
Adversarial Prediction Framework

for Information Retrieval and Natural Language Processing Metrics

BY

HONG WANG
B.E., Nanjing University of Posts and Telecommunications, 2008

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois at Chicago, 2017

Chicago, Illinois

Defense Committee:
Brian D. Ziebart, Chair and Advisor
Barbara Di Eugenio
Bing Liu
Xinhua Zhang
Dan Roth, University of Illinois at Urbana-Champaign

Copyright by

HONG WANG

2017

ACKNOWLEDGMENTS

First of all, I would like to express my gratitude to my Ph.D. advisor Professor Brian D.

Ziebart. Professor Ziebart is a wise, patient, and kind person, like a big brother in the family

that gives his genuine guidances, advices, and supports to me and all the other students in the

lab. He led me into the field of Machine Learning, and encourages me to work on the topic of

this dissertation. Without his guidances, this dissertation would not have been possible.

I also want to thank my former advisor Professor Clement T. Yu. Before his retirement, I

got the chance to learn the knowledges in Information Retrieval and its related areas from him.

Those knowledges motivate the study of this dissertation. And most of all, I learned a rigorous

scholarship attitude from him that will last a lifetime.

I thank Professor Barbara Di Eugenio for her consistent kind help during my Ph.D. study.

We knew each other when I was a student in her Natural Language Processing class. And

I feel very fortunate to have been her Teaching Assistant of that class. Those experiences

enriched my background in the field of Natural Language Processing. I appreciate the chat and

encouragement she gave me during the difficult time when switching my research focus to the

area of Machine Learning.

I also thank the rest of my thesis committee: Professor Bing Liu, Professor Xinhua Zhang,

and Professor Dan Roth for their valuable advices to my dissertation.

I want to thank all my colleagues and friends here in Chicago. It is my pleasure to know

them and spend the enjoyable six years with them together.

iii

ACKNOWLEDGMENTS (Continued)

Lastly, I would like to thank my family. I thank my parents for bringing me to this world,

giving their endless loves, providing their bests to support me for pursuing more and more

achievements in my life. I thank my aunt and uncle who live in the Chicago area. It is because

of them, I could enjoy a very comfortable and convenient life in this foreign land. Qi, my cousin,

I appreciate not only everything he helped me during these years in the United States, but also

his cares as my big brother ever since I remember. I want to thank my girlfriend, Xinyi. It is

my great fortune to know her in this country far from our homeland. My life becomes more

enjoyable and more exciting after I met her. I thank for her understanding, encouragement,

support, and love to me.

HW

iv

CONTRIBUTION OF AUTHORS

This thesis contains materials from a published work (1), for which I am the primary

author. Wei Xing contributed the best response algorithm for discounted cumulative gain, and

conducted its corresponding experiments. The Linear Programming for solving zero-sum games

was revised and reimplemented based on Kaiser Asif’s MATLAB version that he used in his

publication (2). My advisor Professor Brian D. Ziebart contributed to discussions with respect

to the work, and assisted me in writing the manuscript.

v

TABLE OF CONTENTS

CHAPTER PAGE

1 INTRODUCTION . 1
1.1 Notations . 4

2 BACKGROUND AND RELATED WORK 5
2.1 Empirical Risk Minimization . 6
2.2 Logistic Regression . 7
2.2.1 Modeling . 7
2.2.2 Parameter Estimation . 8
2.3 Conditional Random Fields . 9
2.3.1 Linear-chain CRFs Modeling . 10
2.3.2 Relation to Logistic Regression 11
2.3.3 Parameter Estimation . 11
2.3.4 Inference . 13
2.4 Support Vector Machines . 14
2.4.1 Separable Case Modeling . 14
2.4.2 Non-separable Case Modeling 15
2.4.3 Parameter Estimation . 16
2.5 Structured Support Vector Machines 19
2.5.1 Separable Case Modeling . 19
2.5.2 Non-separable Case Modeling 20
2.5.3 Parameter Estimation . 21
2.6 Two-player Zero-sum Game . 24
2.6.1 Definition . 24
2.6.2 Zero-sum Game Solving . 26
2.7 Fisher Consistency . 28

3 MULTIVARIATE PREDICTION GAME 29
3.1 Introduction . 30
3.2 Architecture . 32
3.3 Modeling . 35
3.4 Example Multivariate Prediction Games and Small-scale So-

lutions . 38
3.4.1 Example Multivariate Metrics 38
3.4.2 Example Game Payoff Matrices 40
3.5 Large-scale Strategy Inference 42
3.6 Parameter Estimation . 45
3.7 Finding The Best Response . 46

vi

TABLE OF CONTENTS (Continued)

CHAPTER PAGE

4 METRICS, BEST RESPONSE ALGORITHMS 48
4.1 Metrics in Information Retrieval and Natural Language Pro-

cessing . 49
4.1.1 Hamming Loss, Accuracy . 49
4.1.2 F-score . 50
4.1.3 Precision at k . 52
4.1.4 Discounted Cumulative Gain . 53
4.1.5 Alignment Error Rate . 55
4.2 Best Response Algorithms . 58
4.2.1 Best Response for F1 Score . 59
4.2.2 Best Response for F1 Score with Multi-class Linear-chain Struc-

ture . 62
4.2.3 Best Response for Precision at k 66
4.2.4 Best Response for Discounted Cumulative Gain 68
4.2.5 Best Response for Alignment Error Rate 69
4.2.6 Best Response for Context-free Grammar Parsing 72

5 APPLICATIONS AND EXPERIMENTS 76
5.1 Binary Classification with F1 Score 77
5.2 Named-entity Recognition with F1 Score 79
5.3 Ranking with Precision at k and Discounted Cumulative Gain 81
5.4 Machine Translation with Alignment Error Rate 84
5.5 Syntactic Context-free Grammar Parsing with Hamming loss 87

6 CONCLUSION AND FUTURE PROSPECTS 89
6.1 Conclusion . 89
6.2 Future Prospects . 91

APPENDICES . 92

CITED LITERATURE . 94

VITA . 101

vii

LIST OF TABLES

TABLE PAGE
I The game payoff matrix between player Y̌ and player Ŷ . Each

player has three actions, where y̌i is an action that player Y̌ plays,
and ŷi is an action that player Ŷ plays. 24

II The game payoff matrix between player Y̌ and player Ŷ , where
player Y̌ has four actions, while player Ŷ has two. 25

III The payoff matrix for the zero-sum game between player Y̌ choos-
ing columns and player Ŷ choosing rows with three variables for
precision at k. 40

IV The payoff matrix for the zero-sum game between player Y̌ choos-
ing columns and player Ŷ choosing rows with three variables for F1.

. 41
V The payoff matrix for the zero-sum game between player Y̌ choos-

ing columns and player Ŷ choosing rows with three variables for DCG
with binary relevance values y̌i ∈ {0, 1}, accumulated at rank 3, and
we let lg 3 , log2 3. 42

VI Confusion matrix of a predictor. 50
VII Sequences of the gold standard (left) and the proposed (right)

source-target word alignments of the example in Figure 4. 57
VIII F1 score performances on OPTDIGITS and ADULT datasets. . . 78
IX The statistics of three linear-chain datasets. 80
X F1 scores of CRF and MPG on ‘testa’ and ‘testb’. 81
XI Precision@k score performances on OPTDIGITS and ADULT datasets. 82
XII MQ2007 NDCG results. 83
XIII AER of different models. 85
XIV Results for CFG parsing on the Penn Treebank. 87

viii

LIST OF FIGURES

FIGURE PAGE
1 Loss functions for binary classification. 7
2 Hinge losses with slack rescaling method (red) and margin rescaling

method (blue). 22
3 The architecture of Multivariate Prediction Game (MPG) framework. 32
4 The gold standard sequence alignment y (top) between English words

ei and French words fj , and the proposed sequence alignment a (bottom)
with AER of 5/13. Note that N tags are omitted in the figure for clarity. 56

5 An example of linear-chain structure, with k = 2, and the target
class C = LOC. Green links represent the chains with the target class
C, the others are links without it. 65

6 The parse tree (left) for the sentence “Margin debt was at a record
high,” and its corresponding binarized parse tree (right), where ‘@NP’
is a synthetic node added to make the tree binary. 72

7 The binarized parse table for the sentence “Margin debt was at a
record high.” The row number of a non-terminal symbol indicates the
rule’s start index of its span of words, while the column number indicates
its end index. 73

8 NDCG@k as k increases. 84

ix

SUMMARY

Many Information Retrieval (IR) and Natural Language Processing (NLP) tasks require

predicting structured objects (e.g., sequences, rankings, matchings, parse trees) that are evalu-

ated using F-score (i.e., the harmonic mean of precision and recall), precision at k (P@k, which

limits the number of positive predictions to k), discounted cumulative gain (DCG), alignment

error rate (AER), Hamming loss (i.e., accuracy) or other multivariate performance measures.

Due to the non-convexity of most of the multivariate performance metrics, and the compu-

tational intractability of optimizing empirical risk over those metrics (3), traditional Machine

Learning algorithms use convex surrogates (e.g., log-loss for Logistic Regression, hinge-loss for

Support Vector Machine) as the approximations for empirical risk optimization (4; 5; 6; 7; 8).

However, these approximations introduce a mismatch between the learner’s objective and the

desired application performance (9).

How can Machine Learning algorithms’ predictions be more closely aligned with application

performance measures in Information Retrieval and Natural Language Processing? In this

thesis, we focus on answering this question by building an adversarial prediction framework—

Multivariate Prediction Game (MPG)—for the metrics that are widely used in Information

Retrieval and Natural Language Processing areas. MPG treats the multivariate prediction as an

adversarial zero-sum game between a loss-minimizing prediction player and a loss-maximizing

evaluation player constrained to match specified properties of training data. By solving the

problem of effectively finding the best responses to the opponent’s strategies, and applying

x

SUMMARY (Continued)

the double oracle constraint generation method, the framework avoids the non-convexity of

empirical risk minimization, and more directly optimizes the metrics.

In this thesis, we first introduce the background of our research with its related works.

Then, the Multivariate Prediction Game framework is explained in detail. For each metric

of predicting structure, we give the corresponding algorithm for effectively finding the best

responses. Finally, the MPGs are evaluated on several widely used datasets in Information

Retrieval and Natural Language Processing areas to demonstrate their effectiveness.

xi

CHAPTER 1

INTRODUCTION

Statistical supervised machine learning methods are prevalently used in a wide range of

Information Retrieval (IR) and Natural Language Processing (NLP) tasks (10; 11; 12; 13; 14;

15; 16; 17; 18; 19). Those tasks require predicting structured objects (e.g., sequences, rankings,

matchings, parse trees) that are commonly evaluated using F-score (i.e., the harmonic mean of

precision and recall), precision at k (P@k, which limits the number of positive predictions to k),

discounted cumulative gain (DCG), alignment error rate (AER), Hamming loss (i.e., accuracy).

Unfortunately, it is computationally difficult to choose the model parameters that inductively

optimize these evaluation measures for many machine learning methods. This is due to the

non-concavity of evaluation measures for which maximization is desired or the non-convexity of

loss functions for which the empirical risk minimizer (ERM) is sought. Indeed, even the simple

zero-one loss (the classification accuracy) suffers from these computational difficulties; optimal

parameter optimization is generally NP-hard (3).

Existing approaches bypass the computational difficulties arising from non-convex loss func-

tions by replacing them with convex surrogates for which optimization is tractable. This can

be viewed as approximating the loss function and employing the exact training data. Many

common machine learning methods result from the empirical risk minimization of these convex

(surrogate) loss functions. Minimizing the logarithmic loss yields logistic regression and condi-

tional random fields (CRFs) (12). Minimizing the hinge loss of the training data yields support

1

2

vector machines (20) and structured support vector machines (21). The latter method extends

SVMs to multivariate settings with the added benefit of integrating different multivariate per-

formance measures into the hinge loss. Unfortunately, the mismatch that using a hinge loss

approximation introduces degrades predictive performance in both theory (i.e., inconsistency

(22)) and practice.

This thesis develops a method for taking the opposite approach to making predictions

by adversarially approximating the training data and optimizing the exact evaluation metrics

that commonly used in IR/NLP tasks: F-score for sequence prediction with/without linear-

chain constraints; precision at k (P@k), and discounted cumulative gain (DCG) for rankings;

alignment error rate (AER) for word alignment quality evaluation in machine translation; and

Hamming loss for syntactic context-free grammar (CFG) parsing. Different from the existing

work (23) that explicitly constructs and then solves a game between the classifier and the

adversary with 0-1 loss, our work iteratively finds a Nash equilibrium, and hence optimizes over

much larger spaces of structured objects with more complicated losses.

To demonstrate the computational feasibility, theoretical benefits, and empirical advantages

of this approach, this thesis is organized as follows:

• Chapter 2 first reviews the empirical risk minimization (ERM) learning methods: logistic-

regression, support vector machine (SVM), and their corresponding extensions to struc-

ture prediction: conditional random fields (CRFs), structure support vector machine

(SSVM). Then it gives a brief review on two-player zero-sum game, and shows how to

3

solve such zero-sum games using Linear Programming. Fisher consistency is briefly dis-

cussed at the end of this chapter.

• Chapter 3 introduces Multivariate Prediction Game (MPG) framework that we proposed.

Its architecture is demonstrated first, then each component is discussed in depth.

• Chapter 4 focuses on the details of implementations of best response finding algorithms

for IR/NLP the commonly evaluation metrics.

• Chapter 5 shows the IR/NLP tasks that are benefit from directly optimizing those eval-

uation metrics which are discussed in this thesis. Experiments are conducted on several

widely used datasets with the comparisons to ERM Machine Learning algorithms.

• Chapter 6 summarizes the contributions of this work, and discusses several possible future

directions.

4

1.1 Notations

We consider the general task of making a multivariate prediction for variables y = {y1, y2, . . . , yn}

∈ Y (with random variables denoted as Y = {Y1, Y2, . . . , Yn}) given some contextual informa-

tion x = {x1,x2, . . . ,xn} ∈ X = {X1,X2, . . . ,Xn} (with random variable, X). Each xi is the

information relevant to predicted variable yi. We denote the estimator’s predicted values as

ŷ = {ŷ1, ŷ2, . . . , ŷn}. The multivariate performance measure when predicting ŷ when the true

multivariate value is actually y is represented as a scoring function: score(ŷ,y). Equivalently, a

complementary loss function for any score function based on the maximal score can be defined

as: loss(ŷ,y) = maxy′,y′′ score(y′,y′′)− score(ŷ,y).

CHAPTER 2

BACKGROUND AND RELATED WORK

In this chapter, we review the empirical risk minimization (ERM) learning methods: logistic-

regression (with logarithmic loss), support vector machine (SVM, with hinge loss), and their

corresponding extensions to structure prediction: conditional random fields (CRFs), structure

support vector machine (SSVM). Then we gives a brief review on two-player zero-sum game,

and shows how to solve such a game using Linear Programming. Fisher consistency is briefly

discussed at the end of this chapter.

5

6

2.1 Empirical Risk Minimization

Empirical risk minimization (24) is a common approach for constructing predictors in super-

vised learning settings. This approach seeks a predictor P̂ (ŷ|x) (from, e.g., a set of predictors

Γ) that minimizes the loss under the empirical distribution of training data, denoted as P̃ (y,x):

min
P̂ (ŷ|x)∈Γ

EP̃ (y,x)P̂ (ŷ|x)

[
loss(Ŷ ,Y)

]
. (2.1)

Multivariate losses are often not convex and finding the optimal solution is computationally

intractable for expressive classes of predictors Γ typically specified by some set of parameters

θ (e.g., linear discriminant functions: P̂ (ŷ|x) = 1 if θᵀφ(x, ŷ) > θᵀφ(x,y′) ∀y′ 6= ŷ).

Given these difficulties, convex surrogates to the multivariate loss are instead employed that

are additive over ŷi and yi (i.e., loss(ŷ,y) =
∑

i loss(ŷi, yi)). Employing the logarithmic loss

yields the logistic regression model (25). Using the hinge loss yields support vector machines

(20). Conditional random fields (26) extend logistic regression to accommodate structure infor-

mation into a model. Structured support vector machines (21) employ a convex approximation

(i.e., a hinge loss) that upper bounds the multivariate structured loss (See Figure 1).

7

-3 -2 -1 0 1 2 3
ŷy

0

0.5

1

1.5

2

2.5

3

3.5

4

lo
ss

0-1
hinge
logarithmic

Figure 1: Loss functions for binary classification.

2.2 Logistic Regression

2.2.1 Modeling

For a binary dataset {yi,φ(xi)} with K features, yi ∈ {0, 1} and i = 1, ..., N , logistic

regression models the likelihood probability of Y under a Bernoulli distribution:

p(Y |θ) =

N∏
i=1

ŷi
yi(1− ŷi)1−yi ,where (2.2)

ŷi =
1

1 + exp{−
∑K

k=1 θkφk(xi)}
(2.3)

8

is a sigmoid function of
∑K

k=1 θkφk(xi, yi), whose derivative is:

∂

∂θk
ŷi = ŷi(1− ŷi)φk(xi). (2.4)

2.2.2 Parameter Estimation

Employing the logarithmic loss, which is the negative log-likelihood of Y , gives the convex

loss function of logistic regression:

loss(Ŷ ,Y ,θ) = −log p(Y |θ)

= −
N∑
i=1

log {ŷiyi(1− ŷi)1−yi}

= −
N∑
i=1

{yilog ŷi + (1− yi)log (1− ŷi)}. (2.5)

θ∗ = arg minθ loss(Ŷ ,Y ,θ) is computed using convex optimization methods, like gradient

descent, L-BFGS, etc. (27) by plugging-in the loss’s gradient whose partial derivative is:

∂

∂θk
loss(Ŷ ,Y ,θ) =

∂loss(Ŷ ,Y ,θ)

∂ŷi

∂ŷi
∂θk

=
N∑
i=1

{−yi
ŷi

+
1− yi
1− ŷi

}ŷi(1− ŷi)φk(xi)

=

N∑
i=1

(ŷi − yi)φk(xi). (2.6)

After learned θ∗ from the training data, given a new instance, Equation 2.3 can be applied

directly to predict its ŷ.

9

2.3 Conditional Random Fields

In natural language processing tasks, the content information usually helps improving the

model performance. Named-entity recognition (NER) is a very representative example task. It

finds and classifies named entities in text into pre-defined classes, such as PERSON, ORGANI-

ZATION, LOCATION, and OTHER (i.e., not an entity). The variables to predict in the task

is each word in a sentence, the prediction of each variable is one of the named-entity classes.

Given the sentence “Barack Obama is the president of the United States who was living in

Chicago” as an example, we want to find that “Barack Obama” is a PERSON, “United States”

is an ORGANIZATION, “Chicago” is a LOCATION, and the rests are OTHER. Classifiers

like logistic regression we discussed in the previous section, predict only one single variable.

However, named-entity classes of surrounding words are sometimes dependent. For example,

“University of Illinois at Chicago” is an ORGANIZATION, while “Chicago” alone is a LOCA-

TION. Conditional random fields (CRFs) (12) are extended from logistic regression to model

such dependencies.

10

2.3.1 Linear-chain CRFs Modeling

The simplest CRF is the linear-chain conditional random fields 1 that model the dependency

between two consecutive state variables y(t−1) ∈ Y and y(t) ∈ Y, where Y is the set of all possible

states:

p(Y |X,θ) =

N∏
i=1

1

Z(xi,θ)

T∏
t=1

exp{
K∑
k=1

θkφk(xi, y
(t−1)
i , y

(t)
i)}, (2.7)

where for each instance i in a dataset of size N , φ(xi, y
(t−1)
i , y

(t)
i) is the feature vector with

length K that captures the dependency between y
(t−1)
i and y

(t)
i , T is the total number of states

in a liner-chain structure, and Z(xi,θ) is an instance-specified normalization constant that

sums over all possible y sequences:

Z(xi,θ) =
∑
y

T∏
t=1

exp{
K∑
k=1

θkφk(xi, y
(t−1), y(t))}

=
∑
y

exp{
T∑
t=1

K∑
k=1

θkφk(xi, y
(t−1), y(t))}. (2.8)

1The discussion of general CRF models is beyond the scope of this thesis, and can be found in (26).

11

2.3.2 Relation to Logistic Regression

Note that if we consider binary variable y(t) ∈ {+1,−1}, each has its own feature vector

θy
(t)

(i.e., θ+, and θ−), we discard the liner-chain relation between y(t−1) and y(t), and inspect

y(t) individually, then for each instance i, at state t, Equation 2.7 can be rewritten as:

p(y
(t)
i = +1|xi,θ) =

exp{
∑K

k=1 θ
+
k φk(xi, y

(t)
i)}

exp{
∑K

k=1 θ
+
k φk(xi)}+ exp{

∑K
k=1 θ

−
k φk(xi)}

=
1

1 + exp{
∑K

k=1(θ−k − θ
+
k)φk(xi)}

, (2.9)

which is the logistic regression Equation 2.3 if let φk(xi, y
(t)
i) = φk(xi) and (θ−k − θ

+
k) = θk.

2.3.3 Parameter Estimation

The partial derivative of log Z(xi,θ) with respect to θk is:

∂

∂θk
log Z(xi,θ) =

1

Z(xi,θ)

∑
y

{
T∑
t=1

φk(xi, y
(t−1), y(t))}exp{

T∑
t=1

K∑
k=1

θkφk(xi, y
(t−1), y(t))}

= Ey

[
T∑
t=1

φk(xi, y
(t−1), y(t))

]

=

T∑
t=1

Ey
[
φk(xi, y

(t−1), y(t))
]

=
T∑
t=1

∑
y

p(y|xi)φk(xi, y(t−1), y(t)) (2.10)

12

Like logistic regression, logarithmic loss (i.e., negative log-likelihood) is defined as:

loss(Y ,θ) = −log p(Y |X,θ)

= −
N∑
i=1

log { 1

Z(xi,θ)

T∏
t=1

exp
K∑
k=1

θkφk(xi, y
(t−1)
i , y

(t)
i)}

= −
N∑
i=1

T∑
t=1

K∑
k=1

θkφk(xi, y
(t−1)
i , y

(t)
i) +

N∑
i=1

log Z(xi,θ), (2.11)

Then, after plugging in Equation 2.10 and Equation 2.11, loss(y,θ)’s partial derivative with

respect to θk can be expressed as:

∂

∂θk
loss(Y ,θ) = −

N∑
i=1

T∑
t=1

φk(xi, y
(t−1)
i , y

(t)
i) +

N∑
i=1

T∑
t=1

∑
y

p(y|xi)φk(xi, y(t−1), y(t))︸ ︷︷ ︸
ζ

. (2.12)

The first term in Equation 2.12 is the expected feature value under empirical distribution. The

second term, ζ, sums over all possible y, can be reformulated as:

ζ =

T∑
t=1

∑
a,b∈Y

∑
y:y(t−1)=a,y(t)=b

p(y|xi)φk(xi, y(t−1), y(t))

=
T∑
t=1

∑
a,b∈Y

φk(xi, y
(t−1) = a, y(t) = b)

∑
y:y(t−1)=a,y(t)=b

p(y|xi)

=
T∑
t=1

∑
a,b∈Y

φk(xi, y
(t−1) = a, y(t) = b)pyi(a, b), (2.13)

where for i-th training instance, pyi(a, b) is the marginal probability of having a at state (t−1),

and b at state t. It can be computed together with Z(xi, θ) in Equation 2.11 using forward-

13

backward algorithm in O(T |Y|2) time (26). Convex optimization methods can be applied to

minimize loss function (Equation 2.11) to get θ∗.

2.3.4 Inference

When predicting a new instance φ(x) with the learned θ∗, we want to find the y∗ that

maximizes p(y|x,θ∗)

y∗ = arg max
y

p(y|x,θ∗)

= arg max
y

1

Z(x,θ∗)

T∏
t=1

exp{
K∑
k=1

θ∗kφk(x, y
(t−1), y(t))}

= arg max
y

T∏
t=1

exp{
K∑
k=1

θ∗kφk(x, y
(t−1), y(t))}. (2.14)

It can be solved by Viterbi algorithm, which is a dynamic programming algorithm that can be

found in (26).

14

2.4 Support Vector Machines

2.4.1 Separable Case Modeling

Support vector machines learn a decision boundary that maximizes the margin, which in

turn is the smallest distance between the decision boundary and any of the training examples.

For a size N linear-separable dataset {yi,φ(xi)}, yi ∈ {−1, 1}, a linear model is defined as:

ŷi = θᵀφ(xi, yi) =
K∑
k=1

θkφk(xi), (2.15)

where θ are the parameters to learn. If the boundary is defined to be ŷi = 0, all positive

data points (i.e., yi = 1) have ŷi > 0, and all negative data points (i.e., yi = −1) have

ŷi < 0, hence yiŷi > 0 for all training examples. θ is perpendicular to the decision boundary

because ŷi = θᵀφ(xi) = 0, for any two data points φ(xi) and φ(xj), θ
ᵀ(φ(xi) − φ(xj)) = 0.

So, the distance for a data point to the decision boundary is expressed as |ŷi|/||θ||, and it

can be rewritten as yiŷi/||θ|| = yiθ
ᵀφ(xi)/||θ||, since yi ∈ {−1, 1}. If we set the constraint

yiθ
ᵀφ(xi) ≥ 1, which doesn’t change the value of distance, then the problem of finding the

maximum margin (distance) can be formulated as:

max
θ

1

||θ||
(2.16)

subject to: yiθ
ᵀφ(xi) ≥ 1,

15

which is equivalent to:

min
θ

||θ||2

2
(2.17)

subject to: yiθ
ᵀφ(xi) ≥ 1.

2.4.2 Non-separable Case Modeling

If the dataset is not linearly separable, we introduce a penalty for each data point i, to allow

it being incorrectly separated by a decision boundary:

(1− yiŷi)+ = max(0, 1− yiŷi). (2.18)

It upper bounds the 0-1 loss (the number of misclassified instances), and is called hinge loss

due to its shape (see Figure 1). Then the optimization of SVM model becomes:

min
θ

N∑
i=1

(1− yiŷi)+ +
λ

2
||θ||2, (2.19)

where λ is the regularization parameter that controls the trade-off between the penalty (i.e.,

hinge loss) and the margin width. ||θ||2 is also called the `2 regularizer if we consider Equa-

tion 2.19 as a minimization of a regularized hinge loss (28).

16

2.4.3 Parameter Estimation

Due to the max function in hinge loss is not differentiable, we rewrite Equation 2.19 as

following with a slack variable ξi for each instance:

min
θ,ξ

N∑
i=1

ξi +
λ

2
||θ||2 (2.20)

subject to: ∀i : ξi ≥ 0, ξi ≥ 1− yiŷi.

Then its corresponding primal Lagrangian is written as:

LP (θ, ξ,α,β) =
N∑
i=1

ξi +
λ

2
||θ||2 −

N∑
i=1

αi{yiθᵀφ(xi)− 1 + ξi} −
N∑
i=1

βiξi, (2.21)

where α, β are Lagrange multipliers. Then the Lagrange dual problem is:

max
α,β

inf
θ,ξ

LP (θ, ξ,α,β) (2.22)

subject to: ∀i : αi ≥ 0, βi ≥ 0.

17

Because Karush-Kuhn-Tucker (KKT) conditions hold for the optimization problem in Equa-

tion 2.20 (29), we have the followings:

∂

∂θk
LP (θ, ξ,α,β) = λθk −

N∑
i=1

αiyiφk(xi) = 0, (2.23)

∂

∂ξi
LP (θ, ξ,α,β) = 1− αi − βi = 0, (2.24)

yiθ
ᵀφ(xi)− 1 + ξi ≥ 0, (2.25)

ξi ≥ 0, (2.26)

αi ≥ 0, (2.27)

βi ≥ 0, (2.28)

αi{yiθᵀφ(xi)− 1 + ξi} = 0, (2.29)

βiξi = 0. (2.30)

Substitute Equation 2.23 and Equation 2.24 into the Lagrangian (Equation 2.21), we get:

LD(α) = inf
θ,ξ

LP (θ, ξ,α,β)

=

N∑
i=1

ξi +
λ

2
||θ||2 −

N∑
i=1

αiyiθ
ᵀφ(xi) +

N∑
i=1

αi −
N∑
i=1

αiξi −
N∑
i=1

(1− αi)ξi

=

N∑
i=1

αi +
λ

2

[∑N
i=1 αiyiφk(xi)

λ

]2

−
N∑
i=1

αiyi

∑N
j=1 αjyjφ

ᵀ
k(xj)

λ
φ(xi) (2.31)

=

N∑
i=1

αi −
1

2λ

N∑
i=1,j=1

αiαjyiyjφ
ᵀ(xi)φ(xj). (2.32)

18

Then, the Lagrange dual problem becomes:

max
α

N∑
i=1

αi −
1

2λ

N∑
i=1
j=1

αiαjyiyjφ
ᵀ(xi)φ(xj) (2.33)

subject to: ∀i : 0 ≤ αi ≤ 1.

Lagrange multipliers α∗ in this dual problem can be obtained by solving the quadratic pro-

gramming (29), hence parameters θ∗ can be obtained through Equation 2.23.

After learning θ∗ from the training data, given a new instance x, it can be classified using

the following equation:

ŷ = sign(θ∗ᵀφ(x)). (2.34)

19

2.5 Structured Support Vector Machines

2.5.1 Separable Case Modeling

Extending the SVM model described in the previous section, structured support vector ma-

chines (SSVMs) aim to model structured variables y ∈ Y from a size N dataset {yi,φ(xi,yi)}

with the large margin approach. For a given y, we define f(x,y,θ) to be a linear combination

of its corresponding K features:

f(x,y,θ) = θᵀφ(x,y) =

K∑
k=1

θkφk(x,y). (2.35)

For each instance i, we want to use this f(x,y,θ) to distinguish yi from any other y ∈ Y \ yi

as much as possible. We define the margin for instance i as following:

∆fi(θ) = f(xi,yi,θ)− max
y∈Y \yi

f(xi,y,θ) (2.36)

= θᵀφ(xi,yi)− max
y∈Y \yi

θᵀφ(xi,y). (2.37)

The margin width in the direction θ/||θ|| is |∆fi(θ)|/||θ||. Note that rescaling θ can give

arbitrary value of ∆fi(θ). Like SVMs, we restrict ∆fi(θ) ≥ 1. Then we get the following

optimization problem:

max
θ

1

||θ||
(2.38)

subject to: ∀i : ∆fi(θ) ≥ 1

20

which is equivalent to:

min
θ

||θ||2

2
(2.39)

subject to: ∀i,∀y ∈ Y \ yi : θᵀ[φ(xi,yi)− φ(xi,y)] ≥ 1.

2.5.2 Non-separable Case Modeling

Similar to SVMs, a penalty (which is a hinge loss) is introduced for each data point i,

to accommodate the violation of the margin width constraint and combine the structure loss

∆(yi,y) together:

∆(yi,y) [1−∆fi(θ)]+ = max{0,∆(yi,y) [1−∆fi(θ)]}. (2.40)

This is called slack rescaling method (21), where the optimization problem becomes:

min
θ,ξ

N∑
i=1

ξi +
λ

2
||θ||2 (2.41)

subject to: ∀i,∀y ∈ Y \ yi : ξi ≥ 0

ξi ≥ ∆(yi,y)(1− θᵀ[φ(xi,yi)− φ(xi,y)])

21

There’s another method to combine the structure loss with margin width constraint viola-

tion, and is called margin rescaling (30). Instead of restricting ∆fi(θ) ≥ 1 in Equation 2.38,

margin rescaling method restrict ∆fi(θ) ≥ ∆(yi,y), therefore its hinge loss becomes:

[∆(yi,y)−∆fi(θ)]+ = max{0,∆(yi,y)−∆fi(θ)}, (2.42)

and the optimization problem can be expressed as:

min
θ,ξ

N∑
i=1

ξi +
λ

2
||θ||2 (2.43)

subject to: ∀i,∀y ∈ Y \ yi : ξi ≥ 0

ξi ≥ ∆(yi,y)− θᵀ[φ(xi,yi)− φ(xi,y)].

The shapes of hinge losses of these two scaling methods can be found in Figure 2.

2.5.3 Parameter Estimation

Applying KKT conditions, one can show that the slack rescaling method’s Lagrange dual

problem becomes:

max
α

N∑
i=1

∑
y∈Y \yi

αiy −
1

2λ

N∑
i=1
j=1

∑
y∈Y \yi
y′∈Y \yj

αiyαjy∆φi(y)∆φj(y
′) (2.44)

subject to: ∀i,y : 0 ≤ αiy ≤ ∆(yi,y),

22

-1 0 ∆(y i,y) 1

∆fi(θ)

0

∆(y i,y)

1

lo
ss

0-1
margin rescaling
slack rescaling

Figure 2: Hinge losses with slack rescaling method (red) and margin rescaling method (blue).

where ∆φi(y) = [φ(xi,yi)−φ(xi,y)]. The margin rescaling method’s Lagrange dual problem

becomes:

max
α

N∑
i=1

∑
y∈Y \yi

αiy∆(yi,y)− 1

2λ

N∑
i=1
j=1

∑
y∈Y \yi
y′∈Y \yj

αiyαjy∆φi(y)∆φj(y
′) (2.45)

subject to: ∀i,y : 0 ≤ αiy ≤ 1.

Due to the number of optimization variables αiy grows exponentially in size of y, it is impossible

to solve these two quadratic programmings above directly. In (21), the authors proposed a

cutting plan algorithm that iteratively solves quadratic programs on a subset of Y , which

contains the constraint most violated y that is added during each iteration. The algorithm stops

23

when no new violation can be found. The Y is selected to maximizes hinge loss (Equation 2.40

for slack rescaling, Equation 2.42 for margin rescaling.)

At the test time, given a new instance x, the predicted y is given by:

y = arg max
y∈Y

f(x,y,θ∗) = arg max
y∈Y

θ∗ᵀφ(x,y). (2.46)

24

2.6 Two-player Zero-sum Game

2.6.1 Definition

A two-player zero-sum game is a game played between two players, in which one player Ŷ

wins what the other player Y̌ loses. According to the Minimax Theorem (25), for each two-

player zero-sum game, there exists an equilibrium with value v and a mixed strategy for each

player, such that Ŷ ’s best gain from the game is v, while Y̌ ’s gain is −v.

For example, for the game payoff matrix in Table I, the mixed strategy (i.e., probability

distribution of actions) of player Y̌ is P (y̌) =
[

1
3

1
3

1
3

]
. The mixed strategy of player Ŷ is

P (ŷ) =
[

1
3

1
3

1
3

]
. The game value v = − 2

15 .

y̌1 y̌2 y̌3

ŷ1 0.2 -0.3 -0.3

ŷ2 -0.3 0.2 -0.3

ŷ3 -0.3 -0.3 0.2

TABLE I: The game payoff matrix between player Y̌ and player Ŷ . Each player has three
actions, where y̌i is an action that player Y̌ plays, and ŷi is an action that player Ŷ plays.

For the game payoff matrix in Table II, the mixed strategy of player Y̌ is P (y̌) =
[

1
3

2
9

2
9

2
9

]
,

and the mixed strategy of player Ŷ is P (ŷ) =
[

1
3

2
3

]
. The game value v = 2

3 .

25

y̌1 y̌2 y̌3 y̌4

ŷ1 0 1 1 1

ŷ2 1 1
2

1
2

1
2

TABLE II: The game payoff matrix between player Y̌ and player Ŷ , where player Y̌ has four
actions, while player Ŷ has two.

26

2.6.2 Zero-sum Game Solving

The two-player zero-sum game can be solved using a pair of linear programs that have a

constraint for each pure action (set of variable assignments) in the m×n game matrix (31; 32):

max
v,p(ŷ)≥0

v (2.47)

subject to: v ≤
∑
ŷ∈Ŷ

p(ŷ)cŷ,1

...

v ≤
∑
ŷ∈Ŷ

p(ŷ)cŷ,n

∑
ŷ∈Ŷ

p(ŷ) = 1;

min
v,p(y̌)≥0

v (2.48)

subject to: v ≥
∑
y̌∈Y̌

p(y̌)c1,y̌

...

subject to: v ≥
∑
y̌∈Y̌

p(y̌)cm,y̌

∑
y̌∈Y̌

p(y̌) = 1,

where ci,j is each element of the game payoff matrix, v is the value of the game, Ŷ and Y̌ are

the pure actions of player Ŷ and player Y̌ respectively.

27

When the value of the game is positive (i.e., v > 0), above linear programs can be rewrit-

ten to make the computation simpler. For Equation 2.47, we define xi = p(ŷ)/v, then from∑
ŷ∈Ŷ p(ŷ) = 1, we have

∑m
i=1 xi = 1/v. The original problem of maximizing v can be trans-

formed to minimizing
∑m

i=1 xi:

min
xi≥0

m∑
i=1

xi (2.49)

subject to: 1 ≤
m∑
i=1

xici,1

...

1 ≤
m∑
i=1

xici,n

Then game value v = 1/
∑m

i=1 xi, and p(ŷ) = xiv. To guarantee the game value v > 0, we can

compensate each element in the game matrix by setting ci,j = ci,j −min(ci,j) + 1, and remove

the compensation from the solved game value, i.e., v = v + min(ci,j)− 1.

28

2.7 Fisher Consistency

Fisher consistency is a desired attribute of a classifier f̂(x) with surrogate loss function

that when trained using the true distribution P (y,x) and an arbitrarily rich feature potential

representation Ψ(x,y), predictions minimizing the multivariate loss are guaranteed, i.e., the

classifier minimizes the expected loss under the true distribution, EP (y,x)[loss(f̂(X),Y)] (22;

33). It requires

ŷ = arg max
y

ψ(x,y) ⊆ arg max
y

P (y|x), (2.50)

which means the predicted ŷ by f̂(x) is always the most probable ones under the true distri-

bution P (y,x). Logistic regression and CRF models that using logarithmic loss are known to

be consistent for 0-1 loss/Hamming loss. Binary SVMs which using hinge-loss are Fisher con-

sistent for 0-1 loss/Hamming loss also, but multi-class (i.e., non-binary) SVM and multi-class

structured SVM (SSVM) are not (34; 35). One simple example is, suppose Y = {y1, y2, y3},

P (y1|x) = 0.4, P (y2|x) = 0.4, P (y3|x) = 0.2, then, arg maxy P (y|x) = {y1, y2}. For SSVM,

from Equation 2.46, as long as prediction ŷ = {y1, y2, y3} has the largest feature potential value,

ŷ ({y1, y2}, i.e., not Fisher consistent.

CHAPTER 3

MULTIVARIATE PREDICTION GAME

(This chapter contains and expands on materials originally presented in Wang, H., Xing,

W., Asif, K., and Ziebart, B.: Adversarial prediction games for multivariate losses. In Advances

in Neural Information Processing Systems, pages 2728-2736, 2015.)

Multivariate loss functions are used to assess performance in many modern prediction tasks,

including Information Retrieval and Natural Language Processing applications. Convex ap-

proximations are typically optimized in their place to avoid NP-hard empirical risk minimiza-

tion problems. In this chapter, we propose a framework to approximate the training data

instead of the loss function by posing multivariate prediction as an adversarial game between a

performance-maximizing (i.e., loss-minimizing) prediction player and a performance-minimizing

(i.e., loss-maximizing) evaluation player constrained to match specified properties of training

data. This avoids the non-convexity of empirical risk minimization, but game sizes are expo-

nential in the number of predicted variables. We overcome this intractability using the double

oracle constraint generation method.

29

30

3.1 Introduction

For many problems in Information Retrieval (IR) and Natural Language Processing (NLP),

the performance of a predictor is evaluated based on the combination of predictions it makes

for multiple variables. Examples include the precision when limited to k positive predictions

(P@k), the harmonic mean of precision and recall (F-score), the discounted cumulative gain

(DCG) for assessing ranking quality, the alignment error rate (AER) for evaluating the qual-

ity of machine translation. These stand in contrast to measures like the accuracy and (log)

likelihood, which are additive over independently predicted variables. Many multivariate per-

formance measures are not concave functions of predictor parameters, so maximizing them

over empirical training data (or, equivalently, empirical risk minimization over a corresponding

non-convex multivariate loss function) is computationally intractable (3) and can only be ac-

complished approximately using local optimization methods (36). Instead, convex surrogates

for the empirical risk are optimized using either an additive (4; 5; 6) or a multivariate approxi-

mation (7; 8) of the loss function. Though the ability to incorporate multivariate loss functions

is attractive, the hinge loss approximation leads to theoretical shortcomings, including a lack

of Fisher consistency (22), meaning even if trained using the true distribution P (y,x) and an

arbitrarily rich feature representation Φ, predictions minimizing the multivariate loss are not

guaranteed. For both types of approximations, the gap between the application performance

measure and the surrogate loss measure can lead to substantial sub-optimality of the resulting

predictions (9).

31

Rather than optimizing an approximation of the multivariate loss for available training data,

we take an alternate approach (37; 25; 2) that robustly minimizes the exact multivariate loss

function using approximations of the training data. We formalize this using a zero-sum game

between a predictor player and an adversarial evaluator player. Learned weights parameterize

this game’s payoffs and enable generalization from training data to new predictive settings.

The key computational challenge this approach poses is that the size of multivariate predic-

tion games grows exponentially in the number of variables. We leverage constraint generation

methods developed for solving large zero-sum games (38) and efficient methods for computing

best responses (39) to tame this complexity. In many cases, the structure of the multivariate

loss function enables the zero-sum game’s Nash equilibrium to be efficiently computed. We

formulate parameter estimation as a convex optimization problem and solve it using standard

convex optimization methods. We present Adversarial Multivariate Prediction Games (MPG)

framework in the following sections of this chapter, and will demonstrate the benefits from this

approach on prediction tasks in IR and NLP areas in the next chapter.

32

3.2 Architecture

Gurobi LpSolve ...

Linear Programming Solver

Zero-sum Game Solver

Best Response Finder

Double Oracle Solver

SGD AdaDelta L-BFGS ...

Convex Optimizer

Adversarial Multivariate Prediction Games (MPG)

Figure 3: The architecture of Multivariate Prediction Game (MPG) framework.

The architecture of Adversarial Multivariate Prediction Game (MPG) framework 1 is pre-

sented in Figure 3. It has several main components. We briefly introduce each of the components

in this section, and give detailed discussions in the next few sections:

• Convex Optimizer : it encapsulates convex optimization algorithms since the framework

models the learning procedure as solving a convex optimization problem. We discuss this

modeling in Section 3.3. Multiple off-the-shelf implementations of numerical optimiza-

1Code is available in https://github.com/hwang207/mpg_java

https://github.com/hwang207/mpg_java

33

tion algorithms can be easily plugged in, including stochastic gradient descent (SGD),

AdaDelta1 (40), L-BFGS2, etc.

• Zero-sum Game Solver : because MPG formulates a zero-sum game between two players:

one is the performance-maximizer, the other is the performance-minimizer, to find the

solution of a game (i.e., the equilibrium), the game payoff matrix needs to be solved.

Recall we discussed in Section 2.6.2 that a zero-sum game can be solved by a Linear

Programming Solver, which in turn solves Equation 2.47 and Equation 2.49. We build the

game solver that encapsulates these logics above. Different LP solver implementations

are available online: either open-sourced (e.g., LpSolve (41)), or commercial but academic

free (e.g., Gurobi (42)).

• Double Oracle Solver : as we will see in the examples in Section 3.4, in real word problems,

the prediction tasks usually have exponential-size game payoff matrices that can’t be

solved by brute-force. A double oracle constraint generation game solver is implemented

to solve the game iteratively as described in Section 3.5. During each iteration, a game

payoff matrix is solved by the Zero-sum Game Solver.

• Best Response Finder : the main idea of double oracle constraint generation algorithm

(Algorithm 1) is iteratively solving a game payoff matrix by adding the best response

to the opponent’s current strategy. Depending on what the predicting structure is, and

1Implementation at https://github.com/mgormley/optimize

2Implementation at https://github.com/robert-dodier/riso

https://github.com/mgormley/optimize
https://github.com/robert-dodier/riso

34

what the evaluation metrics of interest are, the algorithms need to be designed carefully

to guarantee their efficiencies. We give a general discussion on this topic in Section 3.7,

and describe more detailed best response finding algorithms in Chapter 4.

35

3.3 Modeling

Following a recent adversarial formulation for classification (2), we view multivariate pre-

diction as a two-player game between player Ŷ making predictions and player Y̌ determining

the evaluation distribution. Player Ŷ first stochastically chooses a predictive distribution of

variable assignments, P̂ (ŷ|x), to maximize a multivariate performance measure, then player

Y̌ stochastically chooses an evaluation distribution, P̌ (y̌|x), that minimizes the performance

measure. Further, player Y̌ must choose the relevant items in a way that (approximately)

matches in expectation with a set of statistics, Φ(x,y), measured from labeled training data.

We denote this set as Ξ.

Definition 1. The multivariate prediction game (MPG) for n predicted variables is:

max
P̂ (ŷ|x)

min
P̌ (y̌|x)∈Ξ

EP̃ (x)P̂ (ŷ|x)P̌ (y̌|x)

[
score(Ŷ , Y̌)

]
, (3.1)

where P̂ (ŷ|x) and P̌ (y̌|x) are distributions over combinations of labels for the n predicted vari-

ables and the set Ξ corresponds to the constraint: EP̃ (x)P̌ (y̌|x)

[
Φ(X, Y̌)

]
= EP̃ (y,x) [Φ(X,Y)] .

Since the set Ξ constrains the adversary’s multivariate label distribution over the entire

distribution of inputs P̃ (x), solving this game directly is impractical when the number of

training examples is large. Instead, we employ the method of Lagrange multipliers in Theorem

1, which allows the set of games to be independently solved given Lagrange multipliers θ.

36

Theorem 1. The multivariate prediction game’s value (Definition 1) can be equivalently ob-

tained by solving a set of unconstrained maximin games parameterized by Lagrange multipliers

θ:

max
P̂ (ŷ|x)

min
P̌ (y̌|x)∈Ξ

EP̃ (x)P̂ (ŷ|x)P̌ (y̌|x)

[
score(Ŷ , Y̌)

]

= max
θ

EP̃ (y,x) [θ · Φ(X,Y)] +
∑
x∈X

P̃ (x) min
P̌ (y̌|x)

max
P̂ (ŷ|x)

EP̂ (ŷ|x)P̌ (y̌|x)

score(Ŷ , Y̌)− θ · Φ(x, Y̌)︸ ︷︷ ︸
S′ŷ,y̌


 ,

(3.2)

where: Φ(x,y) is a vector of features characterizing the set of prediction variables {yi} and

provided contextual variables {xi} each related to predicted variable yi.

The resulting game’s payoff matrix can be expressed as the original game scores of Equa-

tion 3.1 augmented with Lagrangian potentials. The combination defines a new payoff matrix

with entries S′ŷ,y̌ = score(ŷ, y̌)− θ ·Φ(x, y̌), as shown in Equation 3.2. The Fisher consistency

of adversarial MPG model is guaranteed (34).

37

Proof of Theorem 1.

max
P̂ (ŷ|x)

min
P̌ (y̌|x)∈Ξ

EP̃ (x)P̂ (ŷ|x)P̌ (y̌|x)

(
score(Ŷ , Y̌)

)
(a)
= min

P̌ (y̌|x)∈Ξ
max
P̂ (ŷ|x)

EP̃ (x)P̂ (ŷ|x)P̌ (y̌|x)

(
score(Ŷ , Y̌)

)
(b)
= min

P̌ (y̌|x)∈Ξ
EP̃ (x)

[
max
P̂ (ŷ|x)

EP̂ (ŷ|x)P̌ (y̌|x)

(
score(Ŷ , Y̌)

)]
(c)
= max

θ
min

P̌ (y̌|x)

(
EP̃ (x)

[
max
P̂ (ŷ|x)

EP̂ (ŷ|x)P̌ (y̌|x)

(
score(Ŷ , Y̌)

)]
+ EP̃ (y,x) [θ · Φ(X,Y)]− EP̃ (x)P̌ (y̌|x)

[
θ · Φ(X, Y̌)

])
(d)
= max

θ

(
EP̃ (y,x) [θ · Φ(X,Y)] + min

P̌ (y̌|x)

(
EP̃ (x)

[
max
P̂ (ŷ|x)

EP̂ (ŷ|x)P̌ (y̌|x)

(
score(Ŷ , Y̌)

)
− EP̌ (y̌|x)

[
θ · Φ(X, Y̌)

]]))
(e)
= max

θ

(
EP̃ (y,x) [θ · Φ(X,Y)] + EP̃ (x)

(
min

P̌ (y̌|x)

[
max
P̂ (ŷ|x)

EP̂ (ŷ|x)P̌ (y̌|x)

(
score(Ŷ , Y̌)

)
− EP̌ (y̌|x)

[
θ · Φ(X, Y̌)

]]))
(f)
= max

θ

(
EP̃ (y,x) [θ · Φ(X,Y)] + EP̃ (x)

[
min

P̌ (y̌|x)
max
P̂ (ŷ|x)

EP̂ (ŷ|x)P̌ (y̌|x)

(
score(Ŷ , Y̌)− θ · Φ(X, Y̌)

)])

(3.3)

Equality (a) is a consequence of duality in zero-sum games (31). Equality (b) swaps the maxi-

mization and the expectation since each maximization can be performed independently. Equal-

ity (c) is obtained by writing the Lagrangian and taking the dual, and strong Lagrangian duality

is guaranteed when a feasible solution exists on the relative interior of the convex constraint

set Ξ (27). (A small amount of slack corresponds to regularization of the θ parameter in the

dual and guarantees the strong duality feasibility requirement is satisfied in practice.) Equal-

ity (d) holds since EP̃ (y,x) [θ · Φ(X,Y)] is constant to P̌ (y̌|x), and is moved out of min. The

part insides maxθ is concave because the internal minimization is concavity preserving. Same

as Equality (b), Equality (e) swaps minimization and expectation due to the independence of

minimizations.

38

3.4 Example Multivariate Prediction Games and Small-scale Solutions

In this section, we first review three multivariate metrics that are commonly used in In-

formation Retrieval and Natural Language Processing tasks. Then, we demonstrate examples

of Lagrangian payoff matrices for the P@2, F-score, and DCG games for three variables. The

more detailed description of each metric can be found in Section 4.1.

3.4.1 Example Multivariate Metrics

For both Information Retrieval and Natural Language Processing, a vector of retrieved (or

classified as relevant) items from the pool of n items can be represented as ŷ ∈ {0, 1}n and a

vector of true relevant items as y ∈ {0, 1}n with x = {x1, x2, . . . , xn} denoting side contextual

information (e.g., search terms and document contents). Precision (P) and recall (R) are

important measures for the target systems, and are defined as followings:

P(ŷ,y) =
ŷ · y
||ŷ||1

and (3.4)

R(ŷ,y) =
ŷ · y
||y||1

, (3.5)

where || · ||1 denotes the number of ‘1’s in the vector.

However, maximizing either leads to degenerate solutions (predict all to maximize recall,

or predict none to maximize precision). One popular metric is F-score, which is the harmonic

39

mean of the precision and recall. Using this notation, the F-score for a set of items can be

simply represented as:

F1(ŷ,y) =
2ŷ · y

||ŷ ||1 + ||y||1
and F1(0,0) = 1. (3.6)

Another metric, the precision at k (P@k), limits the predictor to exactly k positive predic-

tions,

P@k(ŷ,y) =
ŷ · y
k

where ||ŷ||1 = k. (3.7)

For some other tasks, a ranked list of retrieved items is desired. This can be represented as

a permutation, σ, where σ(i) denotes the ith-ranked item (and σ−1(j) denotes the rank of the

jth item). Evaluation metrics that emphasize the top-ranked items are used, e.g., to produce

search engine results attuned to actual usage. The discounted cumulative gain (DCG) measures

the performance of item rankings, from 1 to n, with k relevancy scores, yi ∈ {0, . . . , k − 1} as:

DCG(σ,y) =
n∑
i=1

2yσ(i) − 1

log2(i+ 1)
. (3.8)

Since the log2(i+ 1) function is monotonically increasing, DCG measures the sum of the influ-

ence of all items that decreases according to the predicted ranking.

40

3.4.2 Example Game Payoff Matrices

In this subsection, we show three example game payoff matrices with Lagrange potentials

for P@2, F-score, and DCG with three variables in Table III, Table IV, Table V respectively.

We employ additive feature functions, Φ(x, y̌) =
∑n

i=1 φ(xi) I(y̌i = 1), in these examples (with

indicator function I(·)). The Lagrangian potential terms for each game with potential variables

are compactly represented as: ψi , θ · φ(Xi = xi) when Y̌i = 1 (and 0 otherwise).

TABLE III: The payoff matrix for the zero-sum game between player Y̌ choosing columns and
player Ŷ choosing rows with three variables for precision at k.

P@2 000 001 010 011 100 101 110 111

011 0 1
2−ψ3

1
2−ψ2 1−ψ2−ψ3 0−ψ1

1
2−ψ1−ψ3

1
2−ψ1−ψ2 1−ψ1−ψ2−ψ3

101 0 1
2−ψ3 0−ψ2

1
2−ψ2−ψ3

1
2−ψ1 1−ψ1−ψ3

1
2−ψ1−ψ2 1−ψ1−ψ2−ψ3

Zero-sum games such as these can be solved using a pair of linear programs that we discussed

in Section 2.6.2, where S′ŷ,y̌ is the Lagrangian-augmented payoff and v is the value of the game.

The second player to act in a zero-sum game can maximize/minimize using a pure strategy

(i.e., a single value assignment to all variables). Thus, these LPs consider only the set of pure

strategies of the opponent to find the first player’s mixed equilibrium strategy. The equilibrium

strategy for the predictor is a distribution over rows and the equilibrium strategy for the

adversary is a distribution over columns.

41

TABLE IV: The payoff matrix for the zero-sum game between player Y̌ choosing columns and
player Ŷ choosing rows with three variables for F1.

F1 000 001 010 011 100 101 110 111

000 1 0−ψ3 0−ψ2 0−ψ2 − ψ3 0−ψ1 0−ψ1−ψ3 0−ψ1−ψ2 0−ψ1−ψ2 − ψ3

001 0 1−ψ3 0−ψ2
2
3−ψ2 − ψ3 0−ψ1

2
3−ψ1−ψ3 0−ψ1−ψ2

1
2−ψ1−ψ2 − ψ3

010 0 0−ψ3 1−ψ2
2
3−ψ2 − ψ3 0−ψ1 0−ψ1−ψ3

2
3−ψ1−ψ2

1
2−ψ1−ψ2 − ψ3

011 0 2
3−ψ3

2
3−ψ2 1−ψ2 − ψ3 0−ψ1

1
2−ψ1−ψ3

1
2−ψ1−ψ2

4
5−ψ1−ψ2 − ψ3

100 0 0−ψ3 0−ψ2 0−ψ2 − ψ3 1−ψ1
2
3−ψ1−ψ3

2
3−ψ1−ψ2

1
2−ψ1−ψ2 − ψ3

101 0 2
3−ψ3 0−ψ2

1
2−ψ2 − ψ3

2
3−ψ1 1−ψ1−ψ3

1
2−ψ1−ψ2

4
5−ψ1−ψ2 − ψ3

110 0 0−ψ3
2
3−ψ2

1
2−ψ2 − ψ3

2
3−ψ1

1
2−ψ1−ψ3 1−ψ1−ψ2

4
5−ψ1−ψ2 − ψ3

111 0 1
2−ψ3

1
2−ψ2

4
5−ψ2 − ψ3

1
2−ψ1

4
5−ψ1−ψ3

4
5−ψ1−ψ2 1−ψ1−ψ2 − ψ3

The size of each game’s payoff matrix grows exponentially with the number of variables, n:

(2n)
(
n
k

)
for the precision at k game; (2n)2 for the F-score game; and (n! kn) for the DCG game

with k possible relevance levels. These sizes make explicit construction of the game matrix

impractical for all but the smallest of problems.

42

TABLE V: The payoff matrix for the zero-sum game between player Y̌ choosing columns and
player Ŷ choosing rows with three variables for DCG with binary relevance values y̌i ∈ {0, 1},
accumulated at rank 3, and we let lg 3 , log2 3.

DCG 000 001 010 011

123 0 1
lg 4 − ψ3

1
lg 3 − ψ2

1
lg 3 + 1

lg 4 − ψ2 − ψ3

132 0 1
lg 3 − ψ3

1
lg 4 − ψ2

1
lg 3 + 1

lg 4 − ψ2 − ψ3

213 0 1
lg 4 − ψ3

1
lg 2 − ψ2

1
lg 2 + 1

lg 4 − ψ2 − ψ3

231 0 1
lg 3 − ψ3

1
lg 2 − ψ2

1
lg 2 + 1

lg 3 − ψ2 − ψ3

312 0 1
lg 2 − ψ3

1
lg 4 − ψ2

1
lg 2 + 1

lg 4 − ψ2 − ψ3

321 0 1
lg 2 − ψ3

1
lg 3 − ψ2

1
lg 2 + 1

lg 3 − ψ2 − ψ3

100 101 110 111

123 1
lg 2 − ψ1

1
lg 2 + 1

lg 4 − ψ1 − ψ3
1

lg 2 + 1
lg 3 − ψ1 − ψ2

1
lg 2 + 1

lg 3 + 1
lg 4 − ψ1 − ψ2 − ψ3

132 1
lg 2 − ψ1

1
lg 2 + 1

lg 3 − ψ1 − ψ3
1

lg 2 + 1
lg 4 − ψ1 − ψ2

1
lg 2 + 1

lg 3 + 1
lg 4 − ψ1 − ψ2 − ψ3

213 1
lg 3 − ψ1

1
lg 3 + 1

lg 4 − ψ1 − ψ3
1

lg 2 + 1
lg 3 − ψ1 − ψ2

1
lg 2 + 1

lg 3 + 1
lg 4 − ψ1 − ψ2 − ψ3

231 1
lg 4 − ψ1

1
lg 3 + 1

lg 4 − ψ1 − ψ3
1

lg 2 + 1
lg 4 − ψ1 − ψ2

1
lg 2 + 1

lg 3 + 1
lg 4 − ψ1 − ψ2 − ψ3

312 1
lg 3 − ψ1

1
lg 2 + 1

lg 3 − ψ1 − ψ3
1

lg 3 + 1
lg 4 − ψ1 − ψ2

1
lg 2 + 1

lg 3 + 1
lg 4 − ψ1 − ψ2 − ψ3

321 1
lg 4 − ψ1

1
lg 2 + 1

lg 4 − ψ1 − ψ3
1

lg 3 + 1
lg 4 − ψ1 − ψ2

1
lg 2 + 1

lg 3 + 1
lg 4 − ψ1 − ψ2 − ψ3

3.5 Large-scale Strategy Inference

More efficient methods for obtaining Nash equilibria are needed to scale the multivariate

prediction game approach to large prediction tasks with exponentially-sized payoff matrices.

Though much attention has focused on efficiently computing ε-Nash equilibria (e.g., in O(1/ε)

time or O(ln(1/ε)) time (43)), which guarantee each player a payoff within ε of optimal, we

employ the double oracle algorithm for iteratively finding an exact equilibrium that works well

in practice, and guarantees to converge to a minimax equilibrium (38).

43

Algorithm 1 Double oracle constraint generation game solver

1: procedure DoubleOracleSolver(ψ, any initial sequence sets Ŷ0 and Y̌0)
2: Initialize Player Ŷ ’s sequence set Ŷ = Ŷ0

3: Initialize Player Y̌ ’s sequence set Y̌ = Y̌0

4: S′ŷ,y̌ = computeGameMatrix(Ŷ , Y̌ , ψ) . Equation 3.2
5: repeat
6: [P (ŷ|x), vNash1] = zeroSumGameSolverŶ (S′ŷ,y̌) . LP of Equation 2.47
7: [y̌∗, v̌BR] = bestResponseFinder(P (ŷ|x), ψ)
8: if (vNash1 6= v̌BR) then . Check if best response provides improvement
9: Y̌ = Y̌ ∪ y̌∗
10: S′ŷ,y̌ = computeGameMatrix(Ŷ , Y̌ , ψ) . Add new row to game matrix
11: end if
12: [P (y̌|x), vNash2] = zeroSumGameSolverY̌ (S′ŷ,y̌) . LP of Equation 2.49
13: [ŷ∗, v̂BR] = bestResponseFinder(P (y̌|x), ψ)
14: if (vNash2 6= v̂BR) then
15: Ŷ = Ŷ ∪ ŷ∗
16: S′ŷ,y̌ = computeGameMatrix(Ŷ , Y̌ , ψ) . Add new column to game matrix
17: end if
18: until (vNash1 = vNash2 = v̂BR = v̌BR) . Stop if no more improvement
19: return [vNash, P (ŷ|x), P (y̌|x)]
20: end procedure

Neither player can improve upon their strategy with additional actions when Algorithm 1

terminates, thus the strategies it returns are a Nash equilibrium pair (38). The algorithm is

efficient in practice so long as each player’s strategy is compact (i.e., the number of actions

with non-zero probability is a polynomial subset of the label combinations) and best responses

to opponents’ strategies can be obtained efficiently (i.e., in polynomial time) for each player.

Approximate solutions can be obtained from the double oracle method to improve compu-

tational efficiency in two ways: by limiting the maximum number of best responses that are

44

added by the algorithm; and/or by allowing some tolerance ε when checking for game value and

best response equality (i.e., |vNash1 − v̌BR| ≥ ε in place of (vNash1 6= v̌BR)).

The double oracle game solver is a central component of the MPG approach. Its returned

equilibrium distributions are used to compute the gradients needed for learning the model

parameters, θ. The zero-sum game solver used as a sub-routine of the double oracle method is

implemented using linear programming, which we discussed in Section 2.6.2.

45

3.6 Parameter Estimation

Predictive model parameters, θ, must be chosen to ensure that the adversarial distribution

is similar to training data. Though adversarial prediction can be posed as a convex optimization

problem (2), the objective function is not smooth. General subgradient methods requireO(1/ε2)

iterations to provide an ε approximation to the optima. Other method like L-BFGS (44) can

also be employed, which has been empirically shown to converge at a faster rate in many cases

despite lacking theoretical guarantees for non-smooth objectives (45). Recall in Section 3.3,

we showed the objective function the MPG in Equation 3.2. We also employ `2 regularization,

−λ
2 ||θ||

2, to avoid overfitting to the training data sample. The addition of the smooth regularizer

often helps to improve the rate of convergence:

max
θ

EP̃ (y,x) [θ · Φ(X,Y)] +
∑
x∈X

P̃ (x) min
P̌ (y̌|x)

max
P̂ (ŷ|x)

EP̂ (ŷ|x)P̌ (y̌|x)

score(Ŷ , Y̌)− θ · Φ(x, Y̌)︸ ︷︷ ︸
S′

ŷ,y̌

− λ

2
||θ||2

 ,

(3.9)

where λ is the regularization parameter that controls the importance of the regularization value.

The gradient in these optimizations in Equation 3.9 for training dataset D = {(xi,yi)} is

the difference between feature moments with additional regularization term:

1

|D|

|D|∑
i=1

Φ(xi,yi)−
∑
y̌∈Y

P̌ (y̌|xi)Φ(xi, y̌)

− λθ. (3.10)

The adversarial strategies P̌ (y̌|xi) needed for calculating this gradient are parts of the return

value of Algorithm 1.

46

3.7 Finding The Best Response

In Figure 3, we can see that on the bottom right, there is a critical component: Best Response

Finder. It interacts with the Zero-sum Game Solver during each iteration of the double oracle

algorithm (i.e., line 7, and 13 in Algorithm 1). It finds a solution ŷ∗ for the maximizer Ŷ and

a solution y̌∗ for the minimizer Y̌ as followings:

ŷ∗ = arg max
ŷ

EP (y̌|x)[score(ŷ, Y̌)− ψ(y̌)]

(a)
= arg max

ŷ
EP (y̌|x)[score(ŷ, Y̌)], (3.11)

y̌∗ = arg min
y̌

EP (ŷ|x)[score(Ŷ , y̌)− ψ(y̌)], (3.12)

where the Lagrangian potential terms ψ(y̌) , θ·Φ(x, y̌). Equality (a) holds due to the Lagrange

potentials ψ(y̌) are invariant to the choice of ŷ∗.

Usually, efficiently finding the best responses is difficult. The difficulty depends on both

the score function being considered and the constraints imposed on the adversary (i.e., the

Lagrange potentials). An exact and efficient algorithm for F-score maximization (given a data

distribution) has only been developed relatively recently (39) using dynamic programming tech-

niques. We further develop from that technique to efficiently solve these best response problems

for:

• F-score for binary classification;

• F-score for multi-class sequence prediction with linear-chain constraints;

47

• Precision at k (P@k), and discounted cumulative gain (DCG) for rankings;

• Alignment error rate (AER) for word alignment quality evaluation in machine translation;

• Hamming loss for syntactic context-free grammar (CFG) parsing.

All of these are discussed in the following Chapter 4.

CHAPTER 4

METRICS, BEST RESPONSE ALGORITHMS

(This chapter contains and expands on materials originally presented in Wang, H., Xing,

W., Asif, K., and Ziebart, B.: Adversarial prediction games for multivariate losses. In Advances

in Neural Information Processing Systems, pages 2728-2736, 2015.)

In this chapter, we first review several commonly used metrics in Information Retrieval (IR)

and Natural Language Processing (NLP) areas that our Adversarial Multivariate Prediction

Games (MPG) framework directly optimizes. As we discussed in the previous chapter, in order

to apply MPG to those metrics, we need efficient algorithms that find the best responses to the

opponent’s strategies. We propose the corresponding algorithms for finding the best response

for each metric efficiently, after reviewing the evaluation metrics.

48

49

4.1 Metrics in Information Retrieval and Natural Language Processing

In this section, we review several commonly used metrics in Information Retrieval (IR) and

Natural Language Processing (NLP) areas. These metrics are shown can be directly optimized

by MPG framework, which overcomes the mismatches between the loss surrogates in traditional

empirical risk minimization methods and the metrics themselves for evaluation.

4.1.1 Hamming Loss, Accuracy

Hamming loss, or 0-1 loss, measures the number of incorrectly predicted variables:

hammingLoss(ŷ,y) =

N∑
i=1

I(ŷi 6= yi), (4.1)

where ŷ and y are two vectors of variables that denote prediction and gold standard (actual)

of N variables respectively, I(·) is the indicator function.

Hamming loss is closely related to accuracy, which is number of correct predictions divided

by the union of predicted and gold standard variables:

accuracy(ŷ,y) =

∑N
i=1 I(ŷi = yi)

|ŷ
⋃
y|

. (4.2)

Given the confusion matrix of a predictor in Table VI, which represents the information

about the actual and predicted results by a predictor on a specified dataset, accuracy can be

written as:

accuracy =
TP + TN

TP + FP + FN + TN
. (4.3)

50

TABLE VI: Confusion matrix of a predictor.

predicted
positive negative

actual
positive TP FN
negative FP TN

4.1.2 F-score

F-score, or F-measure, is a very widely used binary evaluation metric in both IR and NLP.

Referring to the confusion matrix in Table VI, precision and recall are defined as follows:

precision =
TP

TP + FP
, (4.4)

recall =
TP

TP + FN
. (4.5)

Precision measures what is the proportion of predicted positive items that are actually true

positive, while recall measures what is the proportion of true positive items that are correctly

predicted as positive. When predicting all the examples as positive, recall = 1, precision = 0;

and when predicting all examples as negative, precision = 1, recall = 0. F-score is defined to

balance the precision and recall:

Fβ = (1 + β2) · precision · recall
β2 · precision+ recall

(4.6)

=
(1 + β2) · TP

(1 + β2) · TP + β2 · FP + FN
, (4.7)

51

where β > 0. When β = 1, F-score is the harmonic mean of the precision and recall, is also

called F1 score:

F1 = 2 · precision · recall
precision+ recall

(4.8)

In this thesis, we use ‘F-score’ and ‘F1’ interchangeably, and all the algorithms we propose for

F1 can be extended to other β values.

Like we showed in Section 3.4.1, we can write precision, recall, and F1 in the forms that

are represented by vectors. For example, let a vector of predicted as positive items from the

pool of n items be represented as ŷ ∈ {0, 1}n, and a vector of actual items as y ∈ {0, 1}n, where

‘1’ means positive, and ‘0’ means negative. Equation 4.4 and Equation 4.5 are rewritten as:

precision(ŷ,y) =
ŷ · y
||ŷ||1

, (4.9)

recall(ŷ,y) =
ŷ · y
||y||1

, (4.10)

where || · ||1 denotes the number of positive items in the vector. F1 in the vector form is then:

F1(ŷ,y) =
2ŷ · y

||ŷ ||1 + ||y||1
and F1(0,0) = 1. (4.11)

52

Let’s consider an example, suppose the gold standard y = 10110010, and the prediction

ŷ = 11100110, then following their definitions, we get:

accuracy(ŷ,y) =
3 + 2

8
=

5

8
,

precision(ŷ,y) =
3

5
,

recall(ŷ,y) =
3

4
,

F1(ŷ,y) =
2× 3

4 + 5
=

2

3
.

4.1.3 Precision at k

In Information Retrieval, precision at k, or P@k is commonly used for learning to rank tasks.

It is because for a search engine, what matters most is not correctly retrieving all relevant web

pages/documents, but how many retrieved web pages/documents on the first one or two pages

are actually relevant (i.e., positive), for example, top 10 retrieved pages. So this gives the

definition of P@k in vector form:

P@k(ŷ,y) =
ŷ · y
k

, where ||ŷ||1 = k. (4.12)

Considering y = 10110010 as an example, suppose we let k = 3, and the prediction ŷ =

11000010, then P@3(ŷ,y) = 2
3 .

53

4.1.4 Discounted Cumulative Gain

Discounted cumulative gain, or DCG (46) is another popular metric used in Information

Retrieval. It assumes the higher relevant documents have higher ranked positions in the list of

retrieved documents. If we consider the retrieved list of items (e.g., documents, web pages) as a

permutation, σ̂, where σ̂(i) denotes the ith-ranked item. Let yσ̂(i) be the relevance score (gain)

for item σ̂(i). Then DCG, accumulated from position 1 to n, can be defined as following:

DCG(σ̂,y) =

n∑
i=1

2yσ̂(i) − 1

log2(i+ 1)
. (4.13)

Note that there’s another version of the definition of DCG:

DCG′(σ̂,y) = yσ̂(1) +
n∑
i=2

yσ̂(i)

log2 i
. (4.14)

The difference between these two is that Equation 4.13 puts stronger emphasis on retrieving

highly relevant items than Equation 4.14, i.e., the numerator in Equation 4.13 is 2yσ̂(i) instead

of yσ̂(i) in Equation 4.14. Since the definition of DCG in Equation 4.13 is more widely used in

the industry, and is the pseudo-standard (47; 48), we use this version in this thesis.

Consider the following ranking of eight items as an example, where each value is the relevance

score ∈ {0, 1, 2}:

2, 1, 2 , 0, 0, 2, 1, 0.

54

Then, the discounted gains at each position are:

22 − 1

log2 2
,

21 − 1

log2 3
,

22 − 1

log2 4
,

20 − 1

log2 5
,

20 − 1

log2 6
,

22 − 1

log2 7
,

21 − 1

log2 8
,

20 − 1

log2 9

= 3, 0.631, 1.5, 0, 0, 1.069, 0.333, 0.

The DCGs at rank n = {1, 2, ..., 8} are the accumulations of values above:

3, 3 + 0.631, 3.631 + 1.5, 5.131 + 0, 5.131 + 0, 5.131 + 1.069, 6.2 + 0.333, 6.533 + 0

= 3, 3.631, 5.131, 5.131, 5.131, 6.2, 6.533, 6.533.

If the items are ordered in descending order of relevance scores, we can get an ideal ranking,

and its corresponding DCG is called ideal DCG, or IDCG. Continue the example above, the

ideal ranking is:

2, 2, 2, 1, 1, 0, 0, 0,

thus its idea discounted gains at each position are:

22 − 1

log2 2
,

22 − 1

log2 3
,

22 − 1

log2 4
,

21 − 1

log2 5
,

21 − 1

log2 6
,

20 − 1

log2 7
,

20 − 1

log2 8
,

20 − 1

log2 9

= 3, 1.893, 1.5, 0.431, 0.387, 0, 0, 0.

55

and the IDCGs at rank n = {1, 2, ..., 8} are cumulated as followings:

3, 3 + 1.893, 4.893 + 1.5, 6.393 + 0.431, 6.824 + 0.387, 7.211 + 0, 7.211 + 0, 7.211 + 0

= 3, 4.893, 6.393, 6.824, 7.211, 7.211, 7.211, 7.211.

The normalized discounted cumulative gain, or NDCG is defined as:

NDCG =
DCG

IDCG
. (4.15)

The NDCGs at each position in the example are:

3

3
,

3.631

4.893
,

5.131

6.393
,

5.131

6.824
,

5.131

7.211
,

6.2

7.211
,

6.533

7.211
,

6.533

7.211

= 1, 0.742, 0.803, 0.752, 0.712, 0.860, 0.906, 0.906.

4.1.5 Alignment Error Rate

The alignment error rate (AER) is a common evaluation measure for assessing word align-

ment quality in machine translation (49; 17; 50; 51). It generalizes the F-score for settings with

more than binary-valued tags (52). For example, an alignment task may contain three different

kinds of tags between each pair of source and target words: a sure tag (S) for unambiguous

alignments, a possible tag (P) for alignments that might exist or not, and a negative tag (N)

56

for alignments that are neither S nor P . For a gold standard sequence of alignments y, and a

proposed sequence of alignments a from the system under evaluation, AER is defined as:

AER(a,y) = 1− |aA ∩ yS |+ |aA ∩ yP |
|aA|+ |yS |

, (4.16)

where A is the proposed positive tag. S alignments are also considered to be P alignments

(S ⊆ P) in this measure and it is evaluated accordingly.

je crois que ce est une bonne chose

i think that is good

S S S SP P S P

e1 e2 e3 e4 e5

f1 f2 f3 f4 f5 f6 f7 f8

je crois que ce est bonne chose

i think that is good

A A AA A A

e1 e2 e3 e4 e5

f1 f2 f3 f4 f5 f6 f7 f8

A A

une

Figure 4: The gold standard sequence alignment y (top) between English words ei and French
words fj , and the proposed sequence alignment a (bottom) with AER of 5/13. Note that N
tags are omitted in the figure for clarity.

57

Figure 4 shows an example alignment task. Each complete alignment can be viewed as a

variable for each pair of source and target words, as shown in Table VII, or represented in

sequence form as SNNNNNNNN. . .NPSP and ANNNNNNNN. . .NNNA, for the gold standard

and proposed sequence alignments. The alignment error rate for this example is:

AER = 1− 3 + 5

8 + 5
=

5

13
.

TABLE VII: Sequences of the gold standard (left) and the proposed (right) source-target word
alignments of the example in Figure 4.

Gold f1 f2 f3 f4 f5 f6 f7 f8

e1 S N N N N N N N

e2 N S N N N N N N

e3 N N S N N N N N

e4 N N N P S N N N

e5 N N N N N P S P

Prop. f1 f2 f3 f4 f5 f6 f7 f8

e1 A N N N N N N N

e2 N A N N N N N N

e3 N N N A N N N N

e4 N N N A A N A N

e5 N N N A N N N A

58

4.2 Best Response Algorithms

As we show in Section 3.2 and Figure 3, there’s one more major component left without

discussion: the Best Response Finder. It encapsulates polynomial time algorithms for finding

a best response action to the opponent strategy (i.e., possible actions and their probability

distribution). To motivate the study of best response finding algorithms, let’s first take a look

at the following example of F1 score, and see what is the best response.

Suppose we are given an opponent strategy Y : {y1 = 101, y2 = 111, y3 = 010}, with

probabilities P (Y): {p(y1) = 0.5, p(y2) = 0.2, p(y3) = 0.3}. Consider the following ta-

bles as examples, if we have an action ŷ = 100 as a response, we can get the expectation,

EP (Y)[F1(y, ŷ)] = 0.4333. For another possible response ŷ′ = 110, we have EP (Y)[F1(y, ŷ′)] =

0.61:

Y F1(y, ŷ)

p(y1) = 0.5 1 0 1 2/3

p(y2) = 0.2 1 1 1 1/2

p(y3) = 0.3 0 1 0 0

ŷ 1 0 0 EP (Y)[F1(y, ŷ)] = 0.5× 2/3 + 0.2× 1/2 + 0.3× 0 = 0.4333

Y F1(y, ŷ′)

p(y1) = 0.5 1 0 1 1/2

p(y2) = 0.2 1 1 1 4/5

p(y3) = 0.3 0 1 0 2/3

ŷ′ 1 1 0 EP (Y)[F1(y, ŷ′)] = 0.5× 1/2 + 0.2× 4/5 + 0.3× 2/3 = 0.61

59

Now, the question is which response ŷ is the best ŷ∗ that has the largest expected F1 score?

ŷ∗ = arg max
ŷ

EP (Y)[F1(y, ŷ)]. (4.17)

The brute-force method would check all 2|Y | possible permutations of ŷ, which only works

when the length of vector (i.e., the number of items) is very small. Such difficulty motivates

our studies on best response algorithms described in the following subsections.

4.2.1 Best Response for F1 Score

We leverage a recently developed method for efficiently maximizing the F1 score when a

distribution over opponent strategy is given (39). The key insight is that the problem can be

separated into an inner greedy maximization over item sets of a certain size k and an outer

maximization to select the best set size k from {0, . . . , n}, where n it the number of items. This

method can be directly applied to find the best response of the estimator player, Ŷ , since, as

showed in Equation 3.11, the Lagrangian terms of the game payoff matrix are invariant to the

60

choice of ŷ. For finding the best response for the adversary player Y̌ (performance-minimizer),

we give the derivation:

y̌∗ = arg min
y̌

EP (ŷ|x)[F1(Ŷ , y̌)− ψ(y̌)]

= arg min
y̌

∑
ŷ

p(ŷ|x)[F1(ŷ, y̌)− ψ(y̌)]

= arg min
y̌(k)∗

∑
ŷ

p(ŷ|x)[F1(ŷ, y̌(k)∗)− ψ(y̌(k)∗)], (4.18)

y̌(k)∗ = arg min
y̌∈Y̌(k)

∑
ŷ

p(ŷ|x)[F1(ŷ, y̌)− ψ(y̌)]

= arg min
y̌∈Y̌(k)

∑
ŷ

p(ŷ|x)

[
2
∑n

i=1 ŷiy̌i∑n
i=1 ŷi +

∑n
i=1 y̌i

−
n∑
i=1

ψiy̌i

]

= arg min
y̌∈Y̌(k)

n∑
i=1

[∑
ŷ 2p(ŷ|x)ŷiy̌i

sŷ + k
− ψiy̌i

]

= arg min
y̌∈Y̌(k)

n∑
i=1

y̌i

[∑
ŷ 2p(ŷ|x)ŷi

sŷ + k
− ψi

]

= arg min
y̌∈Y̌(k)

n∑
i=1

y̌i

[
n∑
s=1

p̂is
s+ k

− ψi

]
, (4.19)

where we write F1 in its vector form:

F1(ŷ, y̌) =
2ŷ · y̌

||ŷ ||1 + ||y̌||1
=

2
∑n

i=1 ŷiy̌i∑n
i=1 ŷi +

∑n
i=1 y̌i

,

61

and sŷ =
∑n

i=1 ŷi is the total number of ‘1’s in ŷ; k =
∑n

i=1 y̌i is the total number of ‘1’s in

y̌; and ψi = θ · φ(xi) for each position i. The marginal probability of Ŷ that there are total s

‘1’s, and i-th position is ‘1’ is defined as p̂is:

p̂is = p(Ŷi = 1, sŷ = s|x) =
∑
ŷ:sŷ=s

ŷip(ŷ|x). (4.20)

Then matrix W with element wsk = 1
s+k , where s, k ∈ {1, . . . , n}, can be precomputed. Com-

puting the marginal probability matrix P̂ that has p̂is as its elements, requires going through

every ŷ once. Algorithm 2 shown below obtains the best response for the adversary player Y̌ ,

that incorporates the Lagrangian potentials, and has a time complexity O(n3).

Algorithm 2 General F-score minimizer for MPG adversary player Y̌

1: procedure Gfm4Mpg(marginal probability matrix P̂, Lagrangian potentials ψ)
2: define matrix W with element Ws,k = 1

s+k , s, k ∈ {1, ..., n}
3: construct matrix F = 2× P̂×W − ψT × 1n . 1n is the all ones 1× n vector
4: for k = 1 to n do
5: solve the inner optimization problem:
6: y̌(k)∗ = arg miny̌∈Y̌(k)

∑n
i=1 y̌ifik . Y̌(k) = {y̌ ∈ {0, 1}n|

∑n
i=1 y̌i = k}

7: set y̌
(k)
i = 1 for the k-th column of F’s smallest k elements, and y̌i = 0 for the rest;

8: store a value of EP (ŷ|x)[F(ŷ, y̌(k)∗)] =
∑n

i=1 y̌
(k)∗

i fik
9: end for
10: for k = 0 take y̌(k)∗ = 0n, and EP (ŷ|x)[F(ŷ,0n)] = p(Ŷ = 0n|x)
11: solve the outer optimization problem:
12: y̌∗ = arg miny̌∈{y̌(0)∗ ,...,y̌(n)∗} EP (ŷ|x)[F(ŷ, y̌)]

13: return y̌∗ and EP (ŷ|x)[F(ŷ, y̌∗)]
14: end procedure

62

4.2.2 Best Response for F1 Score with Multi-class Linear-chain Structure

Leveraging sequential structure improves performance in tasks like named-entity recognition

(53). This has previously been accomplished using conditional random fields (12), which are

based on the logarithmic loss rather than the F1 score often used to evaluate performance for

such tasks. Better aligning the learning method’s objective and the desired evaluation measure

within the MPG framework requires us to find efficient multi-class best response algorithms

with linear-chain structure for each player.

We consider the F1 score for a particular class C and define two players in the zero-sum game:

player Ŷ makes predictions that maximizes F1 score, and player Y̌ adversarially approximates

the evaluation distribution. For each set of adversarial sequences Y, and its distribution P (Y),

the best response should be found efficiently:

ŷ∗ = arg max
ŷ∈Ŷ

∑
y̌

p(y̌|x)[F1C (ŷ, y̌)], (4.21)

y̌∗ = arg min
y̌∈Y̌

∑
ŷ

p(ŷ|x)[F1C (ŷ, y̌)− ψ(y̌)]. (4.22)

In our proposed model, there are two types of features: unigram Φu(xt, yt), and bigram

Φb(xt, yt−1, yt). We encode the linear-chain structure information in the weight vectors (i.e.,

Lagrange multipliers in Equation 4.22). For example, suppose we have m classes Ct ∈ C =

{C1, ..., Cm} in the dataset. Then each distinct consecutive pair of classes (Ct−1, Ct) has its

own weight vector θb(Ct−1, Ct), for a total number of pairs and weight vectors m2. An optional

START tag can be added in front of a sequence, forming m additional pairs (START, C1) (and

63

corresponding weight vectors). Besides these pair vectors that accommodate bigram features,

each class also has a separate weight vector θu(Ct) for unigram features in our model. So in

total, we use m unigram feature vectors, and m2(+m) bigram feature vectors to capture the

linear chain information.

From Equation 4.21, we can see that the Lagrange potentials ψ(y̌) are related to the choice

of y̌ only and is discarded, and due to the binary nature of the F1 score of a specific target

class (15), the GFM algorithm (39) can be applied directly to the binarized sequences for the

target.

For the adversary’s best response, we rewrite Equation 4.22 for a particular class C as:

y̌∗ = arg min
y̌(k)∗

∑
ŷ

p(ŷ|x)

{
2
∑n

t=1 ŷCty̌
(k)∗

Ct

α+ k
−

n∑
t=1

[
ψut (y̌

(k)∗

t) + ψbt (y̌
(k)∗

t−1 , y̌
(k)∗

t)
]}

, (4.23)

y̌(k)∗ = arg min
y̌∈Y̌(k)

n∑
t=1

{∑
ŷ

p(ŷ|x)
2ŷCty̌Ct
α+ k

− [ψut (y̌t) + ψbt (y̌t−1, y̌t)
]}

= arg min
y̌∈Y̌(k)

n∑
t=1

{ n∑
α=1

2p̂tα
α+ k

y̌Ct − [ψut (y̌t) + ψbt (y̌t−1, y̌t)]

}

= arg max
y̌∈Y̌(k)

n∑
t=1

{
[ψut (y̌t) + ψbt (y̌t−1, y̌t)]−

n∑
α=1

2p̂tα
α+ k︸ ︷︷ ︸
ftk

y̌Ct

}
, (4.24)

where ŷCt = I(ŷt = C), y̌Ct = I(y̌t = C), and α =
∑n

t=1 ŷCt. p̂tα is the marginal probability

that |ŷC | = k and ŷt = C:

p̂tα = p(Ŷt = C,
∑
t

I(Ŷt = C) = k|x). (4.25)

64

The difficulty of solving Equation 4.24 comes from the linear-chain structure in the Lagrange

potential term [ψut (y̌t) + ψbt (y̌t−1, y̌t)]. To solve this problem efficiently, we propose a dynamic

programming algorithm, for the particular class C, Linear-Chain F-score Minimizer (LCFM)

in Algorithm 3. Figure 5 shows an example, where k = 2, the target class C = LOC. We

start from the end of the linear-chain structure. For each t− 1 position, the expectation value

[ψut (y̌t)+ψbt (y̌t−1, y̌t)−ftkI(y̌t = C)] is accumulated from position t. Also, for each possible class

node, the algorithm keeps tracking the best expectation values with and without involving the

target class, and the total number of target class appearances so far, to guarantee such number

equals to k at the end of the procedure. When there are more than one possible route with

same number of target class appearances (e.g., in the red rectangle in the bottom figure in

Figure 5), the one with largest accumulated expectation value is selected. Looping through n

subroutines of MSUM can be accomplished in O(m2n3) time, which characterizes the overall

complexity of the algorithm.

65

Figure 5: An example of linear-chain structure, with k = 2, and the target class C = LOC.
Green links represent the chains with the target class C, the others are links without it.

66

Algorithm 3 Linear-Chain F-score Minimizer.

1: procedure LCFM(P̂, ψu, ψb, C)
2: define matrix W with element wtk = 1

t+k

3: compute matrix F = 2× P̂×W . each element is ftk in Equation 4.24
4: [y̌(0)∗ ,EF1(y̌(0)∗)] = MSUM(START, 1, 0, 0,F)
5: EF1(y̌(0)∗) = EF1(y̌(0)∗)− p0 . p0 is the marginal probability that |ŷC | = 0
6: for k = 1 to n do
7: [y̌(k)∗ ,EF1(y̌(k)∗)] = MSUM(START, 1, k, k,F)
8: end for
9: EF1(y̌∗) = max(EF1(y̌(k)∗))
10: y̌∗ = arg maxy̌(k)∗ EF1(y̌∗)
11: return [y̌∗,−EF1(y̌∗)]
12: end procedure

4.2.3 Best Response for Precision at k

According to its definition, precision at k, or P@k, restricts the number of positive predic-

tions to k, which is a constant. Equation 3.11 that finding the best response for the maximizer

Ŷ is rewritten as:

ŷ∗ = ŷ(k)∗ = arg max
ŷ

EP (y̌|x)[P@k(ŷ, Y̌)]

= arg max
ŷ∈Ŷ(k)

∑
y̌

p(y̌|x)[P@k(ŷ, y̌)]

= arg max
ŷ∈Ŷ(k)

∑
y̌

p(y̌|x)

∑n
i=1 ŷiy̌i
k

= arg max
ŷ∈Ŷ(k)

1

k

n∑
i=1

ŷi
∑
y̌

p(y̌|x)y̌i

= arg max
ŷ∈Ŷ(k)

1

k

n∑
i=1

ŷip̌i, (4.26)

67

Algorithm 4 MSUM subroutine of LCFM.

1: procedure MSUM(ct−1, t, r, k,F)
2: if [y̌∗,EF1(y̌∗)]=cache(ct−1, t, r, k) exists then
3: return [y̌(k)∗ ,EF1(y̌(k)∗)]
4: end if
5: if t > n and r > 0 then return [Φ,−∞]
6: else if t > n and r ≤ 0 then return [Φ, 0]
7: end if
8: for ct ∈ C do
9: if r > 0 | ct 6= C then
10: r′ = r − I(ct = C)
11: [y̌ct ,EctF1

(y̌)] = MSUM(ct, t+ 1, r′, k,F)
12: end if
13: end for
14: ψ(ct) = ψut (ct) + ψbt (ct−1, ct)
15: f = ftk × I(ct = C) . ftk is one element in F
16: EF1(y̌∗) = max(ψ(ct)− f + EctF1

(y̌))
17: y̌∗ = arg max(ct⊕y̌ct) EF1(y̌∗)
18: return cache(ct−1, t, r, k)=[y̌∗,EF1(y̌∗)]
19: end procedure

where p̌i is the marginal probability of Y̌ that i-th position is ‘1’, i.e., p̌i =
∑
y̌ p(y̌|x)y̌i. To get

the best response ŷ∗, we sort p̌i in descending order, and set the corresponding top k variables

in ŷ to ‘1’.

68

For the minimizer Y̌ s best response, the Lagrangian terms must also be included:

y̌∗ = arg min
y̌

EP (ŷ|x)[P@k(Ŷ , y̌)− ψ(y̌)]

= arg min
y̌

∑
ŷ∈Ŷ(k)

p(ŷ|x)[P@k(ŷ, y̌)−
n∑
i=1

ψiy̌i]

= arg min
y̌

∑
ŷ∈Ŷ(k)

p(ŷ|x)

(∑n
i=1 ŷiy̌i
k

−
n∑
i=1

ψiy̌i

)

= arg min
y̌

n∑
i=1

y̌i

(∑
ŷ∈Ŷ(k) p(ŷ|x)ŷi

k
− ψi

)

= arg min
y̌

n∑
i=1

y̌i

(
p̂ik
k
− ψi

)
, (4.27)

where p̂ik =
∑
ŷ∈Ŷ(k) p(ŷ|x)ŷi = p(Ŷi = 1,

∑
ŷ Ŷi = k|x), is the marginal probability of Ŷ that

there are total k ‘1’s, and i-th position is ‘1’. Since k is a known variable, as long as the value

of each included term, (p̂ik/k−ψi), is negative, the sum is the smallest, and the corresponding

response is the best for the minimizer.

4.2.4 Best Response for Discounted Cumulative Gain

For computing the best response for maximizer, we rewrite Equation 3.11 as following:

σ̂∗ = arg max
σ̂

EP (y̌|x)[DCG(σ̂, Y̌)]

= arg max
σ̂

∑
y̌

p(y̌|x)
n∑
i=1

2y̌σ̂(i) − 1

log2(i+ 1)

= arg max
σ̂

n∑
i=1

1

log2(i+ 1)

∑
y̌

p(y̌|x)2y̌σ̂(i) − 1

 . (4.28)

69

Since 1/(log2(i + 1)) is monotonically decreasing, computing and sorting (
∑
y̌ p(y̌|x)2y̌i − 1)

with descending order and greedily assign the order to σ̂ is optimal.

The minimizers best response using additive features is obtained:

y̌∗ = arg min
y̌

EP (σ̂|x)[DCG(Σ̂, y̌)− ψ(y̌)]

= arg min
y̌

∑
σ̂

p(σ̂|x)

[
DCG(σ̂, y̌)−

n∑
i=1

ψi(y̌i)

]

= arg min
y̌

∑
σ̂

p(σ̂|x)

[
n∑
i=1

2y̌σ̂(i) − 1

log2(i+ 1)
−

n∑
i=1

ψi(y̌i)

]

= arg min
y̌

n∑
i=1

[∑
σ̂

p(σ̂|x)
2y̌σ̂(i) − 1

log2(i+ 1)
− ψi(y̌i)

]
. (4.29)

For each individual possible relevance score value s of y̌i (for example, s ∈ {0, 1, 2}), it has a

separate weight vector θ(s). We greedily assign the value s to each position i, in the best re-

sponse y̌∗, where s is the one that gives the smallest expectation
(∑

σ̂ p(σ̂|x) 2s−1
log2(i+1) − ψi(s)

)
.

4.2.5 Best Response for Alignment Error Rate

In the MPG for 1−AER, the two players are: y ∈ Y, which adversarially approximates the

gold standard alignment distribution; and a ∈ A, which maximizes 1−AER (hence, minimizes

AER), where A and Y are the domain of a with a distribution Q(A), and y with a distribution

70

Q(Y) respectively. For a sequence of alignments of length n, the objective of finding the best

responses a∗ (Equation 3.11) and y∗ (Equation 3.12) are:

a∗ = arg max
a∈A

∑
y∈{0,S,P}n

q(y)[1−AER(a,y)], (4.30)

y∗ = arg min
y∈Y

∑
a∈{0,A}n

q(a)[1−AER(a,y)− ψ(y)]. (4.31)

We focus first on the adversary’s best response (Equation 4.31), which must incorporate the

Lagrangian potential term, ψ(y). For the choice of alignment y∗, we separate the choices among

all possible numbers of S tags, k = 0, ..., n, for the alignment sequence of length n, and denote

these sets as Y(k). The best choice of a certain k is rewritten as follows, where ai is the notational

shorthand of the indicator function I(ai = A), and ysi = I(yi = S), yri = I(yi = P, yi 6= S); the

number of A tags in the alignment is α =
∑n

i=1 ai:

y(k)∗ = arg min
y∈Y(k)

∑
a∈{0,A}n

q(a)

(∑n
i=1(2aiysi + aiyri)

α+ k
−

n∑
i=1

ψi(yi)

)

= arg min
y∈Y(k)

∑
a∈{0,A}n

q(a)
n∑
i=1

(
ai(2ysi + yri)

α+ k
− ψ(S)

i ysi − ψ(R)
i yri

)
(4.32)

= arg min
y∈Y(k)

n∑
i=1

ysi 2

n∑
α=1

(
qiα
α+ k

− ψ(S)
i

)
︸ ︷︷ ︸

fsik

+

n∑
i=1

yri

n∑
α=1

(
qiα
α+ k

− ψ(R)
i

)
︸ ︷︷ ︸

frik

.

Here, in Equation 4.32, qiα is the marginal probability that alignment a has |aS | = α and

ai = S (i.e., the number of S tags equals to α, and the i-th position is S). We separate the

Lagrangian potential ψ into two terms: ψ(S) for S tags, ψ(R) for P tags that are not also S

71

Algorithm 5 AER Maximizer

1: procedure AerMax(Q(A), ψ(S), ψ(R))
2: define vector W0 with element wi0 = 1

i
3: define matrix W with element wik = 1

i+k , where i, k ∈ {1, ..., n}
4: compute vector F0 = QW0 − ψ(R)

5: compute matrix FS = 2QW − ψ(S)ᵀ1n

6: compute matrix FR = QW − ψ(R)ᵀ1n

7: set positions of y(0)∗ with fi0 < 0 to ‘P ’
8: E(1−AER)′(y

(0)∗) =
∑n

i=1 min(fi0, 0)
9: for k = 1 to n do
10: find y(k)∗ by:
11: sort fik = fsik −min(frik, 0) in ascending order
12: set positions with top k’s fik to ‘S’
13: set each rest position i to ‘P ’ if frik < 0
14: E(1−AER)′(y

(k)∗) =
∑n

i=1 ysifsik + yrifrik
15: end for
16: return y∗ = arg miny(k)∗ E(1−AER)′(y

(k)∗)
17: end procedure

tags. To get the permutation that minimizes this equation, for tag S at position i we pay fsik,

for tag P we pay frik, and for tag N we pay 0. Without the y ∈ Y(k) constraint, to compute

the minimum, all that we need to do is finding the smallest of these three terms for each i.

With the constraint, we have to set exactly k tags to S, so we choose the k positions where

the fsik cost exceeds the best alternative, min(frik, 0), by as little as possible. Thus, we sort

(fsik −min(frik, 0)) in ascending order, set the top k positions to S, P , or N accordingly. The

detailed algorithm is shown as Algorithm 5.

The best response for the AER minimizer (Equation 4.30) is simpler to obtain since the

Lagrangian terms ψ(y) are invariant to the choice of alignment a∗. The approach of (39) can

72

be used after replacing F = PW with F ′ = QSWS +QPWP , where matrix QS is the marginal

probability for S tag, QP is for P tag, and permutation matrices WS , WP are for S and P

respectively, where each element (with index i, k) in the matrix wikS = 2
i+k , and wikP = 1

i+k−1 .

4.2.6 Best Response for Context-free Grammar Parsing

Margin

NN

debt

NN

was

VBD

high

NN

record

JJ

a

DT

NP

PP

at

IN

VPNP

S

Margin

NN

debt

NN

was

VBD PP

at

IN

VPNP

S

NP

high

NN

record

JJ
a

DT @NP

Figure 6: The parse tree (left) for the sentence “Margin debt was at a record high,” and its
corresponding binarized parse tree (right), where ‘@NP’ is a synthetic node added to make the
tree binary.

Syntactic parsing assigns a syntactic tree structure to a given sentence according to a set

of predefined context-free grammar (CFG) (15). For example, Figure 6 shows a parse tree

structure of the sentence “Margin debt was at a record high,” which uses grammars from the

Penn Treebank (54). Note that the noun phrase (NP) node in the left square with dotted

73

line can be binarized to the one in the right square, which contains a synthetic node @NP.

Binarization is necessary for efficient parsing algorithms, like CYK (15; 55; 56). The binarized

parse tree is in Chomsky normal form (CNF) (57; 58; 59), which allows rules of two forms:

A → BC (binary rule), and D → w (lexicon rule); where A, B, C and D are non-terminal

symbols (state tags of grammar), and w is a terminal symbol (word in sentence). The parse tree

can be represented in the form of a parse table (Figure 7). The row number of a non-terminal

symbol indicates the rule’s start index of its span of words, while the column number indicates

its end index.

Figure 7: The binarized parse table for the sentence “Margin debt was at a record high.” The
row number of a non-terminal symbol indicates the rule’s start index of its span of words, while
the column number indicates its end index.

74

For the syntactic parsing problem, we model each parse tree structure as y, each rule r has

a corresponding feature vector ψ(r) to characterize its statistics from the training data. The

score between two parse tree structures ŷ and y̌ is measured as (ŷ ∩ y̌)/(ŷ ∪ y̌), based on each

constituent with span information (e.g., V P → V BD,PP, start = 2, end = 6, in Figure 6).

We extend the Viterbi-style dynamic programming algorithm CYK (55; 15) to support efficient

MPG learning (see Algorithm 6, referring to the parse table in Figure 6). We adversarially

optimize Hamming loss due to its tractability in tree structures.

There are two key differences between the original CYK and our CYK4MPG algorithm:

1. Since we are dealing with a best response for an adversary’s strategy (multiple possible

actions) each time, the expected score(Ŷ , Y̌) in Equation 3.2 is accumulated as parts of

the marginal probability (see line 2 - 8).

2. The best score of each constituent r is computed by combining marginal probability (i.e.,

score) and Lagrange potential (see line 13, 23).

Suppose the grammar size is |G|, the overall time complexity of CYK4MPG is O(|G|n3),

where n is the length of the sentence to parse.

75

Algorithm 6 CYK algorithm for MPG

1: procedure CYK4MPG(Ŷ, P (Ŷ), ψ, grammar, words)
2: for ŷ ∈ Ŷ do . Record p(ŷ) for each constituent
3: for constituent r ∈ ŷ do
4: if r not synthetic then . Synthetic constituent starts with ‘@’
5: prob[r.(end− start)][r.start][r] += p(ŷ)
6: end if
7: end for
8: end for
9:

10: for i = 0 to (#(words)− 1) do . For each lexicon rule
11: w = words[i]
12: for r = (s→ w) ∈ grammar do
13: best[0][i][s] = prob[0][i][r]− ψ(r)
14: end for
15: end for
16:

17: for i = 1 to (#(words)− 1) do
18: for j = 0 to (#(words)− i− 1) do
19: for k = 0 to (i− 1) do . For each binary split
20: for r = (a→ bc) ∈ grammar do
21: lbest = best[k][j][b]
22: rbest = best[i− k − 1][j + k + 1][c]
23: score = prob[i][j][r]− ψ(r) + lbest+ rbest
24: if score < best[i][j][a] then
25: best[i][j][a] = score
26: back[i][j][a] = (i, j, k, b, c) . Record binary back pointer
27: end if
28: end for
29: end for
30: end for
31: end for
32: return [y̌∗, score∗] = buildTree(back, best)
33: end procedure

CHAPTER 5

APPLICATIONS AND EXPERIMENTS

(This chapter contains and expands on materials originally presented in Wang, H., Xing,

W., Asif, K., and Ziebart, B.: Adversarial prediction games for multivariate losses. In Advances

in Neural Information Processing Systems, pages 2728-2736, 2015.)

In this chapter, we show the Information Retrieval and Natural Language Processing tasks

that can benefit from directly optimizing their evaluation metrics that are discussed in the pre-

vious chapter. We apply our approach, Multivariate Prediction Games (MPG), to the following

five core IR/NLP tasks:

• binary classification with F1 score as evaluation metric;

• named-entity recognition that incorporates multi-class linear-chain structure constraint

and evaluated by F1 score metric;

• ranking of query results which evaluated by precision at k (P@k) and discounted cumula-

tive gain (DCG);

• world alignment quality of machine translation evaluated by alignment error rate (AER);

• syntactic context-free grammar parsing with Hamming loss (accuracy) as evaluation met-

ric.

Experiments for those tasks are conducted on several widely used datasets to support our study.

We also compare MPG with the well studied ERM methods in each following section.

76

77

5.1 Binary Classification with F1 Score

Binary classification are the most common task in Information Retrieval, it decides whether

a web page or a document should be retrieved, i.e., be classified as relevant to the user query.

Our primary point of comparison is with structured support vector machines (SSVM)(21) to

better understand the trade-offs between convexly approximating the loss function with the

hinge loss versus adversarially approximating the training data using our approach. Besides,

we also compare our approach with the traditional ERM algorithm, logistic regression (LR),

which uses logarithmic loss as a convex approximation, to demonstrate the benefits from directly

optimizing the desired performance measure, F1 score.

We employ an optical recognition of handwritten digits (OPTDIGITS) dataset (60) (10

classes, 64 features, 3,823 training examples, 1,797 test examples), and an income prediction

dataset (‘a4a’ ADULT1, two classes, 123 features, 3,185 training examples, 29,376 test examples)

(60). Following the same evaluation method used in (21) for OPTDIGITS, the multi-class

dataset is converted into multiple binary datasets and we report the macro-average of the

performance of all classes on test data. For OPTDIGITS/ADULT, we use a random 1/3 of the

training data as a holdout validation data to select the `2 regularization parameter trade-off

C ∈ {2−6, 2−5, ..., 26}.

From the results in Table VIII, we see that our approach, MPG, works better than SSVM

on both the OPTDGITS and the ADULT dataset. The nature of the running time required for

1 http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html

78

TABLE VIII: F1 score performances on OPTDIGITS and ADULT datasets.

F1 score OPTDIGITS ADULT

MPG 0.920 0.697
SSVM 0.915 0.673
LR 0.914 0.639

validation and testing is very different for SSVM, which must find the maximizing set of variable

assignments, and MPG, which must interactively construct a game and its equilibrium. Model

validation and testing require ≈ 30 seconds for SSVM on the OPTDIGITS dataset and ≈ 3

seconds on the ADULT dataset, while requiring ≈ 1397 seconds and ≈ 252 seconds for MPG

F-measure optimization. For the more difficult problem of maximizing the F-score of ADULT

over 29, 376 test examples, the MPG game becomes quite large and requires significantly more

computational time. Though our MPG method is not as finely optimized as existing SSVM

implementations, this difference in run times will remain as the game formulation is inherently

more computationally demanding for difficult prediction tasks.

79

5.2 Named-entity Recognition with F1 Score

As we discussed in the previous chapters, leveraging sequential structure improves perfor-

mance in tasks like named-entity recognition (NER). Like in the example, “University of Illinois

at Chicago” is an ORGANIZATION, while “Chicago” alone is a LOCATION, the dependencies

among consecutive words are important information, and are previously captured by the CRF

model. In the comparison to the CRF model against our MPG model with linear-chain con-

straint, we use the well known CoNLL-2003 English dataset (61). We consider each sentence

as one sequence example, and create three different sizes of subsets from the CoNLL-2003 data

for our experiments, to demonstrate the benefit that directly optimizing F1 score can bring,

with respect to the training data size. The first dataset contains the first 300 sentences from

‘train,’ 300 sentences from ‘testa,’ and 300 sentences from ‘testb.’ The second dataset contains

1000 (×3) sentences, and the last contains 3000 (×3) sentences. Features are extracted using

implementations from Stanford NER,1 with the first-order CRF configuration 2. The number

of features in each dataset is 31979, 67513, and 166737 respectively. The other statistics of each

dataset can be found in Table IX.

1http://nlp.stanford.edu/nlp/javadoc/javanlp/edu/stanford/nlp/ie/crf/

CRFFeatureExporter.html

2http://nlp.stanford.edu/software/crf-faq.shtml

http://nlp.stanford.edu/nlp/javadoc/javanlp/edu/stanford/nlp/ie/crf/CRFFeatureExporter.html
http://nlp.stanford.edu/nlp/javadoc/javanlp/edu/stanford/nlp/ie/crf/CRFFeatureExporter.html
http://nlp.stanford.edu/software/crf-faq.shtml

80

TABLE IX: The statistics of three linear-chain datasets.

dataset
conll.300 conll.1000 conll.3000

train testa testb train testa testb train testa testb
max length 48 47 125 53 56 125 59 110 125
avg. length 16 12 14 13 15 13 15 16 15
PER 152 275 616 1151 1097 1165 2967 2998 2464
LOC 246 179 234 769 628 514 2134 1857 1772
ORG 200 221 90 574 536 746 1634 1926 1969
MISC 144 88 85 339 283 280 1149 1121 843
features 31979 67513 166737

We evaluate the F1 score of MPG on each dataset, with the same evaluation method as

Stanford’s CRF implementation 1. The performances of both the CRF model and the MPG

model can be found in Table X.

MPG with linear-chain constraint works better for all NER tags than CRF on the 300

sentences datasets. Even though MPG does not outperform CRF on ‘testa’ of ‘conll.3000’ set,

it has F-score 68.37% on ‘testb’, which is better than CRF. However, we notice that the results

show MPG does not work as well as CRF for ‘LOC’ tag on 1000, and 3000 sentences datasets.

The results suggest that optimizing F1 directly can reduce the need of using larger dataset.

1http://nlp.stanford.edu/nlp/javadoc/javanlp/edu/stanford/nlp/ie/

AbstractSequenceClassifier.html

http://nlp.stanford.edu/nlp/javadoc/javanlp/edu/stanford/nlp/ie/AbstractSequenceClassifier.html
http://nlp.stanford.edu/nlp/javadoc/javanlp/edu/stanford/nlp/ie/AbstractSequenceClassifier.html

81

TABLE X: F1 scores of CRF and MPG on ‘testa’ and ‘testb’.

dataset
testa testb

CRF MPG CRF MPG

c
o
n

ll
.3

0
0 PER 17.88% 48.00% 40.00% 68.86%

LOC 30.94% 48.19% 52.10% 57.21%
ORG 7.19% 31.54% 14.16% 17.85%
MISC 16.22% 26.09% 30.43% 39.19%

c
o
n

ll
.1

0
0
0 PER 78.68% 84.80% 76.36% 82.48%

LOC 80.00% 77.68% 76.65% 76.03%
ORG 58.24% 59.86% 61.14% 62.93%
MISC 62.30% 65.99% 59.28% 67.13%

c
o
n

ll
.3

0
0
0 PER 85.72% 87.44% 81.05% 83.20%

LOC 85.74% 84.56% 82.80% 80.41%
ORG 75.69% 73.44% 66.18% 68.37%
MISC 78.82% 79.41% 70.05% 74.02%

5.3 Ranking with Precision at k and Discounted Cumulative Gain

With different best response implementations, we optimize two evaluation metrics directly

for assessing qualities of ranking: precision@k (Section 4.2.3), and discounted cumulative gain

(DCG, Section 4.2.4). For precision@k, we evaluate the performance of our approach against the

comparison method, SSVMs, where k is half the number of positive examples (i.e. k = 1
2POS).

Note that the original SSVM’s implementation uses the restriction k during training, but not

during testing. We modified the code by ordering SSVM’s prediction value for each test example,

and select the top k predictions as positives, the rest are considered as negatives. We denote

the original implementation as SSVM, and the modified version as SSVM’.

From the results in Table XI, we see that our approach, MPG, works slightly better than

SSVM on the OPTDGITS dataset. For the ADULT dataset, MPG provides equivalent perfor-

82

TABLE XI: Precision@k score performances on OPTDIGITS and ADULT datasets.

Precision@k OPTDIGITS ADULT

MPG 0.990 0.805
SSVM 0.956 0.638
SSVM’ 0.989 0.805

mance for precision at k. Model testing time required by MPG is within an order of magnitude

(better for OPTDIGITS, worse for ADULT), i.e., ≈ 30 seconds for SSVM on the OPTDIGITS

dataset, and ≈ 3 seconds on the ADULT dataset, while requiring ≈ 9 seconds and ≈ 25

seconds for MPG respectively.

For discounted cumulative gain, we compare the performance of our approach and compari-

son methods using five-fold cross validation on the MQ2007 dataset. We measure performance

using Normalized DCG (NDCG), which divides the realized DCG by the maximum possible

DCG for the dataset, based on a slightly different variant of DCG employed by LETOR4.0

(62): DCG′′(σ̂,y) = 2yσ̂(1) − 1 +
∑n

i=2
2
yσ̂(i)−1
log2 i

. The comparison methods are:

• RankSVM-Struct (63), part of SVMstruct which uses structured SVM to predict the rank;

• ListNet (64), a list-wise ranking algorithm employing cross entropy loss;

• AdaRank-NDCG (65), a boosting method using ‘weak rankers’ and data reweighing to

achieve good NDCG performance;

• AdaRank-MAP uses Mean Average Precision (MAP) (10) rather than NDCG;

• RankBoost (66), which reduces ranking to binary classification problems on instance pairs.

83

TABLE XII: MQ2007 NDCG results.

Method Mean NDCG

MPG 0.5220
RankSVM 0.4966
ListNet 0.4988
AdaRank-NDCG 0.4914
AdaRank-MAP 0.4891
RankBoost 0.5003

Table XII reports the NDCG@k averaged over all values of k (between 1 and, on average

41) while Figure 8 reports the results for each value of k between 1 and 10. From this, we can

see that our MPG approach provides better rankings on average than the baseline methods

except when k is very small (k = 1, 2). In other words, the adversary focuses most of its effort

in reducing the score received from the first item in the ranking, but at the expense of providing

a better overall NDCG score for the ranking as a whole.

84

Figure 8: NDCG@k as k increases.

5.4 Machine Translation with Alignment Error Rate

We evaluate our approach against maximum margin structured prediction model / SSVM (14;

21) for alignment error rate. Since the maximum margin method’s implementation is not avail-

able, we implemented it ourselves following the algorithm description (30; 14; 67). Following

Taskar et al.’s modeling (67) of the AER task as a maximum weighted bipartite matching prob-

lem (68) using large margin structured prediction, we build a bipartite best response module

also for MPG (MPGbip). The best responses can be computed using widely used maximum

margin bipartite matching algorithms (69), by incorporating Lagrangian potentials as edge

weights.

We use the NAACL 2003 Hansards data (70) for the AER task. It contains 1,470,000

unlabeled sentence pairs, 447 labeled pairs, and a separate validation set of 37 labeled pairs. We

85

experiment with translation from English to French, following the same setting as (14; 49). We

use first 100 English-French sentence pairs from the original labeled data as training examples,

the remaining 347 sentence pairs as test examples, and the same 37 validation pairs as validation

examples. Since we can’t get the features described in (14), we duplicate them with our best

efforts 1. We train the maximum margin structured model (SSVM), the MPG model with

maximum weight bipartite matching (MPGbip), and the MPG model for AER (MPGaer) using

those features extracted from the training dataset. Also, following the same setting of (14),

we include GIZA++’s unsupervised prediction from the 15H53343 training scheme (13) as an

additional feature, and train another three models: SSVM+GIZA, MPG+GIZA
bip , MPG+GIZA

aer .

We select `2 regularization values for the MPG models based on performance on the validation

dataset.

TABLE XIII: AER of different models.

Model Valid Test

SSVM 25.51% 22.13%
MPGbip 31.12% 27.31%
MPGaer 28.30% 26.13%

SSVM+GIZA 13.98% 13.34%

MPG+GIZA
bip 15.82% 14.52%

MPG+GIZA
aer 6.97% 7.28%

1Differences in SSVM performance from (14) suggest that our features differ from those used
previously.

86

The performances of models on validation and test datasets are listed in Table XIII. With our

extracted features, the SSVM model performs better than the MPG models. When comparing

MPGbip against MPGaer, it shows the advantage of modeling AER more directly over modeling

the alignment problem as a maximum weight bipartite matching. After including GIZA’s

prediction into the features, all models’ performances increase, and MPG+GIZA
bip outperforms

any other model, which demonstrates the effectiveness of MPGaer when given high quality

features to constrain the adversary.

87

5.5 Syntactic Context-free Grammar Parsing with Hamming loss

For the context-free grammar parsing task, the dataset we use is the Penn Treebank Wall

Street Journal corpus (54). Following (21), we start based on the part-of-speech tags, and the

number of times a certain rule occurs in the tree is used as the value of each feature. The

comparison algorithm is SSVM for context-free grammar with Hamming loss 1, and Stanford

Parser 2, which is a CYK algorithm that uses Markovization encoded grammar rules (58), and is

also one of the state-or-art parsers available online. Using previous experimental methodology

(21), we consider sentences of length at most 10 in the dataset. We use the standard section

splits: sections 2-21 are our training set (4071 sentences), section 22 with 163 sentences is used

as test set testa, and 270 sentences in section 23 are testb. Besides (1−Hamming loss), we also

report the Evalb F1 (71) for each algorithm. The results are shown in Table XIV.

TABLE XIV: Results for CFG parsing on the Penn Treebank.

Model
1- Hamming F1

testa testb testa testb

SSVM 71.94% 70.91% 78.27% 80.81%
MPGcfg 85.77% 85.73% 86.53% 87.04%
Stanford 79.94% 85.27% 83.04% 87.02%

1http://www.cs.cornell.edu/people/tj/svm_light/svm_cfg.html

2http://nlp.stanford.edu/software/lex-parser.shtml

http://www.cs.cornell.edu/people/tj/svm_light/svm_cfg.html
http://nlp.stanford.edu/software/lex-parser.shtml

88

We observe that MPGcfg outperforms SSVM on both testa and testb with Hamming loss

and F1 score, perhaps benefiting from both the directly Hamming loss optimization and its

guarantees of Fisher consistency (34). It also works better than Stanford parser on both the

two datasets. With the ability of incorporating arbitrary features, we believe MPGcfg can

achieve better performances by carefully engineering rich features.

CHAPTER 6

CONCLUSION AND FUTURE PROSPECTS

6.1 Conclusion

In this thesis, we focus on solving the mismatch between Machine Learning algorithms’

optimization objective and application performance measures in Information Retrieval and

Natural Language Processing, by building an adversarial prediction framework—Multivariate

Prediction Game (MPG)—to approximate training data (adversarially) while optimizing the

desired performance metrics directly. MPG treats the multivariate prediction as an adversarial

zero-sum game between a loss-minimizing prediction player and a loss-maximizing evaluation

player constrained to match specified properties of training data. By solving the problem of

effectively finding the best responses to the opponent’s strategies, and applying the double

oracle constraint generation method, the framework avoids the non-convexity of empirical risk

minimization, and more directly optimizes the metrics. We summarizes the main contributions

of this thesis as followings:

• We reviewed several traditional empirical risk minimization (ERM) algorithms which use

convex surrogates to make their optimization tractable. We pointed out the mismatch

between such convex surrogates and the desired application performance measures, which

motivates our study of this thesis.

89

90

• We proposed our Multivariate Prediction Game (MPG) framework that overcomes the

mismatch by adversarially optimizing the performance metrics of interest directly. We

gave very detailed descriptions to each component in MPG framework.

• We discussed the algorithms for finding the best response to opponent’s strategies for

several commonly used metrics in NLP and IR tasks.

• By conducting a series of experiments and comparing against the widely used ERM algo-

rithms (e.g., CRFs, SSVMs) on five core IR/NLP tasks with six datasets, we demonstrated

the effectiveness of MPGs.

91

6.2 Future Prospects

There are many future studies can be pursued beyond this thesis’s work. A very recent

work (72) proposes that for multivariate losses that satisfy a monotonicity property, and

when the conditional probability of the positive class is given, optimal responses can be

efficiently obtained. Following this direction, further studies on the multivariate losses

satisfying such characteristics could be carried out to incorporate more metrics into the

MPG framework. The study (73) proposed a double oracle variant algorithm for gener-

ating equilibrium. Additional experiments could be conducted after implementing this

algorithm and plugging into MPG, to compare against current double oracle implemen-

tation. Currently, MPG supports only linear-chain structure when optimizing F1 score,

and when it is applied to context-free grammar parsing, the Hamming loss function is

used. Possible future extensions can be either integrating more complex structure for F1

optimization, or using more sophisticated metrics, like F1 score, for CFG parsing.

APPENDICES

92

93

Appendix A

No permission is needed for the copyright of previous published work (1).

CITED LITERATURE

1. Wang, H., Xing, W., Asif, K., and Ziebart, B.: Adversarial prediction games for multivariate
losses. In Advances in Neural Information Processing Systems, pages 2728–2736,
2015.

2. Asif, K., Xing, W., Behpour, S., and Ziebart, B. D.: Adversarial cost-sensitive classification.
In Proceedings of the Conference on Uncertainty in Artificial Intelligence, 2015.

3. Hoffgen, K.-U., Simon, H.-U., and Vanhorn, K. S.: Robust trainability of single neurons.
Journal of Computer and System Sciences, 50(1):114–125, 1995.

4. Musicant, D. R., Kumar, V., and Ozgur, A.: Optimizing F-measure with support vector
machines. In FLAIRS Conference, pages 356–360, 2003.

5. Jansche, M.: Maximum expected F-measure training of logistic regression models.
In Proceedings of the Conference on Human Language Technology and Empirical
Methods in Natural Language Processing, pages 692–699. Association for Compu-
tational Linguistics, 2005.

6. Parambath, S. P., Usunier, N., and Grandvalet, Y.: Optimizing F-measures by cost-
sensitive classification. In Advances in Neural Information Processing Systems,
pages 2123–2131, 2014.

7. Joachims, T.: A support vector method for multivariate performance measures. In
Proceedings of the International Conference on Machine Learning, pages 377–384.
ACM, 2005.

8. Ranjbar, M., Mori, G., and Wang, Y.: Optimizing complex loss functions in structured
prediction. In Proceedings of the European Conference on Computer Vision, pages
580–593. Springer, 2010.

9. Cortes, C. and Mohri, M.: AUC optimization vs. error rate minimization. In Advances in
Neural Information Processing Systems, pages 313–320, 2004.

10. Manning, C. D., Raghavan, P., Schütze, H., et al.: Introduction to information retrieval,
volume 1. Cambridge university press Cambridge, 2008.

94

95

11. Manning, C. D. and Schütze, H.: Foundations of statistical natural language processing,
volume 999. MIT Press, 1999.

12. Lafferty, J., McCallum, A., and Pereira, F. C.: Conditional random fields: Probabilistic
models for segmenting and labeling sequence data. 2001.

13. Och, F. J. and Ney, H.: A systematic comparison of various statistical alignment models.
Computational linguistics, 29(1):19–51, 2003.

14. Taskar, B., Lacoste-Julien, S., and Klein, D.: A discriminative matching approach to word
alignment. In Proceedings of the conference on Human Language Technology and
Empirical Methods in Natural Language Processing, pages 73–80. Association for

Computational Linguistics, 2005.

15. Jurafsky, D. and Martin, J. H.: Speech and Language Processing: An Introduction
to Natural Language Processing, Computational Linguistics, and Speech

Recognition. Prentice Hall PTR, 2 edition, 2008.

16. Finkel, J. R., Kleeman, A., and Manning, C. D.: Efficient, feature-based, conditional
random field parsing. In ACL, volume 46, pages 959–967, 2008.

17. Haghighi, A., Blitzer, J., DeNero, J., and Klein, D.: Better word alignments with supervised
itg models. In Proceedings of the Joint Conference of the 47th Annual Meeting
of the ACL and the 4th International Joint Conference on Natural Language

Processing of the AFNLP: Volume 2-Volume 2, pages 923–931. Association for
Computational Linguistics, 2009.

18. Wang, M., Che, W., and Manning, C. D.: Joint word alignment and bilingual named entity
recognition using dual decomposition. In ACL (1), pages 1073–1082, 2013.

19. Durrett, G. and Klein, D.: Neural crf parsing. In Proceedings of the 53rd Annual Meeting
of the Association for Computational Linguistics and the 7th International Joint
Conference on Natural Language Processing (Volume 1: Long Papers), pages

302–312, 2015.

20. Cortes, C. and Vapnik, V.: Support-vector networks. Machine learning, 20(3):273–297,
1995.

96

21. Tsochantaridis, I., Hofmann, T., Joachims, T., and Altun, Y.: Support vector machine
learning for interdependent and structured output spaces. In Proceedings of the
International Conference on Machine Learning, page 104. ACM, 2004.

22. Liu, Y.: Fisher consistency of multicategory support vector machines. In International
Conference on Artificial Intelligence and Statistics, pages 291–298, 2007.

23. Dalvi, N., Domingos, P., Sanghai, S., Verma, D., et al.: Adversarial classification.
In Proceedings of the tenth ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 99–108. ACM, 2004.

24. Vapnik, V.: Principles of risk minimization for learning theory. In Advances in Neural
Information Processing Systems, pages 831–838, 1992.

25. Grünwald, P. D. and Dawid, A. P.: Game theory, maximum entropy, minimum discrepancy,
and robust Bayesian decision theory. Annals of Statistics, 32:1367–1433, 2004.

26. Sutton, C. and McCallum, A.: An introduction to conditional random fields. Machine
Learning, 4(4):267–373, 2011.

27. Boyd, S. and Vandenberghe, L.: Convex optimization. Cambridge university press, 2004.

28. Murphy, K. P.: Machine learning: a probabilistic perspective. MIT press, 2012.

29. Burges, C. J.: A tutorial on support vector machines for pattern recognition. Data mining
and knowledge discovery, 2(2):121–167, 1998.

30. Taskar, B., Chatalbashev, V., Koller, D., and Guestrin, C.: Learning structured prediction
models: A large margin approach. In Proceedings of the International Conference
on Machine Learning, pages 896–903. ACM, 2005.

31. von Neumann, J. and Morgenstern, O.: Theory of Games and Economic Behavior. Prince-
ton University Press, 1947.

32. Ferguson, T. S.: Game theory, second edition. 2014.

33. Fathony, R., Liu, A., Asif, K., and Ziebart, B.: Adversarial multiclass classification: A risk
minimization perspective. In Advances In Neural Information Processing Systems,
pages 559–567, 2016.

97

34. Li, J., Asif, K., Wang, H., Ziebart, B. D., and Berger-Wolf, T.: Adversarial sequence
tagging. 2016.

35. Shi, Q., Reid, M., Caetano, T., Van den Hengel, A., and Wang, Z.: A hybrid loss for
multiclass and structured prediction. IEEE transactions on pattern analysis and
machine intelligence, 37(1):2–12, 2015.

36. Hazan, T., Keshet, J., and McAllester, D. A.: Direct loss minimization for structured pre-
diction. In Advances in Neural Information Processing Systems, pages 1594–1602,
2010.

37. Topsøe, F.: Information theoretical optimization techniques. Kybernetika, 15(1):8–27,
1979.

38. McMahan, H. B., Gordon, G. J., and Blum, A.: Planning in the presence of cost func-
tions controlled by an adversary. In Proceedings of the International Conference
on Machine Learning, pages 536–543, 2003.

39. Dembczynski, K. J., Waegeman, W., Cheng, W., and Hüllermeier, E.: An exact algo-
rithm for F-measure maximization. In Advances in Neural Information Processing
Systems, pages 1404–1412, 2011.

40. Zeiler, M. D.: Adadelta: an adaptive learning rate method. arXiv preprint arXiv:1212.5701,
2012.

41. Berkelaar, M., Eikland, K., Notebaert, P., et al.: lpsolve: Open source (mixed-integer)
linear programming system. Eindhoven U. of Technology, 2004.

42. Optimization, G.: Gurobi optimizer reference manual version 5.6, 2014.

43. Gilpin, A., Peña, J., and Sandholm, T.: First-order algorithm with o (ln (1/e)) convergence
for e-equilibrium in two-person zero-sum games. In AAAI Conference on Artificial
Intelligence, pages 75–82, 2008.

44. Liu, D. C. and Nocedal, J.: On the limited memory BFGS method for large scale opti-
mization. Mathematical programming, 45(1-3):503–528, 1989.

45. Lewis, A. S. and Overton, M. L.: Nonsmooth optimization via BFGS. 2008.

98

46. Järvelin, K. and Kekäläinen, J.: Cumulated gain-based evaluation of ir techniques. ACM
Transactions on Information Systems (TOIS), 20(4):422–446, 2002.

47. Burges, C., Shaked, T., Renshaw, E., Lazier, A., Deeds, M., Hamilton, N., and Hullen-
der, G.: Learning to rank using gradient descent. In Proceedings of the 22nd
international conference on Machine learning, pages 89–96. ACM, 2005.

48. Croft, W. B., Metzler, D., and Strohmann, T.: Search engines. Pearson Education, 2010.

49. Cherry, C. and Lin, D.: Soft syntactic constraints for word alignment through discriminative
training. In Proceedings of the COLING/ACL on Main conference poster sessions,
pages 105–112. Association for Computational Linguistics, 2006.

50. Dyer, C., Chahuneau, V., and Smith, N. A.: A simple, fast, and effective reparameterization
of ibm model 2. Association for Computational Linguistics, 2013.

51. Kociskỳ, T., Hermann, K. M., and Blunsom, P.: Learning bilingual word representations
by marginalizing alignments. pages 224–229, 2014.

52. Och, F. J. and Ney, H.: Improved statistical alignment models. In Proceedings of the 38th
Annual Meeting on Association for Computational Linguistics, pages 440–447. As-
sociation for Computational Linguistics, 2000.

53. Finkel, J. R., Grenager, T., and Manning, C.: Incorporating non-local information into
information extraction systems by gibbs sampling. In Proceedings of the 43rd
Annual Meeting on Association for Computational Linguistics, pages 363–370. As-
sociation for Computational Linguistics, 2005.

54. Marcus, M. P., Marcinkiewicz, M. A., and Santorini, B.: Building a large annotated corpus
of english: The penn treebank. Computational linguistics, 19(2):313–330, 1993.

55. Younger, D. H.: Recognition and parsing of context-free languages in time n 3. Information
and control, 10(2):189–208, 1967.

56. Wang, W., Knight, K., and Marcu, D.: Binarizing syntax trees to improve syntax-based
machine translation accuracy. In EMNLP-CoNLL, pages 746–754. Citeseer, 2007.

57. Chomsky, N.: On certain formal properties of grammars. Information and control,
2(2):137–167, 1959.

99

58. Klein, D. and Manning, C. D.: Accurate unlexicalized parsing. In Proceedings of the 41st
Annual Meeting on Association for Computational Linguistics-Volume 1, pages

423–430. Association for Computational Linguistics, 2003.

59. Klein, D. and Manning, C. D.: Parsing with treebank grammars: Empirical bounds, theo-
retical models, and the structure of the penn treebank. In Proceedings of the 39th
Annual Meeting on Association for Computational Linguistics, pages 338–345. As-
sociation for Computational Linguistics, 2001.

60. Lichman, M.: UCI machine learning repository, 2013.

61. Tjong Kim Sang, E. F. and De Meulder, F.: Introduction to the conll-2003 shared task:
Language-independent named entity recognition. In Proceedings of the seventh
conference on Natural language learning at HLT-NAACL 2003-Volume 4, pages

142–147. Association for Computational Linguistics, 2003.

62. Qin, T. and Liu, T.-Y.: Introducing LETOR 4.0 datasets. arXiv preprint arXiv:1306.2597,
2013.

63. Joachims, T.: Optimizing search engines using clickthrough data. In Proceedings
of the International Conference on Knowledge Discovery and Data Mining, pages

133–142. ACM, 2002.

64. Cao, Z., Qin, T., Liu, T.-Y., Tsai, M.-F., and Li, H.: Learning to rank: from pairwise
approach to listwise approach. In Proceedings of the International Conference on
Machine Learning, pages 129–136. ACM, 2007.

65. Xu, J. and Li, H.: Adarank: a boosting algorithm for information re-
trieval. In Proc. of the International Conference on Research and Development in
Information Retrieval, pages 391–398. ACM, 2007.

66. Freund, Y., Iyer, R., Schapire, R. E., and Singer, Y.: An efficient boosting algorithm for
combining preferences. The Journal of machine learning research, 4:933–969, 2003.

67. Taskar, B., Lacoste-Julien, S., and Jordan, M.: Structured prediction via the extragradient
method. In NIPS, pages 1345–1352, 2005.

68. Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C.: Introduction to algorithms,
volume 6. MIT press Cambridge, 2001.

100

69. Lawler, E. L.: Combinatorial optimization: networks and matroids. Courier Corporation,
2001.

70. Mihalcea, R. and Pedersen, T.: An evaluation exercise for word alignment.
In Proceedings of the HLT-NAACL 2003 Workshop on Building and using parallel
texts: data driven machine translation and beyond-Volume 3, pages 1–10. Associ-

ation for Computational Linguistics, 2003.

71. Sekine, S. and Collins, M.: Evalb bracket scoring program. URL: http://www. cs. nyu.
edu/cs/projects/proteus/evalb, 1997.

72. Natarajan, N., Koyejo, O., Ravikumar, P., and Dhillon, I.: Optimal classification with mul-
tivariate losses. In Proceedings of The 33rd International Conference on Machine
Learning, pages 1530–1538, 2016.

73. Zinkevich, M., Bowling, M., and Burch, N.: A new algorithm for generating equi-
libria in massive zero-sum games. In PROCEEDINGS OF THE NATIONAL
CONFERENCE ON ARTIFICIAL INTELLIGENCE, volume 22, page 788. Menlo
Park, CA; Cambridge, MA; London; AAAI Press; MIT Press; 1999, 2007.

VITA

NAME: Hong Wang

EDUCATION:

University of Illinois at Chicago Chicago, Illinois USA
Ph.D. – Department of Computer Science 2017

Nanjing University of Posts and Telecommunications Nanjing, China
B.E. – College of Optoelectronic Engineering 2008

ACADEMIC EXPERIENCE:

University of Illinois at Chicago Chicago, Illinois USA
Research Assistant 2010 - 2016
Teaching Assistant 2011 - 2016

PUBLICATIONS:

A. Liu, H. Wang, B. D. Ziebart, Robust Covariate Shift Classification Using Multiple Fea-
ture Views, NIPS Reliable Machine Learning in the Wild workshop, Barcelona, Spain, December
2016.

J. Li, K. Asif, H. Wang, B. D. Ziebart, T. Berger-Wolf, Adversarial Sequence Tagging,
International Joint Conference on Artificial Intelligence (IJCAI-16), New York, USA, July 2016.

H. Wang, W. Xing, K. Asif, B. D. Ziebart, Adversarial Prediction Games for Multivariate
Losses, Advances in Neural Information Processing Systems (NIPS 2015), Montréal Canada,
December 2015.

H. Wang, A. Liu, J. Wang, B. Ziebart, C. Yu, W. Shen, Context Retrieval for Web Tables,
The ACM SIGIR International Conference on the Theory of Information Retrieval (ICTIR
2015), Northampton, Massachusetts, USA, September 2015.

E. Dragut, H. Wang, C. Yu, P. Sistla, W. Meng, Polarity Consistency Checking for Domain
Independent Sentiment Dictionaries, IEEE Transactions on Knowledge and Data Engineering
(TKDE), Volume 27, Issue 3, March 2015.

101

102

E. Dragut, H. Wang, C. Yu, P. Sistla, W. Meng, Polarity Consistency Checking for Senti-
ment Dictionaries, The 50th Annual Meeting of the Association for Computational Linguistics
(ACL’12), Jeju, South Korea, July 2012.

INDUSTRIAL EXPERIENCE:

Google Inc. - Ads & Commerce Mountain View, California USA
Software Engineering Intern – Model Based Ads Retrieval May 2015 - August 2015

Google Inc. - Ads & Commerce Kirkland, Washington USA
Software Engineering Intern – DoubleClick Search May 2014 - August 2014

Google Inc. - Research Mountain View, California USA
Software Engineering Intern – Structured Data Group May 2013 - August 2013

Huawei Technologies Co. Ltd. Shenzhen/Nanjing, China
Software Engineer – Business Management Platform (B/OSS) August 2008 - August 2010

	
Introduction
	 Notations

	
Background and Related Work
	 Empirical Risk Minimization
	 Logistic Regression
	 Modeling
	 Parameter Estimation

	 Conditional Random Fields
	 Linear-chain CRFs Modeling
	 Relation to Logistic Regression
	 Parameter Estimation
	 Inference

	 Support Vector Machines
	 Separable Case Modeling
	 Non-separable Case Modeling
	 Parameter Estimation

	 Structured Support Vector Machines
	 Separable Case Modeling
	 Non-separable Case Modeling
	 Parameter Estimation

	 Two-player Zero-sum Game
	 Definition
	 Zero-sum Game Solving

	 Fisher Consistency

	
Multivariate Prediction Game
	 Introduction
	 Architecture
	 Modeling
	 Example Multivariate Prediction Games and Small-scale Solutions
	 Example Multivariate Metrics
	 Example Game Payoff Matrices

	 Large-scale Strategy Inference
	 Parameter Estimation
	 Finding The Best Response

	
Metrics, Best Response Algorithms
	 Metrics in Information Retrieval and Natural Language Processing
	 Hamming Loss, Accuracy
	 F-score
	 Precision at k
	 Discounted Cumulative Gain
	 Alignment Error Rate

	 Best Response Algorithms
	 Best Response for F1 Score
	 Best Response for F1 Score with Multi-class Linear-chain Structure
	 Best Response for Precision at k
	 Best Response for Discounted Cumulative Gain
	 Best Response for Alignment Error Rate
	 Best Response for Context-free Grammar Parsing

	
Applications and Experiments
	 Binary Classification with F1 Score
	 Named-entity Recognition with F1 Score
	 Ranking with Precision at k and Discounted Cumulative Gain
	 Machine Translation with Alignment Error Rate
	 Syntactic Context-free Grammar Parsing with Hamming loss

	
Conclusion and Future Prospects
	 Conclusion
	 Future Prospects

	
APPENDICES
	
CITED LITERATURE
	
VITA

