION 5.4. If Q
rbh
dbh

has even rank, then Σrbh
is in the singular locus of

the restriction variety V .

Proof. Given a basis of a point V , we can obtain arcs through the point by

moving each basis element in a way that will still obey the rank conditions defining

V . Since the sub-quadric Q
rbh
dbh

has even rank, the basis sequence of V has some fi to

the left of the bracket of Q
rbh
dbh

.

· · · fi
}
· · ·

Thus the basis of a general element in V contains fi, or some other f• in case ei is in

the chosen basis for the point. The arcs that can be obtained by moving this basis

element can only be chosen among the basis elements v of Q
rbh
dbh

such that fi + tv is

in the zero locus of the polynomial giving Q
rbh
dbh

. This excludes ei, which is a basis

element in the span of Q
rbh
dbh

, from the possible choices of v.

In contrast, the basis of a general element Λ in Σrbh
contains some ej chosen from

the span of Q
rbh ,sing

dbh
. The arcs obtained ej + tv have at least one more possibility

compared to fi + tv. This is because fj is not in the span of Q
rbh
dbh

and its exclusion

is not effective; the basis elements outside the span of Q
rbh
dbh

are already excluded to

respect the rank conditions defining V .

Therefore, we can obtain at least one more arc through a general point of Σrbh

than through a general point in V . This shows that the dimension of the tangent

space to V at a general point of Σrbh
is larger than the dimension of V . We conclude

V is singular along Σrbh
. �

REMARK 5.5. In particular, all loci of type Σrbh
are in the singular locus of V

if V is a Schubert variety of Type D in the orthogonal Grassmannian.

We summarize our knowledge of the singular locus of a general restriction variety

V in the following corollary.
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COROLLARY 5.6. The components of the exceptional locus of π whose images

are of the form

• Σrbh
with rbh < ns

• Σrbh
with dbh − rbh an even number

• Σnag for all 1 ≤ g ≤ t− 1

• Σnat
such that db1 + xb1 − s− nat − β1 > 1

• Σdbh
for all 1 ≤ h ≤ u− 1

are in the singular locus of V (L•, Q•).



CHAPTER 6

Examples

In this chapter we present examples illustrating how our results can be used to

determine the singular locus of a restriction variety when π has no divisorial contrac-

tions.

EXAMPLE 6.1. Let V =
[
L2 ⊆ Q0

4

]
, the Fano variety of lines contained on a

smooth quadric surface. By Remark 4.7, the exceptional locus of π is empty from

which we can conclude that V is smooth. The restriction variety V is actually iso-

morphic to P1 in this example.

EXAMPLE 6.2. Let V =
[
Q0

5 ⊆ Q0
8

]
. This is the variety of projective lines

contained in a 6-dimensional smooth quadric that intersect a 3-dimensional smooth

sub-quadric. By Remark 4.7, the only locus in the image of the exceptional locus of π

is Σdb1
=
[
Q0

4 ⊆ Q0
5

]
. By Corollary 4.27, this is in the singular locus of V , therefore

V sing =
[
Q0

4 ⊆ Q0
5

]
.

EXAMPLE 6.3. Let V =
[
L3 ⊆ Q1

7

]
. By Remark 4.7 there are two types of

subvarieties to consider:

Σna1
=
[
L2 ⊆ L3

]
and Σrb1

=
[
L1 ⊆ L4

]
∪
[
L1 ⊆ L′4

]
since when the corank of Q1

7 is increased by 2, it breaks down into L4 and L′4.

By Corollary 4.27, we can conclude that Σrb1
is in the singular locus of V .
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On the other hand, by Observation 4.24, we have

codim(π−1(Σna1
)) = d1 + x1 − s− n1 − 1 = 2 ,

thus Σna1
is also in the singular locus of V .

Therefore we have

V sing =
[
L2 ⊆ L3

]
∪
[
L1 ⊆ L4

]
∪
[
L1 ⊆ L′4

]
Note that V is an orthogonal Schubert variety in OG(2, 8). In permutation nota-

tion, its singular locus is given by

(73845162)sing = (32854176) ∪ (51736284) ∪ (41763285).

EXAMPLE 6.4. Let V =
[
L4 ⊆ Q1

8

]
. By Remark 4.27, the loci we need to

consider are

Σna1
=
[
L3 ⊆ L4

]
and Σrb1

=
[
L1 ⊆ L4

]
since increasing the corank of Q1

8 by 3 results in a double copy of L4. Since the latter

locus is contained in the former, we only need to consider Σrb1
. By Corollary 4.24,

this locus is in the singular locus of V . Therefore we have

V sing =
[
L3 ⊆ L4

]
.

This is another orthogonal Schubert variety in OG(2, 9). In permutation notation we

have

(849753162)sing = (439852176).

EXAMPLE 6.5. Let V =
[
L1 ⊆ Q2

7 ⊆ Q1
8

]
. By Remark 4.7, the resolution of

singularities π has no exceptional locus. Therefore V is smooth. Note that V is an

orthogonal Schubert variety in OG(2, 9) given by (871654932) in permutations.
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EXAMPLE 6.6. Let V =
[
Q2

7 ⊆ Q0
9

]
. By Remark 4.7, the loci that may be in the

singular locus of V are

Σrb1
=
[
L2 ⊆ Q0

9

]
and Σdb1

=
[
Q3

6 ⊆ Q2
7

]
.

By Corollary 4.24, V is singular along both of these loci, thus

V sing = Σrb1
∪ Σdb1

.

Note that V is a Schubert variety in OG(2, 9). In permutations, its singular locus is

given by

(978654231)sing = (927654381) ∪ (769852143) .

EXAMPLE 6.7. Let V =
[
L2 ⊆ Q2

6 ⊆ Q0
8

]
. By Remark 4.7, the only locus where

π has positive dimensional fibers is Σrb1
and by Observation 4.24, codim(π−1(Σrb1

)) =

1. By Corollary 5.6, V is singular along Σrb1
, therefore we have

V sing = Σrb1
=
[
L1 ⊆ L2 ⊆ Q2

6

]
.

Note that V is a Schubert variety in OG(3, 8). In permutation notation, its singular

locus is given by

(82645371)sing = (62154873) .
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