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SUMMARY

The main objective of this thesis is the analysis of a subsonic laminar cold flow in a dump

combustor. This type of combustors have gained increasing attention because of their typical

flow recirculation zone after a sudden change in geometry, a feature that makes them particu-

larly suitable for applications where fuel residence time is a major issue. In this sense, dump

combustors have interested the scramjet community, because of extremely high flow velocities

that imply extremely low time to obtain a satisfactory completion of combustion.

This work adopts the three-dimensional version of Chebyshev Multidomain Spectral Method,

because of its high accuracy, its appliability to complex geometries and its convenient paral-

lel implementation. To create an appropriate geometry input file, a mesh generator has been

implemented, focusing on the possibility of refining the grid in areas where the flow structure

requires it.

To provide validation for the three-dimensional version of the numerical code, after a number

of problems characterized by a simple setup, a laminar subsonic flow over a backward-facing

step is tested, because of its analogy to a simplified version of the dump combustor. This kind of

geometry has received wide attention in the literature, which makes it ideal to implement also a

new type of boundary condition. Transmissive boundary conditions have been programmed and

tested, believing that such type of boundary is more convenient than those already programmed.

As a final flow geometry, the backward facing step is modified to assume the typical shape

of a dump combustor, so that the main interest of this thesis is pursued. The main scope of this

xix



SUMMARY (continued)

analysis is on the flow features in the cavity and in the proximity of geometrical discontinuities,

with different Reynolds numbers, and also with different types of outflow boundary conditions.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Supersonic airbreathing propulsion systems represent a key component of future high-speed

transportation. The engines used in these systems typically do not use mechanical parts in order

to compress the incoming air, but they rather rely just on their geometry to create a favorable

combustion environment. The optimization of this geometry, to ensure minimal losses and

maximum completion of combustion, is a challenging task, and many groups are involved in

related research activities.

Ramjets and scramjets are subject to extremely unstable flows, characterized by turbulence,

shocks, co-existence of non-homogenous physical phases and chemical reactions. All these

elements contribute to increase the difficulty of providing measurements to a prohibitive level,

so that mainly numerical simulations are employed to model this kind of problems. Recent

advances in computer hardware coupled with the possibility of parallel computing, in fact, have

greatly enhanced computational fluid dynamics potential.

This work is motivated by the interest in analyzing a supersonic reacting flow in the com-

bustor of a scramjet. With incompressible turbulence still far from being fully understood,

modeling turbulence in compressible flows exceeds the aim of this thesis. The present work, in

fact, limits its analysis to subsonic laminar flows in the geometry mentioned. Laminar single-

1
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phase flows are chosen for their simplicity, and a subsonic Mach number low enough permits to

neglect compressibility effects. Therefore, this thesis aims to model this primitive kind of flows

in a geometry representative of a scramjet combustor.

1.2 Ramjet and Scramjet

In order to create thrust, rockets combine liquid fuel with liquid oxygen. Removing the

latter, ensuring another way of supplying oxygen, makes it possible to reduce their dimensions

or increase their payload. That is precisely the idea on which a ramjet is based. The ramjet,

in fact, is a form of airbreathing engine that exploits the forward motion to compress incoming

air, without the need of a rotary compressor, and also without the need of an oxygen tank

onboard. Because it is an airbreathing engine, it cannot generate thrust at zero speed, i.e. it

cannot move an aircraft from a standstill, so that some other propulsion system is needed for

this task. The initial compression is responsible of a deceleration of the flow down to subsonic

speed, so that combustion takes place in a subsonic flow. Ramjets efficiency reaches a maximum

at supersonic speeds around Mach 3, but these propulsion systems are able to operate up to

Mach 6. A schematic of this type of engine is shown in figure 1.

A variant of the ramjet is the scramjet (Supersonic Combustion Ramjet), in which even

combustion takes place in a supersonic flow. The air flow, in fact, is supersonic throughout the

whole extension of the engine, so even through the combustor. Theoretically, the top speed of

a scramjet engine is placed between Mach 12 (15,000 km/h) and Mach 24 (29,000 km/h). A

schematic of the scramjet engine is represented in figure 2.

The scramjet is constituted of three main parts:
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Figure 1: Graphical representation of a ramjet engine [1].

Figure 2: Graphical representation of a scramjet engine [2].
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• A converging inlet, responsible of compression and deceleration of incoming air;

• A combustor, where fuel is burned using atmospheric oxygen to produce heat;

• A diverging nozzle, where the supersonic heated airflow is accelerated to produce thrust.

The absence of any rotating parts makes this type of engine easier to manufacture, and reduces

its weight, complexity and number of failure points.

Because of the supersonic airflow throughout the scramjet, it has been necessary to choose

a particular geometry for the combustor to increase the residence time of the mixture, to

have a more complete combustion. The geometry adopted for the combustor involves a cavity,

because of its feature of flame-holding device [4]. That is why dump combustors are taken

into consideration for ramjets [5]. Such type of combustors, in fact, rely on a large change in

the combustor area to perform recirculation, and therefore increase the residence time of the

mixture.

1.3 Dump Combustor

This work is motivated by the interest in analyzing the turbulent flow in a dump combustor.

The geometry considered in this thesis is taken from Tuttle et al. [6], so that the dump combus-

tor is modeled as a backward-facing step followed by a ramp. Its main feature is the sudden

expansion of the flow into the combustion cavity, which is responsible for flow separation. In

fact, this geometry leads to the development of stable recirculation regions behind the step, in-

creasing the residence time of the fuel and therefore favoring both ignition and a more complete

combustion, as it is shown by figure 3. At moderate to high Reynolds numbers, the separated
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flow becomes unstable and this culminates into turbulence, which favors the combustion process

increasing its volumetric efficiency.

Figure 3: Graphical representation of dump combustor u velocity distribution, no
countercurrent shear.

To increase further recirculation and residence time a countercurrent shear may be ap-

plied [7] [8], but such a case is not analyzed in this work. This research, in fact, is focused on the

properties of the backward-facing step and of the actual dump combustor geometry.

1.4 Backward-Facing Step

The backward-facing step geometry has been widely studied in literature. The reference

results for this geometry are those obtained by Armaly et al. [3]. Armaly et al.’s experimental

and numerical data have been referenced by authors like Denham and Patrick [9], Le, Moin

and Kim [10], and Lee and Mateescu [11], whose results yielded analogous conclusions. Such

experiments have provided useful data for comparison and for the code testing.

As shown by Armaly et al., the flow can be considered two-dimensional only for Re < 400

or Re > 6600, while for the range of Reynolds numbers in between non-symmetric sidewall
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separation occurs, so that flow three-dimensionality must be taken into account. The flow can

be considered laminar for Reynolds numbers up to 1200 [12], so that in this region reattachment

length varies with Re (it increases as the Reynolds number increases). For Reynolds numbers

greater that 6600, the flow can be considered turbulent, and this range is characterized by a

fixed reattachment length, independent of the Re assumed.

Research on backward-facing step flow continues together with the advances in computa-

tional methods. Williams and Baker [13] investigated a three-dimensional laminar flow over

a backward-facing step, for Reynolds numbers in the range 100 < Re < 800. Their results

confirmed the influence of the three-dimensionality of the flow for Re > 400 by means of a

correct prediction of the reattachment length in this range. Biswas et al. [14] carried out three-

dimensional simulations for low and moderate Reynolds numbers, i.e. in the range Re < 400,

to provide informations on mean velocities and streamlines. Park et al. [15], instead, studied

the separating shear flow behind a backward-facing step for both non-reactive and reactive flow

conditions, considering this geometry suitable for a combustor.

In the last few years, growing interest has been shown in the study of the flow over a

backward-facing step for higher Reynolds numbers and higher Mach numbers. More and more

sophisticated computational methods have opened the doors for the development of particle-

tracking algorithms, to be used in the modelling of two-phase turbulent flows. Particle image

velocimetry (PIV) has been used by Schroeder et al. [16] in order to study the structure of a

transitional flow. Chen et al. [17], instead, used nano-based planar laser scattering to perform an

experimental study of the fine structures generated by a backward-facing step flow in supersonic
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flow conditions. Kanchi et al. [18], on the other side, performed simulations using a spectral

element method and Large Eddy Simulation (LES) for a backward facing step for Reynolds

numbers higher than 28,000, and analyzed the effect of a turbulent inflow boundary condition.

In order to ensure stability in case of discontinuities caused by the generation of shock waves,

different approaches have been employed in the literature. In particular, Nguyen et al. [19] stud-

ied different strategies to stabilize solutions in the proximity of discontinuities. Kurganov and

Liu [20], instead, proposed a new finite volume method to solve hyperbolic systems of conser-

vation laws, enforcing stability with an adaptive artificial viscosity. Such a method, in fact,

increases the viscosity value where the discontinuity is located, so that computations are pre-

vented from being unstable.

1.5 Numerical Scheme

This work is based on Chebyshev multidomain spectral method (CMSM) introduced by

Kopriva [21] [22] [23] and implemented, tested and improved by Jacobs [24] for the computation of

compressible turbulent two-phase flows. The cases that are considered, however, do not involve

two-phase flows and do not exploit any instrument of particle tracking developed in the code,

but instead focus on flows induced into turbulence by a sudden change in geometry, such as the

backward-facing step.

Simulations are performed by a direct numerical simulation (DNS), and are executed by

solving the fully coupled Navier-Stokes system of equations, so that they can provide detailed

features of the flow, details that would not be possible using an experimental approach or

simulations based on a simplified model.
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Although DNS is computationally expensive and limited to low Reynolds numbers and rela-

tively simple flows, its coupling with CMSM, advances in computer hardware and the possibility

of parallel computing have opened the door for its application to a wider range of problems.

The adaptation of this method to more complex geometries has been analyzed and performed

by Jacobs [24], and he drew the conclusion that CMSM offered all the features DNS required,

and therefore was the suitable numerical scheme for his work. In this thesis all the simulations

are performed using the three-dimensional version of CMSM.

1.6 Contributions and Outline

The main contributions of this thesis are the implementation of a mesh generator and the

analysis of a subsonic, single-phase, cold flow in a dump combustor.

The geometry taken into consideration is constituted by a backward-facing step followed

by a ramp. A mesh generator based on previous work by Komperda [25] at CMTL has been

implemented in Python, to allow the creation of mesh for different shapes, which have been

eventually combined into the final channel geometry.

To test the effective functionality of the numerical three-dimensional code developed in the

CMTL, based on CMSM, simulations of the flow over a backward-facing step have been per-

formed, and results have been compared to those derived from experiments found in literature.

Two different types of boundary conditions have been imposed at the outlet section. The

first type, already available in the code, is based on the specification of the outflow u velocity

profile, together with other variables set as their free-stream values. The second type, instead,

has been implemented with this work and is represented by the transmissive (or zero-gradient)
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boundary condition, that forces each variable to remain constant along the x direction from the

last domain section on.

After confirming the code’s reliability with the simulations over the backward-facing step,

the flow in a dump combustor, obtained by adding a ramp after the step, is then analyzed.

In the literature such a geometry has been widely studied for supersonic flows, while little or

no research has been conducted for laminar flows, to the best of the author’s knowledge. This

work, therefore, is also an opportunity to describe in detail laminar incompressible flows in the

dump combustor geometry, and provide a comparison between the results obtained imposing

two different types of outflow boundary conditions.

In Chapter 2, the governing equations of fluid dynamics used to describe the flow are pre-

sented. Chapter 3 is dedicated to the description of the numerical code used for the simulations,

and the equations introduced in Chapter 2 are discretized and modeled numerically. In Chapter

4, the mesh generator and its main features are described. Chapter 5 describes in detail bound-

ary conditions used for the simulations, and it presents results for both the backward-facing

step and the backward-facing step with the ramp. Finally, Chapter 6 draws conclusions and

contains suggestions for future work.



CHAPTER 2

GOVERNING EQUATIONS

2.1 Compressible Navier-Stokes Equations - Dimensional Form

The fundamental governing equations of fluid dynamics are the continuity, momentum and

energy equations. They are the mathematical statements of three fundamental physics princi-

ples [26]:

1. mass is conserved;

2. F = ma, where F indicates the force, m the mass, and a the acceleration (Newton’s

second law);

3. energy is conserved.

These equations, applied to fluid mechanics, are grouped under the name of Navier-Stokes

equations. All of theoretical and computational fluid dynamics is based on these equations. In

this section, they will be presented in dimensional form, which of course implies that all the

variables are taken with their appropriate dimensional units.

2.1.1 Mass Conservation

The first equation to be taken into consideration is the mass conservation equation, also

known as the continuity equation. Its integral form is obtained by referring to a control volume

Ω and its delimiting surface S, whose normal in every point is indicated with n. In particular,

10
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referring to an infinitesimal surface element dS and its normal n, as shown in figure 4, it is

possible to apply the conservation of mass, and then extend it over the whole domain considered

∂mΩ

∂t
=

∂

∂t

∫
Ω
ρ dΩ = −

∫
S
ρv · n dS. (2.1)

The surface integral can be transformed into a volume integral by applying Gauss divergence

Figure 4: Schematic representation of a generic control volume Ω, an infinitesimal surface
element dS and its normal n, immersed in a flow with velocity v.
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theorem, and brought for convenience to the left hand side. This procedure leads to a differential

coordinate-free expression of mass conservation

∂ρ

∂t
+∇ · (ρv) = 0. (2.2)

(Equation 2.2) is suitable for different coordinate systems, since there’s just the need to apply

a divergence expression consistent with the coordinates chosen. The two most convenient

conventions for the purpose of this thesis are the Cartesian coordinate system and the Einstein

notation, respectively adopted in the expressions below

∂ρ

∂t
+
∂ρu

∂x
+
∂ρv

∂y
+
∂ρw

∂z
= 0, (2.3)

∂ρ

∂t
+
∂ρui
∂xi

= 0, (2.4)

where i = 1, 2, 3, xi = x, y, z represents the Cartesian coordinates and ui = u, v, w represents

the Cartesian components of the velocity vector v.

2.1.2 Momentum Conservation

In order to derive an expression for the momentum conservation, a procedure similiar to

the former has to be followed. Referring again to a control volume Ω and its delimiting surface

S, the expression stating the momentum conservation in integral form is

∂(mΩvΩ)

∂t
=

∂

∂t

∫
Ω
ρv dΩ = −

∮
S

F(ρv) · n dS +

∫
Ω

s(ρv) dΩ. (2.5)
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The right hand side contains all the forces that act on the volume considered, which are divided

into:

• Surface forces, F, which are those forces acting on the external surface S of the volume

considered, such as pressure, normal and shear stresses, etc.;

• Body forces, s, which are forces that act on the volume as a whole, such as gravity,

centrifugal forces, etc..

Under the assumption of considering a Newtonian fluid, and in the absence of any source term

or other body forces (last integral in (Equation 2.5) is then taken equal to zero), which is

appropriate for the problems considered in this thesis, the right hand side can be reformulated

in a more convenient expression, through the following splitting:

F(ρv) = Fadv + Fstat + Fdyn,

where:

• Fadv is the advection flux, whose formulation is

Fadv(ρv) = ρv ⊗ v,

and whose dimensional units are those of a force per unit area, i.e. a mechanical stress;
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• Fstat is the hydrostatic flux, given by

Fstat(ρv) = pI,

where p is the pressure, and I is the identity matrix;

• Fdyn is the hydrodynamic flux, given by

Fdyn(ρv) = −Πν = −ρν
(
∇× v + (∇× v)T − 2

3
∇ · v I

)
,

where ν is the kinematic viscosity of the fluid.

Hydrostatic and hydrodynamic fluxes can be grouped together under the stress tensor Π

Π = pI−Πν . (2.6)

It is now convienent to present a more comfortable reformulation of (Equation 2.5), neglecting

the source term, that has been assumed equal to zero

∂

∂t

∫
Ω
ρv dΩ +

∫
S

(ρv ⊗ v) · n dS = −
∫
S

Π · n dS, (2.7)

or, dividing hydrostatic and hydrodynamic fluxes contributions,

∂

∂t

∫
Ω
ρv dΩ +

∫
S

(ρv ⊗ v) · n dS = −
∫
S
pI · n dS +

∫
S

Πν · n dS. (2.8)
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Applying the mass conservation equation, (Equation 2.8) can be rewritten in coordinate-free

vector form by the application of Gauss divergence theorem

∂ρv

∂t
+∇ · (ρv ⊗ v) = −∇p+∇ ·Πν . (2.9)

Since momentum is a vector quantity, it can be either represented along the Cartesian coordi-

nates

∂ρu

∂t
+∇ · (ρuv) = −∂p

∂x
+
∂τxx
∂x

+
∂τxy
∂y

+
∂τxz
∂z

, (2.10)

∂ρv

∂t
+∇ · (ρvv) = −∂p

∂y
+
∂τxy
∂x

+
∂τyy
∂y

+
∂τyz
∂z

, (2.11)

∂ρw

∂t
+∇ · (ρwv) = −∂p

∂z
+
∂τxz
∂x

+
∂τyz
∂y

+
∂τzz
∂z

, (2.12)

or with Einstein notation

ρ
∂ui
∂t

+∇ · (ρuiv) = − ∂p

∂xi
+
∂τij
∂xj

, (2.13)

where again i, j = 1, 2, 3, ui = u, v, w are the components of the velocity vector v along the

Cartesian coordinates xi = x, y, z, and τij are the components of the viscous stress tensor Πν .
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2.1.3 Total Energy Conservation

The third fundamental equation of fluid dynamics states the conservation of total energy,

given by the sum of kinetic, potential and internal energy. The specific total energy for the

control volume Ω is defined as

eΩ =
Et
mΩ

=
1

mΩ

∫
Ω
ρet dΩ (2.14)

where Et is the total energy of the system considered, while et is the total energy per unit

volume. Following the same procedure for the other two conservation equations considered, it

is possible to write the integral formulation for the conservation of total energy

∂(mΩeΩ)

∂t
=

∂

∂t

∫
Ω
ρet dΩ = −

∮
S

f(ρet) · n dS (2.15)

where f(ρet) is the total energy flux, which can be split into three terms, similarly to the

previous case. In particular

f(ρet) = fadv + ftherm + fmech,

where

• fadv, similarly to the previous case, is the advection flux, whose formulation is

fadv(ρet) = ρetv;
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• ftherm is the thermal flux, that can be expressed using Fourier’s Law as

ftherm(ρet) = qα = −λ∇T = −ρcpα∇T,

where λ is the thermal conductivity [W/(mK)], while α is the thermal diffusivity [m2/s],

linked by the relation α = λ/(ρcp);

• fmech is the mechanical flux, that can be expressed by means of the stress tensor, namely

fmech(ρet) = Π · v.

A more convenient reformulation of (Equation 2.15) may now be presented:

∂

∂t

∫
Ω
ρet dΩ = −

∫
S
ρetu · n dS −

∫
S

qα · n dS −
∫
S

(pI−Πν) · v dS. (2.16)

In (Equation 2.16) expressions for advective, thermal and mechanical fluxes have been substi-

tuted, and the stress tensor has been divided into hydrostatic and hydrodynamic components,

through (Equation 2.6). Applying once again the Gauss divergence theorem, the above expres-

sion can be transformed into

∂(ρet)

∂t
+∇ · (ρetv) = −∇ · (pv)−∇ · qα +∇ ·Πν , (2.17)
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that is the final conservation equation for total energy. This last expression can also be rewrit-

ten for Cartesian coordinates, for consistency with what presented for the other conservation

equations

∂(ρet)

∂t
+
∂(ρetu)

∂x
+
∂(ρetv)

∂y
+
∂(ρetw)

∂z
= −∂(up)

∂x
− ∂(vp)

∂y
− ∂(wp)

∂z
+

+
∂

∂x

(
λ
∂T

∂x

)
+

∂

∂y

(
λ
∂T

∂y

)
+

∂

∂z

(
λ
∂T

∂z

)
+

+
∂(uτxx)

∂x
+
∂(uτxy)

∂y
+
∂(uτxz)

∂z
+
∂(vτxy)

∂x
+
∂(vτyy)

∂y
+

+
∂(vτyz)

∂z
+
∂(wτxz)

∂x
+
∂(wτyz)

∂y
+
∂(wτzz)

∂x
. (2.18)

The components τij of the stress tensor in Cartesian coordinates are defined by the following

relations:

τxx = 2ρν

(
∂u

∂x
− 1

3
∇ · v

)
,

τyy = 2ρν

(
∂v

∂y
− 1

3
∇ · v

)
,

τzz = 2ρν

(
∂w

∂z
− 1

3
∇ · v

)
,

τxy = τyx = ρν

(
∂u

∂y
+
∂v

∂x

)
,

τyz = τzy = ρν

(
∂v

∂z
+
∂w

∂y

)
,

τxz = τzx = ρν

(
∂w

∂x
+
∂u

∂z

)
.
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2.1.4 Assumptions

In this work, certain assumptions concerning conservation equations are made, and they are

summarized below:

• The fluid is assumed to be Newtonian, which means that viscous stresses arisen from the

flow are considered linearly proportional to the local strain rate at every point;

• The heat flux can be modeled using Fourier’s law, i.e. the heat flux in each direction is

proportional to the directional derivative of temperature along the same direction, and

the constant of proportionality is the thermal conductivity λ of the fluid;

• Viscosity, thermal conductivity, thermal diffusivity and specific heats of the fluid are

assumed to be constant and independent from the temperature of the fluid;

• The fluid is assumed continuous, so that properties such as density, pressure, temperature

and velocity are considered well-defined at infinitesimally small points;

• The fluid has zero bulk viscosity (‘Stokes hypothesis’):

µb = ε+
2

3
µ = 0, (2.19)

where µb is the bulk viscosity, µ is the dynamic viscosity coefficient and ε is a secondary

viscosity coefficient. Being µb = 0, the two coefficients can be grouped into one, which

will be substituted taking also into account that µ = ρν;
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• The fluid is assumed to be an ideal gas, so that intermolecular forces are negligible, and

it is described by the equation of state

p = ρRT, (2.20)

where R [J/(KgK)] is the gas constant. Navier-Stokes equations are coupled with (Equation 2.20),

so that the system counts six equations for six unknows: ρ, u, v, w, p and T .

2.2 Compressible Navier-Stokes Equations - Non-Dimensional Form

Even if the equations presented so far give a full theoretical background for describing any

fluid in motion, they aren’t yet in the most convenient form for computational fluid dynam-

ics analysis. The next step that has to be accomplished is their non-dimensionalization, i.e.

the removal of dimensional units associated to physical quantities through an appropriate sub-

stitution of variables. To do so, independent variables have to be isolated and scaled with

respect to a reference quantity to be determined, while dependent variables are scaled through

combination of previously defined reference quantities.

Therefore, all variables are non-dimensionalized by means of

• lf reference length;

• ρf reference density;

• vf reference velocity;

• Tf reference temperature.
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The non-dimensionalization of variables is shown below:

x =
x∗

lf
, y =

y∗

lf
, z =

z∗

lf
,

u =
u∗

vf
, v =

v∗

vf
, w =

w∗

vf
,

ρ =
ρ∗

ρf
, T =

T ∗

Tf
, p =

p∗

ρfv
2
f

t =
t∗vf
lf

.

It is important to remark that the reference time is a dependent variable, since it is expressed

as a function of reference length and velocity, i.e. tf = lf/vf . For sake of convenience, all

dimensional variables have here been highlighted with a ∗ power, so that in the following non-

dimensionalized variables can be simply recalled using their traditional symbol.

2.2.1 Mass Conservation

Applying the substitution of variables described in the previous paragraph, equation of

conservation of mass becomes

ρf
tf

∂ρ

∂t
+
ρfvf
lf
∇ · (ρv) = 0, (2.21)

with tf = lf/vf , that leads to

∂ρ

∂t
+∇ · (ρv) = 0, (2.22)

where all the physical quantities involved are now non-dimensionalized with respect to their

reference value.
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2.2.2 Momentum Conservation

The same procedure is now applied to momentum conservation equation

ρfvf
tf

∂ρv

∂t
+
ρfv

2
f

lf
∇ · (ρv ⊗ v) = −

ρfv
2
f

lf
∇p+

ρfνvf
l2f
∇ ·Πν , (2.23)

that can be reorganized in the more convenient formulation

∂ρv

∂t
+∇ · (ρv ⊗ v) = −∇p+

1

Ref
∇ ·Πν . (2.24)

2.2.3 Total Energy Conservation

The last equation to non-dimensionalize is the energy conservation equation

ρfv
2
f

tf

∂(ρet)

∂t
+
ρfv

2
fvf

lf
∇ · (ρetv) = −

ρfv
2
fvf

lf
∇ · (pv)−

ρfcpα

Tf l
2
f

∇ · qα +
ρfνvf
l2f
∇ ·Πν , (2.25)

that also may be rewritten in a most comfortable way as

∂(ρet)

∂t
+∇ · (ρetv) = −∇ · (pv)− 1

(γ − 1)M2
f PrRef

∇ · qα +
1

Ref
∇ ·Πν . (2.26)

In the previous equations, the following expression for total energy has been applied:

ρet =
p

γ − 1
+ ρ

u2 + v2 + w2

2
. (2.27)
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2.2.4 Additional Considerations

In (Equation 2.24) and (Equation 2.26) some non-dimensional numbers have been used to

correlate reference and dimensional quantities in a more convenient notation:

• Ref indicates the reference Reynolds number, a non-dimensional parameter whose defini-

tion Ref = (lfvf )/ν involves kinematic viscosity, reference length and velocity, and gives

a measure of inertial (advective) forces as compared to viscous forces;

• Mf indicates the reference Mach number, defined as Mf = vf/cf , where cf is the reference

speed of sound defined as cf =
√
γRTf , and γ is the ratio between constant pressure

specific heat and constant volume specific heat. In this work Mf is assumed equal to

unity, so that the reference velocity is equal to the reference speed of sound;

• Pr indicates the Prandtl number, given by Pr = (cpρν)/λ, which measures the ratio of

viscous and thermal diffusivity.

All previous equations are coupled once again with the equation of state, that for an ideal gas

in non-dimensional form reads

p =
ρT

γM2
f

. (2.28)

Since, as previously said, in this work Mf is taken equal to unity, the equation of state may be

rewritten as

p =
ρT

γ
. (2.29)
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It is important to remark the difference between the reference Mach number Mf and the flow

Mach number, indicated with just the symbol M . The former, in fact, is related both to

reference velocity and reference speed of sound, while the latter is related to the actual speed

of sound. In fact, it is defined as M = vf/c
∗, where c∗ =

√
γRT ∗, where it has to be reminded

that dimensional quantities have been highlighted with a ∗ power. The flow Mach number,

which does not appear explicitly in the non-dimensional equations, is a local quantity in the

flow.

2.3 Matrix Form

Now that all the fundamental equations have been presented in their non-dimensional form,

it is convenient to group them into a matrix form, that is the most suitable for a CFD appli-

cation. Therefore, all conservation equations may be reunited under the following relation:

∂W

∂t
+
∂Ff

∂x
+
∂Gf

∂y
+
∂Hf

∂z
=

1

Ref

[(
∂Fν

∂x
+
∂Gν

∂y
+
∂Hν

∂z

)
+

(
∂FT

∂x
+
∂GT

∂y
+
∂HT

∂z

)]
. (2.30)

Vectors constituting (Equation 2.30) can be subdivided in



25

• Vector of conserved quantities, W

W =



ρ

ρu

ρv

ρw

ρet


;

• Vectors that group inviscid (advection and hydrostatic) fluxes along the Cartesian coor-

dinates, Ff , Gf and Hf

Ff =



ρu

ρu2 + p

ρuv

ρuw

ρetu+ pu


, Gf =



ρv

ρvu

ρv2 + p

ρvw

ρetv + pv


, Hf =



ρw

ρwu

ρwv

ρw2 + p

ρetw + pw


;



26

• Vectors that group viscous fluxes along the Cartesian coordinates, Fν , Gν and Hν

Fν =



0

τxx

τxy

τxz

uτxx + vτxy + wτxz


, Gν =



0

τxy

τyy

τyz

uτxy + vτyy + wτyz


,

Hν =



0

τxz

τyz

τzz

uτxz + vτyz + wτzz


.

• Vectors that group the influence of temperature, FT, GT, HT

FT =



0

0

0

0

1
(γ−1)M2

f Pr
∂T
∂x


, GT =



0

0

0

0

1
(γ−1)M2

f Pr
∂T
∂y


, HT =



0

0

0

0

1
(γ−1)M2

f Pr
∂T
∂z


.
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The components τij of the stress tensor are here defined as

τxx = 2

(
∂u

∂x
− 1

3
∇ · v

)
,

τyy = 2

(
∂v

∂y
− 1

3
∇ · v

)
,

τzz = 2

(
∂w

∂z
− 1

3
∇ · v

)
,

τxy = τyx =
∂u

∂y
+
∂v

∂x
,

τyz = τzy =
∂v

∂z
+
∂w

∂y
,

τxz = τzx =
∂w

∂x
+
∂u

∂z
.

In the following chapter, numerical methodology will be described in detail, and also the inte-

gration between the code and the equations just presented will be explained.



CHAPTER 3

NUMERICAL METHODOLOGY

3.1 Space Discretization

(Equation 2.30) has to be discretized in space, and the code used employs the staggered-

grid Chebyshev multidomain spectral method (CMSM) introduced by Kopriva [21] [22] [23] for

two-dimensional problems. Jacobs [24] extended CMSM to three dimensional problems, and

this procedure is described in the chapter.

3.1.1 Isoparametric Mapping

If compressible flows are modeled with Fourier spectral methods, severe restrictions have to

be taken into account.

A significant alternative to the standard method is a multidomain method, such as CMSM.

This kind of methods is based on the subdivision of the computational domain into multiple

zones, called subdomains, where the spectral approximation is then applied. Because of its

subdivision onto multiple domains, this method is appropriate for the analysis of more complex

geometries. These subdomains are non-overlapping regions, so that the whole computational

domain D, subdivided into n parts, is given by

D = D1 ∪D2 ∪ ... ∪Dn, (3.1)

28
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where Di indicates the i-th subdomain. These subdomains are quadrilaterals in two dimensions,

while hexahedrons in three dimensions.

Chebyshev polynomial is defined on the interval [−1, 1]. In order to use this polynomial on

a generic subdomain Di, therefore, it is necessary to map the domain to that interval in all

its spatial dimensions. Kopriva’s method maps the subdomain to the more convenient interval

[0, 1], rather than to the natural interval [−1, 1]. This operation is performed with isoparametric

mapping, so that spectral accuracy is not influenced, which is very important considering the

high approximation order used.

Figure 5: Isoparametric mapping for a two dimensional shape in plane (x, y) to a unit square
in plane (ξ, η).
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Through isoparametric mapping, every curved element in two or three dimensional physical

space can be mapped to a unit square or cube, respectively, allowing the analysis of any complex

geometry possible, as shown in figure 5.

Considering the two dimensional case shown in the example, a generic shape in physical

space, plane (x, y), can be mapped to a unit square in plane (ξ, η), through the coordinate

transformation shown in table I. The bottom-left point of the shape, indicated in figure 5 as

1, is assumed as the origin of the new coordinate system (ξ, η), whereas the sides of the shape

are chosen as the lines where the two new coordinates, ξ and η, assume the values of 0 and

of 1. Therefore, every corner of the quadrilateral in plane (x, y) is mapped to a vertex of the

unit square in plane (ξ, η). In the following, mapping for two and three dimensional cases is

analyzed in detail. For the sake of notational convenience, the mapped space will be referred

to as (X,Y ), instead of as (ξ, η).

TABLE I: ISOPARAMETRIC MAPPING FROM PHYSICAL SPACE (X,Y ) TO MAPPED
SPACE (ξ, η).

Point (x, y) coordinates (ξ, η) coordinates

1 (x1, y1) (0, 0)
2 (x2, y2) (1, 0)
3 (x3, y3) (1, 1)
4 (x4, y4) (0, 1)
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3.1.1.1 Two-Dimensional Mapping

The parametric curve g(s), with 0 ≤ s ≤ 1, is interpolated by the polynomial P (s), which has

the same degree as the approximation order within the domain. In particular, the interpolating

polynomial P is defined as a linear combination of the fundamental polynomials

P (s) =

N∑
j=0

gjlj(s), (3.2)

where lj(s) are the fundamental Lagrangian polynomials, which constitute a base of the poly-

nomials space, and are given by

lj(s) =
N∏

i=0,i 6=j

s− xi
xj − xi

. (3.3)

The pecularity of Lagrangian polynomials is that their value is zero in all the nodes except the

one they are calculated in, where they assume value 1. In fact, the j-th fundamental Lagrangian

polynomial calculated in a generic node reads

lj(x) =
(x− x1)...(x− xj−1)(x− xj+1)...(x− xn)

(xj − x1)...(xj − xj−1)(xj − xj+1)...(xj − xn)
, j = 1, ..., n.

If calculated in the node xj , the polynomial will reduce to

lj(xj) =
(xj − x1)...(xj − xj−1)(xj − xj+1)...(xj − xn)

(xj − x1)...(xj − xj−1)(xj − xj+1)...(xj − xn)
= 1.
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It is easy to recognize that, if the Lagrangian polynomial is calculated in a node xi with i 6= j,

it has value 0. In other words, Lagrangian polynomials are such that

lj(s) = δij =


1 if i = j,

0 if i 6= j.

(3.4)

The two dimensional mapping is then performed through a linear blending formula [27], applying

the equations presented so far, for both x and y directions

x(X,Y ) = (1− Y )P1(X) +XP2(Y ) + Y P3(X) + (1−X)P4(Y )+

− x1(1−X)(1− Y )− x2X(1− Y )− x3XY − x4(1−X)Y.

(3.5)

y(X,Y ) = (1− Y )P1(X) +XP2(Y ) + Y P3(Y ) + (1−X)P4(Y )+

− y1(1−X)(1− Y )− y2X(1− Y )− y3XY − y4(1−X)Y.

(3.6)

In (Equation 3.2) to (Equation 3.6), Pi(s) indicates the polynomial interpolating the curve g(s)

referred to the i-th side of the domain, xi and yi refer to the number of the corner, while Xi

denote the boundary grid points of a particular domain. For convex quadrilaterals, where

no inside corner is more than 180 degrees, (Equation 3.2) is regular, which implies the Jacobian

of the mapping to the unit region is non-zero. As it can be seen in figure 6, sides and corners

of the unit square have been numbered accordingly to what presented in (Equation 3.5) and in

(Equation 3.6).
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Figure 6: Node and side numbering for a two-dimensional case.

3.1.1.2 Three-Dimensional Mapping

In case of three-dimensional mapping, the procedure to be followed is analogous to that

previously applied, with some adjustements to extend it to a three dimensional problem. In

particular, aside from the fundamental Lagrange polynomials Pi(s), whose expression is given

by (Equation 3.2), it is necessary to introduce the Si(s) polynomial also

S(s, t) =
N∑
i=0

N∑
j=0

gijli(s)lj(t), (3.7)
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where g(s, t) interpolates the boundary surfaces at the grid points. The linear blending formula

for a three-dimensional case reads [24]

x(X,Y, Z) = (1− Y )S1(X,Z) + Y S2(X,Z) + (1− Z)S3(X,Y )+

+XS4(Y,Z) + ZS5(X,Y ) + (1−X)S6(Y, Z)+

− (1− Y )(1− Z)P1(X)−X(1− Y )P2(Z)− (1− Y )ZP3(X)+

− (1−X)(1− Y )P4(Z)− Y (1− Z)P5(X)−XY P6(Z)+

− Y ZP7(X)− (1−X)Y P8(Z)− (1−X)(1− Z)P9(Y )+

−X(1− Z)P10(Y )−XZP11(Y )− (1−X)ZP12(Y )+

+ (1−X)(1− Y )(1− Z)x1 +X(1− Y )(1− Z)x2 +XY (1− Z)x3+

+ (1−X)Y (1− Z)x4 + (1−X)(1− Y )Zx5 +X(1− Y )(1− Z)x6+

+XY Zx7 + (1−X)Y Zx8.

(3.8)

The subscripts on S (lines 1-2 in (Equation 3.8)), P (lines 3-6) and x (lines 7-9) indicate the

surfaces (1 to 6), the sides (1 to 12) and the corners (1 to 8) of the domain, respectively.

Equations for y(X,Y, Z) and z(X,Y, Z) can be obtained directly from (Equation 3.8) replacing

xi on the right-hand side with yi or zi respectively, therefore their formulation is omitted here.

A graphical representation of the elements’ numbering is shown in figure 7, where the left

representation shows the top, front, and right face numbering, while the right representation

highlights the bottom, right and rear faces. The bigger font has been used to indicate the
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faces’ numbers, while the sides have been indicated with smaller italic numbers, and corners’

numbering is underlined and overlined.

Figure 7: Node, side and surface numbering for a three-dimensional case.

3.1.1.3 Mapped Equations

With the isoparametric mapping just performed, (Equation 2.30) reduces to [28]

∂W̃

∂t
+
∂F̃

∂X
+
∂G̃

∂Y
+
∂H̃

∂Z
= 0, (3.9)
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where ∼ indicates a mapped vector. (Equation 3.9) has been obtained using the chain rule, the

inverse of the physical space gradient and the following relations:

W̃ = JW, (3.10)

and

F̃ =
∂X

∂x
F +

∂X

∂y
G +

∂X

∂x
H, (3.11)

G̃ =
∂Y

∂x
F +

∂Y

∂y
G +

∂Y

∂z
H, (3.12)

H̃ =
∂Z

∂x
F +

∂Z

∂y
G +

∂Z

∂z
H. (3.13)

The Jacobian of the mapping, J , is defined as follows:

• For a two-dimensional case

J(x, y) =
∂x

∂X

∂y

∂Y
− ∂x

∂Y

∂y

∂X
; (3.14)

• For a three-dimensional case

J(x, y, z) =
∂x

∂X

(
∂y

∂Y

∂z

∂Z
− ∂y

∂Z

∂z

∂Y

)
− ∂x

∂Y

(
∂y

∂X

∂z

∂Z
− ∂y

∂Z

∂z

∂X

)
+

+
∂x

∂Z

(
∂y

∂X

∂z

∂Y
− ∂y

∂Y

∂z

∂X

)
.

(3.15)
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3.1.2 Staggered-Grid Spectral Method

In the following, a staggered-grid spectral method is described in detail. Its description will

move from a one-dimensional case, that will serve as basis to explain the basic conscepts of the

method, to the complete solution of three-dimensional Navier Stokes equations, following the

same procedure explained by Jacobs [24].

3.1.2.1 One Dimensional Case

Considering a one dimensional domain, D, it is divided into n non-overlapping segments,

so that

D = D1 ∪D2 ∪ ... ∪Dn.

For every subdomain obtained, solution values W are approximated through a truncated Cheby-

shev expansion

Wa(x) =
n∑
i=1

WiTi(x), (3.16)

where Ti(x) is the Chebyshev polynomial, defined as

Ti(x) = cos[i · cos(x)]. (3.17)

(Equation 3.17) represents the trial function. This means that, substituting the approximation

given by (Equation 3.16) into the differential equation our system is described by, it doesn’t

lead to a zero right-hand side, but it appears the so-called residual, indicated with r(W ).
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A restriction must be placed on r(W ). In particular, with the method of weighted residuals,

the restriction of r(W ) = 0 is applied at the points where the solution values are collocated on,

which means that the differential equation of interest in now exactly satisfied in those points.

First of all, it is convenient to rewrite (Equation 3.16) with the more convenient Lagrangian

polynomials, so that it becomes

Wa(xj) =

n∑
i=1

Wili(xj). (3.18)

Then, as stated multiple times before, CMSM uses a parametric mapping on the interval [0, 1],

which is thought to be more convenient, rather than on the natural interval [−1, 1]. Therefore,

also the quadrature points have to be mapped on the same unit interval as well.

Two sets of grids are considered:

• Chebyshev-Gauss grid, indicated simply as Gauss grid in the following, whose quadrature

points, given as roots of Chebyshev polynomial of degree n+1, Tn+1, are mapped to [0, 1],

and are indicated by

Xj+1/2 =
1

2

[
cos

(
(2j + 1)π

2n

)]
j = 0, ..., n− 1. (3.19)

These points are indicated in figure 8 with filled circles;
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• Chebyshev-Gauss-Lobatto grid, that will be referred to as Lobatto grid, whose quadrature

points are the roots of Chebyshev polynomials of degree n derivative:

Xj =
1

2

[
cos

(
jπ

n

)]
j = 0, ..., n. (3.20)

These points are indicated in figure 8 with open circles.

Figure 8: One-dimensional representation of Lobatto and Gauss grids. The filled circles
represent Gauss points, while the open circles represent Lobatto points.

In the staggered-grid spectral method, solution values W are collocated on the Gauss grid,

while fluxes F are collocated at the Lobatto points. It must be underlined that Gauss points,

even if are alternated to Lobatto points, do not lie halfway between two consecutive Lobatto

points. In addition, while all Gauss points lie inside the interval considered, i.e. if the interval

considered is [a, b], Gauss points are such that a < xi < b, whereas Lobatto points include also

the two endpoints, which means Lobatto points obey the condition a ≤ xi ≤ b.
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These considerations lead to a new formulation of the equation for the approximation of W ,

that now reads

W g(X) =

n−1∑
i=0

W g
i+1/2hi+1/2(X), (3.21)

where superscript ‘g’ indicates the grid considered is the Gauss grid, and hi+1/2 is the Lagrange

interpolating polynomial on Gauss grid of degree n− 1, given by

hi+1/2(s) =
n−1∏

j=0,i 6=j

s−Xj+1/2

Xi+1/2 −Xj+1/2
. (3.22)

A similar formulation, but referred to the fluxes, is applied to the fluxes on the Lobatto grid.

F , for example, is approximated as follows:

F l(X) =
n∑
i=0

F li li(X), (3.23)

with the Lagrangian interpolating polynomial of degree n, li(X), expressed as

li(s) =
n∏

j=0,i 6=j

s−Xj

Xi −Xj
. (3.24)

In this case too the grid we are referring to is indicated by a superscript, which reads ‘l’ for the

Lobatto grid.
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The procedure of discretizing an equation through CMSM is described referring to the scalar

problem, defined on an interval [a, b]

dW

dt
+
∂F (W )

∂x
= 0. [a, b] (3.25)

First of all, the interval [a, b] is subdivided into n non-overlapping intervals, each one of which

is mapped to the interval [0, 1]. For each of them, (Equation 3.25) may be rewritten as

dW

dt
+

1
∂x
∂X

∂F (W )

∂X
= 0. [0, 1] (3.26)

On each of the subdomains just defined, a Gauss and a Lobatto grid are calculated, by means

of (Equation 3.19) and (Equation 3.20). With those grids defined, it is possible to approximate

W on the Gauss grid with (Equation 3.21), and Fx on the Lobatto grid with (Equation 3.23).

Substituting everything in (Equation 3.26), and imposing a r(W ) = 0, which means imposing

a zero residual, yields the following equation:

dW g
i+1/2

dt
+

1
∂x
∂X

∂F g(Xi+1/2)

∂X
= 0, i = 0, ..., n− 1. (3.27)

To determine the flux, F l, it is necessary to interpolate W g on the Lobatto points, through the

expression

W l(Xi) =
n−1∑
k=0

W g
k+1/2hk+1/2(Xi) (3.28)
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Knowing the solution values on the Lobatto grid, it is then possible to determine the flux

F l(Xi) on the same grid. In order to ensure consistency to the method used, the flux must be

a continuous and differentiable function throughout the domain, and especially at the interface

between two neighboring domains. Since that property is not automatically ensured, C0 conti-

nuity and a patching have to be applied to the fluxes at such interfaces by means of a Riemann

solver, that will be briefly described in section (3.1.3). Once this boundary flux is computed,

the derivative of the flux is given by

∂F g(Xj+1/2)

∂X
=

n∑
i=0

F l(Xi)
∂li(Xj+1/2)

∂X
. (3.29)

Storing the Lagrangian polynomial derivatives into a matrix D, the partial differential equation

is reduced to an ordinary differential equation, ready to be integrated with a method such as

the Runge-Kutta method.

3.1.2.2 Three-Dimensional Case

For a three-dimensional case, the same procedure just described is applied, with the nec-

essary adjustements for the higher number of dimensions involved. The subdomains are now

isoparametrically mapped to a unit square, so that [29]

Di ←→ [0, 1]× [0, 1]× [0, 1],

where

Ω = D1 ∪ ... ∪Di ∪ ... ∪Dn.
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Moving from one to three dimensions, also Gauss and Lobatto grids extend in space. In three

dimensions, in fact, the grids are the tensor product of the one-dimensional grids of the case

previously presented. Therefore, we may subdivide the grids as follows:

• Gauss grid, that includes points defined through the tensor product of (Equation 3.19).

This grid is formed by the Gauss/Gauss/Gauss points (GGG), represented by coordinates

(Xi+1/2, Yj+1/2, Zk+1/2), i, j, k = 0, ..., n − 1, and it is represented with a filled circle in

figure 9. On this grid, solution values are approximated, exactly as it happened for the

1D case described in section (3.1.2.1);

• Lobatto grid, that includes three sets of points, defined by tensor product of (Equation 3.19)

and (Equation 3.20)

1. Lobatto/Gauss/Gauss points (LGG), with coordinates (Xi, Yj+1/2, Zk+1/2), with

i, j, k such that i = 0, ..., n and j, k = 0, ..., n − 1, denoted in figure 9 with an

open square, where the flux F̃ is evaluated;

2. Gauss/Lobatto/Gauss points (GLG), with coordinates (Xi, Yj , Zk+1/2), with i, j, k

such that j = 0, ..., n and i, k = 0, ..., n−1, denoted in figure 9 with an open triangle,

where the flux G̃ is evaluated;

3. Gauss/Gauss/Lobatto points (GGL), with coordinates (Xi, Yj+1/2, Zk), with i, j, k

such that k = 0, ..., n and i, j = 0, ..., n− 1, denoted in figure 9 with an open circle,

where the flux H̃ is evaluated.

It has been assumed that the approximation order, n, is the same in each of the three directions.
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Figure 9: Representation of Lobatto and Gauss grids, three-dimensional representation with
sectioning plane on the left, two-dimensional section on the right. The filled circles represent
Gauss/Gauss/Gauss points (GGG), the open squares Lobatto/Gauss/Gauss points (LGG),

the open triangles Gauss/Lobatto/Gauss points (GLG) and the open circles
Gauss/Gauss/Lobatto points (GGL).

Now that all the needed instruments to perform the calculations are defined, a similar pro-

cedure to that described for the 1D case is followed. Since Navier-Stokes equations include both

non-viscous and viscous contributions, it is convenient to split them in order to approximate

the solution. The non-viscous part, that corresponds to Euler equations, is calculated first,

through steps similar to those followed in the 1D case.

Solution values W are interpolated to the Lobatto points in all three dimensions (LGG,

GLG, GGL grids), but due to Lagrangian polynomials’ property, i.e. lj(s) = δij , it is possible

to separate these interpolations in every direction independently from the other two. This means
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that this three-dimensional interpolation is splitted into three one-dimensional operations, each

independent from the other two. Therefore, the expressions used for this operations are

• For the X direction, associated with the LGG grid

Wlgg(Xi, Yj+1/2, Zk+1/2) =
n−1∑
p=0

Wggg
p+1/2,q+1/2,r+1/2 hp+1/2(Xi); (3.30)

• For the y direction, associated with the GLG grid

Wglg(Xi+1/2, Yj , Zk+1/2) =

n−1∑
q=0

Wggg
p+1/2,q+1/2,r+1/2 hq+1/2(Yj); (3.31)

• For the z direction, associated with the GGL grid

Wggl(Xi+1/2, Yj+1/2, Zk) =
n−1∑
r=0

Wggg
p+1/2,q+1/2,r+1/2 hr+1/2(Zk). (3.32)

After the interpolation of the solution values at the Lobatto points, it is then possible to

determine Ff , Gf and Hf of (Equation 2.30). On the boundary of two different domains, once

again, it is necessary to apply a patching in order to ensure continuity and differentiability of

the fluxes. Next step is to calculate the mapped fluxes by means of (Equation 3.11) on their

respective Lobatto points.

To determine the viscous fluxes, on the contrary, it is first necessary to determine velocity

gradients and temperature gradients presented in section (2.3). These gradients’ computations

require the interpolant of the Lobatto solution values to be continuous at the interface of
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neighboring subdomains, in order to ensure the existence of a unique first derivative. This

property is obtained through a Dirichlet patching at the interface, that will be briefly presented

later on. After the Lobatto interpolants for the solution values are patched, their derivatives

are computed at the Gauss points; the gradients obtained are then interpolated back to the

Lobatto points.

At this point it is possible to sum viscous and non-viscous fluxes, obtaining therefore the

total fluxes at the Lobatto points. After that, the fluxes interpolants are constructed, and

they’re given by

F̃(X,Y, Z) =
n∑
p=0

n−1∑
q=0

n−1∑
r=0

F̃lgg
p,q+1/2,r+1/2 lp(X)hq+1/2(Y )hr+1/2(Z);

G̃(X,Y, Z) =

n−1∑
p=0

n∑
q=0

n−1∑
r=0

G̃glg
p+1/2,q,r+1/2 hp+1/2(X) lq(Y )hr+1/2(Z);

H̃(X,Y, Z) =
n−1∑
p=0

n−1∑
q=0

n∑
r=0

H̃ggl
p+1/2,q+1/2,r hp+1/2(X)hq+1/2(Y ) lr(Z).

The fluxes just obtained are then differentiated and calculated at the Gauss grid, with

∂F̃(Xi+1/2, Yj+1/2, Zk+1/2)

∂X
=

n∑
p=0

F̃(Xp, Yj+1/2, Zk+1/2)
∂lp(Xi+1/2)

∂X
;

∂G̃(Xi+1/2, Yj+1/2, Zk+1/2)

∂Y
=

n∑
q=0

G̃(Xi+1/2, Yq, Zk+1/2)
∂lq(Yj+1/2)

∂Y
;

∂H̃(Xi+1/2, Yj+1/2, Zk+1/2)

∂Z
=

n∑
r=0

H̃(Xi+1/2, Yj+1/2, Zr)
∂lr(Zk+1/2)

∂Z
.
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The final semi-discrete equation at the Gauss grid is given by:

[
dW̃

dt

]
+

[
∂F̃

∂X

]
+

[
∂G̃

∂Y

]
+

[
∂H̃

∂Z

]
= 0, (3.33)

where each term is calculated on the Gauss grid (i + 1/2, j + 1/2, k + 1/2), and which is then

advanced in time with a 4-th order low storage Runge-Kutta scheme.

3.1.3 Patching

As previously explained, the Lobatto flux values require C0 continuity on the whole domain,

which implies that this property must be satisfied also on the interface of neighboring domains.

In particular, Navier-Stokes equations require two different levels of patching:

• The first one, a Dirichlet patching, to ensure the uniqueness of the first derivative of W;

• The second one, a Neumann patching, to ensure the uniqueness of the viscous flux deriva-

tive.

Both of these patchings are applied at interfaces of two neighboring domains, that are the

regions where C0 continuity is not necessarily satisfied.

The way Kopriva implemented such patching is through the so-called mortar method. In

this method, the Lobatto flux values of two neighboring domains are projected onto a mortar,

where the solution values are patched. Doing so, the corner points are excluded in the patching

procedure. Even if multiple interface configurations have been programmed, such as conforming,

non-conforming (order refinement) or subdivided, all presented in figure 10, for this thesis’s

purpose only the conforming one will be taken into consideration. As can be seen in figure
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(a) Conforming interface.

(b) Non-conforming interface, order
refinement.

(c) Subdivision interface.

Figure 10: Types of interface that is possible to encounter.

11, each side of the mortar needs to have projected only one flux component, on which the

patching will be later performed. The mortar method, in fact, follows a normal approach, that

means the patching is basically a one dimensional operation. An analogue situation would be

the shock tube problem, where the gas states on the two sides are known, and the intermediate

values are computed through an iterative procedure.



49

Figure 11: Mortar configuration for a conforming grid.

In the code used to perform the simulations, an approximate Riemann solver introduced by

Roe [30] has been programmed, since it is computationally less expensive than the exact solution.

Roe’s approach is to modify the exact Riemann problem, described by

∂W

∂t
+ J(W)

(
∂W

∂x

)
= 0, (3.34)

where J(W) is the Jacobian matrix, with an approximated one:

∂W

∂t
+ J(WL,WR)

(
∂W

∂x

)
= 0, (3.35)

where WL and WR are the solution values on the left domain and on the right domain, respec-

tively. Roe’s substitution linearizes (Equation 3.34) into (Equation 3.35), and the approximated

Riemann problem obtained is then solved exactly. The most important property of this kind of
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Riemann solver is that it ensures conservation across discontinuities, which is very important

for shock-capturing schemes (property that anyway will not be analyzed in this work).

Even if Euler equations would not require any further patching, Navier-Stokes equations

do, as previously described. This are performed as follows:

1. Dirichlet patching: Lobatto interpolant is patched to ensure a unique first derivative of W

at the Gauss points. A continuous piecewise polynomial W̄e(X,Y, Z), where the subscript

‘e’ indicates the domain number, that is closer to We(X,Y, Z). This simple approach is

convenient because it involves just the domain face values, and its being computationally

inexpensive has made it suitable for parallel implementation;

2. Neumann patching: an approach similar to that followed for the Dirichlet patching is

adopted, since only viscous stresses and temperature gradients normal to the face have

to be patched. Again, an averaging procedure to correct the Lobatto interpolant at the

interfaces is followed.

3.1.4 Spatial Integration

Instead of using Chebyshev weights, which have a singularity at the Lobatto endpoints,

Kopriva [21] [22] [23] preferred to implement Legendre weights on the Legendre quadrature points,

that are interpolated then back to the Gauss points. Such weights are indicated with wi+1/2.

The integral of a generic variable U can be determined, for a two-dimensional case as

∫ 1

0

∫ 1

0
U(x, y) dx dy ∼=

n−1∑
p=0

wp+1/2

[
n−1∑
q=0

wq+1/2 J(Xp+1/2, Yq+1/2)Wgg(Xp+1/2, Yq+1/2)

]
, (3.36)
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and, for a three-dimensional case, as:

∫ 1

0

∫ 1

0

∫ 1

0
U(x, y, z) dx dy dz ∼=

n−1∑
p=0

wp+1/2

[
n−1∑
q=0

wq+1/2×

×

[
n−1∑
r=0

wr+1/2J(Xp+1/2, Yq+1/2, Zr+1/2)Wgg(Xp+1/2, Yq+1/2, Zr+1/2)

]]
.

. (3.37)

In both cases J is the Jacobian matrix, obtained following what described in section (3.1.1.3).

3.2 Time Integration

The differential equation obtained through spatial discretization is discretized in time with

a 4th order Runge-Kutta method. The code had implemented both RK3 and RK4 explicit

schemes, presented respectively by Williamson [31] and Carpenter and Kennedy [32]. These meth-

ods have been chosen because they’re explicit, so that no information from previous timesteps

is needed, they’re flexible and easily programmable, and the solutions presented by the authors

referenced are both low-storage schemes.

The system of equations obtained after space discretization is of the following form:

∂y

∂t
= f(t, y(t)), (3.38)

y(t0) = y0. (3.39)
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Commonly used Runge-Kutta methods require the definition of a step size h > 0, and the

solution at a given step is, for a Runge-Kutta method of 4th order:

yn+1 = yn +
1

6
h(k1 + 2k2 + 2k3 + k4), (3.40)

tn+1 = tn + h, (3.41)

for n = 0, 1, 2, 3. Coefficients indicated with ki in (Equation 3.40) are calculated as

k1 = f(tn, yn),

k2 = f

(
tn +

1

2
h, yn +

1

2
hk1

)
,

k3 = f

(
tn +

1

2
h, yn +

1

2
hk2

)
,

k4 = f(tn + h, yn + hk3).

In previous equations, yn+1 represents the RK approximation of y(tn+1), and is determined by

the sum of the present value, yn, and the weighted average of four increments, each of which

involves the size of the interval considered, h, and an estimated slope specified by function f

on the right-hand side of the differential equation. A RK4 can be subdivided into four steps,

that respond to different operations [33]

1. Euler predictor;

2. Euler corrector;

3. Leapfrog predictor;
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4. Milne corrector.

The sequence of these operations constitutes the classical Runge-Kutta method of order 4.

The differential equation resulted from spatial discretization is analogue to (Equation 3.38),

where y = W and f = F. However, the formulation of a Runge-Kutta method of the 4th order

has been slightly modified, since it has been adopted a low-storage formulation that does not

require the direct specification of the time interval, but that of the total number of steps. The

equations governing this method are

qi+1 = αi+1qi + ∆tF(ti, wi),

wi+1 = wi + βqi,

for i = 1, 2, ..., s, where s is the number of stages, w0 = Wn−1, wn = Wn and ti = tn−1 + ci∆t.

3.2.1 Stability and Accuracy

The stability of the scheme is described using the so-called Courant-Friedrich-Levy (CFL)

condition, an important stability criterion for hyperbolic equations, whose requirement for

stability is [34]

CFL = c
∆t

∆x
≤ 1. (3.42)
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In (Equation 3.42), CFL is called the CFL number, ∆x is the grid spacing, ∆t is the time

interval and c is the speed of sound. To examine this criterion’s physical significance, we refer

to the following second order wave equation:

∂2u

∂t2
= c

∂2u

∂x2
. (3.43)

For this equation, the characteristic lines are

• A right running wave, with equation x = ct;

• A left running wave, with equation x = −ct.

Considering a right running wave through point A (grid point i − 1) and a left running wave

through point C (grid point i+1), their intersection point is indicated with P in figure 12. The

time interval for which the CFL number is equal to 1 is indicated with ∆t1, and the following

condition must be satisfied:

CFL = 1 ⇐⇒ ∆t =
∆x

c
= ∆t1. (3.44)

This implies that point P is at a distance equal to ∆t1 from the x axis.

Let’s consider a case where CFL < 1, so that the stability CFL condition is satisfied. Being

CFL < 1, it implies ∆t2 < ∆t1, that means the intersection point of the two waves, called Q,

is closer to the x axis. Two kinds of domains are now to be distinguished:
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Figure 12: CFL condition representation for a stable case, where the computational domain
includes all the analytical domain.

1. The numerical (computational) domain, that involves grid points used to calculate prop-

erties in the given point, and that therefore corresponds to the triangle ACQ, whose area

has been shaded in blue in figure 12;

2. The analytical domain, that is defined by characteristic lines, and therefore corresponds

to the triangle acQ, whose area has been shaded in red in figure 12.

For stability, the computational domain must include all of the analytical domain, such as in

figure 12.

If it is chosen a CFL number greater than 1, as shown in figure 13, the waves’ intersection

point would be farther from the x axis then before, that corresponds to a time interval ∆t3 >

∆t1. As a consequence, the analytical domain would be defined by the triangle efR. In
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this case, the analytical domain is not completely included in the computational domain, and

therefore the CFL condition is not satisfied and the behaviour is not stable.

Figure 13: CFL condition representation for an unstable case, where the computational
domain does not include all the analytical domain.

The question of accuracy can also be examined through figure 12. Considering this stable

case, properties at point Q depend theoretically just on the points in the red-shaded area,

that correspond to the analytical domain. However, even if points A and C are outside the

analytical domain, and theoretically should not matter, the numerical calculation of properties

at point Q actually relies on informations taken from A and C. This situation becomes even

worse when CFL� 1 (∆t2 � ∆t1). In this case, in fact, even if the calculations are stable, the



57

large mismatch between the domain dependence of Q and the location of the numerical data

to calculate properties at Q can be responsible of quite inaccurate results.

Therefore, the CFL number must be less or equal than 1 for stabilty, but its accuracy is as

greater as closer to 1 it is chosen.

Clarified what is the CFL condition and its physical and numerical meaning, it is now

possible to consider its influence on the three-dimensional problem this thesis is about. In

this case, there are three velocity components to take into account, and also the grid is not

necessarily equally-spaced. For this reasons, the CFL relation is modified as

∆t =
CFL∆xmin

a
, (3.45)

where ∆xmin is a minimum grid spacing, corresponding to a minimum value of the Lobatto

endpoints over the whole domain, and a is a characteristic maximum wave speed, that can be

expressed as a =
√
u2 + v2 + w2 + c and has to be calculated on all the points. On mapped

coordinates, (Equation 3.45) becomes

∆t =
CFL

max
(
U

∆X + V
∆y + W

∆Z

) , (3.46)
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where U , V and W are the wave velocities along X, Y and Z respectively, expressed as:

U = (u+ a)
∂X

∂x
+ (v + a)

∂X

∂y
+ (w + a)

∂X

∂z
, (3.47)

V = (u+ a)
∂Y

∂x
+ (v + a)

∂Y

∂y
+ (w + a)

∂Y

∂z
, (3.48)

W = (u+ a)
∂Z

∂x
+ (v + a)

∂Z

∂y
+ (w + a)

∂Z

∂z
. (3.49)

For these velocities, the maximum has to be determined over the whole domain, and is then

applied in (Equation 3.46).

In the following chapter, the mesh generator is described.



CHAPTER 4

MESH GENERATOR

A primary objective of this thesis, as previously stated, is the implementation of a mesh

generator, in order to model three-dimensional geometries in a format suitable to the numerical

code used. As of now, the code is able to deal with elements that are rectangles or skewed

convex quadrilaterals for a two-dimensional case, and parallelepipeds or hexahedrons in three

dimensions.

The mesh generator, based on the code developed by J. Komperda at CMTL [25], is writ-

ten in Python, a relatively new programming language that has many advantages concerning

productivity, usability and readability, when compared to classical and older ones such as FOR-

TRAN and C. In fact, its syntax allows programmers to express concepts in a lower number of

code lines than it would be possible in other languages.

The format to adopt for the ‘.mesh′ file generated is the simplemesh format, that presents

nodes, elements and boundary conditions for the shape in this order. The mesh generator has

been divided into two files, one responsible to generate the two-dimensional geometry on the

x− y plane and assign it boundary conditions, and the other responsible to optionally extrude

this two-dimensional shape in the z direction, and write the ‘.mesh′ file. In the following, both

files are presented to give an exhaustive description of the mesh generator.

59



60

4.1 Two-Dimensional Shape

The file responsible for the two-dimensional shape generation will be referred to as 2D.py.

Being the domain still limited to two dimensions, the elements built will be rectangles or skewed

quadrilaterals. For the current version of the code employed, in fact, no triangles were allowed,

but just polygons with four sides.

The mesh generation moves from elemental blocks, i.e. the basic parts a more complex

shape can be subdivided into. Considering the example of figure 14, it is possible to notice how

an example shape is subdivided into its elementary blocks, each of which is directly described

in the mesh generator.

Figure 14: Example shape representing a forward-facing step (left), and subdivision into its
elementary blocks (right).



61

File 2D.py is divided into different classes, each corresponding to a particular shape. Those

can be grouped into three main categories:

1. Category ‘rectangle’, that includes all the quadrilaterals with four 90 angles, i.e. rectangles

and squares;

2. Category ‘genshape’, that includes all the other convex quadrilaterals, i.e. those excluded

from the first category. Even if rectangles and square are just a particular case of the

shape described in this group, it has been considered convenient to separate them in a

stand-alone group;

3. Category ‘unstructshape’, that is responsible of the combination of shapes declared in the

previous two groups.

The peculiarity of Python is that it involves a syntax that is easy to read and to understand,

and therefore the mesh generator has been implemented to make the user comfortable from its

very first usage.

Categories 1 and 2 represent the real core of the mesh generator. The informations that

should be specified in order to create a two-dimensional mesh are

• The contour of the shape. This can be described by specifying bottom left corner coordi-

nates and sides’ lengths in case of a rectangle, or the four corner points coordinates in case

of a generic shape. An example of generic quadrilateral created by the mesh generator is

shown in figure 15;
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Figure 15: Example quadrilateral defined specifying its corner points coordinates.

• The number of points the mesh should have along the x-direction (npx) and along the

y-direction (npy). Considering that also the corner points are included as points of the

mesh, the interior points to generate for each side of the shape are (npx−2) and (npy−2),

for sides oriented along x-axis and y-axis, respectively;

• The nodes’ distribution, i.e. the way the grid is packed in the shape. Due to the different

accuracy requirements of different points, in fact, the mesh may be built more refined near

one or two sides, near one, two or four corners. For that reason, it has been made possible

to specify some parameters that allow the grid to be differently refined, accordingly to

user’s necessities. An example is shown in figure 16(b). If none of these parameters is

specified, the grid is assumed to be equally spaced, as shown in figure 16(a). Knowing

how the grid is spaced along the four sides, through linear interpolation is possible to

calculate all interior points’ coordinates;
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(a) Rectangle with uniform grid distribution. (b) Rectangle with non-uniform grid distribution.

Figure 16: Types of grid distributions implemented in the mesh generator.

• The elements in which the elementary shape is subdivided, i.e. the connections between

the nodes already calculated. Dealing with quadrilaterals, it is well known how the interior

points have to be connected, since every row has npx points, and there is a total of npy

rows. The algorithm implemented for creating connections is responsible to number all

nodes of the shape, count the elements and assign to each element the four nodes that

delimitate it;

• The boundary conditions on the shapes’ sides, i.e. what each side of the shape will be faced

to in the physical problem. Such boundary conditions are specified with a number, each

corresponding to a different type of boundary (e.g. inflow boundary condition, outflow

boundary condition, wall boundary condition, etc.). Since it is necessary to impose such

conditions just on the sides of the shape, the elements whose one side lies on the border

of the shape are numbered accordingly to the boundary they will be assigned to, and

accordingly to the face they face to, accordingly to what presented in sections (3.1.1.1)
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and (3.1.1.2). Since just an elementary shape is being defined, it may happen that one

of its sides will result interior to the final mesh. In this case, the number 0 is imposed,

and the same will happen to the side of the other shape that will combine with the one

described in the example.

Once all the elementary shapes have been defined, they are summed together by means of

category ‘unstructshape’. This class is responsible to manage all the features previously defined,

and combine them with as less computational effort as possible. In particular, the addition of

two blocks can be summarized in the following steps:

1. The nodes of the two shapes are combined, and roundoff errors due to limited machine

precision are corrected, allowing almost coincident nodes to become one out of two;

2. The old connections’ lists are updated, without recalculating them for each element. The

elements’ numbers are also updated. This algorithm saves a lot of computational time

with respect to the one previously used to perform a similar operation;

3. The old boundary conditions’ lists are updated as well, accordingly to the new element

numbering.

Updating nodes, elements, and boundary conditions, the original blocks are now melted into

a unique shape. In case of multiple shape additions, they are performed in serial, where the

result of the addition of the first two shapes is then combined with the third one, and so on

and so forth, as shown in figure 17. After all the two-dimensional quadrilaterals have been
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combined together, the resulting shape is ready to enter file 3D.py, in order to be formatted

for a two-dimensional case, or to be converted into a three-dimensional mesh.

(a) Shape n. 1. (b) Shape n. 2.

(c) Shape n. 3. (d) Shape n. 4, result of the serial addition of
the three shapes previously defined.

Figure 17: Example of the routine implemented in class ‘unstructshape’.

4.2 Three-Dimensional Shape

File 3D.py is divided into two parts, that perform two separate operations.

The first part, optional, is responsible to convert the two-dimensional shape received in

input to a three dimensional one, extruding it into the z-direction. In order to perform this

operation, it is necessary to specify the desired depth, the number of points along the z-axis
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(npz), their distribution (if uniform mesh is not desired) and boundary conditions for front and

rear faces.

The mesh generator, basically, repeats the shape received in input on the (x, y) plane at

different z coordinates, generating then a three-dimensional distribution of nodes. Such nodes

are then grouped into three dimensional elements (hexahedrons), that are the elementary blocks

constituting the shape. Even boundary conditions on the sides are repeated along the z axis,

while new boundary conditions previously specified are assigned to front and rear face. The

output result of such operations is shown in figure 18, where the two-dimensional shape given

in input is the same represented in figure 17.

Figure 18: Example of extrusion of a two-dimensional shape in the third dimension, to
generate a three-dimensional mesh.
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Once the first part has terminated its work (whether it has been called), the mesh generator

deals with a two- or three-dimensional mesh. The second part of file 3D.py formats the mesh

constructed into a .mesh file that results appropriate for the code’s purpose. Once also the

second part is done, the .mesh file is ready to be employed for the physical simulation, and

therefore the mesh generator has terminated its work.



CHAPTER 5

NUMERICAL SIMULATIONS

The logic the code follows to perform numerical analysis of physical problems has been

explained in the previous chapter, so that this one deals directly with the numerical simulations

performed. The first section of this chapter is dedicated to the introduction and description of

boundary conditions used to describe the cases that will be analyzed. The second part of the

chapter focuses on the flow over a backward-facing step, where the numerical results obtained

are compared to those experimental found in literature. Finally, the last part of the chapter

examines the flow over a backward-facing step with a ramp added after the step, so that the

inlet area equals the outlet area. This particular kind of shape is chosen because of the interest

in modeling the flow in a dump combustor, where the backward-facing step is adopted to create

a recirculating region that increases the residence time of the fuel.

5.1 Boundary Conditions

This section describes the boundary conditions that are imposed at test sections’ boundaries

to perform the simulations. Their implementation in the code works exactly as the mortar

patching presented in section (3.1.3), with the difference that only one side of the mortar is

known (the side inside the computational domain), while the other is unknown and needs to

be specified (the side outside the computational domain, i.e. there’s the need to specify an

appropriate boundary condition).
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Essentially, this work deals with four different kinds of boundaries:

• Inflow boundary;

• Outflow boundary;

• Wall boundary;

• Periodic boundary.

For each one of the types elencated, appropriate boundary conditions are introduced in the

following.

5.1.1 Inflow Boundary Conditions

As Jacobs stated in his work [24], ‘It has been shown that for a well-posed solution in three-

space dimensions, five flow variables need to be specified at an inflow boundary, and four at an

outflow boundary’. The inflow boundary conditions employed in this work are constituted of

the specification of

• u, velocity profile along the inlet section;

• ρ, density value, equal to free stream density ρ∞;

• p, pressure value, equal to free stream pressure p∞;

• v, velocity along y axis, equal to 0 (fully developed flow);

• w, velocity along z axis, equal to 0 (fully developed flow).

These five variables are specified at the inlet section, so that the problem is well posed.
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The values specified are imposed as boundary values, so that the Riemann problem is solved

on the mortars at the inlet section as specified in section (3.1.3), by means of the Roe [30] solver

and (Equation 3.35).

The u velocity profile chosen is representative of the fully developed flow condition, so

that the ingoing flow is representative of channel flow at steady state condition from the very

beginning of the simulation. This profile is not specified at all nodes, but its values are described

at different y coordinates. To assign u to a node, a linear interpolation is made between the

two points of the profile that have the closest coordinate to the node computed, for every node

in the inflow section.

5.1.2 Outflow Boundary Conditions

A possibility for specification of outflow boundary conditions is to refer to the same type of

conditions described in section (5.1.1). If the outlet channel is sufficiently long, in fact, it can

be assumed that the flow has enough space to fully develop again. Therefore, in this case too,

the boundary condition is based on a u velocity profile specified at the exit section, that is once

more reflective of a fully developed flow condition. The variables specified at the exit, then, are

• u, velocity profile, fully developed;

• ρ, density;

• p, pressure;

• v, velocity along y axis, set to 0;

• w, velocity along z axis, set to 0.
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Again these variables make the problem well posed at the outlet section. Once more, the outflow

boundary condition is imposed with the same logic of the inflow boundary condition described

in section (5.1.1), so that the problem is solved on the mortars with (Equation 3.35). Density

and pressure at the outlet are considered equal to their respective free stream values, assuming

that after a sufficient test section length the flow returns to its free stream conditions. To make

sure this condition is satisfied, an outgoing channel long enough need to be specified for the

computational domains analyzed. As for the inflow boundary conditions of section (5.1.1), the

values of u are interpolated from the profile to the nodes of the computational grid.

There’s also another type of outflow boundary conditions used in this work, known as

transmissive (or zero-gradient) boundary conditions. Their logic is to specify some variables’

first derivatives at the outlet section, so that no exact values need to be imposed. Considering an

outlet channel long enough, in fact, it is possible to assume that flow exiting the computational

domain is in a regime of fully developed flow. Therefore, instead of specifying variables’ exact

values at the exit, the outflow condition can be summarized by the following equations:

∂u

∂x
= 0;

∂ρ

∂x
= 0;

∂p

∂x
= 0.
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Since the flow at the outlet section is fully developed, u, ρ and p derivatives with respect to

x are set equal to 0, that means this variables don’t change anymore in the x direction. In

addition, also v and w are imposed equal to 0, because of the regime of fully developed flow

achieved. Basically, for each time step the values on mortar side outside the computational

domain are set equal to those on the other side of the mortar, inside the test section. This

boundary condition is responsible to ‘transmit’ informations from the domain to the boundary,

where these information are imposed as boundary values.

5.1.3 Wall Boundary Conditions

The third type of boundary conditions is represented by a no-slip isothermal wall boundary

condition. Temperature Tw is imposed, and the walls operate as thermostats, so that Tw =

const during the whole simulation. This condition could be employed to study the effects of

heating/cooling applied to the flow, but the main purpose of this work is different from that.

Therefore, wall temperature is chosen accordingly to flow conditions, so that Tw = T∞, i.e. the

temperature of the wall is equal to the free stream temperature of the flow. As a consequence,

the wall is responsible nor to heat neither to cool the flow, but is just used as a physical interface

where no heat exchange is performed.

Another feature of the wall boundary condition is its no-slip condition, that is achieved

imposing a flow on the opposite side of the wall with a velocity equal in magnitude but opposed

in sign. As a results, at steady state, the flow closer to the wall is expected to decrease its u

velocity down to 0 and to reach a temperature T = Tw.
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5.1.4 Periodic Boundary Conditions

The last type of boundary conditions to describe is constituted by the so called periodic

boundary conditions. They are used to simulate a large system by modelling just a small part

of it, but far from its edge.

In the cases considered in the following, a two-dimensional geometry is repeated along

the z direction, to generate a three-dimensional mesh. It is exactly along this direction that

periodic boundary conditions are perfectly applied. They’re based on the fact that the flux

of all flow variables leaving the outlet periodic (or cyclic) boundary is set equal to the flux

entering the inlet cyclic boundary. In other terms, the values of each variable just upstream

and downstream of the periodic inlet plane are set equal to the values of each variable just

upstream and downstream of the periodic outlet plane.

As shown in figure 19, a wide geometry 19(a) can be modeled isolating just a small section

of it 19(b), and analyzing it as if it was the whole model 19(c). Values obtained for such a

section are then repeated in space along the whole extension of the original model.

Such a boundary condition is particularly suitable for the z direction, since the flow analyzed

are two-dimensional, and therefore each cross-section on plane x− y is repeated equal to itself

along z axis.
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(a) Geometry of the problem.

(b) Isolation of a section of the original geometry, far from its edges.

(c) Initial problem is simplified, since only the repre-
sented geometry has to be computed.

Figure 19: Graphical representation of periodic boundary conditions.



75

5.2 Flow over a Backward-Facing Step

Described all the boundary conditions that have been employed, this section will focus on

the analysis of the flow over a backward-facing step (BFS), that constitutes a simplified model

of the dump combustor that is going to be analyzed later.

The general features for a backward-facing step are shown in figure 20. They may be

summarized as

• Boundary layer development: it occurs along the inlet channel;

• Boundary layer separation: because of a discontinuity in the geometry of the problem,

the boundary layer separates from the wall and turns into a curved shear layer, that will

reattach to the bottom wall downstream of the step;

• Reattachment length: it’s the distance between the step and the reattachment point on

the bottom wall of the separated boundary layer. It has been proved to be dependent on

the Reynolds number, especially for the range 400 < Re < 3000;

• Recirculation zone: the main recirculation zone is enclosed between the step, the bottom

wall and the reattaching boundary layer, and this zone is present for every Re. Above

Re ∼= 400 the flow is proven to become three dimensional, and also other recirculation

zones develop in the channel, and on both sides of it;

• Recovery to fully developed wall flow: for the cases analyzed in the following, the flow

starts to fully develop again after the primary recirculation zone, since the Reynolds

numbers adopted guarantee no other recirculation zone is formed.
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Figure 20: Principal features of the backward-facing step flow, for relatively low Re and for a
channel with open top.

The reference experiments for the simulations performed are those of Armaly et al. [3]. Although

Ref. [3] presented results for a wide Reynolds number range, i.e. 70 < Re < 8000, this work is

going to concentrate only on the region where the flow is proved to be two-dimensional, that

means for Reynolds numbers lower than approximately 400. The analysis in Ref. [3] shows that

different flow regimes are characterized by typical reattachment length variations with Reynolds

number, and has also been the first to report other regions of separated flows downstream of

the step and of both sides of the test section.

5.2.1 Computational Model

The geometry of the backward-facing step is shown in the schematic of figure 21, and

dimensions adopted by Armaly et al. [3] have been reported in table II.

For computational purposes, inlet and outlet lengths specified by Armaly et al. have been

shortened, because the inlet channel has been proven to be sufficiently long to allow the flow to

be fully developed at the step, while the outlet channel length ensures that outlet conditions do
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Figure 21: Geometrical dimensions in a backward-facing step case.

TABLE II: DIMENSIONS OF THE BACKWARD-FACING STEP IN ARMALY’S SETUP.

Element Symbol Value [mm]

Inlet channel length lin 200
Outlet channel length lout 500

Total length l 700
Inlet channel height hin 5.2

Outlet channel height hout 10.1
Step height s 4.9
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not affect the flow in the vicinity of the step. In addition, all non-dimensional lengths specified

have been normalized with the step height.

The step, whose height is 4.9 mm in Armaly’s setup, is then assumed to be 1.0. This leads to

an inlet channel height of 1.0612, and an outlet channel height of 2.0612. For the inlet channel,

furthermore, a length of 5.0 unit lengths is chosen, while 20.0 have been assigned to the outlet

channel, leading to a total length of 25.0 for the test section. Since the code used must deal

with a three-dimensional geometry, a small depth of 0.05 is specified. However, for the range of

Reynolds numbers chosen, the flow will be two-dimensional, and the test section where results

will be analyzed is the middle one.

Geometrical dimensions defined so far are summarized in table III, where dimensional and

non-dimensional lengths for the computational model are exposed.

TABLE III: DIMENSIONS OF THE BACKWARD-FACING STEP FOR NUMERICAL
SIMULATIONS’ SETUP.

Element Symbol Value [mm] Non-dimensional Value

Inlet channel length lin 24.5 5.0
Outlet channel length lout 98 20.0

Total length l 122.5 25.0
Inlet channel height hin 5.2 1.0612

Outlet channel height hout 10.1 2.0612
Step height s 4.9 1.0
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For its comparison between experimental and computational results, Armaly et al. used a

grid of Nx ×Ny = 45 × 45. In this work, sixth order polynomials have been used with 40, 16

and 1 domains in the x, y and z directions, respectively. For such a polynomial order, Lobatto

points are respectively 320, 128 and 8 in each direction.

The grid is not uniform, but packed where more accuracy is needed. In particular, a power

law is chosen in the x direction for the inlet channel, approaching the step, with a last length

of 0.1, as well as for the outlet channel, moving away from the step, with a first length of 0.1.

In the y direction, instead, something different is imposed, since a finer grid is required near

the walls and the step corner, where higher gradients are expected. Therefore, a double power

distribution is generated for the mesh, with initial and last length of 0.06, and with a larger

mesh going towards the middle of the channel. An example of the x− y plane section view of

the mesh used is shown in figure 22. Since just one element is created in depth along the z

direction, no particular distribution is needed along the z axis.

Figure 22: Example of mesh refinement for the backward-facing step, x− y plane section.
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The boundary condition at x = −5.0, i.e. at the inlet section, is an inflow boundary

condition with a fully developed u velocity profile specified, as shown in figure 23(a). This

profile is kept for 5 non-dimensional length units, and it corresponds also the profile at x = 0,

i.e. at the step. For each of the different Reynolds numbers chosen, the inlet profile is calculated

assuming a maximum velocity umax derived from Armaly et al. [3], and considering then a mean

value ū∞ such that

ū∞ =
2

3
umax. (5.1)

Assuming a fully developed u velocity profile for the inlet, both v∞ and w∞ are equal to 0. The

density and the pressure at the inlet section are ρ∞ = 1.0 and p∞ = 4.464, respectively.
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(a) Inlet velocity profile, at x = −5.0.
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(b) Outlet velocity profile, at x = 20.0.

Figure 23: Examples of the u velocity profiles imposed as inflow and outflow boundary
conditions for a backward-facing step problem.
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At x = 20.0 two different types of outflow boundary condition are specified, as described in

section (5.1.2).

The first kind of outflow boundary condition is an outflow boundary condition, based on the

specification of an outflow u velocity profile. Considering that the outlet section is at a sufficient

distance from the step, for the range of Reynolds numbers considered, a u velocity profile for

a fully developed flow is imposed (shown in figure 23(b)), where the maximum value is once

again derived from Armaly et al. [3], and the mean value is calculated with (Equation 5.1). This

time too, v and w are set equal to 0, while density and pressure are imposed as ρ = 1.0, to

satisfy mass conservation, and p = p∞ = 4.464, considering that the flow has returned to its

free stream state. All these values are imposed as boundary values and are used in the solution

of the Riemann problem on the mortar.

The second kind of outflow boundary condition used is represented by the so-called trans-

missive (or zero-gradient boundary condition). In particular, since the outlet section is assumed

to be far enough from the step to allow the flow to reach a fully developed condition again, a

zero-gradient for the variables involved is imposed, so that

∂u

∂x
= 0;

∂ρ

∂x
= 0;

∂T

∂x
= 0;

∂p

∂x
= 0.
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This means that all variables are assumed to be constant with respect to x, starting with outlet

section (that is the last section of the computational domain). In addition, since it is assumed

the flow to be fully developed at this section, again v and w are set equal to 0.

Channel walls are characterized by a no-slip boundary condition, and they are isothermal

with a temperature equal to the free stream temperature, given by

T∞ =
p∞γ

ρ∞
. (5.2)

Free stream temperature is set so that the Mach number for all the simulations performed is

0.4, so that it is low enough to be compared with incompressible data, and large enough to

allow large timestep size. A schematic of the boundary conditions applied in a cross section

along the x− y plane is shown in figure 24.

Figure 24: Boundary conditions applied for the backward-facing step, section along the
z-direction.
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Expansion ratio is defined as outlet channel height over inlet channel height, and therefore

is given by:

ER =
hout
hin

= 1.942.

The hydraulic diameter is chosen accordingly to what presented by Armaly et al., so that it

is assumed equal to twice the inlet channel height, i.e. Dh = 2hin = 2.1224. The Reynolds

number is then defined as:

Re =
ūDh

ν
, (5.3)

and is varied in the range 100 < Re < 400. Additional reference flow parameters are presented

in table IV.

TABLE IV: REFERENCE VALUES USED IN THE BACKWARD-FACING STEP STUDY.

Property Symbol Value Dimensional Unit

Density ρf 1.225 kg/m3

Dynamic Viscosity µ 1.789 ×10−5 kg/(m · s)
Kinematic Viscosity ν 1.461 ×10−5 m2/s
Expansion Ratio ER 1.942 -
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Simulations are run in parallel on 80 processors on the MIE Cluster at UIC, for non-

dimensional time units, with a CFL number of 0.9 to be on the safe side, so approximately

40,000 timesteps are required for every flow through to be computed.

5.2.2 Comparison with Experiments

In the following, the comparison between simulations’ results and Armaly et al.’s experi-

ments is performed, for the range of Re specified previously.

5.2.2.1 Reattachment length

Many authors have analyzed in depth the laminar flow region for the backward-facing step

problem. In particular, the following comparison involves results presented, besides of Armaly et

al., also by Denham and Patrick [9]. As stated by Armaly et al. in their work, the reattachment

length depends not only on the Reynolds number, but also on many other variables, such as the

expansion ratio, the slope at the wall of the inlet velocity profile, and so on. A comparison of

simulations’ results with those obtained by Armaly et al. and Denham and Patrick is presented

here, to prove the good agreement of simulations with results of both experiments.

Simulations for Reynolds numbers of 70, 100, 150 and 250 were performed in order to com-

pare the numerically predicted reattachment lengths with those experimentally measured in

literature. The two different types of boundary conditions predicted slightly different reattach-

ment lengths, with a difference of approximately 4% more for the transmissive case. The overall

distribution, however, remarks quite accurately the references chosen.

Results are presented in figure 25, where the Reynolds number Re of the case is on the

horizontal axis, and its reattachment length normalized with the step, xR/s, is shown on the
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vertical axis. In addition to simulations’ results, also the reference data are plotted. In the

following representation, ‘Sim.-Spec. Prof.’ indicates simulations performed with u profile

specified at the outlet section, while ‘Sim.-Transmissive’ indicates simulations performed with

transmissive boundary conditions.
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Figure 25: Comparison of reattachment lenghts from different authors as a function of the
Reynolds number.

Considering the general trend in figure 25, it appears that results from transmissive bound-

ary conditions are closer to the experimental data. Nevertheless, even results obtained with

imposed u velocity profile reproduce a similar distribution, but in this case reattachment length

is sligthly underestimated.
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5.2.2.2 Velocity profile

This section refers to the comparison of the variation of the u velocity profile along the

x direction. Two cases are run in particular, for Re = 100 and Re = 389, since it has been

considered useful to perform a comparison with Armaly’s experimental results. For both types

of boundary conditions, u values along the test section were close enough so that only one of

them is represented in the next figures.

Comparison for Re = 100 is presented in figure 26, that shows good agreement between

simulations and literature results.
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Figure 26: Comparison between Armaly’s experimental data and simulations’ results for u
velocity, with Re = 100.
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A similar comparison for Re = 389 is shown in figure 27. In this case too, good agreement

between simulations and Armaly et al.’s experiments is achieved.
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Figure 27: Comparison between Armaly’s experimental data and simulations’ results for u
velocity, with Re = 389.

In both cases specified inlet u velocity profile is analogue to the profile found at the step,

with a slight difference in maximum u value. In the rest of the test section, the distributions

extrapolated from both simulations are in good agreement with those presented in the paper

by Armaly et al. [3].

Velocity distributions and their contours, for the two cases compared with Armaly’s results,

are presented in figures 28 and 29.
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(a) u velocity contours for Re = 100.

(b) u velocity contours for Re = 389.

Figure 28: Contours for u velocity in the vicinity of the step for the cases compared with
Armaly et al. [3].
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(a) u velocity distribution for Re = 100.

(b) u velocity distribution for Re = 389.

Figure 29: Distribution for u velocity in the whole test section for the cases compared with
Armaly et al. [3].
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5.2.2.3 Pressure Field

The pressure drop along the test section is about 0.6 non-dimensional units for Re = 100,

and of 1.0 non-dimensional units for Re = 389, consistent with the fact of having a higher

pressure drop when the Reynolds number of the flow is higher. Pressure distribution along the

backward-facing step geometry for these two configurations is shown in figure 30.

(a) Pressure distribution for Re = 100, with imposed velocity profiles at inlet and outlet sections.

(b) Pressure distribution for Re = 389, with imposed velocity profiles at inlet and outlet sections.

Figure 30: Distribution for pressure in the whole test section, for imposed velocity profiles at
inlet and outlet test sections.
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From comparison of the two images in figure 30, it is possible to notice how the case for the

lower Reynolds number has a pressure drop in a relatively small area around the step corner,

and this area broadens with increasing Re. For Re = 389, the decrease in pressure involves a

wide area that is extended approximately from x/s = −0.5 to x/s = 4.0.

It is also interesting to compare the pressure distribution of the imposed velocity profiles

case, with the transmissive boundary conditions case, shown in figure 31(a). Due to com-

putational imperfections, in fact, the last sections before the outlet are characterized by an

inaccurate pressure distribution. A possible solution to this problem is represented by the ap-

plication of a ‘sponge layer’, responsible to reduce numerical instabilites in the vicinity of the

outlet section. Its implementation is discussed for the case of the backward-facing step with

the ramp, in section (5.3.2.2): The rest of the test section, on the contrary, has a pressure dis-

tribution that is comparable to that previously obtained, exception given by the peak pressure

that reaches a value slightly lower. The difference in color rendering in figure 31(a) is due to

the lower pressure reached near the outlet section, value that should be neglected as a result of

numerical issues. Imposing a limit to the minimum pressure to be represented on the plot, it is

possible to notice how pressure distribution with transmissive boundary conditions is similar to

that obtained imposing u velocity profiles. This comparison is shown in figure 31(b) and 31(c).

5.2.3 Conclusions

The simulations over the backward-facing step have shown accuracy with respect to what

presented in literature. In particular, prediction of reattachment lengths for different Reynolds

numbers, in laminar flow regime, is accurate within an error range of nearly 5%. Profiles of u
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(a) Pressure distribution for Re = 100, with transmissive boundary conditions.

(b) Pressure distribution for Re = 100, with transmissive boundary conditions, and limited minimum pressure
representation.

(c) Pressure distribution for Re = 100, with imposed velocity profiles at inlet and outlet sections.

Figure 31: Pressure distribution for Re = 100.
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velocity for different Re along the test section vary accordingly to those presented by Armaly

et al. [3], for both imposed velocity profiles and transmissive boundary conditions. Finally, the

comparison of the two types of boundary conditions chosen shows analogies in their results,

even if further testing and development is needed.

In summary, results obtained from the simulations are compatible to those presented in the

literature. Therefore, the code employed is validated, and it will be used in the next section to

analyze a similar geometry, where a ramp is added some dimensional units after the step, in

order to have an outlet section with the same area of the inlet.
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5.3 Flow over a Backward-Facing Step with a Ramp

While the previous part of this chapter focused on the flow over a backward-facing step,

now this geometry is slightly modified to make it closer to a problem of widespread interest.

The BFS geometry is altered adding a ramp after the step, so that a cavity is generated. After

this cavity, the test section reduces its height so that outlet channel has the same height of the

inlet channel.

This particular shape has been adopted to reproduce the actual geometry of a cavity combus-

tor. Such type of combustors are employed in very different areas, ranging from ground-based

power generation to aircraft engines. As already explained for the backward-facing step, but

still valid for this case, a cavity adjacent to a flow is responsible of the formation of a recircula-

tion zone. In this particular zone, the fluid has a longer residence time when compared to the

bulk flow of the channel, so that this zone is ideal to provide heat for combustion. It is exactly

because of their promise to be flame-holding devices that cavities have drawn the attention of

the scramjet (Supersonic Combustion Ramjet) community [4], even if more research is needed

to optimize its dynamic, i.e. maximize flame-holding capability and minimize losses.

Even if the geometry analyzed is interesting for its supersonic applications, further imple-

mentation of the code would be needed to obtain results for such cases. Therefore, this thesis

is going to focus just on subsonic flows, where the bulk flow is in laminar regime. For such a

kind of flow, the general features for the geometry analyzed, shown in figure 32, are

• Boundary layer development: along the inlet channel, flow is developed until it reaches

the fully developed flow condition;



95

• Boundary layer separation: at the step corner, the sudden change in geometry is respon-

sible for the separation of the boundary layer from the wall, which turns into a curved

shear layer;

• Reattachment zone: instead of a well-defined reattachment length, used in the case of a

simple backward-facing step, it is necessary to refer to a wider reattachment zone, since

the separated boundary layer is not able to reattach on the bottom of the cavity (except

for extremely low Re, or for sufficiently long cavities, cases that are not analyzed in this

thesis);

• Recirculation zone: it is located adjacent to the cavity walls, and it moves closer to the

ramp with increasing Reynolds number;

• Recovery to fully developed flow: after the corner formed by the ramp wall and the outlet

channel bottom wall, the flow starts to redevelop to eventually reach its steady state fully

developed condition.

In contrast to the backward-facing step case, where many relevant articles were found in the

literature, for the geometry considered in the following not many studies based on its cou-

pling with a subsonic flow have been conducted. In fact, subsonic flows are analyzed mainly

for rectangular cavities, where their aspect ratio (length-to-depth) is changed, leading to the

interpretation of the different experimental and/or numerical results obtained. The particular

shape this thesis describes has, to the best of the author’s knowledge, never been analyzed for

subsonic flows with low Reynolds numbers, due to its wide application in supersonic conditions.
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Figure 32: Principal features of the backward-facing step with ramp flow, for relatively low Re
and for a channel with open top.

5.3.1 Computational Model

The problem geometry is shown in the schematic presented in figure 33, and dimensions

adopted are taken from Tuttle et al. [6] about the investigation of a supersonic high-speed cavity.

These dimensions are reported in table V. Lengths for inlet channel and outlet channel are not

specified in the literature reference (indicated as n.s. in table V), therefore they are going to

be assumed accordingly to the simulations’ needs, i.e. long enough to let the flow fully develop

before and after the cavity. This means that the channels, especially the outlet one, have to

be chosen long enough to let the flow reach a fully developed condition, in order to allow the

imposition of a fully developed u velocity profile as outflow boundary condition. In addition,

even if Tuttle et al. have analyzed a geometry where the bottom wall of the channel is inclined

by 2.5◦, generating a diverging channel, such an inclination is neglected here, so that the inlet

channel and the outlet channel are of the same height.
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Figure 33: Geometrical dimensions for the case of the backward-facing step associated with
the ramp.

TABLE V: DIMENSIONS OF THE BACKWARD-FACING STEP AND THE RAMP IN
TUTTLE ET AL.’S SETUP.

Element Symbol Value [cm]

Inlet channel length lin n.s.
Cavity length lcav 4.65

Outlet channel length lout n.s.
Total length l n.s.

Inlet channel height hin 5.08
Outlet channel height hout 5.08

Cavity height s 1.65

Theta θ 22.5◦
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Tuttle et al. [6] provided a schematic of their setup, where it is clearly shown that their

channel is approximately 90.0 cm long. Considering that the flow analyzed by this work is

subsonic, and that no inclined bottom wall has been adopted (the diverging channel presented

by Tuttle [6] makes the supersonic flow accelerate along its length), shorter lengths have been

specified with respect to those that is possible to extrapolate from the drawing.

In the process of non-dimensionalization, a step height of 0.65 is imposed. With such a

choice, the cavity length becomes 1.815, and the inlet and outlet channel height results of 2.0.

The inclination θ of the ramp is mantained consistent with the reference, so that an angle of

22.5◦ is assumed. Since, as stated earlier in this section, inlet and outlet channel lengths have

not been specified by Tuttle et al., it has been chosen 3.0 as non-dimensional length for the inlet

channel, and a total length of the test section of 13.0. Finally, a depth of 1.0 is specified along

the z direction. The range of Reynolds numbers chosen, i.e. 100 < Re < 400, ensures that the

flow remains laminar and two-dimensional, and therefore results are going to be analyzed in

the middle section along z axis.

All dimensions described so far are presented in table VI, together with the conversion

among dimensional and non-dimensional units.

Tuttle et. al. used particle image velocimetry to characterize flow properties. Such method

consists in using sufficiently small tracer particles in the fluid, so that they are assumed to

closely follow the flow dynamics, and register their motion to calculate speed and direction of

the flow being studied.
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TABLE VI: DIMENSIONS OF THE BACKWARD-FACING STEP WITH THE RAMP FOR
NUMERICAL SIMULATIONS’ SETUP.

Element Symbol Value [cm] Non-dimensional Value

Inlet channel length lin 7.62 3.0
Cavity length lcav 4.65 1.815

Outlet channel length lout 16.805 6.616
Total length l 33.02 13.0

Inlet channel height hin 5.08 2.0
Outlet channel height hout 5.08 2.0

Step height s 1.65 0.65

Theta θ 22.5◦ -

In this work, a sixth order polynomial has been used with 56, 16 and 1 domains in the x,

y and z directions, respectively. For such a polinomial order, Lobatto points are respectively

448, 128 and 8 in each direction. A grid with this features has shown adequate grid indepen-

dence, with its quadrilateral mesh constituted of 52224 nodes for each x− y plane section, that

correspond to a total of 417792 nodes for the whole mesh.

For lower polynomial orders and a lower number of elements, in fact, results have been

underestimated, especially in the cavity. Two grids with less elements and a lower polynomial

order have been tested, with 27648 nodes for each x− y plane section (165888 total), and with

35280 nodes for each x− y plane section (246960 total), respectively. For a higher polynomial

order and a higher number of elements, instead, no significant increase in accuracy has been
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achieved. The grid tested was constituted by 66096 nodes for each x− y plane section (594864

total).

The grid is not uniform, and it is made finer in the points of interest of the flow, and in

particular

• Near the step corner;

• Near the top and the bottom walls of the channel;

• Near the cavity walls;

• In the shear layer.

A power law is chosen for the nodes distribution in the inlet channel along the x direction,

approaching the step corner, with a last length of 0.15 non-dimensional units. The cavity has

also a power law distribution, with a first length of 1.0. On the ramp, on the contrary, the x

distribution of points is assumed uniform, since the mesh has been made fine enough so that

no further refinement is needed. The outlet channel also has a power distribution, with a first

length of 0.15. In the y direction, instead, a finer grid is required near top and bottom wall

of channel and cavity. Therefore, a double power law is specified, with 0.05 set both as last

and as first length for the top part of the channel (inlet channel, outlet channel, and the zone

in between), and 0.04 as last and as first length for the bottom part (cavity and ramp). An

example of how the mesh is constructed on the x− y plane is shown in figure 34. In this case

too, just one element is created along the z direction, so that no custom distribution of points

is made along that axis.
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Figure 34: Example of mesh refinement for the backward-facing step with the ramp, x− y
plane section.

The boundary condition at x = −3.0, at the inlet section, is an inflow boundary condition

with a fully developed u velocity profile specified. As done for the standalone backward-facing

step, it is chosen a profile where the maximum value for the velocity in the x direction is

umax = 1.5, so that the mean velocity at the entrance is calculated with (Equation 5.1), and

it is ū = 1.0. Once more, since the inflow profile is fully developed, v = w = 0. Density and

pressure at the inlet section are, respectively, ρ = 1.0 and p = 4.464.

At x = 10.0, in correspondance of the outlet section, two different outflow boundary condi-

tions are tested.

The first kind of boundary conditions is again based on the specification of outflow boundary

values for the u velocity profile at the outlet section. Being the outlet section far enough from

the cavity, the flow is assumed capable to reach its steady state along the outflow channel, and

therefore the profile corresponds to a condition of fully developed flow. In addition, considering

that the outlet section has exaclty the same geometrical dimensions of the inlet section, the
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same velocity profile used for the inflow condition is specified as mortar values, as suggested in

figure 35.
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(a) Inlet velocity profile, at x = −3.0.
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(b) Outlet velocity profile, at x = 10.0.

Figure 35: Examples of the u velocity profiles imposed as inflow and outflow boundary
conditions for a backward-facing step coupled with a ramp problem.

In addition, values on the mortar for v and w are set equal to 0, and density and pressure are

imposed to assume again their atmospheric values, i.e. ρ = 1.0 and p = 4.464, that is physical

considering the outlet channel is long enough to leave the flow the time to fully develop again.

The second kind of outflow boundary conditions employed is constituted by transmissive

boundary conditions. Equations describing these boundary conditions can be found in sections

(5.1.2) and (5.2.1), therefore they are repeated here. Derivatives along the x direction of u, ρ
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and p are set to zero at the outlet section, that implies also temperature T does not vary along

the x direction. In addition, it is also imposed v = w = 0, to make the problem well defined.

Channel walls are characterized by a no-slip boundary condition, and they are set isothermal

with a temperature Tw = Tatm given by (Equation 5.2). Temperature Tatm is chosen so that

Ma = 0.4 for the flows computed, low enough to consider them nearly incompressible. A

schematic of the boundary conditions applied in a cross section along the x− y plane is shown

in figure 36.

Figure 36: Boundary conditions applied for the backward-facing step with the ramp, section
along the z-direction.

It is possible to define two characteristic parameters to describe the flow:

• ER1, that is the expansion ratio between the channel height at the cavity and the inlet

channel height, i.e.

ER1 =
hin + s

hin
= 1 +

s

hin
= 1.325; (5.4)
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• CR2, that is the compression ratio between the channel height at the cavity and the outlet

channel height, i.e.

CR2 =
hin + s

hout
= 1.325. (5.5)

With the outlet channel and the inlet channel being of the same height, ER1 = CR2. The

overall test section expansion ratio is given by

ER =
ER1

CR2
= 1.0, (5.6)

and is equal to unity because of the same geometric characterstics of inlet and outlet channels.

The hydraulic diameter is chosen in accordance to the case of the backward-facing step previ-

ously studied, so that Dh = 2hin = 4.0. The Reynolds number is once more defined through

(Equation 5.3):

Re =
ūDh

ν
,

where ν is the kinematic viscosity of air. In this study, Re is varied in the range 100 < Re < 400.

The value of ν and those of other parameters involved are briefly summarized in table VII.

The simulations are run in parallel on 80 processors, currently available on the MIE Cluster

at UIC. The CFL number has been assumed equal to 0.9 in case of the specified u profile BCs,

while it has been reduced to 0.4 in case of transmissive boundary conditions, in order to reduce

instability. Approximately 55,000 timesteps are needed per flow through, with a computational

time of nearly 2 hours.
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TABLE VII: REFERENCE VALUES USED IN THE BACKWARD-FACING STEP WITH
RAMP STUDY.

Property Symbol Value Dimensional Unit

Density ρf 1.225 kg/m3

Dynamic Viscosity µ 1.789 ×10−5 kg/(m · s)
Kinematic Viscosity ν 1.461 ×10−5 m2/s
Expansion Ratio ER 1.0 -

5.3.2 Results

This section presents results obtained for the geometry considered, for both types of outflow

boundary conditions, and in the Reynolds number range specified earlier in this chapter. In

particular, reattachment zone, u velocity distribution and pressure distribution are analyzed.

5.3.2.1 Reattachment Zone

The present section compares results obtained for the reattachment zone with the different

kinds of boundary conditions imposed. As described in section (5.3), because of the geometric

characteristics of the cavity, it is not possible to define a reattachment length as it has been

done for the backward-facing step case. As clearly explained by Ben-Yakar and Hanson [4], in

the case of a supersonic flow, cavities can be divided into two categories depending on their

length-to-depth ratio (that following this thesis’s notation is indicated as lcav/s):
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• Open cavities, for a length-to-depth ratio lcav/s < 7 − 10. The cavity is called ‘open’

because the shear layer reattaches to the back face of the cavity (the ramp in the case

considered);

• Closed cavities, for a length-to-depth ratio lcav/s > 10 − 13. In this case, the cavity is

called ‘closed’ because the shear layer reattaches to the lower wall.

The critical length-to-depth ratio, i.e. the lcav/s at which transition between the two regimes

occurs, depends also on the flow Mach number, on the boundary layer thickness at the step,

and on the cavity width (for three-dimensional flows). The case considered is characterized by

a length-to-depth ratio lcav/s = 1.815/0.65 = 2.792, so that it corresponds to an open cavity.

Ensured that the shear layer reattaches on the back face of the cavity, where the ramp

is situated, it is then possible to plot the variation of reattachment point (described by its y

coordinate) with the Reynolds number for the cases considered. As it can be deducted from

figure 37 trend is not linear with increasing Reynolds number. In particular, for the lower

range of Reynolds numbers the simulations with specified outflow u velocity give a slightly

lower value of reattachment point yR, while for the highest Re used the lowest yR prediction is

made by transmissive boundary conditions. In all the cases considered the difference between

the reattachment points predicted with the two types of boundary conditions remains in the

order of 1-2% of the value predicted.

5.3.2.2 Velocity Profile

This section compares the different u velocity profiles obtained with increasing Reynolds

numbers, ranging from a minimum of Re = 100 to a maximum of Re = 389. Such a comparison
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Figure 37: Comparison of boundary layer reattachment zones for the backward-facing step
with ramp, for different types of outflow boundary conditions.

is shown in figure 38. Only the u profile for imposed u boundary conditions is plotted, since

transmissive boundary conditions are examined later with a plot of the complete test section.

As the Reynolds number increases, a higher maximum velocity is registered for the upper part

of the test section, and also a higher value of u (in modulus) is obtained in the cavity, showing

a more effective recirculation in the cavity.

In addition, as shown in figure 39, as the Reynolds number increases the center of the

recirculation zone tends to move farther from the step and closer to the ramp.

Finally, figures 40 and 41 show the u velocity distribution along the whole test section for

imposed u velocity profile and transmissive outflow boundary conditions, respectively. Distri-

butions for the lowest and the highest Reynolds numbers tested have been represented, since
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(c) Re = 250.
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(d) Re = 389.

Figure 38: Graphical representation of u velocity distribution along vertical cross sections, for
different x coordinates, for the backward-facing step with ramp.
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(a) Re = 100.

(b) Re = 190.

(c) Re = 250.

(d) Re = 389.

Figure 39: Graphical representation of main recirculation zone for increasing Reynolds
numbers, for the backward-facing step with ramp, contours for u velocity.
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the extreme cases are considered the most meaningful to be analyzed for the flow. The plots for

transmissive boundary have been forced within the same limits of those obtained for u profile

specified, so that it becomes easier to compare results coming from both types of simulation.

In particular, it is possible to notice how transmissive boundary conditions overestimate the

value of u, especially in the channel centre, when compared to the specified u velocity profile

boundary condition. Comparing the values assumed by the u velocity along the whole test

section, at a height y = 1.65 (i.e. exactly at the middle height of the inlet/outlet channel)

and in the middle section, as shown in figure 42, it is possible to notice how the case where

transmissive boundary conditions have been imposed shows a steep instability at the exit, that

leads to a propagation of numerical errors that involve all the rest of the test section, errors

that are responsible of non physical results.

To limit this phenomenon and obtain physical results, it is necessary to reduce as much

as possible the numerical issues at the exit. A possible solution is the implementation of a

buffer domain, to be applied before the outlet section, in order to smooth down such instability.

This approach has been succesfully proposed and adopted by Pruett et al. [35], but with the

inconvenience that the viscous terms of the basic equations must be manipulated in the buffer

region. This work refers, therefore, to a more convenient approach, suggested by Guo et al. [36]

and adopted also by Adams [37]. This solution introduces a sponge layer at the outflow boundary,

which typically is one boundary layer thickness long. Since in this thesis the major instability

has been identified within the last elements in the x direction, the sponge layer length is
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(a) Re = 100.

(b) Re = 389.

Figure 40: Distribution for u velocity in the whole test section for the backward-facing step
with ramp, imposed u profile at the outlet section.
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(a) Re = 100.

(b) Re = 389.

Figure 41: Distribution for u velocity in the whole test section for the backward-facing step
with ramp, transmissive outflow boundary conditions.
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Figure 42: Comparison of u velocity along the whole test section between imposed u BC and
transmissive BC for Re = 389, at a height y = 1.65, and in the middle section.

assumed equal to the x length of the last domain. The region where the sponge layer is applied

is highlighted in figure 43.

With the sponge layer adopted, a vector quantity is added to the right-hand side of the

Navier-Stokes equations, defined as

Z = −σ(x)(W −W0), (5.7)

where W indicates the vector of conservative variables, and W0 indicates their values for a

reference steady flow. In the case considered, the vector W0 is defined referring to the condition
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Figure 43: Test section mesh, where the region highlighted represent the zone where the
sponge layer is applied.

of fully developed channel flow. The function σ(x) is responsible for damping instabilities in

the sponge layer, and it is defined as

σ(x) =


0, outside the sponge region,

As(Ns + 1)(Ns + 2) (x−xs)Ns (Lx−x)
(Lx−xs)Ns+2 , inside the sponge region.

(5.8)

In (Equation 5.8), it is possible to notice how the damping function σ(x) is a function of only

the x coordinate. xs and Lx indicate the endpoints of the sponge layer region, i.e. xs is the x

coordinate at which the sponge layer zone begins, and Lx the x coordinate at which the sponge

layer ends (that corresponds also to the x coordinate of the last points of the domain). The

sponge region is therefore represented by the points such that xs < x < Lx. As and Ns are two

parameters, tuned accordingly to the damping wanted. In this case, they are chosen as their

typical values, i.e. As = 4 and Ns = 3.
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The sponge layer has been implemented in the code, and it is considered as a sink by Navier-

Stokes equations. Results obtained for the velocity distribution in the test section for Re = 100

and Re = 389 are presented in figures 44(a) and 44(a), respectively.

In addition, it is possible to plot the evolution of the u velocity value along the same line

considered in the case of figure 42. This comparison is shown in figure 45.

From figure 45 it is possible to notice that the sponge layer has effectively damped the

oscillations near the outlet section, but most of all has made possible good agreement of the

results between the two types of boundary conditions. Although the damping near the outlet

still needs some adjustements, achievable tuning the parameters in (Equation 5.8), results in

the rest of the test section are in good agreement with those obtained with imposed u velocity

profile as outflow boundary condition. For this reason, it is necessary to neglect results in the

sponge layer zone, as they do not correspond to a physical phenomenon, but rather to numerical

instability, that has been damped but not completely eliminated.

5.3.2.3 Pressure Field

The pressure drop from the inlet to the outlet section is about 0.4 non-dimensional units for

Re = 100, and of 1.0 non-dimensional unit for Re = 389, again consistent with higher pressure

drop in case of higher Reynolds number, as it happened for the backward-facing step. Pressure

distribution for specified u velocity profile at the outlet section is shown in figure 46, for the

lowest and the highest Reynolds numbers tested.

As it happened in the case of u velocity distribution, also for the pressure p the oscillations

encountered near the outlet by transmissive boundary conditions are responsible for wrong
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(a) Re = 100.

(b) Re = 389.

Figure 44: Distribution for u velocity in the whole test section for the backward-facing step
with ramp, transmissive outflow boundary conditions with sponge layer at the outflow

boundary.
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Figure 45: Comparison of u velocity along the whole test section between imposed u BC,
transmissive BC and transmissive BC with sponge layer for Re = 389, at a height y = 1.65,

and in the middle section.

results in the rest of the test section. With the implementation and the application of the sponge

layer, whose features are explained in section (5.3.2.2), pressure distribution becomes in good

agreement with that obtained in the case of u velocity imposed boundary condition. Pressure

distribution in the case of transmissive boundary condition with sponge layer is presented in

figure 47. The comparison of results obtained for the three different cases are shown in figures

48 and 49.

Pressure distribution, with the application of the sponge layer, is in good agreement with

that obtained imposing the u velocity profile as outflow boundary condition. In the region where

the sponge layer is applied, some further damping in needed, especially tuning parameters As

and Ns of the damping function. In the rest of the section, instead, the values obtained are
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(a) Re = 100.

(b) Re = 389.

Figure 46: Distribution for pressure p in the whole test section for the backward-facing step
with ramp, u profile specified at the outlet.
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(a) Re = 100.

(b) Re = 389.

Figure 47: Distribution for pressure p in the whole test section for the backward-facing step
with ramp, transmissive boundary condition with sponge layer applied in the last domain.
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Figure 48: Comparison of pressure along the whole test section between imposed u BC,
transmissive BC and transmissive BC with sponge layer for Re = 100, at a height y = 1.65,

and in the middle section.
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Figure 49: Comparison of pressure along the whole test section between imposed u BC,
transmissive BC and transmissive BC with sponge layer for Re = 389, at a height y = 1.65,

and in the middle section.
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consistent with those obtained applying the other type of boundary condition. If the sponge

layer was not applied, as it can be seen from lines representative of standalone transmissive

boundary conditions in figures 48 and 49, the values obtained throughout the whole test section

would have been unphysical, because of the propagation of numerical errors from the outlet

section to the rest of the domain.

The comparison of pressure between the two types of boundary conditions imposed is ex-

tended to two more heights of the channel, i.e. y = 0.68 and y = 1.0, as represented in figures

50 and 51.

4,25	


4,30	


4,35	


4,40	


4,45	


4,50	


4,55	


4,60	


4,65	


4,70	


-3 -1 1 3 5 7 9 

p 

x 

Imposed u velocity profile 
Transmissive BC with Sponge Layer 

Figure 50: Comparison of pressure along the whole test section between imposed u BC and
transmissive BC with sponge layer for Re = 389, at a height y = 0.68, and in the middle

section.
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Figure 51: Comparison of pressure along the whole test section between imposed u BC and
transmissive BC with sponge layer for Re = 389, at a height y = 1.0, and in the middle

section.

As shown in figures 50 and 51, good agreement is achieved for pressure distribution along

the whole test section at different heights in the channel, with a difference between the two

types of boundary conditions remaining in the range of 2% of the pressure value, except for

the last part of the outlet channel, where the sponge layer is situated. In this region, in fact,

oscillations do not give accurate results in predicting the pressure value.

5.3.3 Conclusions

The simulations over the backward-facing step with the ramp have shown consistency with

what theoretically expected for the different Reynolds numbers adopted.

Increasing the Reynolds number, in fact, the u velocity clearly suggests that the recirculation

phenomenon is emphasized. Comparing the flow structure in the cavity within the range of
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Reynolds number chosen, it is possible to notice that the centre of the main recirculation zone

moves towards the ramp as Re increases. Increasing it further, i.e. for Reynolds such that

200 < Re < 400, the centre of the main recirculation zone moves further downstream, so

that it follows the ramp geometry. This phenomenon is also proven with the analysis of the

reattachment point yR as a function of the Reynolds number adopted.

Results for transmissive boundary conditions have initially been in great disaccordance

with those obtained imposing the u velocity profile at the outlet section. This disaccordance

has been attributed to the numerical errors transmissive boundary conditions encounter near

the outlet section, that cause huge instability in this section of the domain. Such errors,

during the simulations, have propagated throughout the whole test section, leading to results in

disaccordance with those previously obtained. To reduce and fix this instability a ‘sponge layer’

has been implemented, whose aims are to prevent the outflow boundary condition to become

unstable and to block the propagation of the error generated to the rest of the domain. This

sponge region is based on the model proposed by Guo et al. [36] and adopted also by Adams [37],

which considers the addition of a vector to Navier-Stokes equations to limit oscillations near

the outlet section.

Simulations have been performed also with the application of this sponge layer, and results

obtained have shown good agreement with those associated with imposed u boundary condition.

The zone where the sponge layer is applied still presents oscillations, but the in the rest of the

domain results reproduce well those previously generated.
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The distribution of pressure too is consistent with the expectations. When the Reynolds

number increases, it is possible to notice a steeper gradient in pressure at the ramp corner,

which is concentrated into a smaller zone. Results before the application of the sponge layer

are once again affected by the propagation of numerical errors from the outlet section. After

the sponge layer has been imposed in the last domain, it has been possible to identify good

agreement with the results obtained for the u velocity profile imposed boundary condition. The

zone where the sponge layer is applied does not provide accurate results for pressure, but the

damping it performs makes it possible to achieve accurate predictions in the rest of the domain.

Although the results obtained throughout the domain are accurate, they still present some

oscillations towards the outlet section. It is possible to try to reduce these inaccuracies increas-

ing the length of the sponge layer, or modifying the two parameters involved in the formulation

of the sponge layer, i.e. As and Ns. With such modifications, the sponge layer could be tuned

more appropriately to the case considered, and therefore results obtained, even in the regions

closer to the outlet section, would be more accurate.

5.4 Sponge Layer Tuning

In order to obtain consistent results using transmissive outflow boundary condition it has

been necessary to implement a sponge layer, responsible of damping down instabilities in the

vicinity of the outlet section.The formulation of the damping function and the sponge layer

characteristics have been described in section (5.3.2.2).

This section’s purpose is to tune appropriately the damping function, in order to reduce

instabilities even further, and obtain results even more accurate. With the previous choice of
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parameters, i.e. As = 4 and Ns = 3, both of which coincides with the typical choice in the

literature [36], instabilities at the outlet have been reduced, but not eliminated. This section

aims to fix them as much as possible, considering different values for these two parameters, and

even considering a possible extension of the sponge layer to a wider domain.

5.4.1 Regulation of Parameters

First of all, it is necessary to understand the influence of As and Ns on the damping function.

In order to do that, while one of the two parameters is kept fixed, the other is varied, and values

assumed by the damping function in the region where the sponge layer is applied are plotted.

In figure 52, Ns has been assumed equal to 3 (figure 52(a)) and equal to 5 (figure 52(b)),

while As is varied in the range 1 < As < 10, and its value is indicated in the legend. It
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(b) Ns = 5.

Figure 52: Variation of the damping function keeping Ns fixed, and varying As in the range
1 < As < 10.
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is possible to notice how increasing As, the maximum of the damping function increases, but

remaining on the same x coordinate. The curve in figure 52(a) corresponding to As = 4 is the

damping function that has been used in sections (5.3.2.2) and (5.3.2.3) for the analysis of the

backward-facing step with ramp flow. Comparing figures 52(a) and 52(b), it is evident that

the maximum damping value achieved by σ(x) increases both with As and Ns, since curves in

figure 52(b) have a higher maximum, if compared with their respective ones in figure 52(a).

An analogous procedure can be applied for the analysis of the effect of the variation of Ns

on the damping function values. In this case, As is assumed first equal to 4 (figure 53(a)), and

then equal to 6 (figure 53(b)). It is evident that increasing Ns and keeping As constant,
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(b) As = 6.

Figure 53: Variation of the damping function keeping As fixed, and varying Ns in the range
1 < Ns < 10.
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the maximum of the curve tends to move towards the right endpoint of the interval where

the sponge layer is applied. In addition, the maximum does not keep a constant value as Ns

increases, but it increases as well, since the curve keeps the same subtended area. As already

underlined for figure 52, for a same As the curve with the higher Ns presents a higher maximum,

situated in correspondance of the same x coordinate.

5.4.2 Extension of the Sponge Layer

Another possibility of optimization is represented by the extension of the zone where the

sponge layer is applied. For the simulations performed in sections (5.3.2.2) and (5.3.2.3), the

sponge layer has been applied just in the last domain before the outlet section. As explained

by Guo et al. [36], in fact, the sponge layer usually is assumed as thick as one boundary layer.

This section examines the effect of extending the sponge layer also to a previous subdomain

for the case of the backward-facing step with the ramp, so that xs is assumed equal to 9.0. The

effects of this extension can be seen in figure 54, where the damping function has been plotted

with reference to the previous sponge layer extension (i.e. xs = 9.5), for two different couples

As, Ns. The legend indicates the xs the curve corresponds to. As it emerges from figure 54,

a wider region to apply the sponge layer lowers its damping effect, for the same choice of As and

Ns. In particular, having doubled the region where the sponge layer is imposed, the maximum

value of the damping function assume a value that is close to half of that it assumed for a

smaller region. In addition, enlarging the operating zone of the sponge layer, the maximum

damping is situated in correspondance of a x coordinate closer to the center of the interval.
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Figure 54: Variation of the damping function increasing the sponge layer extension, keeping
As and Ns fixed.

Now that all the possible parameters to regulate the sponge layer have been presented, and

their different effects analyzed, it is possible to proceed with their optimization for the case of

the backward-facing step with the ramp.

5.4.3 Optimization

This section is dedicated to different choices of As, Ns and xs in order to achieve the best

possible results for the case of the backward-facing step with the ramp. As it can be seen

from figure 55, the greatest oscillations are achieved at a distance of approximately 12.5 non-

dimensional units from the inlet section, i.e. at x = 9.5. It is exactly at this point that the

sponge layer is wanted to damp oscillations as much as possible, so the tuning of parameters is

performed to have a maximum damping in the vicinity of x = 9.5.

In particular, three choices for the three parameters involved have been considered conve-

nient:
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Figure 55: Greatest oscillations for the case of backward facing step with ramp with
transmissive boundary conditions, Re = 389, in the middle section along z axis, and in the

middle height of the channel.

1. xs = 9.0, As = 4, Ns = 1;

2. xs = 9.0, As = 4, Ns = 3;

3. xs = 9.0, As = 6, Ns = 3.

All of the three cases considered involve a sponge layer zone that is double as thick as before,

since xs = 9.0. The damping functions for these cases are shown in figure 56, where the legend

indicates As, Ns for each curve. The curve represented in black indicates the damping function

used previously, when just the last domain has been reserved for the sponge layer, with xs = 9.5,

As = 4 and Ns = 3.

Simulations have been run with the same geometry and boundary conditions specified in

section (5.3), with the implementation of the sponge layer responding to the curves just shown

in figure 56. In figure 57 is represented a graphical comparison for u velocity along the whole
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Figure 56: Comparison of the damping functions σ(x) for the different cases considered.

test section, between u velocity profile specified boundary condition, transmissive boundary

condition with sponge layer described in section (5.3.2.2), and transmissive boundary condition

with sponge layer described by the four cases just presented. Figure 58, instead, present an

analogous comparison for the pressure.

The case As = 4, Ns = 1, represented in the figures with a red line, appears as the most

convenient choice for tuning the boundary layer. With this choice, in fact, the damping effect

of the sponge layer has its higher effect, although the region where the values obtained are

not physical is broadened. A different result is obtained choosing Ns = 3, where values for u

velocity and pressure are almost independent of the As chosen. The maximum damping effect,
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Figure 57: Comparison of u velocity along the whole test section for transmissive BC with
sponge layer, with different parameters, for Re = 389, at a height y = 1.65, and in the middle

section.
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Figure 58: Comparison of pressure value along the whole test section for transmissive BC with
sponge layer, with different parameters, for Re = 389, at a height y = 1.65, and in the middle

section.
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in fact, is situated at a same x coordinate, as suggested in figure 56, so that u and p have a

similar trend in both cases, with respect of their x coordinate.

If the sponge layer had been restricted to just the last domain, as represented by the black

line in figures 57 and 58, a higher damping would have been imposed in a section closer to the

end of the domain. Such damping leads to a slight underestimation of u and p values, when

compared to the other cases considered, but causes a smaller zone where the results obtained

are not physical, because of the influence of numerical errors at the outlet section. These errors,

in fact, could have not been completely eliminated, but they have been contained in order to

achieve accurate results in the rest of the test section.



CHAPTER 6

CONCLUSIONS

This chapter summarizes all the results achieved in this thesis. It has been considered

suitable to divide the chapter in four parts. The first section is dedicated to the mesh generator,

the second part discusses mesh and code validation with comparison between simulations and

literature references, the third part groups results obtained for the backward-facing step with

ramp geometry, and the last section is reserved for suggestions on future work.

6.1 Mesh Generator

One of the main achievements of this thesis is the implementation of a mesh generator to

be used with the computational code for simulations.

The mesh generator is based on the first version implemented by J. Komperda [25] at CMTL

at UIC, that was able to generate squares, rectangles, and shapes obtained by their combination,

with a uniform grid. When combining different shapes, however, the basic program would have

had to recalculate all connections between points, constituting a loss in terms of computational

time.

With further implementation, the mesh generator has been made able to deal with any two-

dimensional convex quadrilateral, where the word ‘convex’ is here used to indicate quadrilaterals

where each of the interior corners is in the range 0◦ < θ < 180◦. All routines have been

modified and the possibility to create a uniform or a non-uniform grid has been implemented.
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In the last case, power distribution and symmetric power distribution have been programmed.

This improvements have made possible to obtain a grid refinement where the flow structure

is more complex, and a wider grid where it is more simple. As a results of that, the usage

of the computational power available is optimized, in the sense that a finer grid uses more

computational resources, in order to describe accurately a complex flow structure, while a wider

grid allows the allocation of lower computational power for regions where the flow structure is

simpler.

The specification of boundary conditions has also been integrated into the mesh generator.

This method of specifying conditions on shapes’ boundaries has been adopted because of its

straightforwardness. For each two-dimensional shape, in fact, four numbers in sequence indicate

what type of boundary is each side faced to, starting from the bottom side and proceeding

counter-clockwise. Such a simple approach has been chosen because particularly suitable for

the combination of different shapes.

Besides the introduction of new features in the mesh generator, existing routines have been

optimized as well. In particular, the algorithm used to calculate connections for a shape resulting

from additions of different shapes has also been modified, so that information are stored and just

updated at every shape combination, rather than recalculated each time. This improvement has

permitted an important saving of computational time during the usage of the mesh generator.

The two-dimensional mesh generator has been extended to a third dimension, where the

two-dimensional shape generated previously is extruded into the z direction. In this direction

too, it has been implemented the possibility to create a uniform or a non-uniform grid.



135

To ensure compatibility between the mesh generator and the numerical code, a final routine

has been implemented in order to store information (i.e grid points, connections and boundary

conditions) in the correct format.

6.2 Backward-Facing Step

In order to provide validation of the numerical code used, and to test the good operation of

the .mesh file created by the mesh generator, simulations’ results over a backward-facing step

have been compared with experimental results found in literature [3], using the same setup.

Two types of outflow boundary condition are imposed, for a range of Reynolds numbers

100 < Re < 400, and a Mach number equal to 0.4. A first set of simulations is performed

specifying outflow profiles for various variables at the outlet section, feature that was already

included in the numerical code adpoted. Another set of simulation has been run using trans-

missive boundary conditions at the outlet, implemented specifically with this thesis.

Predictions for reattachment length have shown good agreement with experimental data

taken from Armaly et al. [3], and with those from Denham and Patrick [9]. For the range of

Reynolds numbers considered, in fact, it is possible to notice a linear dependence between

the reattachment length and the Reynolds number. Simulations with transmissive boundary

conditions generate results closer to those found in literature.

Profiles for u velocity at different cross-sections along the test section length have been

plotted and compared to experimental data from Armaly et al. for Re = 100 and Re = 389.

In both cases, good agreement is achieved, sign that the development of the flow predicted by

the code is consistent with the references.
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Pressure distribution is analogous for both types of boundary condition adopted. With the

specified u velocity profile, however, a higher value of pressure along the test section is observed.

Transmissive boundary conditions, on the other side, the value of p predicted is lower in the

whole test section, and this difference is associated with the numerical issues transmissive

boundary conditions generate in the proximity of the outlet section.

In summary, results obtained with simulations are consistent with experimental data taken

from Ref. [3] and [9], especially when a u velocity profile has been imposed as outflow boundary

condition, so that the code used is validated.

6.3 Backward-Facing Step with Ramp

Having validated the code with the geometry of the backward-facing step, such a geometry

is modified with the addition of a ramp after the step, in order to reproduce the geometry of a

dump combustor. Geometrical dimensions are based on those taken from Tuttle et al. [6], but

a shorter outlet channel is chosen. In addition, no inclination is imposed to the lower wall, so

that the outlet channel results with the same height as the inlet channel.

The geometry adopted has been widely analyzed in the literature, because of its application

in the scramjet engine. Despite that, most of the experiments and simulations have focused

just on supersonic flows, with little or no interest in the analysis of subsonic laminar flows in

such a geometry. This work, therefore, has aimed to model a subsonic laminar flow in a dump

combustor, in a range of Reynolds numbers 100 < Re < 400, and with a Mach number equal

to 0.4.
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In this case too simulations have been performed using the two types of boundary conditions

applied previously. When the u velocity profile has been specified at the outlet section, because

of the same geometrical characteristics of inlet and outlet channels, the same profile has been

specified at both inlet and outlet.

Comparison of reattachment points for increasing Reynolds numbers shows, for this ge-

ometry as well, a slightly higher prediction made by transmissive boundary conditions. With

both types of boundary condition considered the difference obtained between the values of the

reattachment point is in the order of approximately 1-2% of the value predicted. For this rea-

son, it is possible to ignore the differences between the values predicted, and assert that the

simulations show good agreement, independently of the outflow boundary condition imposed.

The flow structure in the cavity has been studied for increasing Reynolds numbers, showing

how the recirculation phenomenon is emphasized as Re increases. Furthermore, this recircu-

lation zone tends to be centered more and more downstream, i.e. closer to the ramp, when

the Reynolds number raises. For a Re sufficiently high, the main recirculation phenomenon is

centered on the ramp, rather than on the cavity bottom wall.

In this case, transmissive boundary conditions have not predicted accurate results. Numer-

ical insabilities at the outlet section, associated with the process of projecting flux values to

the mortars, have been responsible of a propagation of errors that has involved all the rest of

the test section, leading to non-physical results for all the variables considered. Therefore, it

has been necessary to implement a way to keep solution values near the outlet section within a

certain range. A sponge layer has been programmed, responsible to damp down oscillations in
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the vicinity of the outlet section, with a formulation analogous to that introduced by Guo et

al. [36]. With the specification of a damping function, in fact, oscillations are damped down in

a region in the vicinity of the outlet section, with a higher damping as greater is the difference

between the conserved quantity measured in the point and the reference conserved quantity

imposed.

With the application of the sponge layer in the last domain before the outlet section, re-

sults obtained are in very good agreement with those achieved with u velocity profile specified

boundary condition. The area of the domain closer to the outlet section, instead, has been still

affected by oscillations, that couldn’t have been completely eliminated.

The pressure field in the test section shows a steeper variation towards the ramp corner for

higher Reynolds numbers, while for lower Re the change in pressure in this zone becomes less

sharp. The comparison between the results obtained with the two types of outflow boundary

condition gives a good agreement after the sponge layer has been applied. In this case too,

oscillations near the outlet section have been damped, but not completely eliminated. In the

rest of the test section, however, an accurate distribution of pressure is achieved.

In addition, it has been tried to optimize the buffer domain for the higher Reynolds number

used. The effects of variation of the parameters involved in the definition of the damping

function have been studied, together with the possibilty to extend the sponge layer to a wider

domain, and everything has been tuned to achieve the configurations considered most convenient

for the case in exam. Even with this tuning, however, it has not been possible to eliminate

completely oscillations near the outlet section, but they have been reduced further.



139

6.4 Future Work

Future extensions of this work can be made regarding either the mesh generator or the code.

With regards to the mesh generator, other ways of distributing points along the shapes sides may

be implemented, and a Graphical User Interface (GUI) may be written to make the program

more user-friendly. A further implementation of the mesh generator, also, could be its extension

to curved geometries, and to three-dimensional elements with variable depth. With regards to

the code, more testing and development is needed on the transmissive boundary condition.

With the implementation of the sponge layer, results obtained with this type of boundary

conditions have shown good agreement in the majority of the test section, but oscillations at

the exit are still present. Such oscillations need to be investigated and reduced further, so that

the consistency of results is ensured throughout the whole test section.
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