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SUMMARY

This thesis explores Galois-type correspondences for finite purely inseparable field exten-

sions. Chapter 1 introduces basic notions of classical Galois theory and purely inseparable field

theory. The Jacobson-Bourbaki theorem is presented and proven and then used to prove the

Jacobson Galois correspondence regarding purely inseparable extensions of exponent 1.

In Chapter 2, the theory of Hasse-Schmidt derivations is discussed. We explain the con-

nection between higher derivations and special classes of purely inseparable extensions called

modular extensions. We reinterpret the construction of an array first constructed by Sweedler

using modules of differentials to determine whether a field extension if modular, therefore mak-

ing Sweedler’s result independent of any choice of p-bases.

Chapter 3 elaborates further on the theory of Hasse-Schmidt derivations on purely insepara-

ble fields extensions. In particular, this chapter will present constructions of higher derivations

using the Artin-Hasse exponential of certain Witt vectors. We correct a theorem originally

stated by Gerstenhaber and prove the existence of a many-to-one correspondence between

modular subfields of a purely inseparable extension and maximal Witt subgroups of the Witt

group generated by Witt vectors of a commutative subring of endomorphisms of the purely

inseparable extension.

Chapter 4 approaches modular field extensions from the perspective of the ring of differential

operators. Basic definition and facts of differential operators and divided powers algebras are

presented. Then we state and prove the necessary and sufficient conditions for a subring of the

v



SUMMARY (Continued)

ring of differential operators of a finite purely inseparable extension L/K to have a subfield of

constants K ′ such that L/K ′ is modular.

Chapter 5 presents a result proven by Gerstenhaber which relates intermediate subfields

of a finite purely inseparable extension to the ring structure of the graded commutative ring

associated to the ring of differential operators by its filtration by orders of differential operators.

We then prove the existence of a 1−1 correspondence between intermediate subfields of a purely

inseparable extension of fields of characteristic p > 0 with exponent 1 and degree p2 and certain

elements of this associate graded ring of differential operators.

vi



CHAPTER 0

INTRODUCTION

Suppose L/K is a finite Galois field extension. By the Fundamental Theorem of Galois

Theory there exists a 1−1 correspondence between intermediate subfields of L/K and subgroups

of the group of automorphisms of L with respect to K, denoted AutKL. Any finite field

extension L/k has a filtration k ⊆ K ′ ⊆ L where K ′/k is a finite separable extension and L/K

is a finite purely inseparable extension. The fixed field of AutkL contains K ′, so the structure

of the field extension L/K ′ cannot be recovered by studying the automorphisms of L/k. In

addition, the automorphism scheme of a finite separable field extension is discrete, while the

automorphism scheme of a finite purely inseparable field extension is not discrete, and has

positive dimension if the field extension is not trivial.

The Jacobson-Bourbaki Theorem shows that for any field L, there is a 1−1 correspondence

between subfields of L for which L is a finite algebraic extension and finite-dimensional subrings

of the ring of endomorphisms of L. Jacobson (14) first studied Galois correspondences on finite

purely inseparable extensions, classifying the subrings of endomorphisms for purely inseparable

extensions of exponent 1, the simplest type of such an extension. The Lie algebra of derivations

for a purely inseparable extension is nontrivial, unlike in the separable case. In addition,

since the fields of a purely inseparable extensions are necessarily of characteristic p > 0, these

Lie algebras have an additional pth power map making them restricted Lie algebras. Jacobson

proved that there is a 1−1 correspondence between restricted sub-Lie algebras and intermediate

1



2

subfields. In addition, the subring of endomorphisms generated by a restricted sub-Lie algebra

of derivations is equal to the ring of endomorphisms of E which are linear with respect to the

intermediate subfield.

If L/K is a purely inseparable extension of fields of characteristic p > 0, then the derivations

of L with respect to K are trivial on KLp. Thus for any extension of exponent greater than 1,

the derivations provide no information on the structure of the extension past the pth powers.

Sweedler (24) introduced the notion of a modular extension, one property of which is that the

extension decomposes as the tensor product of simple extensions. By looking at the filtration of

an extension using successive pth roots (i.e. K ⊆ Kp−1 ∩L ⊆ Kp−2 ∩L · · · ⊆ L), he constructed

an array whose entries were elements of the p-bases of these successive exponent 1 extensions,

and used this array to prove a theorem which provided conditions for when L/K is modular.

In Chapter 2, we use the correspondence between a p-basis of an extension and a basis of the

module of differentials to construct a basis-free array for the extension using the differentials,

and prove

Theorem 30. Let L and k be fields of characteristic p > 0 and suppose L/k is a finite purely

inseparable field extension of exponent e. Let F : L→ L be the Frobenius homomorphism. L/k

is modular if and only if

µ ◦
(
ιLr−1 ⊗Fr dFr

)
: Lr−1 ⊗Fr Ω1

Lr/Lr−1
→ Ω1

Lr−1/Lr−2
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is injective for all r such that 2 ≤ r ≤ e, where Lr = kp
−r ∩ L and Fr is the homomorphism

Lr → Lr−1 induced by F .

Various attempts have been made to find Galois correspondences which will help parametrize

intermediate subfields K ′ of a purely inseparable extension L/K such that L/K ′ is modular.

Noting that different subgroups of the automorphism scheme of L/K can have the same subfield

of constants, Chase (5) proves that a correspondence exists between intermediate fields K ⊆ L

and certain closed subgroups of the automorphism scheme of L/K, where the subgroups must

be closed under a certain endomorphism of the lattice of subgroups. The historical approach to

studying modular field extensions was to study Hasse-Schmidt derivations, or higher derivations,

on purely inseparable extensions. If L/K is modular, then K is the fixed field of a set of higher

derivations of L. It should be noted that a higher derivation of L/K is a K[t]/(tN )-valued point

of the automorphism scheme of L/K for some positive N .

Gerstenhaber (10) attempted to find correspondences between modular subfields of finite

purely inseparable extensions and higher derivations by studying the structure of the groups

of higher derivations. These groups of Hasse-Schmidt derivations of fixed rank form an in-

verse system by truncation, and Gerstenhaber studies the inverse limit of this system, which

he calls HDerKL, the group of higher derivations. His contribution to this study comes from

constructing higher derivations by applying a modified Artin-Hasse exponential to Witt vectors

of endomorphisms of L/K which commute. The Witt vectors whose Artin-Hasse exponentials

are higher derivations form a subgroup, and the Artin-Hasse exponential is a group homomor-

phism from such Witt vectors to the group of higher derivations. However, this homomorphism
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is injective, so no new information is gained by studying the Witt groups instead of the higher

derivations.

In Chapter 3 we correct a theorem of Gerstenhaber and Zaromp to prove there exists a

many-to-one correspondence between maximal Witt subgroups with the same fixed field and

the full group of higher derivations with that fixed field. The obstruction to making this theorem

into a Galois-type correspondence is that the maximal Witt subgroups are closed under actions

by K, not L. When L-action is allowed, elements of the subgroups will no longer commute,

which negates the usefulness of the Witt group structure. So, there is not a unique maximal

Witt group associated to a modular extension L/K which will generate the group of higher

derivations of L/K .

If L/K is a finite purely inseparable extension, then the coefficients of a higher derivation

on L/K are differential operators on L/K. In fact, every endomorphism of L/K is a differential

operator, so EndKL = DiffKL. By the Jacobson-Bourbaki Theorem, there is a 1 − 1 corre-

spondence between subrings of EndKL and intermediate subfields K ′ of L/K such that L/K ′

is modular. The Jacobson-Bourbaki Theorem gives no information on the structure of these

subrings, but in Chapter 4 we identify the subrings of EndKL = DiffKL which correspond to

modular extensions.

Theorem 49. Let L/K be a finite purely inseparable extension of exponent e and set Ai =

{D ∈ Diffp
i

KL : ∀j ≤ i, D(Lp
j
) ⊆ Lp

j} where Diffp
i

KL consists of the differential operators of

L/K of order ≤ pi. Then L/K is modular if and only if for all 0 < i ≤ e−1, the multiplication
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homomorphism L ⊗
Lpi
Ai → Diffp

i

KL is a surjection. That is, for each i, Ai spans Diffp
i

KL as

an L subspace.

These Ai are Lp
i
-modules, and the symbol of each differential operator of top order in each Ai

is a pth-power divided power in the symbol algebra of differential operators.

If {x1, . . . , xn} is a p-basis for a purely inseparable extension L/K of fields of characteristic

p > 0, then there is an ordering {xi1 , . . . , xin} of this set such that if ej is the exponent of xij over

K(xi1 , . . . , xij−1), then ej is the exponent of K(xi1 , . . . , xij ) over K(xi1 , . . . , xij−1) for every j

with 2 ≤ j ≤ n, and the ej are a non-increasing sequence. Furthermore, the ej are independent

of the p-basis chosen. Such an ordered p-basis is called a Pickert generating sequence. For any

i with 1 ≤ i < n, any differential operator D of order N in DiffKK(x1, . . . , xi) can be non-

uniquely extended to a differential operator D̃ in DiffKK(x1, . . . , xi+1). Any such extension

will be of order M where M ≥ N . A key step in the proof of the above theorem is the following

lemma:

Lemma 48. Let K be a field of characteristic p > 0 and suppose L/K is a finite purely

inseparable extension of K. Let {x1, x2, . . . , xn} be a Pickert generating sequence for L/K with

corresponding exponent sequence e1 ≥ e2 ≥ · · · ≥ en and let D be a differential operator of

order N in DiffKK(x1, . . . , xi) for i < n. Suppose D̃ ∈ DiffKK(x1, . . . , xi+1) is the unique

extension of D such that D̃
∣∣∣
K(x1,...,xi)

= D and D̃(xji+1) = 0 for all 0 ≤ j < pe
i+1

. Then D̃ is a

differential operator of order N .

Because K(x1, . . . , xi) and K(xi+1) are not necessarily linearly disjoint, the statement that

the order of D̃ is equal to the order of D is a nontrivial result. Gerstenhaber (9) calls D̃ the
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normal extension of D to K(x1 . . . , xi+1), but he made no attempt to compute the order of this

extension.

To each finite purely inseparable extension there corresponds a maximal modular extension:

Corollary 50. Let L/K be as in the theorem. Let D be the subalgebra of DiffKL generated by

the Ai. Then D is the largest subalgebra of DiffKL such that L/LD is a modular extension.

The filtration of the ring of differential operators of a finite purely inseparable extension

can reflect the structure of the extension beyond just the modular subfields. If L/K is a

finite purely inseparable field extension with K of characteristic p > 0, then the top degree

subspace Γ(L/K) of the ”symbol algebra” Gr•DiffKL is 1-dimensional over L where Gr•DiffKL

is graded by the order of the differential operators. Gerstenhaber calls a nonzero element of

this subspace a fundamental form, but because the choice of such an element is not canonical,

we define Γ(L/K) as the fundamental form of L/K. It follows that if K ⊆ K ′ ⊆ L, then

any nonzero element of Γ(L/K ′) divides any element of Γ(L/K) in the divided powers algebra

Γ∗(DerKL). In Chapter 5 we give an explicit construction of the fundamental form for finite

purely inseparable extensions, again making use of the lemma above.

Gerstenhaber tried to determine when a factor of Γ(L/K) corresponds to an intermediate

subfield of L/K. His attempt was not very successful, mainly due to the fact that the pth power

of every element of the symbol algebra is 0. However, in a simple case we are able in Theorem

55 to use the Poisson structure of the symbol algebra to determine criteria for when a divisor

corresponds to an intermediate subfield in Theorem 55. It is not clear if this method can be

extended to other cases.



CHAPTER 1

PURELY INSEPARABLE FIELD THEORY

1.1 Classical Galois Theory

Definition 1. Let P/k be fields and ρ ∈ P . ρ is algebraic over k if there exists a polynomial

f(x) ∈ k[x] such that f(ρ) = 0. P is algebraic over k or an algebraic extension of k

if every element of P is algebraic over k. P is finite over k if P is finitely-generated as a

k-algebra.

Algebraicity is a transitive property, so that if k ⊆ E ⊆ P are fields such that E is algebraic

over k and P is algebraic over E, then P is algebraic over k.

Definition 2. If P/k are fields and ρ ∈ P is algebraic over k, then ρ is separable if there

exists a polynomial f(x) ∈ k[x] such that f(ρ) = 0 and (f(x), f ′(x)) = 1, where f ′(x) is the

formal derivative of f(x) with respect to x. P is a separable extension of k if every element

of P is separable over k. If f(x) ∈ k[x] is a polynomial and P is the smallest field extension of

k containing distinct elements {ρ1, . . . , ρn} ⊂ P such that f(x) = (x− ρ1) · · · (x− ρn), then P

splits f(x).

Separability is again a transitive property for field extensions. Moreover, if the characteristic

of k is 0, then every algebraic element ρ over k is separable (14, I §9).

Definition 3. A finite field extension P/k is called normal or Galois if P is a separable

splitting field of k.

7
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Theorem 4 (Fundamental Theorem of Galois Theory). (14, I, §7) Let P/k be a finite Galois

extension, and let AutkP denote the group of k-algebra automorphisms of P . There is a one-

to-one inclusion-reversing correspondence between intermediate subfields of P/k and subgroups

of AutkP . That is, for a subgroup H ⊆ AutkP , the subset PH := {ρ ∈ P : ∀h ∈ H,h(ρ) = ρ}

is an intermediate field of P/k, and conversely, for k ⊆ E ⊆ P , the set of automorphisms of P

that are linear with respect to E is a subgroup of AutkP . Moreover, if E is Galois over k, then

the corresponding subgroup H of AutkP is normal, and AutkE ∼= (AutkP ) /H.

Classical Galois theory is the study of finite separable extensions and their relation to the

group of relative automorphisms of a field extension. If P/k is a field extension, there exists

a unique maximal intermediate subfield Σ such that that Σ/k is separable (14, IV, §1). Σ is

called the separable closure of k in P . Classical Galois theory provides information about Σ/k

when Σ/k is a finite extension, but no information about the extension P/Σ. To understand

the structure of P/Σ requires studying algebraic extensions which are not separable.

1.2 Purely Inseparable Extensions

Definition 5. Let P/k be a finite algebraic extension of fields. P/k is purely inseparable if

k is the separable closure of k in P . If P/k is an algebraic extension of fields and ρ ∈ P , then

ρ is purely inseparable over k if k(ρ)/k is purely inseparable.

Theorem 6. (14, I §9 Lemma 2) If k is a field of characteristic p > 0, then

1. Any algebraic element ρ over k is separable over k if and only if k(ρ) = k(ρp
i
) for all

positive integers i.
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2. If ρ is purely inseparable over k, then its monic minimal polynomial has the form xp
e −α

for some α ∈ k and e ≥ 0.

3. If ρ satisfies an equation of the form xp
e

= α for some α ∈ k and e ≥ 0, then ρ is purely

inseparable over k.

Proof. We omit the proof of the first statement and include proofs of the other statements to

demonstrate some computations in characteristic p > 0.

2. Let ρ be purely inseparable over k and g(x) ∈ k[x] its minimal polynomial. g(x) is

irreducible in k[x]. ρ is not separable, therefore (g(x), g′(x)) 6= 1. Hence g(x)|g′(x), and

g′(ρ) = 0. By the minimal degree of g(x), g′(x) = 0, hence g(x) = xpn+an−1x
p(n−1)+· · ·+

a1x
p + a0 = h(xp

e
) for some polynomial h(x) ∈ k[x] and maximal integer e. h′(x) 6= 0,

otherwise e would not be maximal. Hence ρp
e

is the root of a separable polynomial

h(x) ∈ k[x]. Thus ρp
e ∈ k(ρ) is separable over k which implies ρp

e ∈ k by assumption. So

there exists α ∈ k such that ρp
e

= α. That is, ρ is the root of the polynomial xp
e − α.

g(x) = h(xp
e
) = xp

e − α, so xp
e − α is the minimal polynomial of ρ over k.

3. Suppose ρp
e

= α ∈ k for some e ≥ 0 and σ ∈ k(ρ). Then σ = a0 + a1ρ + · · · + amρ
m

with ai ∈ k and m < pe. Taking the peth power, σp
e

= ap
e

0 + · · · + ap
e

m (ρp
e
)m = ap

e

0 +

ap
e

1 α+ · · ·+ ap
e

mα
m ∈ k. If σ is separable over k, then by Property 1, k(σ) = k(σp

e
) = k,

so σ ∈ k. Therefore ρ is purely inseparable over k by definition.
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Based on Theorem 6, a finite field extension K/k is purely inseparable if and only if every

element of K satisfies an equation of the form xp
e

= α for some α ∈ k. Other useful results

quickly follow from this theorem.

Corollary 7. (14, p.48)

1. Suppose k ⊆ E ⊆ K are fields such that K/E is a purely inseparable extension and E/k

is a purely inseparable extension. Then K/k is purely inseparable.

2. If K is a purely inseparable field extension of k, then K is a purely inseparable extension

of any intermediate subfield of K/k.

1.3 Basic Properties of Derivations

Note by Theorem 6 that if K/k is a purely inseparable field extension, then the minimal

polynomial of an element of K/k has a unique root. Hence any element of AutkK fixes every

element of K. Therefore AutkK = {ιK}, so studying automorphisms of purely inseparable

extensions provides no information on their lattices of intermediate subfields. Derivations,

however, are useful objects when studying purely inseparable extensions.

Definition 8. Let A be a commutative ring, B an A-algebra and M a B-module. A derivation

from B to M is an A-linear map d : B →M satisfying the Leibniz property:

∀b, b′ ∈ B, d(bb′) = bd(b′) + d(b′)b

As is well known, a derivation corresponds to a homomorphism to the dual numbers over

the codomain of the derivation:
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Lemma 9. (14, IV, §6) Let A be a ring, B an A-algebra, and C an A-subalgebra of B.

The derivations from C to B are in one-to-one correspondence with A-algebra homomorphisms

ψ : C → B ⊗A A[x]/(x2) = B[x]/(x2) satisfying the following property: If π is the projection

map from B[x]/(x2) to B sending a polynomial to the coefficient of its degree 0 term, then

π ◦ ψ = ιC .

Proof. Let D : C → B be an A-derivation. Define a map sD : C → B[x]/(x2) by s(c) =

c+D(c)x. This is clearly additive, and if c, c′ ∈ C, then

sD(cc′) = cc′ +D(cc′)x

= cc′ + cD(c′)x+D(cc)c′x

= (c+D(c)x)
(
c′ +D(c′)x

)
= sD(c)sD(c′),

so s is multiplicative as well. In addition, π ◦ s = idC . Conversely, if s : C → B[x]/(x2) is an

A-algebra homomorphism, letting π2 : B[x]/(x2) → B denote the projection to the coefficient

of the degree one term of B[x]/(x2), it is easy to check that π2 ◦ s is a derivation D : C → B,

and the homomorphism sD as constructed above is π2 ◦ s.

Recall the following basic notions from commutative algebra (15, §26): Let k be a ring and

A a commutative k-algebra. Define the multiplication homomorphism µ : A⊗k A→ A, which

sends x ⊗k y ∈ A ⊗k A to xy ∈ A. Let I := kerµ and Ω1
A/k

:= I/I2. Note that for all a ∈ A,

1 ⊗k a − a ⊗k 1 ∈ I. Let 1⊗k a− a⊗k 1 be the image of 1 ⊗k a − a ⊗k 1 in Ω1
A/k. Ω1

A/k has
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an A-module structure and can be generated as an A-module by {1⊗k x− x⊗k 1}x∈A. Ω1
A/k

is called the module of differentials of A/k. Further, there exists a k-linear homomorphism

d : A → Ω1
A/k such that, for all a ∈ A, d(a) = 1⊗k a− a⊗k 1. We adopt standard notation

and denote d(a) by da.

d is actually a k-linear derivation from A to Ω1
A/k, and the pair (Ω1

A/k, d) satisfies the

following universal property: If M is an A-module, then for any k-linear derivation E : A→M

there exists a unique A-linear homomorphism Ẽ : Ω1
A/k →M such that E = Ẽ◦d. In particular,

when M = A, then there exists bijection between DerkA, the set of k-linear derivations of A,

and HomA(Ω1
A/k, A).

Suppose k and k′ are fields with A a commutative k-algebra and A′ a commutative k′-

algebra. Furthermore, assume there exist ring homomorphisms from A to A′ and from k to k′

such that the diagram

A
φ−−−−→ A′x x

k −−−−→ k′

commutes. Then there is a natural A-module homomorphism dφ : Ω1
A/k → Ω1

A′/k′ such that for

any a ∈ A, dφ(da) = d(φ(a)).

Just as automorphisms of algebraic extensions must permute the roots of a polynomial,

derivations of a field have limitations on how they can extend to algebraic extensions. If k is a

field, B and C are k-algebras, and E : C → B is a k-module homomorphism, then for any

f(x1, x2, . . . , xn) =
∑

{i1,i2,...,in}⊂Nn
αi1,...,inx

i1
1 x

i2
2 · · ·x

in
n ∈ C[x1, x2, . . . , xn],
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define fE ∈ B[x] as ∑
{i1,i2,...,in}⊂Nn

E(αi1,...,in)xi11 x
i2
2 · · ·x

in
n .

Theorem 10. (14, IV, §6, Theorem 14) Let L/k be an extension of fields and let A be a

k-subalgebra of L. Suppose

ξ1, . . . , ξm, η1, . . . , ηm ∈ L

and D : A→ L is a k-derivation. Let I be the ideal of A[x1, . . . , xm] consisting of all polynomials

which vanish at the point (ξ1, . . . , ξm) in the affine m-space over L. If X is a subset of I which

generates the ideal, then D can be extended to a derivation D′ : A(ξ1, . . . , ξm) → L satisfying

D′(ξi) = ηi if and only if for all g ∈ X,

gD(ξ1, . . . , ξm) +
m∑
i=1

∂g

∂xi
(ξ1 . . . , ξm)ηi = 0.

Proof. By Theorem 9, D can be extended so that D(ξi) = ηi for all i if and only if the

corresponding k-algebra homomorphism s can be extended to a k-algebra homomorphism

s′ : A(ξ1, . . . , ξm) → L[t]/(t2) such that s′(ξi) = ξi + ηit. So, it suffices to determine when

gs
′
(ξ1 + η1t, . . . , ξm + ηmt) = 0. If M(x1, . . . , xm) = axk11 · · ·xkmm ∈ A[x1, . . . , xm] is a mono-

mial, evaluating at the point (ξ1, . . . , ξm) in affine m-space over L and then applying s′ gives

(a+D(a)t) (ξ1 + η1t)
k1 · · · (ξm + ηmt)

km . Since t2 = 0, this expression simplifies to

s′ (M(ξ1, . . . , ξm)) = aξk11 · · · ξ
km
m +

(
D(a)ξk11 · · · ξ

km
m +

m∑
i=1

kiaξ
k1
1 · · · ξ

ki−1
i · · · ξkmm ηi

)
t. (1.1)
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Hence

s′(M(ξ1, . . . , ξm)) =M(ξ1, . . . , ξm) + t

(
MD(ξ1, . . . , ξm) +

m∑
i=1

∂M
∂xi

(ξ1, . . . , ξm)ηi

)
. (1.2)

Recall that g(ξ1, . . . , ξm) = 0. Since g is a sum of monomials, gs
′
(ξ1 + η1t, . . . , ξm + ηmt) = 0 if

and only if Equation 1.2 equals 0 when M is replaced by g.

Given a field extension K/k, Theorem 10 establishes the conditions for which a derivation

from k to a K-module L can be extended to a derivation from K to L. In particular, we present

three examples of applications of the theorem.

1.3.1 Example 1

Suppose K/k is a purely transcendental field extension of finite transcendence degree. Then

there exist then ξ1, . . . , ξn ∈ K such that K = k(ξ1, . . . , ξn). The only element of k[x1, . . . , xn]

which vanishes at the point (ξ1, . . . , ξn) in the affine n-space over K is 0. Hence the ideal of

vanishing as described in Theorem 10 is the 0 ideal. Thus for any field K and any element

η1, . . . , ηn ∈ K, any derivation D : k → K, extends to a derivation D′ : k(ξ1, . . . , ξn)→ K such

that D(ξj) = ηj .

1.3.2 Example 2

Let D : K → L be a derivation with K and L subfields of a field F , and suppose ξ ∈ L is

separable over K. For any η ∈ L, D extends to a derivation D′ : K(ξ)→ L such that D′(ξ) = η

if and only if fD(ξ) + f ′(ξ)η = 0 where f is the minimal polynomial of ξ over K. Since ξ is
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separable, f ′(ξ) 6= 0, so η = −fD(ξ) ·
(
f ′(ξ)

)−1
. Thus there exists a unique extension of a

derivation of a field to a derivation of a finite separable extension of that field.

1.3.3 Example 3

Using the notation above, if ξ ∈ L is purely inseparable over K, by Theorem 6, f ′(ξ) = 0

where f is the minimal polynomial of ξ over K. Hence for any η ∈ L, D can be extended to

L so that D(ξ) = η if and only if fD(ξ) = 0. By Theorem 6 again, f(x) = xp
e − α for some

α ∈ K, hence D can be extended to L if and only if D(α) = 0.

Note that of these three examples, purely transcendental field extensions and finite separable

field extensions are both examples of formally smooth extensions as defined in EGA (11, §17.1.1),

while finite purely inseparable extensions are not. If L/K is a finite separable extension and

D : K → K is the 0-derivation (i.e. D(K) = 0), then the comments above imply that D

extends uniquely to the 0 derivation from L to K. An even stronger statement can be made:

Corollary 11. (14, IV, §7, p.177) Let L = K(ξ1, . . . , ξm) be an extension of fields. Then 0 is

the only K-linear derivation from L to L if and only if L is a separable algebraic extension of

K.

Proof. One direction is already proven by the preceding paragraph. So suppose that L is not

separable algebraic over K. Let {ξ1, . . . , ξr} be a transcendency basis for L/K (with r possibly

0). There are two cases to consider. First, suppose L is not separable over K(ξ1, . . . , ξr) then

L is purely inseparable over Σ, where Σ is the separable closure of K(ξ1, . . . , ξr) in L. Let E be

the maximal proper subfield of L containing Σ. For any σ ∈ L \ E, L = E(σ) by maximality.

L must be purely inseparable over E by Corollary 7, hence σ has minimal polynomial over E
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xp
k −β for some β ∈ E. By minimality, xp

k−1
/∈ E. Define ρ = σp

k−1
, so that E(ρ) ⊃ E. Hence

E(ρ) = L and xp−β is the minimal polynomial of ρ over E. By Example 1.3.3, the 0 derivation

from E to L can be extended arbitrarily to a derivation from L = E(ρ) to itself. In particular

the extension of this derivation need not be 0.

On the other hand, suppose that L is separable over K(ξ1, . . . , ξr). The ξi are algebraically

independent over K, hence the 0 derivation from K to K(ξ1, . . . , ξn) can be arbitrarily extended

to a nonzero derivation from K(ξ1, . . . , ξr) to itself, which then extends uniquely to a non-zero

derivation from L to itself by the discussion preceding the corollary.

Thus, just as classical Galois Theory can distinguish between separable extensions but not

purely inseparable extensions, derivations cannot distinguish between separable extensions. In

the following section the derivations are shown to distinguish between certain intermediate

subfields of purely inseparable extensions.

1.4 The Jacobson-Bourbaki Theorem

Suppose k is a field and A and B are commutative k-algebras. Write Homk(A, B) for the

k-vector space of k-linear homomorphisms from A to B. We make Homk(A, B) into a left

B-module by, for any b ∈ B and φ ∈ Homk(A, B), then for all a ∈ A, (b · φ)(a) = bφ(a).

Lemma 12. Let E/F and P/F be field extensions and let HomF (E, P ) be the P -vector space of

F -linear homomorphisms from E to P . Then dimF E <∞ if and only if dimP HomF (E, P ) <

∞. In addition, if dimF E <∞, then dimF E = dimP HomF (E, P ).

Proof. See (14, I, §1, Theorem 1).
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If A is an algebra over a ring k, then for all a ∈ A, let λa ∈ EndkA be the endomorphism

such that for all f ∈ A, λa(f) = af . Thus there is a ring homomorphism λ : A→ EndkA such

that λ(a) = λa for all a ∈ A. When convenient, we denote λa by a.

Theorem 13 (Jacobson-Bourbaki Theorem). (14, p.22 Theorem 2) Let P be a field and U a

subset of the ring of additive endomorphisms of P , End(P ). Suppose End(P ) has the P -vector

space structure as defined in above and suppose U satisfies the following three properties:

1. U is a subring with unity of End(P ).

2. U is a left P -subspace of End(P ) (i.e., λ(P ) ⊂ U).

3. dimP U = n <∞.

Define k = {a ∈ P : ∀A ∈ U , λaA = Aλa}. Then the following are true:

A) k is a subfield of P

B) dimk P = n

C) U = Endk(P )

Proof. A) This is a straightforward computation. The proof is omitted.

B) By property 3, U is n-dimensional. For every p ∈ P , there exists a homomorphism η from

End(P ) to P such that, for any f ∈ End(P ), η(p)(f) = f(p) ∈ P . Set ηp as the image of E

by η. Let B∨ be the P -subspace of U∨ := HomP (U , P ) spanned by ηρ|U for every ρ ∈ P .

The annihilator of B∨ is 0, hence B∨ = U∨ since U is finite-dimensional. There there exist

a subset {ρ1, . . . , ρn} ⊂ P such that ηρ1 , . . . , ηρn is a P -basis for U∨. Let E1, . . . , En be the
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dual basis in U∨∨ = HomP (U∨, P ) ∼= U . Thus, Ei(ρj) = 1 when i = j and 0 otherwise.

Since the Ei generate U , ρ ∈ k if and only if λρEi = Eiλρ for all i. Now, for any A ∈ U , there

exist unique {σ1, . . . , σn} ⊂ P with A =

n∑
i=1

λσiEi. Hence A(ρj) =

(
n∑
i=1

λσiEi

)
(ρj) = σj ,

so

A =

n∑
i−1

A(ρi) · Ei =

n∑
i=1

λA(ρi)Ei (1.3)

Claim 14. Each Ei sends P into k.

Proof. Let σ ∈ P . By properties 1 and 2, EmλσEj ∈ U for 1 ≤ j, m ≤ n. Using Equa-

tion 1.3,

EmλσEj =
n∑
i=1

λEmλσEj(ρi)Ei

= λEmλσ(1)Ej

= λEm(σ)Ej

Equivalently, for all ρ ∈ P , Em(σ · Ej(ρ)) = Em(σ) · Ej(ρ). Since σ and Ej(ρ) commute,

Em (Ej(ρ) · σ) = Em(σ) · Ej(ρ) = Ej(ρ)Em(σ). σ is arbitrary, hence EmλEj(ρ) = λEj(ρ)Em

which implies Ej(ρ) ∈ k.
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To finish proving B, we show that {ρ1, . . . , ρn} is a basis for P/k. Let σ ∈ P and define

σ′ = σ −
n∑
i=1

ρiEi(σ). By the previous claim, Ej(σ) ∈ k, so for 1 ≤ m ≤ n,

Em(σ′) = Em(σ)− Em

(
n∑
i=1

λEj(σ)(ρi)

)

= Em(σ)−
n∑
i=1

λEi(σ)Em(ρi)

= Em(σ)− Em(σ) by Equation 1.3

= 0

Since ιL ∈ U and ιL =

n∑
i=1

λiEi for some λi ∈ P , the equation above implies σ′ = 0.

Hence σ =

n∑
i=1

ρiEi(σ) =

n∑
i=1

Ei(σ)ρi, so σ is a k-linear combination of the ρi. Finally, if

{α1 . . . , αn} ⊂ k with

n∑
i=1

αiρi = 0, then αj = Ej

(
n∑
i=1

αiρi

)
= Ej(0) = 0. Hence the ρi

are linearly independent over k.

C) Every A ∈ U is k-linear, so U ⊆ Endk(P ). By B, dimk P = n, so Lemma 12 shows that

dimP Endk(P ) = dimk P = n. n = dimP U as well, so U = Endk(P ).

Let L/K be a finite field extension. By the Jacobson-Bourbaki Theorem, there exists a

one-to-one correspondence between intermediate subfields of L/K and finite-dimensional L-

subalgebras of EndKL. If L/K is a finite Galois extension with group of automorphisms G,

then the homomorphism from the twisted group ring L[G] to EndKL such that

n∑
i=0

ligi is sent
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to
n∑
i=0

λligi for all li ∈ L and gi ∈ G is a K-algebra isomorphism. Additionally, for any subgroup

H ⊂ G, L[H] → EndK′L is a K ′-algebra isomorphism where K ′ is the fixed field of H. Thus,

the Jacobson-Bourbaki Theorem can recover the lattice of subgroups for the Galois group of a

finite Galois extension.

1.5 Lie Algebras of Derivations

Definition 15. Let K be a field of characteristic p > 0 and suppose L/K is a finite purely

inseparable extension. A p-basis for L/K is a minimal generating set for L as a K-algebra. A

set A ⊂ L is p-independent over K if A is a subset of a p-basis of L/K.

It is not hard to show that the cardinality of any p-basis of a finite purely inseparable

extension is an invariant of the extension (14, p.180).

If L/K is purely inseparable field extension, then it was shown in Theorem 6 that for any

α ∈ L, α has minimal polynomial xp
e − a where a ∈ K. e is called the exponent of α over

K and denoted exp[α : K].

Definition 16. If L/K is a finite purely inseparable field extension, the integer max
α∈L
{exp[α :

K]} is the exponent of L over K, denoted exp[L : K].

Recall the familiar notion of a Lie algebra in (25, §7.1) for the following definition.

Definition 17. Let k be a field of characteristic p > 0 and A a Lie algebra over k. A is

called a restricted p-Lie algebra or just a restricted Lie algebra if there exists a set map

(−)[p] : A→ A such that

1. For all x, y ∈ A,
[
x[p], y

]
= [x [x [· · · [x, y]] · · · ]], the pth iterated commutator.
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2. For all x ∈ A and α ∈ k, (αx)[p] = αpx[p].

3. For all x, y ∈ A,

(x+ y)[p] = x[p] + y[p] +

p−1∑
i=1

si(x, y)

where i · si(x, y) is the coefficient of λi−1 in the (p− 1)-fold commutator

[λx+ y, [· · · [λx+ y, x]] · · · ] .

Proposition 18. If k is a field of characteristic p > 0 and A is a k-algebra, then the set of

derivations from A to A which are linear with respect to k form a restricted p-Lie algebra.

Proof. If D, E are derivations from A to A, define D[p] = Dp and [D, E] = D ◦ E − E ◦ D.

The proof that Dp and [D, E] are derivations as well as the proof that these operators define

a restricted p-Lie algebra structure on the derivations of A/k can be found in Jacobson (14,

p.174).

Denote the restricted Lie algebra of derivations from Proposition 18 by DerkA. Note that

this restricted Lie algebra is also an A-submodule of the module of endomorphisms EndkA. If

E is a k-algebra, then the set of derivations from A to E which are linear with respect to k will

be denoted Derk(A, E). Derk(A, E) is an E-module, where for any D ∈ Derk(A, E), a ∈ A,

and e ∈ E, (eD)(a) = e ·D(a).

Let L/K be an extension of fields and D ∈ DerKL. Then the subset LD = {a ∈ L : λa◦D =

D ◦λa} is a subfield of L: Noting that D(1) = 0, if a ∈ LD, then aD

(
1

a

)
+

1

a
D(a) = D(1) = 0.
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Hence D

(
1

a

)
= 0 and

1

a
∈ LD. For any set of derivations E ⊂ DerKL, the elements of L

which commute with every derivation in E, denoted LE , is
⋂
D∈E

LD, which is also a subfield of

L. LE is called the subfield of constants of E.

Suppose E/k and P/k are field extensions of the field k in Proposition 18. For any set of

derivations S from E/k to P/k, the subfield of constants of S will always contain k(Ep). Thus if

L/K is a finite purely inseparable field extension, then DerKL = DerKLpL and we may assume

that E is purely inseparable of exponent ≤ 1 over the subfield of constants of Derk(E, P ).

Theorem 19. Let P be a field of characteristic p > 0, and k ⊆ E ⊆ P a filtration of P

such that P/k and E/k are finite purely inseparable extensions. If B is a p-basis of E/k and

δ : B → P is an arbitrary set map, then there exists a unique derivation D : E/k → P/k such

that for all ε ∈ B, D(ε) = δ(ε).

Proof. See (14, IV, §7, Theorem 17).

Corollary 20. (14, IV, §7, Corollary 1) dimP Derk(E, P ) <∞ if and only if E/k has a finite

p-basis B. Additionally, if B is a finite p-basis of E/k, then |B| = dimP Derk(E, P ).

Proof. Let B be a p-basis for E/k and define ∆(B, P ) to be the P -vector space of set maps

from B to P . By Theorem 19, each element of ∆(B, P ) lifts to an element Derk(E, P ). Hence

define a map Derk(E, P ) → ∆(B, P ) by sending D ∈ Derk(E, P ) to D|B. This map is a

P -vector space isomorphism by the previous theorem, so dimP Derk(E, P ) = dimP ∆(B, P ).

If |B| is infinite, then viewing ∆(B, P ) as the dual space to an infinite-dimensional P -vector

space with basis B, dimP ∆(B, P ) is infinite. If B is finite, then B = {β1 . . . , βn} for some
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βi ∈ E, so the maps {δi}1≤i≤n form a P -basis for ∆(B, P ) where δi(βj) = 1 if i = j and 0

otherwise.

Theorem 21 (Jacobson Galois Theory). (14, IV, §8, Theorem 19) Let P be a field of charac-

teristic p > 0, and let D be a restricted p-Lie algebra of derivations of P with dimP D = m <∞.

The following properties hold:

1. If k is the subfield of constants of D, then P is purely inseparable over k, exp[P : k] ≤ 1,

and dimk P = pm.

2. If D ∈ DerkP , then D ∈ D

3. If {D1, . . . , Dm} is a P -basis for D, then {Dk1
1 · · ·D

km
m }0≤ki<p is a P -basis for EndkP

Proof. Define B :=
{
Dk1

1 · · ·D
km
m

}
0≤ki<p

. Let U be the P -vector subspace of End(P ) generated

by elements of B. Then dimP U < ∞, and in fact dimP U ≤ pm. We seek to show that

U is a ring. Since D0
1 · · ·D0

m = idP , 1 ∈ U , so it suffices to show that U is closed under

composition. Let ρ ∈ P and j ∈ N such that 1 ≤ j ≤ m. Then Dj

(
λρD

k1
1 · · ·D

km
m

)
=

Dj(ρ) ·Dk1
1 · · ·D

km
m + λρDjD

k1
1 · · ·D

km
m by Leibniz’s Rule. The first term in the sum is in U , so

it suffices to prove the following claim.

Claim 22. Call N = k1 + k2 + · · · + km the order of Dk1
1 · · ·Dkm

m . Then DjD
k1
1 · · ·Dkm

m is a

P -linear combination of endomorphisms Di1
1 · · ·Dim

m of order ≤ N + 1.

Proof. When N = 0, then Dj1 = Dj , an order 1 element of U . Assume every endomorphism

DjD
l1
1 · · ·Dlm

m is a P -linear combination of monomials Di1
1 · · ·Dim

m of order ≤ N whenever

l1 + · · ·+ lm < N . Proceed by induction:
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j=1: For k1 < p− 1, DjD
k1
1 · · ·Dkm

m = Dk1+1
1 · · ·Dkm

m , a monomial of order N + 1. For k1 =

p − 1, D1D
k1
1 · · ·Dkm

m = Dp
1 · · ·Dkm

m . Since D is a restricted Lie algebra, it is closed under pth

powers, henceDp
1 =

m∑
i=1

µiDi where µi ∈ P for each i. HenceDp
1 · · ·D

km
m =

m∑
i=1

µiDiD
k2
2 · · ·D

km
m .

Each term of this sum has order N − k1 + 1 = N − (p − 1) + 1 ≤ N < N + 1, so Claim 22 is

satisfied when j = 1.

We make the following claim: For any j ≤ l, DjD
k1
1 · · ·Dkm

m is a P -linear combination of

elements of B of order ≤ N + 1 when k1 + · · ·+km = N . The l = 1 case is proven above, which

proves the base case for this claim. Assume this statement is true for all l ≤ N and proceed

by induction. To prove this claim, first note that we are working under the assumption that

N > 0, so there exists an i such that ki > 0. Let j = N + 1 and let r be the minimal integer

with kr > 0. Then DjD
k1
1 · · ·Dkm

m = DjD
kr
r · · ·Dkm

m . The proof breaks down into multiple

cases:

1. j < r: Then DjD
kr
r · · ·Dkm

m is an element of B.

2. j=r: This case was proven in the j = 1 discussion above.

3. j > r: D is closed under commutators, so [Dj , Dr] = DjDr − DrDj =

m∑
i=1

νi,r,jDi

with νi,r,j ∈ P . Hence, DjD
kr
r · · ·Dkm

m = DjDrD
kr−1
r · · ·Dkm

m = DrDjD
kr−1
r · · ·Dkm

m +
m∑
i=1

νi,r,jDiD
kr−1
r · · ·Dkm

m . Every term in the last sum is of order N , so by the first in-

ductive hypothesis this sum is a P -linear combination of elements of B of order ≤ N .

By the second inductive hypothesis, DrDjD
kr−1
r · · ·Dkm

m can also be written as linear

combinations of elements of B of order ≤ N + 1. This finishes the proof of Claim 22.



25

Hence U is a P -subalgebra of End(P ). Applying the Jacobson-Bourbaki Theorem, if k ⊂ P

is the subfield of constants of U , then dimk P = dimP U ≤ pm and U = Endk(P ). Since the Di

generate U , for any r ∈ P and A ∈ U , λrA = Aλr if and only if for all 1 ≤ i ≤ m, λrDi = Diλr.

By Leibniz’s rule, Diλr = αDi(r) + λrDi, hence λrDi = Diλr if and only if λDi(r) = 0, or

Di(r) = 0. Thus k is the subfield of constants of D and by the comments after Proposition 18,

P is purely inseparable of exponent ≤ 1 over k. So dimk P = pm
′

where m′ is the cardinality

of a p-basis of P/k. Hence m′ ≤ m and dimP Derk(P ) = m′ by Corollary 20.

D ⊂ Derk(P ), so m ≤ m′. Hence m′ = m and these vector spaces are equal, proving 1 and

2 of the theorem. Lastly, since U = Endk(P ) and dimP U = pm, the fact that the elements of

B generate U as a P -vector space and |B| = pm imply that the elements of B are P -linearly

independent, proving 3.

The previous theorem shows that if P/k is a finite purely inseparable extension of fields of

exponent 1, then there is a 1 − 1 correspondence between intermediate subfields of P/k and

restricted Lie subalgebras of DerkP . Gerstenhaber (7) simplified Theorem 21 by proving that

if D is a finite-dimensional P -vector subspace of endomorphisms of P which is closed under pth

powers, then it is also closed under the Lie bracket.



CHAPTER 2

SWEEDLER’S MODULAR FIELD THEORY

2.1 The Automorphism Scheme of a Field Extension

Suppose K/k is a field extension. The functor AutK/k from the category of k-algebras to

the category of groups, sends a k-algebra T to the group of automorphisms AutT (K ⊗k T ).

When K/k is a finite field extension, then this functor is representable (2, Proposition 1) by a

k-algebra A, and Spec A is called the automorphism scheme of K/k. Note that Spec A is

a group scheme, since it represents a group-valued functor.

When K/k is a Galois extension, then the automorphism scheme is discrete and isomorphic

to Spec K ×k · · · ×k Spec K where the number of copies of Spec K is equal to the cardinality

of the Galois group of K/k. On the other hand, if K/k is a finite purely inseparable extension,

then the automorphism scheme will be much larger. For example, suppose K = k(α) where

exp[α : k] = 1. Then the automorphism scheme of K/k is Spec k[t1, . . . , tp] (4, Corollary 2.7).

It follows that the automorphism scheme of any finite purely inseparable field extension has

finite dimension. Hasse-Schmidt derivations on finite purely inseparable extensions, which we

describe next, will be shown to be points of the automorphism scheme of the field extension.

2.2 Higher Derivations, Definition and Properties

Definition 23. (12) Let k be a ring and A a k-subalgebra of a k-algebra B. A Hasse-Schmidt

derivation of rank m+ 1 from A to B or higher derivation of rank m+ 1 is a sequence

26
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of additive k-linear homomorphisms in Homk(A, B),
(
ιA = D

(m+1)
0 , D

(m+1)
1 , . . . D

(m+1)
m

)
, sat-

isfying the property that D
(m+1)
i (aa′) =

∑i
j=0D

(m+1)
j (a)D

(m+1)
i−j (a′) for all a, a′ ∈ A. A Hasse-

Schmidt derivation from A to B of infinite rank is an infinite sequence of endomorphisms in

Endk(A, B), (ιA = E0, E1, . . .) such that Ei(aa
′) =

∑i
j=0Ej(a)Ei−j(a

′) for all a, a′ ∈ A.

Suppose D(m+1) = (ιA, D1, . . . , Dm) is a higher derivation of rank m + 1 from A to B.

Define a map from A to B[t]/
(
tm+1

)
by sending a ∈ A to a+D1(a)t+D2(a)t2+ · · ·+Dm(a)tm.

Note that for a, a′ ∈ A,

(a+D1(a)t+ · · ·+Dm(a)tm)
(
a′ +D1(a

′)t+ · · ·+Dm(a′)tm
)

=
m∑
i=0

n∑
j=0

(
Dj(a)Di−j(a

′)
)
ti

=

m∑
i=0

Di(aa
′)ti

Therefore, a higher derivation of rank m+ 1 is equivalent to a k-linear algebra homomorphism

from A to B[t]/(tm+1) which is the identity modulo (t). Likewise, a higher derivation of infi-

nite rank from A to B is equivalent to a k-algebra homomorphism from A to B[[t]] which is

the identity modulo (t). These k-linear algebra homomorphisms will be called Hasse-Schmidt

homomorphisms or higher derivation homomorphisms.

The minimum i 6= 0 such that Di 6= 0, if it exists, is called the order of D(m+1). If not

such i exists, then D(m+1) is called trivial. Note that D
(m+1)
1 is a derivation from A to B, and

derivations from A to B which are linear with respect to k are in 1 − 1 correspondence with

Hasse-Schmidt derivations from A to B of rank 2.
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Let K ⊆ L be fields and D(m) : K → L a Hasse-Schmidt derivation of rank m ≤ ∞. It

is easy to show that the subset KD(m)
= {α ∈ K : D(m)(α) = α} is a subfield of K: D(m)

can be viewed as a ring homomorphism from K to L[t]/(tm) (resp. L[[t]]). If a, b ∈ KD(m)
,

then clearly a + b and ab are in KD(m)
. Suppose u ∈ KD(m)

. 1 = D(m)(1) = D(m)(uu−1) =

D(m)(u)D(m)(u−1) = uD(m)(u−1). Hence u−1 = D(m)(u−1), so u−1 ∈ KD(m)
. KD(m)

is called

the subfield of constants of D(m). If D is a set of higher derivations from K to L, then the

intersection of the subfield of constants of every higher derivation in D is called the subfield

of constants of D.

Hasse-Schmidt derivations can behave very differently depending on the characteristic of

the fields or algebras on which they act. Depending on the algebras, Hasse-Schmidt derivations

of certain ranks may not even exist. Some of these differences can be illustrated through two

examples.

2.2.1 Example 1

Let B = k[x] where k is a field and suppose x is transcendental over k. The homomorphism

D : B → B[[t]] which sends f(x) ∈ B to f(x + t) ∈ B[[t]] is a higher derivation homomor-

phism of infinite rank. This higher derivation is just the classical Taylor series expansion (6,

p.3). If the characteristic of k is 0, then D can be viewed as the sequence of endomorphisms(
1,

d

dx
,

1

2!

(
d

dx

)2

,
1

3!

(
d

dx

)3

, . . .

)
.

2.2.2 Example 2

Let k be a field of characteristic p > 0 and K = k(ρ) a purely inseparable extension of

exponent e. Then there exists α ∈ k such that ρp
e

= α and K is isomorphic as a k-algebra
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to k[x]/(xp
e − α). Let D : K → K[t]/(tp

e
) be the additive map such that D(ρi) = (ρ+ t)i

for all i and D(a) = a for all a ∈ k. D is well-defined as a k-algebra homomorphism (and is

therefore a Hasse-Schmidt homomorphism) provided that D(ρp
e − α) = 0. This equation is

satisfied because

D(ρp
e − α) = (ρ+ t)p

e

− α = ρp
e

+ tp
e − α = α− α = 0.

Furthermore, let V : K[t]/(tp
e
) → K[t]/(tp

e+1
) be the K-algebra homomorphism given by

V (t) = tp. Then the composition V ◦D : K → K[t]/(tp
e+1

) is a higher derivation homomorphism

of rank pe+1. Composing D with a finite number of copies of V will result in higher derivations

whose rank is larger than the rank ofD. However, for finite purely inseparable extensions, higher

derivations must be of finite rank, distinguishing them from higher derivations of transcendental

extensions.

Theorem 24. (14, p.194) Let L/k be an algebraic field extension, and K an intermediate

subfield. Suppose D(m+1) is a Hasse-Schmidt derivation of rank m + 1 and order q from K/k

to L/k and suppose Γ is the subfield of constants of D(m+1). If e is the smallest integer such

that pe > m
q , then K is purely inseparable of exponent e over Γ.

Proof. DenoteD(m+1) by the sequence of k-linear homomorphisms (idK , 0, . . . , 0, Dq, Dq+1, . . . Dm).

For any g ∈ K,
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D(m+1)(gp
e
) = (g +Dq(g)tq + · · ·Dm(g)tm)p

e

= gp
e

+Dq(g)tp
eq + · · ·+Dm(g)tp

em.

As peq > m, D(m+1)(gp
e
) = gp

e
. Hence gp

e ∈ Γ and K is of exponent at most e over Γ. Further,

suppose f 6= Γ and Dq(f) 6= 0. Then D(m+1)(f) 6= f . Also, by minimality of e, Dq(f)p
e−1 6= 0.

Hence D(m+1)(fp
e−1

) 6= fp
e−1

, so fp
e−1

/∈ Γ. and K is of exponent at least e over Γ.

Thus for any finite rank Hasse-Schmidt derivation D from a field L to itself, L is purely

inseparable of finite exponent over the subfield of constants of D. It follows that if D(m+1)

is a set of Hasse-Schmidt derivations of rank m + 1 < ∞ from L to itself, then L is again

purely inseparable over the intersection of the subfields of constants of the higher derivations

in D(m+1).

Let (idL, E1, . . . , Em) = E : L → L[t]/(tm+1) be a higher derivation of order m + 1. E

extends to a k[t]/(tm+1)-linear ring endomorphism E of L[t]/(tm+1) where E

(
m∑
i=1

lit
i

)
=

m∑
i=1

E(li)t
i for any li ∈ L. Since E(li)(mod t) = li, the constant term of E

(
m∑
i=1

lit
i

)
is l0,

hence E is injective. Next, let ξ = l0 + l1t+ · · ·+ lmt
m. Then ξ−E(l0) = l′1t+ l′2t

2 + · · ·+ l′mt
m

for some l′i ∈ L. Further, ξ − E(l0) − E(l′1t) = l′′2t
2 + l′′3t

3 + · · · + l′′mt
m, and by iteration

ξ − E(l0) − E(l′1t) − · · · − E(l(n)n tn) = l
(n+1)
n+1 tn+1 + l

(n+1)
n+2 tn+2 + · · · + l(n+1)

m tm. Eventually,

ξ − E(l0 + l′1t+ · · · ) = 0, so E is surjective.

Hence any higher derivations from L to itself of order m + 1 which are linear with respect

to k extend to a automorphisms of L[t]/(tm+1). On the other hand, any automorphism E
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of L[t]/(tm) satisfying E(a) = a(mod t) corresponds to a higher derivation homomorphism

by restriction of E to L. In particular, if E(a) = a(mod t), then E
−1

(a)(mod t) = a, so the

restriction of E
−1

to L is a higher derivation homomorphism. Thus we have proven the following

theorem:

Theorem 25. Let L/k be a finite purely inseparable field extension. The higher derivations of

L of order m+1 which are linear with respect to k are in 1−1 correspondence with the subgroup

of automorphisms of Autk[t]/(tm)

(
L[t]/(tm+1)

)
which are the identity modulo (t).

The subgroup described in the theorem above will be denoted HDerm+1
k L and will be

called the group of higher derivations of L/k of order m+ 1. We remark that any higher

derivation of order m+ 1 from L to itself is equivalent to a k[t]/(tm+1)-linear automorphism of

L[t]/(tm+1). Therefore, by the discussion in Section 2.1, HDerm+1
k L = AutL/k

(
k[t]/(tm+1)

)
.

Based on the above theorem, if A is a ring and B is an A-algebra, any higher deriva-

tion of B of rank m + 1 which is linear with respect to A can be viewed as an element of

EndA[t]/(tm)B[t]/
(
tm+1

)
, and the group operation in HDerm+1

A B is the same as multiplication

in this ring.

Proposition 26. Let A be a commutative ring and B a commutative A-algebra. Suppose

D = 1 +D1t+D2t
2 + · · ·Dmt

m is a Hasse-Schmidt homomorphism in HDerm+1
A B. If Di is the

first non-zero endomorphism of B of this higher derivation, then Di is an A-linear derivation

of B.
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Proof. Let b1, b2 ∈ B. By definition, Di(b1b2) =

i∑
j=0

Dj(b1)Di−j(b2). Since Dj = 0 for 0 < j <

i,

Di(b1b2) = D0(b1)Di(b2) +Di(b1)D0(b2) = b1Di(b2) +Di(b1)b2.

Di is A-linear and satisfies Leibnitz’s rule, hence it is a derivation of B/A.

Proposition 27. Let D = (1, D1, . . . , Dm) and E = (1, E1, . . . , Em) be elements of HDermAB

such that Di = Ei for 1 ≤ i < m. Then Dm − Em is a derivation of B over A.

Proof. Let b1, b2 ∈ B. Then

(Dm − Em) (b1b2) =
m∑
i=0

Di(b1)Dm−i(b2)− Ei(b1)Em−i(b2).

All middle terms will vanish to leave b1Dm(b2)− b1Em(b2) +Dm(b1)b2−Em(b1)b2 which proves

Dm − Em obeys Leibniz’s rule.

Corollary 28. Let D be a higher derivation of rank m from A to B. Then extensions of D to

higher derivations of rank m+ 1 from A to B form a torsor under the set of derivations.

It is not true that any higher derivation of from A to B of rank m lifts to a higher derivation

of rank m + 1. If A is 0-smooth (16, p.193), then every higher derivation lifts. However, not

every purely inseparable field extension is 0-smooth, so we are not guaranteed a lifting to higher

order higher derivations.
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We end this section by defining a type of higher derivation which is commonly studied. Let

k be a field and A a k-subalgebra of a k-algebra B. An iterative higher derivation of order

m + 1, (ιA, D1, . . . , Dm) is a higher derivation such that Di ◦Dj =
(
i+j
j

)
Di+j for all i, j. For

instance, Example 2.2.1 is an iterative higher derivation.

2.3 Sweedler Diagrams

Sweedler’s early work on purely inseparable extensions prompted much of the study of

Galois-type correspondences that followed. LetK/k be a finite purely inseparable field extension

of exponent e. Then there exists the following filtration of K:

k ⊂ k1/p ∩K ⊂ k1/p2 ∩K ⊂ · · · ⊂ k1/pe−1 ∩K ⊂ k1/pe ∩K = K (2.1)

To simplify notation, let ki := k1/p
i

and Ki := k1/p
i ∩ K. Using this filtration, Sweedler

(24) describes a procedure to fill out an e× e grid with elements of K. In the (1, 1)th position

of the grid place a p-basis for K/Ke−1. Call this set S1, 1. Take the pth powers of the elements

of S1, 1. Call this set Sp1, 1. These are elements in Ke−1, so let S2, 1 be a maximal subset of Sp1, 1

which is p-independent over Ke−2. Finally, let S2, 2 be a subset of Ke−1 which, when taken in

a union with S2, 1, forms a full p-basis for Ke−1/Ke−2.

In general, suppose the ith row of the grid has been filled with elements of K so that

Si, 1 ∪ Si, 2 ∪ · · · ∪ Si, i is a p-basis for Ke−i+1/Ke−i. Then Spi, 1 ∪ S
p
i, 2 ∪ . . . ∪ S

p
i, i is a subset of

Ke−i. Take a maximal subset of Spi, 1 ∪ S
p
i, 2 ∪ . . . ∪ S

p
i, i which is p-independent over Ke−i−1. If

αp is an element in this maximal subset and α appears in entry (i, j) of the grid, then αp will

be an element of Si+1, j . In Si+1, i+1 put elements of Ke−i which extend Si+1, 1∪· · ·∪Si+1, i to a
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full p-basis for Ke−i/Ke−i−1. Once this procedure has been completed for each row of the grid,

it will be called a Sweedler Diagram for K/k. Note it is certainly not unique because of the

various choices of p-bases that are made. The following examples illustrate how to construct

these diagrams.

1. Let k0 be a perfect field of characteristic p > 0 with X a transcendental element over k0.

Define K = k0(X) and k = k0(X
pe). Then Ki = k0(X

pe−i). Thus a Sweedler Diagram

for K/k has

X

Xp

...

Xpe−1

for its first column, and the rest of the e− 1 columns are empty.

2. Let k0 be a perfect field of characteristic p > 0 with X and Y algebraically independent

over k0. Define K = k0(X, Y ) and let k = k0(X
p, Y p2). K/k is a degree p3 extension of

exponent 2, and K1 = k0(X, Y
p). Hence a Sweedler Diagram for this extension is

Y

Y p X

3. Let k0 be a perfect field of characteristic p > 0 with X, U and Z algebraically inde-

pendent over k0. Define K = k0(X, U, Z) and k = k0(X, U
p − XZp, Zp2). K/k is an
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exponent 2 extension, and K1 = k0(X
1/p, U −X1/pZ, Zp)∩K = k0(X, U

p−XZp, Zp) =

k0(X, U
p, Zp). A Sweedler Diagram for this extension is

U, Z

Zp

4. Let k0 again be a perfect field of characteristic p > 0 with X, U, Z algebraically inde-

pendent over k0. Define K = k0(X, Z, U) and k = k0(X
p, Up −XpZp, Zp

2
). K/k is an

exponent 2 extension with K1 = k0(X, U − XZ, Zp). A Sweedler Diagram for K/k is

thus

U

Up X, U −XZ

5. k0 is again a perfect field of characteristic p > 0 with X, U, Z algebraically independent

over k0. Suppose α ∈ k0(X, U, Z), but α /∈ k0(Xp, Up, Zp). Define K = k0(X, Z, U)

and k = k0(X
p, Zp−αUp2 , Up3). K/k is an exponent 3 extension with K1 = k0(X, Z

p−

αUp
2
, Up

2
) = k0(X, Z

p, Up
2
) and K2 = k0(X, Z, U

p). A Sweedler Diagram for K/k is

thus

U

Up Z

Up
2

X

If an element α ∈ K first appears in Si, i of a Sweedler Diagram, then define c(α) := i and

l(α) as the number of rows that α or its pth powers appear in the Sweedler Diagram. Since a
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Sweedler Diagram is constructed from successive p-bases, it is clear that S1, 1 ∪S2, 2 ∪ · · · ∪Se, e

is a p-basis for K/k.

There are a few properties of the Sweedler Diagram worth noting. First, any entry (i, j) with

j > i will be empty. Second, let K/k be a finite purely inseparable field extension of exponent e.

Entry S1, 1 will contain a p-basis for K/Ke−1. Since Kp
e−1 ⊆ Ke−2, then Sp1, 1 generates Kp ·Ke−2

over Ke−2. S2, 1 is a maximal p-independent subset of Sp1, 1 over Ke−2, hence the elements in

S2, 1 form a p-basis of the field extension Kp ·Ke−2/Ke−2. By construction, the entries of S2, 2

are elements of Ke−1 such that S2, 2 ∪ S2, 1 is a full p-basis of Ke−1/Ke−2. S2, 2 will contain no

elements of Kp, so the entries of S2, 2 form a p-basis of the field extension Ke−1/K
p ·Ke−2.

By the same reasoning, the elements of S3, 1 form a p-basis of Kp2 ·Ke−3/Ke−3, elements

of S3, 2 form a p-basis of Kp
e−1 · Ke−3/K

p2 · Ke−3, and elements of S3, 3 form a p-basis for

Ke−2/K
p
e−1 · Ke−3. When these field extensions are put into an array the pattern becomes

clearer:

TABLE I: Field Extensions Represented in the Sweedler Diagram

K/Ke−1

Kp ·Ke−2/Ke−2 Ke−1/K
p ·Ke−2

Kp2 ·Ke−3/Ke−3 K
p
e−1 ·Ke−3/K

p2 ·Ke−3 Ke−2/K
p
e−1 ·Ke−3

Kp3 ·Ke−4/Ke−4 K
p2

e−1 ·Ke−4/K
p3 ·Ke−4 K

p
e−2 ·Ke−4/K

p2

e−1 ·Ke−4 Ke−3/K
p
e−2 ·Ke−4

...
...

...
...

Hence, when j > 1 the elements in entry Si, j of the Sweedler Diagram form a p-basis for the

extension
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Kpi−j

e−j+1 ·Ke−i−1/K
pi−j+1

e−j+2 ·Ke−i, (2.2)

and when j = 1 the elements of Si, 1 form a p-basis for Kpi−1 ·Ke−i−1/Ke−i.

2.4 Modular Field Extensions

Sweedler first proved the following theorem (24, Theorem 1), which relates Hasse-Schmidt

derivations to certain intermediate subfields of finite purely inseparable extensions.

Theorem 29. Let k be a field of characteristic p > 0 and suppose K/k is a finite purely

inseparable extension of exponent e. Let N be the union of the diagonal entries of a Sweedler

Diagram for K/k. The following are equivalent:

1.
⊗
x∈N

k(x) ∼= K.

2. There exist higher derivations of K for which k is the subfield of constants.

3. Kpi is linearly disjoint from k for all positive integers i.

4. For all x ∈ N , l(x) = e − c(x) + 1 recalling that c(x) is the row number of the Sweedler

Diagram where x first appears and l(x) is the number of rows of the Sweedler Diagram

that an element of the set {x, xp, xp2 , . . .} appears.

5. {xpe−c(x) : x ∈ N} forms a p-basis for k1/p ∩K over k.

Proof. 1⇒ 2 : Suppose K ∼= k(ξ1) ⊗ · · · ⊗ k(ξn). Let Ki = k(ξ1) ⊗ · · · ⊗ k̂(ξi) ⊗ · · · ⊗ k(ξn).

Then K is purely inseparable over Ki with p-basis {ξi}. Hence by Example 2 there is a higher

derivation of K which vanishes on Ki. Call this higher derivation Di. The subfield of constants
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of all the Di is K1 ∩ · · · ∩Kn = k.

2⇒ 3 : Let D = (1, D1, . . . , Dm) be a higher derivation of K. Since D can be viewed as a ring

homomorphism from L to L[t]/(tm+1), for x ∈ K, if p|m, then Dm(xp) =
(
Dm/p(x)

)p
, and if p

does not divide m, then Dm(xp) must be 0. Therefore Dm(Kpn) ⊆ Kpn .

Now, suppose there exists a positive integer n so that k and Kpn are not linearly disjoint.

Then there is a minimal length relation k1α1 + · · · + ktαt = 0 where the elements of {ki} ⊂ k

are linearly independent over k ∩Kpn and {αi} ⊂ Kpn . Divide the relation by α1 and relabel

to get a relation

k1 + k2α2 + · · · ktαt = 0. (2.3)

By the linear independence of the ki, there is some αi /∈ k ∩ Kpn . Relabel the αi’s and

ki’s so that a2 /∈ k ∩ Kpn . Thus by assumption there exists a higher derivation E such that

E(α2) 6= α2. If E = (ιK , E1, E2, . . . , Em) where the Ei are endomorphisms of K, then there

exists an integer n such that En(α2) 6= 0, and by the preceding paragraph, En(α2) ∈ Kpn .

Apply En to Equation 2.3 to get

0 = En(k1) + En(k2α2) + · · ·+ En(ktαt) = k2En(α2) + · · ·+ ktEn(αt).

The right hand side is a shorter dependence relation on the ki than Equation 2.3, which con-

tradicts minimality. Hence k and Kpn are linearly disjoint.
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3⇒ 4 : Let x ∈ N . The equality l(x) = e− c(x) + 1 is equivalent to the following property:

If x ∈ N and c(x) ≤ i ≤ e, then the ith row of the Sweedler Diagram contains an element from

the set {xpi}0≤i<∞. Thus it suffices to show that the pth powers of any elements in row i of

the Sweedler Diagram will appear in row i + 1 of the diagram. Specifically, we show that if S

is a subset of k1/p
i+1 ∩ K and the elements of S are p-independent over k1/p

i ∩ K then Sp is

p-independent over k1/p
i−1 ∩K.

Suppose the previous statement were untrue. Then the set of monomialsM =

{∏
x∈S

xpex

}
0≤ex<p

are linearly dependent over k1/p
i−1 ∩K. Let F denote be the dependence relation on M and

F p
i−1

the pi−1th power of the relation. Then F p
i−1

is a dependence relation over k ∩Kpi−1
of

elements in the set Mpi−1
=

{∏
x∈S

xp
iex

}
0≤ex<p

⊂ Kpi . Since Kpi and k are linearly disjoint,

then there exists a dependence relation of elements of Mpi over k ∩ Kpi . Call this relation

G. Take the pith root of G to obtain a dependence relation over k1/p
i ∩ K of the monomi-

als M1/p =

{∏
x∈S

xex

}
0≤ex<p

. This contradicts p-independence of S over k1/p
i ∩K. Therefore

l(x) = e−c(x)+1 for every x ∈ N . The rest of the proof follows easily from the construction

of the Sweedler Diagram and basic properties of p-bases.

Any field extension which satisfies the properties of Theorem 29 is called a modular ex-

tension. Note that for any finite purely inseparable extension K/k, if F is the subfield of

constants of all higher derivations of K/k , then K/F is modular, and F will be the smallest

intermediate subfield such that K/F is modular.
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2.5 The Shape of a Sweedler Diagram

Based on property 4 of Theorem 29, and using the fact that the cardinality of a p-basis is

independent of the choice of basis, we can determine if a field extension is modular based only

on how many elements are in each entry of a Sweedler Diagram: For every entry (i, j) in the

Sweedler Diagram with i > 1, if the number of elements in (i, j) is greater than or equal to the

number of elements in entry (i− 1, j), then the field extension is modular. Hence, Examples 1,

2, and 4 of Sweedler Diagrams are modular while examples 3 and 5 are not, since Up does not

appear in row 2 of the diagram in Example 3 and Zp does not appear in row 3 of the Sweedler

Diagram in Example 5.

We expand on this idea of the ”shape” of a Sweedler Diagram (i.e. how elements are

distributed in the entries of the diagram) to develop another property that is equivalent to

the properties in Theorem 29. It is easy to show that {x1, . . . , xn} is a p-basis for K/k if and

only if {dx1, . . . , dxn} is a K-basis for Ω1
K/k (16, p.202). Since the elements of the entries in a

Sweedler Diagram correspond to the p-bases of the fields show in Table I, by the above fact we

can construct another diagram, mirroring the Sweedler Diagram, whose entries are the modules

of differentials of the field extensions in Table I. That is, for j > 1 the (i, j)th entry contains

the module

Ω1

Kpi−j
e−j+1·Ke−i−1/K

pi−j+1

e−j+2 ·Ke−i
, (2.4)
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and when j = 1 the (i, 1)th entry contains the module

Ω1
Kpi−1 ·Ke−i−1/Ke−i

.

Call this the diagram of differentials of K/k. For example, the following table displays the

top-left corner of a diagram of differentials:

Ω1
K/Ke−1

Ω1
Kp·Ke−2/Ke−2

Ω1
Ke−1/Kp·Ke−2

In the Sweedler Diagram, a subset of the pth powers of elements in entry (i, j) are placed

into entry (i + 1, j). One can ask how this translates to the diagram of differentials? Let

F : K → K be the Frobenius homomorphism, so that for all x ∈ K, F (x) = xp. For 2 ≤ i ≤ e,

the following diagram commutes:

Ki
F−−−−→ (Ki)

p −−−−→ Ki−1x x x
Ki−1

F−−−−→ (Ki−1)
p −−−−→ Ki−2

where all unlabeled arrows are natural inclusions. These homomorphisms induce a homomor-

phism of modules of differentials

dF : Ω1
Ki/Ki−1

→ Ω1
Ki−1/Ki−2

.

Based on the discussion following the proof of Theorem 29, K/k is modular if and only if the

pth powers of elements of a p-basis of Ki/Ki−1 are p-independent over Ki−2. More concretely,

this means that for each i and any subset {x1, . . . , xn} ⊂ Ki which is a p-basis for Ki/Ki−1,
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K/k is modular if and only if {xp1, . . . , x
p
n} is p-independent over Ki−2. In terms of differentials,

the above statement translates to: K/k is modular if and only if, for every i and any Ki-basis

for Ω1
Ki/Ki−1

, {dx1, . . . , dxn}, {dxp1, . . . dx
p
n} is a Ki-linearly independent subset of Ω1

Ki−1/Ki−2
.

In general, suppose E and F are fields and ψ : F → E is a nontrivial ring homomorphism.

Suppose also that V is a vector space over F and W is a vector space over E. Then W is also

a vector space over F . If h : V → W is an F -module homomorphism, then the image in W of

an F -basis of V will be E-linearly independent if and only if the composition map

µ ◦ (1E ⊗F h) : E ⊗ψ V → E ⊗ψ W →W

is injective. Thus, we have proven the following:

Theorem 30. Let L and k be fields of characteristic p > 0 and suppose L/k is a finite purely

inseparable field extension of exponent e. Let F : L→ L be the Frobenius homomorphism. L/k

is modular if and only if

µ ◦
(
ιLr−1 ⊗Fr dFr

)
: Lr−1 ⊗Fr Ω1

Lr/Lr−1
→ Ω1

Lr−1/Lr−2

is injective for all r such that 2 ≤ r ≤ e, where Lr = kp
−r ∩ L and Fr is the homomorphism

Lr → Lr−1 induced by F .

Heuristically, this homomorphism maps the modules in the rth row of the diagram of dif-

ferentials onto entries (r + 1, 1), (r + 1, 2), . . . , (r + 1, r) of the diagram of differentials. The

cokernel will then be the module in entry (r+ 1, r+ 1) of the diagram of differentials. That is,
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coker
(
µ ◦
(
1Kr−1 ⊗Fr dFr

)) ∼= Ω1
Kr−1/K

p
r ·Kr−2

.

Theorem 30 gives an intrinsic way to test if a field extension is modular or not without

having to make any choices of p-bases.

The next chapter will further develop the theory of higher derivations, but we finish here

by using Example 3 to illustrate how property 2 of Theorem 29, the higher derivation property,

fails for non-modular extensions. Recall Example 3, where k0 is a perfect field of characteristic

p > 0, K = k0(X, U, Z), and k = k0(X, U
p − XZp, Zp2). Note that Zp /∈ k. Suppose there

is a higher derivation D = (D0, D1, . . . , Dm) of K with KD ⊇ k such that Zp /∈ KD. Then

there is an endomorphism Dn : K → K with Dn(Zp) 6= 0. Using techniques from the proof of

Theorem 29, p|n and Dn(Zp) =
(
Dn/p(Z)

)p
. Since D is linear with respect to k, X ∈ k implies

X
(
Dn/p(Z)

)p
= Dn(XZp) = Dn(Up − (Up −XZp). Dn is additive, and Up −XZp ∈ k, hence

this last term is equal to Dn(Up) =
(
Dn/p(U)

)p
. Solving for X gives X =

(
Dn/p(U)

Dn/p(Z)

)p
∈ Kp,

which is impossible since X1/p /∈ K. Hence D must be trivial at Zp, so the field of constants

KD is strictly larger than k. No higher derivation of K/k has k as a field of constants, thus

K/k cannot be a modular extension.



CHAPTER 3

GERSTENHABER GALOIS THEORY

3.1 Witt Vectors and the Artin-Hasse Exponential

Fix a prime number p and a sequence of indeterminates (θ) = (θ0, θ1, . . .). The nth Witt

polynomial is then given by wn(θ) := θp
n

0 + pθp
n−1

1 + · · ·+ pnθn ∈ Z[θ0, θ1, . . .].

Theorem 31. (22, II, §6,Theorem 6) If (θ) = (θ0, θ1, . . .) and (ψ) = (ψ0, ψ1, . . .) are two

sequences of indeterminates, then there exists unique sequences of elements (φ) = (φ0, φ1, . . .)

and (φ′) = (φ′0, φ
′
1, . . .) in Z[θ0, θ1, . . . ;ψ0, ψ1 . . .] such that wi((φ)) = wi((θ)) + wi((ψ)) and

wi((φ
′)) = wi(θ) · wi(ψ).

(φ) is called the Witt sum of (θ) and (ψ) and denoted (θ) +w (ψ) and (φ′) is called the

Witt product of (θ) and (ψ) and denoted (θ) ·w (ψ). These are commutative operations. If R is

ring, then θi and ψi can be replaced by elements of R which commute with each other, and we

can analogously define the Witt sum and Witt product on sequences of elements of R which

commute. Under these operations, this set of sequences is called the ring of p-Witt vectors

with coefficients in R, denoted W (R)(22, [II, §6,Theorem 7).

Given a prime number p, recall the Artin-Hasse exponential of an indeterminate x as

exp

(
x+

xp

p
+
xp

2

p2
+ · · ·

)
.

44
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Let (θ) be a sequence of elements in a ring R which commute as before and let t be a formal

variable. Gerstenhaber(8) introduces the following modified Artin-Hasse exponential

e (t, (θ)) := exp

( ∞∑
i=0

tp
i

pi
wi(θ)

)
. (3.1)

Setting (θp) := (θp0, θ
p
1, . . .), note that e (tp, (θp)) = exp

∞∑
i=0

tp
i+1

pi
wi+1(θ), while

(e(t, (θ)))p = exp

(
p

( ∞∑
i=0

tp
i

pi
wi(θ)

))
= exp

( ∞∑
i=0

tp
i

pi−1
wi(θ)

)
.

Taking the quotient,

exp

∞∑
i=0

tp
i+1

pi
wi+1(θ)

/
exp

( ∞∑
i=0

tp
i

pi−1
wi(θ)

)
= exp(p tw0(θ)),

which is congruent to 1 modulo p. Therefore Dwork’s Lemma (8, §3 Lemma 2) the series

e(t, (θ)) is has p-integral coefficients. Thus e (t, (θ)) is well-defined modulo p.

3.2 Abelian Families of Higher Derivations

Let L/K be a purely inseparable field extension of exponent e where L and K have charac-

teristic p > 0. Also let G = HDerp
e

KL be the group of higher derivations of rank pe. By Theorem

24, L is modular over the subfield of constants of G. Let K0 be the subfield of constants, so

that L = K0(x1)⊗K0 · · · ⊗K0 K(xn) with xi ∈ L and exp[xi : K0] = ei. Expanding on Example

2 from the previous chapter, each group HDerp
ei

K0
K0(xi) embeds into HDerp

e

K0
L by mapping t
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to tp
e−ei . Thus, if 1 + D1t + · · · + Dpei−1t

pei−1 ∈ HDerp
ei

K0
K0(xi), then this maps to a higher

derivation E ∈ HDerp
e

K0
L where E(xj) = xj for i 6= j and E(xi) = xi +D1(xi)t

pe−ei + · · · .

If m < pe, and G′ = HDermK0
L, then every element in G′ is the truncation of an element of

G. Hence there is an inverse system on the groups of higher derivations of L/K0. On the other

hand, if m > pe, then for every element G′′ ∈ HDermK0
L there exists H1, . . . ,Hn ∈ HDerp

e

K0
L

such that G′′ = H1, l1 · · ·Hn, ln , where Hi, li is the extension of Hi to HDermK0
L by sending t

to tli for some li > 0. Hence, restricting our attention to the group HDerp
e

KL will suffice to

understand all higher derivations of L/K. In other words, we will study the inverse limit of the

groups of higher derivations instead of the inverse system.

Let D = 1 +D1t+D2t
2 + · · ·Dpe−1t

pe−1 be a higher derivation homomorphism of L/K. D

is abelian if all the Di commute as endomorphisms of L. A subgroup H ⊆ HDerp
e

KL is called

an abelian family if every element is abelian and for any 1 + D1t + · · · + Dpe−1t
pe−1, 1 +

E1t + · · ·Epe−1tp
e−1 ∈ H, DiEj = EjDi for all 0 < i, j < pe. Let a ∈ L and define maps

V : HDerp
e

KL→ HDerp
e

KL and Ta : HDerp
e

KL→ HDerp
e

KL, where V sends t to tp and Ta sends t

to at. Hence,

V (D) = 1 +D1t
p +D2t

2p + · · ·+Dpe−1−1t
pe−p

and

Ta(D) = 1 + aD1t+ a2D2t
2 + · · ·+ ap

e−1Dpe−1t
pe−1.
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While V is a group homomorphism, Ta will most of the time not be unless a ∈ K. Additionally,

for any abelian family A and any D ∈ A, the operation

P (D) = 1 +Dp
1t+ · · ·+Dp

pe−1t
pe−1

is a group homomorphism from A to HDerp
e

KL.

If (θ1, . . . , θe−1) is a sequence of endomorphisms of L/K which commute with each other,

it is not necessarily true that e (t, (θ)) is a higher derivation homomorphism. For instance, if

X and Y are algebraically independent over Fp, suppose K = Fp(Xp2 , Y p2), L = K(X, Y ).

Define

(
∂

∂Y

)[p]

as the endomorphism of L which sends Xi to 0 for all i and Y j to

(
p

j

)
Y j−p.

If (θ) =

(
∂

∂X
,

(
∂

∂Y

)[p]
)

, then the coefficient of t in e (t, (θ)) is
∂

∂X
while the coefficient of

tp is (
1

p
+

1

p!

)(
∂

∂X

)p
+

(
∂

∂Y

)[p]

=

(
∂

∂Y

)[p]

.

e (t, (θ)) fails to be a higher derivation homomorphism because the proof of Theorem 29 estab-

lishes that if it were, then

(
∂

∂Y

)[p]

(Y p) =

((
∂

∂X

)
(Y )

)p
, which is not true. Yet applying

Equation 3.1 to some sequences of endomorphisms does result in higher derivation homomor-

phisms.

Proposition 32. (8, p. 17) Let L/K be a purely inseparable field extension of exponent e. Any

higher derivation H ∈ HDerp
e−1
K L with commuting coefficients is the product of higher deriva-

tions of the form e(tr, (θ)) with r ∈ Z≥1 and (θ) = (θ0, . . . , θe−1) a sequence of endomophisms

in EndKL that commute. Furthermore, any abelian family can be generated by such elements.
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The proof of this proposition is omitted, but it follows readily after choosing a basis of

EndKL and applying Proposition 27.

If (θ) = (θ0, . . . , θe−1) is a sequence of endomorphisms of L/K which commute with each

other such that e(t, (θ)) ∈ HDerp
e−1
K L, then (θ) is called an extended derivation. If (θ) is an

extended derivation, then by construction the first nonzero θi in the sequence is a derivation in

DerKL.

We next define three operations on extended derivations and use familiar notation to indicate

how they relate to operations on abelian higher derivations already defined. If (θ) is an extended

derivation with e(t, (θ)) = 1 + δ1t+ · · ·+ δpe−1t
pe−1, then e(t, (θp)) = 1 + δp1t+ · · ·+ δppe−1t

pe−1

is also a higher derivation homomorphism. Define P (θ) = (θp0, . . . , θ
p
e−1). Furthermore, define

V (θ) = (0, θ0, . . . , θe−2). Then

e(t, V (θ)) = exp

(
e−1∑
i=0

tp
i

pi
wi (V (θ))

)

= exp

(
e−1∑
i=1

tp
i

pi
pwi−1(θ)

)
= 1 + δ1t

p + δ2t
2p + · · · δpe−1−1t

pe−p.

Lastly, note that if (θ) is an extended derivation, then for all a ∈ K,
(
θ0, a

pθ1, . . . , a
pe−1

θe−1

)
is again a commuting sequence of endomorphisms in EndKL. More generally, if θi is the first

nonzero endomorphism of (θ), then for a ∈ Kp−i , define

Ta(θ) = (0, . . . , 0, θi−1, a
piθi, . . . , a

pe−1
θe−1).
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The image is again a sequence of endomorphisms of L/K which commute. In fact, Ta(θ) is an

extended derivation, since

e(t, Ta(θ)) = 1 + ap
i
δpit

pi + a2p
i
δ2pit

2pi + · · ·+ ap
e−1
δpe−1tp

e−1
= Tae(t, (θ)).

Thus the action of P, V, and Ta on extended derivations commutes with the action of P, V, and

Ta on higher derivations after applying the truncated Artin-Hasse exponential.

Fix a subset S ⊂ EndKL which is a K-algebra and whose elements all commute. A Witt

group of extended derivations of L/K, denoted H, can be constructed from S by taking all

extended derivations whose entries are endomorphisms in S. Since the truncated Artin-Hasse

exponential transforms Witt sums of extended derivations into products of higher derivation

homomorphisms, the set {e
(
tl, (θ)

)
: (θ) ∈ H, 0 ≤ l ≤ pe − 1} is a subgroup of HDerp

e−1
K L.

Let L be a set of sequences of elements in EndKL whose entries all commute and which are

each an extended derivation. If L is a group under Witt addition, then it is called an abelian

family of extended derivations. Suppose further that for all i, a ∈ Kp−i and (θ) ∈ L,

Ta(θ) ∈ L if θi is the first nonzero endomorphism in the sequence (θ). If L is closed under P , V ,

and Ta as described above, then L is called saturated. By Proposition 32, any saturated abelian

family of extended derivations generates a group of commuting Hasse-Schmidt derivations which

is closed under the operations P , V , and Ta for a ∈ K. If (θ) = (θ0, . . . , θe−1) is an extended

derivation of L/K, the fixed field of (θ) is the fixed field of the set {θ0, . . . , θe−1} ⊂ EndKL.
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The fixed field of a set of extended derivations of L/K is the intersection of the fixed fields of

each extended derivation in the set.

3.3 Gerstenhaber’s Galois Correspondence

The following theorem is one of the main results from Zaromp’s dissertation. The proof

is omitted, but we note that the proof involves constructing extended derivations using the

property proven in Proposition 27.

Theorem 33. (26, p.23) Let K be a field of characteristic p > 0 and suppose L/K is a finite

modular field extension. Let M be an abelian family of extended derivations of L/K such that

K is the fixed field of M . If M is a saturated finitely generated Witt group then M is a maximal

abelian family of extended derivations.

The previous theorem can be restated as

Theorem 33.1. Let K be a field of characteristic p > 0 and suppose L/K is a finite modular

field extension of exponent e. Let M be an abelian family of higher derivations of L/K such that

K is the fixed field of M . If M is closed under P , Ta where Ta acts only on higher derivations

of M with order ≥ pi when a ∈ Kp−i, and reparametrizations of L[t]/(tp
e
) which send t to tr

for any positive integer r, then M is a maximal abelian family of higher derivations.

Note that the group M from the above theorem is only closed under reparametrization by

elements of K, not L. As an example, suppose L = Fp(X, Y ) and K = Fp(Xp, Y p) where p is a
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prime. L/K is an extension of exponent 1, so we only need to study subgroups of G = HDerpKL.

The subgroup H ⊂ G generated by

1 +
d

dX
t+

1

2!

(
d

dX

)2

t2 + · · ·+ 1

(p− 1)!

(
d

dX

)p−1
tp−1

has subfield of constants K ′ = Fp(Xp, Y ). The saturated subgroup generated by Ta(D), V (D),

and P (D) for all D ∈ H and a ∈ K ′ has the same subfield of constants, and is a maximal

abelian family by Theorem 33.1.

On the other hand, in the same manner construct the subgroup closed underK ′-reparametrization,

V , and P by the higher derivation

1 +X
d

dX
+X2 1

2!

(
d

dX

)2

+ · · ·+Xp−1 1

(p− 1)!

(
d

dX

)p−1
.

This subgroup again has Fp(Xp, Y ) as its subfield of constants and will again be a maximal

saturated abelian family. This subgroup is not equal to the subgroup constructed in the previous

paragraph because
d

dX
and X

d

dX
do not commute, hence both cannot be elements of an abelian

family. Therefore, distinct saturated abelian families of higher derivations closed under V, P

and Ta can have the same subfield of constants. Equivalently, distinct saturated abelian families

of extended derivations can also have the same subfield of constants.

Based on this theorem, Gerstenhaber claims (10, p.1014) that there is a 1−1 correspondence

between subgroups HDerp
e

K′L ⊂ HDerp
e

KL where K ⊆ K ′ ⊆ L and saturated abelian families

of extended derivations. The correspondence sends a saturated abelian family to the subgroup
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of higher derivations generated by {Tae (t, (θ))}a∈L. However, this statement is not accurate

as published. Consider the following example: Let K0 be a perfect field of characteristic 3

with X and Y algebraically independent over K0. Then L = K0(X, Y ) is an extension of

K = K0(X
3, Y 3) of degree 9 and exponent 1. The higher derivation homomorphism

1 +
∂

∂X
t+

(
1

2!

(
∂

∂X

)2

+
∂

∂Y

)
t2 ∈ HDer2KL (3.2)

can be factored as e

(
t,

(
∂

∂X

))
e

(
t2,

(
∂

∂Y

))
. Note that the second factor,

e

(
t2,

(
∂

∂Y

))
= 1 +

d

dY
t2,

is not a higher derivation homomorphism of the form Tae(t, (θ)) for any (θ) because any non-

trivial higher derivation homomorphism of the form e (t, (θ)) has a nonzero coefficient in the

degree 1 term. Thus the higher derivation homomorphism of Equation 3.2 is not included in

the 1− 1 correspondence described by Gerstenhaber.

His statement can easily be corrected to the following:

Theorem 34. Let L/K be a finite purely inseparable extension of exponent e. Suppose L is a

saturated abelian family of extended derivations of the form (θ) = (θ0, . . . , θe−1) with fixed field

K ′, and let L denote the subgroup of HDerp
e

KL generated by the higher derivations Tae(t
l, (θ)),

where 1 ≤ l ≤ pe − 1 and a ∈ Lp−i if θi is the first nonzero term of (θ). Then L = HDerp
e

K′L.

Proof. This theorem was first stated in Zaromp’s thesis (26, p. 35), where the proof was

promised in a future publication. It was then restated in (10), again without a proof. An
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analogous theorem is proven by Heerema and Deveney (13, Theorem 4.2) for iterative higher

derivations.

The first nonzero term of any element of L is a derivation in DerK′L. Because L is saturated,

the collection of such derivations is a LpK ′ vector space of commuting derivations which is closed

under pth powers. We first show that the fixed field of this restricted Lie algebra of derivations is

LpK. Call this restricted LpK ′-Lie algebra D, its fixed field K0, and suppose m is the cardinality

of a p-basis of L/K ′. Zaromp proves (26, Theorem 2) that any K ′Lp-basis of D has cardinality

m. He also shows (26, Proposition 1) that any K ′Lp-linearly independent set of commuting

derivations which commute with every term of L will also be linearly independent over K0,

which is an intermediate field of L/LpK ′. Since D is closed under pth powers, [L : K0] = pm

(26, Theorem, p.6). But [L : LpK ′] = pm as well, and since all these extensions are exponent

1, then it is necessary that LpK ′ = K0.

Let L be the group of higher derivations defined above. The collection of the first nonzero

terms of L is equal to DerK′L by the argument above. The rest of the proof follows very

closely to the proof of Heerema and Deveney (13, Theorem 4.2), and we omit some details.

Suppose D = (ιL, D1, . . . , Dpe−1) is a higher derivation in HDerK′L whose first nonzero term

is Di. By Proposition 26, Di is a derivation in DerK′L. Hence there exists a higher derivation

Ei = (ιL, Ei1, Ei2, . . . , Eipe−1) in L such that Ein is its first nonzero term and Ein = Di for

some n. Thus, Ei
−1
D is a higher derivation of order j > i. Repeat this process to obtain higher

derivations of strictly larger order. Since the ranks of all these higher derivations are pe, this
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process terminates after a finite number of steps, and there exist Ei, Ei+1, . . . , Epe−1 ∈ L such

that

Ei
−1
Ei+1

−1 · · ·Epe−1
−1
D = ιL ∈ HDerK′L.

Multiplying both sides by Epe−1 · · ·Ei proves that D ∈ L, hence L = HDerK′L.

If K ′ is an intermediate subfield of L/K with L/K ′ modular, then there are many subgroups

of HDerp
e

KL whose subfield of constants is K ′, but HDerp
e

K′L is the maximal such subgroup.

This theorem establishes a many-to-one correspondence between saturated abelian families

of extended derivations of L/K and subgroups H of HDerKL such that H is the maximal

subgroup with subfield of constants LH . Thus, if K is a field, L is a saturated family of

extended derivations of K, and H = HDerKLK, then H = 〈L〉 where 〈L〉 is the group of higher

derivations, closed under reparametrizations by K, which is generated by L via the Artin-Hasse

exponential. Thus there is a Galois correspondence between modular intermediate subfields of

L/K and subgroups H ⊂ HDerKL such that there exists a saturated abelian family of extended

derivations L with H = 〈L〉. Call this correspondence Gerstenhaber Galois theory.

We note that Gerstenhaber never claimed that there exists a one-to-one correspondence

between modular subfields of a finite purely inseparable extension and saturated abelian families

of higher derivations. He correctly states that there is a correspondence between collections

of saturated abelian families and modular extensions. Even so, Theorem 34 gives a fairly

unsatisfactory correspondence, as it does not address the many-to-one correspondence from
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saturated families of extended derivations to groups of higher derivations explained earlier, nor

does it provide a clear structure for the subgroups H.



CHAPTER 4

MODULAR FIELD THEORY AND DIFFERENTIAL OPERATORS

4.1 Differential Operators

Let A be a commutative ring and B a commutative A-algebra. The algebra B ⊗A B has

two B-module structures, induced by maps d1 : B → B ⊗A B and d2 : B → B ⊗A B where,

for any b ∈ B, d1(b) = b ⊗A 1 and d2(b) = 1 ⊗A B. For any B-module M , the B ⊗A B-

module B ⊗A B ⊗B M has a B-bimodule structure induced by d1 and d2. There is a natural

homomorphism dM2 : M → B ⊗A B ⊗B M which is B-linear with respect to the d2-induced

B-module structure on B ⊗A B ⊗B M . That is, for all m ∈M , dM2 (m) = 1⊗A 1⊗B m.

Definition 35. Let A be a commutative ring with unity, B a commutative A-algebra, and

suppose M and N are B-modules. Set I = ker (µ : B ⊗A B → B) where µ is the multiplication

map. An A-linear homomorphism D : M → N is called a differential operator of order

≤ n if D̃ = µ ◦ (1B ⊗A 1B ⊗B D) :
(
B ⊗A B/In+1

)
⊗B M → N is a B-module homomorphism

by the d1-action on B ⊗A B, and the following diagram commutes:

56
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M N

B ⊗A B ⊗B M

(
B ⊗A B/In+1

)
⊗B M

dM2

D

D̃=µ◦(1B⊗A1B⊗BD)

Letting A, B, and M be defined as above, B embeds in EndAB by sending b ∈ B to λb

as described prior to Theorem 13. As in Chapter 1, we use the notation b ∈ EndAB and

λb ∈ EndAB interchangeably in this context.

Lemma 36. Let A be a commutative ring and B a commutative A-algebra. Set Diff0
A(B, B) :=

B ⊂ EndAB. An endomorphism D ∈ EndAB is an A-linear differential operator of or-

der ≤ n from B to B if, for all b ∈ B, [D, b] is a differential operator of order ≤ n − 1.

That is, if DiffnA(B, B) denotes the set of such differential operators, then [DiffnA(B, B), B] ⊆

Diffn−1A (B, B).

Proof. By EGA (11, §16.8) both Definition 35 and the recursive property described in the

Lemma induce the formula

D(x0x1 · · ·xn) =

n∑
s=0

(−1)s−1
∑

i1<i2<...is

xi1xi2 · · ·xisD (x1 · · · x̂i1 · · · x̂is · · ·xn) (4.1)

for any differential operator D of order ≤ n and any {x0, . . . , xn} ⊂ B.
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Let D and ∆ be differential operators from B to B of order ≤ r and ≤ s, respectively. Then

noting that

[D∆, b] = D∆λb − λbD∆ = D [∆, λb] + [D, λb] ∆

for any b ∈ B, it is easy to prove by induction (17, Corollary 6.1) that D∆ is a differential

operator of order ≤ r + s.

In addition, using the notation of Definition 35, for any positive integer i, In+i ⊆ In+1, so if

D is a differential operator of order ≤ n, then D̃ vanishes on In+i. Thus D is also a differential

operator of order ≤ n+ i. For any nonnegative integer i, let DiffiA(B, B) consist of all A-linear

differential operators from B to itself of order ≤ i. Denoting DiffA(B, B) =

∞⋃
i=0

DiffiA(B, B),

DiffA(B, B) is thus a B-algebra with natural filtration B = Diff0
AB ⊆ Diff1

AB ⊆ Diff2
AB ⊆ · · · .

Define DiffAB := DiffA(B, B). We say a differential operator has order n if n is the smallest

integer such that D is a differential operator of order ≤ n.

Neither Definition 35 nor Lemma 36 present an easy way to construct differential operators.

Fortunately higher derivations provide a ready supply.

Proposition 37. (17, Proposition 5) Let A be a commutative ring and B a commutative A-

algebra. Suppose D = 1+D1t+ · · ·+DN t
N ∈ (EndAB) [t]/(tN+1) (resp. D ∈ (EndAB) [[t]]). If

D ∈ HDerN+1
A B (resp. D ∈ HDer∞A B), then Dq is a differential operator of B/A of order ≤ q.

Proof. The proofs for the finite rank and infinite rank higher derivations are identical, so we only

prove the result using the finite-rank notation. In Proposition 26 it was shown thatD1 ∈ DerAB.

Proceed by induction. For any x, y ∈ B, by definition Dq(xy) =

q∑
m=0

Dm(x)Dq−m(y). Hence,
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Dq(xy)− xDq(y)−Dq(x)y =

q−1∑
m=1

Dm(x)Dq−m(y),

or

(Dq ◦ λx − xDq −Dq(x)) (y) =

(
q−1∑
m=1

Dm(x)Dq−m

)
(y).

For m ≥ 1, Dm(x)Dq−m is a differential operator of order ≤ q by the inductive hypothesis.

Dq(x) is a differential operator of order 0, so moving it to the right hand side makes the left

hand side equal to Dq ◦ λx− xDq = [Dq, x]. Comparing to the right hand side, this differential

operator is of order ≤ q − 1. The proof is then concluded by Lemma 36.

Let Gr•DiffAB denote the graded ring associated to the filtration of DiffAB by orders

of differential operators. Lemma 36 shows that this ring is a commutative B-algebra. Let

σ : DiffAB � Gr•DiffAB denote the symbol map. σ is a surjective map on sets, but it is not

a homomorphism, as it will not preserve addition or multiplication. The associated graded

algebra has an A-bilinear map

{−,−} : Gr•DiffAB ×Gr•DiffAB → Gr•DiffAB

called the Poisson Bracket where, forD, E ∈ DiffAB, {σ(D), σ(E)} = σ ([D, E]). Additionally,

Gr1DiffAB = DerAB, and by the universal property of the symmetric algebra generated by

DerAB, there is a B-homomorphism Sym•DerAB → Gr•DiffAB.
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The homomorphism from the symmetric algebra of the derivations to the algebra Gr•DiffAB

is not too interesting, especially because, as we will see in the next section, Gr•DiffAB embeds

into the divided powers algebra of the derivations of B/A whenever B is a projective A-module.

This divided powers algebra has additional structure that makes it nice to work with.

4.2 Divided Powers Rings

Berthelot and Ogus (3) follow Roby’s presentation (20) in making the following definition:

Definition 38. Let A be a commutative ring and I ⊆ A an ideal. I is called an ideal with

divided powers if there exists a set of maps {γi : I → A}i∈Z≥0
such that for all x, y ∈ I and

i, j ≥ 0 the following properties hold:

1. γ0(x) = 1, γ1(x) = x, and γi(x) ∈ I for i ≥ 2

2. γi(x+ y) =

i∑
j=0

γj(x)γi−j(y)

3. γi(λx) = λiγi(x) for any λ ∈ A

4. γi(x)γj(x) =
(i+ j)!

(i!)(j!)
γi+j(x)

5. γi(γj(x)) =
(ij)!

(i!)(j!)i
γij(x).

If I is a an ideal with divided powers as above, then the set (A, I, γ) is called a ring with

divided powers.

A homomorphism of rings with divided powers f : (A, I, γ)→ (B J, δ) is a ring homomor-

phism which respects the divided powers structures and satisfies f(I) ⊆ J . Note that all the

coefficients appearing in Definition 38 are integers, so divided powers structures may exist for
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rings of any characteristic. Also, if (A, I, γ) is a ring with divided powers and A contains Q,

then Property 4 of Definition 38 implies that γn(x) = xn/n! for all x ∈ I. If (A, I, γ) is a ring

with divided powers and the characteristic of A is a prime p, then for all x ∈ I, γn(x) = xn/n!

for all n < p.

Divided powers are useful in studying differential operators. To see how, we first construct

a universal object for divided powers structures. Let A be a commutative ring and M an A-

module. Then there exists a commutative A-algebra with divided powers (Γ∗(M), Γ+(M), γ)

and an A-linear map φ : M → Γ∗(M) with the following universal property (3, Theorem 3.9):

For any A-algebra with divided powers (B, J, δ) and any A-linear homomorphism ψ : M → J ,

there exists a unique homomorphism of rings with divided powers

ψ :
(
Γ∗(M), Γ+(M), γ

)
→ (B, J, δ)

such that ψ ◦ φ = ψ. Γ∗(M) is a commutative A-algebra, hence by the universal property of

the symmetric algebra on M , there exists a canonical homomorphism Sym M → Γ∗(M) which

will send m ∈M ⊂ Sym M to φ(m).

To construct Γ∗(M), first let G(M) denote the free symmetric A-algebra on the set {m[i] :

m ∈M, i ∈ Z≥0}. Let I be the ideal of G(M) generated by the elements

1. m[0] − 1

2. (λm)[i] − λim[i]

3. m[i]m[j] − (i+j)!
(i!)(j!)m

[i+j]
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4. (m+ n)[i] −
∑i

j=0m
[j]n[i−j]

for all m, n ∈ M, λ ∈ A and i ∈ Z≥0. Then G(M)/I ∼= Γ∗(M), with the third property

showing it is a graded algebra. So Γ∗(M) =
∞⊕
i=0

Γ[i](M), where Γ[i] is equal to the image of

the set
{
m[i] : m ∈M

}
⊂ G(M) in the quotient G(M)/I . The construction of I shows that

Γ[0](M) = A and Γ[1](M) = M by properties 1 and 3, respectively.

If M is a projective A-module of finite rank, then Γ∗(M∨) ∼= (Sym M)∨ as graded A-

algebras (3, Proposition A10). Let L/K be a field extension, and Ω1
L/K = I/I2 be the module

of differentials as described in Section 2.5. Then
(

Ω1
L/K

)∨
= DerKL, hence Γ∗(DerKL) ∼=(

Sym Ω1
L/K

)∨
. It is proven in EGA (11, 16.3.1.1) that Gr•DiffKL injects into Γ∗(DerKL) by

applying HomK(−, L) to the surjective homomorphism Sym Ω1L/K →
∞⊕
i=0

Ik/Ik+1, where I

is the kernel of the multiplication homomorphism L ⊗K L → L. Following this idea, Narváev

Macarro (18, Theorem 2.2) explicitly constructs an injective homomorphism θ : Gr•DiffKL→(
Sym Ω1

L/K

)∨
in the following way: For any nonnegative integer n, suppose D ∈ DiffnKL such

that σ(D) 6= 0 ∈ GrnDiffKL and let dx1, . . . , dxn ∈ Ω1
L/K . Then

θ (σ(D)) (dx1 · · · dxn) := [[· · · [[D, xn] , xn−1] , . . . , x2] , x1] .

Using Equation 4.1, it can be shown that θ is well-defined and injective.

If D ∈ DiffKL, we will often use the notation σ(D) to denote the symbol of D as well as

the image of the symbol of D in the divided powers algebra Γ∗ (DerKL). In addition, we will

refer to the image of Gr•DiffKL in Γ∗ (DerKL) as the symbol algebra of L/K. We remark
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that every element of Γ∗ (DerKL) is nilpotent of order at most p, hence the pth power of every

element in the symbol algebra of L/K is 0.

4.3 Differential Operators on Purely Inseparable Extensions

Proposition 39. Let L/K be a purely inseparable extension of fields of characteristic p > 0.

Suppose L/K has finite exponent e and finite degree pn. Then DiffKL = EndKL.

Proof. L/K is purely inseparable of finite degree, hence it must have a finite p-basis. If the

cardinality of a p-basis is d, then by the discussion in Section 2.5, dimL Ω1
L/K = d. So there

exist α1, . . . αd ∈ L such that {dα1, . . . , dαd} is an L-basis for Ω1
L/K . Letting I be the kernel of

the multiplication homomorphism µ : L⊗K L→ L as described in Section 2.5, the differential

dαi corresponds to 1⊗K αi − αi ⊗K 1 ∈ I/I2. Let dαi1 · · · dαin denote the image of

(1⊗K αi1 − αi1 ⊗K 1) · · · (1⊗K αin − αin ⊗K 1)

in I. Then {dαi1 · · · dαin}0≤ij≤d generates In as a left L-vector space. If exp[α : K] = s,

then (dα)p
s

= 0 because (1⊗K α− α⊗K 1)p
s

= 0. Hence Ip
(e−1)d+1

= 0. By Definition 35

any D ∈ Diffp
(e−1)d

K L factors through L ⊗K L/Ip
(e−1)d+1 = L ⊗K L/0 which reduces to the

composition L→ L⊗K L→ L. However, any E ∈ EndKL can be L-linearized in this way, so

Diffp
(e−1)d

K L = EndKL.

For exponent 1 extensions, this proposition is part of Jacobson’s Galois theory, where the fact

that the derivations generate the ring of endomorphisms provides a link between the Jacobson-

Bourbaki theorem and Jacobson’s Galois theory.
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In purely inseparable extensions of exponent > 1, any differential operator of order p which

is a product of differential operators of lower order will vanish on Lp. Thus, for any purely

inseparable extension L/K and any positive integer e, if Lp
e * K then there exists an endo-

morphism of L which does not vanish on Lp
e
. Thus, some differential operator does not vanish

on Lp
e
, and this differential operator cannot be a product of differential operators of order less

than pe. Hence, the image of the L-vector space Diffp
e

KL in Γ[pe] (DerKL) is not 0.

4.3.1 Example 1

Let k be a perfect field and X transcendental over k. Define L = k(X) and K = k(Xp2).

Then L/K is purely inseparable of exponent two and degree p2. Thus the ring of endomorphisms

of L/K has dimension p2 over L. Then

DiffKL =

p−1⊕
i,j=0

L

(
d

dX

)[i]( d

dX

)[pj]

where

(
d

dX

)[n]

is defined as the endomorphism satisfying

(
d

dX

)[n]

(Xm) =

(
n

m

)
Xn−m

Note that the image of σ

((
d

dX

)[p]
)

in Γ[p](DerKL) is

(
d

dX

)[p]

.
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4.3.2 Example 2

Consider Example 2 from Section 2.3, where L = k0(X, U, Z) and K = k0(X, U
p −

XZp, Zp
2
). Furthermore, define K0 = k0(X, U

p2 , Zp
2
). L/K0 is modular, and using nota-

tion from the previous example,

DiffK0L =
⊕

0≤i, j<p2
L∂

[i]
U ∂

[j]
Z

where ∂U =
∂

∂U
and ∂Z =

∂

∂Z
. DiffKL is a finite-dimensional subring of DiffK0L. Since DiffK0L

is already linear with respect to X and Zp
2
, in order to explicitly write down DiffKL it suffices

to compute the differential operators of DiffK0L that are linear with respect to Up−XZp ∈ K.

Let
∑

0≤m,n<p2
amn∂

[m]
U ∂

[n]
Z ∈ DiffK0L, amn ∈ L. Then

∑
0≤m,n<p2

amn∂
[m]
U ∂

[n]
Z (Up −XZp) = ap0 −Xa0p

Hence, ∂U , ∂Z , and X∂
[p]
U + ∂

[p]
Z are elements of DiffKL which commute with each other

and are clearly linearly independent over L. The L-algebra generated by these elements can be

represented as

A :=
⊕

0≤i, j, k<p
L∂

[i]
U ∂

[j]
Z

(
X∂

[p]
U + ∂

[p]
Z

)k
,
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which has dimension p3 over L. A must then be the full ring of differential operators of L/K,

because p3 is the largest value < p4 satisfying

dimL DiffKL = [L : K]
∣∣∣ [L : K0] = p4.

So far in both examples, no information will be lost when passing from the differential

operators to the divided powers algebra of derivations. One might hope that just studying

the divided powers algebra alone can provide information about whether a purely inseparable

extension is modular or not. The next example dispels such hopes.

4.3.3 Example 3

Keeping the same notation as in the previous examples, let L = k0(X, Z, U) and K =

k0(X, U
p2 − XZp, Zp2). In Example 5 of Section 2.3 the extension L/K was shown to not

be modular. As in the previous example, L is modular over K0 = k0(X, U
p3 , Zp

2
), and using

the same dimension argument, the algebra of DiffK0L generated over L by ∂U , ∂Z , ∂
[p]
U , and

X∂
[p2]
U + ∂

[p]
Z is equal to the algebra DiffKL.

Denote the element X∂
[p2]
U + ∂

[p]
Z by D. D is a differential operator of order p2, and σ(D) =

X∂
[p2]
U . So, σ (DiffKL) is equal to σ (DiffK′L) where K ′ = k0(X, U

p3 , Zp). Thus, unfortunately,

two different extensions can have the same symbol algebra. Therefore we need more detailed

information to identify whether an extension is modular.
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4.4 Pickert Generating Sequences

To better study the differential operators of a purely inseparable field extension, it is worth-

while to determine more properties and invariants of the extension.

Definition 40. Let L/K be a finite purely inseparable extension of fields of characteristic p > 0.

A sequence {x1, . . . , xn} ⊂ L is called a Pickert generating sequence if the xi form a p-basis

for L/K and for each i, exp [K(x1, . . . , xi) : K] = exp [xi : K(x1, . . . , xi−1)].

Any p-basis of a finite purely inseparable extension can be ordered to make it a Pickert

generating sequence. Let ei denote the exponents in Definition 40. By the definition of expo-

nents, for any α ∈ L, exp[α : K(x1, . . . , xi−1)] ≤ ei. Hence ei ≥ exp[xi+1 : K(x1, . . . , xi−1)],

and exp[xi+1 : K(x1, . . . , xi−1)] ≥ exp[xi+1 : K(x1, . . . , xi)] = ei+1. Thus e1 ≥ e2 ≥ · · · ≥ en,

and

{xr11 x
r2
2 · · ·x

rn
n }0≤ri<pei

is a K-basis for L.

Proposition 41. (19, §3, Theorem 1) Let L/K be a finite purely inseparable extension of fields

of characteristic p > 0. Suppose {x1, . . . , xn} is a Pickert generating sequence for L/K with

corresponding exponent sequence {ei}. For each i,

xp
ei

i ∈ K(xp
ei

1 , . . . , xp
ei

i−1).
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Proof. Set qi := pei . If n = 1, then q1 = exp[x1 : K] = exp[L : K] and the proposition is proven.

Suppose the proposition is true for all purely inseparable extensions with Pickert generating

sequences of length less than i where i ≥ 2. For any extension L/K with Pickert generating

sequence {x1, . . . , xi}, {x2, . . . , xi} is then a Pickert generating sequence for L/K(x1). Hence,

xqii ∈ K(x1) (xqi2 , . . . , x
qi
i ). {xj1}0≤j<qi is a vector space basis for K(x1) over K(xqi1 ), so

xqii =

qi∑
j=0

gjx
j
1 (4.2)

where gj ∈ K(xqi1 , . . . , x
qi
i−1). It suffices to show that gj = 0 for j > 0.

Let t = q2/qi. Then there is a filtration K ⊆ K(xq21 ) ⊆ K(xt1) ⊆ K(x1). Raise Equation 4.2

to the power t, so

xq2i = xqiti =

qi∑
j=0

gtjx
jt
1 .

Noting that {xjt1 }0≤j<qi is a basis for K(xt1) over K(xq21 ), it now suffices to show that xq2i ∈

K(xq21 ) and gtj ∈ K(xq21 ) for all j, because then xq2i = gt0, proving that gtj = 0 for j > 0.

q2 ≥ qi, and K(x1, xi) is a purely inseparable extension of K with Pickert generating

sequence {x1, xi}. By induction, xq2i ∈ K(xq21 ). Also, by definition gj ∈ KLqi , so gtj ∈ KLq2 .

Thus, by the definition of the ei and the fact that they are not increasing, KLq2 ⊆ K(x1).

Therefore gtj ∈ K(x1) ∩K(xq21 , x
q2
2 , . . . , x

q2
i−1) = K(xq21 ) and the proof is done.
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By the above proposition, for each xi in a Pickert generating sequence, there is a correspond-

ing gi ∈ K(xqi1 , . . . , x
qi
i−1) such that xqii = gi. These polynomials will be called the structure

equations for L/K corresponding to the Pickert generating sequence {x1, . . . , xn}, and

L ∼= K[x1, . . . , xn]
/

(xq11 − g1, x
q2
2 − g2, . . . , x

qn
n − gn)

as K-algebras. For each i, the definition of ei guarantees that qi is the minimal power of p for

which the structure equations have the property described in Proposition 41.

Pickert generating sequences provide another criterion for determining modularity:

Proposition 42. (19, §5, Theorem 4) Let K be a field of characteristic p > 0 and suppose

L/K is a finite purely inseparable field extension with Pickert generating sequence {x1, . . . , xn}

and corresponding exponent sequence e1 ≥ · · · ≥ en. L/K is modular if and only if for all i,

ei = exp[xi : K].

Proof. By construction of the Sweedler diagram, if an extension L/K is modular, then for

any choice of p-basis {x1, . . . , xn}, L ∼= K(x1) ⊗K · · · ⊗K K(xn). Suppose {y1, . . . , ym} is

a Pickert generating sequence for L/K and that there exists an i with ei < exp[xi : K].

Then there is a structure equation xqi = gi, with gi /∈ K and the natural multiplication map

K(y1) ⊗K K(y2) ⊗K · · · ⊗K K(ym) → L has a nontrivial kernel containing the element of

the tensor product being sent to xqi − gi ∈ L. Hence by Theorem 29, L/K is not modular.

Conversely, if ei = exp[xi : K] for each i, then the aforementioned homomorphism is injective,

so L/K is modular by Theorem 29.
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The previous proposition makes a connection between the ei related to a certain Pickert

generating sequence and the modularity, or lack thereof, of a finite purely inseparable extension.

Modularity is an intrinsic property of a field extension, so it is expected that the ei will be as

well. We next show that the ei are invariants of a purely inseparable extension. Suppose K

is a field with char K = p > 0. Let {x1, . . . , xn} be a Pickert generating sequence of a purely

inseparable extension L/K with corresponding structure equations gi. Let K̃ be the field gen-

erated over K by the qith roots of the coefficients of gi for all i. Then by Proposition 41, each

gi splits as the qith power of a polynomial fi over K̃. Define zi := xi− fi(x1, . . . , xi−1) in some

algebraic closure of K. Then K̃⊗K L is generated by {xi} over K̃, or K̃⊗K L = K̃ [x1, . . . , xn].

Furthermore, by construction K̃[x1, . . . , xn] = K̃[z1, . . . , zn].

Definition 43. Let k be a field of and T a finitely-generated k-algebra. If k[t1, . . . , tr] is a

polynomial ring over k of transcendence degree r > 0, and T ∼= k[t1, . . . , tr]/I where I ⊂

k[t1, . . . , tr] is an ideal generated by {te11 , · · · , terr } for ei > 0, then T is called a truncated

polynomial ring over k.

Hence, K̃[z1, . . . , zn] from above is a truncated polynomial ring, since zqii = 0. Note that

K̃[x1, . . . , xn] is modular over K̃. To finish laying the groundwork for our stated goal of proving

that the exponent sequence of a Pickert generating sequence is intrinsic to the field extension,

we establish two technical results of Rasala without proof.

Proposition 44. (19, §2, Proposition 8) Let R be a commutative ring and A a truncated

polynomial ring over R. Suppose {u1, . . . , un} and {w1, . . . , wm} are minimal generating sets
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of A/R with ei the order of ui and fj the order of wj. Then n = m and, up to some relabeling,

ek = fk for each k.

Proposition 45. (19, p.425) If L/K is a finite purely inseparable field extension with Pickert

generating sequence {x1, . . . , xn}, then the field K̃ defined in the paragraph preceding Definition

43 is the unique smallest field such that K̃ ⊗K L is a truncated polynomial ring.

These two uniqueness propositions provide the final criteria for

Theorem 46. Let L/K be a finite purely inseparable extension. Then any exponent sequence

derived from a Pickert generating sequence is independent of the choice of p-basis.

Proof. Using the above notation, for any Pickert generating sequence of L/K, the exponent

sequence is the same as the exponent sequence of the truncated polynomial ring K̃[z1 . . . , zn]

over K̃, where the zi are constructed as above. By Proposition 44, K̃ is unique, independent

of the choice of p-basis of L/K, and by Proposition 45, the exponent sequence of K̃[z1, . . . , zn]

is unique. Therefore the exponent sequence of L/K is independent of the choice of p-basis.

Modularity can be determined from the exponent sequence by Proposition 42, but this

determination will still be non-intrinsic since a choice of p-basis is required in the proposition.

The structure equations of an extension, however, can be related to behavior of the differential

operators, allowing us to construct a test for modularity.

4.5 Differential Operators on Modular Field Extensions

An elementary observation by Sato (21, Theorem 2) characterizes the ring of differential

operators of a modular field extension in terms of higher derivations over that extension.
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Theorem 47. Let K/k be a finite purely inseparable field extension. K/k is modular if and

only if DiffkK is generated as a K-algebra by the coefficients of the higher derivations of K/k.

Proof. The proof of this theorem is very similar to the proof of Theorem 34. Let {x1, . . . , xn}

be a p-basis for K/k. If this extension is modular, then the higher derivations which send xi to

xi + t generate the group of higher derivations of K/k (allowing reparameterizations of t). If ei

is the exponent of xi over k, then these higher derivations can be written as

pei−1∑
i=0

(
∂

∂xi

)[i]

ti,

the coefficients of which clearly generate DiffkK.

On the other hand, suppose the coefficients of the higher derivations of K/k generate the

ring of differential operators DiffkK. Let x ∈ K \ k. Then there exists a differential operator

D ∈ DiffkK such that D(x) 6= 0. D is generated by coefficients of higher derivations. Thus there

exists a higher derivation Ex = (ιK , E1, . . . , En) such that Ei(x) 6= 0 for some i. Therefore, the

set of higher derivations E = {Ex}x∈K\k are trivial on k but are not all trivial on K. Hence k

is the subfield of constants of E and K/k is a modular extension by Theorem 29.

By Theorem 47, studying the rings of differential operators for modular extensions provides

information on the higher derivations of the extension, which in turn is related to the extended

derivations that appear in Chapter 3. We seek a more intrinsic property of the differential

operators that determines whether a purely inseparable field extension is modular.
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Lemma 48. Let K be a field of characteristic p > 0 and suppose L/K is a finite purely

inseparable extension of K. Let {x1, x2, . . . , xn} be a Pickert generating sequence for L/K with

corresponding exponent sequence e1 ≥ e2 ≥ · · · ≥ en and let D be a differential operator of

order N in DiffKK(x1, . . . , xi) for i < n. Suppose D̃ ∈ DiffKK(x1, . . . , xi+1) is the unique

extension of D such that D̃
∣∣∣
K(x1,...,xi)

= D and D̃(xji+1) = 0 for all 0 ≤ j < pei+1. Then D̃ is a

differential operator of order N .

Proof. Set qi = pei and let fi+1 be the structure equation for xi+1 with respect to the Pickert

generating sequence {x1, . . . , xn}. Thus x
qi+1

i+1 = fi+1(x1, . . . , xi) where, by Proposition 41, the

degree of each xj in fi+1 is a multiple of qi+1. Note thatK(x1, . . . , xi+1) =

qi+1−1⊕
j=0

K(x1, . . . , xi)x
j
i+1.

Therefore, the map D̃ as defined in the statement of the lemma is a well-defined endomorphism

of K(x1, . . . , xi+1) over K and is unique by the direct sum decomposition of K(x1, . . . , xi+1).

Since K(x1, . . . , xi+1)/K is a finite purely inseparable extension, every endomorphism is a dif-

ferential operator. Hence, D̃ ∈ DiffKK(x1, . . . , xi+1).

The order of D̃ is greater than or equal to the order of D as differential operators in

DiffKK(x1, . . . , xi) and DiffKK(x1, . . . , xi+1), respectively. Thus, it remains to show that the

order of D̃ is N . Suppose M is the order of D̃. Then there exist a1, . . . , aM such that

[[
· · ·
[
D̃, a1

]
, a2

]
, . . . , aM

]
= z ∈ K(x1, . . . , xi+1) (4.3)

where z 6= 0. This expression is symmetric in the ai and is a derivation in each commutator.

That is, for any a, b ∈ K(x1, . . . , xi+1)
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[[
· · ·
[
D̃, a1

]
, a2

]
, . . . , ab

]
= a

[[
· · ·
[
D̃, a1

]
, a2

]
, . . . , b

]
+ b

[[
· · ·
[
D̃, a1

]
, a2

]
, . . . , a

]
.

Hence, Equation 4.3 can be decomposed as a sum of commutators such that one of the

summands is nonzero. In particular, there exists a nonnegative integer J and g1 . . . gM−J ∈

K(x1, x2, . . . , xi) such that

[[[
· · ·
[[[[

D̃, xi+1

]
, xi+1

]
, . . . , xi+1

]
, g1

]
, g2

]
. . . ,

]
, gM−J

]
6= 0 (4.4)

where the number of xi+1’s in this expression is J . By Gerstenhaber (9, Lemma 5.1), qi+1

divides J . If J = cqi+1 where c is a nonnegative integer, then using a formula proven by Nakai

(17, Corollary 11.2), Equation 4.4 simplifies to

[[[
· · ·
[[[[

D̃, fi+1

]
, fi+1

]
, . . . , fi+1

]
, g1

]
, g2

]
. . . ,

]
, gM−J

]
∈ K(x1, . . . , xi+1)

× (4.5)

where the number of fi+1’s in the expression is c. This equation is the commutator of D̃ with

M − J + c elements of K(x1, . . . , xi). Hence, Equation 4.5 equals

[[[· · · [[[[D, fi+1] , fi+1] , . . . , fi+1] , g1] , g2] . . . , ] , gM−J ] (4.6)
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Each fi+1 is a polynomial of degree at least qi+1, hence the order of [D, fi+1] is at most

N − qi+1. Therefore the order of the differential operator in Equation 4.6 is at most N −

cqi+1 − (M − J) = N −M . The iterative commutator is a differential operator of order 0 by

construction, hence N = M and the order of D̃ equals the order of D.

Let A be a ring of characteristic p > 0 and B a commutative A-algebra. Define

AB/A, i = {D ∈ Diffp
i

AB : ∀j ≤ i, D(Bpj ) ⊆ Bpj}.

Note that AB/A, i is a Bpi-subalgebra of Diffp
i

AB. As an example, let L/K be a modular field

extension with a p-basis {x1, . . . , xn} such that exp[xi : K] > 1 for each 1 ≤ i ≤ n. AL/K, 1

consists of all differential operators of order ≤ 1 which map Lp → Lp. Hence AL/K, 1 =

Lp
⊕

DerKL
n⊕
i=1

Lp
(
d

dxi

)[p]

. Also, since

(
d

dxi

)[i]

(Lp) = 0 for i < p,

AL/K, 2 = Lp
2

⊕
0<i1+···in<p

L

(
d

dx1

)[i1]

· · ·
(

d

dxn

)[in] n⊕
j=1

Lp
(

d

dxj

)[p] n⊕
i=1

Lp
2

(
d

dxi

)[p2]

.

These subalgebras may be complicated to describe in general, but note that the symbol of A〉

kills all direct summands except for the top degree differential operators. The Ai, not the

symbol algebra, are necessary to study differential operators for modular extensions.
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Theorem 49. Let L/K be a finite purely inseparable extension of exponent e. Then L/K is

modular if and only if for all 0 < i ≤ e − 1, the multiplication homomorphism L ⊗
Lpi
Ai →

Diffp
i

KL is a surjection. That is, for each i, AL/K, i spans Diffp
i

KL as an L subspace.

Proof. Let AL/K, i be denoted Ai in this proof. Suppose L/K is a modular extension. By

definition there exist {x1, . . . xn} ⊂ L such that L ∼=
n⊗
i=1

K(xi). Then

DiffKL ∼=
n⊗
i=1

DiffKK(xi). (4.7)

Now, if li = exp [xi : K], then DiffKK(xi) is generated as aK(xi)-algebra by

{(
d

dxi

)[pk]
}

0≤k<li

.

Hence, by the isomorphism in Equation 4.7, any D ∈ DiffKL is a linear combination over L of

differential operators of the form

Da1,...,an :=

(
d

dx1

)[a1]

· · ·
(

d

dxn

)[an]

where 0 ≤ ai < li. Da1,...,an ∈ Ai if and only if a1 + · · · + an ≤ pi. Thus every D ∈ Diffp
i

KL is

the sum of elements in Ai. Hence Ai spans Diffp
i

KL.

Now suppose L/K is not a modular extension. We will find elements a, b ∈ L with a ∈ Lpi

and b ∈ Lpj and a differential operator D ∈ Diffp
l

KL, i, j ≤ l that satisfy the following properties:

D is not the sum of products of differential operators of lower order, D(a) ∈ Lpi , and D(b) /∈ Lpj .

This operator D will then not be spanned by Al.
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By Theorem 46, it is possible to construct a Pickert Generating Sequence {x1, . . . , xn}

with e1 ≥ e2 ≥ · · · ≥ en, the intrinsic non-increasing sequence of exponents. Since L/K is

not modular, by Proposition 42 there exists an integer i satisfying exp [xi : K(x1, . . . , xi−1] 6=

exp [xi : K], and xi has a structure equation with coefficients which are not in Lp
ei .

Let z := xi be the first such element in the Pickert Generating sequence to exhibit this

property. Set q = pei and let zq = f(xq1, . . . , x
q
i−1) be the structure equation of z. Since zq /∈ K,

f is neither constant nor does the degree of every xqj in the polynomial exceed pe/ei .

The polynomial f must have at least two terms with coefficients which are not qth powers

in L. That is, suppose αxqa11 . . . x
qai−1

i−1 is the only summand of f with α ∈ K \Lq. Then solving

the structure equation of z for α, we get

α =
zq − f(xq1, . . . x

q
i−1) + αxqa11 . . . x

qai−1

i−1
xqa11 . . . x

qai−1

i−1
.

The right-hand side is a qth power in L, which contradicts α /∈ Lq.

Thus, at least two of the coefficients of terms of f are not in Lq. Let C denote the set of all

such monomials of f . C has at least two elements, so f must have K-independent summands

axqa11 · · ·xqai−1

i−1 and bxqb11 · · ·x
qbi−1

i−1 where a and b are not in Lq and aj , bj < pej−ei for all

1 ≤ j ≤ i − 1. At least one of the xj must have different degrees in these summands or else

they are not linearly independent. Suppose without loss of generality that x1 is the element
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with a1 6= b1 and that b1 is the largest such exponent of xq1 for such an element of C. Define Q

as the largest power of p which is ≤ qb1. Set

f(xq1 . . . , x
q
i−1) =

∑
0≤jk<pek−ei

αj1,...,ji−1x
qj1
1 · · ·x

qji−1

i−1

Now,

(
d

dx1

)[Q]

is a differential operator on K(x1, . . . , xi−1) =

i−1⊗
j=1

K(xj) over K of order

Q. By Lemma 48, we can extend

(
d

dx1

)[Q]

to a differential operator D ∈ DiffKK(x1, . . . , xi)

of order Q. By induction on i we can extend D in this manner to a differential operator on

L. Call D̃ the extension of

(
d

dx1

)[Q]

to L. Gerstenhaber (9) calls D̃ the normal extension of(
d

dx1

)[Q]

, which is a differential operator of order Q by Lemma 48.

So,

D̃(zq) = D
(
f(xq1, . . . , x

q
i−1)

)
=

(
d

dx1

)[Q]
 ∑

0≤jk<pek−ei
αj1,...,ji−1x

qj1
1 · · ·x

qji−1

i−1


=

∑
0≤jk<pek−ei

αj1,...,ji−1

(
qj1
Q

)
(x1)

qj1−Q(xq2)
j2 · · · (xqi−1)

ji−1

This last sum is not zero because, by the choice of x1, f has at least one nonzero term

with the degree of xq1 greater than 0. Additionally, by the choice of Q,

(
qj1
Q

)
6= 0 for some j1

(1, p.577). Likewise, the sum is not a qth power in L, because at least one of the coefficients

αj1,...,ji−1 is neither a qth power in L nor the coefficient of a term which vanishes by D̃. Therefore,
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D̃(zq) /∈ Lq but D̃(xQ1 ) = 1 ∈ LQ. Since

(
d

dx1

)[Q]

is not the product of differential operators of

lower order in DiffKK(x1, . . . , xi−1), then D̃ is not the product of differential operators of lower

order either. Therefore, D̃ is not in the L-span of Ai for any i and the theorem is proven.

An immediate corollary of the theorem is

Corollary 50. Let L/K be as in the theorem. Let D be the subalgebra of DiffKL generated by

the Ai. Then D is the largest subalgebra of DiffKL such that L/LD is a modular extension.

Thus L/K has a minimal intermediate subfield E with L/E modular, which is also the the

subfield of constants of HDerKL. We remark that the relationship between Theorem 49 above

and the reformulation of the Sweedler Diagram using modules of differentials presented in

Theorem 30 from Chapter 2 is unclear.

We finish this chapter by interpreting Example 4.3.3 in light of Theorem 49. Recall L =

k0(X, U, Z), K = k0(X, U
p2 −XZp, Zp2) and K ′ = k0(X, U

p3 , Zp). DiffKL is generated over

L by ∂U , ∂Z , ∂
[p]
U , and D where σ(D) = X∂

[p2]
U . DiffK′L is generated over L by ∂U , ∂Z , ∂

[p]
U ,

and ∂
[p2]
U . L/K ′ is modular, and

AL/K′, 0 = L

AL/K′, 1 = Lp
⊕

0<i1+i2<p

L∂
[i1]
U ∂

[i2]
Z

⊕
Lp∂

[p]
U

AL/K′, 2 = Lp
2

⊕
0<i1+i2<p

L∂
[i1]
U ∂

[i2]
Z

⊕
Lp∂

[p]
U

⊕
Lp

2
∂
[p2]
U

Note that AL/K′, 2 generates DiffK′L over L.
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For L/K,

AL/K, 0 = L

AL/K, 1 = Lp
⊕

0<i1+i2<p

L∂
[i1]
U ∂

[i2]
Z

⊕
Lp∂

[p]
U

AL/K, 2 = Lp
2

⊕
0<i1+i2<p

L∂
[i1]
U ∂

[i2]
Z

⊕
Lp∂

[p]
U

The differential operator D is not in any of these subsets of DiffKL because D(Zp) = 1 ∈ Lp

and D(Up
2
) = X /∈ Lp

2
, demonstrating that L/K is not modular. Note that for L/K, the

homomorphism defined in Theorem 49 is surjective for 0 ≤ i < 2, which are the degree for

which AL/K, i agrees with AL/K′, i.



CHAPTER 5

FUNDAMENTAL FORMS

So far our search for Galois correspondences for purely inseparable extensions has focused

on finding correspondences to intermediate subfields which are the base fields of modular exten-

sions. The Jacobson-Bourbaki Theorem (Theorem 13) does not pick out modular intermediate

subfields in particular, but as we have seen from the previous chapter, the filtration of the

ring of differential operators of a purely inseparable extension provides some information on

the field extension as well as its lattice of subfields. To each intermediate subfield of E′ of

E/F , Gerstenhaber (9) associates the top degree subspace of the symbol algebra of E/E′. This

subspace will be 1-dimensional, and Gerstenhaber calls a nonzero element of this subspace the

fundamental form. Because the choice of such an element is not canonical, we will call the

entire subspace the fundamental form instead.

Gerstenhaber proves that every intermediate subfield of the finite purely inseparable exten-

sion E/F corresponds to a factor of a nonzero element of the fundamental form of E/F in the

divided powers algebra Γ∗ (DerFE). His goal was to find criteria for when a subspace of the

symbol algebra of E/F is the fundamental form of an intermediate subfield. He was mostly un-

successful in this goal, mainly because every element of the symbol algebra is nilpotent, making

the factorization of elements non-unique. In this chapter we will give an explicit construction

of the fundamental form for a finite purely inseparable extension. Also, in a simple case, we

81



82

will present criteria using the Poisson structure on the symbol algebra for when a subspace of

the symbol algebra is the fundamental form of an intermediate extension.

5.1 Differential Operators and Symmetric Multiderivations

Let k be a field andA a commutative k-algebra. Define Cn(A, A) := Homk(A⊗k · · · ⊗k A︸ ︷︷ ︸
n

, A).

For any f ∈ Cn(A, A) and for all a0, . . . an ∈ A, define ∆ : Cn(A, A)→ Cn+1(A, A) as

∆(f)(a0, . . . , an) = a0f(a2, . . . an)− f(a0a1, a2, . . . , an) + a1f(a0, a2, . . . , an). (5.1)

Restrict to the submodule Y n ⊆ Cn(A, A) of maps from A⊗k · · · ⊗k A︸ ︷︷ ︸
n

to A which factor

through Symn
k(A). Clearly EndkA = Y 1, and by a basic combinatorial argument (9, p. 167),

for any D ∈ EndkA and a0, . . . , an ∈ A,

∆nD(a0, a1, . . . , an) =
n∑
s=0

(−1)s−1
∑

i1<i2<...is

ai1ai2 · · · aisD (a1 · · · âi1 · · · âis · · · an) .

The right-hand side is symmetric with respect to the ai, and appears in Equation 4.1 as well

as in Nakai (17, p.3), where he proves the above equation equals

[[· · · [D, a1] , a2] , · · · , an] (a0).

Hence by Definition 36, ∆nD = 0 if and only if D is a differential operator of A/k of order ≤ n.

Note also that if n is the minimal integer for which ∆nD = 0, then ∆
(
∆n−1D

)
= 0. Equa-



83

tion 5.1 and the fact that ∆n−1D ∈ Y n imply that ∆n−1D is a symmetric k-multilinear homo-

morphism An → A which acts as a derivation in every coordinate. That is, for all aj , bi, ci ∈ A,

∆n−1D(a0, . . . , bici, . . . an) = bi∆
n−1D(a0, . . . , ci, . . . an) + ci∆

n−1D(a0, . . . , bi, . . . an).

Gerstenhaber calls such a map an (n+ 1)-symmetric k-multiderivation and denotes the set

of such maps SDern+1
k A. Note that SDernkA has a left A-module structure induced from the

A-module structure on Cn+1(A, A).

It is important to notice that an n-symmetric multiderivation of A/k is nothing more an

than element of
(

Symn
(

Ω1
A/k

))∨
. Thus, if DerkA is a finite rank projective A-module, it was

noted in Section 4.2 that
(

Sym∗
(

Ω1
A/k

))∨ ∼= Γ∗(DerkA).

Furthermore, it is an observation of Narváez Macarro (18, p.2992) that Γ∗(DerkA) is iso-

morphic to the A-module

∞⊕
i=0

SDerikA (setting SDer0kA = A). In fact,

∞⊕
i=0

SDerikA has a graded

A-algebra structure which makes the module isomorphism an isomorphism of graded A-algebras:

Let f ∈ SDernkA and g ∈ SDermk A. Then for any a1, . . . , am+n ∈ A,

(f ? g) (a1, . . . , am+n) =
∑
J

f(aJ)g(aJc)

where J runs over all cardinality m subsets of {a1, . . . , am+n} and Jc is the complement of J

in {a1, . . . , am+n}.

The homomorphism θ : Gr•DiffkA→ Γ∗(DerkA) defined in Section 4.2 is an injection, and

for any D ∈ DiffnkA, θ(σ(D)) = ∆n−1D where ∆n−1D is viewed as an element in Γ∗(DerkA) by
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the isomorphism noted above. Thus the following discussion of Gerstenhaber’s ideas will adopt

the standard notations of divided powers rings instead of symmetric multderivations.

5.2 Fundamental Forms of Purely Inseparable Extensions

Definition 51. Let k be a field and A a commutative k-algebra. Suppose there exists a minimal

positive integer m such that for all m′ > m, Grm
′
DiffkA = 0. If GrmDiffkA is a free A-module

of rank 1, then GrmDiffkA is called the fundamental form of A/k and is denoted Γ(A/k).

Let L/K be a purely inseparable extension of fields of characteristc p > 0 with exponent

e. Suppose a p-basis of L/K contains only one element. Then L = K(x) for some x ∈ L and

exp[x : K] = e. The fundamental form of L/K exists and is simple to construct based on the

calculation of the ring of differential operators from Example 4.3.1:

Γ(L/K) = L · σ

((
d

dx

)[pe−1]
)
.

Suppose that L/K is again a finite purely inseparable extension of fields of characteristic

p > 0, but with a p-basis of cardinality larger than 1. By the framework laid out in the previous

example, we use Lemma 48 again to explicitly construct the fundamental form of L/K. Let

{x1, . . . , xn} be a Pickert generating sequence of L/K with corresponding exponent sequence

e1 ≥ e2 ≥ · · · ≥ en. Consider the filtration of L

K ⊂ K(x1) ⊂ K(x1, x2) ⊂ · · · ⊂ K(x1, . . . , xn) = L.
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From above, Γ(K(x1)/K) is the L-vector space generated by the symbol ofD1 :=
(

d
dx1

)[pe1−1]
.

Let D̃1 be the differential operator in DiffKK(x1, x2) which extends D1 as described in Lemma

48. Then

Γ(K(x1, x2)/K) = L · σ

(
D̃1

(
∂

∂x2

)[pe2−1]
)
.

Generalizing this construction, set Di =

(
∂

∂xi

)[pei−1]
∈ DiffK(x1,...,xi−1)K(x1, . . . , xi). Then

the normal extension D̃i ∈ DiffKL extends Di as described in Theorem 49. Therefore

Γ(L/K) = L · σ
(
D̃1D̃2 · · · D̃n

)
. (5.2)

If D, E ∈ Γ∗(DerKL), then D divides E if there exists G ∈ Γ∗(DerKL) such that DG = E.

As discussed in 4.2, every element in Gr•DiffKL is nilpotent of order at most p. Thus, a

factorization of an element of Gr•DiffKL will not necessarily be unique.

Let k be a field of characteristic p > 0 and supposeK and L are purely inseparable extensions

of k such that k ⊆ K ⊆ L. Then Γ∗(DerKL) ⊆ Γ∗(DerkL) and the following question arises:

How does Γ(L/K) relate to Γ(L/k)?

Theorem 52. (9, Main Theorem) Let k ⊆ K ⊆ L be fields as described above. Then for all

γ ∈ Γ(L/K) and γ′ ∈ Γ(L/k) with γ 6= 0, γ divides γ′.

Sketch. We only sketch the proof, noting that it requires the existence of extensions of differ-

ential operators like we proved in Lemma 48 and Theorem 49, but does not require knowing

the order of the extension. After choosing Pickert generating sequences for L/K and K/k,
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let B be the dual basis of L/K determined by the generating sequence for L/K and let B′

be the dual basis of K/k determined by the generating sequence for K/k. Then there exist

f ∈ B ⊂ DiffKL and h ∈ B′ ⊂ DiffkK such that Γ(L/k) = L · σ
(
fh
)

where h is the normal

extension of h to DiffkL. Hence σ(f) ∈ Γ∗(DerkL) is an element of the fundamental form of

L/K, and σ(f)|Γ(L/k).

5.3 Examples of Fundamental Forms

Using the results from Chapter 4 regarding rings of differential operators of purely insepa-

rable extensions, it is fairly easy to compute the fundamental form of an extension.

5.3.1 Example 1

Let k0 be a perfect field of characteristic p > 0 and suppose X and Y are algebraically inde-

pendent over k0. Suppose L = k0(X, Y ) andK = k0(X
p, Y p). Then Γ(L/K) =

(
∂

∂X

)[p−1]( ∂

∂Y

)[p−1]
.

Suppose K ′ is an intermediate subfield of L/K. If K ′ 6= L and K 6= K ′, then L/K ′ is a purely

inseparable extension of degree p and exponent 1. Hence, by Theorem 21, DerK′L is a p-Lie

subalgebra of DerKL which must have dimension 1 over L. For some a, b ∈ L, let

D = a
∂

∂X
+ b

∂

∂Y

be a generator for DerK′L. Then Dp−1 is a differential operator in DiffK′L of order ≤ p − 1,

which can be written as a sum

∑
0≤i+j≤p−1

cij

(
∂

∂X

)i( ∂

∂Y

)j
. (5.3)
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The L-vector space generated by the symbol of this differential operator is Γ(L/K ′). Thus,

L ·

 ∑
i+j=p−1

cij

(
∂

∂X

)i( ∂

∂Y

)j = Γ(L/K ′).

It is straightforward to show that
∑

i+j=p−1
cij

(
∂

∂X

)i( ∂

∂Y

)j∣∣∣∣∣∣Γ(L/K): Since
∂

∂X
and

∂

∂Y

are nilpotent of order p in Γ∗(DerKL), for any pair (m, n) such that cmn 6= 0,

(
∂

∂X

)p−1−m( ∂

∂Y

)p−1−n
Γ(L/K ′) = cmn

(
∂

∂X

)p−1( ∂

∂Y

)p−1
∈ Γ(L/K).

Hence the fundamental form of L/K ′ divides the fundamental form of L/K. In fact, any

element of Γ∗(DerKL) which is of the form shown in Equation 5.3 will divide Γ(L/K), whether

it is an element of the fundamental form of an intermediate subfield of L/K or not.

5.3.2 Example 2

Using the notation from Example 4.3.2, DiffKL is generated as an L-algebra by ∂U , ∂Z ,

and X∂
[p]
U + ∂

[p]
Z . Up to scalar multiple, the largest order differential operator of DiffKL is

∂
[p−1]
U ∂

[p−1]
Z

(
X∂

[p]
U + ∂

[p]
Z

)[p−1]
, which is equal to

∂
[p−1]
U ∂

[p−1]
Z

(
Xp−1∂

[p2−p]
U +Xp−2∂

[p2−2p]
U ∂

[p]
Z + · · ·+ ∂

[p2−p]
Z

)
.

The L-vector space generated by the symbol of this operator is Γ(L/K). Letting K ′ =

k0(U
p, Zp), then Γ(L/K ′) = L ·

(
∂
[p−1]
U ∂

[p−1]
Z

)
, which clearly divides Γ(L/K).
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5.3.3 Example 3

It is not true that distinct intermediate subfields must have distinct fundamental forms. Let

k0 be a perfect field of characteristic p > 0 with X, U, and Z algebraically independent over

k0. Define the fields

L = k0(X, U, Z)

K ′ = k0(X, U
p3 , Zp)

K ′′ = k0(X, U
p2 −XZp, Zp2)

K0 = k0(X, U
p3 , Zp

2
).

Suppose S ⊂ DiffL. Let L 〈S〉 denote the L-subalgebra of DiffL generated by S. Using the

notation from the example in 4.3.3,

DiffK′L = L
〈
∂U , ∂Z , ∂

[p]
U , ∂

[p2]
U

〉
DiffK′′L = L

〈
∂U , ∂Z , ∂

[p]
U , X∂

[p2]
U + ∂

[p]
Z

〉
DiffK0L = L

〈
∂U , ∂Z , ∂

[p]
U , ∂

[p]
Z , ∂

[p2]
U

〉

Thus Γ(L/K ′) = Γ(L/K ′′) = L ·
(
∂
[p2−1]
U ∂

[p−1]
Z

)
, which shows different intermediate subfields

may have the same fundamental form. In general, factors of a generator of the fundamental

form classify families of intermediate fields.
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5.3.4 Example 4

In certain cases these families of intermediate fields can be explicitly described. Let k0 be

a perfect field of characteristic p > 0 with X and Y algebraically independent over k0. Define

L = k0(X, Y ) and K = k0(X
p2 , Y p). L/K is a modular field extension of exponent 2 and degree

p3. Suppose α ∈ L such that αp ∈ K. Then K(α) is a purely inseparable extension of K of

exponent 1 and L/K(α) is purely inseparable of degree p2. Assume also that K(α) 6= k0(X
p).

Then X is an element of a p-basis for L/K(α). Since Xp /∈ K(α) and Xp2 ∈ K(α), then

exp[X : K(α)] = 2, hence X generates L over K(α). Thus

Γ (L/K(α)) = L ·
(
d

dX

)[p2−1]
, (5.4)

where
d

dX
∈ DerKL. Just as in the previous example, there are many intermediate fields with

this fundamental form. For instance, L/K(Xp+Y ) and L/K(3Xp+2Y ) have the fundamental

form above. In general, for any polynomial f(Xp) over K, L/K(Y + f(Xp)) will have this

fundamental form.

On the other hand, if K(α) = k0(X
p), then X cannot generate L/K(α). Hence L/K(α) =

K(α)(X, Y ), which is a modular extension of exponent 1. In this case,

Γ (L/K(α)) = L ·
(
∂

∂X

)[p−1]( ∂

∂Y

)[p−1]
, (5.5)
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where
∂

∂X
,
∂

∂Y
∈ DerKL. Thus, the fundamental form in Equation 5.4 corresponds to a

family of intermediate subfields which can be explicitly descibed, while the fundamental form

in Equation 5.5 corresponds to a unique intermediate subfield

5.4 Fundamental Forms of Exponent 1 and Degree p2 Extensions

Studying the case of purely inseparable extensions of exponent 1 demonstrates the compli-

cations that can arise in devising a Galois correspondence using fundamental forms. Adopt the

notation of Example 5.3.1 above. Since every element in Γ∗ (DerKL) is nilpotent, any element

of this ring of the form
∑

0≤i+j≤p−1
cij

(
∂

∂X

)i( ∂

∂Y

)j
divides Γ(L/K) where cij ∈ L. The main

question we seek to answer is which factors of a generator of Γ(L/K) correspond to intermediate

subfields by Theorem 52?

Any proper intermediate subfield K ′ of L/K has the property that L/K ′ is purely insepa-

rable of exponent 1. Thus, by Theorem 21, DiffK′L is generated by an element of DerK′L ⊆

DerKL.

DerKL is an L-vector space of dimension 2, so there exist a, b ∈ L such that the L-vector

space generated by the symbol of

(
a
∂

∂X
+ b

∂

∂Y

)p−1
is the fundamental form Γ(L/K ′), where

∂

∂X
and

∂

∂Y
form an L-basis of DerKL. If a or b is 0, then the fundamental form is either

L

(
∂

∂X

)[p−1]
or L

(
∂

∂Y

)[p−1]
, and we omit these cases for the rest of the discussion. The

computation

(
a
∂

∂X
+ b

∂

∂Y

)[p−1]
is straightforward, so that

σ

((
a
∂

∂X
+ b

∂

∂Y

)p−1)
=

p−1∑
i=0

aibp−1−i
(
∂

∂X

)i( ∂

∂Y

)p−1−i
.
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Therefore, for an element of Γ∗ (DerKL) to be the generator of a fundamental form of L/K ′,

it is necessary that

Γ(L/K ′) =

p−1∑
i=0

ci

(
∂

∂X

)i( ∂

∂Y

)p−1−i

satisfying

c0
c1

=
c1
c2

= · · · = cp−2
cp−1

. (5.6)

Fixing a basis for DerKL, view the space of 1-dimensional subspaces of DerKL as the

projective line P1
L. Likewise, fixing the same basis, 1-dimensional subspaces of Grp−1 (DiffKL)

are parameterized by points of PpL. Therefore, in order for a point q ∈ PpL to represent the

fundamental form of L/K ′ for some intermediate subfield K ′, it is necessary that q lies in the

(p− 1)-uple Veronese embedding from P1
L to PpL (23, §4.4).

Once a basis of DerKL is chosen and it is determined that an element of Γ∗ (DerKL) is

the image of the (p − 1)st-power of the symbol of a derivation, it then suffices to show that

the L-vector space generated by this derivation is closed under pth powers. This sufficiency

follows from Theorem 21, since intermediate subfields of L/K are in 1− 1 correspondence with

restricted p-Lie subalgebras of DerKL. Thus, for any intermediate subfield K ′ of L/K, DerK′L

is a 1-dimensional vector space over L with a basis {D} ⊂ DerKL such that Dp = aD for some

a ∈ L.

Let γ ∈ Γ∗ (DerKL). Using the terminology of fundamental forms, if γ divides a generator

of Γ(L/K) and there exists a derivation D ∈ DerKL with Dp = aD such that γ = σ
(
Dp−1)
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(possibly up to rescaling by an element of L), then there exists an intermediate subfield K ⊆

K ′ ⊆ L such that L · γ = Γ(L/K ′). Our final goal, then, is to describe this p-closure using the

element γ. We first require the following lemma:

Lemma 53. Let k be a field of characteristic p > 0 and suppose K/k is a purely inseparable

field extension. Suppose {X1, . . . , Xn} ⊂ K are p-independent over k and ∂i :=
∂

∂Xi
. For any

a1, . . . , an ∈ K, if D = a1∂1 + · · · an∂n, then

(a1∂1 + · · · an∂n)p = Dp−1(a1)∂1 + · · ·+Dp−1(an)∂n.

Proof. The ∂i are commuting K-linearly independent derivations such that ∂pi = 0 for each i.

For each j < p, it can be verified by induction that Dj = Dj−1(a1)∂1+· · ·Dj−1(an)∂n+Ej where

Ej is a sum of differential operators of the form c∂j11 · · · ∂
jn
n where c ∈ K and 1 < j1+· · ·+jn ≤ j.

Since Dp must be a derivation by Proposition 18 and each ∂i is nilpotent of order p, then Ep = 0

and the lemma is proven.

Return to the notation preceding the lemma and suppose D = a
∂

∂X
+ b

∂

∂Y
is a derivation

of DerKL with a, b ∈ L. Then the subspace of DerKL generated by D is closed under pth

powers if and only if there exists an η ∈ L such that Dp = ηD, or

Dp−1(a)
∂

∂X
+Dp−1(b)

∂

∂Y
= ηa

∂

∂X
+ ηb

∂

∂Y
. (5.7)

∂

∂X
and

∂

∂Y
are linearly independent over L, hence Equation 5.7 is satisfied if and only if
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Dp−1(a)

a
=
Dp−1(b)

b
(5.8)

holds.

Lemma 54. Let k be a field of characteristic p > 0 and K/k a purely inseparable field extension.

Suppose D ∈ DerkK and denote D[p−i] = 1
(p−i)!D

p−1 for 0 < i ≤ p. Then for any α ∈ K

{
σ
(
D[p−1]

)
,
{
σ
(
D[p−1]

)
, α
}}

= σ
(
D[p−1](α)D[p−1]

)
,

where the curly brackets denote the Poisson bracket defined at the end of Section 4.1.

Proof. Note that σ
[
D[p−1], α

]
= σ

(
D(α)D[p−2]). Then

σ
([
D[p−1], D(α)D[p−2]

])
= σ

(
D[p−1]

(
D(α)D[p−2]

)
−D(α)D[p−2]D[p−1]

)
= σ

(
p−1∑
i=1

D[i] (D(α))D[p−1−i]D[p−2]

)

Dp ∈ Gr1DiffKL, so Dp+i ∈ GriDiffKL for any integer 0 ≤ i < p. Hence the symbol of the last

term above is D[p−2]D(α)DD[p−2] = (p− 1)2D[p−1](α)D[p−1] = D[p−1](α)D[p−1].

We can now state the full result:
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Theorem 55. Let K be a field of characteristic p > 0 and suppose L/K is a purely inseparable

extension of exponent 1 and degree p2. Let {X, Y } be a p-basis for L/K and

{
∂

∂X
,
∂

∂Y

}
the

corresponding L-basis for DerKL. Also, for c0, . . . , cp−1 ∈ L, let

γ = c0

(
∂

∂X

)p−1
+ c1

(
∂

∂X

)p−2( ∂

∂Y

)
+ · · · cp−1

(
∂

∂Y

)p−1

be the corresponding nonzero element of Γ∗ (DerKL). Then there exists a proper intermediate

subfield K ⊂ K ′ ⊂ L such that γ ∈ Γ(L/K ′) if and only if one of the following two cases is

satisfied:

1. c0 = c1 = · · · = cp−2 = 0 or c1 = c2 = · · · = cp−1 = 0

2. All ci are nonzero,
c0
c1

= · · · = cp−2
cp−1

, and

{
c−10 γ,

{
c−10 γ,

ci
ci+1

}}
= 0 for any and all i.

Proof. The first case of the theorem is obviously true from the discussion regarding Equation 5.6.

For the second case, it was shown in the same equation that the quotients
ci
ci+1

are equal if and

only if γ is a multiple of Dp−1 ∈ Γ∗ (DerKL) for some D ∈ DerKL. Call this quotient c. If γ is

such a multiple, then c−10 γ is the (p− 1)st power of the derivation D′ =
∂

∂X
+ c

∂

∂Y
. It has also

been established that the submodule of derivations generated by D′ is closed under pth powers

if and only if

D′p−1(1)

1
=
D′p−1(c)

c
.

The left-hand side of this equation is 0, hence D′p−1(c) = 0. By Equation 5.8, D′p−1(c) = 0 is

equivalent to the equation
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{
σ(D′p−1),

{
σ(D′p−1), c

}}
= 0,

which agrees with the statement made in the theorem. Finally, D′ is a scalar multiple of D,

and if D′ is closed under pth powers then D must be as well by the Hochschild formula (16,

Theorem 25.5).

It is difficult to expand the result of Theorem 55 to purely inseparable extensions of expo-

nent greater than 1. Additionally, suppose L/K is a purely inseparable extension of fields of

characteristic p > 0 and exponent 1 with a p-basis consisting of more than 2 elements. The

computations for determining whether a factor of a generator of Γ(L/K) generates the funda-

mental form for an intermediate subfield become much more complicated than the conditions

provided in Theorem 55. This is because if a restricted sub-Lie algebra of a purely inseparable

extension L/K has dimension over L greater than 1, it is no longer necessary that the pth

power of a derivation be a scalar multiple of that same derivation. This subtlety involving

the pth powers of differential operators is a major stumbling block to finding nice criteria for

when elements of the divided powers algebra of derivations generate fundamental forms for

intermediate subfields.
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18. Luis Narváez Macarro, Hasse-Schmidt derivations, divided powers and differential smooth-
ness, Ann. Inst. Fourier (Grenoble) 59 (2009), no. 7, 2979–3014.

19. Richard Rasala, Inseparable splitting theory, Trans. Amer. Math. Soc. 162 (1971), 411–448.
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