Singular Loci of Restriction Varieties

BY
R. SEÇKİN ADALI
B.S., Middle East Technical University, 2008
M.S., Middle East Technical University, 2010

THESIS
Submitted as partial fulfillment of the requirements for the degree of Doctor of Philosophy in Mathematics in the Graduate College of the
University of Illinois at Chicago, 2016

Chicago, Illinois

Defense Committee:
Professor İzzet Coşkun, Chair and Advisor
Professor Lawrence Ein
Assistant Professor Jack Huizenga, The Pennsylvania State University
Assistant Professor Eric Riedl
Assistant Professor Kevin Tucker

Acknowledgements

The person who is most directly responsible for making this all happen is my advisor, İzzet Coşkun. I would like to thank him for the time he has invested in me, and for sharing his insight on a variety of areas, including the topics of my thesis. I will always cherish the influence his positive outlook had on me.

Over the years, a number of people have helped me grow and progress in my mathematical career, or have inspired me intellectually. I would like to take this opportunity to express my appreciation to Dawei Chen, Lawrence Ein, Jack Huizenga, Mihnea Popa, Eric Riedl, Kevin Tucker and Sinan Ünver. I am also thankful to Lawrence Ein, Jack Huizenga, Eric Riedl and Kevin Tucker for graciously serving on my thesis committee.

I am grateful for the friendly environment created by the people at the Department of Mathematics at the University of Illinois at Chicago, especially among the graduate students I had the chance to work together.

I would like to thank Ayşe Berkman, Hurşit Önsiper and Cem Tezer, who have encouraged me during my first steps towards this profession.

My family and friends, you have the largest part in this. Thank you for standing by me, for giving me a place to return to.

Finally, I would like to thank Jeff Buckley, whose voice has kept me company through all kinds of weather in this journey.

Summary

Restriction varieties are a fundamental class of subvarieties of orthogonal flag varieties. They parameterize isotropic partial flags satisfying certain rank conditions with respect to a flag that is not necessarily isotropic. Orthogonal Schubert varieties are examples of restriction varieties when the flag is isotropic. The intersection of a generic Type A Schubert variety with the orthogonal flag variety is also an example of a restriction variety. These two examples serve as two extremal cases; restriction varieties interpolate between these two examples. This thesis focuses on restriction varieties in the orthogonal Grassmannian $O G(k, n)$, we will refer to them as restriction varieties for brevity. The goal of this thesis is to study the singularities of restriction varieties.

We introduce a resolution of singularities for restriction varieties that is inspired by the Bott-Samelson/Zelevinsky resolution for Schubert varieties but is necessarily more complicated due to the richer geometry of restriction varieties. We use the resolution of singularities to study the singularities of a restriction variety. Our results rely on studying the exceptional locus of the resolution; we categorize the orbits in the image of the exceptional locus and we compute the dimension of the fibers of the resolution over each orbit.

Using a lemma that relates the image of the exceptional locus to the singularities of the restriction variety when the resolution is not a divisorial contraction, we show that certain components of the exceptional locus have images inside the singular locus. For the components that are excluded from these results, we study the tangent space to the restriction variety at a point. We find conditions for when the images of the
components lie inside the singular locus. We conclude by illustrating how the results presented can be used to describe the singularities of a restriction variety.

Contents

Acknowledgements i
Summary ii
List of Figures V
Chapter 1. Introduction 1

1. The Bott-Samelson/Zelevinsky Resolution 4
2. Outline of Results 8
Chapter 2. Restriction Varieties in $O G(k, n)$ 10
3. Preliminaries on Restriction Varieties 10
4. Basis Sequences 15
5. Partitions for Restriction Varieties 16
Chapter 3. The Resolution of Singularities 19
Chapter 4. The Exceptional Locus 30
Chapter 5. More Observations On the Exceptional Locus 51
Chapter 6. Examples 57
Cited Literature 60
Vita 61

List of Figures

$1 \quad$ Definition of \widetilde{V} for $V=$	$\left[L_{7} \subseteq Q_{11}^{4}\right]$	20
$2 \quad$ Definition of \widetilde{V} for $V=$	$\left[L_{5} \subseteq Q_{10}^{7} \subseteq Q_{20}^{2}\right]$	21
$3 \quad$ Definition of \widetilde{V} for $V=$	$\left[L_{2} \subseteq L_{6} \subseteq L_{13} \subseteq L_{14} \subseteq L_{19} \subseteq Q_{30}^{17} \subseteq Q_{40}^{11} \subseteq Q_{45}^{8} \subseteq\right.$	
$\left.Q_{46}^{7} \subseteq Q_{50}^{3}\right]$		22
4 Definition of \widetilde{V} for general V		24
$5 \quad$ Definition of \widetilde{V} for $V=$	$\left[L_{3} \subseteq Q_{10}^{7} \subseteq Q_{20}^{5}\right]$	35
$6 \quad$ Definition of \widetilde{V} for $V=$	$\left[L_{1} \subseteq Q_{6}^{3} \subseteq Q_{8}^{1}\right]$	35
$7 \quad$ Definition of \widetilde{V} for $V=$	$\left.\left[L_{6} \subseteq L_{7} \subseteq Q_{15}^{2}\right]\right]$	37
$8 \quad$ Definition of \widetilde{V} for $V=$	$\left[L_{7} \subseteq Q_{15}^{5} \subseteq Q_{25}^{2}\right]$	38
$9 \quad$ Definition of \widetilde{V} for $V=$	$\left[L_{2} \subseteq L_{4} \subseteq Q_{7}^{2}\right]$	39
10 Definition of \widetilde{V} for $V=$	$\left[L_{5} \subseteq L_{10} \subseteq Q_{19}^{6} \subseteq Q_{20}^{5} \subseteq Q_{30}^{2}\right]$	40
11 Definition of \widetilde{V} for $V=$	$\left[L_{2} \subseteq L_{3} \subseteq Q_{7}^{3}\right]$	42
12 Definition of \widetilde{V} for $V=$	$\left[L_{5} \subseteq Q_{10}^{5} \subseteq Q_{30}^{2}\right]$	42
13 Definition of \widetilde{V} for $V=$	$\left[L_{5} \subseteq Q_{8}^{2}\right]$	44
14 Definition of \widetilde{V} for $V=$	$\left[L_{4} \subseteq Q_{8}^{1}\right]$	44
15 Definition of \widetilde{V} for $V=$	$\left[L_{2} \subseteq L_{4} \subseteq Q_{9}^{0}\right]$	46
16 Definition of \widetilde{V} for $V=$	$\left.\left[L_{5} \subseteq L_{7} \subseteq Q_{20}^{3}\right]\right]$	46

CHAPTER 1

Introduction

There are several ways of defining Schubert varieties in $G(k, n)$. Here we define them in a setting that is not common in the literature but that will generalize to restriction varieties in a straight-forward way: We use sequences whose steps correspond to rank conditions giving the Schubert variety. Let W be an n-dimensional vector space over the complex numbers \mathbb{C} and consider $G(k, W)=G(k, n)$, the Grassmannian of k-planes on W. We define a Schubert variety Σ in $G(k, n)$ in terms of a fixed complete flag, that is, a nested sequence of subspaces

$$
0 \subseteq W_{1} \subseteq \cdots \subseteq W_{n-1} \subseteq W_{n}=W
$$

with $\operatorname{dim} W_{i}=i$. Consider a subsequence W_{\bullet} of length k :

$$
W_{n_{1}} \subseteq \cdots \subseteq W_{n_{k}}
$$

The Schubert variety Σ associated to W_{\bullet} is defined as the closure of the locus

$$
\Sigma\left(W_{\bullet}\right)^{0}=\left\{\Lambda \in G(k, n) \mid \operatorname{dim}\left(\Lambda \cap W_{n_{i}}\right)=i \text { for all } 1 \leq i \leq k\right\}
$$

If there are steps in W_{\bullet} with consecutively increasing dimensions, the number of independent rank conditions is less than the number of steps in the sequence. In this case, the Schubert variety $\Sigma\left(W_{\bullet}\right)$ can be defined in a more concise way by considering only the largest dimensional step in each group of steps with consecutively increasing dimensions.

EXAMPLE 1.1. Let Σ be the Schubert variety in $G(5,17)$ associated to the sequence

$$
W_{8} \subseteq W_{9} \subseteq W_{10} \subseteq W_{11} \subseteq W_{12}
$$

Then Σ is defined as the closure of the locus

$$
\Sigma^{0}=\left\{\Lambda \in G(5,17) \mid \operatorname{dim}\left(\Lambda \cap W_{12}\right)=5\right\}
$$

In other words, Σ is just the variety of 5-planes Λ contained in W_{12}; it is isomorphic to $G(5,12)$. Such Λ necessarily intersect W_{11} in dimension 4, W_{10} in dimension 3 and so on. In this example, the defining sequence gives only one independent rank condition.

EXAMPLE 1.2. Let Σ be the Schubert variety in $G(5,17)$ associated to the sequence

$$
W_{2} \subseteq W_{3} \subseteq W_{4} \subseteq W_{11} \subseteq W_{12}
$$

This means Σ is defined as the closure of the locus

$$
\Sigma^{0}=\left\{\Lambda \in G(5,17) \mid \operatorname{dim}\left(\Lambda \cap W_{4}\right)=3 \text { and } \operatorname{dim}\left(\Lambda \cap W_{12}\right)=5\right\}
$$

The rest of the steps are naturally satisfied for such k-planes Λ, so there are only two independent rank conditions defining Σ.

EXAMPLE 1.3. Let Σ be the Schubert variety in $G(7,17)$ given by the sequence

$$
W_{2} \subseteq W_{6} \subseteq W_{7} \subseteq W_{11} \subseteq W_{12} \subseteq W_{13} \subseteq W_{15}
$$

This variety is defined as the closure of the locus

$$
\begin{aligned}
\Sigma^{0}=\{\Lambda \in G(7,17) \mid & \operatorname{dim}\left(\Lambda \cap W_{2}\right)=1, \quad \operatorname{dim}\left(\Lambda \cap W_{7}\right)=3 \\
& \left.\operatorname{dim}\left(\Lambda \cap W_{13}\right)=6, \quad \operatorname{dim}\left(\Lambda \cap W_{15}\right)=7\right\}
\end{aligned}
$$

Four independent rank conditions define Σ in this example.

In order to define Schubert varieties in $G(k, n)$ in a concise way by just noting the independent rank conditions, we introduce partitions. Define the partition $\left(n_{a_{1}}^{\alpha_{1}}, \ldots, n_{a_{t}}^{\alpha_{t}}\right)$ associated to $W_{\bullet}: W_{n_{1}} \subseteq \cdots \subseteq W_{n_{k}}$ as

$$
\alpha_{l}=\mid\left\{n_{i} \text { in } W_{\bullet} \mid n_{i} \leq n_{a_{l}}, a_{l}-i=n_{a_{l}}-n_{i}\right\} \mid \text { for all } 1 \leq l \leq t
$$

In other words, a_{l} marks the largest dimensional step in each group of steps with consecutively increasing dimensions and α_{l} counts the number of steps in the group. Note that we have $a_{l}=\sum_{i=1}^{l} \alpha_{i}$ and $a_{t}=k$. The Schubert variety Σ in $G(k, n)$ associated to the partition $\left(n_{a_{1}}^{\alpha_{1}}, \ldots, n_{a_{t}}^{\alpha_{t}}\right)$ is given by t independent rank conditions and is defined as the closure of the locus

$$
\Sigma^{0}=\left\{\Lambda \in G(k, n) \mid \operatorname{dim}\left(\Lambda \cap W_{n_{a_{l}}}\right)=a_{l} \text { for all } 1 \leq l \leq t\right\} .
$$

Being homogeneous under the action of $G L(n)$, the open cell Σ^{0} is smooth.

EXAMPLE 1.4. The partition associated to the Schubert variety in $G(5,17)$ given by the sequence

$$
W_{8} \subseteq W_{9} \subseteq W_{10} \subseteq W_{11} \subseteq W_{12}
$$

is $\left(12^{5}\right)$.

EXAMPLE 1.5. The partition associated to the Schubert variety in $G(5,17)$ given by the sequence

$$
W_{2} \subseteq W_{3} \subseteq W_{4} \subseteq W_{11} \subseteq W_{12}
$$

is $\left(4^{3}, 12^{2}\right)$.

EXAMPLE 1.6. The partition associated to the Schubert variety in $G(7,17)$ given by the sequence

$$
W_{2} \subseteq W_{6} \subseteq W_{7} \subseteq W_{11} \subseteq W_{12} \subseteq W_{13} \subseteq W_{15}
$$

is $\left(2^{1}, 7^{2}, 13^{3}, 15^{1}\right)$.

The following proposition recalls the dimension of a Schubert variety in the sequence and the partition notations.

PROPOSITION 1.7. The dimension of a Schubert variety Σ in $G(k, n)$ associated to the sequence $W_{\bullet}: W_{n_{1}} \subseteq \cdots \subseteq W_{n_{k}}$ or the partition $\left(n_{a_{1}}^{\alpha_{1}}, \ldots, n_{a_{t}}^{\alpha_{t}}\right)$ is given by

$$
\operatorname{dim} \Sigma=\sum_{i=1}^{k}\left(n_{i}-i\right)=\sum_{l=1}^{t} \alpha_{l}\left(n_{a_{l}}-a_{l}\right)
$$

Proof. The second equality is just the translation between the sequence notation and the partition notation. We prove the first equality using induction on k. If $k=1$ then Σ is isomorphic to the projective space of dimension $n_{1}-1$ and the equality holds. Now suppose the proposition holds up to $k-1$. Let Σ^{\prime} be the Schubert variety of $(k-1)$-planes defined by the sequence obtained by omitting $W_{n_{k}}$ from W_{\bullet}. Consider the map $f: \Sigma \rightarrow \Sigma^{\prime}$ defined by $f: \Lambda \mapsto \Lambda \cap W_{n_{k-1}}$. The map f maps Σ onto Σ^{\prime}. By the theorem on the dimension of the fibers of a morphism, we have $\operatorname{dim} \Sigma=\operatorname{dim} \Sigma^{\prime}+\operatorname{dim} f^{-1}(L)$ for a general point L in Σ^{\prime}. For general $L \in \Sigma^{\prime}$, the inverse image $f^{-1}(L)=\left\{\Lambda \subseteq W_{n_{k}} \mid L \subseteq \Lambda\right\}$ is isomorphic to the Grassmannian $G\left(1, n_{k}-(k-1)\right)$ and hence has dimension $n_{k}-k$. This proves the proposition.

1. The Bott-Samelson/Zelevinsky Resolution

Schubert varieties in the Grassmannian admit a natural resolution $\pi: \widetilde{\Sigma} \rightarrow \Sigma$ such that the image of the exceptional locus of π is equal to the singular locus of Σ. Let Σ be given by the partition $\left(n_{a_{1}}^{\alpha_{1}}, \ldots, n_{a_{t}}^{\alpha_{t}}\right)$ and let $\widetilde{\Sigma}$ be the Schubert variety in the flag variety $F\left(a_{1}, \ldots, a_{t} ; n\right)$ defined by

$$
\widetilde{\Sigma}=\left\{\left(T^{1}, \ldots, T^{t}\right) \in F\left(a_{1}, \ldots, a_{t} ; n\right) \mid T^{l} \subseteq W_{n_{a_{l}}} \text { for all } 1 \leq l \leq t\right\}
$$

Since $\widetilde{\Sigma}$ is an iterated tower of Grassmannians, it is smooth and irreducible. The natural projection $\pi: F\left(a_{1}, \ldots, a_{t} ; n\right) \rightarrow G(k, n)$ given by $\left(T^{1}, \ldots, T^{t}\right) \mapsto T^{t}$ maps $\widetilde{\Sigma}$ onto Σ and the map is injective over the smooth open cell Σ^{0}. The inverse image
$\pi^{-1}(\Lambda)$ of a general point $\Lambda \in \Sigma^{0}$ is determined uniquely as

$$
T^{l}=\Lambda \cap W_{n_{a_{l}}}, \quad 1 \leq l \leq t
$$

By Zariski's Main Theorem, π is an isomorphism over Σ^{0} and hence a resolution of singularities of Σ.

The map has positive dimensional fibers over the locus of k-planes Λ with the property that $\operatorname{dim}\left(\Lambda \cap W_{n_{a_{l}}}\right)>a_{l}$ for some $1 \leq l \leq t-1$. Let $\Sigma_{s_{l}}$ be the closure of the locus

$$
\Sigma_{s_{l}}^{0}=\left\{\Lambda \in \Sigma \mid \operatorname{dim}\left(\Lambda \cap W_{n_{a_{l}}}\right)=a_{l}+1\right\} .
$$

The exceptional locus of π consists of the union of the inverse images of $\Sigma_{s_{l}}$ for all $1 \leq l \leq t-1$. Let us study the codimension of the components of the exceptional locus of π. Over each $\Sigma_{s_{l}}$, the inverse image $\Sigma_{s_{l}}$ is irreducible of codimension

$$
\operatorname{codim}\left(\pi^{-1}\left(\Sigma_{s_{l}}\right)\right)=\operatorname{codim}\left(\Sigma_{s_{l}}\right)-\operatorname{dim}\left(\pi^{-1}(\Lambda)\right)
$$

for a general $\Lambda \in \Sigma_{s_{l}}$. By Proposition 1.7 we have

$$
\begin{aligned}
\operatorname{codim}\left(\Sigma_{s_{l}}\right)= & \alpha_{l}\left(n_{a_{l}}-a_{l}\right)+\alpha_{l+1}\left(n_{a_{l+1}}-a_{l+1}\right) \\
& \quad-\left(\alpha_{l}+1\right)\left(n_{a_{l}}-a_{l}-1\right)-\left(\alpha_{l+1}-1\right)\left(n_{a_{l+1}}-a_{l+1}\right) \\
= & n_{a_{l+1}}-n_{a_{l}}-\left(a_{l+1}-a_{l}\right)+\alpha_{l}+1 .
\end{aligned}
$$

On the other hand, for a general $\Lambda \in \Sigma_{s_{l}}$ we have

$$
\begin{gathered}
\pi^{-1}(\Lambda)=\left\{\left(T^{1}, \ldots, T^{t}\right) \mid T^{g}=\Lambda \cap W_{n_{a_{g}}} \text { for all } 1 \leq g \leq t, g \neq l\right. \\
\text { and } \left.T^{l-1} \subseteq T^{l} \subseteq \Lambda \cap W_{n_{a_{l}}}\right\}
\end{gathered}
$$

So, for an element of $\pi^{-1}(\Lambda)$, the coordinate T^{l} is the only one that is not determined uniquely and it can be parameterized by $G\left(a_{l}-a_{l-1}, a_{l}+1-a_{l-1}\right)$. This Grassmannian
has dimension $a_{l}-a_{l-1}=\alpha_{l}$. Therefore we have

$$
\operatorname{codim}\left(\pi^{-1}\left(\Sigma_{s_{l}}\right)\right)=n_{a_{l+1}}-n_{a_{l}}-\left(a_{l+1}-a_{l}\right)+1 \geq 2
$$

since $n_{a_{l+1}}-n_{a_{l}} \geq a_{l+1}-a_{l}+1$.
This shows that a component of the exceptional locus of π has codimension larger than 1. This observation with the following lemma determines the singular locus of a Schubert variety.

LEMMA 1.8. ([7], Lemma 2.3) Let $f: X \rightarrow Y$ be a birational morphism from a smooth, projective variety X onto a normal projective variety Y. Assume that f is an isomorphism in codimension one. Then $p \in Y$ is a singular point if and only if $f^{-1}(p)$ is positive dimensional.

COROLLARY 1.9. The image of the exceptional locus of the resolution of singularities $\pi: \widetilde{\Sigma} \rightarrow \Sigma$ is equal to the singular locus of Σ.

EXAMPLE 1.10. The Schubert variety Σ in $G(5,17)$ associated to the partition $\left(12^{5}\right)$ or the sequence

$$
W_{8} \subseteq W_{9} \subseteq W_{10} \subseteq W_{11} \subseteq W_{12}
$$

is smooth, this is the Grassmannian $G(5,12)$. In this case, the resolution of singularities has no positive dimensional locus. The variety $\widetilde{\Sigma}$ is given by

$$
\widetilde{\Sigma}=\left\{T^{1} \in G(5 ; 17) \mid T^{1} \subseteq W_{12}\right\}
$$

and is identical to Σ.

EXAMPLE 1.11. Consider the Schubert variety Σ in $G(5,17)$ given by the partition $\left(4^{3}, 12^{2}\right)$. The variety $\widetilde{\Sigma}$ is given by

$$
\widetilde{\Sigma}=\left\{\left(T^{1}, T^{2}\right) \in F(3,5 ; 17) \mid T^{1} \subseteq W_{4} \text { and } T^{2} \subseteq W_{12}\right\}
$$

The projection $\pi:\left(T^{1}, T^{2}\right) \mapsto T^{2}$ maps $\widetilde{\Sigma}$ onto Σ. The map π is positive dimensional over the locus

$$
\left\{\Lambda \in G(5,17) \mid \operatorname{dim}\left(\Lambda \cap W_{4}\right)>3\right\}
$$

which also equals the singular locus of Σ.

EXAMPLE 1.12. For the Schubert variety given by the partition $\left(2^{1}, 7^{2}, 13^{3}, 15^{1}\right)$, the variety $\widetilde{\Sigma}$ is defined as

$$
\begin{aligned}
\widetilde{\Sigma}=\left\{\left(T^{1}, T^{2}, T^{3}, T^{4}\right) \in F(1,3,6,7 ; 17) \mid\right. & T^{1} \subseteq W_{2}, \quad T^{2} \subseteq W_{7} \\
& \left.T^{3} \subseteq W_{13}, \quad T^{4} \subseteq W_{15}\right\}
\end{aligned}
$$

The projection $\pi:\left(T^{1}, T^{2}, T^{3}, T^{4}\right) \mapsto T^{4}$ maps $\widetilde{\Sigma}$ onto Σ. The exceptional locus consists of the union of the inverse images of the closures of the following loci:

$$
\begin{gathered}
\Sigma_{s_{1}}^{0}=\{\Lambda \in G(7,17) \mid \\
\operatorname{dim}\left(\Lambda \cap W_{2}\right)=2, \quad \operatorname{dim}\left(\Lambda \cap W_{7}\right)=3 \\
\left.\operatorname{dim}\left(\Lambda \cap W_{13}\right)=6, \quad \operatorname{dim}\left(\Lambda \cap W_{15}\right)=7\right\} \\
\Sigma_{s_{2}}^{0}=\{\Lambda \in G(7,17) \mid \\
\operatorname{dim}\left(\Lambda \cap W_{2}\right)=1, \operatorname{dim}\left(\Lambda \cap W_{7}\right)=4 \\
\\
\left.\operatorname{dim}\left(\Lambda \cap W_{13}\right)=6, \quad \operatorname{dim}\left(\Lambda \cap W_{15}\right)=7\right\} \\
\Sigma_{s_{3}}^{0}=\left\{\Lambda \in G(7,17) \mid \operatorname{dim}\left(\Lambda \cap W_{2}\right)=1, \quad \operatorname{dim}\left(\Lambda \cap W_{7}\right)=3, \quad \operatorname{dim}\left(\Lambda \cap W_{13}\right)=7\right\}
\end{gathered}
$$

Consequently the singular locus of the Schubert variety Σ is given by

$$
\Sigma^{s i n g}=\Sigma_{s_{1}} \cup \Sigma_{s_{2}} \cup \Sigma_{s_{3}}
$$

REMARK 1.13. The subvarieties $\Sigma_{s_{l}}$ of the Schubert variety Σ correspond to the hooks in the Young diagram of Σ.

2. Outline of Results

This thesis presents a resolution of singularities and gives a partial description of the singularities of restriction varieties in $O G(k, n)$. The Bott-Samelson/Zelevinsky resolution and the picture described in the previous section for Schubert varieties in $G(k, n)$ serve as a starting point.

One of the major differences of the restriction varieties from Schubert varieties in this study is that a component of the exceptional locus of the resolution of singularities introduced here does not have codimension larger than 1 in general. We describe components with this property and give examples in our discussion. Also, since restriction varieties are much more general than Schubert varieties, their combinatorial nature is more involved. This is reflected in the complicated statements of the results; we hope to remedy this by presenting lots of examples that unveil the intuition behind the general formulations.

In Chapter 2, we review restriction varieties. The definition and properties of restriction varieties are governed by basic facts about quadrics. We recall these properties and explain the conditions required to define restriction varieties. We introduce the partition notation for restriction varieties which is central in the statements of our results. We also introduce basis sequences which give a convenient point of view for studying the tangent space to a restriction variety.

In Chapter 3, we introduce a resolution of singularities for restriction varieties. We start by giving examples that illustrate the ideas behind the construction and then give the general definition. The definition of the resolution of singularities becomes more apparent when considered via a diagram; we explain this diagram throughout our discussions and emphasize that it can be used to define the resolution of singularities in general.

In Chapter 4, we study the exceptional locus and determine which components have codimension larger than 1 . We prove a lemma that allows us to show that the
image of a component of the exceptional locus with codimension larger than 1 lies in the singular locus of the restriction variety. This gives a partial description of the singular locus. We also observe that there are components of the exceptional locus with codimension 1 in general.

In Chapter 5, we study the components of the exceptional locus with codimension equal to 1 . We present conditions under which the image of a component of the exceptional locus with codimension 1 is contained in the singular locus of the restriction variety. We study arcs contained in the restriction variety through a point to show singularity at a point, and hence along the orbit that contains the point.

In Chapter 6, we present examples where we describe the singular locus of several restriction varieties, presenting concrete cases of our previous observations. We consider orthogonal Schubert varieties and show the overlap between our notation and the permutation notation which the existing literature on Schubert varieties usually uses.

CHAPTER 2

Restriction Varieties in $O G(k, n)$

1. Preliminaries on Restriction Varieties

In this chapter, we define restriction varieties and review their basic properties. Let W be an n-dimensional vector space over the complex numbers \mathbb{C} and Q a nondegenerate symmetric bilinear form on W. A linear space $\Lambda \subseteq W$ is called isotropic with respect to Q if $\gamma_{1}^{T} Q \gamma_{2}=0$ for all $\gamma_{1}, \gamma_{2} \in \Lambda$. Let F_{Q} denote the quadratic polynomial associated to Q. A k-plane Λ is isotropic with respect to Q if and only if its projectivization is contained in the quadric hypersurface defined by F_{Q}. The orthogonal Grassmannian $O G(k, n)$ parameterizes k-dimensional subspaces of W that are isotropic with respect to Q. Equivalently this is the Fano variety of $(k-1)$-planes contained in a quadric hypersurface in $\mathbb{P} W$.

Let $L_{n_{j}}$ be an isotropic linear space of vector space dimension n_{j}. In case $2 n_{j}=n$ we denote isotropic linear spaces in different connected components as $L_{n_{j}}$ and $L_{n_{j}}^{\prime}$. Let $Q_{d_{i}}^{r_{i}}$ denote a subquadric of corank r_{i} cut out by a d_{i}-dimensional linear section of Q and denote this linear space by $\overline{Q_{d_{i}}^{r_{i}}}$. Let $F_{Q_{d}^{r}}$ denote the restriction of F to $\overline{Q_{d_{i}}^{r_{i}}}$ so that Q_{d}^{r} is given by the zero locus of $F_{Q_{d}^{r}}$. We denote the singular locus of $Q_{d_{i}}^{r_{i}}$ by $Q_{d_{i}}^{r_{i}, \text { sing }}$. We use the same notation for projectivizations contained in $\mathbb{P} W$. For convenience, let $r_{0}=0$ and $d_{0}=n$.

We use sequences of the form

$$
L_{n_{1}} \subseteq \ldots \subseteq L_{n_{s}} \subseteq Q_{d_{k-s}}^{r_{k-s}} \subseteq \ldots \subseteq Q_{d_{1}}^{r_{1}}
$$

consisting of isotropic linear spaces $L_{n_{j}}$ and sub-quadrics $Q_{d_{i}}^{r_{i}}$ of Q to define restriction varieties. The restriction variety V defined via this sequence parameterizes k dimensional isotropic linear spaces that intersect $L_{n_{j}}$ in a subspace of dimension j for all $1 \leq j \leq s$ and $Q_{d_{i}}^{r_{i}}$ in a subspace of dimension $k-i+1$ for all $1 \leq i \leq k-s$. We require the isotropic linear spaces and the singular loci of sub-quadrics to be in the most special position. This is expressed in the conditions

- $Q_{d_{i-1}}^{r_{i-1}, \text { sing }} \subseteq Q_{d_{i}}^{r_{i}, \text { sing }}$ for every $1 \leq i \leq k-s$ and
- $\operatorname{dim}\left(L_{n_{j}} \cap Q_{d_{i}}^{r_{i}, \text { sing }}\right)=\min \left(n_{j}, r_{i}\right)$ for every $1 \leq j \leq s$ and $1 \leq i \leq k-s$.

This gives a motivation for counting the sub-quadrics $Q_{d_{i}}^{r_{i}}$ from the right; the singular loci form a nested sequence of subspaces $Q_{d_{1}}^{r_{1}, s i n g} \subseteq \ldots \subseteq Q_{d_{k-s}}^{r_{k-s}, s i n g}$. Note that by the corank bound, $Q_{d_{i-1}}^{r_{i-1}, \text { sing }} \subseteq Q_{d_{i}}^{r_{i}, \text { sing }}$ implies $r_{i+1}-r_{i} \leq d_{i}-d_{i+1}$. In particular, the corank of a sub-quadric in Q is bounded by its codimension. We note the effect on our sequence as

- $r_{i+1}+d_{i+1} \leq r_{i}+d_{i}$ for every $1 \leq i \leq k-s$.

This positioning of isotropic linear spaces and sub-quadrics has an effect on the k-planes V parameterizes as well. Let x_{i} be the number of isotropic linear spaces $L_{n_{j}}$ of the sequence contained in $Q_{d_{i}}^{r_{i}, \text { sing }}$. We require the $(k-i+1)$-dimensional subspace of a k-plane Λ contained in $Q_{d_{i}}^{r_{i}}$ to intersect $Q_{d_{i}}^{r_{i}, \text { sing }}$ in a subspace of dimension x_{i}. The largest dimensional isotropic linear space with respect to a quadratic form Q_{d}^{r} has dimension $\left\lfloor\frac{d+r}{2}\right\rfloor$. Therefore a linear space of dimension $k-i+1$ intersects $Q_{d_{i}}^{r_{i}, \text { sing }}$ in a subspace of dimension at least $\max \left(0, k-i+1-\left\lfloor\frac{d-r}{2}\right\rfloor\right)$. Hence we get the condition

- For every $1 \leq i \leq k-s$,

$$
x_{i} \geq k-i+1-\frac{d_{i}-r_{i}}{2} .
$$

Another crucial requirement we make is the irreducibility of the sub-quadrics. A sub-quadric Q_{d}^{r} is irreducible if and only if its rank is at least 3 . The following condition ensures that $Q_{d_{k-s}}^{r_{k-s}}$ and consequently every $Q_{d_{i}}^{r_{i}}$ is irreducible.

$$
r_{k-s} \leq d_{k-s}-3
$$

The next condition concerns the variation of tangent spaces to a singular quadric. Let M be a codimension j linear subspace of a linear space L. Let Q_{d}^{r} be singular along M. Then the tangent spaces to Q_{d}^{r} along $L \backslash M$ vary at most in a $(j-1)$ dimensional family. In other words, the image of the Gauss map of Q_{d}^{r} restricted to the smooth points of L has dimension at most $j-1$. Therefore, if there is n_{j}, r_{i} in a sequence with $n_{j}=r_{i}+1$, then $Q_{d_{i}}^{r_{i}, \text { sing }} \subseteq L_{n_{j}}$ is a codimension 1 linear subspace and the tangent spaces to $Q_{d_{i}}^{r_{i}}$ are constant along $L_{n_{j}}$. Hence the $(k-i+1)$-dimensional subspace contained in $Q_{d_{i}}^{r_{i}}$ are actually contained in $Q_{d_{i}-1}^{r_{i}+1}$ with singular locus $L_{n_{j}}$. Since the latter reflects the geometry of the k-planes in V better, we impose the following condition on our sequence.

- For any $1 \leq j \leq s$, there does not exist $1 \leq i \leq k-s$ such that $n_{j}-r_{i}=1$.

The following technical condition puts a restriction on the singular loci of the sub-quadrics in the sequence; it disallows a sudden gap between $Q_{d_{i}}^{r_{i}, \text { sing }}$.

- For every $1 \leq i \leq k-s$ either $r_{i}=r_{1}=x_{1}$ or $r_{l}-r_{i} \geq l-i-1$ for every $l>i$. Furthermore, if $r_{l}=r_{l-1}>x_{1}$ for some l, then $d_{i}-d_{i+1}=r_{i+1}-r_{i}$ for all $i \geq l$ and $d_{l-1}-d_{l}=1$.

We use sequences satisfying these conditions to define restriction varieties in order to make sure the resulting subvarieties of $O G(k, n)$ are geometrically meaningful. A sequence satisfying these conditions is called an admissible sequence.

DEFINITION 2.1. Let $\left(L_{\bullet}, Q_{\bullet}\right)$ be an admissible sequence for $O G(k, n)$. A restriction variety $V\left(L_{\bullet}, Q_{\bullet}\right)$ is the subvariety of $O G(k, n)$ defined as the closure of

$$
\begin{aligned}
V^{0}\left(L_{\bullet}, Q_{\bullet}\right)=\{\Lambda \in O G(k, n) \mid & \operatorname{dim}\left(\Lambda \cap L_{n_{j}}\right)=j, \quad 1 \leq j \leq s, \\
& \operatorname{dim}\left(\Lambda \cap Q_{d_{i}}^{r_{i}}\right)=k-i+1, \\
& \left.\operatorname{dim}\left(\Lambda \cap Q_{d_{i}}^{r_{i}, \text { sing }}\right)=x_{i}, \quad 1 \leq i \leq k-s\right\} .
\end{aligned}
$$

EXAMPLE 2.2. Schubert varieties in $O G(k, n)$ are restriction varieties defined via a sequence satisfying $d_{i}+r_{i}=n$ for all $1 \leq i \leq k-s$, that is, when the quadrics in the sequence are as singular as possible. The restriction of a general Schubert variety in $G(k, n)$ to $O G(k, n)$ is also a restriction variety associated to a sequence with $s=0$ and $r_{i}=0$ for all $1 \leq i \leq k-s$. Hence, restriction varieties interpolate between the restrictions of Schubert varieties in $G(k, n)$ to $O G(k, n)$ and Schubert varieties in $O G(k, n)$.

When the inequality $x_{i} \geq k-i+1-\frac{d_{i}-r_{i}}{2}$ is an equality for an index i, then the $\frac{d_{i}+r_{i}}{2}$-dimensional linear spaces in $Q_{d_{i}}^{r_{i}}$ form two irreducible components.

EXAMPLE 2.3. V defined by

$$
Q_{3}^{0} \subseteq Q_{4}^{0}
$$

in $O G(2,5)$ parameterizes lines on a smooth quadric surface Q_{4}^{0} in \mathbb{P}^{3} and consists of two irreducible components.

The $(k-i+1)$-dimensional subspaces contained in $Q_{d_{i}}^{r_{i}}$ may be distinguished by their parity of the dimension of their intersection with linear spaces in each of these components.

DEFINITION 2.4. Let (L_{\bullet}, Q_{\bullet}) be an admissible sequence. An index $1 \leq i \leq k-s$ such that

$$
x_{i}=k-i+1-\frac{d_{i}-r_{i}}{2}
$$

is called a special index. For each special index, a marking m• of (L_{\bullet}, Q_{\bullet}) designates one of the irreducible components of $\frac{d_{i}+r_{i}}{2}$-dimensional linear spaces of $Q_{d_{i}}^{r_{i}}$ as even and the other one as odd, such that

- If $d_{i_{1}}+r_{i_{1}}=d_{i_{2}}+r_{i_{2}}$ for two special indices $i_{1}<i_{2}$ and the component containing a linear space Γ is designated even for i_{2}, then the component containing Γ is designated even for i_{1} as well; and
- If $2 n_{s}=d_{i}+r_{i}$ for a special index i, then the component to which $L_{n_{s}}$ belongs is assigned the parity of s; and
- If $n=2 k, m \bullet$ assigns the component containing l_{k} the parity that characterizes the component $O G(k, 2 k)$. A marked restriction variety $V\left(L_{\bullet}, Q_{\bullet}, m_{\bullet}\right)$ is the Zariski closure of the subvariety of $V^{0}\left(L_{\bullet}, Q_{\bullet}\right)$ parameterizing k-dimensional isotropic subspaces W, where, for each special index i, W intersects subspaces of dimension $\frac{d_{i}+r_{i}}{2}$ of $Q_{d_{i}}^{r_{i}}$ designated even (respectively, odd) by m_{\bullet} in a subspace of even (respectively, odd) dimension.

We will use the next proposition when we compare dimensions of the restriction variety and its tangent space in various orbits in the next section.

PROPOSITION 2.5. ([4], Prop 4.16) The marked restriction variety $V\left(L_{\bullet}, Q_{\bullet}, m_{\bullet}\right)$ associated to a marked admissible sequence is an irreducible variety of dimension

$$
\begin{aligned}
\operatorname{dim}\left(V\left(L_{\bullet}, Q_{\bullet}, m_{\bullet}\right)\right) & =\sum_{j=1}^{s}\left(n_{j}-j\right)+\sum_{i=1}^{k-s}\left(d_{i}+x_{i}-2 s-2 i\right) \\
& =\sum_{j=1}^{s}\left(n_{j}-j\right)+\sum_{i=1}^{k-s}\left(d_{i}+x_{i}-2(k-i+1)\right)
\end{aligned}
$$

Note that this expression does not depend on the marking m_{\bullet}. The restriction variety $V\left(L_{\bullet}, Q_{\bullet}\right)$ has an irreducible component for every marking m_{\bullet} and every irreducible component of $V\left(L_{\bullet}, Q_{\bullet}\right)$ has this dimension.

2. Basis Sequences

In this subsection we associate a sequence of vectors, brackets and braces to an admissible sequence. Examples of similar sequences can be found in [4], [5] and [6]. We will use basis sequences when we study an example illustrating future research ideas in the last chapter.

Recall that we denote the quadratic polynomial corresponding to the symmetric bilinear form Q by F_{Q} and the smallest dimensional linear space containing a subquadric Q_{d}^{r} by $\overline{Q_{d}^{r}}$. We take F_{Q} to be

$$
\sum_{i=1}^{m} x_{i} y_{i} \text { if } n=2 m \text { and } x_{m+1}^{2}+\sum_{i=1}^{m} x_{i} y_{i} \text { if } n=2 m+1
$$

Similarly, the restrictions of the bilinear form $F_{Q_{d}^{r}}$ to $\overline{Q_{d}^{r}}$ are

$$
\sum_{i=r+1}^{r+m} x_{i} y_{i} \text { if } d-r=2 m \text { and } x_{r+m+1}^{2}+\sum_{i=r+1}^{r+m} x_{i} y_{i} \text { if } d-r=2 m+1
$$

Let the dual basis for x_{i}, y_{i} be e_{i}, f_{i} such that

$$
x_{i}\left(e_{j}\right)=\delta_{i}^{j}, y_{i}\left(f_{j}\right)=\delta_{i}^{j} \text { and } x_{i}\left(f_{j}\right)=y_{i}\left(e_{j}\right)=0
$$

Using e_{i}, f_{i} we give a basis for each $L_{n_{j}}$ and $\overline{Q_{d_{i}}^{r_{i}}}$ as follows:
$L_{n_{j}}=\left\langle e_{1}, \ldots, e_{n_{j}}\right\rangle$
$\overline{Q_{d_{i}}^{r_{i}}}=\left\langle e_{1}, \ldots, e_{r_{i}}, e_{r_{i}+1}, f_{r_{i}+1}, \ldots, e_{r_{i}+m}, f_{r_{i}+m}\right\rangle \quad$ if $\quad d_{i}-r_{i}=2 m$
$\overline{Q_{d_{i}}^{r_{i}}}=\left\langle e_{1}, \ldots, e_{r_{i}}, e_{r_{i}+1}, f_{r_{i}+1}, \ldots, e_{r_{i}+m}, f_{r_{i}+m}, e_{r_{i}+m}-f_{r_{i}+m}+e_{r_{i}+m+1}\right\rangle \quad$ if $\quad d_{i}-r_{i}=2 m+1$

Given an admissible sequence

$$
L_{n_{1}} \subseteq \ldots \subseteq L_{n_{s}} \subseteq Q_{d_{k-s}}^{r_{k-s}} \subseteq \ldots \subseteq Q_{d_{1}}^{r_{1}}
$$

we form a sequence of vectors e_{i}, f_{i}, brackets and braces as follows: For each isotropic linear subspace $L_{n_{j}}$, we write down $e_{n_{j-1}+1}, \ldots, e_{n_{j}}$ followed by a bracket and for
each sub-quadric $Q_{d_{i}}^{r_{i}}$, we write down the remaining vectors in the basis of $\overline{Q_{d_{i}}^{r_{i}}}$ followed by a brace.

In this sequence, the first n_{j} vectors span $L_{n_{j}}$ and the first d_{i} vectors span $Q_{d_{i}}^{r_{i}}$.

EXAMPLE 2.6. To $Q_{5}^{0} \subseteq Q_{6}^{0}$ we associate the sequence

$$
\left.\left.e_{1} f_{1} e_{2} f_{2}\left(e_{2}-f_{2}+e_{3}\right)\right\} f_{3}\right\} .
$$

EXAMPLE 2.7. To $L_{2} \subseteq L_{5} \subseteq Q_{12}^{2} \subseteq Q_{14}^{0}$ we associate the sequence

$$
\left.\left.\left.\left.e_{1} e_{2}\right] e_{3} e_{4} e_{5}\right] f_{3} f_{4} f_{5} e_{6} f_{6} e_{7} f_{7}\right\} f_{1} f_{2}\right\}
$$

3. Partitions for Restriction Varieties

Restriction varieties can be parameterized by triads of partitions. These partitions will allow us to define restriction varieties using only the independent rank conditions, that is, the conditions that are not automatically satisfied as a result of the others. For an admissible sequence

$$
L_{n_{1}} \subseteq \ldots \subseteq L_{n_{s}} \subseteq Q_{d_{k-s}}^{r_{k-s}} \subseteq \ldots \subseteq Q_{d_{1}}^{r_{1}}
$$

write down the increasing sequences $\left(n_{1}, \ldots, n_{s}\right),\left(d_{k-s}, \ldots, d_{1}\right)$ by grouping the consecutive integers as follows:

$$
\left(n_{1}, \ldots, n_{s}\right)=\left(n_{a_{1}}^{\alpha_{1}}, \ldots, n_{a_{t}}^{\alpha_{t}}\right) \text { and }\left(d_{k-s}, \ldots, d_{1}\right)=\left(d_{b_{1}}^{\beta_{1}}, \ldots, d_{b_{u}}^{\beta_{u}}\right)
$$

where

$$
\begin{aligned}
& \alpha_{l}=\mid\left\{n_{j} \text { in the sequence } \mid n_{j} \leq n_{a_{l}}, a_{l}-j=n_{a_{l}}-n_{j}\right\} \mid \text { and } \\
& \beta_{l}=\mid\left\{d_{i} \text { in the sequence } \mid d_{i} \leq d_{b_{l}}, i-b_{l}=d_{b_{l}}-d_{i}\right\} \mid
\end{aligned}
$$

Here a_{g} (resp. b_{h}) is the largest dimensional isotropic linear subspace (resp. the largest dimensional sub-quadric) in each group and α_{g} (resp. β_{h}) counts the steps in the group for all $1 \leq g \leq t$ (resp. $1 \leq h \leq u$). Restriction varieties can be parameterized by partitions

$$
\left(n_{a_{1}}^{\alpha_{1}}, \ldots, n_{a_{t}}^{\alpha_{t}}\right),\left(d_{b_{1}}^{\beta_{1}}, \ldots, d_{b_{u}}^{\beta_{u}}\right),\left(r_{b_{1}}, \ldots, r_{b_{u}}\right) .
$$

The restriction variety given by the partitions $\left(n_{a_{1}}^{\alpha_{1}}, \ldots, n_{a_{t}}^{\alpha_{t}}\right),\left(d_{b_{1}}^{\beta_{1}}, \ldots, d_{b_{u}}^{\beta_{u}}\right),\left(r_{b_{1}}, \ldots, r_{b_{u}}\right)$ is defined as the closure of the locus

$$
\begin{aligned}
V^{0}=\{\Lambda \in O G(k, n) \mid & \operatorname{dim}\left(\Lambda \cap L_{n_{a_{g}}}\right)=a_{g}, \quad 1 \leq g \leq t \\
& \operatorname{dim}\left(\Lambda \cap Q_{d_{b_{h}}}^{r_{b_{h}}}\right)=k-b_{h}+1 \\
& \left.\operatorname{dim}\left(\Lambda \cap Q_{d_{b_{h}}}^{r_{b_{h}}, s i n g}\right)=x_{b_{h}}, \quad 1 \leq h \leq u\right\}
\end{aligned}
$$

EXAMPLE 2.8. To the sequence $L_{2} \subseteq L_{3} \subseteq L_{6} \subseteq L_{7} \subseteq L_{8} \subseteq Q_{11}^{17} \subseteq Q_{12}^{17} \subseteq Q_{18}^{13}$ we associate the partitions $\left(3^{2}, 8^{3}\right),\left(12^{2}, 18^{1}\right),(17,13)$.

We have $a_{g}=\sum_{l=1}^{g} \alpha_{l}$ and $k-b_{h}+1=s+\sum_{l=1}^{h} \beta_{l}$ for every $1 \leq g \leq t$ and $1 \leq h \leq u$. Note that $n_{a_{t}}=n_{s}, d_{b_{u}}=d_{1}, \sum_{l=1}^{t} \alpha_{l}=s$ and $\sum_{l=1}^{u} \beta_{l}=k-s$.

OBSERVATION 2.9. In terms of these partitions Proposition 2.5 gives the dimension of a restriction variety by

$$
\begin{aligned}
\operatorname{dim}\left(V\left(L_{\bullet}, Q_{\bullet}\right)\right) & =\sum_{g=1}^{t} \alpha_{g}\left(n_{a_{g}}-a_{g}\right)+\sum_{h=1}^{u} \sum_{t=1}^{\beta_{h}}\left(d_{b_{h}}+x_{b_{h}}-2\left(k-b_{h}+1\right)+(t-1)\right) \\
& =\sum_{g=1}^{t} \alpha_{g}\left(n_{a_{g}}-a_{g}\right)+\sum_{h=1}^{u} \beta_{h}\left(d_{b_{h}}+x_{b_{h}}-2\left(k-b_{h}+1\right)+\frac{\beta_{h}-1}{2}\right)
\end{aligned}
$$

EXAMPLE 2.10. The restriction variety $\left[L_{6} \subseteq L_{7} \subseteq L_{8}\right]$ is isomorphic to the Grassmannian $G(3,8)$ which parameterizes planes contained in a projective space of dimension 7. This variety is given by $\left(8^{3}\right),(),()$ in terms of partitions and has dimension $\alpha_{1}\left(n_{a_{1}}-a_{1}\right)=3(8-3)=15$.

EXAMPLE 2.11. The restriction variety $\left[Q_{11}^{4} \subseteq Q_{12}^{3} \subseteq Q_{13}^{2}\right]$ is the Fano variety of planes contained in a quadric 11-fold in \mathbb{P}^{12} singular along a line. In terms of partitions it is given by ()$,\left(13^{3}\right),(2)$ and has dimension $\beta_{1}\left(d_{b_{1}}+x_{b_{1}}-2(3)+\frac{\beta_{1}-1}{2}\right)=$ $3(13+0-6+1)=24$.

EXAMPLE 2.12. The restriction variety $\left[L_{2} \subseteq L_{3} \subseteq Q_{17}^{7} \subseteq Q_{18}^{6}\right]$ parameterizes 3-dimensional projective linear spaces that are contained in a quadric hypersurface in \mathbb{P}^{17} of corank 6 and that intersect a plane contained in the singular locus of the quadric along a line. In terms of partitions this variety is given by $\left(3^{2}\right),\left(18^{2}\right),(6)$ and has dimension $\alpha_{1}\left(n_{a_{1}}-a_{1}\right)+\beta_{1}\left(d_{b_{1}}+x_{b_{1}}-2(5)+\frac{\beta_{1}-1}{2}\right)=2(3-2)+2\left(18+2-8+\frac{1}{2}\right)=27$.

CHAPTER 3

The Resolution of Singularities

In this chapter, we present a resolution of singularities for restriction varieties. We first illustrate the resolution on a few examples and then introduce the general definition.

EXAMPLE 3.1. Let V be the restriction variety in $O G(1, n)$ defined by the sequence Q_{11}^{4} of length 1. This variety is a singular quadric contained in a projective space of dimension 10 whose singular locus is isomorphic to the projective space of dimension 3. Consider the flag variety \widetilde{V} defined by

$$
\widetilde{V}=\left\{(T, Z) \in O F(1,5 ; n) \mid Q_{11}^{4, \text { sing }} \subseteq Z \subseteq Q_{11}^{4}\right\} \subseteq O G(1, n) \times O G(5, n)
$$

The second projection map $\pi_{2}:(T, Z) \mapsto Z$ maps \widetilde{V} onto $\left\{Z \in O G(5, n) \mid Q_{11}^{4, \text { sing }} \subseteq\right.$ $\left.Z \subseteq Q_{11}^{4}\right\}$ which is isomorphic to $O G(1,7)$. Over such Z, the map has fibers $G(1,5)$ of dimension 4 so \widetilde{V} is irreducible of dimension 9. The first projection map $\pi_{1}:(T, Z) \mapsto T$ maps \widetilde{V} onto V where the inverse image is determined uniquely over the smooth locus of V. By Zariski's theorem, $\pi_{1}: \widetilde{V} \rightarrow V$ is a resolution of singularities for V where the image of the exceptional locus gives the singular locus of V.

EXAMPLE 3.2. Let $V=\left[L_{7} \subseteq Q_{11}^{4}\right]$, V parameterizes the lines in a singular quadric intersecting a fixed linear space that contains the singular locus of the quadric. Consider the variety defined by

$$
\widetilde{V}=\left\{\left(T^{1}, T^{2}, O, Z\right) \mid T^{1} \subseteq T^{2}, Q_{11}^{4, \text { sing }} \subseteq O \subseteq Z, T^{1} \subseteq O \subseteq L_{7} \text { and } T^{2} \subseteq Z \subseteq Q_{11}^{4}\right\}
$$

where $\operatorname{dim} T^{j}=j, \operatorname{dim} O=5$ and $\operatorname{dim} Z=6$. The properties defining the variety \tilde{V} can be visualized by the following diagram:

Figure 1. Definition of \tilde{V} for $V=\left[L_{7} \subseteq Q_{11}^{4}\right]$

Consider the following forgetful maps:

$$
\left(T^{1}, T^{2}, O, Z\right) \mapsto\left(T^{1}, O, Z\right) \mapsto\left(T^{1}, O\right) \mapsto(O)
$$

We show \widetilde{V} is an iterated tower of $G(l, n)$ and $O G(l, n)$ bundles via these maps. The linear space O satisfies $Q_{11}^{4, \text { sing }} \subseteq O \subseteq L_{7}$ and hence can be parameterized by $G(5-4,7-4)=G(1,3)$. For fixed O, the linear space T^{1} satisfies $T^{1} \subseteq O$ and hence can be parameterized by $G(1,5)$. On the other hand, Z satisfies $O \subseteq Z \subseteq Q_{11}^{4}$. Since Z has to lie in the quadric cut out on Q_{11}^{4} by the linear space tangent to Q_{11}^{4} everywhere along O, Z is contained in a quadric of projective dimension 8 with a singular locus of projective dimension 4. Then Z can be parameterized by $O G(1,5)$. Finally, the linear space T^{2} satisfies $T^{1} \subseteq T^{2} \subseteq Z$ and hence can be parameterized by $G(1,5)$. Thus \widetilde{V} is a tower of the discussed $G(1,3), G(1,5), O G(1,5)$ and $G(1,5)$ bundles. This also shows that \tilde{V} is irreducible of dimension 13. The second projection map

$$
\pi:\left(T^{1}, T^{2}, O, Z\right) \mapsto T^{2}
$$

maps \tilde{V} onto V with fibers determined uniquely for a general point Λ contained in V^{0}. Therefore the map $\pi: \widetilde{V} \rightarrow V$ is a resolution of singularities by Zariski's theorem.

EXAMPLE 3.3. Let $V=\left[L_{5} \subseteq Q_{10}^{7} \subseteq Q_{20}^{2}\right]$. For this restriction variety we consider \widetilde{V} defined by

$$
\begin{aligned}
\tilde{V}=\left\{\left(T^{1}, T^{2}, T^{3}, O^{1}, O^{2}, Z^{1}, Z^{2}\right) \mid\right. & Q_{20}^{2, \text { sing }} \subseteq O^{1} \subseteq O^{2} \subseteq Z^{2}, Q_{10}^{7, \text { sing }} \subseteq Z^{1} \\
& \left.T^{1} \subseteq O^{1} \subseteq L_{5}, T^{2} \subseteq O^{2} \subseteq Q_{10}^{7} \text { and } T^{3} \subseteq Z^{2} \subseteq Q_{20}^{2}\right\}
\end{aligned}
$$

where $\operatorname{dim} T^{j}=j, \operatorname{dim} O^{1}=3, \operatorname{dim} O^{2}=4, \operatorname{dim} Z^{1}=8$ and $\operatorname{dim} Z^{2}=5$. The corresponding diagram is:

Figure 2. Definition of \tilde{V} for $V=\left[L_{5} \subseteq Q_{10}^{7} \subseteq Q_{20}^{2}\right]$

We consider the following forgetful maps:

$$
\begin{aligned}
\left(T^{1}, T^{2}, T^{3}, O^{1}, O^{2}, Z^{1}, Z^{2}\right) & \mapsto\left(T^{1}, T^{2}, O^{1}, O^{2}, Z^{1}, Z^{2}\right) \mapsto\left(T^{1}, T^{2}, O^{1}, O^{2}, Z^{1}\right) \\
& \mapsto\left(T^{1}, O^{1}, O^{2}, Z^{1}\right) \mapsto\left(T^{1}, O^{1}, Z^{1}\right) \mapsto\left(T^{1}, O^{1}\right) \mapsto\left(O^{1}\right)
\end{aligned}
$$

The linear space O^{1} is parameterized by $G(1,3)$ and for fixed O, T^{1} is parameterized by $G(1,3)$. The linear space Z^{1} is parameterized by $O G(1,3)$. For fixed Z^{1}, O^{2} satisfies $O^{1} \subseteq O^{2} \subseteq Z^{1}$ and hence can be parameterized by $G(1,5)$. Then T^{2} is parameterized by $G(1,3)$. In the last row, as $O^{2} \subseteq Z^{2} \subseteq Q_{20}^{2}, Z^{2}$ is parameterized by $O G(1,14)$. Then T^{3} is parameterized by $G(1,3)$. Thus \widetilde{V} is a tower of the discussed $G(1,3)$, $G(1,3), O G(1,3), G(1,5), G(1,3), O G(1,14)$ and $G(1,3)$ bundles. Thus \widetilde{V} is an irreducible smooth variety of dimension 25. The third projection map

$$
\pi:\left(T^{1}, T^{2}, T^{3}, O^{1}, O^{2}, Z^{1}, Z^{2}\right) \mapsto T^{3}
$$

gives the resolution of singularities in this example.

EXAMPLE 3.4. As a final example, let us consider the restriction variety in $O G(10,70)$ given by the sequence

$$
L_{2} \subseteq L_{6} \subseteq L_{13} \subseteq L_{14} \subseteq L_{19} \subseteq Q_{30}^{17} \subseteq Q_{40}^{11} \subseteq Q_{45}^{8} \subseteq Q_{46}^{7} \subseteq Q_{50}^{3}
$$

In this case \widetilde{V} satisfies the following diagram. The dimensions of the T, Z and O 's are noted as subscripts.

FIGURE 3. Definition of \tilde{V} for $V=\left[L_{2} \subseteq L_{6} \subseteq L_{13} \subseteq L_{14} \subseteq L_{19} \subseteq\right.$ $\left.Q_{30}^{17} \subseteq Q_{40}^{11} \subseteq Q_{45}^{8} \subseteq Q_{46}^{7} \subseteq Q_{50}^{3}\right]$

The variety \widetilde{V} is a tower of $G(k, n)$ and $O G(k, n)$ bundles via 25 successive forgetful maps in this case. Starting with an element of \widetilde{V}, the forgetful maps trail each row from left to right going from the bottom row to the top row.

Let us fix terminology before giving the definition. In the following we say a sequence $A=\left[A_{1} \subseteq \ldots \subseteq A_{k}\right]$ is contained in a sequence $B=\left[B_{1} \subseteq \ldots \subseteq B_{k}\right]$ if
$A_{i} \subseteq B_{i}$ for all $1 \leq i \leq k$. We will denote by A both the sequence $\left[A_{1} \subseteq \ldots \subseteq A_{k}\right]$ and the ordered set $\left(A_{1}, \ldots, A_{k}\right)$.

Let $V\left(L_{\bullet}, Q_{\bullet}\right)$ be a restriction variety defined by the sequence

$$
L_{n_{1}} \subseteq \ldots \subseteq L_{n_{s}} \subseteq Q_{d_{k-s}}^{r_{k-s}} \subseteq \ldots \subseteq Q_{d_{1}}^{r_{1}}
$$

or equivalently, by the partitions $\left(n_{a_{1}}^{\alpha_{1}}, \ldots, n_{a_{t}}^{\alpha_{t}}\right),\left(d_{b_{1}}^{\beta_{1}}, \ldots, d_{b_{u}}^{\beta_{u}}\right),\left(r_{b_{1}}, \ldots, r_{b_{u}}\right)$. For each $Q_{d_{b_{h}}}^{r_{b_{h}}}$, let $V\left(Q_{d_{b_{h}}}^{r_{b_{h}}}\right)$ be the subsequence consisting of isotropic linear subspaces $L_{n_{a_{\theta}}}$ and sub-quadrics $Q_{d_{b_{\theta}}}^{r_{b_{\theta}}}$ that strictly contain $Q_{d_{b_{h}}}^{r_{b_{h}}, s i n g}$ and are strictly contained in $Q_{d_{b_{h}}}^{r_{b_{h}}}$. We introduce a subsequence $O\left(Q_{d_{b_{h}}}^{r_{b_{h}}}\right)$ of the same length contained in $V\left(Q_{d_{b_{h}}}^{r_{b_{h}}}\right)$ that consists of isotropic linear subspaces O.

$$
\begin{aligned}
& V\left(Q_{d_{b_{h}}}^{r_{b_{h}}}\right): \quad \cdots \subseteq L_{n_{a_{\theta}}} \subseteq \cdots \subseteq Q_{d_{b_{\theta}}}^{r_{b_{\theta}}} \subseteq \cdots \\
& \text { UI } \\
& \text { UI UI } \\
& O\left(Q_{d_{b_{h}}}^{r_{b_{h}}}\right): \quad \cdots \subseteq O^{h, n_{a_{\theta}}} \subseteq \cdots \subseteq O^{h, d_{b_{\theta}}} \subseteq \cdots
\end{aligned}
$$

Also, the subsequence $\left[L_{1} \subseteq \ldots \subseteq Q_{d_{b_{u-1}}}^{r_{b_{u-1}}}\right]$ obtained by omitting the last β_{u} subquadrics from the defining sequence will have a crucial role in the following definition.

Define:

$$
\begin{aligned}
& \widetilde{V}\left(L_{\bullet}, Q_{\bullet}\right):=\left\{\left(T^{1}, \ldots, T^{t+u}, Z^{1}, \ldots, Z^{u}, O\left(Q_{d_{b_{1}}}^{r_{b_{1}}}\right), \ldots, O\left(Q_{d_{b_{u}}}^{r_{b_{u}}}\right)\right)\right. \\
& Q_{d_{b_{h}}}^{r_{r_{h}}, s i n g} \subseteq O\left(Q_{d_{b_{1}}}^{r_{b_{1}}}\right) \subseteq Z^{h} \subseteq Q_{d_{b_{h}}}^{r_{b_{h}}}, \\
& O^{h, n_{a_{\theta}}} \subseteq L_{n_{a_{\theta}}} \text { for all } L_{n_{a_{\theta}}} \text { in } V\left(Q_{d_{b_{h}}}^{r_{b_{h}}}\right), \\
& O^{h, n_{a_{\theta}}} \subseteq O^{h+1, n_{a_{\theta}}} \text { for all } L_{n_{a_{\theta}}} \text { that lies in both } V\left(Q_{d_{b_{h}}}^{r_{b_{h}}}\right) \text { and } V\left(Q_{\left.d_{b_{b_{h+1}}}^{r_{b_{h+1}}}\right),}\right) \\
& O^{h, r_{b_{\theta}}} \subseteq Q_{d_{b_{\theta}}}^{r_{b_{\theta}}} \text { for all } Q_{d_{b_{\theta}}}^{r_{b_{\theta}}} \text { in } V\left(Q_{d_{b_{h}}}^{r_{b_{h}}}\right) \\
& O^{h, r_{b_{\theta}}} \subseteq O^{h+1, r_{b_{\theta}}} \text { for all } Q_{d_{b_{\theta}}}^{r_{b_{\theta}}} \text { that lies in both } V\left(Q_{d_{b_{h}}}^{r_{b_{h}}}\right) \text { and } V\left(Q_{d_{b_{h+1}}^{r_{b_{h+1}}}}^{r_{h+1}}\right), \\
& T^{1} \subseteq \ldots \subseteq T^{t+u} \text { for all } 1 \leq g \leq t \text { and } 1 \leq h \leq u \\
&\left.\left(T^{1}, \ldots, T^{t+u-1}\right) \subseteq\left[L_{1} \subseteq \ldots \subseteq Q_{d_{b_{u-1}}}^{r_{b_{u-1}}}\right] \text { and } T^{t+u} \subseteq Z^{u}\right\}
\end{aligned}
$$

where $\operatorname{dim} T^{g}=a_{g}, \operatorname{dim} T^{t+h}=k-b_{h}+1, \operatorname{dim} Z^{h}=r_{b_{h}}+\left(k-b_{h}+1\right)-x_{b_{h}}$, $\operatorname{dim} O^{h, n_{a_{\theta}}}=r_{b_{h}}+a_{\theta}-x_{b_{h}}$ and $\operatorname{dim} O^{h, r_{b_{\theta}}}=r_{b_{h}}+\left(k-b_{\theta}+1\right)-x_{b_{h}}$ for all $1 \leq g \leq t$ and $1 \leq h \leq u$.

Drawing a diagram, as in the examples above, puts this construction in a more approachable framework. Let $L_{n_{a_{1}}} \subseteq \ldots \subseteq L_{n_{a_{\omega}}}$ be the isotropic linear subspaces in the defining sequence contained in $Q_{d_{b_{u}}}^{r_{b_{u}}, s i n g}$, thus contained in the singular locus of all the sub-quadrics. The defining properties of \widetilde{V} are visualized in the following diagram. Here, the linear spaces $O^{h, \bullet}$ that lie in the column of $Q_{d_{b_{h}}}^{r_{b_{h}}}$ form the sequence $O\left(Q_{d_{b_{h}}}^{r_{b_{h}}}\right)$ in the definition of \widetilde{V} above.

Figure 4. Definition of \widetilde{V} for general V

There is a natural projection from $\widetilde{V}\left(L_{\bullet}, Q_{\bullet}\right)$ to $V\left(L_{\bullet}, Q_{\bullet}\right)$ given by

$$
\pi:\left(T^{1}, \ldots, T^{t+u}, Z^{1}, \ldots, Z^{u}, O\left(Q_{d_{b_{1}}}^{r_{b_{1}}}\right), \ldots, O\left(Q_{d_{b_{u}}}^{r_{b_{u}}}\right)\right) \mapsto T^{t+u}
$$

PROPOSITION 3.5. Let $V\left(L_{\bullet}, Q_{\bullet}, m_{\bullet}\right)$ be a marked restriction variety. The variety $\tilde{V}\left(L_{\bullet}, Q_{\bullet}, m_{\bullet}\right)$ associated to $V\left(L_{\bullet}, Q_{\bullet}, m_{\bullet}\right)$ is a smooth irreducible variety of the same dimension as $V\left(L_{\bullet}, Q_{\bullet}, m_{\bullet}\right)$.

Proof. Consider the successive forgetful maps omitting one coordinate of \widetilde{V} at a time, going from left to right in each row, starting at the bottom row and going up. The proof of this proposition is based on constructing a tower of $G(l, n)$ and $O G(l, n)$ bundles via these forgetful maps. In the following, we study the four possible types of rows in a diagram:
(1) For $L_{n_{a_{g}}} \subsetneq Q_{d_{b_{u}}}^{r_{b_{u}}}$, we have $T^{g-1} \subseteq T^{g} \subseteq L_{n_{a_{g}}}$. Hence T^{g} is parameterized by $G\left(a_{g}-a_{g-1}, n_{a_{g}}-a_{g-1}\right)$ which has dimension $\left(a_{g}-a_{g-1}\right)\left(n_{a_{g}}-a_{g}\right)=$ $\alpha_{g}\left(n_{a_{g}}-a_{g}\right)$.
(2) Suppose for $L_{n_{a_{g}}}$, the sub-quadrics whose singular loci lie between $L_{n_{a_{g}}}$ and $L_{n_{a_{g-1}}}$ are $Q_{d_{b_{\eta+c}}}^{r_{b_{\eta+c}}}, \ldots, Q_{d_{b_{\eta}}}^{r_{b_{\eta}}}$ for some number c, that is,

$$
Q_{d_{b_{u}}}^{r_{b_{u}}, \text { sing }} \subseteq \ldots \subseteq Q_{d_{b_{\eta+c+1}}^{r_{b_{\eta+c+1}}}, \text { sing }}^{\subsetneq} L_{n_{a_{g-1}}} \subseteq Q_{d_{b_{\eta+c}}}^{r_{b_{\eta+c}}, \text { sing }} \subseteq \ldots \subseteq Q_{d_{b_{\eta}}}^{r_{b_{\eta}, s i n g}} \subsetneq L_{n_{a_{g}}}
$$

Note that $x_{b_{\eta}}=\ldots=x_{b_{\eta+c}}=a_{g-1}$ in this setting. The row consisting of $T^{g}, O^{\bullet, n_{a_{g}}}, L_{n_{a_{g}}}$ satisfies:

We start by choosing $O^{\eta, n_{a_{g}}}$. The linear space $O^{\eta, n_{a_{g}}}$ satisfying $Q_{d_{b_{\eta}}}^{r_{b_{\eta}}, s i n g} \subseteq$ $O^{\eta, n_{a_{g}}} \subseteq L_{n_{a_{g}}}$ is parameterized by the Grassmannian $G\left(\left(r_{b_{\eta}}+a_{g}-x_{b_{\eta}}\right)-\right.$ $\left.r_{b_{\eta}}, n_{a_{g}}-r_{b_{\eta}}\right)$. In a similar fashion, the parameterization of $T^{g}, O^{u, n_{a_{g}}}, \ldots, O^{\eta, n_{a_{g}}}$ are given by Grassmannians whose dimensions add up to $\alpha_{g}\left(n_{a_{g}}-a_{g}\right)$ as follows:

Coordinates of \widetilde{V} in the g-th row:

Dimensions of the corresponding Grassmannian:

$$
\begin{aligned}
& \left(a_{g}-x_{b_{\eta}}\right)\left(n_{a_{g}}-a_{g}-\left(r_{b_{\eta}}-x_{b_{\eta}}\right)\right) \\
& \left(a_{g}-x_{b_{\eta+1}}\right)\left(\left(r_{b_{\eta}}-x_{b_{\eta}}\right)-\left(r_{b_{\eta+1}}-x_{b_{\eta+1}}\right)\right) \\
& \vdots \\
& \left(a_{g}-x_{b_{\eta+c}}\right)\left(\left(r_{b_{\eta+c-1}}-x_{b_{\eta+c-1}}\right)-\left(\left(r_{b_{\eta+c}}-x_{b_{\eta+c}}\right)\right)\right. \\
& \left(a_{g}-a_{g-1}\right)\left(\left(r_{b_{\eta+c}}-x_{b_{\eta+c}}\right)-\left(\left(r_{b_{\eta+c+1}}-x_{b_{\eta+c+1}}\right)\right)\right. \\
& \vdots \\
& \left(a_{g}-a_{g-1}\right)\left(\left(r_{b_{u-1}}-x_{b_{u-1}}\right)-\left(\left(r_{b_{u}}-x_{b_{u}}\right)\right)\right. \\
& \left(a_{g}-a_{g-1}\right)\left(r_{b_{u}}-x_{b_{u}}\right)
\end{aligned}
$$

(3) Consider the row that corresponds to $Q_{d_{b_{1}}}^{r_{b_{1}}}$. Depending on $r_{b_{1}}$, there are two possibilities for the diagram. If $r_{b_{1}} \geq n_{a_{t}}$ then Z^{1} is determined by $Q_{d_{b_{1}}}^{r_{b_{1}}, \text { sing }} \subseteq Z^{1} \subseteq Q_{d_{b_{1}}}^{r_{b_{1}}}$. Explicitly, suppose $L_{n_{a_{t}}}$ is positioned as $Q_{d_{b_{c+1}}}^{r_{b_{c+1}}, s i n g} \subsetneq$ $L_{n_{a_{t}}} \subseteq Q_{d_{b_{c}}}^{r_{b_{c}} \text { sing }} \subseteq \ldots \subseteq Q_{d_{b_{1}}}^{r_{b_{1}}, \text { sing }}$ for some number c. Note that $x_{b_{1}}=\ldots=$ $x_{b_{c}}=t$ in this setting. The diagram is of the form:

We start by choosing Z^{1}. The linear space Z^{1} satisfies $Q_{d_{b_{1}}}^{r_{b_{1}}}$ sing $\subseteq Z^{1} \subseteq$ $Q_{d_{b_{1}}}^{r_{b_{1}}}$ and $\operatorname{dim} Z^{1}=r_{b_{1}}+\left(k-b_{1}+1\right)-x_{b_{1}}=r_{b_{1}}+\beta_{1}$. Hence Z^{1} can be parameterized by $O G\left(\beta_{1}, d_{b_{1}}-r_{b_{1}}\right)$. The linear spaces $T^{t+1}, O^{u, r_{b_{1}}}, \ldots, O^{2, r_{b_{1}}}$
can be parameterized by Grassmannians whose dimensions add up to $\beta_{1}\left(d_{b_{1}}+\right.$ $\left.x_{b_{1}}-2\left(k-b_{1}+1\right)-\frac{\beta_{1}-1}{2}\right)$ by the following. Note that $\operatorname{dim} O G(k, n)=$ $k\left(n-2 k+\frac{k-1}{2}\right)$ (see [4] for a proof).

Coordinates of \widetilde{V} in the $(t+1)$-st row:	Dimensions of the corresponding Grassmannian:
$Q_{d_{b_{1}}}^{r_{b_{1}}, \text { sing }} \subseteq Z^{1} \subseteq Q_{d_{b_{1}}}^{r_{b_{1}}}$	$\beta_{1}\left(d_{b_{1}}+x_{b_{1}}-2\left(k-b_{1}+1\right)-\left(r_{b_{1}}-x_{b_{1}}\right)+\frac{\beta_{1}-1}{2}\right)$
$Q_{d_{b_{2}}}^{r_{b_{2}}, \text { sing }} \subseteq O^{2, r_{b_{1}}} \subseteq Z^{1}$	$\left(k-b_{1}+1-x_{2}\right)\left(\left(r_{b_{1}}-x_{b_{1}}\right)-\left(r_{b_{2}}-x_{b_{2}}\right)\right)$
$Q_{d_{b_{3}}}^{r_{b_{3}}^{2}, \text { sing }} \subseteq O^{3, r_{b_{1}}} \subseteq O^{2, r_{b_{1}}}$	$\left(k-b_{1}+1-x_{3}\right)\left(\left(r_{b_{2}}-x_{b_{2}}\right)-\left(r_{b_{3}}-x_{b_{3}}\right)\right)$
$Q_{d_{b_{c}}}^{r_{b_{c}, s i n g}} \subseteq O^{c, r_{b_{1}}} \subseteq O^{c-1, r_{b_{1}}}$	$\left(k-b_{1}+1-x_{c}\right)\left(\left(r_{b_{c-1}}-x_{b_{c-1}}\right)-\left(r_{b_{c}}-x_{b_{c}}\right)\right)$
$O^{c+1, n_{a_{t}}} \subseteq O^{c+1, r_{b_{1}}} \subseteq O^{\text {c, } r_{b_{1}}}$	$\left(k-b_{1}+1-a_{t}\right)\left(\left(r_{b_{c}}-x_{b_{c}}\right)-\left(r_{b_{c+1}}-x_{b_{c+1}}\right)\right)$
$O^{u, n_{a_{t}}} \subseteq O^{u, r_{b_{1}}} \subseteq O^{u-1, r_{b_{1}}}$	
$T^{t} \subseteq T^{t+1} \subseteq O^{u, r_{b_{1}}}$	$\left(k-b_{1}+1-a_{t}\right)\left(r_{b_{u}}-x_{b_{u}}\right)$

(4) As another case for the row that corresponds to $Q_{d_{b_{1}}}^{r_{b_{1}}}$, if $r_{b_{1}}<n_{a_{t}}$, then Z^{1} is determined by $O^{1, n_{a_{t}}} \subseteq Z^{1} \subseteq Q_{d_{b_{1}}}^{r_{b_{1}}}$. The linear space Z^{1} has to be contained in the quadric cut out on $Q_{d_{b_{1}}}^{r_{b_{1}}}$ by the linear space everywhere tangent to $O^{1, n_{a_{t}}}$, that is, $Z^{1} \subseteq Q_{d_{b_{1}}-\left(a_{t}-x_{b_{1}}\right)}^{r_{b_{1}}+\left(a_{t}-x_{b_{1}}\right)}$. Hence Z^{1} can be parameterized by $O G\left(\beta_{1}, d_{b_{1}}-r_{b_{1}}-2\left(a_{t}-x_{b_{1}}\right)\right)$. The parameterizations of $T^{t+1}, O^{u, r_{b_{1}}}, \ldots, O^{2, r_{b_{1}}}$ are similar to the previous case, the total dimension is $\beta_{1}\left(d_{b_{1}}+x_{b_{1}}-2\left(k-b_{1}+1\right)-\frac{\beta_{1}-1}{2}\right)$ as before. The diagram and the parameterizations in this case are as follows:

$$
\begin{array}{cccccccccc}
\vdots & & & & & & & \vdots & & \vdots \\
T^{t} & \subseteq & O^{u, n_{a_{t}}} & \subseteq & \cdots & \subseteq & O^{2, n_{a_{t}}} & \subseteq & O^{1, n_{a_{t}}} & \subseteq
\end{array} L_{n_{a_{t}}}
$$

Coordinates of \tilde{V} in the $(t+1)$-st row: Dimensions of the corresponding Grassmannian: $O^{1, n_{a_{t}}} \subseteq Z^{1} \subseteq Q_{d_{b_{1}}}^{r_{b_{1}}} \quad \beta_{1}\left(d_{b_{1}}+x_{b_{1}}-2\left(k-b_{1}+1\right)-\left(r_{b_{1}}-x_{b_{1}}\right)+\frac{\beta_{1}-1}{2}\right)$ $O^{2, n_{a_{t}}} \subseteq O^{2, r_{b_{1}}} \subseteq Z^{1} \quad\left(k-b_{1}+1-x_{2}\right)\left(\left(r_{b_{1}}-x_{b_{1}}\right)-\left(r_{b_{2}}-x_{b_{2}}\right)\right)$
$T^{t} \subseteq T^{t+1} \subseteq O^{u, r_{b_{1}}}$
$\left(k-b_{1}+1-a_{t}\right)\left(r_{b_{u}}-x_{b_{u}}\right)$
(5) Finally, the $(t+h)$-th row for some $h \geq 2$ is similar to the case above. The parameterizations are given by a tower of Grasmanninans contained in an orthogonal Grassmannian and the total dimension adds up to $d_{b_{h}}+x_{b_{h}}-$ $2\left(k-b_{h}+1\right)-\frac{\beta_{h}-1}{2}$. The diagram and the parameterizations are as follows:

Coordinates of \widetilde{V} in the $(t+h)$-th row:

$$
O^{h, r_{b_{h-1}}} \subseteq Z^{h} \subseteq Q^{r_{b_{h}}}
$$

Dimension of the corresponding Grassmannian:
$\beta_{h}\left(d_{b_{h}}+x_{b_{h}}-2\left(k-b_{h}+1\right)-\left(r_{b_{h}}-x_{b_{h}}\right)+\frac{\beta_{h}-1}{2}\right)$

$$
O^{h+1, r_{b_{h-1}}} \subseteq O^{\bar{h}+1, r_{b_{h}}} \subseteq Z^{h}
$$

\vdots
$T^{t+h-1} \subseteq T^{t+h} \subseteq O^{u, r_{b_{h}}}$
$\left(b_{h-1}-b_{h}\right)\left(\left(r_{b_{h}}-x_{b_{h}}\right)-\left(r_{b_{h+1}}-x_{b_{h+1}}\right)\right)$
:
$\left(b_{h-1}-b_{h}\right)\left(r_{b_{u}}-x_{b_{u}}\right)$

The variety \widetilde{V} is smooth as it is an iterated tower of the ordinary and the orthogonal Grassmannian bundles observed above. The inverse image $\pi^{-1}(\Lambda)$ of a point Λ in V is irreducible by the same observations, hence \widetilde{V} is irreducible for a marked restriction variety. Furthermore, combining the results from each row of the diagram, $\operatorname{dim} \tilde{V}$ is given by

$$
\operatorname{dim} \widetilde{V}=\sum_{g=1}^{t} \alpha_{g}\left(n_{a_{g}}-a_{g}\right)+\sum_{h=1}^{u} \beta_{h}\left(d_{b_{h}}+x_{b_{h}}-2\left(k-b_{h}+1\right)-\frac{\beta_{h}-1}{2}\right)=\operatorname{dim} V
$$

which concludes the proof.

Over $V^{0}\left(L_{\bullet}, Q_{\bullet}\right)$, the inverse image of a point $\pi^{-1}(\Lambda)$ is determined uniquely by

$$
\begin{aligned}
& T^{g}=\Lambda \cap L_{n_{a_{g}}}, \quad T^{t+h}=\Lambda \cap Q_{d_{b_{h}}}^{r_{b_{h}}}, \\
& O^{h, r_{b_{\theta}}}=\overline{Q_{d_{b_{h}}}^{r_{b_{h}}, \operatorname{sing}}, \Lambda \cap Q_{d_{b_{\theta}}}^{r_{b_{\theta}}}}, \quad O^{h, n_{a_{\theta}}}=\overline{Q_{d_{b_{h}}}^{r_{b_{h}}, s i n g}, \Lambda \cap L_{n_{a_{\theta}}}} \quad \text { and } \\
& Z^{h}=\overline{Q_{d_{b_{h}}}^{r_{b_{h}}, s i n g}}, \Lambda \cap Q_{d_{b_{h}}}^{r_{b_{h}}} \quad \text { for all } 1 \leq g \leq t, \quad 1 \leq h \leq u .
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{cccccccc}
\vdots & \vdots & & \vdots & \vdots & & & \vdots \\
T^{t+h-1} & \subseteq & O^{u, r_{b_{h-1}}} & \subseteq & \cdots & \subseteq & O^{h+1, r_{b_{h-1}}} & \subseteq \\
\cap & \cap & O^{h, r_{b_{h-1}}} & \subseteq & Z^{h-1} & \subseteq & Q_{d_{b_{h-1}}}^{r_{b_{h-1}}}
\end{array} \\
& \begin{array}{ccccccccc}
\cap \cap \\
T^{t+h} & \subseteq & \cap^{u, r_{b_{u}}} & \subseteq & \cdots & \subseteq & O^{h+1 . r_{b_{h}}} & \subseteq & Z^{h} \\
\vdots & & \vdots & & & \vdots & & \vdots & \\
\hline
\end{array}
\end{aligned}
$$

$V^{0}\left(L_{\bullet}, Q_{\bullet}\right)$ is in the smooth locus of $V\left(L_{\bullet}, Q_{\bullet}\right)$ since it is homogeneous under the action of $S O(n)$. Then, Zariski's main theorem shows that π is an isomorphism over $V^{0}\left(L_{\bullet}, Q_{\bullet}\right)$. Therefore we have

THEOREM 3.6. The map $\pi: \widetilde{V}\left(L_{\bullet}, Q_{\bullet}\right) \rightarrow V\left(L_{\bullet}, Q_{\bullet}\right)$ is a resolution of singularities.

CHAPTER 4

The Exceptional Locus

We now study the exceptional locus of π. More specifically, we are interested in the codimension of the components of the exceptional locus.

Corresponding to the three types of conditions in Definition 2.1, namely,

$$
\operatorname{dim}\left(\Lambda \cap Q_{d_{i}}^{r_{i}, \operatorname{sing}}\right)=x_{i}, \quad \operatorname{dim}\left(\Lambda \cap L_{n_{j}}\right)=j, \quad \text { and } \quad \operatorname{dim}\left(\Lambda \cap Q_{d_{i}}^{r_{i}}\right)=k-i+1
$$

we consider three types of orbits where π has positive dimensional fibers. The following loci Σ categorize the closures of these orbits. The central orbits of any two Σ are disjoint if one is not contained in the other. This ensures that the fibers of π have the same dimension throughout each central orbit. The image of the exceptional locus of π is equal to the union of Σ 's.

I: $\Sigma_{r_{b_{h}}}$: The closure of the locus of k-planes Λ such that $\operatorname{dim}\left(\Lambda \cap Q_{d_{b_{h}}}^{r_{b_{h}}, \operatorname{sing}}\right)=x_{b_{h}}+1$ for some $1 \leq h \leq u$ and all the remaining conditions of V^{0} are unchanged.

II: $\Sigma_{n_{a_{g}}}$: The closure of the locus of k-planes Λ such that $\operatorname{dim}\left(\Lambda \cap L_{n_{a_{g}}}\right)=a_{g}+1$ for some $1 \leq g \leq t$ and all the remaining conditions of V^{0} are unchanged.

III: $\Sigma_{d_{b_{h}}}$: The closure of the locus of k-planes Λ such that $\operatorname{dim}\left(\Lambda \cap Q_{d_{b_{h}}}^{r_{b_{h}}}\right)=k-b_{h}+2$ for some $1 \leq h \leq u-1$ and all the remaining conditions of V^{0} are unchanged.

Note that these loci do not always exist. There are natural numerical restrictions resulting from the rank conditions defining a restriction variety.

EXAMPLE 4.1. The locus $\Sigma_{r_{b_{1}}}$ does not make sense for the restriction variety given by $\left[Q_{8}^{0} \subseteq Q_{9}^{0}\right]$ since $Q_{9}^{0, \text { sing }}$ is empty. Similarly the locus $\Sigma_{r_{b_{1}}}$ does not exist
for the restriction variety given by $\left[L_{1} \subseteq Q_{7}^{1}\right]$ since $x_{1}=1$ and it is not possible to intersect $Q_{7}^{1, s i n g}$ in a higher dimension.

EXAMPLE 4.2. The locus $\Sigma_{n_{a_{1}}}$ does not exist for the restriction variety given by $\left[L_{1} \subseteq L_{7} \subseteq L_{8}\right]$; lines contained in L_{8} containing L_{1} cannot intersect L_{8} or L_{1} in higher dimension. Similarly, $\Sigma_{r_{b_{1}}}$ does not exist for the restriction variety given by $\left[Q_{7}^{2} \subseteq Q_{8}^{1}\right]$.

A special case for the existence of $\Sigma_{n_{a_{t}}}$ is when the restriction variety V lies in $O G(k, 2 k)$. The orthogonal Grassmannian $O G(k, 2 k)$ has two connected components and two linear spaces belong to the same connected component if and only if their intersection is equal to $k \bmod 2$. Thus, when defining $\Sigma_{n_{a_{t}}}$, it must be checked that the linear spaces in $\Sigma_{n_{a_{t}}}$ lie in the same component of the restriction variety.

EXAMPLE 4.3. Let $V=\left[L_{2} \subseteq Q_{4}^{0}\right]$, the variety of lines contained in a smooth quadric surface intersecting a fixed line on the surface. This is one of the components of the lines on the quadric surface. The fixed line in the partial flag, namely L_{2}, or equivalently the restriction variety given by the sequence $\left[L_{1} \subseteq L_{2}\right]$, would be the locus defined as $\Sigma_{n_{a_{1}}}$ in this case and this does not lie in V. The variety V is actually isomorphic to \mathbb{P}^{1} and hence smooth.

EXAMPLE 4.4. Let V be the restriction variety in $O G(4,8)$ given by $\left[L_{1} \subseteq L_{3} \subseteq\right.$ $\left.L_{4} \subseteq Q_{7}^{1}\right]$. A general element Λ of V satisfies $\operatorname{dim}\left(\Lambda \cap L_{4}\right)=3$, therefore L_{4} and Λ lie in different components of $O G(4,8)$. This shows that the restriction variety given by the sequence $\left[L_{1} \subseteq L_{2} \subseteq L_{3} \subseteq L_{4}\right]$, which is a single point in $O G(4,8)$, namely L_{4} itself, does not lie in the closure of V. Thus the locus $\Sigma_{n_{a_{2}}}$ is not in the image of the exceptional locus of π in this case.

EXAMPLE 4.5. Let V be given by $\left[L_{3} \subseteq L_{4} \subseteq Q_{7}^{1} \subseteq Q_{8}^{0}\right]$. A general element Λ of V satisfies $\operatorname{dim}\left(\Lambda \cap L_{4}\right)=2$, and hence L_{4} lies in the same component of $O G(k, 2 k)$ as V. Using the same observation, since we have $\operatorname{dim}\left(\Lambda \cap L_{4}\right)=4 \bmod 2$ for linear
spaces Λ in the same component as L_{4}, we conclude $\operatorname{dim}\left(\Lambda \cap L_{4}\right)$ must be either 2 or 4. Therefore, in this case we have $\Sigma_{n_{a_{1}}}=\left[L_{1} \subseteq L_{2} \subseteq L_{3} \subseteq L_{4}\right]$.

More generally, the same consideration applies to $\Sigma_{n_{a_{t}}}$ when $r_{b_{1}}$ is a special index (Definition 2.4).

EXAMPLE 4.6. Let $V=\left[L_{3} \subseteq L_{4} \subseteq Q_{7}^{1}\right]$. Then the locus $\Sigma_{n_{a_{t}}}$ does not exist foe V since L_{4} and the span $\overline{\Lambda, Q_{7}^{1, \text { sing }}}$ of a general element Λ in V with the singular locus of Q_{7}^{1} lie in different components of the 4-dimensional linear spaces contained in Q_{7}^{1}.

The following remark combines the observations we have made above about the definition of each type of locus Σ.

REMARK 4.7. The numerical conditions for the definition of each type of locus Σ in the image of the exceptional locus of π can be given as:

I: The locus $\Sigma_{r_{b_{h}}}$, for some $1 \leq h \leq u$, exists if $r_{b_{h}}>x_{b_{h}}$.
II: The locus $\Sigma_{n_{a_{g}}}$, for some $1 \leq g \leq t$, exists if $n_{a_{g}}>a_{g}$. Moreover, if $d_{b_{1}}+r_{b_{1}}=2 n_{a_{t}}$ and b_{1} is a special index, then $\Sigma_{n_{a_{t}}}$ exists if $n_{a_{t}}>a_{t}+1$ and $k>a_{t}+1$.

III: The locus $\Sigma_{d_{b_{h}}}$, for some $1 \leq h \leq u-1$, exists if $u>1$.

Over each $\Sigma, \pi^{-1}(\Sigma)$ is irreducible of codimension

$$
\operatorname{codim}\left(\pi^{-1}(\Sigma)\right)=\operatorname{codim}(\Sigma)-\operatorname{dim}\left(\pi^{-1}(\Lambda)\right)
$$

for a general point Λ in Σ. We now consider each Σ separately and study $\operatorname{codim}\left(\pi^{-1}(\Sigma)\right)$ in each case. We summarize our computations in Observation 4.24.

I: $\Sigma_{r_{b_{h}}}: \operatorname{dim}\left(\Lambda \cap Q_{d_{b_{h}}}^{r_{b_{h}}, \operatorname{sing}}\right)=x_{b_{h}}+1$ for some $1 \leq h \leq u$

Given the corank $r_{b_{h}}$, we divide this case into sub-cases depending on the relation between $r_{b_{h}}$ and the dimensions $n_{a_{g}}$ of the isotropic linear spaces appearing in the sequence defining V. The sub-cases we consider in the following are:
I.A: $r_{b_{h}}>n_{s}$
I.B: $r_{b_{h}}<n_{s}$ and $r_{b_{h}} \neq n_{j}$ for all j
I.C: $r_{b_{h}}=n_{j}$ for some $n_{j}<n_{s}$
I.D: $r_{b_{1}}=n_{s}$
I.A: Suppose $r_{b_{h}}>n_{s}$. A general element of $\Sigma_{r_{b_{h}}}$ is obtained by specializing $\Lambda \in V^{0}$ so that it intersects $Q_{d_{b_{h}}}^{r_{b_{h}}, \text { sing }}$ in one more dimension. Equivalently, this is the restriction variety associated to the sequence obtained by putting $L_{r_{b_{h}}}$ to the right of $L_{n_{s}}$, in the place of $Q_{d_{k-s}}^{r_{k-s}}$. Note that $\Sigma_{r_{b_{h-1}}}$ contains $\Sigma_{r_{b_{h}}}$, so all $\Sigma_{r_{b_{h}}}$ with $r_{b_{h}}>n_{s}$ are contained in $\Sigma_{r_{b_{1}}}$. Therefore it is sufficient to consider $\Sigma_{r_{b_{1}}}$.

EXAMPLE 4.8. Let V be the restriction variety given by the sequence $\left[L_{3} \subseteq Q_{10}^{7} \subseteq Q_{20}^{5}\right]$. The loci $\Sigma_{r_{b_{1}}}$ and $\Sigma_{r_{b_{2}}}$ are defined as the closures of the following loci:
$\Sigma_{r_{b_{1}}}^{0}:=\left\{\Lambda \in V \mid \operatorname{dim}\left(\Lambda \cap Q_{10}^{7, \text { sing }}\right)=2\right.$ with other conditions of V^{0} unchanged $\}$ $\Sigma_{r_{b_{2}}}^{0}:=\left\{\Lambda \in V \mid \operatorname{dim}\left(\Lambda \cap Q_{20}^{5, \text { sing }}\right)=2\right.$ with other conditions of V^{0} unchanged $\}$ Equivalently, they are given by the sequences $\Sigma_{r_{b_{2}}}=\left[L_{3} \subseteq L_{5} \subseteq Q_{18}^{7}\right]$ and $\Sigma_{r_{b_{1}}}=$ $\left[L_{3} \subseteq L_{7} \subseteq Q_{20}^{5}\right]$. Since $\Sigma_{r_{b_{2}}}$ is contained in $\Sigma_{r_{b_{1}}}$, it is sufficient to consider $\operatorname{codim}\left(\pi^{-1}\left(\Sigma_{r_{b_{1}}}\right)\right)$.

As a result of the specialization, x_{i} increases by 1 for $\beta_{1}-1$ sub-quadrics, namely, for $Q_{d_{i}}^{r_{i}}$ with $b_{1} \leq i<k-s$. These are the sub-quadrics that are in the same group as $Q_{d_{b_{1}}}^{r_{b_{1}}}$; the newly introduced $L_{r_{b_{h}}}$ is the isotropic linear space in the modified sequence that is contained in $Q_{d_{i}}^{r_{i}}$ for $b_{1} \leq i<k-s$. The difference between the dimensions of the varieties obtained by the original and the modified
sequence can be calculated using Observation 2.9.

$$
\begin{aligned}
\operatorname{codim}\left(\Sigma_{r_{b_{1}}}\right) & =\left(d_{k-s}+x_{k-s}-2(s+1)\right)-\left(\left(r_{b_{1}}-(s+1)\right)-\left(\beta_{1}-1\right)\right) \\
& =d_{k-s}-r_{b_{1}}-\beta_{1}
\end{aligned}
$$

since $x_{k-s}=s$ by our assumption that $r_{b_{1}}>n_{s}$.

Now we study the inverse image $\pi^{-1}(\Lambda)$ of a general point Λ in $\Sigma_{r_{b_{1}}}$. By assumption there is no O containing $Q_{d_{b_{1}}}^{r_{b_{1}}, s i n g}$ and O 's contained in $Q_{d_{b_{1}}}^{r_{b_{1}}, s i n g}$ are determined uniquely by Λ. We have $\overline{T^{t+1}, Q_{d_{b_{1}}}^{r_{b_{1}}, \operatorname{sing}}} \subseteq Z_{1} \subseteq Q_{d_{b_{1}}}^{r_{b_{1}}}$ where $\operatorname{dim}\left(\overline{\left.T^{t+1}, Q_{d_{b_{1}}}^{r_{b_{1}}, \operatorname{sing}}\right)=}\right.$ $r_{b_{1}}+\left(k-b_{1}+1\right)-\left(x_{b_{1}}+1\right)$ and $\operatorname{dim} Z_{1}=\operatorname{dim}\left(\overline{T^{t+1}, Q_{d_{b_{1}}}^{r_{b_{1}, s i n g}}}\right)+1$. Since Z^{1} has to lie in the orthogonal complement of $\overline{T^{t+1}, Q_{d_{b_{1}}}^{r_{b_{1}}, \operatorname{sing}}}$, we have $\overline{T^{t+1}, Q_{d_{b_{1}}}^{r_{b_{1}}, \operatorname{sing}} \subseteq} \subseteq$ $Z_{1} \subseteq Q_{d_{b_{1}}-\left(k-b_{1}+1-x_{b_{1}}-1\right)}^{r_{b_{1}}+\left(k-b_{1}+1-x_{b_{1}}-1\right)}$. Such Z_{1} can be parameterized by $O G\left(1, d_{b_{1}}-r_{b_{1}}-\right.$ $\left.2\left(k-b_{1}+1-x_{b_{1}}-1\right)\right)$. Therefore
$\operatorname{codim}\left(\pi^{-1}\left(\Sigma_{r_{b_{1}}}\right)\right)=d_{k-s}-r_{b_{1}}-\beta_{1}-\left(d_{b_{1}}-r_{b_{1}}-2\left(k-b_{1}+1-x_{b_{1}}-1\right)-2\right)$

$$
\begin{aligned}
& =d_{k-s}-d_{b_{1}}+2\left(k-b_{1}+1-x_{b_{1}}\right)-\beta_{1} \\
& =1
\end{aligned}
$$

since $d_{b_{1}}-d_{k-s}=\beta_{1}-1$ and $k-b_{1}+1-s=\beta_{1}$.

$$
\begin{aligned}
\text { EXAMPLE 4.9. Let } V & =\left[L_{3} \subseteq Q_{10}^{7} \subseteq Q_{20}^{5}\right], \text { then } \\
\widetilde{V}=\left\{\left(T^{1}, T^{2}, T^{3}, Z^{1}, Z^{2}, O^{2, r_{b_{1}}}\right) \mid\right. & Q_{20}^{5, \text { sing }} \subseteq O^{2, r_{b_{1}}} \subseteq Z^{2}, \quad Q_{10}^{7, \text { sing }} \subseteq Z^{1}, \\
& \left.T^{1} \subseteq L_{3}, \quad T_{2} \subseteq O^{2, r_{b_{1}}} \subseteq Z^{1} \subseteq Q_{10}^{7}, \quad T^{3} \subseteq Z^{2} \subseteq Q_{20}^{5},\right\}
\end{aligned}
$$

equivalently, the diagram is the following.

Figure 5. Definition of \widetilde{V} for $V=\left[L_{3} \subseteq Q_{10}^{7} \subseteq Q_{20}^{5}\right]$

The subvariety $\Sigma_{r_{b_{1}}}=\left[L_{3} \subseteq L_{7} \subseteq Q_{20}^{5}\right] \subseteq V$ has codimension 2. In the inverse image $\pi^{-1}(\Lambda)$ of a general point Λ in $\Sigma_{r_{b_{1}}}$, we have $T^{3}=\Lambda, \quad T^{2}=\Lambda \cap Q_{10}^{7}=\Lambda \cap L_{7}$, $T^{1}=\Lambda \cap L_{3}, \quad O^{2, r_{b_{1}}}=\overline{Q_{20}^{5, \text { sing }}, \Lambda \cap Q_{10}^{7}}, Z^{2}=\overline{Q_{20}^{5, \text { sing }}, \Lambda}$ and $Q_{10}^{7, \text { sing }} \subseteq Z^{1} \subseteq Q_{20}^{7}$ where $\operatorname{dim} Z^{1}=8$. The linear space Z^{1} is parameterized by a smooth plane quadric, or equivalently, $O G(1,3)$. Thus $\operatorname{dim}\left(\pi^{-1}(\Lambda)\right)=1$ and $\operatorname{codim}\left(\pi^{-1}\left(\Sigma_{r_{b_{1}}}\right)\right)=1$.

EXAMPLE 4.10. Let $V=\left[L_{1} \subseteq Q_{6}^{3} \subseteq Q_{8}^{1}\right]$, an orthogonal Schubert variety in $O G(3,9)$. The following diagram defines \widetilde{V}.

Figure 6. Definition of \tilde{V} for $V=\left[L_{1} \subseteq Q_{6}^{3} \subseteq Q_{8}^{1}\right]$

The subvariety $\Sigma_{r_{b_{1}}}=\left[L_{1} \subseteq L_{3} \subseteq Q_{8}^{1}\right]$ has codimension 2. In the inverse image $\pi^{-1}(\Lambda)$ of a general point Λ in $\Sigma_{r_{b_{1}}}$, only Z^{1} is not determined uniquely. We have $\operatorname{dim} Z^{1}=4$ and $Q_{6}^{3, \text { sing }} \subseteq Z^{1} \subseteq Q_{6}^{3}$, from which we conclude Z^{1} is parameterized by $O G(1,3)$. Thus $\operatorname{dim}\left(\pi^{-1}(\Lambda)\right)=1$ and $\operatorname{codim}\left(\pi^{-1}\left(\Sigma_{r_{b_{1}}}\right)\right)=1$.
I.B: Next we consider $\Sigma_{r_{b_{h}}}$ such that there are $L_{n_{j}}$ in the sequence with $r_{b_{h}}<n_{j}$ but no $L_{n_{j}}$ with $n_{j}=r_{b_{h}}$. Let $n_{j_{\sharp}}:=\min \left\{n_{j} \mid r_{b_{h}}<n_{j}\right\}$. If $r_{b_{h-1}}$ satisfies $r_{b_{h}}<r_{b_{h-1}}<n_{j_{\sharp}}$ then $\Sigma_{r_{b_{h-1}}}$ contains $\Sigma_{r_{b_{h}}}$. Therefore it is sufficient to consider $r_{b_{h}}$ such that $r_{b_{h}}<n_{j_{\sharp}}<r_{b_{h-1}}$. Note that in this case $\max \left\{r_{i} \mid r_{i}<n_{j_{\sharp}}\right\}=$ $r_{b_{h}}-\left(\beta_{h}-1\right)=r_{b_{h-1}+1}$.

Specializing Λ so that it intersects $Q_{d_{b_{h}}}^{r_{b_{h}}, s i n g}$ in one more dimension is equivalent to making two changes: The first one is changing $L_{n_{j_{\sharp}}}$ to $L_{r_{b_{h}}}$, an isotropic linear subspace of dimension $r_{b_{h}}$, so that the condition for $\Sigma_{r_{b_{h}}}$ is satisfied, that is, $\operatorname{dim}\left(\Lambda \cap Q_{d_{b_{h}}}^{r_{b_{h}}}\right)$ increases by one. The second one is changing $Q_{d_{b_{h-1}+1}}^{r_{b_{h-1}+1}}$ to $Q_{d_{b_{h-1}+1}-\left(n_{j_{\sharp}}-r_{b_{h-1}+1}\right)}^{n_{j_{\sharp}}}$ induced by the other conditions of V^{0}. The linear space $L_{r_{b_{h}}}$ is an additional isotropic linear space in the modified sequence that is contained in $Q_{d_{b_{h-1}+1}-\left(n_{j_{\sharp}}-r_{b_{h-1}+1}\right)}^{n_{j^{\prime}}, \operatorname{sing}}$; this increases $x_{b_{h-1}+1}$ by 1. Comparing the modified sequence's dimension with the original one's, we have

$$
\operatorname{codim}\left(\Sigma_{r_{b_{h}}}\right)=n_{j_{\sharp}}-r_{b_{h}}+n_{j_{\sharp}}-r_{b_{h-1}+1}-1
$$

EXAMPLE 4.11. Let $V=\left[L_{7} \subseteq Q_{15}^{5} \subseteq Q_{25}^{2}\right]$, then $\Sigma_{r_{b_{1}}}=\left[L_{5} \subseteq Q_{13}^{7} \subseteq\right.$ $\left.Q_{25}^{2}\right]$. Specializing a general element Λ of V so that it intersects L_{5} increases x_{2} by 1. In this example, $\operatorname{codim}\left(\sum_{r_{b_{1}}}\right)=2+2-1=3$.

REMARK 4.12. Changing $Q_{d_{b_{h-1}+1}}^{r_{b_{h-1}+1}}$ to $Q_{d_{b_{h-1}+1}-\left(n_{j_{\sharp}}-r_{b_{h-1}+1}\right)}^{n_{j^{\prime}}}$ ensures that the rest of the conditions of V^{0} remain unchanged in $\Sigma_{r_{b_{h}}}$. In the previous example, in the sequence of $\Sigma_{r_{b_{1}}}$, we have Q_{13}^{7} instead of Q_{15}^{5} to ensure that for general Λ, $\operatorname{dim}\left(\Lambda \cap L_{7}\right)=1$ which is one of the conditions of V^{0} that remains unchanged for a general element in $\Sigma_{r_{b_{1}}}$.

Note that the linear space $L_{n_{j_{\sharp}}}$ may not be among $L_{n_{a_{g}}}$, that is, the largest dimensional isotropic linear space in a group with consecutively increasing dimensions. Let $L_{n_{a_{g}}}$ be the smallest $L_{n_{a_{g}}}$ containing $L_{n_{j_{\sharp}}}$. In the inverse image $\pi^{-1}(\Lambda)$ of a general point Λ in $\Sigma_{r_{b_{h}}}$, all coordinates are determined uniquely except for
$O^{h, n_{a_{g}}}$ and Z^{h}. We have $\overline{Q_{d_{b_{h}}}^{r_{b_{h}}, s i n g}}, \Lambda \cap L_{n_{a_{g}}} \subseteq O^{h, n_{a_{g}}} \subseteq L_{n_{a_{g_{\sharp}}}}$ thus $O^{h, n_{a_{g_{\sharp}}}}$ can be parameterized by $G\left(1, n_{a_{g_{\sharp}}}-\left(r_{b_{h}}+a_{g_{\sharp}}-x_{b_{h}}\right)+1\right)$. Then Z^{h} is determined uniquely as $\overline{O^{h, n_{a_{\sharp}}}, \Lambda \cap Q_{d_{b_{h}}}^{r_{b_{h}}}}$. Thus $\operatorname{dim}\left(\pi^{-1}(\Lambda)\right)=n_{a_{g_{\sharp}}}-\left(r_{b_{h}}+a_{g_{\sharp}}-x_{b_{h}}\right)$ and

$$
\begin{aligned}
\operatorname{codim}\left(\pi^{-1}\left(\sum_{r_{b_{h}}}\right)\right) & =n_{j_{\sharp}}-r_{b_{h}}+\beta_{h}\left(n_{j_{\sharp}}-r_{b_{h-1}+1}\right)-\beta_{h}-\left(n_{a_{g_{\sharp}}}-\left(r_{b_{h}}+a_{g_{\sharp}}-x_{b_{h}}\right)\right) \\
& =\left(\left(n_{j_{\sharp}}-r_{b_{h}}\right)-\left(n_{a_{g_{\sharp}}}-\left(r_{b_{h}}+a_{g_{\sharp}}-x_{b_{h}}\right)\right)\right)+\beta_{h}\left(n_{j_{\sharp}}-r_{b_{h-1}+1}-1\right) \\
& \geq 2
\end{aligned}
$$

$\operatorname{since}\left(\left(n_{j_{\sharp}}-r_{b_{h}}\right)-\left(n_{a_{g_{\sharp}}}-\left(r_{b_{h}}+a_{g_{\sharp}}-x_{b_{h}}\right)\right)\right) \geq 1$ and there is no n_{j}, r_{i} such that $n_{j}-r_{i}=1$ by the condition on variation of tangent spaces.

EXAMPLE 4.13. Let $V=\left[L_{6} \subseteq L_{7} \subseteq Q_{15}^{2}\right]$, then \widetilde{V} is given by the following diagram.

Figure 7. Definition of \widetilde{V} for $V=\left[L_{6} \subseteq L_{7} \subseteq Q_{15}^{2}\right]$

$$
L_{7}
$$

The subvariety $\Sigma_{r_{b_{1}}}=\left[L_{2} \subseteq L_{7} \subseteq Q_{15}^{2}\right]$ has codimension 7. In the inverse image $\pi^{-1}(\Lambda)$ of a general point Λ in $\Sigma_{r_{b_{1}}}$, we have $T^{2}=\Lambda, T^{1}=\Lambda \cap L_{7}$. As above, Z^{1} is determined as $Z^{1}=\overline{O^{1, n_{a_{1}}}, \Lambda}$ so the nontrivial part is the parametrization of $O^{1, n_{a_{1}}}$. We have $\overline{Q_{15}^{2, \text { sing }}, \Lambda \cap L_{7}} \subseteq O^{1, n_{a_{1}}} \subseteq L_{7}$ which is parameterized by $G(1,4)$. Thus $\operatorname{dim}\left(\pi^{-1}(\Lambda)\right)=3$ and $\operatorname{codim} \pi^{-1}\left(\Sigma_{r_{b_{1}}}\right)=7-3=4$.

EXAMPLE 4.14. Let $V=\left[L_{7} \subseteq Q_{15}^{5} \subseteq Q_{25}^{2}\right]$, then \widetilde{V} is given by the following diagram.

Figure 8. Definition of \tilde{V} for $V=\left[L_{7} \subseteq Q_{15}^{5} \subseteq Q_{25}^{2}\right]$

The subvariety $\Sigma_{r_{b_{1}}}=\left[L_{5} \subseteq Q_{13}^{7} \subseteq Q_{25}^{2}\right]$ has codimension 3. In the inverse image $\pi^{-1}(\Lambda)$ of a general point Λ in $\Sigma_{r_{b_{1}}}$, we have $T^{3}=\Lambda, \quad T^{2}=\Lambda \cap Q_{15}^{5}=$ $\Lambda \cap Q_{13}^{7}, T^{1}=\Lambda \cap L_{7}=\Lambda \cap L_{5}, O^{2, n_{a_{1}}}=\overline{Q_{25}^{2, \text { sing }}, \Lambda \cap L_{7}}, O^{2, r_{b_{1}}}=\overline{Q_{25}^{2, \text { sing }}, \Lambda \cap Q_{15}^{5}}$, $Z^{2}=\overline{Q_{25}^{2, \text { sing }}, \Lambda}$. The linear space $O^{1, n_{a_{1}}}$ satisfies $Q_{15}^{5, \text { sing }} \subseteq Q_{15}^{5} \subseteq L_{7}$ and hence can be parameterized by $G(1,2)$. Then Z^{1} is determined uniquely as $Z^{1}=\overline{O^{1, n_{a_{1}}}, \Lambda \cap Q_{15}^{5}}$. Thus $\operatorname{dim}\left(\pi^{-1}(\Lambda)\right)=1$ and $\operatorname{codim}\left(\pi^{-1}\left(\Sigma_{r_{b_{1}}}\right)\right)=2$.
I.C: Now we consider $r_{b_{h}}$ such that there is $L_{n_{j}}$ with $n_{j}<n_{s}$ in the defining sequence satisfying $n_{j}=r_{b_{h}}$. Since there is no $L_{n_{j}}$ in the sequence with $n_{j}=r_{b_{h}}+1$, we have $r_{b_{h}}=n_{a_{g}}$ for some $1 \leq g \leq t-1$. Specializing Λ so that it intersects $Q_{d_{b_{h}}}^{r_{b_{h}}, s i n g}=L_{n_{j}}$ in one more dimension is equivalent to making two changes: The first one is moving the group of α_{g} isotropic linear spaces $L_{n_{a_{g}-\alpha_{g}+1}}, L_{n_{a_{g}-\alpha_{g}+2}}, \ldots, L_{n_{a_{g}}}$ one position to the right and putting $L_{n_{a_{g}-\alpha_{g}}}$ in the sequence to the left of these linear spaces. The second one is changing $Q_{d_{i}}^{r_{i}}$ to $Q_{d_{i}-\left(n_{a_{g}+1}-r_{b_{h-1}+1}\right)}^{r_{i}+\left(n_{a_{g}+1}-r_{b_{-1}}\right)}$ for all i such that $b_{h} \leq i<b_{h-1}$. This increases x_{i} by 1 for $b_{h} \leq i<b_{h-1}$ as $L_{n_{a_{g}-\alpha_{g}}}$ is an additional isotropic linear space in the modified sequence that is contained in the singular locus of each $Q_{d_{i}-\left(n_{a_{g}+1}-r_{b_{h-1}}\right)}^{r_{i}+\left(n_{h_{g}+1}-r_{b_{h-1}}\right)}$ with $b_{h} \leq i<b_{h-1}$.

Note that even if there is a sub-quadric $Q_{d_{\xi}}^{r_{\xi}}$ in the sequence with a singular locus of dimension $n_{a_{g}}-\alpha_{g}-1$, this change turns it into $Q_{d_{\xi}-\left(\alpha_{g}+1\right)}^{r_{\xi}+\left(\alpha_{g}+1\right)}$. Then x_{ξ} increases by $\left(\alpha_{g}+1\right)$ and the dimension of $\Sigma_{r_{b_{h}}}$ does not change.

Observation 2.9 can be used to calculate the dimensions of both sequences, we have

$$
\begin{aligned}
\operatorname{codim}\left(\sum_{r_{b_{1}}}\right)= & \alpha_{g}\left(n_{a_{g}}-a_{g}\right)+\alpha_{g+1}\left(n_{a_{g+1}}-a_{g+1}\right) \\
& -\left(\alpha_{g}+1\right)\left(n_{a_{g}}-a_{g}-1\right)-\left(\alpha_{g+1}-1\right)\left(n_{a_{g+1}}-a_{g+1}\right) \\
& +\beta_{h}\left(n_{a_{g}+1}-r_{b_{h-1}+1}\right)-\beta_{h}
\end{aligned}
$$

In the inverse image $\pi^{-1}(\Lambda)$ of a general point Λ in $\Sigma_{r_{b_{h}}}$, all coordinates are determined uniquely except for $O^{h, n_{a_{g+1}}}, Z^{h}$ and the coordinates in the g-th row. We have $\overline{Q_{d_{b_{h}}}^{r_{b_{h}}, \text { sing }}, \Lambda \cap L_{n_{a_{g+1}}}} \subseteq O^{h, n_{a_{g+1}}} \subseteq L_{n_{a_{g+1}}}$ thus $O^{h, n_{a_{g+1}}}$ can be parameterized by $G\left(1, n_{a_{g+1}}-\left(r_{b_{h}}+a_{g+1}-x_{b_{h}}\right)+1\right)=G\left(1, n_{a_{g+1}}-n_{a_{g}}-\alpha_{g+1}+1\right)$. Then Z^{h} is determined uniquely as $\overline{O^{h, n_{a_{g+1}}}, \Lambda \cap Q_{d_{b_{h}}}^{r_{b_{h}}}}$. On the other hand, the g-th row is determined uniquely once T^{g} is determined. The linear space T^{g} satisfies $T^{g-1} \subseteq T^{g} \subseteq \Lambda \cap L_{n_{a_{g}}}$ and hence can be parameterized by $G\left(\alpha_{g}, \alpha_{g}+1\right)$. Thus $\operatorname{dim}\left(\pi^{-1}(\Lambda)\right)=n_{a_{g+1}}-n_{a_{g}}-\alpha_{g+1}+\alpha_{g}$ and

$$
\operatorname{codim}\left(\pi^{-1}\left(\Sigma_{r_{b_{h}}}\right)\right)=\beta_{h}\left(n_{a_{g}+1}-r_{b_{h-1}+1}-1\right)+1
$$

which is greater than 1 as there is no n_{j}, r_{i} such that $n_{j}-r_{i}=1$ in the defining sequence.

EXAMPLE 4.15. Let $V=\left[L_{2} \subseteq L_{4} \subseteq Q_{7}^{2}\right]$, an orthogonal Schubert variety in $O G(3,9)$. The definition of \widetilde{V} is given by the following diagram.

Figure 9. Definition of \tilde{V} for $V=\left[L_{2} \subseteq L_{4} \subseteq Q_{7}^{2}\right]$

The subvariety $\Sigma_{r_{b_{1}}}$ is given by the sequence $\left[L_{1} \subseteq L_{2} \subseteq L_{4}\right]$ as Q_{7}^{2} becomes L_{4} if its corank is increased by 2. The variety $\Sigma_{r_{b_{1}}}$ has codimension 4. In the inverse image $\pi^{-1}(\Lambda)$ of a general point Λ in $\Sigma_{r_{b_{1}}}$, the coordinates T^{3} and O^{1} are determined uniquely as $T^{3}=O^{1}=\Lambda$ and $T^{2}=L_{2}$. The coordinate T^{1} satisfies $T^{1} \subseteq L_{2}$ and is parameterized by $G(1,2)$. The coordinate Z^{1} satisfies $O^{1} \subseteq Z^{1} \subseteq Q_{7}^{3}$ and is parameterized by $O G(1,3)$. Thus $\operatorname{dim}\left(\pi^{-1}(\Lambda)\right)=2$ and $\operatorname{codim}\left(\pi^{-1}\left(\Sigma_{r_{b_{1}}}\right)\right)=2$.

EXAMPLE 4.16. Let $V=\left[L_{5} \subseteq L_{10} \subseteq Q_{19}^{6} \subseteq Q_{20}^{5} \subseteq Q_{30}^{2}\right]$, then \widetilde{V} is given by the following diagram.

Figure 10. Definition of \widetilde{V} for $V=\left[L_{5} \subseteq L_{10} \subseteq Q_{19}^{6} \subseteq Q_{20}^{5} \subseteq Q_{30}^{2}\right]$

The subvariety $\Sigma_{r_{b_{1}}}=\left[L_{4} \subseteq L_{5} \subseteq Q_{15}^{10} \subseteq Q_{16}^{9} \subseteq Q_{30}^{2}\right]$ has codimension 12. In the inverse image $\pi^{-1}(\Lambda)$ of a general point Λ in $\Sigma_{r_{b_{1}}}$, we have $T^{4}=\Lambda$, $T^{3}=\Lambda \cap Q_{16}^{9}=\Lambda \cap Q_{20}^{5}, \quad T^{2}=\Lambda \cap L_{5}=\Lambda \cap L_{10}, \quad O^{2, n_{a_{2}}}=\overline{Q_{30}^{2, \text { sing }}, \Lambda \cap L_{10}}$, $O^{2, r_{b_{1}}}=\overline{Q_{30}^{2, \text { sing }}, \Lambda \cap Q_{20}^{5}}, \quad Z^{2}=\overline{Q_{30}^{2, \text { sing }}, \Lambda}$. The linear space $O^{1, n_{a_{2}}}$ satisfies $\overline{Q_{20}^{5, \text { sing }}, \Lambda \cap L_{10}} \subseteq O^{1, n_{a_{2}}} \subseteq L_{10}$ and hence can be parameterized by $G(1,5)$. Then Z^{1} is determined uniquely as $Z^{1}=\overline{O^{1, n_{a_{2}}}, \Lambda \cap Q_{20}^{5}}$. On the other hand, T^{1} satisfies $T^{1} \subseteq \Lambda \cap L_{5}$ and hence can be parameterized by $G(1,2)$. Then $O^{2, n_{a_{1}}}=\overline{Q_{30}^{2, s i n g}, T^{1}}$. Thus $\operatorname{dim}\left(\pi^{-1}(\Lambda)\right)=5$ and $\operatorname{codim}\left(\pi^{-1}\left(\Sigma_{r_{b_{1}}}\right)\right)=12-5=7$.
I.D: The only remaining case is when $r_{b_{1}}=n_{a_{t}}$. Specializing Λ so that it intersects $Q_{d_{b_{h}}}^{r_{b_{h}}, s i n g}=L_{n_{a_{t}}}$ in one more dimension is equivalent to making two changes: The first one is moving the group of α_{t} isotropic linear spaces $L_{n_{a_{t}-\alpha_{t}+1}}, L_{n_{a_{t}-\alpha_{t}+2}}, \ldots$, $L_{n_{a_{t}}}$ one position to the right and putting $L_{n_{a_{t}-\alpha_{t}}}$ in the sequence to the left of these linear spaces. The second one is omitting $Q_{d_{k-s}}^{r_{k-s}}$ from the sequence. This increases x_{i} by 1 for $b_{1} \leq i<k-s$ as $L_{n_{a_{t}-\alpha_{t}}}$ is an additional isotropic linear space in the modified sequence that is contained in the singular locus of each $Q_{d_{i}}^{r_{i}}$ with $b_{1} \leq i<k-s$. We have

$$
\begin{aligned}
\operatorname{codim}\left(\Sigma_{r_{b_{1}}}\right)= & \alpha_{t}\left(n_{a_{t}}-a_{t}\right)+\sum_{t=1}^{\beta_{1}}\left(d_{b_{1}}+x_{b_{1}}-2\left(s+\beta_{1}\right)+t-1\right) \\
& -\left(\alpha_{t}+1\right)\left(n_{a_{t}}-a_{t}-1\right)-\sum_{t=1}^{\beta_{1}-1}\left(d_{b_{1}}+x_{b_{1}}-2\left(s+\beta_{1}\right)+t-1\right)-\left(\beta_{1}-1\right) \\
= & \alpha_{t}+d_{b_{1}}-n_{s}-2 \beta_{1}+1
\end{aligned}
$$

Note that by assumption there is no O containing $Q_{d_{b_{1}}}^{r_{b_{1}}}$ and other O 's are determined uniquely as there is no change in the relevant rank conditions. The only nontrivial parameterizations are observed for Z^{1} and the coordinates in the t-th row. As in (I.A), we have $\overline{T^{t+1}, Q_{d_{b_{1}}}^{r_{b_{1}}, s i n g}} \subseteq Z_{1} \subseteq Q_{d_{b_{1}}}^{r_{b_{1}}}$ where $\operatorname{dim}\left(\overline{T^{t+1}, Q_{d_{b_{1}}}^{r_{b_{1}}, \operatorname{sing}}}\right)=$ $r_{b_{1}}+\left(k-b_{1}+1\right)-\left(x_{b_{1}}+1\right)$ and $\operatorname{dim}\left(Z_{1}\right)=\operatorname{dim}\left(\overline{T^{t+1}, Q_{d_{b_{1}}}^{r_{b_{1}}, \operatorname{sing}}}\right)+1$. Since Z^{1}

 $O G\left(1, d_{b_{1}}-r_{b_{1}}-2\left(k-b_{1}+1-x_{b_{1}}-1\right)\right)$. On the other hand, the t-th row can be determined once T^{1} is determined. The linear space T^{1} satisfies $T^{t} \subseteq \Lambda \cap L_{n_{a_{t}}}$ and hence can be parameterized by $G\left(\alpha_{t}, \alpha_{t}+1\right)$. Thus $\operatorname{dim}\left(\pi^{-1}(\Lambda)\right)=$ $d_{b_{1}}-r_{b_{1}}-2\left(k-b_{1}+1-x_{b_{1}}-1\right)-2+\alpha_{t}$ and we have

$$
\operatorname{codim}\left(\pi^{-1}\left(\Sigma_{r_{b_{1}}}\right)\right)=1
$$

EXAMPLE 4.17. Let $V=\left[L_{2} \subseteq L_{3} \subseteq Q_{7}^{3}\right]$, an orthogonal Schubert variety in $O G(3,9)$. The following diagram defines \widetilde{V}.

Figure 11. Definition of \tilde{V} for $V=\left[L_{2} \subseteq L_{3} \subseteq Q_{7}^{3}\right]$

$$
\begin{aligned}
& \begin{array}{ccc}
T^{1} & \subseteq & L_{3} \\
\mathrm{I} \cap & \\
& \\
& Q_{6}^{3, \text { sing }}
\end{array} \\
& T^{2} \subseteq \quad Z^{1} \subseteq Q_{6}^{3}
\end{aligned}
$$

The subvariety $\Sigma_{r_{b_{1}}}=\left[L_{1} \subseteq L_{2} \subseteq L_{3}\right]$, which consists of a single point, has codimension 4. In the inverse image $\pi^{-1}(\Lambda)$ of a general point Λ in $\Sigma_{r_{b_{1}}}$, we have $T^{1} \subseteq L_{3}$ whih is parameterized by $G(2,3)$. Also, $\operatorname{dim}\left(Z^{1}\right)=4$ with $Q_{6}^{3, \text { sing }} \subseteq Z^{1} \subseteq Q_{6}^{3}$, so Z^{1} is parameterized by $O G(1,3)$ which has dimension 1. Thus $\operatorname{dim}\left(\pi^{-1}(\Lambda)\right)=3$ and $\operatorname{codim}\left(\pi^{-1}\left(\Sigma_{r_{b_{1}}}\right)\right)=1$.

EXAMPLE 4.18. Let $V=\left[L_{5} \subseteq Q_{10}^{5} \subseteq Q_{30}^{2}\right]$, then \widetilde{V} is given by the following diagram.

Figure 12. Definition of \widetilde{V} for $V=\left[L_{5} \subseteq Q_{10}^{5} \subseteq Q_{30}^{2}\right]$

The subvariety $\Sigma_{r_{b_{1}}}=\left[L_{4} \subseteq L_{5} \subseteq Q_{30}^{2}\right]$ has codimension 7. In the inverse image $\pi^{-1}(\Lambda)$ of a general point Λ in $\Sigma_{r_{b_{1}}}$, we have $T^{3}=\Lambda, T^{2}=\Lambda \cap L_{5}=\Lambda \cap Q_{10}^{5}$, $O^{2, r_{b_{1}}}=\overline{Q_{30}^{2, \text { sing }}, \Lambda \cap Q_{10}^{5}}, \quad Z^{2}=\overline{Q_{30}^{2, \text { sing }}, \Lambda}$. We have $Q_{30}^{2, \text { sing }} \subseteq O^{2, n_{a_{1}}} \subseteq L_{5}$ which can be parameterized by $G(1,3)$. Then the linear space T^{1} which satisfies $T^{1} \subseteq$ $O^{2, n_{a_{1}}}$ can be parameterized by $G(1,3)$. On the other hand, Z^{1} satisfies $Q_{10}^{5, \text { sing }} \subseteq$ $Z^{1} \subseteq Q_{10}^{5}$ and hence can be parameterized by $O G(1,5)$. Thus $\operatorname{dim}\left(\pi^{-1}(\Lambda)\right)=6$ and $\operatorname{codim}\left(\pi^{-1}\left(\Sigma_{r_{b_{1}}}\right)\right)=1$.

II: $\Sigma_{n_{a_{g}}}: \operatorname{dim}\left(\Lambda \cap L_{n_{a_{g}}}\right)=a_{g}+1$ for some $1 \leq g \leq t$

Depending on $n_{a_{g}}$, we divide this case into the following two subcases:
II.A: $g=t$
II.B: $g<t$
II.A: $\Sigma_{n_{a_{t}}}: \operatorname{dim}\left(\Lambda \cap L_{n_{a_{t}}}\right)=a_{t}+1$ (or equivalently, $\left.\operatorname{dim}\left(\Lambda \cap L_{n_{s}}\right)=s+1\right)$

If $r_{b_{1}}=n_{a_{t}}$, then $\Sigma_{n_{a_{t}}}$ corresponds to $\Sigma_{r_{b_{1}}}$. If $r_{b_{1}}>n_{a_{t}}$ then $\Sigma_{r_{b_{1}}}$ contains $\Sigma_{n_{a_{t}}}$. So we assume $r_{b_{1}}<n_{a_{t}}$ in the following. Specializing Λ is equivalent to moving the group of α_{t} isotropic linear spaces $L_{n_{a_{t}-\alpha_{t}+1}}, L_{n_{a_{t}-\alpha_{t}+2}}, \ldots, L_{n_{a_{t}}}$ one position to the right, putting $L_{n_{a_{t}-\alpha_{t}}}$ in the sequence to the left of these linear spaces and omitting $Q_{d_{k-s}}^{r_{k-s}}$ from the sequence. We have

$$
\begin{aligned}
\operatorname{codim}\left(\Sigma_{r_{b_{1}}}\right)= & \alpha_{t}\left(n_{a_{t}}-a_{t}\right)+\sum_{t=1}^{\beta_{1}}\left(d_{b_{1}}+x_{b_{1}}-2\left(s+\beta_{1}\right)+t-1\right) \\
& -\left(\alpha_{t}+1\right)\left(n_{a_{t}}-a_{t}-1\right)-\sum_{t=1}^{\beta_{1}-1}\left(d_{b_{1}}+x_{b_{1}}-2\left(s+\beta_{1}\right)+t-1\right) \\
= & \alpha_{t}+d_{b_{1}}+x_{b_{1}}-s-n_{a_{t}}-\beta_{1}
\end{aligned}
$$

The only nontrivial parameterizations in the inverse image $\pi^{-1}(\Lambda)$ of a general point Λ in $\Sigma_{n_{a_{t}}}$ are in the row of T^{t} and once T^{t} is fixed, the rest of the row can be determined uniquely. The linear space T^{t} satisfies $T^{t-1} \subseteq T^{t} \subseteq \Lambda \cap L_{n_{a_{t}}}$ and hence can be parameterized by $G\left(\alpha_{t}, \alpha_{t}+1\right)$. Thus we have

$$
\begin{aligned}
\operatorname{codim}\left(\pi^{-1}\left(\Sigma_{n_{a_{t}}}\right)\right) & =d_{b_{1}}+x_{b_{1}}-s-n_{a_{t}}-\beta_{1} \\
& \geq \frac{d_{b_{1}}+r_{b_{1}}}{2}-n_{a_{t}}
\end{aligned}
$$

using the property $x_{i} \geq k-i+1-\frac{d_{i}-r_{i}}{2}$ for all $1 \leq i \leq k-s$. Note that $\operatorname{codim}\left(\pi^{-1}\left(\Sigma_{n_{a_{t}}}\right)\right)$ may be 1 in this case.

EXAMPLE 4.19. Let $V=\left[L_{5} \subseteq Q_{8}^{2}\right]$, then \widetilde{V} is given by the following diagram.

Figure 13. Definition of \widetilde{V} for $V=\left[L_{5} \subseteq Q_{8}^{2}\right]$

$$
\begin{aligned}
& Q_{8}^{2, \text { sing }} \\
& 1 \cap \\
& \begin{array}{lcccc}
T^{1} \subseteq & O^{1, n_{a_{1}}} \subseteq L_{5} \\
\cap \cap & \cap & \cap \\
T^{2} \subseteq & Z^{1} & \subseteq & Q_{8}^{2}
\end{array}
\end{aligned}
$$

The subvariety $\Sigma_{n_{a_{1}}}=\left[L_{4} \subseteq L_{5}\right]$ has codimension 2. In the inverse image
 linear space T^{1} satisfies $T^{1} \subseteq \Lambda \cap L_{5}$ and hence can be parameterized by $G(1,2)$. Then $O^{1, n_{a_{1}}}$ is determined uniquely as $O^{1, n_{a_{1}}}=\overline{Q_{8}^{2, \text { sing }}, T^{1}}$. Thus $\operatorname{dim}\left(\pi^{-1}(\Lambda)\right)=1$ and $\operatorname{codim}\left(\pi^{-1}\left(\Sigma_{r_{b_{1}}}\right)\right)=2-1=1$.

EXAMPLE 4.20. Let $V=\left[L_{4} \subseteq Q_{8}^{1}\right]$, an orthogonal Schubert variety in $O G(2,9)$. The following diagram gives the definition of \widetilde{V}.

Figure 14. Definition of \widetilde{V} for $V=\left[L_{4} \subseteq Q_{8}^{1}\right]$

$$
\begin{aligned}
& Q_{8}^{1, \operatorname{sing}} \\
& \text { in } \\
& \begin{array}{lccc}
T^{1} \subseteq & O^{1, n_{a_{1}}} \subseteq L_{4} \\
\wedge \cap & & \cap & \cap \\
T^{2} & \subseteq Z^{1} & \subseteq & Q_{8}^{1}
\end{array}
\end{aligned}
$$

The subvariety $\Sigma_{n_{a_{1}}}=\left[L_{4} \subseteq L_{5}\right]$ has codimension 3. In the inverse image $\pi^{-1}(\Lambda)$ of a general point Λ in $\Sigma_{r_{b_{1}}}$, we have $T^{2}=\Lambda$ and $Z^{1}=\overline{\Lambda, Q_{8}^{1, \text { sing }}}$. The linear space T^{1} satisfies $T^{1} \subseteq \Lambda \cap L_{4}$ and hence can be parameterized by $G(1,2)$. Then $O^{1, n_{a_{1}}}$ is determined uniquely as $O^{1, n_{a_{1}}}=\overline{Q_{8}^{1, \text { sing }}, T^{1}}$. Thus $\operatorname{dim}\left(\pi^{-1}(\Lambda)\right)=1$ and $\operatorname{codim}\left(\pi^{-1}\left(\Sigma_{r_{b_{1}}}\right)\right)=3-1=2$.
II.B: $\Sigma_{n_{a_{g}}}: \operatorname{dim}\left(\Lambda \cap L_{n_{a_{g}}}\right)=a_{g}+1$ for some $1 \leq g \leq t-1$

We have already discussed in I.C the case when there is some $Q_{d_{b_{h}}}^{r_{b_{h}}}$ in the defining sequence with $r_{b_{h}}=n_{a_{g}}$. Also, if there is $Q_{d_{b_{h}}}^{r_{b_{h}}}$ in the sequence with $r_{b_{h}}>n_{a_{g}}$ then $\Sigma_{n_{a_{g}}}$ will be contained in $\Sigma_{r_{b_{h}}}$. So it is sufficient to consider the case when $n_{a_{g}}>r_{b_{h}}$ for all $1 \leq h \leq u$, equivalently, when $n_{a_{g}}>r_{k-s}$.

Specializing a k-plane Λ so that it intersects $L_{n_{a_{g}}}$ in one more dimension is equivalent to moving $L_{n_{a_{g}-\alpha_{g}+1}}, L_{n_{a_{g}-\alpha_{g}+2}}, \ldots, L_{n_{a_{g}}}$ one position to the right, putting $L_{n_{a_{g}-\alpha_{g}}}$ to the left of these isotropic linear spaces and changing $Q_{d_{i}}^{r_{i}}$ to $Q_{d_{i}-\left(n_{a_{g}}-r_{k-s}\right)}^{r_{i}+\left(n_{a_{g}}-r_{k-s}\right)}$ for all i with $b_{1} \leq i \leq k-s$. Note that this increases x_{i} by $\alpha_{g}+1$ for all i with $b_{1} \leq i \leq k-s$. We have

$$
\begin{aligned}
\operatorname{codim}\left(\Sigma_{n_{a_{g}}}\right)= & \alpha_{g}\left(n_{a_{g}}-a_{g}\right)+\alpha_{g+1}\left(n_{a_{g+1}}-a_{g+1}\right) \\
& -\left(\alpha_{g}+1\right)\left(n_{a_{g}}-a_{g}-1\right)-\left(\alpha_{g+1}-1\right)\left(n_{a_{g+1}}-a_{g+1}\right) \\
& +\beta_{1}\left(n_{a_{g}}-r_{k-s}\right)-\beta_{1}\left(\alpha_{g}+1\right)
\end{aligned}
$$

The only nontrivial parameterizations in the inverse image $\pi^{-1}(\Lambda)$ of a general point Λ in $\Sigma_{n_{a_{g}}}$ are in the g-th row of the diagram of \widetilde{V} and once T^{g} is parameterized the remaining coordinates can be determined uniquely. The linear space T^{g} satisfies $T^{g-1} \subseteq T^{g} \subseteq L_{n_{a_{g}}}$ and hence can be parameterized by the Grassmannian $G\left(\alpha_{g}, \alpha_{g}+1\right)$. Thus we have
$\operatorname{codim}\left(\pi^{-1}\left(\Sigma_{n_{a_{g}}}\right)\right)=n_{a_{g+1}}-n_{a_{g}}-\left(a_{g+1}-a_{g}\right)+1+\beta_{1}\left(n_{a_{g}}-\alpha_{g}-r_{k-s}-1\right)$.

Note that $n_{a_{g+1}}-n_{a_{g}} \geq a_{g+1}-a_{g}+1$ and $n_{a_{g}}-\alpha_{g} \geq k-s+1$ by assumption. Therefore $\operatorname{codim}\left(\pi^{-1}\left(\Sigma_{n_{a_{g}}}\right)\right) \geq 2$ in this case.

EXAMPLE 4.21. Let $V=\left[L_{2} \subseteq L_{4} \subseteq Q_{9}^{0}\right]$, an orthogonal Schubert variety on $O G(3,9)$. The following diagram gives the definition of \tilde{V}.

Figure 15. Definition of \tilde{V} for $V=\left[L_{2} \subseteq L_{4} \subseteq Q_{9}^{0}\right]$
$T^{1} \subseteq L_{2}$
$\| \cap$
$T^{2} \subseteq L_{4}$
$\| \cap$
$T^{3} \subseteq Q_{9}^{0}$

The subvariety $\Sigma_{n_{a_{1}}}=\left[L_{1} \subseteq L_{2} \subseteq Q_{7}^{2}\right]$ has codimension 3. In the inverse image $\pi^{-1}(\Lambda)$ of a general point Λ in $\Sigma_{n_{a_{1}}}$, the coordinates T^{3} and T^{2} are determined uniquely as $T^{3}=\Lambda$ and $T^{2}=\Lambda \cap L_{4}$. The coordinate T^{1} satisfies $T^{1} \subseteq L_{2}$ and hence is parameterized by $G(1,2)$. Thus $\operatorname{dim}\left(\pi^{-1}(\Lambda)\right)=1$ and $\operatorname{codim}\left(\pi^{-1}\left(\Sigma_{r_{b_{1}}}\right)\right)=3-1=2$.

EXAMPLE 4.22. Let $V=\left[L_{5} \subseteq L_{7} \subseteq Q_{20}^{3}\right]$, then \widetilde{V} is given by the following diagram.

Figure 16. Definition of \widetilde{V} for $V=\left[L_{5} \subseteq L_{7} \subseteq Q_{20}^{3}\right]$

The subvariety $\Sigma_{n_{a_{1}}}=\left[L_{4} \subseteq L_{5} \subseteq Q_{18}^{5}\right]$ has codimension 3. In the inverse image $\pi^{-1}(\Lambda)$ of a general point Λ in $\Sigma_{n_{a_{1}}}$, we have $T^{3}=\Lambda, T^{2}=\Lambda \cap L_{5}=$ $\Lambda \cap L_{7}, Z^{1}=\overline{Q_{20}^{3, \text { sing }}, \Lambda}$ and $O^{1, n_{a_{2}}}=\overline{Q_{20}^{3, \text { sing }}, \Lambda \cap L_{7}}$. The linear space T^{1} satisfies $T^{1} \subseteq L_{5} \cap \Lambda$ and hence can be parameterized by $G(1,2)$. Then $O^{1, n_{a_{1}}}$ is determined uniquely as $O^{1, n_{a_{1}}}=\overline{Q_{20}^{3, \text { sing }}, T^{1}}$. Thus $\operatorname{dim}\left(\pi^{-1}(\Lambda)\right)=1$ and $\operatorname{codim}\left(\pi^{-1}\left(\Sigma_{r_{b_{1}}}\right)\right)=$ $3-1=2$.

III: $\Sigma_{d_{b_{h}}}: \operatorname{dim}\left(\Lambda \cap Q_{d_{b_{h}}}^{r_{b_{h}}}\right)=k-b_{h}+2$ for some $1 \leq h \leq u$

A locus of type $\Sigma_{d_{b_{h}}}$ is contained in a locus of type $\Sigma_{r_{b_{h}}}$ when $\Sigma_{r_{b_{h}}}$ exists. We are interested in when this is not the case. A locus of type $\Sigma_{r_{b_{h}}}$ does not exist if and only if $r_{b_{h}}=x_{b_{h}}$. This is possible if either $Q_{d_{b_{h}}}^{r_{b_{h}}}$ is smooth or all sub-quadrics have the same singular locus and the k-planes Λ all contain this locus. The latter case is equivalent to the restriction variety of $\left(k-r_{b_{h}}\right)$-planes defined by the sequence that contains only the smooth parts of the sub-quadrics. Therefore it is sufficient to consider the case when $r_{b_{h}}$, and consequently every r_{i} with $i \leq b_{h}$ is zero.

Let $\theta_{1}=s+\sum_{l=1}^{h} \beta_{l}$ and $\theta_{2}=\beta_{h+1}$. Consider the restriction variety V_{\sharp} given by the partitions $(0),\left(d_{b_{h}}^{\theta_{1}}, d_{b_{h+1}}^{\theta_{2}}\right),(0,0)$. This is the transverse intersection of $O G(k, n)$ and the Type A Schubert variety Z in $G(k, n)$ defined as the closure of $Z^{0}=\left\{W \in G(k, n) \mid \operatorname{dim}\left(W \cap F_{d_{b_{h}}}\right)=\theta_{1}\right.$ and $\left.\operatorname{dim}\left(W \cap F_{d_{b_{h+1}}}\right)=\theta_{1}+\theta_{2}\right\}$ where $F_{d_{b_{h}}}$ and $F_{d_{b_{h+1}}}$ are linear spaces of dimensions $d_{b_{h}}$ and $d_{b_{h+1}}$ in a general full flag F_{\bullet}. Let V_{\sharp}^{s} be the closure of the locus of k-planes Λ in V_{\sharp} with the property that $\operatorname{dim}\left(\Lambda \cap Q_{d_{b_{h}}}^{r_{b_{h}}}\right)=\theta_{1}+1$. We have

$$
\operatorname{codim}\left(\pi^{-1}\left(\Sigma_{d_{b_{h}}}\right) \subseteq \widetilde{V}\right)=\operatorname{codim}\left(\pi^{-1}\left(V_{\sharp}^{s}\right) \subseteq \widetilde{V}_{\sharp}\right)
$$

Let \widetilde{Z} be the Schubert variety in the flag variety $F\left(\theta_{1}, \theta_{1}+\theta_{2} ; n\right)$ defined by $\widetilde{Z}=\left\{\left(W_{1}, W_{2}\right) \in F\left(\theta_{1}, \theta_{1}+\theta_{2} ; n\right) \mid W_{1} \subseteq F_{b_{h}}, W_{2} \subseteq F_{b_{h+1}}\right\}$. We denote the projection from \widetilde{Z} onto its second coordinate by $\phi:\left(W_{1}, W_{2}\right) \mapsto W_{2}$. This is the Bott-Samelson resolution for the ordinary Schubert variety Z. Furthermore, the resolution of singularities π for V_{\sharp} has the transverse intersections $\widetilde{V}_{\sharp}=\widetilde{Z} \cap O F\left(\theta_{1}, \theta_{1}+\theta_{2} ; n\right)$ and $\pi^{-1}\left(V_{\sharp}^{s}\right)=\phi^{-1}\left(Z^{\text {sing }}\right) \cap O F\left(\theta_{1}, \theta_{1}+\theta_{2} ; n\right)$. The singular locus of Z is the closure of the locus of k-planes in Z with $\operatorname{dim}\left(Z \cap F_{d_{b_{h}}}\right)=$ $\theta_{1}+1$. In partition notation Z is given by $\left(F_{d_{b_{h}}}^{\theta_{1}}, F_{d_{b_{h+1}}}^{\theta_{2}}\right)$ and $Z^{\text {sing }}$ is given by
$\left(F_{d_{b_{h}}}^{\theta_{1}+1}, F_{d_{b_{h+1}}}^{\theta_{2}-1}\right)$. We have

$$
\begin{aligned}
\operatorname{codim}\left(Z^{\text {sing }}\right)= & \theta_{1}\left(d_{b_{h}}-\theta_{1}\right)+\theta_{2}\left(d_{b_{h+1}}-\theta_{1}-\theta_{2}\right) \\
& -\left(\theta_{1}+1\right)\left(d_{b_{h}}-\theta_{1}-1\right)-\left(\theta_{2}-1\right)\left(d_{b_{h+1}}-\theta_{1}-\theta_{2}\right) \\
= & d_{b_{h+1}}-d_{b_{h}}+\theta_{1}-\theta_{2}+1
\end{aligned}
$$

In order to find $\operatorname{codim}\left(\phi^{-1}\left(Z^{\text {sing }}\right)\right)$, we consider fibers of ϕ as before: For a general W in $Z^{\text {sing }}, \phi^{-1}(W)=\left(W_{1}, W_{2}\right)$ satisfies $W_{1} \subseteq W \cap F_{d_{b_{h}}}$. Such W_{1} can be parameterized by the Grassmannian $G\left(\theta_{1}, \theta_{1}+1\right)$. Therefore

$$
\operatorname{codim}\left(\phi^{-1}\left(Z^{\text {sing }}\right)\right)=\operatorname{codim}\left(Z^{\text {sing }}\right)-\operatorname{dim} \phi^{-1}(W)=d_{b_{h+1}}-d_{b_{h}}-\theta_{2}+1
$$

Note that this is always greater than 1.
Considering the action of $G L(n)$ on $F\left(\theta_{1}, \theta_{1}+\theta_{2} ; n\right)$, Kleiman's Transversality Theorem shows that
$\operatorname{dim}\left(\pi^{-1}\left(V_{\sharp}^{s}\right)\right)=\operatorname{dim}\left(\phi^{-1}\left(Z^{\text {sing }}\right)\right)-\operatorname{codim}\left(O F\left(\theta_{1}, \theta_{1}+\theta_{2} ; n\right) \subseteq F\left(\theta_{1}, \theta_{1}+\theta_{2} ; n\right)\right)$ and $\operatorname{dim}\left(V_{\sharp}^{s}\right)=\operatorname{dim}\left(Z^{\text {sing }}\right)-\operatorname{codim}(O G(k, n) \subseteq G(k, n))$.

Since we have

$$
\begin{aligned}
& \operatorname{dim} O F\left(\theta_{1}, \theta_{1}+\theta_{2} ; n\right)=\operatorname{dim} O G\left(\theta_{1}+\theta_{2}, n\right)+\theta_{1} \theta_{2} \\
& \operatorname{dim} F\left(\theta_{1}, \theta_{1}+\theta_{2} ; n\right)=\operatorname{dim} G\left(\theta_{1}+\theta_{2}, n\right)+\theta_{1} \theta_{2}
\end{aligned}
$$

we can conclude
$\operatorname{codim}\left(\pi^{-1}\left(\Sigma_{d_{b_{h}}}\right) \subseteq \widetilde{V}\right)=\operatorname{codim}\left(\pi^{-1}\left(V_{\sharp}^{s}\right)\right)=\operatorname{codim}\left(\pi^{-1}\left(Z^{\text {sing }}\right)\right)=d_{b_{h+1}}-d_{b_{h}}-\theta_{2}+1 \geq 2$.

EXAMPLE 4.23. Let $V=\left[L_{2} \subseteq Q_{7}^{0} \subseteq Q_{10}^{0}\right]$. In this case $V_{\sharp}=\left[Q_{6}^{0} \subseteq Q_{7}^{0} \subseteq\right.$ $\left.Q_{10}^{0}\right]$ and the Type A Schubert variety Z is given by $\left[L_{6} \subseteq L_{7} \subseteq L_{10}\right]$ in $G(3,10)$.

By the argument above, we have

$$
\operatorname{codim}\left(\pi^{-1}\left(\Sigma_{d_{b_{1}}}\right) \subseteq \widetilde{V}\right)=\operatorname{codim}\left(\pi^{-1}\left(V_{\sharp}^{s}\right)\right)=\operatorname{codim}\left(\pi^{-1}\left(Z^{\operatorname{sing}}\right)\right)=10-7=3
$$

The following observation summarizes our computations.

OBSERVATION 4.24. A component of the exceptional locus of π with image of one of the types

- $\Sigma_{r_{b_{h}}}$ with $r_{b_{h}}<n_{s}$
- $\Sigma_{n_{a_{g}}}$ with $1 \leq g \leq t-1$
- $\Sigma_{d_{b_{h}}}$ for all $1 \leq h \leq u-1$
has codimension larger than 1 (by I.B, I.C, II.B and III).
A component with image of type $\Sigma_{r_{b_{h}}}$ with $r_{b_{h}} \geq n_{s}$ has codimension equal to 1 (by I. A and I.D).

A component with image of type $\Sigma_{n_{a_{t}}}$ has codimension given by $\operatorname{codim}\left(\pi^{-1}\left(\Sigma_{n_{a_{t}}}\right)\right)=$ $d_{b_{1}}+x_{b_{1}}-s-n_{a_{t}}-\beta_{1}$ which may be larger than or equal to 1.

REMARK 4.25. Observation 4.24 gives a characterization of the divisorial contractions of π.

The following lemma allows us to give a partial description of the singular locus of a restriction variety. It is based on Lemma 1.8.

LEMMA 4.26. The singular locus of a restriction variety $V\left(L_{\bullet}, Q_{\bullet}\right)$ is contained in the exceptional locus of π. Furthermore, a subvariety Σ satisfying $\operatorname{codim}\left(\pi^{-1}(\Sigma)\right)>1$ is in the singular locus of $V\left(L_{\bullet}, Q_{\bullet}\right)$.

Proof. The open set $V^{0}\left(L_{\bullet}, Q_{\bullet}\right)$ is the locus where $\pi^{-1}(\Lambda)$ is a single point. $V^{0}\left(L_{\bullet}, Q_{\bullet}\right)$ is smooth since it is homogeneous under the action of $S O(n)$. Conversely,
suppose $\operatorname{codim}\left(\pi^{-1}(\Sigma)\right)>1$ and $\Lambda \in \Sigma$ is a point such that $\pi^{-1}(\Lambda)$ is positive dimensional. If Λ is smooth, then in order to check that π is a local isomorphism, it suffices to check that the Jacobian does not vanish. Since $\operatorname{codim}\left(\pi^{-1}(\Sigma)\right)>1$ and the vanishing locus of the Jacobian is a divisor, we conclude that the Jacobian does not vanish. On the other hand, since π is not a local isomorphism around $\pi^{-1}(\Lambda)$, we conclude that Λ is a singular point.

COROLLARY 4.27. Let $V\left(L_{\bullet}, Q_{\bullet}\right)$ be a restriction variety and $\pi: \tilde{V}\left(L_{\bullet}, Q_{\bullet}\right) \rightarrow$ $V\left(L_{\bullet}, Q_{\bullet}\right)$ the resolution of singularities in Theorem 3.6. The components of the exceptional locus whose images are of the form

- $\Sigma_{r_{b_{h}}}$ with $r_{b_{h}}<n_{s}$
- $\Sigma_{n_{a_{g}}}$ for all $1 \leq g \leq t-1$
- $\Sigma_{n_{a_{t}}}$ such that $d_{b_{1}}+x_{b_{1}}-s-n_{a_{t}}-\beta_{1}>1$
- $\Sigma_{d_{b_{h}}}$ for all $1 \leq h \leq u-1$
are in the singular locus of $V\left(L_{\bullet}, Q_{\bullet}\right)$.

CHAPTER 5

More Observations On the Exceptional Locus

Note that the results of the previous chapter are inconclusive about the image of a component of the exceptional locus of π with codimension equal to 1 . By Observation 4.24, the subvarieties Σ that fall under this category are the following:

- $\Sigma_{r_{b_{h}}}$ with $r_{b_{h}} \geq n_{s}$
- $\Sigma_{n_{a_{t}}}$ such that $d_{b_{1}}+x_{b_{1}}-s-n_{a_{t}}-\beta_{1}=1$

Under certain conditions, we can say more by studying the tangent space to the restriction variety V at a general point Λ in Σ. In this chapter, we study the type

- $\Sigma_{r_{b_{h}}}$ with $r_{b_{h}} \geq n_{s}$
when the sub-quadric $Q_{d_{b_{h}}}^{r_{b_{h}}}$ has even rank, that is, $d_{b_{h}}-r_{b_{h}}$ is even.
We will eventually show that this type is contained in the singular locus. Our strategy is to use the basis sequence of V in order to construct arcs through a point Λ in V by moving the basis elements of Λ. The arcs found this way give independent elements in the tangent space. Therefore, if we find more arcs through a given Λ than the dimension of V, we can conclude that Λ is a singular point. If Λ is a general point in Σ, this also implies that V is singular along Σ.

Let us illustrate this idea with examples before stating the proposition.

EXAMPLE 5.1. Let V be the restriction variety contained in $O G(2,10)$ given by the sequence $\left[L_{1} \subseteq Q_{7}^{3}\right]$. By Remark 4.7. the only locus where π has positive dimensional fibers, hence the only locus that may be in the singular locus of V, is $\Sigma_{r_{b_{1}}}=\left[L_{1} \subseteq L_{3}\right]$. By I. \boldsymbol{A}, we know that $\operatorname{codim}\left(\pi^{-1}\left(\Sigma_{r_{b_{1}}}\right)\right)=1$, which is inconclusive
about whether V is singular along $\Sigma_{r_{b_{1}}}$. In the following we use basis sequences to study the arcs contained in V through a general point in $\Sigma_{r_{b_{1}}}$.

The basis sequence of V is given by

$$
\left.\left.e_{1}\right] e_{2} e_{3} e_{4} f_{4} e_{5} f_{5}\right\} f_{1} f_{2} f_{3}
$$

Here the sub-quadric Q_{7}^{3} is the zero locus of the polynomial $x_{4} y_{4}+x_{5} y_{5}$. Let us pick a general point from $\Sigma_{r_{b_{1}}}$ as $\Lambda=\left\langle e_{1}, e_{3}\right\rangle$. Then the following arcs $\Gamma_{i}(t)$ are contained in V :

$$
\begin{gathered}
\Gamma_{1}(t)=\left\langle e_{1}, e_{3}+t e_{2}\right\rangle, \quad \Gamma_{2}(t)=\left\langle e_{1}, e_{3}+t e_{4}\right\rangle, \quad \Gamma_{3}(t)=\left\langle e_{1}, e_{3}+t f_{4}\right\rangle, \\
\Gamma_{4}(t)=\left\langle e_{1}, e_{3}+t e_{5}\right\rangle, \quad \Gamma_{5}(t)=\left\langle e_{1}, e_{3}+t f_{5}\right\rangle .
\end{gathered}
$$

These are 5 independent arcs contained in V passing through Λ which implies that the tangent space to V at Λ has dimension at least 5. Since the dimension of V is 4, we conclude that Λ is a singular point of V. Thus $\Sigma_{r_{b_{1}}}$ is in the singular locus of V. This allows us to describe the singular locus of V.

$$
V^{\text {sing }}=\Sigma_{r_{b_{1}}}=\left[L_{1} \subseteq L_{3}\right] .
$$

EXAMPLE 5.2. Let V be the restriction variety contained in $O G(2,12)$ given by the sequence $\left[L_{4} \subseteq Q_{8}^{4}\right]$. By Remark 4.7, $\Sigma_{r_{b_{1}}}=\left[L_{3} \subseteq L_{4}\right]$ is the only locus where π is positive dimensional. By I.B, we know that the locus $\Sigma_{r_{b_{1}}}$ satisfies $\operatorname{codim}\left(\pi^{-1}\left(\Sigma_{r_{b_{1}}}\right)\right)=1$, so the results of the previous chapter do not determine whether V is singular along $\Sigma_{r_{b_{1}}}$.

The basis sequence of V is given by

$$
\left.\left.e_{1} e_{2} e_{3} e_{4}\right] e_{5} f_{5} e_{6} f_{6}\right\} f_{1} f_{2} f_{3} f_{4}
$$

The sub-quadric Q_{8}^{4} is given by the polynomial $x_{3} y_{3}+x_{4} y_{4}$. Let us pick a general point from $\Sigma_{r_{b_{1}}}$ as $\Lambda=\left\langle e_{3}, e_{4}\right\rangle$. The following $\Gamma_{i}(t)$ are independent arcs contained in V passing through Λ :

$$
\begin{gathered}
\Gamma_{1}(t)=\left\langle e_{3}+t e_{1}, e_{4}\right\rangle, \Gamma_{2}(t)=\left\langle e_{3}+t e_{2}, e_{4}\right\rangle, \Gamma_{3}(t)=\left\langle e_{3}+t e_{5}, e_{4}\right\rangle, \\
\Gamma_{4}(t)=\left\langle e_{3}+t f_{5}, e_{4}\right\rangle, \Gamma_{5}(t)=\left\langle e_{3}+t e_{6}, e_{4}\right\rangle, \Gamma_{6}(t)=\left\langle e_{3}+t f_{6}, e_{4}\right\rangle \\
\Gamma_{7}(t)=\left\langle e_{3}, e_{4}+t e_{1}\right\rangle, \Gamma_{8}(t)=\left\langle e_{3}, e_{4}+t e_{2}\right\rangle, \Gamma_{9}(t)=\left\langle e_{3}, e_{4}+t e_{5}\right\rangle \\
\Gamma_{10}(t)=\left\langle e_{3}, e_{4}+t f_{5}\right\rangle, \Gamma_{11}(t)=\left\langle e_{3}, e_{4}+t e_{6}\right\rangle, \Gamma_{12}(t)=\left\langle e_{3}, e_{4}+t f_{6}\right\rangle .
\end{gathered}
$$

Since the dimension of V is 8, this shows that V is singular along $\Sigma_{r_{b_{1}}}$. This allows us to conclude

$$
V^{s i n g}=\Sigma_{r_{b_{1}}}=\left[L_{3} \subseteq L_{4}\right]
$$

EXAMPLE 5.3. Let V be the restriction variety contained in $O G(3,12)$ given by the sequence $\left[L_{2} \subseteq Q_{8}^{4} \subseteq Q_{10}^{2}\right]$. In the following we show that $\Sigma_{r_{b_{1}}}$, which is defined by the sequence $\left[L_{2} \subseteq L_{4} \subseteq Q_{10}^{2}\right]$, and $\Sigma_{r_{b_{2}}}$, which is defined by the sequence $\left[L_{1} \subseteq L_{2} \subseteq Q_{8}^{4}\right]$, are both in the singular locus of V. Note that the results of the previous chapter are inconclusive for both of these loci.

The basis sequence of V is given by

$$
\left.\left.\left.e_{1} e_{2}\right] e_{3} e_{4} e_{5} f_{5} e_{6} f_{6}\right\} f_{3} f_{4}\right\} f_{1} f_{2}
$$

The sub-quadric Q_{8}^{4} is the zero locus of the polynomial $x_{5} y_{5}+x_{6} y_{6}$. Let us pick a general point in $\Sigma_{r_{b_{1}}}$ as $\Lambda=\left\langle e_{2}, e_{4}, f_{3}\right\rangle$. The following are independent arcs contained in $\Sigma_{r_{b_{1}}}$ passing through Λ.

$$
\begin{aligned}
& \Gamma_{1}(t)=\left\langle e_{2}+t e_{1}, e_{4}, f_{3}\right\rangle, \Gamma_{2}(t)=\left\langle e_{2}, e_{4}+t e_{1}, f_{3}\right\rangle, \Gamma_{3}(t)=\left\langle e_{2}, e_{4}+t e_{5}, f_{3}\right\rangle, \\
& \Gamma_{4}(t)=\left\langle e_{2}, e_{4}+t f_{5}, f_{3}\right\rangle, \Gamma_{5}(t)=\left\langle e_{2}, e_{4}+t e_{6}, f_{3}\right\rangle, \Gamma_{6}(t)=\left\langle e_{2}, e_{4}+t f_{6}, f_{3}\right\rangle, \\
& \Gamma_{7}(t)=\left\langle e_{2}, e_{4}, f_{3}+t e_{1}\right\rangle, \Gamma_{8}(t)=\left\langle e_{2}, e_{4}, f_{3}+t e_{5}\right\rangle, \Gamma_{9}(t)=\left\langle e_{2}, e_{4}, f_{3}+t f_{5}\right\rangle,
\end{aligned}
$$

$\Gamma_{10}(t)=\left\langle e_{2}, e_{4}, f_{3}+t e_{6}\right\rangle, \Gamma_{11}(t)=\left\langle e_{2}, e_{4}, f_{3}+t f_{6}\right\rangle, \Gamma_{12}(t)=\left\langle e_{2}, e_{4}, f_{3}+t\left(e_{3}-f_{4}\right)\right\rangle$.
Since the dimension of V is 11, this shows that V is singular at Λ, and hence along $\Sigma_{r_{b_{1}}}$.

The sub-quadric Q_{10}^{2} is the zero locus of the polynomial $x_{3} y_{3}+x_{4} y_{4}+x_{5} y_{5}+x_{6} y_{6}$. Let us pick a general point in $\Sigma_{r_{b_{2}}}$ as $\Lambda=\left\langle e_{1}, e_{2}, f_{4}\right\rangle$. The following are independent arcs contained in $\Sigma_{r_{b_{1}}}$ passing through Λ.

$$
\begin{gathered}
\Gamma_{1}(t)=\left\langle e_{1}+t e_{3}, e_{2}, f_{4}\right\rangle, \Gamma_{2}(t)=\left\langle e_{1}+t e_{5}, e_{2}, f_{4}\right\rangle, \Gamma_{3}(t)=\left\langle e_{1}+t f_{5}, e_{2}, f_{4}\right\rangle, \\
\Gamma_{4}(t)=\left\langle e_{1}+t e_{6}, e_{2}, f_{4}\right\rangle, \Gamma_{5}(t)=\left\langle e_{1}+t f_{6}, e_{2}, f_{4}\right\rangle, \Gamma_{6}(t)=\left\langle e_{1}, e_{2}+t e_{3}, f_{4}\right\rangle, \\
\Gamma_{7}(t)=\left\langle e_{1}, e_{2}+t e_{5}, f_{4}\right\rangle, \Gamma_{8}(t)=\left\langle e_{1}, e_{2}+t f_{5}, f_{4}\right\rangle, \Gamma_{9}(t)=\left\langle e_{1}, e_{2}+t e_{6}, f_{4}\right\rangle, \\
\Gamma_{10}(t)=\left\langle e_{1}, e_{2}+t f_{6}, f_{4}\right\rangle, \Gamma_{11}(t)=\left\langle e_{1}, e_{2}, f_{4}+t e_{3}\right\rangle, \Gamma_{12}(t)=\left\langle e_{1}, e_{2}, f_{4}+t e_{5}\right\rangle, \\
\Gamma_{13}(t)=\left\langle e_{1}, e_{2}, f_{4}+t e_{5}\right\rangle, \Gamma_{14}(t)=\left\langle e_{1}, e_{2}, f_{4}+t e_{6}\right\rangle, \Gamma_{15}(t)=\left\langle e_{1}, e_{2}, f_{4}+t f_{6}\right\rangle .
\end{gathered}
$$

Since this is larger than the dimension of V, we conclude V is singular along $\Sigma_{r_{b_{2}}}$.
Therefore, the singular locus of V is given by

$$
\begin{aligned}
V^{\text {sing }} & =\Sigma_{r_{b_{1}}} \cup \Sigma_{r_{b_{2}}} \\
& =\left[L_{2} \subseteq L_{4} \subseteq Q_{10}^{2}\right] \cup\left[L_{1} \subseteq L_{2} \subseteq Q_{8}^{4}\right] .
\end{aligned}
$$

The pattern seen in these examples generalizes in a straight-forward way. In the proof of the following proposition, we observe that a restriction variety V is singular at a point by establishing more tangent vectors at that point than the dimension of V. We use basis sequences to study the arcs through a point similar to the examples above.

PROPOSITION 5.4. If $Q_{d_{b_{h}}}^{r_{b_{h}}}$ has even rank, then $\Sigma_{r_{b_{h}}}$ is in the singular locus of the restriction variety V.

Proof. Given a basis of a point V, we can obtain arcs through the point by moving each basis element in a way that will still obey the rank conditions defining V. Since the sub-quadric $Q_{d_{b_{h}}}^{r_{b_{h}}}$ has even rank, the basis sequence of V has some f_{i} to the left of the bracket of $Q_{d_{b_{h}}}^{r_{b_{h}}}$.

$$
\left.\cdots f_{i}\right\} \cdots
$$

Thus the basis of a general element in V contains f_{i}, or some other f_{\bullet} in case e_{i} is in the chosen basis for the point. The arcs that can be obtained by moving this basis element can only be chosen among the basis elements v of $Q_{d_{b_{h}}}^{r_{b_{h}}}$ such that $f_{i}+t v$ is in the zero locus of the polynomial giving $Q_{d_{b_{h}}}^{r_{b_{h}}}$. This excludes e_{i}, which is a basis element in the span of $Q_{d_{b_{h}}}^{r_{b_{h}}}$, from the possible choices of v.

In contrast, the basis of a general element Λ in $\Sigma_{r_{b_{h}}}$ contains some e_{j} chosen from the span of $Q_{d_{b_{h}}}^{r_{b_{h}}, s i n g}$. The arcs obtained $e_{j}+t v$ have at least one more possibility compared to $f_{i}+t v$. This is because f_{j} is not in the span of $Q_{d_{b_{h}}}^{r_{b_{h}}}$ and its exclusion is not effective; the basis elements outside the span of $Q_{d_{b_{h}}}^{r_{b_{h}}}$ are already excluded to respect the rank conditions defining V.

Therefore, we can obtain at least one more arc through a general point of $\Sigma_{r_{b_{h}}}$ than through a general point in V. This shows that the dimension of the tangent space to V at a general point of $\Sigma_{r_{b_{h}}}$ is larger than the dimension of V. We conclude V is singular along $\Sigma_{r_{b_{h}}}$.

REMARK 5.5. In particular, all loci of type $\Sigma_{r_{b_{h}}}$ are in the singular locus of V if V is a Schubert variety of Type D in the orthogonal Grassmannian.

We summarize our knowledge of the singular locus of a general restriction variety V in the following corollary.

COROLLARY 5.6. The components of the exceptional locus of π whose images are of the form

- $\Sigma_{r_{b_{h}}}$ with $r_{b_{h}}<n_{s}$
- $\Sigma_{r_{b_{h}}}$ with $d_{b_{h}}-r_{b_{h}}$ an even number
- $\Sigma_{n_{a_{g}}}$ for all $1 \leq g \leq t-1$
- $\Sigma_{n_{a_{t}}}$ such that $d_{b_{1}}+x_{b_{1}}-s-n_{a_{t}}-\beta_{1}>1$
- $\Sigma_{d_{b_{h}}}$ for all $1 \leq h \leq u-1$
are in the singular locus of $V\left(L_{\bullet}, Q_{\bullet}\right)$.

CHAPTER 6

Examples

In this chapter we present examples illustrating how our results can be used to determine the singular locus of a restriction variety when π has no divisorial contractions.

EXAMPLE 6.1. Let $V=\left[L_{2} \subseteq Q_{4}^{0}\right]$, the Fano variety of lines contained on a smooth quadric surface. By Remark 4.7, the exceptional locus of π is empty from which we can conclude that V is smooth. The restriction variety V is actually isomorphic to \mathbb{P}^{1} in this example.

EXAMPLE 6.2. Let $V=\left[Q_{5}^{0} \subseteq Q_{8}^{0}\right]$. This is the variety of projective lines contained in a 6-dimensional smooth quadric that intersect a 3-dimensional smooth sub-quadric. By Remark 4.7, the only locus in the image of the exceptional locus of π is $\Sigma_{d_{b_{1}}}=\left[Q_{4}^{0} \subseteq Q_{5}^{0}\right]$. By Corollary 4.27 , this is in the singular locus of V, therefore

$$
V^{s i n g}=\left[Q_{4}^{0} \subseteq Q_{5}^{0}\right]
$$

EXAMPLE 6.3. Let $V=\left[L_{3} \subseteq Q_{7}^{1}\right]$. By Remark 4.7 there are two types of subvarieties to consider:

$$
\Sigma_{n_{a_{1}}}=\left[L_{2} \subseteq L_{3}\right] \text { and } \Sigma_{r_{b_{1}}}=\left[L_{1} \subseteq L_{4}\right] \cup\left[L_{1} \subseteq L_{4}^{\prime}\right]
$$

since when the corank of Q_{7}^{1} is increased by 2, it breaks down into L_{4} and L_{4}^{\prime}.
By Corollary 4.27, we can conclude that $\Sigma_{r_{b_{1}}}$ is in the singular locus of V.

On the other hand, by Observation 4.24, we have

$$
\operatorname{codim}\left(\pi^{-1}\left(\Sigma_{n_{a_{1}}}\right)\right)=d_{1}+x_{1}-s-n_{1}-1=2,
$$

thus $\Sigma_{n_{a_{1}}}$ is also in the singular locus of V.
Therefore we have

$$
V^{\text {sing }}=\left[L_{2} \subseteq L_{3}\right] \cup\left[L_{1} \subseteq L_{4}\right] \cup\left[L_{1} \subseteq L_{4}^{\prime}\right]
$$

Note that V is an orthogonal Schubert variety in $O G(2,8)$. In permutation notation, its singular locus is given by

$$
(73845162)^{\text {sing }}=(32854176) \cup(51736284) \cup(41763285) .
$$

EXAMPLE 6.4. Let $V=\left[L_{4} \subseteq Q_{8}^{1}\right]$. By Remark 4.27, the loci we need to consider are

$$
\Sigma_{n_{a_{1}}}=\left[L_{3} \subseteq L_{4}\right] \text { and } \Sigma_{r_{b_{1}}}=\left[L_{1} \subseteq L_{4}\right]
$$

since increasing the corank of Q_{8}^{1} by 3 results in a double copy of L_{4}. Since the latter locus is contained in the former, we only need to consider $\Sigma_{r_{b_{1}}}$. By Corollary 4.24. this locus is in the singular locus of V. Therefore we have

$$
V^{\operatorname{sing}}=\left[L_{3} \subseteq L_{4}\right]
$$

This is another orthogonal Schubert variety in $O G(2,9)$. In permutation notation we have

$$
(849753162)^{\operatorname{sing}}=(439852176)
$$

EXAMPLE 6.5. Let $V=\left[L_{1} \subseteq Q_{7}^{2} \subseteq Q_{8}^{1}\right]$. By Remark 4.7., the resolution of singularities π has no exceptional locus. Therefore V is smooth. Note that V is an orthogonal Schubert variety in $O G(2,9)$ given by (871654932) in permutations.

EXAMPLE 6.6. Let $V=\left[Q_{7}^{2} \subseteq Q_{9}^{0}\right]$. By Remark 4.7. the loci that may be in the singular locus of V are

$$
\Sigma_{r_{b_{1}}}=\left[L_{2} \subseteq Q_{9}^{0}\right] \text { and } \Sigma_{d_{b_{1}}}=\left[Q_{6}^{3} \subseteq Q_{7}^{2}\right]
$$

By Corollary 4.24. V is singular along both of these loci, thus

$$
V^{\text {sing }}=\Sigma_{r_{b_{1}}} \cup \Sigma_{d_{b_{1}}} .
$$

Note that V is a Schubert variety in $O G(2,9)$. In permutations, its singular locus is given by

$$
(978654231)^{\text {sing }}=(927654381) \cup(769852143) .
$$

EXAMPLE 6.7. Let $V=\left[L_{2} \subseteq Q_{6}^{2} \subseteq Q_{8}^{0}\right]$. By Remark 4.7. the only locus where π has positive dimensional fibers is $\Sigma_{r_{b_{1}}}$ and by Observation 4.24. $\operatorname{codim}\left(\pi^{-1}\left(\Sigma_{r_{b_{1}}}\right)\right)=$ 1. By Corollary 5.6, V is singular along $\Sigma_{r_{b_{1}}}$, therefore we have

$$
V^{\text {sing }}=\Sigma_{r_{b_{1}}}=\left[L_{1} \subseteq L_{2} \subseteq Q_{6}^{2}\right] .
$$

Note that V is a Schubert variety in $O G(3,8)$. In permutation notation, its singular locus is given by

$$
(82645371)^{\operatorname{sing}}=(62154873) .
$$

Cited Literature

[1] S. Billey and I. Coskun, Singularities of Generalized Richardson Varieties, Communications in Algebra, 40, 4 :1466-1495, 2011.
[2] S. Billey and V. Lakshmibai, Singular Loci of Schubert Varieties, Progress in Mathematics, 182, Birkhauser Boston, Inc., Boston, MA, 2000.
[3] M. Brion, Lectures On The Geometry of Flag Varieties, Topics In Cohomological Studies of Algebraic Varieties, Trends Math., Birkhauser, Basel, 33-85, 2005.
[4] I. Coskun, Restriction Varieties and Geometric Branching Rules, Advances in Mathematics, 228, 4 :2441-2502, 2011.
[5] I. Coskun, Symplectic Restriction Varieties and Geometric Branching Rules, Clay Mathematics Proceedings, 18 : 205-239, 2013.
[6] I. Coskun, Symplectic Restriction Varieties and Geometric Branching Rules II, Journal of Combinatorial Theory Series A, 125: 47-97, 2014.
[7] I. Coskun, Rigid and Non-Smoothable Schubert Classes, Journal of Differential Geometry, 87, 3: 493-514, 2011.
[8] I. Coskun, Rigidity of Schubert Classes in Orthogonal Grassmannians, Israel Journal of Mathematics, 200: 85-126, 2014
[9] P. Griffiths and J. Harris, Principles of Algebraic Geometry, Wiley Interscience, 1978.
[10] R. Hartshorne, Algebraic Geometry, Springer, 1977.
[11] J. Harris, Algebraic Geometry, Springer-Verlag, New York, 1995.
[12] S. L. Kleiman and D. Laksov, Schubert Calculus, The American Mathematical Monthly, 79, 10 : 1061-1082, 1972
[13] V. Lakshmibai, Tangent Spaces to Schubert Varieties, Mathematical Research Letters, 2 : 473-477, 1995.
[14] V. Lakshmibai and C. S. Seshadri, Singular Locus of a Schubert Variety, Bulletin of the AMS, 11 : 363-366, 1984.

Vita

NAME:

EDUCATION:

AWARDS:

TEACHING:

SERVICE:

Rıza Seçkin Adalı
B.S., Mathematics, Middle East Technical University, Ankara, 2007
M.S., Mathematics, Middle East Technical University, Ankara, 2011

Ph.D., Mathematics, University of Illinois, Chicago, 2015
Graduate College Student Travel Presenter's Award, University of Illinois, Chicago,
Department of Mathematics, Statistics, and Computer Science, 2015
Research Assistantship under Prof. İzzet Coşkun, University of Illinois, Chicago,
Department of Mathematics, Statistics, and Computer Science, 2015
Teaching Assistant, 2010-2016
University of Illinois, Chicago,
Department of Mathematics, Statistics, and Computer Science
Teaching Assistant, 2009-2010
Middle East Technical University, Ankara
Department of Mathematics
Judge for Senior and Intermediate Level Papers in QED
Young Math Symposium, The Math Circles of Chicago
Graduate Student Mentor
for Incoming Algebraic Geometry Graduate Students
University of Illinois, Chicago,
Department of Mathematics, Statistics, and Computer Science
Co-organizer for Midwest Algebraic Geometry Graduate Conference
University of Illinois, Chicago,
Department of Mathematics, Statistics, and Computer Science

Organizer for Graduate Algebraic Geometry Seminar University of Illinois, Chicago, Department of Mathematics, Statistics, and Computer Science

POSTERS \& TALKS: Algebraic Geometry Seminar,
Loyola University, Chicago,
Contributed Talk:"Singularities of Restriction Varieties," 2016
Graduate Algebraic Geometry Seminar, University of Illinois, Chicago, Contributed Talk: "Singularities of Restriction Varieties," 2016

Graduate Algebraic Geometry Seminar, University of Illinois, Chicago, Contributed Talk: "Extremal Codimension Two Cycles on $\overline{\mathcal{M}}_{3}, " 2016$

AMS Sectional Meeting Oct 2-4, Loyola University, Chicago, Contributed Poster: "Singularities of Restriction Varieties," 2015

2015 Summer Research Institute in Algebraic Geometry, University of Utah, Salt Lake City, Contributed Poster: "Singularities of Restriction Varieties," 2015

The Graduate Student Bootcamp for the 2015 Summer Research Institute in Algebraic Geometry, University of Utah, Salt Lake City,
Contributed Poster: "Singularities of Restriction Varieties," 2015
Graduate Algebraic Geometry Seminar, University of Illinois, Chicago, Contributed Talk: "When is a Schubert Variety Gorenstein?" 2015

Graduate Algebraic Geometry Seminar, University of Illinois, Chicago, Contributed Talk:"Singularities of Schubert Varieties" 2014

Graduate Student Colloquium, University of Illinois, Chicago, Contributed Talk:"Introduction to Restriction Varieties" 2013

