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SUMMARY

The objective of the present dissertation is to develop numerical tools and techniques that

facilitate the high-fidelity simulations of the air flow within ramp-cavity combustors using a

discontinuous spectral element method. The supersonic turbulent reacting flow within the

ramp-cavity combustor is a multi-scale, multi-physics, complex flow. The concurrent presence

of shocks, turbulence, and reaction, as well as their interactions, make the simulation of such

a flow one of the most challenging ones in the field of computational fluid dynamics. There

have been efforts to simulate such a flow using low-order numerical schemes such as finite

volume and finite difference, but a high-order method that is capable of dealing with the entire

physics of the flow is highly desired. Spectral element methods provide high accuracy, are

flexible with complex geometries, and can be efficiently parallelized. The focus of the present

work is on the turbulence aspect of the flow. A new explicit modal filtering procedure is

introduced, implemented, and tested for use in large eddy simulations without any sub-grid

scale model. The method is tested for isotropic turbulence and turbulent flow in a channel,

and accurate mean and fluctuation statistics are obtained comparing with direct numerical

simulation. The computational overhead of the proposed method is less than 3% (compared

to 45% for dynamic Smagorinsky model). Moreover, a sensor that improves the performance

of the standard Smagorinsky model for separating flows is developed, implemented, and tested

for a backward-facing step configuration. The error of the prediction of the reattachment

length is reduced from 18.4% to 0.5% by applying the proposed sensor. The near-wall spatial

xxii



SUMMARY (Continued)

resolution requirement for direct numerical simulations of wall-bounded turbulent flows is also

studied in detail. It is shown that the near-wall resolution requirement strongly depends on the

approximation order; for an approximation order of P = 7, eight grid points within y+ = 10

is sufficient for accurate statistics, while for an approximation order of P = 2, even having 11

points within y+ = 10 results in inaccurate statistics. Preliminary steps are also taken towards

the simulations of turbulent supersonic flows. Large-eddy simulations of non-reactive turbulent

supersonic flow in a ramp-cavity combustor with fuel injector are presented.

xxiii



CHAPTER 1

INTRODUCTION

The present work is a part of the ongoing research on the high-fidelity simulation of super-

sonic turbulent reacting flows in ramp-cavity (RC) combustors in the Computational Multi-

phase Transport Laboratory (CMTL) of the University of Illinois at Chicago. The focus of the

present dissertation is on direct numerical simulations (DNS) and large eddy simulations (LES)

of wall-bounded turbulent flows, especially channel flows and separating and reattaching flows.

The accurate and efficient simulation of such flows is a crucial step towards the simulation of

ramp-cavity combustors.

Separating and reattaching fluid flows have numerous applications in diverse industries in-

cluding automotive, aviation, and energy. Prime examples of separating flows occur in dump

combustors, turbine and compressor blades, diffusers, stalled airfoils, buildings, suddenly ex-

panding pipes, etc. The research on separating flows emerged as Ludwig Prandtl presented

the boundary layer theory (2) in the early twentieth century. The flow separates from the

surface of an object when the boundary layer moves far enough against an adverse pressure

gradient that the relative speed of the boundary layer to the object falls near to zero (3; 4).

The flow detaches from the surface and instead forms eddies and vortices. The characteristics

of separated flows have been studied through experiments for decades to understand better

the physical mechanisms that govern the flow separation, its instability, and the large coherent

structures associated with it.

1
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Due to the expensive nature of the experiments and the limitations associated with them,

numerical simulations became favorable, especially after the emergence of powerful comput-

ers. Researchers in the field of computational fluid dynamics (CFD) have employed various

numerical methods to perform flow simulations by solving the Navier-Stokes equations or their

variations. Even though the numerical simulations have proven to be a promising alternative

to experiments, they come with their own complications. Numerical stability, computational

cost, calculations accuracy, and correct case setup including boundary and initial conditions are

among the numerous challenges associated with CFD simulations. An ideal numerical simula-

tion is straightforward to set up, provides accurate results, and requires a reasonable amount

of time to complete. However, especially in industrial applications, one usually compromises

between accuracy and manageability based on their need.

High-order numerical methods are preferred over low-order methods because of their po-

tential to deliver higher accuracy with lower cost. A k-th order numerical scheme is a scheme

that its error, e, is proportional to hk, where h is the mesh size. In some CFD communities,

the term high-order methods may refer to the methods with order three or higher; however,

in general (and in this work), the high-order method refers to spectral methods (5). Spectral

methods use basis functions that are non-zero over the whole domain or at least over the whole

sub-domain (element). The error in spectral methods decreases exponentially (called exponen-

tial or spectral convergence) for smooth solutions, which makes them more accurate than local

methods such as finite element methods.
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Direct numerical simulations directly solve the Navier-Stokes equations to calculate the

whole range of time and spatial scales of the flow. Since most flows in engineering applications

are highly turbulent, the time and spatial scales span an extensive range. Covering the full

range of scales demands excessively refined mesh and small time stepping and becomes nearly

impossible for very high Reynolds number flows due to the limitations in computational power

and resources. Therefore, turbulence modeling techniques, such as large eddy simulation (LES),

are often employed to simulate most of the engineering problems. In LES, the motions are

separated into small and large scales by applying a filter on the velocity field. Then, the large

scales are directly calculated by solving the filtered Navier-Stokes equations, and the effects

of the small scales on the large-scale motions are often modeled by various methods such as

applying eddy viscosity.

Simulations of turbulent supersonic reacting flows in three-dimensional (3D) ramp-cavity

combustors is a prime example of practical problems that deal with separating flows and involve

multiple flow physics. The simultaneous presence of shocks, turbulent structures, turbulent

boundary layer, turbulent shear layer, fuel injectors, and reaction makes this problem one of

the most challenging ones in CFD. The existence of each of those flow components require

extensive care to achieve stability and accuracy of the computations, while their interactions

with each other add to the complexity of the simulation. Generating a mesh that meets the

resolution requirements while maintaining a reasonable computational cost is another major

challenge in this problem.
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The majority of the previous numerical simulations of high-speed combustors are performed

using RANS or LES/RANS. This is due to the complexity of the problem. RANS simulations

are more manageable and computationally less expensive than LES; however, they do not

provide detailed unsteady characteristics of the flow. Also, most of the previous simulations are

performed using low-order methods of finite volume or finite difference (FD). Developing a high-

order scheme, which is able to perform LES of such a complex flow, is extremely challenging, but

will immensely help achieve a deeper understanding of the physics of such flow and mechanisms

that govern the interactions of different phenomena in the flow.

The objective of the present dissertation is to develop and implement numerical tools and

techniques that facilitate the process of simulating the turbulent supersonic reacting flows in 3D

ramp-cavity combustors using a high-order method. A discontinuous spectral element method

(DSEM) is employed to implement the tools and techniques and perform the simulations in this

work.

The first step in setting up a CFD simulation, after determining the geometry of the problem,

is to generate a mesh. An ideal mesh (i) provides sufficient resolution in different regions of

the domain to provide the required accuracy and stability and (ii) does not hugely affect the

simulation’s computational cost due to extremely small grid sizes. The grid generation near

the walls for simulations of turbulent flows requires additional care due to the sensitivity of the

boundary layer to the grid. Determining the adequate and efficient grid resolution in the vicinity

of the wall needs even more considerations in DSEM or any other numerical method that uses

the Chebyshev distribution of points. A low near-wall resolution results in inaccurate statistics
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and a high resolution hugely increases the computational cost due to the non-uniformity nature

of the Chebyshev points. A comprehensive study on the near-wall resolution requirement for

DNS of turbulent flows using DSEM is performed by simulating a 3D periodic channel flow

using different grid resolutions and different polynomial orders and is presented in chapter 3.

The effect of the polynomial order on the near-wall resolution requirement is also studied in

detail. This study is a prerequisite for the DNS of the turbulent flow over the backward-facing

step (BFS) in chapter 5.

Performing DNS of the turbulent supersonic reacting flow in a ramp-cavity combustor is

extremely expensive in terms of the computational cost due to the complexity of the geom-

etry, small-scales of turbulence and reaction, and the small time step size demanded by the

reaction. Therefore, LES of such complex flow is highly desired. Two LES turbulence models

are considered in this work: (i) A modal filtering technique is proposed, and (ii) the standard

Samagorinsky model is improved for the separating flows.

Developing a turbulence model that is computationally inexpensive and compatible with the

nature of the numerical scheme is a crucial step in expanding the application of DSEM for LES of

turbulent flows in complex geometries. In chapter 4, an element-level modal low-pass explicit

filtering procedure, which operates in the spectral space, is introduced. The modal filter is

implemented in the DSEM, and its application is studied for LES without a subgrid-scale (SGS)

model. The method is tested for a configuration featuring 3D isotropic decaying turbulence,

and its performance is compared with a previously used method—a spectral interpolation-based

nodal filter. The filtering procedure is also applied to a 3D turbulent channel flow, and the
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results are compared with those from the DNS. An anisotropic version of the modal filter,

which damps high-frequency modes in a specific direction, is also introduced and tested for the

channel flow case.

The accurate LES of the BFS geometry is the preliminary step in the successful simulation

of turbulent flow over a ramp-cavity. The BFS geometry may be considered the same as an

RC geometry without the ramp. The BFS flow is a well-studied benchmark, and its successful

simulations ensure that the numerical method is capable of accurately simulating the shear

layer that is formed at the step and exists in both BFS and RC geometries. The standard

Smagorinsky model is one of the popular turbulence models due to its manageability, simplicity

of implementation, and low cost. However, it is well known that the model performs poorly in

the vicinity of walls by introducing excessive artificial viscosity in those areas. A sensor that

improves the performance of the standard Smagorinsky model for separating flows is developed

and is introduced in chapter 5. The sensor, which is a function of only density, time, and

space, differentiates between the high turbulent activity areas and the near-wall regions. The

sensor is implemented and tested in conjunction with the standard Smagorinsky model, and its

performance is studied for the flow over a BFS. The addition of this sensor to the Smagorinsky

model prevents the eddy viscosity model to introduce excessive and undesired viscosity to the

near-wall region and consequently improves the prediction of the flow statistics and considerably

enhances the accuracy of the model. A DNS of 3D turbulent flow over BFS is also performed

and compared with previous work to validate our numerical method for such flow and also to

provide a benchmark for LES simulations of the same problem.
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LES of turbulent supersonic flow in a 3D ramp-cavity combustor is also performed using

DSEM and is presented in chapter 6. An entropy viscosity (EV) shock capturing technique (6)

is used to handle the shocks generated downstream of the cavity, and standard Smagorinsky

model is used for turbulence modeling. A sensor is also introduced and implemented that

differentiates between turbulence areas and shock regions and prevents the turbulence model

to introduce undesired artificial viscosity in the shock regions. The flow is simulated for two

configurations: with and without an injector on the ramped wall of the cavity. The effect of

the injector on the flow characteristics are studied by comparing the results from the two cases.

The effect of the Reynolds number on the shock wave is also demonstrated.

The governing equations, as well as the numerical method used in this work, are presented

in chapter 2. The near-wall resolution requirements for DNS of turbulent flow using DSEM is

studied in chapter 3. Chapter 4 presents the modal filtering technique. The DNS of BFS, as well

as the LES of BFS using the Smagorinsky model and the wall sensor, is presented in chapter

5. The simulation of turbulent supersonic flow in a ramp-cavity combustor with the injector

is presented in chapter 6. Finally, a summary of the work and the important conclusions are

drawn in chapter 7. Also, the background and previous work relating to each aspect of the

present work is provided in their corresponding chapter.



CHAPTER 2

GOVERNING EQUATIONS AND NUMERICAL METHOD

In this chapter, the governing equations of the problems that are addressed in this work,

i.e., the Navier-Stokes equations, are presented in detail. Moreover, the details of the numerical

method employed, i.e., the discontinuous spectral element method (DSEM), are described.

2.1 Governing Equations

In this section, the governing equations are presented in both dimensional and non-dimensional

forms. The non-dimensional form of the equations are used in this work.

2.1.1 Dimensional Form

The governing equations of the problems addressed in this work are the 3D equations of

motion for an unsteady compressible Newtonian fluid. The dimensional equations of mass,

momentum, and energy, i.e. the Navier-Stokes equations, are presented in a conservative form

in Cartesian coordinates as

~Q∗t∗ + ~F a∗x∗ + ~Ga∗y∗ + ~Ha∗
z∗ = ~F v∗x∗ + ~Gv∗y∗ + ~Hv∗

z∗ , (2.1)

8
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where the arrow indicates a vector, and the star superscript denotes dimensional variables. In

Equation 2.1,

~Q∗ =



ρ∗

ρ∗u∗

ρ∗v∗

ρ∗w∗

ρ∗e∗


(2.2)

is the solution vector, where ρ∗ is the density, u∗, v∗, and w∗ are three components of velocity,

and

ρ∗e∗ = ρ∗c∗vT
∗ +

1

2
ρ∗(u∗2 + v∗2 + w∗2), (2.3)
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is the sum of internal and kinetic energy per unit volume, where c∗v is the constant volume

specific heat, and T ∗ is the temperature. The advective fluxes in Equation 2.1 are defined by

~F a∗ =



ρ∗u∗

p∗ + ρ∗u∗2

ρ∗u∗v∗

ρ∗u∗w∗

u∗(ρ∗e∗ + p∗)


, ~Ga∗ =



ρ∗v∗

ρ∗u∗v∗

p∗ + ρ∗v∗2

ρ∗v∗w∗

v∗(ρ∗e∗ + p∗)


,

~Ha∗ =



ρ∗w∗

ρ∗u∗w∗

ρ∗v∗w∗

p∗ + ρ∗w∗2

w∗(ρ∗e∗ + p∗)


, (2.4)
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where p∗ is the pressure. The viscous fluxes are defined by

~F v∗ =



0

τ∗11

τ∗12

τ∗13

u∗τ∗11 + v∗τ∗12 + w∗τ∗13 + κ∗T ∗x∗


,

~Gv∗ =



0

τ∗21

τ∗22

τ∗23

u∗τ∗21 + vτ∗22 + w∗τ∗23 + κ∗T ∗y∗


,

~Hv∗ =



τ∗31

τ∗32

τ∗33

u∗τ∗31 + v∗τ∗32 + w∗τ∗33 + κ∗T ∗z∗


, (2.5)
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where κ∗ is the fluid’s conductivity, and

τ∗11 = 2µ∗[u∗x∗ − (u∗x∗ + v∗y∗ + w∗z∗)/3],

τ∗22 = 2µ∗[v∗y∗ − (u∗x∗ + v∗y∗ + w∗z∗)/3],

τ∗33 = 2µ∗[w∗z∗ − (u∗x∗ + v∗y∗ + w∗z∗)/3],

τ∗12 = τ∗21 = µ∗[v∗x∗ + u∗y∗ ],

τ∗13 = τ∗31 = µ∗[w∗x∗ + u∗z∗ ],

τ∗23 = τ∗32 = µ∗[w∗y∗ + v∗z∗ ],

are the components of the stress tensor, where µ∗ is the fluid’s dynamic viscosity. The subscripts

of the components of the stress tensor, τ∗ij , denote the direction of the stress and the plane it is

acting on, where 1, 2, and 3 represent the x-, y-, and z-directions. The non-dimensional total

energy is

ρe =
p

γ − 1
+ ρ

u2 + v2 + w2

2
(2.6)

The assumptions made regarding the governing equations in this work are as follows:

• It is assumed that the bulk viscosity of the fluid, µ∗b , is zero, i.e., µ∗b = 3λ∗ + 2µ∗ = 0.

This assumption is known as Stokes hypothsis.

• It is also assumed that the Fourier’s law governs the heat flux in the energy equation.

The Fourier’s law is given, e.g., in the x-direction by q∗1 = −κ∗T ∗x∗ , where q∗ is the heat

flux, and its subscript indicates its direction.



13

• The viscosity, conductivity, and specific heats of the fluid are generally functions of tem-

perature. However, for the range of temperature fluctuations in this work, the changes in

the above-mentioned quantities are not very significant (< 10%). Therefore, it is assumed

that those quantities are not a dependent on the temperature.

• The fluid is an ideal gas, and its properties follow the ideal gas law, i.e., p∗ = ρ∗R∗T ∗,

where R∗ is the gas constant. The addition of the equation of state to the Navier-

Stokes equations closes the governing equations by providing the sixth equation for the

six unknowns, i.e., ρ∗, u∗, v∗, w∗, p∗, and T ∗.

2.1.2 Non-dimensional Form

In this work, the governing equations are employed in the non-dimensional form since the

disparity of the physical variables can cause numerical errors. Therefore, all variables are non-

dimensionalized using the reference length, L∗f , reference density, ρ∗f , reference velocity, U∗f , and

reference temperature, T ∗f . The non-dimensionalized variables are given by

ρ = ρ∗/ρ∗f , u = u∗/U∗f ,

v = v∗/U∗f , w = w∗/U∗f ,

T = T ∗/T ∗f , p = p∗/(ρ∗fU
∗
f

2),

x = x∗/L∗f , y = y∗/L∗f ,

z = z∗/L∗f , t = t∗U∗f /L
∗
f . (2.7)
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Applying the same non-dimensionalization to Equation 2.1 generates the governing equations

in the non-dimensional form, given by

−→
Q t +

−→
F a
x +
−→
Ga
y +
−→
H a
z =

1

Ref

(
−→
F v
x +
−→
Gv
y +
−→
H v
z

)
. (2.8)

In Equation 2.8,

−→
Q =



ρ

ρu

ρv

ρw

ρe


(2.9)

is the solution vector, where

ρe =
p

γ − 1
+

1

2
ρ(u2 + v2 + w2). (2.10)

Also,

~F a =



ρu

p+ ρu2

ρuv

ρuw

u(ρe+ p)


, ~Ga =



ρv

ρuv

p+ ρv2

ρvw

v(ρe+ p)


, ~Ha =



ρw

ρuw

ρvw

p+ ρw2

w(ρe+ p)


(2.11)
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are the vectors of advective fluxes, and

~F v =



0

τ11

τ12

τ13

uτ11 + vτ12 + wτ13 + 1
(γ−1)M2

fPr
Tx


,

~Gv =



0

τ21

τ22

τ23

uτ21 + vτ22 + wτ23 + 1
(γ−1)M2

fPr
Ty


,

~Hv =



0

τ31

τ32

τ33

uτ31 + vτ32 + wτ33 + 1
(γ−1)M2

fPr
Tz


(2.12)
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are the vectors of viscous fluxes, where

τ11 = 2[ux − (ux + vy + wz)/3],

τ22 = 2[vy − (ux + vy + wz)/3],

τ33 = 2[wz − (ux + vy + wz)/3],

τ12 = τ21 = vx + uy,

τ13 = τ31 = wx + uz,

τ23 = τ23 = wy + vz. (2.13)

Three non-dimensional parameters are generated during the non-dimensionalization process:

• The reference Reynolds number measures the domination of the effects of the advective

fluxes over the effects of the viscous fluxes. and is defined by Ref = ρ∗fU
∗
FL
∗
f/µ

∗.

• The Prandtl number measures the ratio of momentum diffusivity to thermal diffusivity

and is defined by Pr = c∗pµ
∗/κ∗, where c∗p is the constant pressure specific heat.

• The reference Mach number is defined by Mf = U∗f /c
∗, where c∗ is the reference speed of

sound, defined by c∗ =
√
γR∗T ∗f , and γ is the heat capacity ratio of the fluid.

The equation of state is presented in the non-dimensional form as

p =
ρT

γM2
f

. (2.14)
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2.2 Numerical Method

In this work, the discontinuous spectral element method (DSEM) is used to discretize the

governing equations, Equation 2.8. The DSEM is based on the conservative staggered-grid

Chebyshev multidomain spectral method (CMSM), which was first introduced by Kopriva (7;

8; 9) in two dimensions. Later, the method was extended for three dimensions by Jacobs

(10). The DSEM has negligible diffusion and dispersion errors and is spectrally convergent

within each element for smooth solutions (7; 9). The method has been employed for DNS and

large eddy simulations (LES) of compressible flow in complex geometries (11; 12; 13). In the

DSEM, the governing equations are solve locally inside the elements; therefore, the method is

flexible with complex geometries, allows for local grid refinement, and provides parallelization

efficiency. The capability of simulating supersonic flows and capturing shocks distinguishes

the DSEM from most spectral element codes. The method solves the governing equations of

compressible flows and allows for discontinuity of the solution on interfaces of the elements.

The discretization procedure in DSEM is described in the next sections. In section 2.2.1, the

discretization is explained for a 1D scalar equation. The extension of the discretization method

for a 3D euler equation is presented in section 2.2.2. In section 2.2.3 the extension to the the

full 3D Navier-Stokes equations is provided.
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2.2.1 1D Scalar Equation

In this section, the discretization procedure in DSEM is described. We start with a one-

dimensional (1D) scalar equation in conservative form,

ut + fx(u) = 0, a ≤ x ≤ b, (2.15)

where u is the solution unknown, and f is the flux. The interval [a, b] is subdivided into multiple,

non-overlapping subdomains, or the so-called elements. The elements are then transformed to

unit intervals using an isoparametric mapping. After the mapping, the governing equation

becomes

ut +
1

xX
fX(u) = 0, 0 ≤ X ≤ 1. (2.16)

Two staggered sets of points are placed inside each mapped element: the Gauss points, defined

by

Xj+ 1
2

= cos

[
(2j + 1)π

2N

]
, 0 ≤ j ≤ N − 1, (2.17)

and the Lobatto points, defined by

Xj = cos

[
jπ

N

]
, 0 ≤ j ≤ N. (2.18)
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Within each element, the solution, u, and the flux, f , are approximated by Lagrangian inter-

polants and are represented by truncated expansions of the basis functions as

u(X) ≈ ũ(X) =

N−1∑
i=0

ũi+ 1
2
hi+ 1

2
(X) (2.19)

and

f(X) ≈ f̃(X) =
N∑
i=0

f̃i li(X), (2.20)

where hi+1/2 and li are the basis functions and are chosen to be Lagrange polynomials defined

by

hi+ 1
2
(X) =

N−1∏
j=0 j 6=i

X −Xj+ 1
2

Xi+ 1
2
−Xj+ 1

2

(2.21)

and

li(X) =
N∏

j=0 j 6=i

X −Xj

Xi −Xj
. (2.22)

The Lagrangian basis functions can be also expressed in terms of Chebyshev polynomials such

that

li(X) =
2

N

N∑
n=0

1

ci cn
Tn(Xj)Tn(X), (2.23)

where Tn is the Chebyshev polynomial defined by

Tn(X) = cos (n. arccos(X)) , (2.24)
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and

ck =


2, k = 0, N,

1, k 6= 0, N.

(2.25)

The collocation points for the solution, ũ, are chosen to be the Chebyshev-Gauss quadrature

points, Equation 2.17, which are found by determining the roots of TN+1. The reason for

choosing this particular collocation points for the Lagrangian interpolant ũ is that

‖u− ũ‖ �
(

1

N

)k
, N →∞, for all k, (2.26)

(for u ∈ C∞, where Cp is the space of functions that are continuous and have continuous

derivatives up to order p) as can be demonstrated by Sturm-Liouville theory (14). The roots

of the derivative of TN+1, Equation 2.18, are chosen as the collocation points for the flux, f̃ .

Substituting the approximations, Equation 2.19 and Equation 2.20, into the governing equation,

Equation 2.16, we get

N−1∑
i=0

dũi+ 1
2

dt
hi+ 1

2
(X) +

1

xX
.
∂

∂X

[
N∑
i=0

f̃ili(X)

]
= R(X), (2.27)

where R(X) is the residual due to the approximation. The method of weighted residuals (MWR)

is used to minimize the approximation residual. In the MWR, the intent is to set the inner

product of the residual with respect to some test functions, ψj(X), to zero

∫ 1

0
R(X)ψj(X) dX = 0. (2.28)
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In other words, MWR is a method that minimizes the error of approximation by fitting trial

functions into the PDE. There are two widely used types of spectral methods: spectral Galerkin

methods and spectral collocation methods. In the spectral Galerkin methods, the test functions

are the same as the trial functions, while in spectral collocation methods, which is used in the

DSEM, the test functions are the shifted Dirac delta functions located at so-called collocation

points (15). There are two types of spectral formulations: modal and nodal formulations. In the

modal formulation, the unknowns are the expansion coefficients, while in the nodal formulation,

which is used in the DSEM, the unknowns are the solution values at the collocation points.

The more natural choice for collocation methods is the nodal formulation, and it always leads

to an uncoupled system since the test functions are the Dirac delta functions (15). The Dirac

delta function is defined by

δ(x) =


+∞, x = 0

0, x 6= 0

(2.29)

and is constrained to satisfy ∫ ∞
−∞

δ(x) dx = 1. (2.30)

Here, we choose the Gauss points, Equation 2.17, as the collocation points. Therefore, the test

functions are defined by

ψj(X) = δ(X −Xj+ 1
2
). (2.31)
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Substituting the test function, Equation 2.31, into the MWR, Equation 2.28, we get

∫ 1

0
R(X) δ(X −Xj+ 1

2
) dX = 0. (2.32)

Applying the definition of the Dirac delta function, Equation 2.29 and Equation 2.30, we have

R(Xj+ 1
2
) = 0. (2.33)

This means that choosing Dirac delta functions at the collocation points as our test functions

is mathematically equivalent to forcing the residual to be zero at the collocation points, which

are the Gauss points here. In other words, in spectral collocation methods, we require that the

PDE be satisfied at the collocation points (16).

Substituting the residual, Equation 2.27, and the test functions, Equation 2.31, into the

MWR, Equation 2.28, we get

∫ 1

0

[
N−1∑
i=0

dũi+ 1
2

dt
hi+ 1

2
(X) δ(X −Xj+ 1

2
) +

1

xX

∂f̃(X)

∂X
δ(X −Xj+ 1

2
)

]
dX = 0. (2.34)

Applying the definition of the Dirac delta function, Equation 2.34 becomes

N−1∑
i=0

dũi+ 1
2

dt
hi+ 1

2
(Xj+ 1

2
) +

1

xX

∂f̃(Xj+ 1
2
)

∂X
= 0. (2.35)
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Recalling that hi+1/2(Xj+1/2) = δij (Here, δij is the Kronecker delta), Equation 2.35 reduces

to the collocation approximation

dũj+ 1
2

dt
+

1

xX

∂F (Xj+ 1
2
)

∂X
= 0. (2.36)

Equation 2.36 is the discretized version of the governing equation, Equation 2.16, and is used

to calculate the solution unknowns at the Gauss points, ũj+ 1
2
.

The first step to evaluate the fluxes is to interpolate the solution values from the Gauss grid

to the Lobatto grid using

ũj =
N−1∑
i=0

ũi+ 1
2
hi+ 1

2
(Xj), 0 ≤ j ≤ N. (2.37)

Then, the fluxes can be calculated directly on the Lobatto grid using their functional relation

to the solution. On the element interface the values of the fluxes are most likely different from

two sides. The mortar method is used to patch the fluxes on the interfaces and achieve C0

continuity of the flux. The patching of the fluxes are described in details in section 3.1.5 of

(10).

Next, the spatial derivative of the flux is calculated using

∂F (Xj+ 1
2
)

∂X
=

N−1∑
i=0

F (Xi)
∂li(Xj+ 1

2
)

∂X
. (2.38)
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The governing partial differential equation (PDE) is now reduced to an ordinary differential

equation (ODE). The ODE may be integrated in time using any desired time-stepping scheme.

In DSEM, a low-storage fourth-order Runge-Kutta scheme is employed (Refer to section 3.2 of

(10)).

2.2.2 3D Euler Equations

Assume the 3D Euler equations in conservative form,

−→q t +
−→
f x +−→g y +

−→
h z = 0, (2.39)

where −→q is the solution vector, and
−→
f x, −→g y, and

−→
h z, are the flux vectors in the x-,y-, and

z-directions, respectively. Under the isoparametric transformation of the elements to a unit

cube, the governing equations become

−→
Q t +

−→
F X +

−→
GY +

−→
HZ = 0, (2.40)

where

−→
Q = J−→q , (2.41)

and 

−→
F = Xx

−→
f +Xy

−→g +Xz
−→
h

−→
G = Yx

−→
f + Yy

−→g + Yz
−→
h

−→
H = Zx

−→
f + Zy

−→g + Zz
−→
h

. (2.42)
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In Equation 2.41, J is the Jacobian of the transformation and is defined by

J = xX(yY zZ − yZzY )− xY (yXzZ − yZzX) + xZ(yXzY − yY zX). (2.43)

In 3D, the staggered grid is the tensor product of the 1D grid described in the previous

section. The solution values are determined on the Gauss-Gauss-Gauss (GGG) points,

(Xi+1/2, Yj+1/2, Zk+1/2), i, j, k = 0, 1, . . . , N − 1, (2.44)

which is the tensor product of the 1D grid defined by Equation 2.17. Assuming the approx-

imation order is the same in every direction, the solution at any point within the element is

approximated by the interpolant on the GGG points and is defined by

−→
Q(X,Y, Z) =

N−1∑
l=0

N−1∑
m=0

N−1∑
n=0

−→
Q l+ 1

2
,m+ 1

2
,n+ 1

2
hl+ 1

2
(X) hm+ 1

2
(Y ) hn+ 1

2
(Z) , (2.45)

where
−→
Q l+1/2,m+1/2,n+1/2 is the solution values on the GGG points, and the Lagrange in-

terpolants are defined by Equation 2.21. The fluxes,
−→
F ,
−→
G , and

−→
H , are evaluated at the

Lobatto-Gauss-Gauss (LGG) points,

(Xi, Yj+1/2, Zk+1/2), i = 0, 1, . . . , N, j, k = 0, 1, . . . , N − 1, (2.46)
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Gauss-Lobatto-Gauss (GLG) points,

(Xi+1/2, Yj , Zk+1/2), j = 0, 1, . . . , N , i, k = 0, 1, . . . , N − 1, (2.47)

and Gauss-Gauss-Lobatto (GGL) points,

(Xi+1/2, Yj+1/2, Zk), k = 0, 1, . . . , N, i, j = 0, 1, . . . , N − 1. (2.48)

The GGG points are usually called the Gauss grid, and the LGG, GLG, and GGL points form

the Lobatto grid.

The procedure in 3D is similar to that of the 1D version described in the previous section.

First, the solution values,
−→
Q , are interpolated from the Gauss grid to the Lobatto grid in every

dimension using the same interpolation as given in Equation 2.45. For example, the solution is

interpolated to the LGG grid in the X-direction by

−→
Q(Xi, Yj+ 1

2
, Zk+ 1

2
) =

N−1∑
l=0

N−1∑
m=0

N−1∑
n=0

−→
Q l+ 1

2
,m+ 1

2
,n+ 1

2
hl+ 1

2
(Xi) hm+ 1

2
(Yj+ 1

2
) hn+ 1

2
(Zk+ 1

2
). (2.49)

Recalling the property of the Lagrange polynomial, hi+1/2(Xj+1/2) = δij (Here, δij is the

Kronecker delta), Equation 2.49 reduces to a 1D operation,

−→
Q(Xi, Yj+ 1

2
, Zk+ 1

2
) =

N−1∑
l=0

−→
Q l+ 1

2
,j+ 1

2
,k+ 1

2
hl+ 1

2
(Xi). (2.50)
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The solution is similarly interpolated in the Y - and Z-directions by

−→
Q(Xi+ 1

2
, Yj , Zk+ 1

2
) =

N−1∑
m=0

−→
Q i+ 1

2
,m+ 1

2
,k+ 1

2
hm+ 1

2
(Xj). (2.51)

and

−→
Q(Xi+ 1

2
, Yj+ 1

2
, Zk) =

N−1∑
n=0

−→
Q i+ 1

2
,j+ 1

2
,n+ 1

2
hn+ 1

2
(Xk). (2.52)

The next step is to calculate the flux values on the Lobatto grid using their functional

relation to the solution. Again, the mortar method is used to patch the fluxes from neighboring

elements. Then, the mapped fluxes are constructed according to Equation 2.42 on the Lobatto

grid.

Once the fluxes are constructed on the Lobbato grid, the spatial discretization of the fluxes

can be made using the interpolants,

−→
F (X,Y, Z) =

N∑
l=0

N−1∑
m=0

N−1∑
n=0

−→
F l,m+ 1

2
,n+ 1

2
ll(X) hm+ 1

2
(Y ) hn+ 1

2
(Z), (2.53)

−→
G(X,Y, Z) =

N−1∑
l=0

N∑
m=0

N−1∑
n=0

−→
G l+ 1

2
,m,n+ 1

2
hl+ 1

2
(X) lm(Y ) hn+ 1

2
(Z), (2.54)

−→
H (X,Y, Z) =

N−1∑
l=0

N−1∑
m=0

N∑
n=0

−→
H l+ 1

2
,m+ 1

2
,n hl+ 1

2
(X) hm+ 1

2
(Y ) ln(Z). (2.55)
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The spatial derivatives of the fluxes (Equation 2.53, Equation 2.54, and Equation 2.55), reduce

to 1D operations due to the properties of the Lagrange polynomials (similar to the reduction

of the solution interpolations to 1D operations) and follow the 1D approach (Equation 2.38),

∂

∂X

−→
F (Xi+ 1

2
, Yj+ 1

2
, Zk+ 1

2
) =

N∑
l=0

−→
F l,j+ 1

2
,k+ 1

2

∂ll(Xi+ 1
2
)

∂X
, (2.56)

∂

∂Y

−→
G(Xi+ 1

2
, Yj+ 1

2
, Zk+ 1

2
) =

N∑
m=0

−→
G i+ 1

2
,m,k+ 1

2

∂lm(Yj+ 1
2
)

∂Y
, (2.57)

∂

∂Z

−→
H (Xi+ 1

2
, Yj+ 1

2
, Zk+ 1

2
) =

N∑
n=0

−→
H i+ 1

2
,j+ 1

2
,n

∂ln(Zk+ 1
2
)

∂Z
. (2.58)

The governing equations, Equation 2.40, can now be written in the discrete form,

−→
Q t|i+ 1

2
,j+ 1

2
,k+ 1

2
+
[−→
F X +

−→
GY +

−→
HZ

]
i+ 1

2
,j+ 1

2
,k+ 1

2

= 0, (2.59)

which should be integrated in time.

2.2.3 3D Navier-Stokes Equations

The governing equations are the 3D compressible Navier-Stokes equations in conservative

form,

−→q t +
−→
f a
x +−→g ay +

−→
h az =

1

Ref

(−→
f v
x +−→g vy +

−→
h vz

)
, (2.60)

where superscripts a and v indicate advective and viscous fluxes, respectively. The calculation

of the advective fluxes are similar to the procedure described earlier for the fluxes in the Euler

equations.
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To calculate the viscous fluxes, the spatial derivatives of the velocity components and tem-

perature need to be constructed. In order to obtain a unique gradient of those variables, the

interpolant of the solution on the Lobatto grid needs to be continuous at interfaces of the

elements. This is achieved by using a Dirichlet type of patching (Refer to section 3.1.5 of

(10)). Once the Lobatto interpolants are patched, their spatial derivatives are calculated the

same manner as the flux derivatives are calculated for the Euler equations, i.e., Equation 2.56,

Equation 2.57, and Equation 2.58.
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Direct numerical simulation (DNS) of turbulent flow in a 3D periodic channel is performed

to study the effect of the wall-normal spatial resolution near the wall on the calculations of

turbulence statistics using multidomain Chebyshev grids. The DSEM is employed to calculate

the first- and second-order statistics of the flow near the wall. The effect of the spectral approx-

imation order on the resolution requirement is also studied by considering three approximation

orders of P = 2, 5, and 7. The Reynolds number based on the bulk density, bulk velocity,

and channel half-height is Re = 3,266, which corresponds to a friction Reynolds number of

Reτ ≈ 204 based on the wall friction velocity and the channel half-height.

3.1 Introduction

The accuracy of the predictions of turbulence statistics near the wall in DNS of turbulent

flows depends strongly on the grid resolution near the wall, especially in the wall-normal di-

rection. In DNS of near-wall turbulence, the resolution near the wall should be sufficient to

30
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capture the behavior of the boundary layer in all three regions of the inner layer: the viscous

(laminar) sublayer, the buffer layer, and the log-law (fully turbulent) region. It has been shown

that an under-resolved grid in one or more directions negatively affects the prediction of the

mean properties as well as higher-order statistics of the flow (18). Since the grid spacing criteria

should be independent of the Reynolds number, the spatial spacing is usually calculated based

on the non-dimensional wall unit, y+ (See Appendix B for the definitions of non-dimensional

wall variables). Previous grids used for DNS of wall-bounded turbulent flows usually satisfy

two general conditions: (i) The nearest grid point to the wall is located below y+ = 1, and (ii)

there are at least 10 grid points within y+ = 10 (hereinafter, called y+
10). For most grids, these

conditions can be satisfied by placing the first point below y+ = 1 and gradually increasing

the grid spacing (using a geometric progression for example) as moving away from the wall.

However, in numerical schemes that use a Chebyshev distribution of grid points, satisfying the

second condition would result in a minuscule grid spacing at the wall (usually, orders of magni-

tude smaller than y+ = 1) due to the high non-uniformity of point distribution. Some types of

spectral and spectral element methods are examples of the schemes that use Chebyshev grids,

which have been increasingly used by researchers recently (19; 20; 21).

For example, in the DSEM, the Gauss quadrature points in the mapped space are placed

in each direction using a symmetric Chebyshev distribution of the form

Xi+ 1
2

=
1

2

[
1− cos

(
i+ 1

2

P + 1
π

)]
, i = 0, . . . , P , (3.1)
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over the interval of [0, 1], where P is the spectral approximation order. For an approximation

order of P = 9, such element has 10 Gauss quadrature points with the distribution shown in

Figure 1. Note that the first point is located at X1/2 = 6.16× 10−3. If the near-wall elements

are distributed normal to the wall such that the first point off the wall is located at y+ = 1,

there would be only 2 points inside y+
10. Even by placing the first point at y+ = 0.1, there would

be only 6 points within y+
10. On the other hand, if the elements near the wall are placed such

that the second condition is satisfied, i.e., there are 10 Gauss points within y+
10, the first point

near the wall would be located at y+ = 0.0616. In this case, the extremely small grid size, which

occurs both on the wall side and on the other end of the first element, severely restricts the

time step size and makes the simulation computationally expensive if the numerical stability is

conditional on the time step size. Therefore, for such schemes, it is challenging to determine

the sufficient near-wall resolution, while minimizing the restriction of the time step size. To the

best knowledge of the authors, this challenge has not been tackled so far.

The periodic channel flow is a well-studied benchmark for wall-bounded turbulent flows and

is used as the test case here. In this chapter, a series of DNS of periodic turbulent channel flow

are conducted using DSEM to study the requirement of the grid resolution normal to the wall for

accurate prediction of turbulent statistics using multidomain Chebyshev grids (22). The effect

of the spectral approximation order on the spatial resolution requirement is also studied by

testing three different orders. The flow is simulated using nine grids (three grids with different

resolutions for each approximation order) with different resolutions and approximation orders,
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and their mean flow statistics, velocity fluctuations, and Reynolds shear stresses are compared.

1

0

0

Figure 1. Distribution of Gauss quadrature points (blue ticks) in a Chebyshev grid of order
P = 9.

3.1.1 Previous DNS of Channel Flow

The DNS of turbulent flow in a periodic channel has been intensively studied. Kim et al.

(23) conducted DNS of an incompressible, turbulent channel flow using a spectral method. The

simulations were performed at a friction Reynolds number of Reτ = uτδ/ν = 180, where uτ is

the wall friction velocity, δ is the channel half-height, and ν is the fluid’s kinematic viscosity.

Their scheme featured a fully spectral method with Fourier series in the homogeneous directions,

i.e., streamwise and spanwise directions, and a Chebychev polynomial expansion in the normal

direction. The grid that they used had 12 points inside y+
10, and the nearest grid point to the

wall was located at y+ = 0.05. Rai and Moin (24) presented a finite-difference (FD) solution

to the incompressible fully developed turbulent channel flow at a friction Reynolds number

of Reτ = 180 and provided a comparison between the results obtained using FD and spectral
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methods. They used a geometric progression for the distribution of near-wall grid points normal

to the wall. Lyons et al. (25) presented results from a DNS of fully developed incompressible

turbulent flow in a channel. They also used Fourier series expansions in the periodic directions

and Chebyshev polynomial expansions in the normal direction. The friction Reynolds number

was Reτ = 130, and the nearest grid point to the wall was located at y+ = 0.18. Crawford (26)

employed a spectral element method and conducted a grid resolution study for an incompressible

turbulent flow in a periodic channel at a friction Reynolds number of Reτ ≈ 207. The grid

that was concluded to be adequate to resolve the turbulent statistics had its first point near the

wall at y+ = 0.29. Moser et al. (27), as the continuation of the work of Kim et al. (23), used

the same code later and reported detailed statistical data from DNS of incompressible fully

developed turbulent channel flow at three friction Reynolds numbers of Reτ = 180, 395, and

590. In all three cases, they had 13 or more grid points within y+
10. del Alamo and Jimenez (28)

performed DNS of turbulent channel flow at Reynolds numbers of Reτ = 180 and 550 using

the same numerical method as (23). Their focus was on the size and location of large scales

of motion in the channel flow. Morinishi et al. (29) performed DNS of turbulent channel flows

using an algorithm based on the Fourier Galerkin method in the periodic directions and the

B-spline collocation method in the wall-normal direction. They considered both incompressible

and compressible (Mach number of 1.5) cases at a Reynolds number of Ref = 3,000 based

on the bulk density, bulk velocity, and channel half-height. They used a hyperbolic-tangent

function for the distribution of the wall-normal collocation points, and the nearest point to the

wall was located at y+ = 0.045 and ∼ 0.35 for their incompressible and compressible cases,
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respectively. Lee and Moser (30) performed DNS of incompressible channel flow at different

Reynolds numbers ranging from Reτ = 180 to 5,186. They used a Fourier-Galerkin method

in the periodic directions and a B-spline collocation method in the wall-normal direction. The

grid they used for the highest Reynolds number had 15 points within y+
10. The first points for

the lowest and the highest Reynolds number cases were located at y+ = 0.074 and y+ = 0.498,

respectively. A summary of the above-mentioned studies along with more details of their

computational domains and grids are included in Table I.

Grötzbach (31) deduced three criteria for the prediction of grids for DNS of turbulent flow.

Their second criterion, concerning the near-wall resolution, states that, for turbulent flows with

a Prandtl number below unity, at least three grid points must be placed inside the viscous

sublayer (y+ < 5). Later, Moin and Mahesh (32) provided a review of DNS of turbulent flows.

They pointed out that spectral schemes require less spatial resolution than other schemes;

A second-order central difference scheme needs nearly double the spatial resolution (in each

dimension) to reach the same level of accuracy as a DNS using a spectral method.

In the following section, the problem setup for the periodic channel flow and the grid gen-

eration procedures are discussed. Then, the results of the simulations and discussions are

presented; first, it is shown that the statistics of interest are not affected by the compressibility,

and the methodology is able to reproduce previous DNS results. Then, the mean velocity, tem-

perature, and density profiles, as well as mean flow variables, are compared for different cases.

Furthermore, the second-order statistics including the velocity fluctuations and Reynolds shear
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TABLE I

PREVIOUS DNS STUDIES OF THE PERIODIC TURBULENT CHANNEL FLOW. THE
LENGTHS ARE SCALED BY THE CHANNEL HALF-HEIGHT (δ). THE DOMAIN SIZES
AND THE NUMBER OF GRID POINTS ARE PROVIDED IN THE ORDER: X, Y , Z. IN

CASE OF MULTIPLE REYNOLDS NUMBERS, THE GRID POINTS USED FOR THE
LOWEST REYNOLDS NUMBER IS PRESENTED.

Reference Reτ Domain size Grid points

Kim et al. (23) 180 4π × 2× 2π 192× 129× 160
Rai and Moin (24) 180 4π × 2× 2π 64× 65× 64
Lyons et al. (25) 125 ∼ 135 12.67× 2× 6.33 128× 65× 128

Crawford (26) ≈ 207 5.61× 2× 2 64× 120× 100
Moser et al. (27) 180, 395, 590 4π × 2× 4π/3 128× 129× 128

del Alamo and Jimenez (28) 180, 550 12π × 2× 4π 754× 76× 502
Morinishi et al. (29) 150 ∼ 218 4π × 2× 4π/3 128× 129× 128
Lee and Moser (30) 182, 544, 1,000, 5,186 8π × 2× 3π 128× 192× 96

stresses are presented and discussed for all cases. Next, the cases are compared based on their

computational costs. Finally, conclusions are drawn.

3.2 Periodic Turbulent Channel Flow Simulations

In this work, DSEM is employed to conduct a series of DNS of a 3D, turbulent, periodic

channel flow to investigate the near-wall grid resolution requirement. First- and second-order

statistics of the flow are used to evaluate the accuracy of the calculations. Three different

spectral approximation orders of P = 2, 5, and 7 are considered to also study the effect of the

approximation order on the resolution requirement.

3.2.1 Computational Domain

A schematic of the computational domain is illustrated in Figure 2. The domain is periodic

in the streamwise (x) and spanwise (z) directions. Stationary, isothermal walls with the wall
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temperature of Tw = 1 are placed at the boundaries of the normal (y) direction. The isothermal

wall boundary condition is applied using a weak formulation. In this method, which was

introduced by Jacobs et al. (33), a slightly manipulated version of an Osher solver (34) is

used to compute the boundary fluxes. The boundary condition implementation falls into the

category of Weak-Riemann-A1 described in Mengaldo et al. (35). The lengths of the domain

are Lx = 5.61, Ly = 2, and Lz = 2 in the streamwise, normal, and spanwise directions,

respectively. All lengths are scaled by the channel half-height, δ = Ly/2. The lengths in wall

units are L+
x ≈ 1170 and L+

y = L+
z ≈ 420. The dimensions are the same as those used in

Crawford (26) and are chosen such that the domain encompasses the largest eddy of the flow.

This configuration of the domain allows the comparison with previous work.

Flow

L

yL

zL

x

y

z

x

Figure 2. Schematic of the computational domain.
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3.2.2 Flow Conditions

The bulk velocity (U), the bulk density (ρ), the channel half-height (δ), and the wall temper-

ature (Tw) are chosen as the reference velocity, density, length, and temperature, respectively.

All simulations in this work are performed at a reference Reynolds number of Ref = 3,266

based on the reference velocity, length, and density. This Reynolds number corresponds to a

friction Reynolds number of Reτ ≈ 204 (The exact value of the friction Reynolds number ranges

between 204.0 and 208.8 for different cases). The reference Mach number based on the reference

velocity and temperature is Mf = 0.4. The reference Prandtl number is fixed at Prf = 0.72,

and the heat capacity ratio is assumed to have a constant value of γ = 1.4.

In a physical channel flow, the flow is maintained by a negative pressure gradient in the

streamwise direction (dp/dx). Here, a dynamically adjusted force term is applied to maintain

a constant mass flow rate. The same forcing algorithm as Lenormand et al. (36) is employed

in the present work.

3.2.3 Initialization and Transition to Turbulence

The streamwise velocity is initialized with a laminar parabolic profile with a mean value of

U0 = 1, with the addition of a uniformly distributed random disturbance, as

u(y) = −6

[(
y

2

)2

−
(
y

2

)]
(1 + ε). (3.2)
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In Equation 3.2, ε is a random disturbance uniformly distributed between 0 and 0.1, which is

introduced to expedite the transition to turbulence. The initial spanwise and normal velocities

are zero. The temperature is initialized with a laminar Poiseuille profile (See Appendix C) as

T (y) = Tw +
3(γ − 1)

4
PrfMf

[
1− (y − 1)4

]
. (3.3)

The initial density is constant at ρ0 = 1. The initial pressure is calculated through the equation

of state.

The preliminary simulations of our base case with P = 7 revealed that the initial disturbance

that is introduced in Equation 3.2 gradually decays after the simulation runs for a few flow-

through times at the base Reynolds number of Ref = 3,266, and the transition to turbulence is

not achieved. The flow-through time is defined as tft = Lx/U . Neither raising the magnitude

of the initial disturbance (ε) nor a temporary 100% increase in the Reynolds number helped

to maintain the disturbance. Increasing the Reynolds number further is not desirable due to

the computational cost. As an alternative solution, the flow is initially simulated at a much

lower resolution, i.e., using an approximation order of P = 2 instead of P = 7. The hypothesis

is that the truncation error, which is introduced by the deficiency of the spatial resolution, is

sufficiently large to provide the required disturbance for a transition to turbulence (10). As

the flow undergoes the transition to turbulence, the grid resolution is enhanced by gradually

increasing the approximation order (P = 2, P = 3, P = 5, P = 7). The flow is simulated at

each phase for 3 ∼ 4 flow-through times to ensure a smooth transition. Then, the simulation
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is continued at the desired approximation order (P = 7) until a statistically stationary state is

reached. The skin friction coefficient, which is defined by

cf =
τ∗w

1
2 ρ
∗ U
∗2 =

ν ∂u
∂y |w

1
2 Ref U

2 (3.4)

is used to detect the statistically stationary state condition. In Equation 3.4, τ∗w is the wall

shear stress. The value of cf during the transition is shown in Figure 3. It is observed that

during the first two flow-through times of the simulation, cf remains at the laminar value of

cf = 6/Ref = 1.84× 10−3. Then, the value increases rapidly, which indicates the transition of

the flow regime from laminar to turbulent. Finally, at tft ≈ 25, the value of the skin friction

coefficient levels off at a time-averaged constant value, which denotes the statistically stationary

flow. In order to keep the computational cost low, this approach is carried out once. Then, the

solution of the fully developed turbulent flow is spectrally interpolated to the other grids that

are used for different cases considered in this work.

3.2.4 Grid Resolution

In this work, nine grids with different near-wall resolutions and spectral approximation

orders are examined. The flow statistics obtained from all grids are compared. It is worth men-

tioning that the DSEM allows for two levels of control over the grid resolution: (i) h-refinement,

in which the number of elements is adjusted, and (ii) p-refinement, in which the elements re-

main unchanged, and the order of approximation inside each element is changed. In this work,

three spectral approximation orders of P = 2, 5, and 7 are considered to study the effect of the
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Figure 3. Changes of the skin friction coefficient (cf ) in time (scaled with the flow-through
time) during the initial phases of the simulation.

approximation order on the near-wall resolution requirement. For each approximation order,

three grids with different near-wall resolutions are generated using h-refinement. The highest

resolution grids are in accordance with the second recommended condition for the near-wall

resolution and have 11 points within y+
10. While, the moderate and low resolution grids have 8

and 5 grid points inside y+
10, respectively. In all cases, the elements are uniformly distributed

in the periodic directions (x and z). The number of elements in the periodic directions are

determined such that the number of grid points are the same for all cases in those directions.

The details of all grids are included in Table II. Each case is named based on the grid used

for that case as P-Q, where P is the approximation order, and Q is the number of grid points

within y+
10. The resolution of the base grid (case 7-11) is obtained from the resolution study of

Ghiasi et al. (22). They showed that this resolution is sufficient for the accurate computation

of the first- and second-order statistics of the flow. The resolutions of cases 2-11 and 5-11 in the
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normal direction are determined such that they have about the same number of grid points as

case 7-11 in that direction. In the normal direction (y) the elements are distributed following

a hyperbolic-tangent function of the form

yn
Ly

=
1

2

(
1−

tanh
[
λ(1

2 −
n
Ny

)
]

tanh
[
λ/2
] )

, 0 < n < Ny , (3.5)

where yn is the y-position of the interfaces of the elements, Ny is the number of elements in the

y-direction, and λ is a tunable coefficient that adjusts the compactness of the elements near the

wall. The number of elements in the normal direction and the value of λ are determined for

each case based on two criteria: (i) The compactness of the elements near the wall is adjusted

to achieve the desired number of grid points within y+
10 for each case; (ii) Since here we are

interested in the near-wall resolution only, the resolution of the grids at the center of the channel

is maintained for all cases. The values of λ for all grids are given in Table II. The distribution

of the elements in the normal direction for all nine cases are depicted in Figure 4. Note that

only the elements are shown in this figure.

As mentioned earlier, the resolution near the wall should be sufficient to capture the behavior

of the boundary layer in all three regions of the inner layer. The locations of solution (Gauss)

points near the wall, superimposed on the plot of the friction velocity based on the law of the

wall, are shown in Figure 5 for all presented cases in order to visualize the position of the

grid points with respect to the regions of the inner layer of the boundary layer. In this figure,

only the points up to y+ ≈ 50 are shown. It is seen that high resolution cases 2-11, 5-11, and
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7-11 have 7, 7, and 6 grid points, respectively, inside the laminar sublayer (y+ < 5), while

the low resolution cases 2-5, 5-5, and 7-5 have only 2, 3, and 3 points within the same region,

respectively.

Figure 4. Distribution of elements in the wall-normal direction.

3.3 Results and Discussions

In this section, the results from the DNS of the periodic channel flow are presented to verify

the reliability of the method and to study the near-wall resolution requirements for turbulent

flows at two different approximation orders.
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Figure 5. Location of grid points normal to the wall (vertical lines) up to y+ ≈ 50 for all
presented cases. The friction velocity profile based on the law of the wall (gray curve) is

superimposed on the plots.
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TABLE II

DETAILS OF THE GRIDS USED FOR THE NINE RESOLUTION STUDY CASES. Y +
MIN

IS THE WALL-NORMAL LOCATION OF THE NEAREST GRID POINT TO THE WALL,
AND λ IS THE COMPACTNESS COEFFICIENT USED IN Equation 3.5. NUMBER OF

ELEMENTS AND GRID POINTS APPEAR IN THE ORDER: X, Y , Z.

P Case
Number of
elements

Number of
grid points

Total
grid points

y+min
Points
in y+10

λ Linestyle

2-5 48× 33× 37 144× 99× 111 1,582,416 0.37 5 2.55
2 2-8 48× 39× 37 144× 117× 111 1,870,128 0.21 8 3.14

2-11 48× 43× 37 144× 129× 111 2,061,936 0.14 11 3.58

5-5 24× 17× 19 144× 102× 114 1,674,432 0.17 5 2.68
5 5-8 24× 19× 19 144× 114× 114 1,871,424 0.12 8 3.15

5-11 24× 21× 19 144× 126× 114 2,068,416 0.072 11 3.70

7-5 18× 13× 14 144× 104× 112 1,677,312 0.13 5 2.80
7 7-8 18× 14× 14 144× 112× 112 1,806,336 0.093 8 3.18

7-11 18× 16× 14 144× 128× 112 2,064,384 0.061 11 3.60

3.3.1 Validation

To validate the adequacy of the size of the computational domain, examples of two-point

correlations of the velocity fluctuations for case 7-11 are shown in Figure 6 for two periodic

directions, i.e. streamwise and spanwise directions. The samples are taken from two different

wall-normal locations of y/δ = 0.031 and 0.824, which translate to wall units of y+ ≈ 6 and 175,

respectively, to confirm that the decorrelation is achieved both near the wall and at the core of

the channel. The two-point correlation of the velocity fluctuation in i-direction is defined as

Rii(r) =
〈u′i(x)u′i(x+ r)〉
〈u′i(x)2〉

, (3.6)
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where x is the location of the probe, and r is the separation. Throughout the chapter, 〈〉 denotes

the ensemble (Reynolds) average, and {} is the Favre average defined as {f} = 〈ρf〉/〈ρ〉. Also,

the single prime, ′, and double prime, ′′, refer to the turbulent fluctuations with respect to

the ensemble and Favre averages, respectively. The correlations are plotted for the largest

separation, which is half the domain size in each periodic direction. The figure shows that

at the largest separation, the values of the two-point correlations fall off within the range of

Rii < 5% for all components of the velocity, at both distances from the wall, and at both

periodic directions. With this, we conclude that the values of velocity are independent at the

largest separation, and the computational box is sufficiently large to encompass the largest eddy

of the flow.

In order to ensure that the statistics of interest are not affected by the compressibility, a

low Mach number case at Mf = 0.1 is also simulated using the grid of case 7-5. The average

streamwise velocity profiles are compared for the base Mach number of Mf = 0.4 (case 7-5)

and the low Mach number case in Figure 7 (a). For each point of the plot, samples are taken

from vertical planes parallel to the walls at every time step. The average of all samples is

calculated. Then, due to the symmetry of the problem, the average of two sides of the channel

centerline is plotted. This procedure is carried out for all presented plots that are drawn versus

distance from the wall for half the channel height. In Figure 7(a) the velocity (u+ = u/uτ )

and the distance from the wall (y+) are given in wall units. It can be seen that the velocity

profiles are similar for the two Mach numbers. The root-mean-square (rms) velocity fluctuation

in the i-direction is defined as u′′i.rms = {u′′i u′′i }1/2. The rms velocity fluctuations scaled by the
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Figure 6. Two-point correlations of the velocity components for case 7-11: (a) near the wall in
streanwise direction, (b) near the wall in spanwise direction (c) away from the wall in

streamwise direction (d) away from the wall in spanwise direction.
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Figure 7. Comparison of (a) the mean streamwise velocity and (b) rms velocity fluctuations
for the base Mach number (Mf = 0.4) and the low Much number (Mf = 0.1), using the grid of

case 7-5.

friction velocity, u′′i.rms
+ = u′′i.rms/uτ , are compared for the two Mach numbers in Figure 7(b)

in wall coordinates. It is shown that the rms profiles agree for both Mach numbers. Therefore,

it is concluded that the first- and second-order statistics of the flow are not affected by the

compressibility for the range of Mach number considered here. This conclusion is consistent

with the results of Lenormand et al. (36). Wang et al. (37) also showed that a channel flow

at M = 0.5 and Re = 3,000 has the same mean streamwise velocity, velocity fluctuations and

Reynolds shear stress as the incompressible channel flow of Kim et al. (23).

Among the cases considered in this work, case 7-11 is supposed to provide the most accurate

results. Firstly, it has the highest resolution near the wall (11 points within y+
10); secondly, it

features a higher order spectral approximation of P = 7. Therefore, to validate the method,

the results from this case are compared with the DNS of Crawford (26). Figure 8(a) and (b)
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Figure 8. Comparison of (a) mean streamwise velocity and (b) rms velocity fluctuation
profiles for case 7-11 and the previous DNS of Crawford (26).

compares the profiles of the streamwise velocity and rms velocity fluctuations of case 7-11 and

those of Crawford in wall units, respectively. It is observed that the mean velocity profile

follows the law of the wall, and both the mean and fluctuation profiles of case 7-11 agree with

the previous work.

The relative temperature scaled by the wall friction temperature (Tτ ) is defined as

θ+ =
T − Tw
Tτ

. (3.7)

The wall friction temperature is given by

T ∗τ =
q∗w

ρ∗c∗pu
∗
τ

=
k∗ ∂T

∗

∂y∗

∣∣∣
w

ρ∗c∗pu
∗
τ

, (3.8)
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and in non-dimensional form becomes

Tτ =

∂T
∂y

∣∣∣
w

ρuτRefPrf
. (3.9)

Figure 9 presents the relative temperature scaled by the Prandtl number for the present low

Mach number simulation (Mf = 0.1) using the grid of case 7-5. The temperature profile is

compared with the incompressible DNS of Kawamura et al. (38) and the empirical relation

suggested by Kader (See Eq. (9) of (39)). In the immediate vicinity of the wall the molecular

conduction dominates the heat transfer, and the temperature linearely changes according to

〈θ+〉 = Pr y+ (39). Figure 9 shows that the mean temperature of the present simulation agrees

with both previous simulation and the suggested empirical relation.

Figure 10 illustrates the instantaneous streamwise velocity of case 7-11 on three perpendic-

ular planes. The plane parallel to the walls is located at y+ ≈ 10. The wall layer structures

are observed on the xz-plane. The so-called streaks are related to bands of low momentum

fluid near the wall. The spanwise distance between the streaks are found to be of the order of

d+ ≈ 100, which is in agreement with previous simulations (36). It can be seen in the xy-plane

of Figure 10 that the streaks lift away from the wall at a shallow angle.

3.3.2 Mean Statistics

Each case is simulated for 20 flow-through times to obtain the mean flow statistics. The

flow-through time is defined as tft = Lx/U . The mean streamwise velocity within the viscous

(laminar) sublayer, i.e., y+ < 5, is shown in Figure 11 for all presented cases. Note that the



51

100 101 102
100

101

102

y+

〈θ
+
〉/
P
r

Present work (M = 0.1)

Kawamura et al. (38)

Kader (39)

〈θ+〉 = Pr y+

Figure 9. The mean relative temperature scaled by the friction temperature and the Prandtl
number for the low Mach number simulation (Mf = 0.1) as compared with the DNS of

Kawamura et al. (38) and the empirical relation of Kader (39).

values are plotted only at the solution (Gauss) points. All cases correctly predict the one-to-one

variation of u+ to y+ in this region, which is suggested by the law of the wall as u+ = y+.

The mean streamwise velocity for all nine cases, scaled by the friction velocity, are presented

in Figure 12. In all the plots in this work, points are plotted and connected by a straight line.

The small difference between the profile of case 2-5 with other cases in Figure 12(a) in the range

of 0.4 < y+ < 3 is related to this plotting method, and the fact that case 2-5 has the fewest

grid points within y+ < 3. The three cases with P = 5 (hereinafter, called P5 cases), as well

as the three cases with P = 7 (hereinafter, called P7 cases), have the same profiles throughout

the half-height of the channel. All nine cases predict the same velocity profiles up to y+ = 10.

Above y+ = 10, the profiles of cases with P = 2 (hereinafter, called P2 cases) are generally
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Figure 10. Instantaneous streamwise velocity from case 7-11.

lower than those of P5 and P7 cases. After a closer look at this region (see Figure 12(b)), it is

revealed that the profile of case 2-11 separates from the other P2 cases at y+ ≈ 30 and matches

those of P5 and P7 cases at y+ ≈ 140. The same behavior is observed for the profile of case

2-8, but at different locations: It deviates from that of case 2-5 at y+ ≈ 100 and joins those of

P5 and P7 cases at y+ ≈ 200. It is concluded that P2 cases slightly underpredict the mean

streamwise velocity for y+ > 10. This underprediction happens in a shorter range for the cases

with higher near-wall resolution.

The profiles of the mean temperature scaled by the wall temperature (Tw) and the mean

density scaled by the bulk density for all cases are presented in Figure 13(a) and (b), respectively.

The bulk density is calculated by averaging the density over space (whole domain) and time. The
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Figure 11. Mean streamwise velocity at solution (Gauss) points, in wall coordinates, within
the viscous sublayer for all nine cases.
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Figure 12. (a) Mean streamwise velocity plotted in wall coordinates for all cases. (b) Same as
(a), but magnified at the log-law region. The linestyle for the presented cases are provided in

Table II.
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Figure 13. Mean profiles of (a) temperature and (b) density. The linestyles are provided in
Table II.

maximum temperature and the minimum density occur on the centerline of the channel, while

the walls have the lowest temperature, which is due to the fact that the heat that is caused by

dissipation exits the channel through the isothermal walls. It is observed that the temperature

and density profiles are not affected by the grid resolution, and the centerline temperature

and density have values nearly equal to 1.039 and 0.997, respectively. This demonstrates that

temperature and density are not significant variables for studying the effect of the grid resolution

in low Mach number flows considered here.

The mean relative temperature scaled by the friction temperature and the Prandtl number

(θ+/Pr) is presented in Figure 14 for all cases. This figure shows that all cases, with the

exception of case 2-5, perfectly follow the linear near-wall behavior (〈θ+〉 = Pr y+). Case 2-5,

however, slightly overpredicts the quantity, possibly due to the inaccurate calculation of the

slope of the temperature at the wall.
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Figure 14. The mean relative temperature scaled by the friction temperature and the Prandtl
number near the wall. The linestyle for the presented cases are provided in Table II.

Table III summerizes the mean flow variables for all presented cases. The second column

provides the mean centerline velocity, 〈uc〉, scaled by the bulk velocity. All centerline velocities

are within 2% of the value of 1.156 calculated by Dean’s (40) empirical relation, given by

〈uc〉 = 1.28 Re−0.0116
h , (3.10)

where Reh = Uh/ν is the Reynolds number based on the channel height (h = 2δ) and the bulk

velocity. Dean also suggested a correlation for the skin friction coefficient of the channel flow

as

cf = 0.073 Re−0.25
h . (3.11)

All skin friction coefficients of presented cases (given in Table III) are within 4% of the value

of 8.12 × 10−3 calculated by Dean’s relation. Also shown in Table III is the friction Reynolds



56

number. The friction Reynolds numbers of cases 7-8 and 7-5 do not significantly differ from

that of case 7-11 (0.2% and 0.4% differences, respectively). The predicted friction Reynolds

number of P5 cases are also close to that of case 7-11, with 0.8%, 0.3%, and 0.3% errors, from

the lowest to the highest resolution cases, respectively. However, P2 cases have higher friction

Reynolds numbers, and the difference with that of case 7-11 is 2.3%, 1.7%, and 1.1% for cases

2-5, 2-8, and 2-11, respectively. The value of the friction Reynolds number is calculated by the

relation

Reτ =

√
Ref
ν

〈
∂u

∂y

〉∣∣∣∣
w

, (3.12)

where 〈∂u/∂y〉|w is the mean slope of velocity evaluated at the wall for each case. An error in

the prediction of the friction Reynolds number is directly related to an inaccurate calculation

of the behavior of the velocity adjacent to the wall. This shows that P2 cases are unable to

accurately capture the slope of the velocity at the wall.

3.3.3 Second-Order Statistics

A comprehensive grid resolution study should include the second-order statistics of the flow.

It is reported that under-resolved grid in one or more directions damages the prediction of the

mean properties of the flow as well as higher-order statistics (18). We do not include the second-

order statistics of temperature and density in this discussion since, as seen by previous analysis

of their mean values, these variables are not significant for this analysis. The rms of velocity

fluctuations over the full height of the channel for case 7-11 are plotted in Figure 15(a). The

symmetry of the profiles about the channel centerline indicates the adequacy of the number

of samples taken to average the profiles. In order to make sure that a sufficient number of
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TABLE III

MEAN FLOW VARIABLES AND THE SIMULATION TIMES REQUIRED BY EACH
CASE (IN FLOW-THROUGH TIME UNIT) TO REACH RMS PROFILE SYMMETRY.

P Case 〈uc〉 cf × 103 Reτ tft

2-5 1.166 8.16 208.8 80
2 2-8 1.176 8.07 207.5 145

2-11 1.170 7.98 206.4 150

5-5 1.171 7.93 205.7 100
5 5-8 1.164 7.85 204.7 140

5-11 1.170 7.81 204.1 160

7-5 1.155 7.87 204.9 120
7 7-8 1.162 7.83 204.4 150

7-11 1.162 7.80 204.0 160

samples is taken, the simulation is continued until the symmetry of the rms profiles is reached

and the profiles do not change in time. The evolutions of the maxima of the streamwise velocity

fluctuations on both sides of the channel in time (scaled by the flow-through time) are shown

in Figure 15(b) for case 7-11. The plot reveals that 160 flow-through times is needed to reach

the symmetry. The last column of Table III provides the simulation time required by each

case (in flow-through time unit) to reach the symmetry of the rms profiles. It is observed that

cases with lower P generally require less time to achieve the symmetry than their corresponding

cases with higher P with the same near-wall resolution. This could be attributed to the higher

numerical dissipation caused by lower-order discretization of low-P cases compared to high-P

cases. It is also observed that, for each polynomial order, the low resolution cases require

significantly less time to achieve the symmetry than the moderate and high resolution cases.
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Figure 15. (a) Profiles of rms velocity fluctuations for case 7-11. (b) Evolutions of maxima of
streamwise rms velocity fluctuations in time (normalized by flow-through time) on both sides

of the channel for case 7-11.

This observation could be attributed to the lower number of samples (in time) for calculation of

the rms profiles for the low resolution cases; low resolution cases have smaller number of time

steps per flow-through time due to their larger time step sizes.

The rms of streamwise velocity fluctuation in wall units (u′′i.rms
+ = u′′i.rms/uτ ) for all pre-

sented cases are shown in Figure 16(a). The rms values are generally lower for P2 cases within

8 < y+ < 70. Figure 16(b) shows a magnified view of the same plot for P2 cases near the peaks

as compared with the results from DNS of Crawford (26). All three P2 cases significantly

underpredict the value of the streamwise velocity fluctuation. The error of the maximum of

the quantity is 7%, 5%, and 4% for cases 2-5, 2-8, and 2-11, respectively. Figure 16(c) and

(d) are the same as Figure 16(b), but for P5 and P7 cases, respectively. P5 cases are in good

agreement with the reference DNS, as shown in Figure 16(c); cases 5-5 and 5-8 slightly under-



59

0 20 40 60 80 100
0

1

2

3

y+

u
′′ rm

s
+

(a) all cases

5 10 15 20 25 30 35 40
2

2.2

2.4

2.6

2.8

y+

u
′′ rm

s
+

(b) P2 cases

Crawford (26)

5 10 15 20 25 30 35 40
2

2.2

2.4

2.6

2.8

y+

u
′′ rm

s
+

(c) P5 cases

Crawford (26)

5 10 15 20 25 30 35 40
2

2.2

2.4

2.6

2.8

y+

u
′′ rm

s
+

(d) P7 cases

Crawford (26)

Figure 16. (a) The rms of streamwise velocity fluctuations for all cases. (b)-(d) Same as (a),
but magnified near the peaks, as compared with the DNS of Crawford (26) for P2, P5, and

P7 cases, respectively. The linestyle for the presented cases are provided in Table II.

predict the quantity (1.5% and 0.8% maximum error, respectively). Among P7 cases, only case

7-5 slightly underpredicts the rms of streamwise fluctuations (1.5% maximum error), and both

cases 7-8 and 7-11 agree with the previous work. Regardless of the approximation order (P ),

higher-resolution cases have more accurate predictions of the streamwise fluctuations, and the

profiles of the moderate-resolution cases are closer to those of higher-resolution cases than the

lower-resolution cases.
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Table II.

The rms of normal and spanwise velocity fluctuations in wall units for all cases are shown

in Figure 17 as compared with the DNS of Crawford (26). The discrepancies of the normal

fluctuations (v′′rms
+) are not significant for P5 and P7 cases. However, P2 cases provide slightly

higher values. Case 2-5 significantly overpredicts the spanwise velocity fluctuation.

Profiles of rms of velocity fluctuations near the wall scaled by the local streamwise velocity

(u′′rmsi/〈u〉) are shown in Figure 18(a)-(c) for all cases. The values are compared with the results

reported by Rai and Moin (24) at a slightly lower friction Reynolds number of Reτ = 180. All

presented cases provide similar profiles outside the viscous sublayer (y+ > 5). Inside the viscous

sublayer, however, oscillations appear in some cases. The only cases with completely smooth

values adjacent to the wall are cases 5-11 and 7-11. Cases with higher near-wall resolution have

smoother values near the wall. P2 cases, especially case 2-5, 2-8, and 5-5, show significantly

stronger oscillations comparing with P7 cases.
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Figure 18. Profiles of rms velocity fluctuations near the wall normalized by the local mean
velocity for (a) P2 cases, (b) P5 cases, and (c) P7 cases, compared with results of Rai and

Moin (24). The linestyle for the presented cases are provided in Table II.

The Reynolds shear stress profiles, −{u′′v′′}, for all presented cases along with that of

Crawford (26) are shown in Figure 19 (a). The results from the nine cases are in good agreement

with the previous result. The discrepancy between the current work and Crawford’s work could

be due to the insufficient number of samples in the previous work. Figure 19(b) shows a

magnified view of the same plot near the peaks. P2 cases calculate a higher peak for the

quantity comparing with P5 and P7 cases. The difference between the peaks of the low and

high resolution cases is more evident for P = 2 than for higher-P cases.

The mean total shear stress, 〈τT 〉, in a fully developed, compressible, periodic, force-driven

channel flow can be theoretically calculated in wall units by the equation (Huang et al. (41)):

〈τ+
T 〉 =

〈τT 〉
τw

=
〈µ〉
µw

∂〈u+〉
∂y+

+

〈
µ′

µw

∂u′+

∂y+

〉
− 〈ρ〉{u

′′v′′}
ρwu2

τ

= 1− 1

δ

∫ y

0

〈ρ〉
ρ

dy. (3.13)
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Applying δ = 1 (δ is the channel half-height) and assuming constant viscosity, which is the case

here, Equation 3.13 is reduced to

∂〈u+〉
∂y+

− 〈ρ〉{u
′′v′′}

ρwu2
τ

= 1−
∫ y

0

〈ρ〉
ρ

dy. (3.14)

Since the flow considered here is at a low Mach number, and the changes of density are small, the

right-hand side of Equation 3.14 fall on a straight line (1−y) for all cases, as shown in Figure 20.

The profiles of the mean total shear stress (〈τ+
T 〉), i.e., the left-hand side of Equation 3.14, are

shown in Figure 21(a). For a fully developed channel flow in a statistical equilibrium state,

Equation 3.14 should be satisfied, i.e., the mean total shear stress should follow a straight line.

Figure 21(a) validates that this is the case here. A magnified view of the same plot near the

wall is shown in Figure 21(b). Strong oscillations appear in lower resolution cases, especially

case 2-5. The oscillations are stronger for P2 cases than P5 and P7 cases. The deviation of

the higher resolution cases (see cases 5-11 and 7-11) from the straight line is possibly due to

the insufficient number of samples.

From the discussed results, it is observed that the approximation order plays a major role

in the near-wall resolution requirement; P7 and P5 cases produce more accurate solutions than

P2 cases with the same number of grid points. This is due to the exponential convergence of

the solution with the order of approximation, that is inherent in spectral methods (16). Case

7-8 provides nearly the same fidelity as case 7-11, despite featuring only 8 points within y+
10.
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Figure 19. (a) Reynolds shear stress for all presented cases and Crawford (26). (b) Same as
(a), but magnified near the peaks. The linestyle for the presented cases are provided in

Table II.
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Figure 21. (a) Mean total shear stress, ∂〈u+〉/∂y+ − 〈ρ〉{u′′v′′}/(ρwu2
τ ), for all presented

cases. (b) Same as (a), but magnified near the wall. The linestyle for the presented cases are
provided in Table II.

Even case 7-5 (with only 3 points inside the laminar sublayer, as shown in Figure 5) is more

accurate than case 2-11 (with 7 points inside the laminar sublayer).

It is also observed that, up to y+ ≈ 10, all cases predict the same mean velocity and almost

the same rms of velocity fluctuation. The major differences between the cases are observed

in (i) more outer regions of the boundary layer, i.e., 10 < y+ < 50, and (ii) the wall friction

characteristics of the flow, such as the friction velocity, the non-dimensional wall coordinate

(y+), and the friction Reynolds number. The error in the calculation of the wall friction

characteristics results in wrong representation of the variables scaled by the wall units (y+ and

u+).
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3.3.4 Computational Cost

As mentioned earlier, the extremely small grid size near the wall in numerical methods

using highly non-uniform grids results in a severe time step size restriction and increases the

computational cost of the simulation. The objective here is to determine the sufficient grid

resolution to capture the accurate flow statistics while minimizing the computational cost. The

computational costs of all considered cases are provided in Table IV. All timing tests are

performed on a single processor so that they are not affected by the parallel efficiency of the

code. The simulations are conducted using Intel Xeon E5-2670 (2.60 GHz) processors. The

minimum grid sizes and the time step sizes of all cases are also included in Table IV. The

Kolmogorov time scale of the present problem is tη ≈ 1.7 × 10−2 (See Appendix D for the

definitions of Kolmogorov scales). The time step sizes of different cases determined by the CFL

condition is shown to be in the range of 6.1×10−4 < ∆t < 2.5×10−3. Therefore, the time step

size for the present Reynolds number is not limited by the Kolmogorov time scale.

The sixth column provides the computation time in CPU hours per flow-through time of

the simulation. It can be seen that the time step size, and consequently the flow-through hours,

are highly affected by the near-wall resolution, such that, for P = 7 for example, the cost of the

high resolution case is twice that of the low resolution one. The flow-through hours for each

case is influenced by two factors: (i) with higher resolution, the minimum grid size is smaller,

and the time step size is more restricted, therefore, more steps are needed to complete one

flow-through time of simulation; (ii) for grids with higher resolution, there are more solution
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points throughout the domain, which need to be updated every time step, and this adds to the

computational cost of each time step.

The last column of Table IV provides the CPU hours of the whole simulation for each case.

As mentioned before (see Table III), the required number of flow-through times to reach the

symmetry of the rms velocity fluctuation profiles are different for different cases. Note that

the numbers provided are not the actual simulation times, rather they are CPU hours if the

simulations were performed on a single processor. The difference in the computational cost of

the low and high resolution cases are more apparent when looking at this quantity. The CPU

hours of the high resolution case is more than four times that of the low resolution case for

P = 2, and more than three times and about 2.5 times for P = 5 and P = 7, respectively. This

is due to the fact that, as discussed before, higher resolution cases require more flow-through

times to reach the symmetry of the rms profiles.

The CPU hours per flow-through time of the simulation for all cases are visualized in

Figure 22. It is observed that using higher approximation order (P ) is generally more computa-

tionally expensive for two cases with the same resolution. However, this increase in cost comes

with a significant improvement in the accuracy of the calculations. In fact, all P7 cases provide

higher accuracy than any P2 case. Case 7-8 resolves all statistics of interest (as demonstrated

before) with a lower computational cost than case 2-11. Therefore, we conclude that case 7-8

is the most efficient case with sufficient resolution to resolve the flow statistics.
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TABLE IV

COMPUTATIONAL COSTS IN CPU HOURS ON A SINGLE PROCESSOR.
FLOW-THROUGH HOURS IS THE CPU HOURS REQUIRED TO COMPLETE ONE
FLOW-THROUGH TIME, WHILE SIMULATION HOURS IS THE CPU HOURS FOR

THE WHOLE SIMULATION. YMIN IS THE NORMAL LOCATION OF THE NEAREST
POINT TO THE WALL, AND ∆T IS THE TIME STEP SIZE.

P Case y+min ymin × 104 ∆t× 104
Flow-through

hours
Simulation

hours

2-5 0.37 17.4 25.5 24.3 2,429
2 2-8 0.21 10.1 18.5 37.4 6,167

2-11 0.14 6.74 13.9 58.2 9,886

5-5 0.17 8.50 13.1 31.6 3,796
5 5-8 0.12 5.66 10.3 45.0 7,194

5-11 0.072 3.53 7.46 68.7 12,368

7-5 0.13 6.13 9.70 38.1 5,327
7 7-8 0.093 4.51 8.09 49.8 8,474

7-11 0.061 2.94 6.07 76.2 13,710

3.4 Summary and Conclusions

The near-wall resolution requirement for DNS of turbulent flows using multidomain Cheby-

shev grids is studied through a series of DNS of turbulent periodic channel flow at a friction

Reynolds number of Reτ = 204. A discontinuous spectral element method is employed, which

features non-overlapping elements. Inside each element, the solution is approximated on a grid

with a Chebyshev distribution of points. In such a method, due to the strong non-uniformity

of the grid point distribution, satisfying the near-wall resolution conditions recommended by

previous work (placing at least 10 grid points within y+
10) results in an excessively small time
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Figure 22. Computational cost for all presented cases in CPU hours per flow-through time of
simulation. Low, moderate, and high resolution correspond to 5, 8, and 11 points below y+

10,
respectively.

step size, and adds to the computational cost. It is important to determine a resolution that is

sufficient to resolve the turbulent statistics while minimizing the computational cost.

Three different approximation orders of P = 2, 5, and 7 are considered here to examine

the effect of the approximation order on the resolution requirement. For each approximation

order, three grids with different near-wall resolutions are tested. The high resolution grids

feature 11 grid points inside y+
10, and the moderate and low resolution grids have 8 and 5 points

within y+
10, respectively. The same flow is simulated using the nine grids, and first- and second-

order statistics of the flow are compared. It is shown that the solution is not affected by the

compressibility effects. The results obtained from the case with the highest resolution (case

7-11) agrees with previous work and serves as our base case. The observations are as follows:
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1. All cases predict the same normalized mean streamwise velocity inside the laminar sub-

layer (y+ < 5), and those profiles agree with the law of the wall (u+ = y+).

2. All P7 and P5 cases have the same mean streamwise velocity profiles throughout the

channel height. However, P2 cases predict lower values for y+ > 10. This underprediction

happens in different ranges for different cases, and the range is shorter for higher resolution

cases.

3. The calculated friction Reynolds numbers for P7 cases are within 0.44% of each other.

P5 cases also have close predictions of the quantity (0.8% maximum difference with case

7-11). However, P2 cases predict higher values (1.1% to 2.3% difference with case 7-11).

4. Cases 5-11, 7-8, and 7-11 predict the same rms of streamwise velocity fluctuations, while

cases 5-5, 5-8, and 7-5 slightly underpredict the quantity. P2 cases, however, calculate

significantly lower streamwise fluctuations. Regardless of the approximation order, lower

resolution cases have smaller fluctuations. The difference of the streamwise velocity fluc-

tuation prediction between the lowest and the highest cases is larger for P = 2 than other

cases.

5. Lower resolution cases, especially with P = 2, have oscillations in their velocity fluctua-

tions scaled by the local mean streamwise velocity near the wall.

6. P2 cases have higher Reynolds shear stress than other cases. Lower resolution generally

results in overprediction of the Reynolds shear stress, and this overprediction is more

evident for the lower approximation order.
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7. The total shear stress for all cases fall on a straight line, which shows: (i) the total

shear stress is not affected by the compressibility, and (ii) a statistical equilibrium state is

reached. However, lower resolution cases of P = 2 show strong oscillations near the wall.

8. Higher-P cases are generally more computationally expensive than lower-P cases, with

the same total grid points. However, they provide significantly more accurate results.

Higher resolution cases require more computational time to complete one flow-through

time of simulation as well as more number of flow-through times to achieve symmetry of

rms profiles. It is concluded that case 7-8 is the most efficient case with the sufficient

resolution for accurate calculations of the flow statistics.

It is concluded that the near-wall resolution requirement for accurate prediction of turbu-

lence statistics of the flow strongly depends on the spectral approximation within the elements.

Higher approximation order produces more accurate solution than lower approximation order

with the same number of grid points within y+
10. For the higher approximation order of P = 7,

the near-wall resolution that places 8 grid points within y+
10 is sufficient for accurate calculations

of the first- and second-order turbulence statistics near the wall. An approximation order of

P = 5 requires 11 points within the same region for accurate flow statistics. However, for the

lower approximation order of P = 2, even having 11 grid points within y+
10 results in slight

underprediction of the mean streamwise velocity, significant underprediction of the rms of the

streamwise velocity fluctuations, overprediction of the Reynolds shear stress, and oscillations

of the total shear stress and velocity fluctuation scaled by the mean streamwise velocity near

the wall. It is also observed that the number of grid points within y+
10 has a stronger effect on
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the quality of the solution in cases with lower approximation order than in those with higher

approximation order. Note that the conclusions hold true for the low Reynolds number flows,

and further investigation is desired for a broader range of Reynolds number.



CHAPTER 4

MODAL EXPLICIT FILTERING FOR LARGE EDDY SIMULATION

The material presented in this chapter is a collaborative work, which is not published yet.

It will be submitted to the Journal of Computational Physics as:

Ghiasi, Z., Komperda, J., Li, D., Nicholls, D., and Mashayek, F.: Modal Explicit Filtering

for Large Eddy Simulation in Discontinuous Spectral Element Method.

The coauthors, Dongru Li, Jonathan Komperda, and David Nicholls, helped me by reviewing

the manuscript and providing their feedback. My advisor and coauthor, Farzad Mashayek,

supervised the work presented in this chapter.

Developing a turbulence model that is computationally inexpensive and compatible with

the nature of the numerical scheme is a crucial step in expanding the application of spectral

element methods for large eddy simulation (LES) in complex geometries. In this work, an

element-level modal low-pass explicit filtering procedure, which operates in the spectral space,

is implemented in the discontinuous spectral element method (DSEM). The application of the

modal filter is studied for LES without a subgrid-scale (SGS) model. The method is tested

for a configuration featuring 3D isotropic turbulence, and its performance is compared with a

previously used method—a spectral interpolation-based nodal filter. The filtering procedure is

also applied to a 3D turbulent channel flow at a friction Reynolds number of Reτ = 544, and

the results are compared with a previous direct numerical simulation (DNS). The effects of both

h and P resolutions on the best choice of the filter strength are also studied. An anisotropic

version of the modal filter, which damps high-frequency modes in a specific direction, is also

introduced and tested for the channel flow.

72



73

4.1 Introduction

In large eddy simulation (LES) of turbulent flows, the motions with larger scales are directly

calculated, while the effects of the small-scale motions are modeled (42). The governing equa-

tions of the large-scale motions of the flow are obtained by applying a spatial low-pass filter to

the Navier-Stokes equations (42). The filter divides the flow scales into two parts: resolved and

subfilter-scale (SFS) motions (43). These regions are shown in Figure 23. The most widely used

approach for LES is to consider the coarse computational mesh as the spatial low-pass filter.

This type of filter is called an implicit filter since no explicit filtering operation is applied in the

procedure (42). For the case of the implicit filter, SFS would be equivalent to the scales smaller

than the grid size, the so-called subgrid-scales (SGS); see Figure 23. Even though the implicit

filtering approach takes full advantage of the grid resolution, the shape of the low-pass filter is

not known (43). Another drawback of the implicit filtering approach is that there is no direct

control on the energy spectra in the high-wavenumber motions (42). To address the issues at-

tributed to implicit filtering, explicit filtering is often introduced; a low-pass filter, with a filter

width larger than the grid size, is explicitly applied to the flow variables. The explicit filtering

approach provides a well-defined filter shape at the cost of reducing the effective resolution of

the simulation compared with the grid resolution (42; 44). Since the filter width is larger than

the grid size, the SFS motions are divided into resolved subfilter-scale and unresolved subfilter-

scale motions. The latter is equivalent to the SGS motions. The use of an explicit filter is

practiced in LES studies and is shown to reduce the numerical error (44; 45) as well as aliasing

and SGS modeling errors (44) and improve the accuracy of LES results (43; 44; 46). Gullbrand
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and Chow (43) performed LES of turbulent channel flow using a finite difference (FD) code.

They showed that using explicit filtering potentially limits the effects of the numerical errors in

dynamic Smagorinsky (47) and dynamic reconstruction models and significantly improves the

accuracy of the mean velocity and turbulence intensities. In both cases of LES with implicit

and explicit filtering, the effects of the motions of the unresolved scales should be taken into

account. Those effects, which appear as the SGS stress tensor in the governing equations, are

commonly modeled by a SGS model, such as an eddy-viscosity model (48; 49; 47) or a similarity

model (50).

Figure 23. The division of turbulence motions by the filter and the grid based on their
wavenumbers.

An alternative approach that is gaining more attention recently is a form of LES known

as implicit LES (ILES). In this approach, the dissipation of the numerical scheme is assumed
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to mimic the effects of the viscous dissipation of the SGS motions and dampen the turbulent

energy. Even though, ILES has shown successful results (51; 52; 53; 54), the damping effects on

the resolved scales remain questionable. This method is also not suitable for high-order schemes

that introduce minimal or no numerical dissipation. In the absence of sufficient dissipation, the

accumulation of the energy at the grid cutoff wavenumber results in numerical errors and could

lead to instabilities (42). To alleviate this problem, an explicit low-pass filter can be applied to

the solution variables to remove the small-scale components of the solution. In this approach,

the explicit filtering serves as a drain for the energy cascade and prevents the instabilities

(42). This approach reduces the computational cost as well as implementation complexity

compared to methods that use a SGS model. Using an explicit filter without any SGS model

has been practiced for LES studies. Bogey and Baily (55) conducted high-order finite difference

simulation of compressible jets using an explicit filter without any SGS model. They applied

the filter to the density, velocities, and pressure every two time steps, sequentially in x-, y−,

and z-directions. Mathew et al. (56) applied an explicit filter on the solution variables at every

time step for LES of compressible channel flows. However, they mention that a finite number of

time steps can be taken without applying the filter. Fischer and Mullen (57) applied an explicit

interpolation-based nodal filter to stabilize their spectral element method and used it for LES of

complex flows (58). Later, Sengupta (59) used the same filtering approach without a SGS model

for LES of isotropic turbulence and compared the results with the dynamic Smagorinsky model

(49). Sengupta et al. (60) used the same procedure for the LES of flow over a backward-facing

step.
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The benefit of explicit filtering is realized especially in high-order methods such as discontin-

uous spectral element methods (DSEM). The negligible numerical dissipation in these methods

demands a drain for the energy cascade to avoid numerical instabilities in under-resolved sim-

ulations. The basis functions in spectral methods form a hierarchical set, i.e., they represent

progressively higher spatial frequencies. Therefore, a sharp cutoff of the higher modes in the

modal space (a modal filter) represents a low-pass spatial filter of the solution in the nodal

space. Boyd (61; 62) applied a modal filter in his spectral method to reduce Gibbs oscillations

that are produced by shocks. Levin et al. (63) used a two-step modal filter to suppress the

instabilities in an eddy resolving spectral element ocean model. Blackburn and Schmidt (64)

used a modal filter in their spectral element method as the test filter of the Germano-Lilly

(49; 47) dynamic procedure and applied the method for a turbulent channel flow. Bouffanais

et al. (65) also applied the modal filtering technique in conjunction with the dynamic model

in their spectral element method for simulation of a lid-driven cubic cavity flow. Chaudhuri

et al. (66) applied an adaptive low-pass modal filter to the solution variables to eliminate its

high-frequency components and prevent instabilities around the shock.

To the best of our knowledge, the use of a modal filter, with no SGS model, for LES has

not been studied in spectral element methods. In this work, the application of a modal filter in

DSEM, without any SGS model, is investigated for LES of isotropic and wall-bounded turbulent

flows. A low-pass filter is applied to the primitive variables of the Navier-Stokes equations in the

modal space. The performance of such an explicit filter is studied for both decaying isotropic

turbulence and a turbulent flow in a periodic channel. Since the filters are applied locally within
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the elements, the filtering operation is performed on a single processor for each element. This

makes the method computationally inexpensive with nearly no impact on the parallelization

of the code. Global filters are expensive in spectral element methods (67) due to the necessity

for communication between the processors. Since the filtering procedure does not consider any

special treatment for the walls, the method can be used for more complex flows.

The remainder of the chapter is organized as follows. In section 4.2, the filtering procedures

and formulations are explained. Next, in section 4.3, the modal filtering is tested for a problem

exhibiting isotropic decaying turbulence, and its performance is compared with two spectral

interpolation-based nodal filters as well as a dynamic Smagorinsly model. The study continues

with the application of the modal filter to LES of a periodic turbulent channel flow, in section

4.4. A grid resolution study is performed to ensure grid independence of the method. Fur-

thermore, the ideal choice of the filter strength is investigated by performing simulations using

multiple grids with different h and P resolutions. For the channel flow case, an anisotropic ver-

sion of the modal filter is also introduced and tested. The present methods are also compared

in terms of their computational cost. Conclusions are drawn in the last section.

4.2 Filtering Procedures

Two filtering procedures are presented in this work. A filtering procedure in a spectral

element method can be constructed using either a modal low-pass filter in the modal space or

an interpolant-projection in the nodal space (64). For the case of modal filtering, the solution

needs to be transformed from the nodal representation to the modal representation within each

element. Then, the modes with the highest frequencies are set to zero. Finally, the modes
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are transformed back to the nodal space. For the case of a nodal filter, the solution, which

is constructed as a sum of basis functions of order P in each element, is interpolated to a

basis function of order P ′, where P ′ < P . Then, the solution is projected back to the original

basis function of order P . Though the two filters introduced here are designed to remove high-

frequency motions of the flow, they are different than conventional filters in terms of their

operating mechanism to achieve the same goal; they may be considered as projection operators

instead. The two filtering approaches are explained in detail in the following sections.

4.2.1 Modal Filter

A solution function in a spectral element method can be expressed in either nodal or modal

representation. In the nodal representation, the function is expressed through the values of

the function on a set of specific points in space. In the modal representation, the function is

expressed through the coefficients of a set of orthogonal expansion functions, or modes. The two

representations are mathematically equivalent, but each has their own computational properties

(68). A local solution function, ũ(X, t), inside a 1D element with a polynomial order of P in

the mapped space can be expressed at a specific time via its modal expansion as

ũ(X) =

P∑
k=0

ûk ψk(X), (4.1)

where ψk(X) are the basis functions, and ûk are the expansion coefficients. The basis func-

tions form a hierarchical set, i.e., each successive mode represents motions with higher spatial

frequencies. In the modal filtering approach, the solution variables are transformed from the
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nodal to the modal representation, and the expansion coefficients that correspond to the highest

frequencies are set to zero. The transformation mechanism between the nodal representation,

ũ(X), and the modal representation, ûk, of the solution is a discrete Chebyshev transform

(DChT) and an inverse discrete Chebyshev transform (iDChT) (69) (Refer to Appendix A for

detailed explanations). The formulations for DChT and iDChT are given by Equation A.4 and

Equation A.5, respectively. Both transformations are implemented in DSEM using the library

Fastest Fourier Transform in the West (FFTW) (70). More details of the transformations are

included in A.

The expansion functions in multiple space dimensions are the tensor-products of the 1D

functions, and the filtering procedure in three dimensions is applied using the matrix tensor

product properties. Assume ũ(X,Y, Z) is the solution in the mapped nodal space within a 3D

element with a polynomial order of P . The solution function can be expressed via its modal

expansion as

ũ(X,Y, Z) =
P∑
k=0

P∑
l=0

P∑
m=0

ûklm ψk(X)ψl(Y )ψm(Z), (4.2)

where ûklm are the 3D expansion coefficients, which represent the modes of the function in the

3D space; therefore, we call it the modal matrix. An example of such a 3D matrix is shown in

Figure 24(a) for a polynomial order of P = 8. Each small cube represents an entry of the modal

matrix, i.e., an expansion coefficient. After transforming the solution to the modal space, we

can modify the modes as desired, and then return the solution to the nodal space using an

iDChT. The component û000 of the modal matrix represents the bulk value of the function

within the element (Figure 24(b)), while components ûk00, û0l0, and û00m represent the modes
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purely in the x-, y-, and z-directions, respectively (Figure 24(c)). Consequently, components

with combinatory subscript represent the combinatory modes in the 3D space. Also, the compo-

nents with lower subscript represent the low-frequency modes, and the components with higher

subscript represent the high-frequency modes. Therefore, lowering the values of the components

with higher subscript is equivalent to damping the high-frequency motions, which is the aim

here. For example, if we set all the components ûklm, where max{k, l,m} = P , to zero, it is

equivalent to removing all the motions with contributions from the highest-frequency modes

from at least one direction. There are 3P 2 + 3P + 1 such components, and they are shown

in Figure 24(d) for P = 8. Therefore, applying a modal low-pass filter with modal strength

Nf means (i) transforming the solution from the nodal to the modal space via DChT, given

by Equation A.4, (ii) removing all combinatory modes that have contributions from the Nf

highest-frequency spatial modes in any direction, i.e.,

ûklm = 0 ∀ {k, l,m} where max{k, l,m} > P −Nf , (4.3)

and (iii) transforming the solution back to the nodal space via iDChT, given by Equation A.5.

For example, for Nf = 2, the entries that are removed, i.e., set to zero, are those shown in

Figure 24(e). We call this filtering operation isotropic modal filtering since the higher-frequency

modes are removed from all three directions.

Alternatively, setting components ûklm, where for example k = P , to zero is equivalent to

removing all motions with any contribution from the highest-frequency modes in the x-direction.
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There are (P + 1)2 such components, and they are shown in Figure 24(f) for P = 8. Therefore,

applying a modal low-pass filter with strength Nf in the ith direction means (i) transforming

the solution from the nodal to the modal space by applying the DChT, given by Equation A.4,

(ii) removing all combinatory modes that have contributions from the Nf highest-frequency

modes in the i-direction, i.e.,

ûklm = 0 ∀ {k, l,m} where



k > P −Nf (x-direction)

l > P −Nf (y-direction) ,

m > P −Nf (z-direction)

(4.4)

for removing the high-frequency modes in the x-, y-, or z-directions, respectively, and (iii)

transforming the solution back to the nodal space via the iDChT, given by Equation A.5. We

call this filtering operation anisotropic modal filtering since the higher-frequency motions are

removed only from specific directions. The anisotropic version of the modal filter is tested for

the non-isotropic case, i.e. the turbulent channel flow.

4.2.2 Nodal Filter

The second filtering method is called nodal filtering (65; 67). In the nodal filter, the filtered

values of a variable in an element with a polynomial order of P are obtained by interpolating

the variable to a grid with a lower polynomial order of P ′ < P , then projecting the solution

back onto the original grid with the polynomial order of P (65). The nodal filter is also called

an interpolant-projection filter (64; 59) or interpolation-based filter (57; 71). The nodal filtering
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Figure 24. Modal matrix for an element with polynomial order of P = 8: (a) the complete
matrix; (b) the zeroth mode, û000; (c) modes purely in the x-, y-, or z-directions, ûk00, û0l0,

and û00m; (d) highest-frequency modes in all three directions; (e) two highest-frequency
modes in all three directions; (f) highest-frequency modes in the x-direction.

procedure is expected to dampen high-frequency oscillations that have contributions from the

N ′f highest-frequency modes in three directions, where N ′f = P − P ′ is the filter strength (65).

This is due to the fact that the basis with the lower order, P ′, does not have the capacity to

capture the spatial modes corresponding to the N ′f highest-frequency modes. Note that for the

modal filter, Nf is defined as the number of high-frequency modes that are explicitly removed

from the modal space, while for the nodal filter, N ′f is defined as the difference between the order



83

of the two polynomial space (P − P ′). Both variables indicate the number of high-frequency

modes intended to be removed and represent the strength of the filters.

To formulate the nodal filter, first, we look at the procedure for a 1D element. The interpo-

lation and projection may be applied to either nodal sets, Gauss grid or Lobatto grid. In this

work, the filter is applied on the Lobatto grid since the endpoint values of the original function

are preserved. The first step is to interpolate the original function from a polynomial of degree

P to a polynomial of lower degree P ′ by

Q̃′
(
X ′i
)

=

P∑
j=0

hj
(
X ′i
)
Q̃(Xj). (4.5)

where Xj and Q̃ are the grid points and the solution values on the original (P ) polynomial space,

respectively, while primed variables are the same entities on the secondary (P ′) polynomial

spaces. The interpolation can be expressed as matrix-vector product by (59)

Q̃′i = I int
ij Q̃j , (4.6)

where

I int
ij =

P∏
k=0,k 6=j

X ′i −Xk

Xj −Xk
, i = 0, . . . , P ′, j = 0, . . . , P, (4.7)
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is the interpolation matrix. The second step is projecting the function Q̃′ (X ′) back to the

polynomial space P , resulting the filtered function,

Q̃filt(Xj) =
P ′∑
i=0

hi (Xj) Q
′(X ′i). (4.8)

Similarly, the second operation can be expressed as a matrix-vector form by (59)

Q̃filt
j = Ipro

ji Q̃′i, (4.9)

with the projection matrix, Ipro
ji defined by

Ipro
ij =

P ′∏
k=0,k 6=i

Xj −X ′k
X ′i −X ′k

, j = 0, . . . , P, i = 0, . . . , P ′. (4.10)

There are two approaches to extend the 1D interpolation and projection procedures de-

scribed in Equation 4.5 and Equation 4.8 to 3D space. The first approach is to apply the

1D procedure to all 1D arrays in the x-direction, then in the y-direction, and then in the z-

direction. We call this approach, which is used in previous work (55; 59), a series nodal filter.

The alternative approach is to generalize Equation 4.5 and Equation 4.8 for 3D space as

Q̃′(X ′l , Y
′
m, Z

′
n) =

P∑
i=0

P∑
j=0

P∑
k=0

hi(X
′
l)hj(Y

′
m)hk(Z

′
n) Q(Xi, Yj , Zk) (4.11)
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and

Q̃filt(Xi, Yj , Zk) =
P ′∑
l=0

P ′∑
m=0

P ′∑
n=0

hl(Xi)hm(Yj)hn(Zk) Q̃
′(X ′l , Y

′
m, Z

′
n). (4.12)

In this approach, which we call a 3D nodal filter, the interpolation and projection defined in

Equation 4.11 and Equation 4.12 are sequentially applied to the variables in all 3D elements.

4.3 Isotropic Decaying Turbulence

The results for LES of a 3D isotropic decaying turbulence are presented in this section.

The aim is to assess the performance of the modal filter for an isotropic turbulence condition.

Different turbulence models, including the modal filter, nodal filter, and a dynamic Smagorinsky

model, are tested, and the results are compared with DNS and no-model coarse DNS.

4.3.1 Problem Setup

The problem setup is similar to the isotropic turbulence of Blaisdell et al. (72). The

simulation is performed in a cube with periodic boundary conditions in three directions. The

length of the cube is 2π units in each direction. The domain is divided into six uniformly

distributed elements in each direction, resulting in a total of 216 elements. A polynomial order

of P = 8 is used for the basis functions within each of the elements. The total number of

solution (Gauss) points is Np = 63 × (8 + 1)3 = 157,464.

An initial condition should be specified such that it generates an isotropic and periodic

field for the velocity and thermodynamic variables. The procedure outlined by Blaisdell et

al. (72) for the case “idc96” is followed here to initialize the solution domain. The domain

is initialized by a correlated turbulent flow field using specified initial energy spectra. The
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spectra follow a top-hat distribution that has non-zero contributions in the wavenumber range

of 8 ≤ k ≤ 16. In this work, a divergence-free initial field is considered for the thermodynamic

variables; therefore, only the mean values of density, pressure, and temperature are specified.

The initial velocity fluctuations are purely solenoidal and exist in all three directions. The

initial field is first determined from the Fourier coefficients on a uniform grid via a fast Fourier

transform (FFT). Then, the field is interpolated from the Fourier grid to the Gauss grid points.

The bulk rms velocity at a fixed time instant is defined as

urms =

√
uiui

3
, (4.13)

where the overline denotes a spatial average over the whole domain. Turbulence kinetic energy

(TKE) is defined as the integral of the energy spectrum function, E(k), over all wavenumbers,

TKE =

∫ ∞
0

E(k) dk =
1

2
uiui. (4.14)

4.3.2 Results

The results of applying different filtering procedures on the isotropic turbulence are pre-

sented in this section. First, the filters are applied once to the initial field before running

the simulation to study the direct effect of the filters on a turbulence field (a priori analysis).

Then, the decaying isotropic turbulence is simulated using different filtering approaches, and

the performance of the filters in the prediction of the flow statistics are compared (a posteriori

analysis).
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4.3.2.1 A Priori Analysis

In this section, the effects of the isotropic modal filter and both series and 3D nodal filters

on an isotropic turbulence field are considered. The filters are applied one time to the initial

field of the 3D isotropic turbulence described above, and the solution fields before and after

applying the filter are compared.

First, we apply the filters on the initial 3D field and examine the solution values on a 1D

sample line across the domain. Figure 25(a)-(c) shows the u-velocity along a 1D sample line

across the domain from the original field and filtered fields obtained from different filtering

procedures with different strengths. By applying a stronger filter (larger Nf and N ′f ) at each

step, the solution is expected to become smoother, and the high-frequency features of the signal

are expected to weaken. With the modal filtering (Figure 25(a)), it is observed that the solution

becomes smoother with each consecutive step, where more high-frequency modes are removed.

With the nodal filters, however, this behavior is observed only for weaker filters (N ′f < 3).

Applying stronger nodal filters appears to introduce inconsistent contributions to the motions,

and change the general shape of the function. Such behavior can be seen for both nodal filters

in 1.5 < x < 3 for N ′f = 5 and in 4.25 < x < 5.25 for both N ′f = 4 and 5. This means that

by applying stronger nodal filters to the flow variables, non-physical effects are superimposed

on the lower-frequency motions that could result in incorrect turbulence statistics. This low-

frequency effect appears to be stronger for the series nodal filter than the 3D nodal filter. Note

that a nodal filter with N ′f = 4 or 5 might be too strong for a practical case of LES; however,
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visualizing their results help magnify the effects to better understand their differences with

modal filtering.

Following the results obtained from a 1D sample signal across the domain, further investi-

gation of the effect of the nodal filter on the modes of the solution is performed. This time,

the nodal filter is applied once to all variables in all elements at time t = 0, and the average

properties among all elements before and after applying the filter are compared (shown later).

The amplitude of modes with wavenumber n in element q before applying the filter is defined

by

Aq(n) = 〈ûklm〉 ∀ {k, l,m} where max{k, l,m} = n, n = 0, . . . , P, (4.15)

where 〈〉 means the average of the set. Examples of these sets are shown in Figure 26 for n = 6,

7, and 8. Similarly, the amplitude of modes with wavenumber n in an element after applying

the filter is called Afilt
q (n).

The procedure used to study the effects of filters on the modes is as follows. First, we

transform the solutions from nodal representation to modal representation via DChT, given by

Equation A.4, and store the amplitudes of the modes (Equation 4.15). Then, we apply the

filter of interest on the variables of interest and transform the filtered solutions from nodal

representation to modal representation. Finally, we compare the amplitude of the filtered

modes (Afilt
q (n)) with the previously stored original modes (Aq(n)). This procedure is used for

the nodal filters. The effect of the modal filter on the modes is trivial.

After calculating Aq(n) and Afilt
q (n) for all the elements, the amplitude of each wavenum-

ber is averaged for all the elements throughout the domain to obtain 〈A(n)〉 and 〈Afilt(n)〉.
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Figure 25. The effect of (a) the modal filtering, (b) series nodal filtering, and (c) 3D nodal
filtering on a 1D signal. The signal is the u-velocity on a sample line through the isotropic

turbulence field.
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Figure 26. The entries of the modal matrix that contribute to motions with wavenumber n for
(a) n = 8, (b) n = 7, and (c) n = 6.

Here, we are interested in the effect of the nodal filter on the amplitudes of modes at different

wavenumbers. Therefore, for each wavenumber, we look at the amplitude of each wavenumber

after applying the filter, relative to the amplitude of the same wavenumber before applying the

filter: Ã(n) = 〈Afilt(n)〉/〈A(n)〉. This study identifies the statistical effect of the filters on the

amplitude of each wavenumber. An ideal filter would remove the high wavenumbers, and at

the same time will not affect the low wavenumbers.

Figure 27(a) shows the relative amplitudes of modes (Ã(n)) at each wavenumber (n) after

applying the modal filter with different strengths (Nf ). The motions are calculated based

on u-velocity. Note that even though some adjacent points are connected with a sloped line,

they do not represent smooth transitions, but a sharp cutoff, i.e., the relative amplitudes of

the modes are one and zero for two adjacent wavenumbers. Not surprisingly, it is observed

that by applying a modal filter, the last Nf modes with the highest frequencies are completely
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removed, and the relative amplitude of the lower-frequency modes remain as one, which means

those modes are not affected by the filtering procedure.

Figure 27(b) and (c) show the effect of series and 3D nodal filters on the u-velocity modes,

respectively. By interpolating the solutions back and forth to a lower polynomial order, P ′ =

P −N ′f , the motions associated with the N ′f modes with highest frequencies are expected to be

completely removed with no effect on the other modes with lower frequencies. From Figure 27(b)

it is observed that by applying the series nodal filter with N ′f = 1, the mode with the highest

frequency (n = 8) is completely removed. However, the process has some weak effects on the

lower-frequency modes as well—two adjacent modes, i.e., n = 6 and 7, are slightly weakened. It

is also observed that the filter weakens the motions at n = 6 more than it does at n = 7. This

behavior is not expected from a low-pass filter, where the effectiveness of the filter should change

smoothly or sharply from high-frequency to low-frequency wavenumbers. For N ′f = 2, the two

modes with the highest frequencies (n = 7 and 8) are completely removed. However, again,

some of the lower-frequency modes are also affected. This time, three adjacent modes (n = 4,

5, and 6) are weakened. Similarly, for N ′f = 3, four adjacent modes are affected. This low-

frequency effect dramatically escalates for N ′f > 3 such that the filtering process significantly

changes the lowest-frequency modes. The value of Ã(n) at three low-frequency end of the

spectra, i.e., n = {0, 1, 2}, fall outside the plot frame and are given by Ã(n) = {1.81, 2.66, 2.04}

and {−1.28,−2.76,−1.97} for N ′f = 4 and 5, respectively. This observation conveys that the

series nodal filter, especially at higher strengths, provokes significant contributions to the low-

frequency motions and is consistent with the observation in Figure 25(b), where the general
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shape of the function changes for N ′f > 3. This unintended contamination of the low-frequency

motions may remove more turbulent motions than what is intended and severely affect the

first-, as well as second-order statistics.

A less severe version of the above-mentioned low-frequency effect is also observed in the 3D

nodal filter, shown in Figure 27(c). The 3D nodal filter acts similar to the modal filter, i.e.,

the filtering procedure does not affect the lower-frequency modes, only for N ′f = 1. For higher

values of N ′f , the low-frequency effect is present, but, compared with the series nodal filter,

fewer adjacent modes are changed at a lower rate. Also, for N ′f = 2 and 3, the amplitudes

of the modes adjacent to the filter cutoff, i.e., n = 6 and 5, respectively, are increased by the

filtering procedure, which could increase the motions at unintended scales and contaminate the

flow statistics. The low-frequency effect becomes severe for N ′f = 5; the point Ã(1) = −0.73

for N ′f = 5 falls outside the plot frame. This is a new observation and shows that the nodal

filter accomplishes one of the two expected goals: It does remove the motions within a certain

frequency range, but it does not leave the lower-frequency motions unaffected.

4.3.2.2 A Posteriori Analysis

LES of the isotropic decaying turbulence case is conducted using different filtering proce-

dures to compare their performance. A DNS of the same flow is also simulated as the benchmark.

Turbulence statistics such as the decay of the TKE, the energy spectra, and the dissipation spec-

tra are used for comparison. The filters are applied to density, three components of velocity,

and pressure at each time step. The initial turbulent Mach number based on urms is MT,0 = 0.3,
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Figure 27. The effect of (a) the modal filtering, (b) series nodal filtering, and (c) 3D nodal
filtering on the magnitude of motions corresponding to different modes. The motions are

u-velocity throughout the domain.
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and the initial Taylor Reynolds number is Reλ = 40. More details of the problem setup are

given in Sengupta (59).

The grid used for DNS consists of 63 = 216 elements, uniformly distributed in three di-

rections. The polynomial order used for DNS is P = 15. This grid has been shown to be

sufficiently resolved for DNS of the described isotropic turbulence case (59). The elements of

the grid used for LES are the same as those used for DNS; however, the polynomial order for

LES is P = 8 as opposed to P = 15.

A coarse DNS case is also simulated using the coarse mesh of LES without applying a

turbulence model. Also, a dynamic Smagorinsky model (49) is implemented and tested for

comparison. A nodal filter with N ′f = 1 is used as the test filter in the dynamic model.

Figure 28(a) and (b) show the energy spectra and the dissipation spectra, respectively, of

the isotropic decaying turbulence simulation at time t = 3.2 for the DNS and coarse DNS cases.

The energy spectrum is compared with previously published data of Blaisdell et al. (73). A

good agreement with previous data is observed for the DNS case. The sharp drop-off in the

spectrum at high wavenumbers indicates a resolved DNS. The work of Blaisdell et al. (73) used

a Fourier-spectral method with 963 = 884,736 grid points. The present DNS grid has the same

number of degrees of freedom as the previous work with 216×163 = 884,736 Gauss grid points.

This conclusion is consistent with the validation study of Jacobs et al. (74). On the other hand,

the coarse DNS case is unable to capture the expected drop-off in both energy and dissipation

spectra for k > 13.
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Figure 28. (a) The energy spectra and (b) dissipation spectra for the isotropic decaying
turbulence at time t = 3.2.

Figure 29(a)-(c) shows the energy spectra of the isotropic decaying turbulence using the

three different filtering approaches. The spectra are compared with DNS, coarse DNS, and

the results obtained from the dynamic Smagorinsky model. All three methods provide steeper

drop-off than the coarse DNS case at high wavenumbers, which is expected. It means that the

filters are serving as a drain for the turbulence energy cascade. Except for the 3D nodal filter,

removing two modes results in a steeper drop-off than removing one mode; a stronger filter

damps more energy from the high wavenumber portion of the spectrum. For the nodal filters,

the spectra are affected at midrange wavenumbers (for both nodal filters) and low wavenumbers

(for series nodal filter). This undesired side effect could induce non-physical contributions to
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Figure 29. The energy spectra of the isotropic decaying turbulence at time t = 3.2 for (a) the
modal filter, (b) series nodal filter, and (c) 3D nodal filter as compared with DNS, coarse

DNS, and dynamic model.

the larger-scale motions of the turbulence and result in incorrect turbulence statistics. This

behavior is not expected since a low-pass filter ideally acts on the high wavenumbers only.

The best agreement with DNS is obtained by removing one mode using the modal filter. This

method provides a better prediction of the energy spectra than the dynamic model, which could

be due to the lack of enough eddy viscosity introduced by the dynamic model.

The decay of the TKE, defined by Equation 4.14, for the isotropic decaying turbulence is

shown in Figure 30(a)-(c) for the modal filtering, the series nodal filtering, and the 3D nodal

filtering procedures, respectively. The results are compared with DNS and the dynamic model

cases. It is observed that the TKE has a noticeable deviation from DNS for the series nodal
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filter, with N ′f = 1 and 2, for t > 1. The 3D nodal filter, with N ′f = 2, also overpredicts

the TKE from the beginning of the simulation (t = 0). The nodal filters generally predict a

lower rate of decay of the TKE compared to the DNS case. The modal filtering, for both filter

strengths Nf = 1 and 2, as well as the dynamic model, provides good agreement with the DNS.

It is observed from the simulations of the isotropic turbulence that the nodal filtering not

only drastically alters the low-frequency content but amplifies the lower modes due to |Ã(n)| > 1

and introduces large phase shifts due to negative values of Ã(n). The consequence of this

observation is clearly demonstrated in Figure 29, where the energy of LES cases are considerably

higher than DNS, which in reality should be the opposite. This phenomenon is due to the

aliasing inherent in the interpolation-based operations, Equation 4.11 and Equation 4.12, which

causes the redistribution of energy between modes. Based on the above-mentioned observations,

it is strongly recommended to avoid using the explicit nodal filter for LES. Therefore, the modal

filter is used for further LES of turbulent channel flow in this work.

4.4 Channel Flow

The periodic turbulent channel flow between two parallel plates is a well-studied benchmark

for turbulence models (43; 44; 56; 64; 75). It provides a simple flow that assesses the performance

of turbulence models near the wall. The tests with isotropic decaying turbulence, presented in

the previous section, demonstrated the superior performance of the modal filter over the nodal

filters. Therefore, for further simulations of channel flow, only the modal filtering procedure is

employed.



98

0 1 2 3 4 5 6 7 8
0

0.01

0.02

0.03

0.04

T
K
E

(a)

DNS
Dynamic model

Modal (Nf = 1)

Modal (Nf = 2)

0 1 2 3 4 5 6 7 8
0

0.01

0.02

0.03

0.04

T
K
E

(b)

DNS
Dynamic model

Series nodal (N ′f = 1)

Series nodal (N ′f = 2)

0 1 2 3 4 5 6 7 8
0

0.01

0.02

0.03

0.04

Time

T
K
E

(c)

DNS
Dynamic model

3D nodal (N ′f = 1)

3D nodal (N ′f = 2)

Figure 30. Evolution of the turbulent kinetic energy (TKE) for (a) the modal filter, (b) series
nodal filter, and (c) 3D nodal filter, compared with DNS and the dynamic Smagorinsky model.
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4.4.1 Problem Setup

In the present work, we perform LES of a 3D periodic turbulent channel flow to study the

performance of the modal filtering procedure in the case of wall-bounded turbulence. First- and

second-order turbulent statistics are used to assess the accuracy of the calculations. The DNS

of Lee and Moser (30) at the friction Reynolds number of Reτ = 544 is used as the reference.

4.4.1.1 Computational Domain

The channel flow configuration is shown in Figure 31. The flow runs between two parallel

no-slip isothermal walls with a temperature of Tw = 1, which are placed in the xz-plane. The

boundaries of the domain in the streamwise (x) and spanwise (z) directions are periodic. The

dimensions of the computational domain are Lx = 4π, Ly = 2, and Lz = 2π in the streamwise,

wall-normal, and spanwise directions, respectively. The domain dimensions in terms of the wall

unit are L+
x ≈ 6,800, L+

y ≈ 1,100, and L+
z ≈ 3,400. Throughout the chapter, variables with

the superscript + are scaled by wall units. These channel dimensions are used in previous DNS

(24), and are shown to be sufficiently large to encompass the largest scale of turbulence by

demonstrating two-point correlations in the periodic directions (23).

4.4.1.2 Flow Conditions

The bulk velocity of the flow (U), the channel half-height (δ), the bulk density (ρ), and the

wall temperature (Tw) are taken as the reference velocity, reference length, reference density, and
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Figure 31. Schematic of the computational domain of the channel flow.

reference temperature, respectively. The friction Reynolds number is defined by Reτ = uτδ/ν,

where ν is the fluid’s kinematic viscosity and

uτ =

√√√√ν ∂u
∂y

∣∣∣
wall

Ref
(4.16)

is the friction velocity. All present channel flow simulations are performed at Reτ ≈ 544. The

exact value of the friction Reynolds number varies for each case based on the calculated slope

of the streamwise velocity adjacent to the wall. This friction Reynolds number corresponds to a

reference Reynolds number of Ref = 10,000 based on the reference scales. The reference Mach

number, based on the reference temperature and velocity, is Mf = 0.4. The heat capacity ratio

is assumed fixed at γ = 1.4 for air, and the reference Prandtl number is Pr = 0.72.
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The flow in a physical channel is normally driven by a negative pressure gradient in the

streamwise direction (dp/dx). Here, a force term, which is dynamically adjusted, is applied

to retain a constant mass flow rate. The forcing algorithm employed in the present work was

introduced by Lenormand et al. (36).

4.4.1.3 Grid Resolution

The grid used for the LES of the periodic channel flow (shown in Figure 32) has 20, 12,

and 30 elements in the streamwise, wall-normal, and spanwise directions, respectively. The

polynomial order of the basis functions within the elements is P = 6. This results in a total

of 2,469,600 Gauss collocation points. The elements are uniformly distributed in the periodic

directions (x and z). A hyperbolic tangent function of the form

yn
Ly

=
1

2

(
1−

tanh
[
λ(1

2 −
n
Ny

)
]

tanh
[
λ/2
] )

, n = 0, . . . , Ny , (4.17)

is used for the distribution of the elements in wall-normal direction. In Equation 4.17, yn is the

location of the interfaces of the elements in the y-direction, Ny is the number of elements in the

y-direction, and λ is an adjustable coefficient that determines the compactness of the elements

adjacent to the walls. The average grid (Gauss points) spacings in the periodic directions in wall

units are ∆x+ ≈ 49 and ∆z+ ≈ 16, and the wall-normal grid spacing ranges in 0.17 < ∆y+ < 43.

The details of the grid is included in Table V; the grid used in this section is labeled as P6-B.
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Figure 32. The grid used for LES of the channel flow (grid P6-B). The element interfaces are
shown with black lines, while the intersections of the gray lines indicate the locations of the

Gauss grid points.

4.4.1.4 Initialization and Transition to Turbulence

The streamwise velocity is initialized with a laminar parabolic profile with a mean value of

U0 as

u0(y) = −6

[(
y

2

)2

−
(
y

2

)]
(1 + ε), (4.18)

where ε is a 10% random disturbance intended to help accelerate the transition to turbulence.

The spanwise and wall-normal velocities are initialized as zero. The initial temperature follows

a laminar Poiseuille profile (See Appendix C) as

T (y) = Tw +
3(γ − 1)

4
PrfMf

[
1− (y − 1)4

]
. (4.19)
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TABLE V

DETAILS OF THE GRIDS USED FOR DIFFERENT CASES OF LES OF THE CHANNEL
FLOW. POINTS IN Y +

10 IS THE NUMBER OF GRID POINTS BELOW Y + = 10 NEAR
THE WALL, AND ∆T IS THE AVERAGE TIME STEP SIZE REQUIRED FOR EACH

GRID.

Case P
Number of
elements

Number of
grid points

Total
grid points

y+
min

Points
in y+

10
λ ∆t× 104

P6-B 6 20× 12× 30 140× 84× 210 2,469,600 0.167 5 4.5 6.81
P6-H 6 28× 17× 42 196× 119× 294 6,857,256 0.121 8 4.3 5.07
P10-B 10 13× 7× 19 143× 77× 209 2,301,299 0.157 4 4.5 5.96
P10-H 10 20× 12× 30 220× 132× 330 9,583,200 0.068 7 4.5 2.84

The density is initialized at ρ0 = 1, and the initial pressure is calculated from the equation of

state.

Our preliminary tests showed that the initial disturbance that is introduced to expedite the

transition to turbulence gradually decays, and the transition does not occur. Neither an increase

in the magnitude of the initial disturbance nor a temporary increase in the Reynolds number

resulted in a transition to turbulence. Instead, the simulation is started using a significantly

coarse grid with a polynomial order of P = 2 compared to the original order of P = 7. The

truncation error caused by the low resolution is sufficiently large to provide the necessary

disturbance for the transition to turbulence. Once the transition completes, the solution is

spectrally interpolated to a new grid with higher resolution (P = 3), and the simulation is

continued at the new resolution for a few flow-through times. To ensure stability, the solution

is interpolated gradually to higher resolution grids using the same approach until reaching the
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desired resolution of P = 6. More details of the transition procedure is provided in Jacobs (10)

and Ghiasi et al. (22).

4.4.2 Results

LES of the periodic channel flow has been performed using the modal filtering procedure.

Different tests have been conducted, and the results are compared with the DNS of Lee and

Moser (30), which is used as the reference in this study.

The rms velocity fluctuation in the xi-direction is defined as u′′i,rms = {u′′i u′′i }1/2, and the

scaled rms velocity fluctuation is u′′i,rms
+ = u′′i,rms/uτ . Here, {} is the Favre average, which

is defined by {f} = 〈ρf〉/〈ρ〉, where 〈〉 is the Reynolds (ensemble) average. Also, the single

prime, ′, and double prime, ′′, denote the turbulent fluctuations with respect to the Reynolds

and Favre averages, respectively.

A case using the dynamic Smagorinsky model is also simulated for comparison. The value

of the dynamic Smagorinsky coefficient, Cs, is averaged within each element in the periodic

directions to ensure stability (59).

Before performing the LES of the channel flow using the modal filter, we examined the

amplitudes of the modes for the coarse DNS (no-model) case. The amplitude of the nth mode

in element m, is denoted by Am(n) and is defined by Equation 4.15 (See Figure 26). We expect

this quantity to be statistically only a function of the distance of the element from the wall.

Hence, we categorize the elements into three levels: Level 1: elements adjacent to the wall,

level 2: elements that are one element away from the wall, until level 6: elements nearest to the
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Figure 33. The magnitude of the modes of the streamwise velocity in the coarse DNS of the
channel flow. Lower level number indicates elements closer to the walls.

core of the channel. Then, we average the amplitudes of each mode over all elements within

the same level to obtain ALevel l(n), where l = 1, . . . , 6.

Figure 33 presents the amplitudes of the modes of the streamwise velocity at different levels.

The zeroth mode represents the bulk value of the quantity (streamwise velocity). The amplitude

of this mode is greater for the higher levels (see n = 0) because the magnitude of the streamwise

velocity is higher away from the wall. In contrast, the higher modes (n > 0) represent the spatial

change of the quantity (streamwise velocity). The amplitudes of these modes are lower for the

higher levels because the spatial changes of the streamwise velocity decrease as we get closer

to the core of the channel. It is also observed that regardless of the distance from the wall, the

amplitudes of the modes decrease exponentially for successive modes.
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4.4.2.1 Filtering Strategy

As mentioned before, the filters were applied at every time step to the density, all three

components of velocity, and pressure in the simulations of the isotropic turbulence. Our pre-

liminary tests with the channel flow revealed that applying the filter at every time step results

in excessively dissipated turbulence and incorrect statistics (not shown). Further tests showed

that applying the filter every 100 time steps (equivalent to approximately 0.07 time units)

provides good agreement with DNS (shown in the next section).

Then, we studied the effect of applying a weaker filter, by blending the filtered values with

the unfiltered values, more frequently. Here, we apply the isotropic modal filter with Nf = 1 at

different frequencies: f = 1, 0.1, 0.02, and 0.01 (the unit of the frequency is 1/time step), which

correspond to filtering every 1, 10, 50, and 100 time steps, respectively. In order to maintain the

overall strength of the filter in all these cases, a function is used to update the solution values

with a combination of the filtered values and the original values (57). The solution values are

updated to the effective value of

Qeff = αQfilt + (1− α)Qorig, (4.20)

where Qfilt and Qorig are the filtered and original values, respectively. By choosing the combi-

nation coefficient to be α = 1, we can disable the effect of the combination function, which was

the case for previous simulations. Here, the value of α is chosen to be 0.01, 0.1, 0.5, and 1 for
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Figure 34. (a) Mean streamwise velocity and (b) rms velocity fluctuations of LES of the
channel flow using modal filter with Nf = 1 applied at different frequencies.

the cases with f = 1, 0.1, 0.02, and 0.01, respectively. Therefore, the cumulative strength of

the filter, which is defined by f × α, remains the same for all cases.

Figure 34 depicts the scaled mean streamwise velocity and rms velocity fluctuations for the

four different frequencies of the modal filter. It is observed that the frequency of the filter

has nearly no effect on the first- and second-order statistics of the flow, while the cumulative

strength of the filter is maintained. Therefore, for all present simulations of the channel flow

using the modal filter, the filter is applied to density, all three components of velocity, and

pressure every 100 time steps, without blending (α = 1).

4.4.2.2 Isotropic Modal Filter

The isotropic modal filtering is applied for Nf = 1 and 2, which correspond to remov-

ing one and two modes with highest frequencies, respectively. Since this filter, according to
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Figure 35. Mean streamwise velocity for the LES of the channel flow using the modal filtering
with different strengths. The DNS of Lee and Moser (30) is used as the reference.

Equation 4.3, removes the high-frequency modes in all three directions, it is called an isotropic

modal filter. Figure 35 shows the scaled mean streamwise velocity, 〈u+〉, as a function of the

distance from the wall in wall units, y+. The profiles are compared with those from DNS,

Coarse DNS, and the dynamic model. The difference between the DNS results and other cases

in 0.1 < y+ < 4 are related to the plotting method; other cases have fewer solution points

near the wall than DNS, and the solution values are connected by straight lines. It is observed

that all cases predict the same velocity profile up to y+ ≈ 8. Further away from the wall, the

case with no model (coarse DNS) underpredicts the mean velocity profile, the modal filtering

with Nf = 2 overpredicts the profile, the dynamic model predicts close values to DNS, and the

modal filtering with Nf = 1 provides excellent agreement with DNS. In fact, it shows slightly

better velocity prediction than the dynamic model.
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The friction Reynolds numbers for all cases are provided in Table VI. The simulations in

this section appear under the base resolution in the table. The closest prediction of the friction

Reynolds number relative to the DNS value is provided by the modal filter with Nf = 1 with

only 1.43% error. The modal filter with Nf = 2 and the case with no model significantly

underpredict and overpredict the quantity, respectively. A large error in calculation of the

friction Reynolds number indicates the inability to accurately calculate the slope of the mean

velocity at the wall.

The rms of velocity fluctuations are shown in Figure 36. The modal filter with Nf = 1, as

well as the dynamic model, give good predictions of the streamwise component (Figure 36(a)) as

compared with DNS. With Nf = 2, however, the streamwise rms is significantly overpredicted

for y+ > 7. The coarse DNS also overpredicts the quantity near the wall (y+ < 10). A closer

look at the near-wall region reveals that the modal filtering provides better streamwise rms than

the dynamic model, regardless of the filter strength (Nf ). The reason the profiles do not meet

at the axis origin ({0, 0}) is that the solutions are calculated on the Gauss grid points, and these

collocation points, according to Equation 3.1, do not exist on the element interfaces. The modal

filtering with Nf = 1 as well as the dynamic model predict close values of wall-normal rms as

shown in Figure 36(b). The modal filter with Nf = 2 and the coarse DNS case underpredict and

overpredict the profile, respectively. All present turbulence models do improve the prediction of

the rms of velocity in the spanwise direction (Figure 36(c)), compared to the coarse DNS case.

It is observed that modal filtering, with Nf = 2, has excellent agreement with DNS near the

wall (y+ < 30), while Nf = 1 gives better prediction at regions away from the wall (y+ > 40).
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This implies that stronger modal filtering is desired more near the wall than it is away from

the wall.

4.4.2.3 Grid Independence Study

The simulation of the periodic channel flow with the base resolution (grid P6-B) that is

presented in section 4.4.2.2 is performed using a grid with higher resolution to ensure the grid

independency. The case that provides the closest results to DNS, i.e., Nf = 1, is chosen for the

grid resolution study. A new grid with a higher number of elements in all three directions that

features the same polynomial order of P = 6 is considered. The high-resolution grid has 28,

17, and 42 elements in the streamwise, wall-normal, and spanwise directions, respectively. The

details of this grid is included in Table V under case P6-H.

Figure 37 compares the mean streamwise velocity and rms velocity fluctuations based on

the base and high-resolution grids. It is observed that the mean and fluctuations of the velocity

do not significantly change by increasing the resolution.

4.4.2.4 Filter Strength (Nf)

In the simulations presented in the previous sections, it was observed that the best agreement

with DNS is obtained by the choice of Nf = 1. One may ask the questions: Is Nf = 1 always

the best choice? What factors determine the correct choice of the filter strength (Nf )? To

answer these questions, we perform some tests and study the effect of the polynomial order and

h-resolution on the best choice of Nf . We consider two polynomial orders of P = 6 and 10,

and for each P , we consider two grids with different h-resolutions. The details of the four grids
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Figure 36. Rms velocity fluctuations for the channel flow in the (a) streamwise (with
magnified near-wall region), (b) wall-normal, and (c) spanwise directions using the modal

filtering. The profiles are compared with DNS of Lee and Moser (30), coarse DNS, and the
dynamic model.
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Figure 37. Comparison of (a) mean streamwise velocity and (b) rms velocity fluctuations of
LES of the channel flow with modal filter with Nf = 1 using the base (grid P6-B) and high

resolution (grid P6-H) grids.

are included in Table V. For each of the four grids, we perform the LES using different modal

filter strengths (Nf ) and compare the results.

Table VI presents the friction Reynolds numbers for all cases with P = 6. It is observed that

for both resolutions, the friction Reynolds number decreases by increasing the filter strength.

The important observation here is that regardless of the h-resolution, the smallest error with

respect to the DNS case is obtained by Nf = 1. Table VII presents the same quantity for cases

with P = 10. The decrease in the friction Reynolds number by increasing the filter strength

is again observed for P = 10. It is also shown that the best agreement with DNS is achieved

using Nf = 3, again regardless of the h-resolution.
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TABLE VI

THE FRICTION REYNOLDS NUMBERS PREDICTED BY P6 CASES AS COMPARED
WITH DNS VALUE OF REτ = 544. NOTE THAT NF = 0 MEANS A COARSE DNS

WITH NO MODAL FILTER.

Base resolution High resolution

Nf Reτ Error Reτ Error

0 575.5 5.79 % 558.6 2.68 %

1 545.4 0.26 % 543.2 -0.15 %
2 517.1 −4.95 % 527.9 −2.96 %

Figure 38(a) compares the mean velocity profiles of the channel flow for the cases of the

modal filter with different strengths (Nf ) that are performed on the base resolution grid with

P = 6 (grid P6-B). It is observed that the best comparison with DNS is obtained by Nf = 1.

Figure 38(b) presents the same velocity profile for the high resolution grid (P6-H). The closest

profile to that of the DNS case is again obtained by Nf = 1. The results for P = 10 are presented

in Figure 38(a) and (b). It is observed that, for both resolutions, the best agreement with DNS

is provided by Nf = 3. The important observation here is that the same value of Nf is the

best choice for both h-resolutions as long as the polynomial order is the same. Therefore, the

choice of Nf is dependent on only the polynomial order, and not on the h-resolution. However,

regardless of P and Nf , increasing the h-resolution improves the predictions of friction Reynolds

number and mean velocity.
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Figure 38. Mean streamwise velocity for the LES of the channel flow with P = 6 using the
modal filter with different strengths (Nf ) based on (a) the base resolution grid (P6-B) and (b)
the high resolution grid (P6-H). The DNS of Lee and Moser (30) is used as the reference. The

boxes inside the plots show magnified versions.
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Figure 39. Mean streamwise velocity for the LES of the channel flow with P = 10 using the
modal filter with different strengths (Nf ) based on (a) the base resolution grid (P10-B) and

(b) the high resolution grid (P10-H). The DNS of Lee and Moser (30) is used as the reference.
The boxes inside the plots show magnified versions.
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TABLE VII

THE FRICTION REYNOLDS NUMBERS PREDICTED BY P10 CASES AS COMPARED
WITH DNS VALUE OF REτ = 544. NOTE THAT NF = 0 MEANS A COARSE DNS

WITH NO MODAL FILTER.

Base resolution High resolution

Nf Reτ Error Reτ Error

0 587.0 7.90 % 559.2 2.79 %
1 563.0 3.50 % 553.0 1.65 %
2 551.7 1.41 % 549.7 1.05 %

3 543.0 -0.18 % 544.7 0.13 %
4 533.3 −1.97 % 539.2 −0.89 %
5 525.9 −3.33 % 533.6 −1.92 %

4.4.2.5 Anisotropic Modal Filter

In the previous sections, the modal filter formulated by Equation 4.3 was applied to the

solution variables in the channel flow. This filter is the same as that applied to the isotropic

turbulence case in section 4.3 and removes high-frequency modes from all three directions

equally. Since the channel flow is not an isotropic flow, we applied an anisotropic version of

the modal filter to determine the sensitivity of the results to the direction of the filter. The

anisotropic modal filter, given by Equation 4.4, removes the motions with contributions from

the highest-frequency modes in only one direction. In this section, the anisotropic modal filter,

with Nf = 1, is applied in three different directions for LES of the channel flow, and the results

are compared with the isotropic filter as well as DNS and coarse DNS cases. The choice of

Nf = 1 is due to its superior performance with the isotropic modal filter for the channel flow.
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Figure 40. (a) Mean streamwise velocity for the LES of the channel flow using the modal
filtering applied in different directions. (b) Same as (a), but magnified at the log-law region.

The DNS of Lee and Moser (30) is used as the reference.

Figure 40 shows the mean streamwise velocity profiles of the LES of channel flow using

the anisotropic modal filtering with Nf = 1 applied in the three directions. It is observed

that applying the modal filter in the spanwise (z) direction provides the closest profile to DNS.

Applying the filter in the streamwise (x) direction has a slight effect on the profile, and applying

it in the wall-normal (y) direction has nearly no effect on the profile, i.e., the mean velocity is

the same as the coarse DNS case.

The values of the friction Reynolds numbers for cases with the anisotropic modal filter are

presented in Table VIII. Again, the prediction of the friction Reynolds number closest to the

DNS result is provided by the anisotropic filter applied in the spanwise direction.
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TABLE VIII

THE FRICTION REYNOLDS NUMBERS FOR THE NON-ISOTROPIC MODAL
FILTERING CASES AS COMPARED WITH DNS.

Case Reτ Error

DNS 544 -
Anisotropic modal (x-direction) 571.0 4.95 %
Anisotropic modal (y-direction) 577.1 6.08 %
Anisotropic modal (z-direction) 547.9 0.72 %

The rms velocity fluctuations are shown in Figure 41. It is observed that applying the filter

in the y-direction has nearly no effects on the velocity fluctuations in any direction. Applying

the filter in the x-direction slightly improves the predictions of the spanwise and wall-normal

fluctuations. However, applying the filter in the z-direction, i.e., removing one mode in the

spanwise direction, noticeably improves the rms profiles in all three directions.

We also observed previously that the modal filtering in LES of the channel flow is most

effective in accurate prediction of the mean velocity and the friction Reynolds number when

one mode is removed from the spanwise direction. These observations are consistent with the

fact that the motions in the spanwise direction contain more energy than the motions in the

streamwise direction as demonstrated in Figure 42(a)-(c). This figure shows the one-dimensional

energy spectra along two periodic directions based on the three components of the velocity. The

1D enegy spectra are defined as

E(k) =
1

π

∫ ∞
−∞

R(x) e−ikx dx, (4.21)
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Figure 41. Rms fluctuations of the (a) streamwise, (b) wall-normal, and (c) spanwise velocity
components for the LES of channel flow using the modal filtering applied in different

directions, as compared with DNS and coarse DNS.
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where R(x) is the two-point correlation defined by

R(x) = 〈u(x0, t) u(x0 + x, t)〉. (4.22)

The spectra in Figure 42 are measured at three different distances from the wall: near-wall

region (y+ ≈ 6), midrange (y+ ≈ 15), and the core of the channel (y+ ≈ 170). It is observed

that the spectra in the spanwise direction (solid curves) are higher than those in the streamwise

direction (dashed curves), regardless of the distance from the wall or the component of the

velocity. Therefore, there is a greater amount of energy in the spanwise direction that cascades

to the higher-frequency motions and needs to be dissipated by the turbulence model at the

cutoff wavenumber. This could contribute to the fact that removing the highest-frequency

mode in the spanwise direction is more effective than it is in the streamwise direction. Note

that the conclusion that filtering in the spanwise direction is the most effective among three

directions is drawn merely for the periodic channel flow. Further investigation is needed to

generalize this behavior for various near-wall flows.

We also examined and compared the amplitude of the highest-frequency modes in each

direction. These quantities are defined by



Aq,x(p) = 〈ûplm〉 , l = 0, . . . , P , m = 0, . . . , P

Aq,y(p) = 〈ûkpm〉 , k = 0, . . . , P , m = 0, . . . , P

Aq,z(p) = 〈ûklp〉 , k = 0, . . . , P , l = 0, . . . , P

, (4.23)



121

101 102
10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

k

E
(k

)

(a)

101 102

k

(b)

101 102

k

(c)

Figure 42. One-dimensional energy spectra for the coarse DNS of the channel flow based on
the streamwise (blue), wall-normal (green), and spanwise (red) components of the velocity,
along the periodic directions: streamwise (dashed) and spanwise (solid), at three distances

from the wall: (a) y+ ≈ 6, (b) y+ ≈ 15, and (c) y+ ≈ 170.
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Figure 43. Magnitude of the highest-frequency modes in each direction. Lower level means
elements closer to the wall, and higher level indicates elements farther from the wall.

for the highest-frequency modes in the x-, y-, and z-directions, respectively, in the element q.

Again, we categorize the elements throughout the domain into three levels based on their dis-

tance from the wall.Then, we average the quantities defined in Equation 4.23 over the elements

within the same level to obtain 〈Ax(p)〉, 〈Ay(p)〉, and 〈Az(p)〉 at each level. The amplitude

of the highest-frequency mode in each direction is shown in Figure 43 for three sample levels:

1, 3, and 5. It is observed that the amplitude of the highest-frequency modes is higher in the

spanwise direction than it is in the other two directions. This is also identified as another rea-

son why removing the highest-frequency modes in the spanwise direction is the most effective

among three directions.
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4.5 Computational Cost

The computational costs of the presented methods are quantified by running the same sim-

ulation using different models and measuring the run time. The LES of the isotropic turbulence

is conducted for 10 time steps using the modal filter, series and 3D nodal filters, and the dy-

namic model. The run times are compared with a case without any turbulence model. Also,

three polynomial orders of P = 4, 8, and 16 are considered to investigate the effect of P on the

computational costs. The run times are averaged among 20 trials for each case. All simula-

tions are performed using a single processor so that the results are not affected by the parallel

efficiency of the code. Intel Xeon E5-2670 (2.60 GHz) processors are used.

Table IX presents the run times and the computational overheads for all cases as compared

with the case with no model. The computational overheads are also depicted in Figure 44. It

is observed that the modal filter is the least computationally costly method among presented

models regardless of the polynomial order. It is also the only model whose computational cost

reduces for higher polynomial orders, with an overhead of only 0.45% for P = 12. This could

be attributed to the computational implementation; FFTW library, which is known as one of

the fastest fast Fourier transform (FFT) libraries (76), is used to implement the transformation

of the solution between nodal and modal representations. The dynamic model is the most

computationally expensive choice; all filtering procedures are at least one order of magnitude

less costly than the dynamic model. Also, the computational cost of the dynamic model does not

have a meaningful dependence on the polynomial order. The series nodal filter has a constant

overhead of roughly 4%, while the cost of the 3D nodal filter increases for higher polynomial
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orders. The 3D nodal filter is less costly than the series version for the lower polynomial orders,

and it is more costly for higher orders.

TABLE IX

RUN TIMES (SECONDS PER TIME STEP) AND COMPUTATIONAL OVERHEADS FOR
THE LES OF THE ISOTROPIC TURBULENCE USING DIFFERENT POLYNOMIAL

ORDERS.

P=4 P=8 P=12

Case
Run time

(s/time step)
Overhead

(%)
Run time

(s/time step)
Overhead

(%)
Run time

(s/time step)
Overhead

(%)

No-model 0.875 - 4.85 - 14.73 -
Modal filter 0.898 2.55 4.94 1.93 14.80 0.45
Series nodal filter 0.910 3.93 5.04 4.01 15.35 4.18
3D nodal filter 0.900 2.85 5.01 3.40 15.49 5.12
Dynamic model 1.271 45.2 6.88 41.9 21.49 45.9

4.6 Summary and Conclusions

A modal low-pass filter is applied to a discontinuous spectral element method (DSEM), and

its performance is compared with two types of interpolation-based nodal filters, series and 3D,

and a dynamic Smagorinsky model for LES of turbulent flows with no additional SGS model.

An isotropic decaying turbulence and a periodic turbulent channel flow are used as the test

cases. The conclusions from the isotropic turbulence tests are as follows:
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Figure 44. Computational cost overheads of the presented models for the isotropic turbulence
case at different polynomial orders.

1. By removing the Nf highest-frequency modes using the modal filter, the solution becomes

smoother step by step while increasing Nf , and the small-scale features are removed.

However, by applying a nodal filter, especially for N ′f > 2, the shape of the function

changes as well. The lower-frequency modes are also contaminated with nodal filters,

except for the 3D nodal filter with N ′f = 1.

2. All filtering procedures provide better drop-off of the energy spectra at high wavenumbers

compared with cases with no model. However, the nodal filters overpredict the spectra

at the midrange and low wavenumbers. This overprediction is more severe in the series

nodal filter than it is in the 3D version. Regardless of the filtering procedure, removing

one mode provides the closest agreement with DNS.
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3. The modal filter predicts the correct decay of the TKE for both Nf = 1 and 2. The series

nodal filter underpredicts the rate of decay of turbulence regardless of N ′f . The 3D filter

underpredicts the decay of TKE for N ′f = 2.

The modal filter provided more accurate statistics than the nodal filters in the isotropic tur-

bulence tests. Therefore, this filtering procedure is chosen for further simulations. The modal

filter, as well as an anisotropic version of the filter, is used in LES of a periodic turbulence flow.

The conclusions are as follows:

1. The modal filtering procedure provides accurate statistics including the mean velocity,

the friction Reynolds number, and velocity fluctuations, with respect to DNS.

2. The best choice of the filter strength (Nf ) depends only on the polynomial order (P ) and

is independent of the h resolution. For a polynomial order of P = 6, a filter with Nf = 1

provides the best agreement with DNS, and for P = 10, the best results are obtained by

Nf = 3, regardless of the grid resolution.

3. Applying a too strong filter results in an overprediction of the mean and fluctuations

of the streamwise velocity and an underprediction of the friction Reynolds number and

fluctuations of the wall-normal velocity. The opposite results are obtained by applying a

too weak filter.

4. Removing the highest-frequency modes in the spanwise direction is the most effective

among three directions and provides the closest predictions of the velocity profile and the

rms velocity fluctuations to DNS results. This observation is attributed to (i) the fact

that the one-dimensional energy spectra are higher in the spanwise direction than the
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streamwise direction, and (ii) the fact that the amplitude of the highest-frequency mode

is larger in the spanwise direction than the other two directions.

5. The frequency of the application of the filter does not affect the first- and second-order

statistics as long as the cumulative strength of the filter is maintained; the cumulative

strength of the filter is controlled by a function that updates the solution with a combi-

nation of the filtered and original values.

6. The amplitudes of the modes of the channel flow field decrease exponentially for successive

modes from low-frequency to high-frequency regardless of the distance from the walls.

It is also observed that all filtering procedures are significantly less computationally ex-

pensive than the dynamic model, while the modal filter is the fastest model; The dynamic

Smagorinsky model introduces a computational overhead of about 45%, while the other meth-

ods have less than 5% overhead. In general, the modal filter has shown good performance for

both isotropic and wall-bounded flows; the calculated channel friction Reynolds number for the

modal filter is within 0.26% error with respect to the DNS data, compared to 5.8% error for a

case with no modeling.



CHAPTER 5

DIRECT NUMERICAL AND LARGE EDDY SIMULATIONS OF

TURBULENT FLOW OVER BACKWARD-FACING STEP

5.1 Introduction

The flow over a backward-facing step (BFS) is a simple flow that can be used to evaluate

the performance of turbulence models for separating and reattaching turbulent flows. In this

chapter, LES of a 3D BFS configuration are conducted. The standard Smagorinsky model,

with and without the addition of a newly developed wall sensor, are employed to evaluate their

performance in simulating separating and reattaching flows. A direct numerical simulation

(DNS) of turbulent flow over BFS is also performed and compared with previous work to validate

our numerical method for such flow and also to provide a benchmark for LES simulations of

the same problem. The conclusions that were obtained in chapter 3 regarding the near-wall

resolution requirements for DNS of turbulent flows are employed in this chapter to produce the

DNS grid for BFS.

The flow over a backward-facing step is regularly considered as a benchmark configuration

for separating and reattaching flows. Dump combustors are also designed after such geometries.

The flow dynamics in BFS can be described with the following stages. The boundary layer,

which is formed near the wall before the step, separates from the bottom wall at the step corner.

The flow then forms a free shear layer downstream of the step corner. The expansion of the free

128
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shear layer downstream of the step creates a recirculation zone. The flow reattaches to the wall

after the recirculation zone. An equilibrium boundary layer profile is recovered downstream of

the reattachment.

5.2 Previous Work

The previous studies of the turbulent flow over BFS are surveyed in this sections. The

previous works include experiments and numerical simulations.

5.2.1 Experiments

Starting with the pioneering experimental study by Eaton and Johnston (77), the BFS

flow has been the subject of a significant quantity of experimental, theoretical, and numerical

researches. Armaly et al. (78) experimentally studied the effect of Reynolds number on the

reattachment length. The flow was shown to become 3D for Reynolds numbers (based on the

inlet free stream velocity and step height) higher than 400. They revealed that with increasing

the Reynolds number, the reattachment length increases for low Reynolds numbers (Re <

1, 200). However, for moderate Reynolds numbers (1, 200 < Re < 6, 600) the reattachment

length decreases with Reynolds number, and it remains relatively constant for high Reynolds

numbers (Re > 6, 600). Durst and Tropea (79) investigated the effect of expansion ratio on

the reattachment length. The expansion ratio is defined as the ratio of the height of the post-

expansion channel to that of the inlet section. The reattachment length is also affected by

the flow conditions upstream of the step such as the ratio of the boundary layer thickness to

the step height. The dependency of the reattachment length on the upstream boundary layer
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profile was inspected by Adams et al. (80). Isomoto and Honami (81) considered the effect of

the inlet turbulent intensity on the reattachment configuration.

5.2.2 Numerical Simulations

The flow over BFS has been the subject of numerous numerical studies as well during

the past three decades. Early works mostly considered a two-dimensional description of the

configuration. Kim and Moin (82) simulated a two-dimensional incompressible flow. The

three-dimensionality of the flow for Reynolds numbers higher than Rec = 700 was introduced

by Kaikatis et al. (83) as the prime cause of the disagreement between the numerical results and

the measurements. They also identified convective instabilities as the source of the unsteadiness

of the flow (84). The first DNS of a three-dimensional flow over a BFS was carried out by Le

et al. (85). The Reynolds number was Re = 5, 100, and the expansion ratio was 1.2. They

compared their results with the experiments of Jovic and Driver (86), which was conducted for

the same geometry. They studied the unsteady characteristics of the flow such as the oscillation

of the reattachment point as well as typical flow characteristics. The mean velocity and the

Reynolds stresses agreed well with the Jovic and Driver measurements. They also calculated

and analyzed the budgets of turbulent kinetic energy and Reynolds stresses. Wengle et al.

(87) also simulated a moderate simulated BFS flow with a Reynolds number of Re = 3, 000.

In a later research, Barkley et al. (88) analyzed three-dimensional linear stability for a BFS

geometry with an expansion ratio of 2.
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5.3 DNS of Turbulent Flow Over BFS

In this section, the DNS of turbulent flow over a 3D BFS is presented. The results from this

simulation will be used as the reference for the LES. The DNS of Le (89) and the experiment

of Jovic & Driver (86) are used to validate the present DNS.

5.3.1 Problem Setup

A detailed description of the computational domain, the grid mesh generation, the flow

conditions, and the flow initialization are included in this section.

5.3.1.1 Computational Domain

A schematic of the computational domain is shown in Figure 45. The flow enters the domain

from the left using an inflow boundary condition. After passing over the step, which is located

at the center of the domain in the streamwise direction, exits the domain from the right using

an outflow boundary condition. Adiabatic walls are placed at the bottom of the domain as well

as the vertical wall at the step. The free stream velocity is imposed at the top boundary of

the domain. All the lengths are scaled by the step height, h. The length of the inlet section

(upstream of the step), Li,x, and the outlet section (downstream of the step), Lo,x, are both

20h. Le (89) suggested that the inlet section should ideally be approximately 10h, even though

they used an inlet section of 10h due to computer resource restrictions. The height of the inlet

section and the outlet section are Li,y = 5h and Lo,y = 6h, respectively. The depth of the

domain in the spanwise direction is Lz = 4h. As shown in Figure 45, the streamwise direction,

the normal direction, and the spanwise direction are called x-, y-, and z-directions, respectively.
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Figure 45. The computational domain used for BFS simulations.

The origin of the spatial coordinate system is fixed at the same streamwise location as the step,

at the bottom wall and the minimum spanwise (z) location.

5.3.1.2 Grid Generation

The grid used for the DNS of BFS consists of 20, 352 elements. A 2D slice (normal to

the z-direction) of the grid is shown in Figure 46. Note that in this figure, only the elements

are shown. The approximation order inside each element is P = 7, which means there are

83 = 512 solution points inside each element. This results in a total of 10, 420, 224 solution

points throughout the domain.

The grid is generated such that the resolution is high enough in the areas where higher

resolution is needed, i.e., near the walls and the shear layer. The grid is coarsened elsewhere

accordingly in order for the grid to be computationally efficient. The grid skeleton consists of

three blocks, as shown in Figure 47. The number of elements in each direction for each of the

three blocks are presented in Table X. Hyperbolic tangent functions are used to compress the
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Figure 46. The grid used for the DNS of BFS. Only the elements are shown here.

Figure 47. Three blocks used for the grid generation for DNS of BFS.

grid near the wall and in the shear layer area. The elements are uniformly distributed in the

z-direction.

In chapter 3, it was demonstrated for a polynomial order of P = 7, eight grid points within

below y+ = 10 are needed for accurate flow statistics of the wall-bounded turbulent flows. In

the grid used for DNS of BFS, nine grid points are positioned within y+ = 10 to ensure sufficient

near-wall resolution.

5.3.1.3 Flow Condition and Initialization

The flow conditions and parameters were chosen based on the DNS of Le (89) (hereinafter,

”Le94”), whose results are used to validate the present simulation. Their simulation was based

on the experiments of Jovic & Driver (86) (hereinafter, ”JD”). The inlet mean velocity profile
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TABLE X

NUMBER OF ELEMENTS IN EACH DIRECTION FOR THE THREE BLOCKS USED
FOR THE GRID OF DNS OF BFS.

Blcok x-direction y-direction z-direction

1 64 15 8
2 66 15 8
3 66 9 8

is taken from Spalart’s boundary layer (90) at the Reynolds number (based on momentum

thickness) of Reθ = 670. The thickness of the inlet boundary layer is δ99 = 1.2h, which is

the same in Le94 and JD. The inflow free stream velocity and the step height are chosen as

the reference velocity and the reference length. The Reynolds number based on the reference

velocity and length is Re = 5, 100. A stochastic model (91) is used to generate the inflow

turbulence.

The streamwise velocity (x-direction) field is initialized with the inlet velocity profile. The

normal (y-direction) and spanwise (z-direction) velocities are initialized as zero. The initial

density is ρ0 = 1, and the initial pressure is calculated from the ideal gas law.

5.3.2 Results

The simulation of the turbulent flow over the backward-facing step is started using a lower

polynomial order in order to lower the computational cost; the flow is first simulated using

the polynomial order of P = 3 for 15 flow-through times until the flow reaches a statistically

stationary state. The flow-through time is defined as tft = Lo,x/U∞, where Lo,x is streamwise
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Figure 48. (a) Sample 2D slice of the instantaneous streamwise velocity and (b) average
streamwise velocity for the DNS of BFS.

length from the step to the outlet boundary, and U∞ is the free stream velocity. Then, the flow

field is interpolated to a grid with a polynomial order of P = 5 using a spectral interpolation,

simulated for another one flow-through time. Then, the flow is interpolated to a grid with the

desired polynomial order of P = 7 and is simulated for another flow-through time. Then, the

data is recorded for average statistics for 15 flow-through times. Finally, the rms statistics are

recorded for 12 flow-through times. All average and rms data are averaged in time and the

homogeneous direction (z). A sample 2D slice of the instantaneous streamwise velocity and

average streamwise velocity are shown in Figure 48.

To assess the quality of the flow characteristics at the step, the rms velocity fluctuations are

compared with previous DNS. Figure 49 compares the rms velocity profiles in three directions
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Figure 49. Rms velocity fluctuation profiles at the step (x = 20) of the present DNS (solid) as
compared with DNS of Le (89) (dashed).

with previous DNS of Le94. The rms profiles are in good agreement with previous work. The

slight differences may be alleviated by considering a longer inlet section.

In order to evaluate the adequacy of the grid resolution, one-dimensional energy spectra in

the spanwise (z) direction are evaluated at different locations. The 1D energy spectra is defined

by Equation 4.21. The locations of the probes used to calculate the energy spectra are shown

in Figure 50. Three probes are located near the wall at streamwise locations: x = −2.6 (before

the step), x = 5 (recirculation zone), and x = 10 (after reattachment). The distances from the

wall are 0.039 before the step and 0.018 behind the step. Three other probes are also located

away from the wall at a distance from the wall of y = 1 and three streamwise locations: x = 5,

x = 10, and x = 18 (recovery region). The spectra for locations away from the wall are shown in

Figure 51. The sufficient energy drop at high wavenumbers indicates adequate grid resolution.
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Figure 50. The location of the six probes used to evaluate the one-dimensional energy spectra
for the DNS of BFS flow.

Shown in Figure 52 are the spectra for the locations near the wall. The sufficient energy drop

is observed for Euu and Eww. The normal spectra, Evv, suggest that higher spanwise resolution

might be needed near the wall.

Examples of the two-point correlations of velocity components along the periodic direction

(z) are presented in Figure 53 . The intent is to demonstrate that the computational domain is

sufficiently large in the periodic direction to encompass the largest spatial scales of the flow. The

correlations shown in this figure are from probes 1, 2, 4, and 5, which are shown in Figure 50.

It is observed that all correlations fall below 5% for the largest separation, which means the

quantities are decorrelated at this distance.
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Figure 51. One-dimensional energy spectra for the DNS of the BFS based on the streamwise
(solid), normal (dashed), and spanwise (dash-dotted) components of the velocity, along the
periodic (z) direction at three probes away from the wall. The location of the probes are

shown in Figure 50.
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Figure 52. One-dimensional energy spectra for the DNS of the BFS based on the streamwise
(solid), normal (dashed), and spanwise (dash-dotted) components of the velocity, along the

periodic (z) direction at three probes near the wall. The location of the probes are shown in
Figure 50.
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Figure 53. Two-point correlations of the velocity components along the periodic direction at
probes 1, 2, 4, and 5, which are shown in Figure 50.
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5.3.2.1 Average Statistics

One of the most important characteristics of a BFS flow is the reattachment length, which

is the streamwise (x) distance between the step and the reattachment point on the bottom wall.

The reattachment point is defined as the point at which the near-wall velocity is zero, i.e., the

point where the streamline that separates the recirculation zone from the rest of the domain

attaches to the wall. Different techniques are usually employed to detect the reattachment

point. Here, we determine the reattachment point by finding the point where the slope of the

velocity profile (∂u/∂y) is zero at the wall. The value of the reattachment length for the present

DNS of BFS is measured as Lr = 6.34. This value is in a good agreement with previous DNS

of Le (89), Lr = 6.28 (0.9% error).

Figure 54 presents the average velocity profiles at different streamwise (x) locations. The

results are compared with previous works: DNS of Le (89), the experiment of Jovic & Driver

(86), and LES of Sengupta (59). The velocity profiles of the present DNS generally agree with

previous works at all three streamwise locations. It is observed that the present DNS, as well as

the LES of Sengupta, have higher values of streamwise velocity in 1 < y < 2 than DNS of Le94

and experiment of JD. This difference can be attributed to the compressibility effects. Both the

present study and the LES study are performed using compressible flows, while the other two

deal with incompressible flows. The same behavior, the streamwise velocity exceeding the free

stream velocity around the height of the step, is also observed in Figure 2 of Liu et al. (92);

they present the results of LES of compressible flow over BFS.
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Figure 54. The average velocity profiles at different streamwise (x) locations, as acompared
with previous works: DNS of Le (89), Experiment of Jovic & Driver (86), and LES of

Sengupta (59).

5.3.2.2 RMS Statistics

The profiles of the rms velocity fluctuation in the streamwise (x) and normal (y) directions

at different streamwise (x) locations are presented in Figure 55 and Figure 56, respectively.

The results are compared with previous works: DNS of Le (89) and experiment of Jovic &

Driver (86). The rms profiles of the present DNS are in good agreement with previous DNS

and experiment at all three streamwise locations.

The Reynolds shear stress profiles, {u′′v′′}, are shown in Figure 57 and are compared with

previous works: DNS of Le (89) and experiment of Jovic & Driver (86). The Reynolds shear

stress profiles are also in good agreement with previous works.
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Figure 55. The streamwise (x) rms velocity fluctuations at different streamwise (x) locations,
as acompared with previous works: DNS of Le (89) and Experiment of Jovic & Driver (86).
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Figure 56. The normal (y) rms velocity fluctuations at different streamwise (x) locations, as
acompared with previous works: DNS of Le (89) and Experiment of Jovic & Driver (86).
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Figure 57. Reynolds shear stress profiles at different streamwise (x) locations, as acompared
with previous works: DNS of Le (89) and Experiment of Jovic & Driver (86).

5.4 LES of Turbulent Flow Over BFS

In this section, the LES of turbulent flow over BFS is reported. A wall sensor is developed,

implemented, and tested for Smagorinsky model. The results for the cases with and without

the addition of the sensor are presented and compared.

5.4.1 Background

A turbulence model should ideally perform well in all regions of the flow over a BFS. The

ideal turbulence model should represent an accurate boundary layer upstream of the step by

predicting a correct mean profile and turbulence intensity; it should also provide accurate

prediction of the growth rate of the shear layer that originates at the step corner; it should
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also provide a good estimation of the location where the flow reattaches to the bottom wall

downstream of the step.

Smagorinsky eddy-viscosity model (48) is one of the best-known turbulence models and the

most commonly used eddy-viscosity models (For a detailed description, see (93)). It is based

on the assumption that the effects of the small-scale unresolved motions of the flow can be

modeled by means of artificial viscosity. This artificial viscosity is calculated as a function of

the derivatives of the velocity field and the local grid size in the Smagorinsky model. The

prescription for the eddy viscosity is

νt = (Cs∆G)2
√

2SijSij , (5.1)

where Cs is the Smagorinsky constant, Sij is the filtered rate of strain, and ∆G is a length

scale, representing the average distance between solution points in each element. We calculate

this average spacing by

∆G =
J1/3(∏3

i=1 ng,i

)1/3
, (5.2)

where J is the determinant of the Jacobian of the element and ng,i is the number of (Gauss)

solution points in the ith direction within the element. The attractions of the Smagorinsky

model are its computational stability and its ease of application in numerical codes; the eddy-

viscosity is calculated using only local information, and the procedure does not involve extensive

computations; therefore, the model is not computationally expensive.
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The advantages of Smagorinsky model make it a valuable tool for engineering problems (94).

However, while the model provides acceptable results in LES of isotropic and homogeneous flows

with Cs ≈ 0.17, recommended by Lilly (95), it does not perform as well in LES of wall-bounded

flows (96). The large value of the mean shear adjacent to the wall results in an excessive amount

of eddy viscosity, which results in over-dissipating the flow. Furthermore, the model predicts

non-zero eddy viscosity in laminar-flow regions. This non-zero viscosity dampens the small

perturbations and therefore suppresses the transition to turbulence (97).

To reduce the effects of the above-mentioned flaw in the Smagorinsky model, the Smagorin-

sky constant is often multiplied by a damping factor, which is a function of distance to the wall

(98). Even though the damping factor helps improve the performance of the method in some

cases, the determination of the damping factor is arbitrary and problem dependent. Moreover,

even though the determination of the damping factor seems straightforward for a plane wall,

it is not trivial for a curved wall or sharp corners. Therefore, a more robust and dynamic

improvement to the Smagorinsky model is desired.

The dynamic SGS model aims to improve the Smagorinsky model by dynamically calculating

the Smagorinsky constant (49) and eliminating the need for manually tuning the value of Cs.

In this model, the evaluation of the coefficient, CS , is based on the Germano identity (99) and

provides a dynamic value for Cs(x, t), which is a function of space and time. The value of

the coefficient ideally approaches zero near the wall (100). The dynamic SGS model certainly

improves the performance and capability of the standard Smagorinsky model. However, the

dynamic Smagorinsky model is accompanied with limitations such as numerical stability issues
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and computational cost. Therefore, it is desired to seek a compromise between the accuracy of

the dynamic SGS model and simplicity and manageability of the standard Smagorinsky model

for wall-bounded turbulent flows.

5.4.2 Density-based Turbulence Wall Sensor

Our preliminary tests with LES of turbulent flow over a BFS using the standard Smagorinsky

model demonstrated that the turbulent eddy viscosity in the inlet channel, especially within the

boundary layer, notably affects the turbulence statistics and results in significantly dissipated

turbulence after the step. Therefore, a density-based sensor is developed, which is multiplied by

the turbulent viscosity and reduces the amount of the turbulent viscosity inside the boundary

layer. The first version of the sensor, θ1, is based on the gradient of the density and is defined

as

θ1 =
|∇ρ|
|∇ρ|+ 1

, (5.3)

where ∇ρ is the gradient of the density. The value of this sensor is zero where there is no

density gradient (regions with no turbulence) and approaches unity where the magnitude of

the density gradient is high (regions with strong turbulence). Although the first version of

the sensor significantly removes the undesired viscosity from areas with weak or no turbulence,

it still generates viscosity inside the inlet boundary layer due to the large value of the mean

shear adjacent to the wall and results in dissipated turbulence. Therefore, we modified the

formulation to obtain the second version of the sensor (101).

The idea behind designing the second version of the wall sensor is the fact that turbulence

is by nature a three-dimensional phenomenon. Therefore, the sensor is designed such that it
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adds viscosity only where the gradient of density is large in at least two out of three Cartesian

coordinate directions. Inside the boundary layer, the density varies mostly in one direction

(normal to the wall); therefore, this sensor reduces the amount of the added viscosity in those

areas. The value of this sensor is zero where there is no density gradient and approaches unity

where the magnitude of the density gradient is large in all three directions. The modified sensor,

θ2, is defined by

θ2 = Cθ

√√√√√ 1/3
1

ρ2
x + ε

+
1

ρ2
y + ε

+ 1
+

1/3
1

ρ2
x + ε

+
1

ρ2
z + ε

+ 1
+

1/3
1

ρ2
y + ε

+
1

ρ2
z + ε

+ 1
, (5.4)

where Cθ is the sensor coefficient that is tunable. In Equation 5.4, ρx, ρy, and ρz are the

gradients of the density in x, y, and z directions, and ε is a small positive real number chosen

to avoid numerical divergence. The three terms inside the square-root are designed to serve the

purpose of the sensor. In the areas where there are no significant density gradients (laminar

areas) and in the areas where the density gradient is large in only one direction (boundary layer),

all three fraction terms, and consequently the value of the sensor, approach zero, resulting in

nearly zero eddy viscosity introduced by the turbulence model. On the other hand, in the areas

where the density gradient is large in two or three directions (turbulent areas), one or three of

the fraction terms, respectively, gain non-zero values, resulting in non-zero values of the sensor,

therefore, introducing the eddy viscosity by the turbulence model.
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Figure 58. The grid used for the LES of BFS. Only the elements are shown here.

5.4.3 Problem Setup

In this section, the problem setup for LES of BFS is described. The computational domain

used for LES is the same as the one used for DNS in section 5.3 and is shown in Figure 45.

The same meshing strategy as used for the DNS grid is used to generate the grid for LES.

Also, the same polynomial order of P = 7 is used; however, the number of elements is reduced

in all three directions. A 2D slice (normal to the z-direction) of the grid is shown in Figure 58.

Note that in this figure, only the elements are shown. The total number of elements in the

LES grid is 1,350 (compared to 20,352 elements for DNS). The total number of solution (Gauss)

points for the LES case is 1,350×83 = 691,200 (compared to 10, 420, 224 for DNS). The number

of elements in each direction for each of the three blocks (shown in Figure 47) are presented in

Table XI.

The flow conditions and parameters, the initial conditions, and the boundary conditions for

the LES case are all similar to those of the DNS case.
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TABLE XI

NUMBER OF ELEMENTS IN EACH DIRECTION FOR THE THREE BLOCKS (SHOWN
IN Figure 47) USED FOR THE GRID OF LES OF BFS.

Blcok x-direction y-direction z-direction

1 10 6 6
2 15 6 6
3 15 5 6

5.4.4 Results

The primary objective of the present simulations is to assess the performance of the wall

sensor. The standard Smagorinsky model, both with and without applying the wall sensor, are

considered, and first- and second-order statistics are compared to validate the effect of the wall

sensor. The value of the Smagorinsky constant is set to Cs = 0.15 in all simulations in this

chapter. The sensor coefficient is also set to Cθ = 20 for all simulations except those presented

in section 5.4.4.3, where we study the effect of the sensor coefficient. Each case is first simulated

for 3 flow-through times before calculating the average statistics to make sure the interpolation

effects on the flow are disappeared. Then, the simulation is continued for 6 flow-through times

for average statistics, and then 12 flow-through times for rms statistics. All average and rms

data are averaged in time and the homogeneous direction (z).

5.4.4.1 Mean Statistics

Figure 59 and Figure 60 compare the mean streamwise (u) and normal (v) velocity profiles at

different streamwise locations for the LES with Smagorinsky model with and without applying
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the wall sensor. The results are compared with those of the DNS case at three streamwise

locations of x̃ = 4, 6, and 10, where

x̃ = x
(Lr)DNS

Lr
= x

6.34

Lr
, (5.5)

where Lr is the reattachment length. The locations of the velocity profiles are scaled with the

reattachment lengths so that the differences in the reattachment lengths between different cases

do not affect the comparison of the velocity profiles. It is observed that the case with the wall

sensor provides significantly more accurate mean velocity profiles as compared with the DNS

case for both streamwise and normal velocities. This improvement is more visible at x̃ = 4 and

10 for the streamwise velocity and x̃ = 4 and 6 for the normal velocity.

The reattachment length is one of the most important characteristics of the BFS flow and

is often used to evaluate the accuracy of the simulations. The calculated reattachment length

for the case with Smagorinsky model is Lr = 7.51. The simulation with Smagorinsky model

overpredicts the quantity; it has 18.4% error from the value of DNS case (Lr = 6.34). The

excess amount of eddy viscosity in the inlet section boundary layer prevents the turbulence

from developing naturally, and results in weak turbulence downstream of the step. The weak

turbulence inhibits the instabilities in the shear layer that is formed behind the step and delays

the growth of the shear layer, and the delayed shear layer results in a longer reattachment length.

The case that features the wall sensor, however, allows the turbulence to grow naturally and

provides a shorter reattachment length of Lr = 6.30, which has only −0.5% error from DNS.
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Figure 59. The average streamwise velocity (u) profiles at different streamwise (x) locations
for the Smagorinsky case with and without the wall sensor, as compared with DNS.
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Figure 60. The average normal velocity (v) profiles at different streamwise (x) locations for
the Smagorinsky case with and without the wall sensor, as compared with DNS.
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It is observed from both velocity profiles and the reattachment length that the addition of the

wall sensor significantly improves the mean statistics of the flow.

5.4.4.2 RMS Statistics

Figure 61 presents the rms velocity fluctuations, as well as the turbulence intensities, at

the step for the Smagorinsky case with and without applying the wall sensor. The profiles are

compared with those of the DNS case. It is observed that the case with Smagorinky model

without the sensor significantly underpredicts the values of rms fluctuations as well as the

turbulence intensity. The excess amount of eddy viscosity introduced by Smagorinsky model in

the boundary layer of the inlet section suppresses the development of turbulence and results in

a highly diffused flow, which is visible in the values of the rms fluctuations and the turbulence

intensity at the step. With the addition of the wall sensor, the excess artificial viscosity is

removed from the inlet boundary layer, the turbulence is therefore developed in a natural rate,

and the rms profiles are comparable with those of DNS, as seen in Figure 61.

The same behavior is observed for rms velocity fluctuations behind the step. Figure 62

shows the streamwise rms velocity fluctuations (u′′rms) at different scaled streamwise locations

(x̃ = 4, 6, and 10) for both cases with and without the wall sensor. The results are compared

with DNS. Again, the case without the wall sensor underpredicts the fluctuations due to the

over-diffused flow. The case with the wall sensor, however, predicts fluctuations close to those

of DNS.
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Figure 61. Rms velocity fluctuation profiles at the step (x = 20) for the LES with
Smagorinsky model with and without applying the wall sensor as compared with DNS.
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Figure 62. The streamwise (x) rms velocity fluctuations at different streamwise (x) locations
for cases with and without the wall sensor, as acompared with DNS.

5.4.4.3 Sensitivity of the Wall Sensor

The sensor coefficient, Cθ in Equation 5.4, tunes the value of the sensor that is multiplied

by the eddy viscosity suggested by the Smagorinsky model. We have studied the sensitivity of

the performance of the wall sensor to its coefficient. In the previous simulations, the value of

the coefficient was set to Cθ = 20. Here, we repeated the same simulation with two other values

of the coefficient: Cθ = 10 and 40. Table XII compares the reattachment lengths for all LES

cases as compared with DNS. The values are also depicted in Figure 63 for better comparison.

It is observed that while the Smagorinsky model has a large error in the prediction of the

reattachment length, all cases that feature the wall sensor provide close values to that of DNS
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regardless of the value of Cθ. It is, therefore, concluded that the performance of the wall sensor

has little dependency on the value of its coefficient for the BFS flow.

TABLE XII

THE REATTACHMENT LENGTHS, LR, FOR CASES WITH DIFFERENT VALUES OF
THE SENSOR COEFFICIENT, Cθ, AS COMPARED WITH THE LES CASE WITHOUT

THE SENSOR AND DNS.

Case Cθ Lr Error

DNS - 6.34 -
Smagorinsky - 7.51 18.4 %
Smagorinsky with Wall Sensor 10 6.27 -1.09 %
Smagorinsky with Wall Sensor 20 6.30 -0.5 %
Smagorinsky with Wall Sensor 40 6.24 -1.45 %

5.5 Summary and Conclusions

A density-based sensor is developed, implemented and tested for LES of wall-bounded tur-

bulent flows using the standard Smagorinsky model. The sensor reduces the amount of the

undesired eddy viscosity inside the boundary layer that is introduced by the Smagorinsky

model. The excessive eddy viscosity is often problematic because it inhibits the disturbances

that lead to the development of turbulence. The use of the sensor is tested for a turbulent

flow over a backward-facing step. A DNS of the same configuration is also performed to serve

as the reference for the LES cases. It is observed that the addition of the sensor significantly

improves the mean and rms flow statistics. In fact, by applying the wall sensor, the error of
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Figure 63. The reattachment lengths for cases with different values of the sensor coefficient as
compared with the LES case without the sensor and DNS.

the calculation of the reattachment length reduces from 18.4% to 0.5%. It is also showed that

the performance of the wall sensor is not sensitive to the value of its tunable coefficient.



CHAPTER 6

LARGE EDDY SIMULATION OF SUPERSONIC TURBULENT FLOW

OVER RAMP-CAVITY

The majority of the material presented in this chapter is previously published in:

Ghiasi, Z., Komperda, J., Li, D., and Mashayek, F.: Simulation of supersonic turbulent

non-reactive flow in ramp-cavity combustor using a discontinuous spectral element method.

In AIAA Paper, number 2016-0617, 2016.

The coauthors, Jonathan Komperda and Dongru Li, helped me by reviewing the manuscript

and providing their feedback. My advisor and coauthor, Farzad Mashayek, supervised the

work presented in this chapter.

The flow inside the combustion chamber of a high-speed combustor is a prime example of a

multi-physics and multi-scale flow, which is usually associated with the simultaneous existence of

turbulence and shock waves. In this chapter, the DSEM is employed to simulate the supersonic

non-reactive flow inside a 3D ramp-cavity combustor at a Mach number of M = 2 (102; 103; 12).

An entropy viscosity method is employed to capture the shocks, and the standard Smagorinsky-

Lilly model is used as the turbulence model. Results are presented for two simulations with

and without an injector and the results are compared. The effect of the Reynolds number is

also demonstrated.

6.1 Introduction

Designing stable and efficient high-speed engines requires a deep understanding of the

physics of the reacting flow within the supersonic combustor. In recent years, a variety of

injection and flameholding concepts have been studied experimentally, such as the use of in-

158
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jector arrays (104; 105), struts or pylons (106), wall cavities (107; 108; 109), and combinations

of these strategies (110). In this work, the focus will be on the numerical simulation of the

supersonic non-reactive flow within a cavity flame holder with a nozzle attached to the ramped

face of the cavity. The nozzle functions as the fuel injector in the actual combustion application.

The main challenge in supersonic turbulent flow simulations arises from the contradictory

properties of numerical methods designed to treat shocks and turbulence, where the numerical

scheme needs to satisfy two competing requirements. These requirements are capturing differ-

ent types of discontinuities and simultaneously resolving the broadband scales of turbulence.

The shock capturing is usually achieved through the addition of dissipation to the flow at the

location of the shock in order to smear them sufficiently such that they can be represented on

the numerical stencil. However, the use of a shock-capturing scheme can significantly affect the

fidelity of the solution. A poorly designed shock capturing method can be over-dissipative and

smear the solution, excessively dissipate turbulence, and thus lead to an inaccurate representa-

tion of the flow discontinuities and turbulence. One of the objectives of the present research is

to provide an effective and accurate shock capturing method using high-order numerical meth-

ods. The method should be capable of locating strong shocks and capturing them within the

numerical stencil as well as resolving a wide range of turbulence time and length scales.

A variety of shock capturing methods have been employed by various researchers, including

employing limiters (111), using schemes such as essentially non-oscillatory (ENO) and weighted

essentially non-oscillatory (WENO) schemes(112; 113), and applying artificial viscosity in the

shock regions. All of mentioned methods operate based on smoothing the solution in the region
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of shock while attempting to remove any Gibbs oscillations. This work explores the feasibility

of the entropy viscosity (EV) method (114) as a shock capturing tool in simulation of supersonic

turbulent flows in ramp-cavity combustors using a discontinuous high-order numerical method.

We apply a modified formulation of the entropy viscosity method for turbulent flows that was

proposed by Abbassi et al. (6). Using this methodology, we are able to extend the use of the

entropy viscosity to high Reynolds number turbulent flows and other flows with strong physical

fluctuations.

In the following section, the turbulence model and the shock capturing method will be

discussed. Next, the results are presented for two cases, with and without an injector attached

to the cavity. The approach taken to locally refine the grid near the injector is also explained.

Finally, concluding remarks are provided.

6.2 Formulation and Methodology

6.2.1 Turbulence Modeling

All the simulations presented in this chapter use the standard Smagorinsky-Lilly turbulence

model (48). The subgrid model introduces a turbulent viscosity that is similar to the entropy

viscosity and is described in 5.4.1. The wall sensor introduced in section 5.4.2 is used in

conjunction with the Smagorinsky model in all simulations in this chapter.

Moreover, we developed a sensor that removes the undesired turbulent viscosity from the

shock areas. The value of this sensor varies from almost zero, in shock regions, to one, in

incompressible flow regions. The underlying idea behind designing this sensor is that in the
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high turbulence areas the magnitude of the vorticity is high, whereas in the shock areas the

dilatation is strong. This sensor, φ, is defined as

φ =
|ω|2

|ω|2 + (∇.U)2 + ε
. (6.1)

In Equation 6.1, U denotes the velocity vector, and ω is the vorticity vector. For all the

simulations in this chapter, both wall sensor and shock sensor are applied, and the effective

turbulent viscosity is

νt.ef = θ2 × φ× νt, (6.2)

where θ2, φ, and νt are given by Equation 5.4, Equation 6.1, and Equation 5.1, respectively.

To demonstrate the effects of the wall sensor and the shock sensor on the turbulent viscosity,

see Figure 64. It compares the instantaneous turbulent viscosity for a turbulent flow over a

ramp-cavity geometry before and after applying the sensor. It is observed that the wall sensor

removes a large portion of the turbulent viscosity in the inlet channel with very minor effects on

the shear layer and the shock areas. It is also observed that the shock sensor completely removes

the turbulent viscosity from the shock area while having nearly no effect in other regions of the

flow despite large gradients of the flow variables.

6.2.2 Shock Capturing

The shock capturing tool utilized in this work is an entropy-based artificial viscosity method

(114). Chaudhuri et al. (66; 6; 115) proposed a modified entropy viscosity method for supersonic
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Figure 64. The effect of the wall sensor and the shock sensor on the turbulent viscosity: (a)
the original turbulent viscosity, (b) turbulent viscosity after applying the wall sensor, and (c)

turbulent viscosity after applying the wall sensor and the shock sensor.

turbulent flows. In entropy viscosity method, the viscosity is calculated based on a residual

that measures the deviation of the flow from an isentropic flow.

The entropy transport equation for Navier-Stokes system of equations reads

∂(ρs)

∂t
+
∂(ρsuj)

∂xj
− Λ =

Φ + Γ

T
, (6.3)
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where s denotes the fluid’s entropy and is calculated as

s =
ln(p/pγ)

γ(γ − 1)
, (6.4)

and

Φ =
2

Ref

(
Sij −

1

3
δijSkk

)(
Sij −

1

3
δijSkk

)
, Γ =

1

RefPrf (γ − 1)M 2
f

1

T

(
∂T

∂xj

∂T

∂xj

)
,

Λ =
1

RefPrf (γ − 1)M 2
f

∂

∂xj

(
1

T

∂T

∂xj

)
,

where Sij is the Newtonian stress tensor and δij is the Kronecker delta. In Equation 6.3, Φ

and Γ are the entropy generation terms due to viscous and thermal dissipations, respectively.

These terms remain positive and could be important in the regions where the velocity and

temperature gradients are significant. We define the residual based on these two terms only.

Therefore,

D =
Φ + Γ

T
. (6.5)

For more details of the entropy-viscosity method used in this work, see Abbassi et al. (6).

Our preliminary tests revealed that for high Reynolds number flows in the ramp-cavity

geometry this method does not fully distinguish between the shocks and the regions with strong

turbulent effects, i.e., the method introduces non-zero artificial viscosity in turbulent areas;

therefore, a shock indicator proposed by Ducros et al. (116) (called Ducros sensor) is applied

to improve the capability of the method in distinguishing between shocks and turbulent regions
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and reduce the undesired dissipation in shock-free areas. The entropy viscosity residual is

multiplied by the value of the Ducros sensor, which is defined by

Ψ =
(∇.u)2

(∇.u)2 + |ω|2 + ε
. (6.6)

In Equation 6.6, u denotes the velocity vector, ω is the vorticity vector, and ε is a small positive

real number chosen to avoid numerical divergence for the areas where ∇.u and vorticity are

both zero. The value of the sensor varies from zero, for incompressible regions, to almost one

for shock regions.

The EV method features a tunable coefficient, CE , to adjust the amount of the entropy

viscosity (See Equation (9) of Abbassi et al. (6)). The magnitude of the artificial viscosity is

proportional to this coefficient. Here, we chose CE = 8.

An upper bound is also imposed for both entropy viscosity and turbulent eddy viscosity to

control the viscous time step restriction and ensure stability.


µEV ≤ 60µfluid

νt ≤ 60µfluid/ρ

(6.7)

6.3 Results and Discussions

Two different cases have been studied for the three-dimensional cold flow in a ramp-cavity

combustor, with and without a nozzle. The nozzle will be used as the fuel injector in future
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simulations of the reacting flow. The two flows will be compared in the following sections. The

case without the injector will also be analyzed for three different Reynolds numbers.

Figure 65 depicts the dimensions of the simulated combustor. The main flow is from left to

right. The channel height is 5.22 mm and the cavity has a depth of 1.305 mm. The inlet duct

and the exit channel both extend 9.135 mm in the streamwise direction. The flat and slanted

parts of the cavity both have lengths of 3.915 mm in the streamwise direction. The width of

the combustor is constant with a value of 5.22 mm. At the inlet, air enters the combustor at

800 K and atmospheric pressure with a Mach number of M = 2.

5
.2

2
 m

m

5.22 mm

1.305 mm

y
x

z

26.1 mm

3.915 mm 3.915 mm 9.135 mm9.135 mm

Figure 65. Dimensions of the simulated combustor.

The outflow boundary condition is set to a supersonic outflow condition. Top and bottom

walls are adiabatic walls and the side boundaries are treated with periodic boundary conditions.

A fully developed boundary layer profile is imposed at the inflow. The mean inflow velocity is
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taken from Spalart’s boundary layer (90). The inlet turbulence is comprised of synthetically

generated fluctuations superimposed on the mean profile (91). The Reynolds number is Re =

25, 288. The cavity height and the inlet mean velocity are taken as the reference length and

the reference velocity, respectively.

6.3.1 Combustor without the Injector

The computational grid used for the simulation of the combustor without injector (Fig-

ure 66(a)), consists of 78,165 elements. Inside each element, the solution is approximated as

a polynomial of order P = 2 resulting in a total of 2,110,455 solution points. There are 15

elements (45 grid points) in the spanwise direction in order to ensure capturing the three-

dimensionality of the turbulence. A CFL number of 0.75 is chosen and the average time step

size is 1.46×10−8 s. The computational cost for this simulation is approximately 357 CPU-hour

per flow-through time. The flow-through time is calculated based on the mean velocity at the

inlet and the length of the domain in the streamwise direction. A Smagorinsky constant of

Cs = 0.18 is applied for this simulation. The values of the Smagorinsky constant used for each

simulation is given in Table XIII. We selected the Smagorinsky constant for each case based

on the stability of the simulation. It is important to note that the final value of the turbulent

viscosity will be multiplied by the two sensors introduced earlier. Even though all the values

used for Cs are within a small range, the differences could be due to the fact that the values

of the sensors are dependent on the flow field and vary with different Reynolds numbers and

addition of the injector.
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Figure 66. Two-dimensional view of the grid used for the simulation of the ramp-cavity
combustor, (a) without injector and (b) with injector.

Figure 67(a)-(c) shows the instantaneous contours of u-velocity, non-dimensional entropy

viscosity, and non-dimensional turbulent eddy viscosity for the simulation of the combustor

without the injector after 20 flow-through times, plotted in a sample plane perpendicular to

the spanwise direction. The entropy viscosity and the turbulent eddy viscosity are scaled by

the dynamic viscosity of the fluid.

A number of observations are made from Figure 67. First, the plot of u-velocity shows that

the flow is significantly slower inside the cavity than the channel above the shear layer, which

is an expected observation for a separated flow. It also reveals that an oblique shock is formed

above the end part of the ramped face of the cavity, where the shear layer meets the bottom
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TABLE XIII

THE VALUE OF SMAGORINSKY CONSTANT (CS) USED FOR EACH SIMULATION.
Reynolds number Cs

with injector 25,288 0.19

without injector
12,644 0.15
25,288 0.18
37,932 0.18

wall of the exit channel. We also observed that this region introduces the strongest numerical

instability throughout the domain. Not only are the velocity fluctuations intensified due to the

shear layer growth, but also shock and turbulence coexist in that region. The shear layer, which

is already expanded, is also forced to adjust to the no-slip condition at the bottom wall of the

exit channel. The shock then reflects from the top wall and exits the computational domain.

This configuration of the shock agrees with previous work (117).

The plot of the entropy viscosity demonstrates the performance of the shock capturing

method. A smooth distribution of viscosity is added at the location of the shock and nearly

no viscosity is generated in other regions, despite having strong gradients of velocity and tem-

perature in the turbulent regions. This makes the simulation stable while properly capturing

characteristics of the turbulence and the shock.

Due to the density-based sensor applied to the Smagorinsky model, the turbulent eddy

viscosity is more concentrated on the turbulent areas of the shear layer and large structures

downstream of the shock, and a very low amount of viscosity is added at the inlet boundary
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Figure 67. Instantaneous plots from the simulation of non-reactive flow in the combustor,
without the injector after 20 flow-through times (Re = 25, 288, M = 2.0). (a) Streamwise
u-velocity, (b) Non-dimensional entropy viscosity, and (c) Non-dimensional turbulent eddy

viscosity.

layers. The amount of turbulent viscosity added to the shock is also very small, which is a

result of adding the previously mentioned shock sensor to the turbulence model.

Figure 68 shows the u-velocity, averaged in time, for the same case. In this plot, the shock

does not appear as sharp as it does in the instantaneous plot due to its oscillation. The shock

oscillates mainly in the streamwise direction. The location of the shock also varies in the z-
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Figure 68. Time-averaged u-velocity (m/s) for the case without injector. The black solid
band is the location of u = 0.9 umax.

direction as a result of three-dimensionality of the flow. The black solid band in Figure 68

represents the location where u-velocity is around 90% of the maximum channel velocity. We

use this band to trace the behavior of the boundary layer during its interaction with the shock.

The observation here is that the boundary layer thickens along the interaction region. This

behavior agrees with the strong incident-reflected wave described by Green (118).

We use the invariant (Q) of the velocity gradient tensor,

Q =
1

2
(ΩijΩij − ΞijΞij), with


Ωij = 1

2(uij − uji)

Ξij = 1
2(uij + uji)

 , and uij =
∂ui
∂xj

, (6.8)

to visualize the three-dimensional structures of the flow. Figure 69 shows the iso-surface of

Q for the case without the injector. The figure shows half of the full computational domain.

The two-dimensional contours superimposed on the plot, which show the density, are located

at the center of the domain in the z-direction. From Figure 69 it can be seen that the oblique

shock originates from the shear layer near the ramped section of the cavity. Also, turbulence
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Figure 69. Three-dimensional iso-surfaces of Q colored with stream-wise velocity (Q = 0.1) at
Re = 25, 288 and M = 2. The color represents the u-velocity (m/s). The two-dimensional

contours superimposed on the plot show the density (kg/m3).

intensifies downstream of the shock and larger hairpin vortices are visible near the lower wall

of the exit channel.

6.3.2 Effect of the Injector

The second case uses the same geometry and features a horizontal injector on the ramped

face of the cavity (see Figure 65), which blows air in the counter-streamwise direction. According

to Gruber et al. (108), direct fuel injection from the ramp downstream of the cavity provides

the most robust compustion and best fuel mixing. The diameter of the nozzle is 0.138 mm and

the center of the hole has a height of 0.18 mm with respect to the bottom of the cavity. The

nozzle blows air at the same temperature and pressure as those of the inlet flow. The injector
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Figure 70. Locally refined unstructured grid to resolve the injector (left), and the magnified
view of the injector grid (right).

has a laminar profile with a maximum velocity of 35% of that of the inlet flow and its mass

flow rate is 9.6× 10−5 times the inlet mass flow rate.

The computational grid used for this simulation is shown in Figure 66(b). It consists of

79, 191 elements with polynomial order of P = 2 and has 2,138,157 solution points. One of the

challenges in this simulation is to refine the grid in the vicinity of the injector in order to resolve

the small scale mixing effect of the injector. The capability of DSEM in using unstructured grid

allows us to efficiently and locally refine the grid such that the resolution is high enough near

the injector. The refinement of the unstructured grid near the nozzle is depicted in Figure 70.

A CFL number of 0.75 is imposed for this simulation and the average time step size is

2.38 × 10−9 s. Since the grid spacing is small near the injector, the time step size is more

restricted than that of the previous simulation. The computational cost for this simulation is

approximately 427 CPU-hour per flow-through time.
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Figure 71. Instantaneous plots from the simulation of non-reactive flow in the ramp-cavity
combustor, with the injector after 20 flow-through times (Re = 25, 288, M = 2.0). (a)

Streamwise u-velocity, (b) Non-dimensional entropy viscosity, (c) Non-dimensional turbulent
eddy viscosity.

Figure 71(a)-(c) shows the instantaneous contours of u-velocity, non-dimensional entropy

viscosity, and non-dimensional turbulent eddy viscosity for the simulation of the combustor

with the injector after 20 flow-through times. The figures are plotted in the z-plane passing

through the center of the injector. The same features as mentioned for the case without the

injector can be seen in this figure.
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Different aspects of the flow inside the cavity for two cases, with and without injector, are

included in Figure 72. The 2D planes shown in this figure are the z-plane passing through the

center of the injector for the case with injector and a sample z-plane for the case without injector.

The location of the injector is specified with a dashed line. The streamlines in Figure 72(a)

reveal more details on the instantaneous paths and directions of the flow inside the cavity and

the shear layer. It is worth noting that the reason streamlines are terminated within the flow

is the algorithm used to generate them. We seed the cavity with uniformly distributed source

points and build each streamline starting from a source point and marching both backward and

forward for a finite number of steps. A number of eddies are discernible in the central region

of the cavity with the injector, which are observed in all of the instantaneous plots of this case.

These eddies, which are fewer in number in the same region of the cavity without the injector,

could increase the mixing effects of the cavity flow and improve the combustion quality. In

general, more eddies are formed downstream of the cavity, above the ramp, than the upstream,

near the step. The reason could be the interaction of the developed shear layer with the ramp.

Contours of the instantaneous magnitude of the temperature gradient for both simula-

tions are shown in Figure 72(b). This parameter makes turbulent structures, as well as shock

structures, clearly visible. Large gradients are the dark regions, while white areas indicate no

temperature gradient. More structures are visible in the cavity with injector, especially in front

of the injector, when compared with the base case. One of the crucial phenomena, which is

inherent in this type of combustor, is the interaction of the shear layer with the ramp. Large

gradients, as seen in Figure 72(b), meet the ramp at the bottom and the shock at the top. The
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shear layer is also required to satisfy the no-slip condition at the corner. Based on our expe-

rience, this region is the source of most of the numerical instabilities throughout the domain.

Since the case with the injector showed to be more sensitive in that region, we used a higher

value of Smagorinsky constant (Cs = 0.19) for that case. The reason could be the interaction

of the injector flow with the shear layer, resulting in more disturbed shear layer and larger

structures meeting the ramp.

Figure 72(c) shows the vorticity contours calculated for the same field as shown in Fig-

ure 72(b). Shades of yellow, orange, and red indicate positive values of vorticity, and green,

cyan, and blue show negative vorticity areas. According to the direction of the flow, the great-

est negative values indicate where the shear layer is located. A wide region of relatively large,

positive and negative, vorticity is visible above the ramp for both cases, indicating more eddies

are formed in that region. Smaller values and gradients of vorticity are observed upstream of

the cavity, which can be attributed to the lower velocity.

Figure 72(d) provides the time-averaged u-velocity at the shear layer and inside the cavity

for both cases. For the case without injector, the solution is averaged in the homogeneous

direction and time for 20 flow-through times. For the injector case, the solution is averaged

only in time for 130 flow-through times. Based on the contour plot of the averaged u-velocity,

the flow is similar for both cases, except for the injector flow, which is discernible with large

negative values.

The behavior of the shear layer in this type of ramp-cavity geometry can be also seen in

Figure 72(d). The shear layer first expands for about a half-length of the cavity followed by a
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Figure 72. Results for the case with (bottom) and without (top) injector (Re = 25, 288,
M = 2): (a) Instantaneous streamlines, colored by velocity (m/s). (b) Instantaneous

temperature gradient magnitude. (c) Instantaneous vorticity component, ωz (s−1). (d)
time-averaged u-velocity (m/s).

gentle inclination toward the bottom of the combustor. At the fourth quarter of the cavity we

observe a rise in height of the shear layer followed by a shrinkage landing at the ramp corner.

The no-slip condition at the corner requires the shear layer to undergo this mechanism.

The contour plot provides a more global view of the flow features, but with less precision. In

order to examine the cavity flow in more details velocity profiles are used. The profiles provide

a more precise, but less global, means of comparison. Figure 73 compares the velocity profiles

inside the cavity for both cases. It presents vertical line plots of u velocity and v velocity at
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different x locations inside the cavity. The location of the profiles are shown at the top of the

figure for reference. For the case with the injector, these profiles are at the z-plane that passes

through the center of the injector.

The first observation from the plots in Figure 73 is that the difference between the two cases,

as well as the flow speed, are minimal in the left side of the cavity (x = 7.3 and x = 8.2). From

the u-velocity plots, it is also clear that in front of the injector (x ≤ 10) the flow is faster at the

lower half of the cavity comparing to the case without injector. As expected, this higher speed

is the direct result of the injector flow, which is horizontal and directed to the left. This effect,

however, is diminished as we approach to the upstream step. The injector flow, by virtue of

its location and direction, also reinforces the large clockwise circulation throughout the cavity.

The slightly larger u-velocity at the upper half of the cavity, downstream of the injector (seen

at x = 10 and x = 10.9), could be associated with this effect.

The stronger clockwise circulation within the cavity for the case with the injector is visible

also in v-velocity plots. The larger negative v-velocity at x = 10.9 and x = 11.8 is also related

to this effect. At x = 10 and y < 0.25 we also see deviations in v-velocity from the base

flow. Larger negative v-velocity at the bottom and smaller negative v-velocity at the top of the

injector center-line are due to the expansion of the injector flow.

6.3.3 Effect of Reynolds Number

The non-reactive flow within the combustor without the injector has been simulated at dif-

ferent Reynolds numbers and the results are compared in order to examine the effect of the

Reynolds number on the flow features. Different Reynolds numbers are achieved by propor-
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Figure 73. Vertical profiles of time-averaged u and v velocity for the combustor with (red)
and without (blue) injector at different x-locations (x: Non-dimensional streamwise location).

The location of the line plots are shown with dashed red line (top).
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tionally changing the size of the combustor. Three cases have been simulated with Reynolds

numbers of Re = 12, 644, Re = 25, 288, and Re = 37, 932. The grid used for these simulations

is the same grid used for the simulation of the combustor without injector.

The magnitude of the temperature gradient for the above-mentioned three cases are provided

in Figure 74. The shear layer tends to be disturbed earlier at the higher Reynolds number and

consequently results in more and stronger turbulent structures at the location of the interaction

of the shear layer and the ramp.

Figure 75 shows contours of time-averaged pressure for the base case (Re = 25, 288) and

line plots of pressure across the shock for three different Reynolds numbers. The contour plot

reveals the high pressure regions at the primary shock and the reflected shock wave. The

highest pressure occurs at the location of the shock-boundary layer interaction with a value of

Pmax = 1.56 atm in this case. The flow in the core of the channel experiences a rapid change in

pressure due to the shock. In contrast, since the flow inside the boundary layer adjacent to the

top wall has a subsonic speed, it cannot undergo a discontinuous change in pressure. Therefore,

high pressure penetrates upstream through the subsonic layer of the boundary layer and the

overall change in pressure takes place gradually within a distance inside the boundary layer.

The weak Mach waves generated at the inlet are also more visible in this plot. These waves

have shown to be intensified by increasing the amount of turbulent eddy viscosity at the inlet.

From the line plots of the pressure across the shock, we see the primary shock, located at

x = 14.75 (non-dimensionalized by the cavity height) followed by the expansion wave. Then,

the flow passes through the compression and expansion waves of the reflected shock wave,
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Figure 74. Instantaneous temperature gradient magnitude for the combustor without injector,
at three different Reynolds numbers.

respectively. Because of the shock oscillation, the shock appears less sharp in this plot than it

does in the instantaneous plot. There is about 30% increase in pressure at the primary shock.

The line plots also uncover the effect of the Reynolds number on the shock. With an increase in

Reynolds number the shock, and consequently the reflected shock wave, gently incline toward
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Figure 75. Contours of time-averaged pressure (atm) for Re = 25, 288 (top) and pressure
profiles across the shock for three different Reynolds numbers (bottom). The location of the

profiles is specified with dashed white line in the contour plot.

upstream of the channel. We also observe slightly stronger shock at higher Reynolds numbers

suggested by the larger change in pressure.

6.4 Summary and Conclusions

An entropy-based, artificial viscosity method has been implemented in a discontinuous spec-

tral element method (DSEM) in order to simulate supersonic turbulent non-reactive flow in a

ramp-cavity combustor. The simulation was then extended by adding a small injector at the

back face of the cavity. Three-dimensional simulations have been performed for the supersonic

combustor and stable solutions are obtained with well resolved shock and turbulence. Resolv-
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ing both shock and turbulence has proven challenging in high-order numerical methods. The

combustor without injector was also simulated for different Reynolds numbers and the results

were compared. At higher Reynolds numbers, the shock was steeper and stronger.

The entropy-viscosity (EV) method introduced in this work was shown suitable for high

Reynolds number supersonic flows, captures the shock adequately, and does not generate ex-

cessive viscosity in the regions with high turbulence effects. The high-order DSEM equipped

with EV was shown to be able to successfully simulate supersonic turbulent flows in complex

geometries.

The cavity flow and the shear layer at the cavity were compared for two cases, with and

without injector. The shear layer for the case with injector had a slightly more disturbed shear

layer and more eddies inside the cavity. Such features made the simulation more numerically

unstable and required the addition of more turbulent viscosity.



CHAPTER 7

SUMMARY AND CONCLUSIONS

The objective of the present dissertation is to develop numerical tools and techniques for

high-fidelity simulations of supersonic turbulent reacting flows using discontinuous spectral

elements method (DSEM). The primary focus in this work is on the turbulence modeling, while

preliminary steps are taken for the application of supersonic turbulent flows in high-speed

combustors. A modal explicit filtering technique is introduced and tested for the use in LES

using DSEM. A density-based sensor that improves the performance of the Smagorinsky model

for separating flows is also developed, implemented, and tested for a turbulent flow over a

backward-facing step (BFS).

The near-wall spatial resolution requirement for direct numerical simulation (DNS) of tur-

bulent flows using DSEM is studied and presented in chapter 3. It is important to employ the

correct resolution near the wall since an under-resolved grid leads to inaccurate flow statistics,

and, on the other hand, an over-resolved grid near the wall greatly increases the computational

cost due to the non-uniform nature of Chebyshev grids. DNS’s of periodic channel flow are

performed using different grid resolutions. Three different polynomial orders of P = 2, 5, and

7 are used to study the effect of approximation order on the resolution requirement, and three

different near-wall resolutions are employed for each polynomial order. The major conclusions

are as follows.

183
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1. The near-wall resolution requirement strongly depends on the approximation order; for

an approximation order of P = 7, eight grid points within y+
10 is sufficient for accurate

statistics, while for an approximation order of P = 2, even having 11 points within y+
10

results in inaccurate statistics.

2. The near-wall resolution has little effect on the mean flow statistics; only P2 cases slightly

underpredict the mean velocity and overpredict the friction Reynolds number.

3. By comparing the rms velocity fluctuations, we realize that higher polynomial order with

the same resolution provides more accurate results, and regardless of the P , increasing

resolution improves the statistics.

4. Higher-P cases are generally more computationally expensive than lower-P cases, with

the same total number of grid points. However, they provide significantly more accurate

results.

In chapter 4, a modal explicit filtering method is introduced and tested for the use in

LES of turbulent flow using DSEM. The filter removes the high-frequency motions by setting

higher modes of the flow to zero in the spectral space. The proposed method is tested for

isotropic turbulence as well as turbulent flow in a planar periodic channel. The method produced

promising results including first- and second-order statistics comparing with DNS. It is also

shown that the strength of the filter should be a function of only polynomial order. The

method also showed superior performance over nodal filtering and dynamic Smagorinsky model

in terms of the computational cost.
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LES as well as DNS of a turbulent flow over a BFS is performed and studied in chapter 5.

A density-based sensor that improves the performance of the standard Smagorinsky model in

the vicinity of walls is developed, implemented, and tested for the flow over BFS. The sensor

removes the undesired viscosity that is introduced by the turbulence model inside the boundary

layer and would inhibit the development of turbulence. It is shown that the addition of the

sensor to the Smagorinsky model significantly improves the accuracy of the model. The LES

case without the sensor has a large error in mean velocities and severely underpredicts the rms

velocity fluctuations, while the case featuring the sensor predicts close values pf both mean

and rms velocities to the DNS case. The error in the prediction of the reattachment length is

dropped from 18.4% to −0.5% after applying the wall sensor.

Large eddy simulations of turbulent supersonic flow in a 3D ramp-cavity combustor are

also presented in chapter 6. Stable solution is obtained using the standard Smagorinsky model

featuring the wall sensor and an entropy-viscosity (EV) shock capturing method. A sensor is also

developed and added to the turbulence model to distinguish between the shock and turbulent

areas. The sensor removes the undesired viscosity that is introduced by the Smagorinsky model

at the shock due to the large local gradient of the velocity field. A case with a fuel injector

at the ramped wall of the cavity is also tested. It is shown that in the case with the injector,

the shear layer formed at the step is slightly more disturbed, and there are more eddies inside

the cavity. The effect of the Reynolds number on the shock is also studied by considering three

different Reynolds numbers, and it was observed that a higher Reynolds number results in a

steeper and a stronger shock.
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The focus of the research that is presented in this dissertation is more on the turbulence

than the other two major components of the high-speed engine flow, i.e., shock and reaction.

However, preliminary results for turbulent supersonic flows are also presented. Preliminary

simulations of turbulent reacting flow in ramp-cavity combustors with fuel injectors using scalar

transport equations are also performed (119; 120; 121). The research may be continued by

combining all three major components of the flow in a single stable simulation. The most

prominent challenge toward such simulation is stability. Each of the three components are

sources of strong instabilities, especially in such a high-order method.
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Appendix A

DISCRETE CHEBYSHEV TRANSFORM

In this appendix, the transformation procedures between the nodal space and the modal

space are described. In a one-dimensional version, assume the solution values ũ(X) within an

element in the mapped space are defined using basis functions of order P on a grid with a

Chebyshev distribution of points, X ′
i+ 1

2

, given by

X ′
i+ 1

2

= cos

(
i+ 1

2

N
π

)
, i = 0, . . . , N − 1 , (A.1)

where N = P + 1 is the number of grid points. For simplicity, we assume that the solution is

defined on the interval [−1, 1]. Then, the discrete Chebyshev transform (DChT) (69) of ũ(X)

is given by ûk, where

ûk =
2

N

N−1∑
i=0

ũ(X ′
i+ 1

2

)Tk(X
′
i+ 1

2

), k = 0, . . . , N − 1. (A.2)

Here, Tk is the Chebyshev polynomial of degree k, defined by Tk(x) = cos(k arccos(x)). The

inverse transform (iDChT) is given by

ũ(Xi+ 1
2
) =

1

2
û0 +

N−1∑
k=1

ûk Tk(X
′
i+ 1

2

), i = 0, . . . , N − 1. (A.3)
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After applying Equation A.1 and the definition of the Chebyshev polynomial, Equation A.2

and Equation A.3 become

ûk =
2

N

N−1∑
i=0

ũ(Xi+ 1
2
) cos

[
kπ

N

(
i+

1

2

)]
, k = 0, . . . , N − 1, (A.4)

and

ũ(Xi+ 1
2
) =

1

2
û0 +

N−1∑
k=1

ûk cos

[
kπ

N

(
i+

1

2

)]
, i = 0, . . . , N − 1. (A.5)

Equation A.4 and Equation A.5 are the DChT and iDChT and are used to transform the

solutions between the nodal and the modal representations. To implement the DChT and

iDChT in the DSEM code, the discrete cosine transform (DCT) and the inverse discrete cosine

transform (iDCT) from the library Fastest Fourier Transform in the West (FFTW) (70) are

used. The DCT and iDCT functions from FFTW are respectively defined by

Gk = 2

N−1∑
i=0

Fi cos

[
kπ

N

(
i+

1

2

)]
, k = 0, . . . , N − 1, (A.6)

and

Fi = G0 + 2
N−1∑
k=1

Gk cos

[
kπ

N

(
i+

1

2

)]
, i = 0, . . . , N − 1, (A.7)

By comparing Equation A.6 and Equation A.7 with Equation A.4 and Equation A.5, one realizes

that the DCT and iDCT can be used to apply the DChT and iDChT with minor modifications

to the output arguments of DCT and iDCT, i.e., dividing the outputs of DCT and iDCT by N

and 2, respectively.
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The three-dimensional variations of DChT and its inverse are simply separable products of

the one-dimensional definitions along each dimension and are defined by

ûk1k2k3 =

(
2

N

)3 N−1∑
i1=0

N−1∑
i2=0

N−1∑
i3=0

ũ(Xi1+ 1
2
, Xi2+ 1

2
, Xi3+ 1

2
)C(k1, i1)C(k2, i2)C(k3, i3) , k1, k2, k3 = 0, . . . , N−1 ,

(A.8)

and

ũ(Xi1+ 1
2
, Xi2+ 1

2
, Xi3+ 1

2
) =

N−1∑
k1=0

N−1∑
k2=0

N−1∑
k3=0

ûk1k2k3Ek1Ek2Ek3C(k1, i1)C(k2, i2)C(k3, i3) , i1, i2, i3 = 0, . . . , N−1 ,

(A.9)

respectively, where

C(p, q) = cos

[
pπ

N

(
q +

1

2

)]
, (A.10)

and

Er =


1
2 , r = 0

1 , r 6= 0

. (A.11)

The 3D versions of DCT and iDCT are also provided by FFTW.
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Appendix B

DIMENSIONLESS WALL VARIABLES

In this appendix, the definitions of wall variables including the dimensionless wall distance

(y+) are provided. We start with non-dimensionalizations of the flow variables, which are as

follows 

ρ∗ = ρ.ρ∗f

ν∗ = ν.ν∗f

u∗ = u.u∗f

y∗ = y.l∗f

τ∗ = τ(ν∗f
2l∗f
−2ρ∗f )

(B.1)

The variables introduced in Equation B.1 are density, kinematic viscosity, velocity, distance

from wall, and wall shear stress, respectively. Also, the superscript ∗ denotes dimensional

variables, and the subscript f indicates the reference variables. The reference Reynolds number

is defined by

Ref =
u∗f l
∗
f

ν∗f
. (B.2)

We also use the relation between the dynamic and kinematic viscosity,

µ∗ = ρ∗ν∗. (B.3)
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The wall shear stress, τ∗w, is defined by

τ∗w = µ∗
∂u∗

∂y∗

∣∣∣∣
y∗=0

, (B.4)

where ∂u∗

∂y∗

∣∣∣
y∗=0

is the gradient of the streamwise velocity in wall-normal direction, determined

at the wall. Applying the non-dimensional variables, the non-dimensional wall shear stress, τw,

is obtained as

τw = Refρν
∂u

∂y

∣∣∣∣
y=0

. (B.5)

The dimensional (u∗τ ) and non-dimensional (uτ ) versions of the shear velocity are also given by

u∗τ =

√
τ∗w
ρ∗
⇒ uτ =

u∗τ
u∗f

=

√√√√ν ∂u
∂y

∣∣∣
y=0

Ref
. (B.6)

The friction (shear) Reynolds number is defined by

Reτ =
u∗τδ
∗

ν∗
=

√
Ref
ν
.
∂u

∂y

∣∣∣∣
y=0

. (B.7)

The dimensionless wall distance (y+) is then defined by

y+ =
u∗τy

∗

ν∗
= y

√
Ref
ν
.
∂u

∂y

∣∣∣∣
y=0

= y.Reτ . (B.8)
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The skin friction coefficient is defined by

Cf =
τ∗w

1
2 ρ
∗ U
∗2 =

2 ν ∂u
∂y

∣∣∣
y=0

Ref U
2 . (B.9)

Finally, the wall shear (friction) temperature is defined as

T ∗τ =
q∗w

ρ∗c∗pu
∗
τ

=
k∗ ∂T

∗

∂y∗

∣∣∣
y∗=0

ρ∗c∗pu
∗
τ

. (B.10)

Applying the non-dimensional variables, we obtain the non-dimensional wall shear temperature

as

Tτ =
T ∗τ
T ∗f

=

∂T
∂y

∣∣∣
y=0

ρuτRefPrf
. (B.11)
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POISEUILLE FLOW TEMPERATURE PROFILE

In this appendix, the derivation of the non-dimensional temperature profile in a Poiseuille

channel flow is provided. The dimensional temperature profile in a Poiseuille channel flow is

given by (see Equation (12.44) of Boundary-Layer Theory (122))

∆T ∗ = T ∗(y)− T ∗w =
1

3

µ∗

k∗
u∗m

2[1− (y − 1)4
]
; 0 < y < 2, (C.1)

where u∗m is the maximum velocity at the center of the channel (at y = 1). Applying the

non-dimensional variables,

u∗ = uu∗f ; T ∗ = TT ∗f ; Prf =
c∗pµ
∗

k∗
; Mf =

u∗f√
γR∗T ∗f

, (C.2)

and the relations between the specific heat capacities,

R∗ = c∗p − c∗v; γ =
c∗p
c∗v
, (C.3)

the non-dimensional temperature profile reads

∆T = T (y)− Tw =
(γ − 1)

3
u2
mPrfM

2
f

[
1− (y − 1)4

]
; 0 < y < 2. (C.4)
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Assuming a parabolic velocity profile with the bulk velocity as the reference velocity, we will

have um = 3/2. Therefore, the temperature profile becomes

∆T = T (y)− Tw =
3(γ − 1)

4
PrfM

2
f

[
1− (y − 1)4

]
; 0 < y < 2. (C.5)
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KOLMOGOROV SCALES

In this appendix, the definitions of the Kolmogorov length and time scales for turbulent

flows are provided. The source of the material provided in this appendix is Turbulent Flows

book by Pope (93). The Kolmogorov length scale is the scale at which the turbulent energy is

dissipated. This non-dimensional length scale is defined based only on dissipation rate (ε) and

viscosity (ν) and is given by

η∗ =

(
ν∗3

ε∗

)1/4

. (D.1)

The dissipation rate itself is estimated by

ε∗ ≈ U∗3

L∗
. (D.2)

Applying the estimation of the dissipation to Equation D.1, we obtain

η∗ ≈
(
ν∗3L∗

U∗3

)1/4

(D.3)

Applying the definition of the reference Reynolds number, Ref = u∗f l
∗
f/ν

∗
f , Equation D.3 be-

comes

η ≈

(
ν3L

U3Re3
f

)1/4

. (D.4)
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Equation D.4 is the definition of the Kolmogorov length scale based on non-dimensional flow

variables.

Similar to the Kolmogorov length scale, we can define the Kolmogorov time scale, which is

the time scale of the smallest eddies. This scale is also defined based only on dissipation rate

(ε) and viscosity (ν) and is given by

t∗η =

(
ν∗

ε∗

)1/2

. (D.5)

Using the estimation for the dissipation rate (Equation D.2), the Kolmogorov time scale becomes

t∗η
2 ≈ ν∗L∗

U∗3
. (D.6)

Again, applying the definition of the reference Reynolds number, we can obtain the definition

of the Kolmogorov time scale based on non-dimensional flow variables as

tη ≈
(

νL

U3Ref

)1/2

. (D.7)
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previously (except in the form of an abstract, a published lecture or academic thesis,
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not under consideration for publication elsewhere, that its publication is approved

by all authors and tacitly or explicitly by the responsible authorities where the

work was carried out, and that, if accepted, it will not be published elsewhere in

the same form, in English or in any other language, including electronically without

the written consent of the copyright-holder. To verify originality, your article may
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