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SUMMARY

Acting optimally in partially observable multi-agent stochastic domains is a growing topic

in the Artificial Intelligence community and several solutions have been proposed. Interactive-

POMDPs are one of the most complete solutions but it is highly susceptible to course of

dimensionality and course of history. Several teams are proposing algorithms to overcome these

difficulties.

In this work it is proposed the framework Julia.POMDPs in order to standardize the devel-

opment and testing of such solving algorithms (Chapter 3). The framework introduces ways to

declare I-POMDP agents and how to define an agent hierarchy. Julia.IPOMDPs takes advan-

tage of Julia.POMDPs to provide solutions to POMDPs. This project also proposes a new way

to solve I-POMDPs by reducing them to POMDPs (Chapter 4) and solving them by means of

Julia.POMDPs. However, the solver could not provide the expected precision due to loss of

information in the conversion. The on-line solver is tested by the redefinition of the multi-agent

tiger game. Tests and results are analyzed in Chapter 5. The tests are used in order to show

the simplicity of defining several different frames and problem setups.

viii



CHAPTER 1

MOTIVATION AND PREVIOUS WORK

Interactive Partially Observable Markov Decision Process framework is developed to deal

with partially observable stochastic domains where more than one agent is present in the envi-

ronment.The possibility of solving Interactive Partially Observable Markov Decision Processes

is limited by two main factors: computational and space complexity. In order to produce solu-

tions which can deal with these two factors, every research team needs to develop its personal

development and testing environment. However, when a standardized procedure to define such

problems is present, it allows be able to compare performances on particular algorithms pro-

duced by different research teams. The aim of this work is to define and propose a standardized

way to describe I-POMDPs.

Interactive Partially Observable Markov Decision Process is a framework developed by ex-

panding Partially Observable Markov Decision Process in order to include multiple agents in the

environment. It is experiencing a growing interest in the Artificial Intelligence community. As a

consequence of this growing involvement, examples have been developed. They are very various

and range from money laundering applications [1] to models in order to define trustworthiness

of agents [2]. Further examples of applications can be found at [3].

Solving Interactive Partially Observable Markov Decision Processes is a very complex prob-

lem and requires a significant amount of resource due to the course of history and course of

dimensionality as will be latex explained in 2.2.2. I-POMDP has been formalized in 2004 [4]

1
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and it is a relatively new framework. In order to demonstrate its capabilities and provide the

first examples, it is needed to develop new solving algorithms. Currently, several methods have

been proposed:

• The interactive particle filter (I-PF) method explored in [5] aims to infer the possible

actions of the other agents by sampling their belief state. Through the interactive particle

filter algorithm, some particles are selected in order to represent the other agents’ beliefs

bt−1. These obtained particles are then projected forward in time in order to sample the

future possible belief states and consequently estimate the other agent’s belief bt. In case

the other agent is an I-POMDP itself, in order to project the particle in the future the I-PF

function needs to be called recursively for each nesting level of the models, until level-1,

where the action for the nested level-0 models can be inferred through usage of normal

POMDP belief update. All these particles need to be weighted in order to be effective.

The weighting factor is the probability of receiving the observation which generated the

particle given the actions of all the agents and the current interactive state.

• Value iteration is the most classical algorithm used in order to solve sequential decision

making problems and it has been proved to be optimal for POMDPs. However, while

it has been successfully applied to I-POMDPs, it has not been proved to be optimal

due to the fact that Interactive Partially Observable Markov Decision Process might be

self-referencing [6]. Value iteration, however is proved to converge [4].

• Policy iteration is another classical algorithm. It has been adapted to Interactive Partially

Observable Markov Decision Process in [7].
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Value iteration and Policy iteration are often used along with interactive particle filter. The

former methods are used in order to control the value estimation of the states of the model,

while the latter is often used in order to solve the models of the other agents which are part of

the Interactive Partially Observable Markov Decision Process type.

Another interesting application of Interactive Partially Observable Markov Decision Pro-

cesses is to learn other agents models as explained in [8]. The agent is demonstrated to be able

to learn the models of other agents by applying Bayesian inference and sequential Monte Carlo

sampling. The example given use interactive particle filter as I-POMDP solving method.



CHAPTER 2

BACKGROUND

Sequential decision making is the branch of artificial intelligence which deals with problems

using a procedural approach and where earlier decisions influence the later state of the world.

There are two important characteristics of the environment which make it particularly difficult

to deal with[9]:

• Partial observability : An environment is said partially observable when the agent is not

given access to each state of the environment for each point in time.

• Stochasticity : an environment is said stochastic when the outcome of the agent action

is not deterministic. This can happen because either of partial observability or for the

complexity of the environment due to variables and other agent presence.

Partially Observable Markov Decision Processes are found to deal particularly well in partially

observable stochastic domains (POSD). However, they are not defined for multi-agent systems.

Multi-agent systems are all those environments where more than one agent is present. They

are extremely common since they can be used in order to express the forms of interaction used

in our society. Behavior of agents [10] may be summarized in:

• Cooperative: agents work together in order to achieve a result

• Competitive: agents work against each other

• Neutral : agents do not really care about each other

4
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Since the environment is very similar to POSD, it comes natural to expand the Partially Ob-

servable Markov Decision Process framework to a multi agent settings. In fact, there have been

several trials to expand POMDP to a multi-agent settings. Depending on the type of problem,

several frameworks are available[10]:

• Cooperative: Decentralized Partially Observable Markov Decision Process (Dec-POMDP)

[11] where all the agents share the same reward function hence suitable to cooperative

games.

• Competitive: Interactive Partially Observable Markov Decision Process (I-POMDP)[4] is

a framework capable of empowering the agents with a theory of mind of the adversaries,

hence suitable to competitive games

• Indifferent : Partially observable stochastic games [12] is an extension of stochastic games

[13]

This work is focused on I-POMDPs due to its expressive power and range of implementations

it can perform [14]. The ability to model the other agent’s behavior makes I-POMDP suitable

for all three the stated categories. In order to be able to fully understand the capabilities if

Interactive Partially Observable Markov Decision Processes it is however necessary to introduce

Partially Observable Markov Decision Processes first.

2.1 POMDP

Partially Observable Markov Decision Process is a very known framework in the AI commu-

nity. It is aimed to solve single-agent POSDs hence considering the idea that the agent might
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not have full access to all the world states. An agent which agent function is described as a

POMDP will implement:

POMDP = 〈S,A, T,Ω, O,R〉

Where the term S in the POMDP tuple indicates the physical states of the world. Ω indicates

all the possible observations the agent can receive from the environment. In order to provide

the agent with a complete model of the world the Transition and Observation functions are

defined. The reward function describes the agent behavior.

The Transition function describes how the agent’s actions affect the world. It is a distri-

bution over states and actions where
∑

stεS T (st−1, at−1, st) = 1. In the special case when the

transition is deterministic T (st−1, at−1, st) = 1 for the resulting st and 0 for all the others.

Due to the fact that the world is usually non-deterministic, we use the Observation func-

tion to describe the likelihood of receiving an observation by performing a certain action and

arriving in a selected state. It is used in order to understand the feedback received from the

environment to the agent action. Similarly for the transition function, also the observation

function is a probability distribution where
∑

otεΩO(at−1, st, ot) = 1. In case of deterministic

observations, certain combinations will lead to O(at−1, st, ot) = 1 for the resulting ot and 0 for

all the others. Note that in fully observable environments there is no need of specific observa-

tions. Due to the fact that the agent has access to the states of the world, we can map the

observations to the states, de facto converting a Partially Observable Markov Decision Process
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to a Markov Decision Process.

Another important element of the POMDP framework is the Reward function. The reward

signal is provided to the user by the environment and it is used as part of the value function

the agent is trying to maximize. The reward function maps the states an actions to the reward

signal and is expressed as R(a, s).

Since Partially Observable Markov Decision Processes are suitable for non-deterministic

environments, the agent does not track one single actual state. Instead, it keeps a distribution

over all the possible states called belief. The belief of an agent is a probability distribution over

the whole state space S and indicates the likelihood an agent is in a certain state s. When the

agent is in the first phase of the environment, the belief distribution b0 is created and indicates

intuitively the initial belief of the agent. However, the agent is going to perform actions on the

environments and receive both observations and rewards from it. This changes the real state of

the world (which is unknown to the agent) and the belief of the agent is not considered to be

updated anymore. As a consequence it is useful to define a belief update function. The update

phase is performed when the agent performs the action at−1 and receives the observation ot:

bt(s) = αO(at−1, st, ot)
∑
st−1εS

bt−1(st−1)T (st−1, at−1, st) (2.1)

where α is used as normalization factor. The update function is also called the State Estimation

function SE(bt−1, at−1, ot) which intuitively returns the updated belief state bt.
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2.1.1 solving POMDPs

During the agent loop, the agent needs to select an action. This action aims to maximize

the reward over the time. In order to define the concept of utility function it is first useful

to introduce the concept of optimality criterion OC. The optimality criterion indicates how

are weighted the received rewards over time. By defining the reward at current time t as rt,

common criteria are:

• Finite horizon criterion: the parameter T (called length of the horizon) indicates the max-

imum number of future rewards rt considered, maximizing the sum of expected rewards

E(
∑T

t=0 rt)

• Infinite horizon criterion with discount : the parameter 0 ≤ γ ≥ 1 (called discount factor)

indicates how influent are the future rewards rt. The agent is hence maximizing the

function E(
∑∞

t=0 γ
trt)

The latter optimality criterion is used in the widely popular Bellman optimality equation, which

describes the utility of a specific belief state:

V (b) = max
aεA

[
∑
sεS

R(s, a)b(s) +
∑
oεΩ

∑
sεS

O(s, a, o)b(s)V (SE(b, a, o))]

= max
aεA

[R(b, a) +
∑
oεΩ

O(o|b, a)V (SE(b, a, o))]

(2.2)

As we can note, the bellman equation can be split in two parts:

•
∑

sεS R(s, a)b(s) is called immediate reward. It represents the reward obtained when the

agent takes ta specific action in the current belief state b
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•
∑

oεΩ

∑
sεS O(s, a, o)b(s)V (SE(b, a, o)) indicates the discounted reward obtainable in from

the future actions

It is intuitive that, in order to obtain the second term, an eventual solver needs to branch in

the future considering all the possible actions and observations. This increases significantly the

complexity of POMDPs.

In order to define which action needs to be taken depending on the possible belief state, one

solver needs to compute a policy π. Whenever this policy is considered optimal it is defined as

π?.

In order to calculate the Partially Observable Markov Decision Process policy, several meth-

ods have been developed. The programs who implement those methods are here defined solvers.

They are usually divided in two categories:

• On-line solvers: determine the optimal policy before acting. They move all the computa-

tions to the initial planning phase. This allows the agent to run smoothly once the policy

is calculated.

• Off-line solvers: determine the policy at run-time. The planning phase occurs during the

whole agent lifetime.

Two of the more recent solving methods developed are SARSOP and DESPOT.
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• Successive Approximation of the Reachable Space under Optimal Policies (SARSOP) [15]

is a POMDP off-line solving algorithm which plans over the optimally reachable belief

spaces (which are those belief spaces reachable by applying optimal policies) to increase

computational efficiency.

• Determinized Sparse Partially Observable Tree (DESPOT ) [16] is an on-line POMDP

solving algorithm which exploits randomly generated scenarios in order to perform plan-

ning.

2.1.2 julia.POMDPs

Julia is a programming language developed aiming to high performance in technical com-

puting [17]. Julia provides the possibility to execute compiled code and to interact with the

console, making it simple to query and analyze the obtained data.

Within Julia ecosystem, Julia.POMDPs [18] is an open-source package developed in order

to support the user in defining problems, running experiments and creating solvers with the

aim of both encouraging the growth of its package ecosystem and the creation of new and more

efficient algorithms. The main design criteria followed in the Julia.POMDPs development are

Expressiveness of the problem definition interface, Extensibility of the framework in order to

allow algorithms to be easily implemented within Julia.POMDPs and usability to alow the user

to use the package with all the already existent solvers.

2.2 Interactive-POMDP

Interactive Partially Observable Markov Decision Process is a framework applicable to self-

interested autonomous agents participating in a multi-agent game in a non-deterministic envi-
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ronment. Agents defined with I-POMDP are capable of defining advanced constructs in order

to model and predict the behavior of the other agents present in the game. The Interactive

Partially Observable Markov Decision Process approach is based on computing the optimal

action by anticipating the response of the other agents.

In I-POMDP agents are defined basing on their type and frame. The type is the tuple

θi = 〈bi, Ai,Ωi, Ti, Ri, OCi〉. (2.3)

The parameters of the are described in 2.1 with OCi indicating the optimality criterion the

agent I uses in order to calculate the expected cumulative reward. The type can be divided

frame and belief. The former is a subset of the type

θ̂i = 〈Ai,Ωi, Ti, Ri, OCi〉, (2.4)

Consequently the type of an agent can be expressed as

θi = 〈bi, θ̂i〉

Interactive Partially Observable Markov Decision Process generalized Partially Observable

Markov Decision Process in order to include the presence of other agents. In IPOMDP notation,
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the other agents’ presence is included in the state space, which concept is expanded in order to

generate the interactive state space. An Interactive-POMDP of an agent I can be described as:

I-POMDPi = 〈ISi, A, Ti, Oi,Ωi, Ri, OCi〉 (2.5)

Considering an ideal game where N agents are playing, A = Ai × Aj × · · · × An is the set

containing all the possible combinations of action they can perform. Each agent, however will

be defined by its own agent type, meaning that in the case agent J is a IPOMDP, it will be

defined by I-POMDPj = 〈ISj , A, Tj , Oj ,Ωj , Rj , OCj〉. It is easy to conclude that, while the

action space is shared among all the IPOMDP agents playing in the game, their observation

space is not. In fact the observation space of agent I will be Ωi which is not necessarily related

to any other agent’s observation space.

ISi is called interactive state set of agent I. One of the characteristics of Interactive Par-

tially Observable Markov Decision Process framework is to allow the agent to define constructs

capable to model the other agents acting in the same environment in order to be able to predict

their actions. This characteristic is included in the world state representation from the agent

I. By defining S as the set containing all the possible states of the world and Mx the set

containing all the possible models of an agent X:

ISi = S ×Mj × · · · ×Mn (2.6)
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Similarly, the interactive belief of an Interactive Partially Observable Markov Decision Process

is defined as:

bi = ∆(ISi) (2.7)

It is important to note that the set ISi is infinite, due to the fact that Mj is infinite itself. A

model of an agent J is defined as mjεMj and it is the construct that enhances the agent I with

a representation of the other agents playing in the game. Each other agent will be modeled in

I’s interactive state space as a model. A model is the tuple

mj = 〈hj , fj , Oj〉 (2.8)

Where hj is the history of observations the model received during its lifetime, fj is the agent

function, meaning the function which maps the model’s history to its actions fj(hj)→ Aj . The

last element is the model observation function, which indicates how the world is providing the

model mj with its observation. The term model and type of an agent look very similar but are

actually different. Taking, for example, an agent J who is represented as an I-POMDPj in I’s

interactive state space ISi, there are as many models mj as the different beliefs bj(ISj) that

can be generated. As a consequence it is useful to define the model as a combination of history

and frame of an agent:

mj = 〈hj , m̂j〉
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It is important to note that the number of models of an agent J is infinite, due to the fact that

hj could easily be a Kleene closure h∗j .

The transition function Ti indicates how agent I maps the actions of the various agents to

the world he is playing in. Each combination of agent actions s and previous state results in a

probability distribution

Ti(s
t−1, at−1, st) = P (st | st−1, at−1). (2.9)

It is useful to indicate that the joint action at−1 is a composition of all the actions the var-

ious agents took at a certain time t − 1. In a world where N agents are performing actions

a = 〈ai, . . . , an〉. Another useful insight is to note how the transition functions acts on dis-

tributions over physical states ∆(S) and not on interactive states. This is due to the Model

Non-manipulability Assumption(MNM) which indicates that agents’ actions cannot have a di-

rect impact on other models. Since it is a probability distribution
∑

stεS Ti(s
t−1, at−1, st) = 1

for given at−1 and st−1.

The observation function in a Interactive Partially Observable Markov Decision Process

is, like in Partially Observable Markov Decision Processes, a probability distribution over the

actions

Oi(s
t, at−1, oti) = P (oti | st, at−1) = P (oti | st, at−1

i , at−1
j ) (2.10)
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Indicating how the world supplies the agent I with its observations. The observation function

is defined over the agent I’s observation set
∑

otiεΩi
Oi(s

t, at−1, oti) = 1 and maps which ob-

servations we could receive given that the agents performed a certain combination of actions

and the world transitioned to a determined physical state. The observation, however, depends

only on the physical state and not on the interactive state of the problem. This is due to the

Model Non-observability Assumption (MNO), which states that it is impossible for an agent to

directly observe the inner state of the other agents.

Reward is defined in a similar manner to the Partially Observable Markov Decision Process

’s reward function, only it depends on the combination of actions of all the agents:

Ri(is, a) = R(is, a). (2.11)

It deeply influences the behavior of the agent and maps how the reward signal received by

the environment relates to the combination of actions of the agents and the current interactive

state. The reward function, however, it is not affected by MNM and MNO assumptions due to

the fact that shaping the reward of the agent depending on the other agent state maintains the

autonomy of the agent.

OCi is the optimality criterion for the agent I. It defines the horizon and the modality the

received rewards rt are considered during the time. The most common optimality criterion for
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IPOMDPs is the infinite time horizon with discount 0 ≤ γ ≥ 1 which, similarly to POMDPs,

indicates the reward as E(
∑∞

t=0 γ
trt).

2.2.1 Belief update

Analogously to Partially Observable Markov Decision Processes , an IPOMDP agent main-

tains a belief on the current state of the world. However, this belief is not only on the physical

states of the world S, but it includes the models of the other agents in IS. In the same way

to Partially Observable Markov Decision Processes , the actions of the agents and the obser-

vation an agent receives can modify what an agent I believes about this state of the world.

As a consequence a belief update function is needed. Given a system where agents I and J

are performing actions on the environment, the belief update function for Interactive Partially

Observable Markov Decision Processes is as follows:

bti(is
t) = β

∑
ist−1:m̂t−1

j =θ̂tj

bt−1
i (ist−1)

∑
at−1ε{at−1

i ×Aj}

Ti(s
t−1, at−1st)Oi(s

t, at−1, oti)P (at−1
j | mt−1

j )

∑
otjεΩj

Oj(s
t, at−1, otj)τmt

j
(ht−1
j , at−1

j , otj , h
t
j)

(2.12)

We note that two particular components are introduced in Equation 2.12:

• P (at−1
j | mt−1

j ): since during the belief update of agent I all the possible actions of J are

considered, P (at−1
j | mt−1

j ) indicates the likelihood of each action depending on the model
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mt−1
j present in the current interactive state ist−1. The action is calculated by following

the criterion indicated in 2.2.

• τmt
j
(ht−1
j , at−1

j , otj , h
t
j): the τ indicates the translation from one model mt−1

j to another

mt
j by means of the actions at−1

j taken and the possible observation received otj . Due to

the way a model is defined in Equation 2.8 this results in a mere update in the history

ht−1
j → htj .

2.2.2 Complexity

Acting optimally in an multi-agent POSD is a very hard task which requires a significant

amount of resources. Decentralized POMDPs [11] has been proved to be NEXP-complete [19].

Interactive Partially Observable Markov Decision Processes are very highly intractable due to

two major issues[5]:

• Course of dimensionality : The belief representation is directly proportional to the dimen-

sions of the belief simplex;

• Course of history : The dimension of the state of all the policies is proportional to the

number of possible future beliefs.

These problems, however are typical ofPartially Observable Markov Decision Processes [20] [21]

and, due to the fact that the IPOMDP framework shares various characteristics with it(Bayesian

belief update and similar value function) they are transferred to Interactive Partially Observable

Markov Decision Processes . Moreover, whenever the modeled agent J is a POMDP type, these

characteristics become a part of the I’s interactive belief state, hence both the nesting level of a
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Interactive Partially Observable Markov Decision Process and the types of the simulated agents

should be considered when calculating the complexity of the framework. Interactive Partially

Observable Markov Decision Process worst-case time complexity seems to be double-exponential

[6].

2.2.3 Solving I-POMPs

The whole objective of Interactive Partially Observable Markov Decision Processes is to be

able to define the optimal action in a non-deterministic multi-agent system by predicting the

actions of the other models. With this in mind it is useful to recall the concept of optimality

criterion 0 ≤ γ ≤ 1. The discounted reward is defined as
∑∞

t=0E(γtrt). As a consequence, the

utility function the agent is trying to maximize is

U(θi) = max
aiεAi

{
∑
is

ER(is, ai)bi(is) + γ
∑
oiεΩi

Pr(oi | ai, bi)U(〈SEθi(bi, ai, oi), θ̂i〉)}

= max
aiεAi

{
∑
is

∑
ajεAj

Ri(is, ai, aj)P (aj | mj)bi(is)

+ γ
∑
oiεΩi

Pr(oi | ai, bi)U(〈SEθi(bi, ai, oi), θ̂i〉)}.

(2.13)

Similarly to the Bellman optimality equation, the I-POMDP’s value function can be analyzed

in its two parts:

•
∑

isER(is, ai)bi(is): This is the part relative to the immediate reward for performing an

action ai in the current interactive belief state bi

• γ
∑

oiεΩi
Pr(oi | ai, bi)U(〈SEθi(bi, ai, oi), θ̂i〉): This is the part relative to the future dis-

counted rewards. It takes into account the discounted optimality criterion γ.
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It is trivial to note that maximizing Equation 2.13 implies the agent to both branch over all the

possible action and observation combinations (due to the future rewards part of the equation)

and solving the nested models in the current interactive state. The latter requirement is due

to the term P (aj | mj), which implies being able to solve (or at least estimate) the model mj

in order to be able to calculate a distribution over its possible actions.



CHAPTER 3

IPOMDPS.JL

The main purpose of this work is to provide the Artificial Intelligence community with an

instrument in order to easily define, enhance and test Interactive Partially Observable Markov

Decision Processes . The tool proposed is called Julia.IPOMDPs.

It is a framework designed around the user needs to facilitate problem and solver definitions.

The project is thought to be an ecosystem of packages interacting together by means of a

common interface. As a consequence the real package IPOMDPs.jl only provides such interface,

plus some common methods which might be useful to all the future implementations of the

framework. The other package provided in this work is a solver: ReductionSolver.jl which aims

to solve Interactive Partially Observable Markov Decision Processes by folding them in 0-level

Partially Observable Markov Decision Processes .

The choice of Julia as basis programming language is based on its speed and package avail-

ability. Julia [17], as explained in 2.1.2, is a programming language designed for high perfor-

mance. The characteristic that implement multiple dispatch paradigm allows all the future

packages of Julia.IPOMDPs framework environment to be developed even quickly due to the

simplicity of extension.

20
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The package IPOMDPs.jl is the core package of the Julia.IPOMDPs framework. It contains

the declarations to be extended in order to define an Interactive Partially Observable Markov

Decision Process agent. The agent lifetime is ideally divided in three different phases:

• the Definition phase requires the user to define the agent function

• the Initialization phase takes includes all those actions needed in order to initialize the

program. In this action the initial belief is created and, in case of on-line solvers being

used, policies are calculated. In this phase the actions performed need to prepare the

agent to the next phase:

• the final phase is the Usage phase. The agent is prepared and can interact with the

environment he is posed in. In order to interact with the agent an interface is proposed,

although it is useful to implement a simulator to automatize the usage process. However,

even if in order to test the framework a small simulator has been developed, creating a

simulator is not part of this work and it is left to future development.

3.1 Definition

The definition phase is the only phase the user needs to take care of. It is needed in order

to define all the logic of the problem. Since Interactive Partially Observable Markov Decision

Process is a complex framework, the definition phase must be taken seriously and requires the

definition of multiple traits of the agent and the problem structure.

In order to simplify the definition logic and process, this phase has been divided in five major

sets:



22

• Agent definition is the part capable of describing the relations among the agents (who is

emulating who)

• Frame definition is the part used in order to define the proper logic of each agent.

• Model definition is the part used in order how a certain model reacts

• Problem structure is the part used in order to determine the hierarchy between frames

• Initial state is the part used in order to describe the initial state of the problem

3.1.1 Agent

This part is responsible of defining the characteristics of each agent. The agent is charac-

terized by a specific Type, which needs to be declared by taking advantage of the Julia type

inheritance. Each agent is different and possesses a determined set of actions and observations:

• IPOMDPs.agent actions

• IPOMDPs.agent observations

Agent actions Ai must be superset of all the actions the models frames m̂i,nεMiof and agent I.

Ai =
n⋃
x=1

Am̂i,x

The same concept needs to be applied to the agent observations

Ωi =

n⋃
x=1

Ωm̂i,x
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3.1.2 Frame

Following the I-POMDP frame definition in Equation 2.4, the frame is the part of the In-

teractive Partially Observable Markov Decision Process which contains all the informations

regarding the world transition, the observation behavior, the reward signal from the environ-

ment and the optimality criterion for the calculation of the discounted reward. As a result it

comes the need to define all the parts which are themselves part of the IPOMDP framework:

• IPOMDPs.states: the set of physical states of the problem. This corresponds to the set

S.

• IPOMDPs.actions: the joint actions of all agents present in the environment. This corre-

sponds to the set A.

• IPOMDPs.observations: the set of observations the current agent can perceive. This

corresponds to the set Ωi.

• IPOMDPs.transition: the transition function. This corresponds to Ti.

• IPOMDPs.observation: the observation function. This corresponds to Oi.

• IPOMDPs.reward: the reward function. This corresponds to Ri.

• IPOMDPs.discount: the optimality criteria. It is expressed as float number in order to

limit the depth of the discover tree in the solver used. This corresponds to γ.

It is trivial to note that the states S of the problem must be common among all the agents

participating to the game. The user is provided with the ability to define only the physical
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states of the problem, due to the fact that the interactive states (which are part of the I-POMDP

framework as ISi) are automatically generated.

3.1.3 Problem

The problem phase aims to define the structure of the problem itself. This phase is needed in

order to provide a link between the frames of Interactive Partially Observable Markov Decision

Processes (and eventually Partially Observable Markov Decision Processes ) to the agent they

refer to. In the case of I-POMDP frames, this phase is fundamental to indicate which other

agent types are to be considered in the interactive states generation.

• IPOMDPs.agent: specifies which agent the current frame refers to

• IPOMDPs.emulated frames: specifies the frames which are part of the interactive state

space of the current I-POMDP frame

Summarizing, this phase connects and specifies the relationship among the frames previously

defined.

3.1.4 Initial state

The initial state section defines all the methods necessary in order to initialize the belief of

a certain model. In order to increase the expressibility of the framework, the user is required to

provide a distribution over both the possible physical states of the world and the frames which

will be part of the interactive state set.

• IPOMDPs.initialstate distribution: describes the initial belief distribution regarding

the physical states of the environment
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• IPOMDPs.intialframe distribution: describes the initial belief distribution regarding

the frames emulated by the current I-POMDP frame.

These functions are fundamental in order to be able to determine the initial interactive belief

state of the Interactive Partially Observable Markov Decision Process bt=0
i .

3.1.5 Model

The Model is the operative entity of Julia.IPOMDPs. it is a generalized object containing

only a history and a frame. It comes from the formal definition of

m = 〈h, f〉

It needs to be capable of providing a common interface for the program to access to the logic

of the inner frame. The interface will be referred as model interface and is composed by:

• IPOMDPs.Model: Creates the model starting from a defined frame.

• IPOMDPs.action: Describes the next optimal action. This function contains the agent

function f(h)→ A described in 2.2.

• IPOMDPs.actionP: The probability that a model takes a specific action. It provides

P (a | m).

• IPOMDPs.tau: Updates the history of the model in order to make it keep track of its

simulated observations. This is the τ function described in Equation 2.12.

• IPOMDPs.model observation: The way a specific model receives the observation from

the environment. This corresponds to O described in 2.2.
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The model interface is capable of providing all the functions needed to implement the classi-

cal agent life-cycle (Think-Act-Observe). It is important to note that the interface is general

enough to make possible to define possibly infinite types of models. It is later shown how to

create a model for a Partially Observable Markov Decision Process frame. However, this is

not the only type of model we can create. In order to expand the framework with the ability

to communicate with different agent types, the user needs to implement the model functions

defined above.

In a fictitious case where we want to implement a dummy frame m̂i,1 of the agent I which

randomly acts over its possible actions Am̂i,1
= {OL,OR} and receive no informations Ωm̂i,1

=

{}, the relative model would be defined as:

• IPOMDPs.Model(m̂i,1) → {nil, m̂i,1}

• IPOMDPs.action(mi,1)→ aiεAm̂i,1

• IPOMDPs.actionP(mi,1,ai)→ 0.5

• IPOMDPs.tau(mi,1)→ mi,1

• IPOMDPs.model observation(m̂i,1, nil)→ 1

3.2 Initialization

This phase is completely automated and does not need any user interaction. In the Initial-

ization phase of the program, the interactive state set is created, the initial belief over the sates

is extracted and the eventual policy is calculated. The phase is ideally contained in the previ-
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ously defined IPOMDPs.Model. Due to the way the framework is constructed ( 3.1.5), the core

concept of Julia.POMDPs is the model object. As a consequence, the problem itself is treated

as a model object which, by implementing the model interface, is capable to communicate with

the environment. In order to create the model of a certain frame, the steps to be taken are:

• Interactive state set definition: In this phase all the interactive states are defined by

following the logic defined in 3.1.4. However, in order to be able to perform such operation,

all the models of the frames emulated by an I-POMDP need to be defined. This creates

a cascade effect where, by calling IPOMDPs.Model on the frame of the agent situated at

the top of the agent hierarchy, all the models undergo the initialization phase. At the

conclusion of this phase ISi is formed. It is important to note that, formally, ISi is an

infinite set as defined in Equation 2.6.

IS = S ×Mj × · · · ×Mn

However, the set constructed in this phase is a subset of those interactive states which

are actually considered by the agent.

• Initial belief creation: Once all the interactive states are formed, the initial belief is

defined. The process takes advantage of the two previously defined
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IPOMDPs.initialstate distribution and IPOMDPs.initialframe distribution func-

tions in order to perform a cartesian product and generate the interactive states’probabilities:

P (is) = P (s)
∏

xε{J,...,N}

P (mx).

In the Interactive Partially Observable Markov Decision Process definition Equation 2.7

the belief is a distribution over all the interactive states ISi. However, due to the fact

that ISi is infinite, bi(ISi) is represented as a discrete distribution over only those states

whose probability is different than 0.

• Policy calculation is the last operation to perform during the initialization phase. This

operation strongly depends on the type of solver used along with POMDPs.jl. In case an

off-line solver is used, this phase has the final objective creating a policy. In the case an

on-line solver is used (as the case of ReductionSolver.jl), this phase performs the basic

operations in order to set-up the solver, without producing any policy.

Once the model of the frame corresponding to the agent at the top of the agent hierarchy

is calculated, the program is ready for the next and final phase.

3.3 Usage

During the usage phase the program takes advantage of the model interface in order to

communicate with the environment. In particular the functions used by the environment will

be:
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• IPOMDPs.action: represents the acting phase of the agent life cycle. The agent (the model

of the problem) calculates the best action depending on its current interactive belief state

and returns it to the environment.

• IPOMDPs.tau: represents the observation phase of the agent life cycle. It is used in order

to provide the model with the observation resulting from the combination of actions of

all the agents acting in the environment. IPOMDPs.tau is used in order to update the

model’s interactive belief.

3.3.1 Belief update

In order to keep track of the state of the environment, an Interactive Partially Observable

Markov Decision Process keeps track of its interactive belief over physical states and other agents

models (2). The Interactive Partially Observable Markov Decision Process update function

defined in Equation 2.12, however, is capable to only keep track of the actions and possible

observations of two agent I and J . In orde rto be able to really implement I-POMDPs in a true

multi-agent environment with N agents, it is needed to expand the original update function:

bti(is
t) = β

∑
ist−1:m̂t−1

j =m̂t
j ,...m̂

t−1
n =m̂t

n

bt−1
i (ist−1)

∑
at−1ε{at−1

i ×Aj×···×An}

Ti(s
t−1, at−1st)

Oi(s
t, at−1, oti)

∏
xε{J,...,N}

P (at−1
x | mt−1

x )
∑
otxεΩx

Ox(st, at−1, otx)

τmt
x
(bt−1
x , at−1

x , otx, b
t
x).

(3.1)

The expansion is minimal but powerful enough to be able to now include the possibility to

provide the agent I with infinite constructs over an infinite amount of agents.
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However, this function is unpractical to deal with due to the fact that it is based on a

summation over ISi which has infinite cardinality. In order to deal with this problem it turns

very useful the approximation adopted in section 3.2, which is to consider only those is whose

probability P (is) 6= 0. In order to maintain this approximation it is useful to divide the

I-POMDP update function in two separate parts:

• IS expansion: Expands the set IS. In this first phase all the possible combinations actions

and observations of all the agents in the environment are calculated. They are then passed

as parameter to IPOMDPs.tau for all the models in every interactive state. This allows

to expand the set of IS to all those interactive states reachable by any combination of

actions and observations. The expansion is calculated by considering all the combinations

of

– ist−1εISt−1

– stεS

– at−1ε{at−1
i ×Aj × · · · ×An}

– otε{Ωj × · · · × Ωn}

Each generated ist will be defined by

ist = [st, 〈SE(ht−1
j , at−1

j , ot−1
j ), m̂t−1

j 〉, . . . , 〈SE(ht−1
n , at−1

n , ot−1
n ), m̂t−1

n 〉]. (3.2)
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Together with the IS expansion the new probability for each interactive state is calculated:

P (ist) = bt−1
i Ti(s

t−1, at−1, st)Oi(s
t, at−1, oti)

∏
xεJ,...,N

P (at−1
x | mt−1

x )Ox(st, at−1, ot−1
x ).

(3.3)

• After the expansion phase it is useful to perform the duplicate removal phase. This is

a trivial phase but very important. Due to the fact that Bayesian belief update is not

bijective [22], there is the possibility to have duplicated is. As a consequence it is useful

to aggregate them and sum their probabilities:

P (ist) =
∑

is′,t:is′,t=ist

P (is′,t). (3.4)

3.3.2 Action selection

The model object is constructed in such a way that all the informations needed in order

to calculate the optimal action are already included in the model itself. The next action is

obtained by means of the function IPOMDPs.action(mi,x). The way the model returns the

action depends strictly on the model implementation. It will be shown in sections 3.4.1 and

3.4.2 how the action is obtained in the case of a Partially Observable Markov Decision Process

and Interactive Partially Observable Markov Decision Process .
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3.4 IPOMDOToolbox.jl

In order to make feasible for the first user to use the framework, it is needed to create

some initial structures and provide some model and solver implementations. The package

IPOMDPToolbox.jl aims to provide such basic requirements.

In particular two model implementations and a solver have been developed to allow the

future users to work with the framework without needing to define their own solvers:

• IPOMDOToolbox.ipomdpModel: is the definition of the model relative to a Interactive

Partially Observable Markov Decision Process frame.

• IPOMDOToolbox.pomdpModel: is the definition of the model relative to a Partially Ob-

servable Markov Decision Process frame.

3.4.1 IPOMDOToolbox.pomdpModel

IPOMDOToolbox.pomdpModel is defined in order to allow the user to define Partially Observ-

able Markov Decision Processes in the Julia.IPOMDPs framework. The model is constructed in

order to provide an interface with the more famous and structured Julia.POMDPs framework.

Julia.POMDPs, although it is a relatively new framework, already allows the user to define Par-

tially Observable Markov Decision Processes in a very powerful way and provides an extremely

various array of solvers, benchmark suites and tools to allow users to define POMDPs. In order

to take advantage of the expressive power of such framework, pomdpModel is designed to act as

a wrapper, providing a link between the Julia.IPOMDPs model interface and Julia.POMDPs
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framework.

IPOMDPToolbox.pomdpModel accepts as a frame any Partially Observable Markov Decision

Process defined by means of Julia.POMDPs. The most important thing to consider in designing

pomdpModel is the choice of the solver for the POMDP frame. Two of the most performing

solver available at the moment this work has been produced are:

• SARSOP [15] is an off-line solver which, during belief exploration, explores only those

states reachable by an optimal sequence of actions

• AR-DESPOT [23] is an on-line solver which uses heuristics in order to estimate the value

of the policy during the forward search phase.

They are both compatible with Julia.POMDPs interface and hence are considered as candidates

for IPOMDPToolbox.pomdpModel inner solver. Due to the intrinsic difference between on-line

and off-line solver explained in section 2.1.1, it comes natural to choose SARSOP as default

solver. It is able to compute a policy during the initialization phase and, as a consequence,

moves all the complexity to this initial phase, instead of the usage one. Having an already

calculated policy means to be able to act only by querying it. This saves a consistent amount

of time when P (a|m) needs to be calculated by calling IPOMDPs.actionP on the current model.

The model interface is hence implemented as follows:

• IPOMDPs.Model: perform the model Initialization phase. The belief generated is of type

DiscreteBelief, which is the one required by SARSOP solver. A SARSOP solver is in-
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stantiated and a belief updater is then created and stored in the pomdpModel object for

later utilization. By providing all the needed structures for SARSOP.solve to function,

the policy is calculated and stored in the pomdpModel object too.

• IPOMDPs.action: due to the fact that SARSOP is an off-line solver, the IPOMDPs.action

method only acts as a wrapper to the SARSOP.action function. It passes the computed

policy and the current belief stored in the model structure and returns the selected action

to the environment.

• IPOMDPs.actionP: Determine the probability of performing a determined action. In order

to provide a reliable statistic, the policy is queried 100 times. Thanks to the use of an

off-line solver, this procedure is significantly sped up.

• IPOMDPs.tau: This is a wrapper for the SARSOP.update belief update function. It turns

out that the latter is a wrapper too for the more nested DiscreteBelief.update function.

The used function takes the belief updater and the belief object as a parameter and returns

the updated belief. Due to the implementation of how Julia treats object in memory, it

is not possible to update the current model object, but it is required to create a new

one. All the references to the static objects in the model (updater, policy and frame) are

passed to the new object along with the updated belief.

3.4.2 IPOMDOToolbox.ipomdpModel

IPOMDPToolbox.ipomdpModel is defined in order to allow the user to interact with frames

defined by means of IPOMDPs.jl. ipomdpModel is, like pomdpModel a wrapper to the Interac-
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tive Partially Observable Markov Decision Process solver ReductionSolver.jl defined in 4.

IPOMDPToolbox.ipomdpModel accepts as a frame any Interactive Partially Observable Markov

Decision Process defined by means of Julia.IPOMDPs. Due to the fact that in the moment this

work has been produced Julia.IPOMDPs is still being developed, the only choice available is

ReductionSolver.jl. ipomdpModel extends the model interface in the following way:

• IPOMDPs.Model: perform the model Initialization phase. The obtained belief is of type

DiscreteInteractiveBelief, which is required by ReductioSolver solver. The belief updater

of type DiscreteinteractiveUpdater is defined and stored in the model memory. Due

to the fact that the model is using an on-line solver, no policy is currently calculated.

However, a policy object is still generated. This is due to the fact that, due to the solver

implementation, the policy is used as a storage for all those elements needed in order to

speed up the computation of the model’s next action.

• IPOMDPs.action: Defines a wrapper method to use ReductionSolver.action. While the

interface is very similar to the one used by pomdpModel to interact with SARSOP solver,

the fact that ReductionSolver is an on-line solver profoundly influences the complexity of

IPOMDPs.action.

• IPOMDPs.actionP: Determine the probability of performing a determined action. In order

to provide a reliable statistic, the policy is queried 100 times. Executing IPOMDPs.actionP

many times by using an on-line solver can prove to be very time consuming.
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• IPOMDPs.tau: Similarly to pomdpModel, this acts as a wrapper to the ReductionSolver.update

function which itself acts as a wrapper for DiscreteInteractiveBelief.update which

takes as parameter the belief, updater, observation and action to calculate the new belief.

Like it was described in 3.4.1, the used function takes the belief updater and the belief

object as a parameter and returns the updated belief. Due to the implementation of how

Julia treats object in memory, it is not possible to update the current model object, but

it is required to create a new one. All the references to the static objects in the model

(updater, policy and frame) are passed to the new object along with the updated belief.



CHAPTER 4

SOLVING IPOMDPS

During the past years a series of solving techniques for solving Interactive Partially Observ-

able Markov Decision Processes have been described and implemented. They are summarized

in section 2.2.3. In this work we try to solve an I-POMDP by reducing it to a POMDP.

In order to explain the methodology it is useful to introduce the concept of strategy level

in I-POMDPs.

I-POMDPi,l = 〈ISi,l, A, Ti, Oi,Ωi, Ri, OCi〉 (4.1)

The previous formula describes an agent whose strategy level is l where

ISi,l = S ×Mj,l′<l × · · · ×Mn,l′<l (4.2)

is the set of interactive states relative to an I-POMDP of complexity l. The strategy level

indicates the level of nesting of the model, meaning the depth of the modeling process. We

start with the lower levels l = 0, which are POMDPs and all those model types which do not

include other agents’ belief and frames in their belief space. A depth on 0 means that there is

no concept of other agents’ models in an agent’s belief.
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As shown in Equation 4.2 we can see that in the case of an I-POMDP with strategy level

l = 0, it can be expressed as a POMDP. An agent including 0-level (I-POMDP0) models in

its belief space is said 1-level (I-POMDP1). Accordingly, we can define a I-POMDPl the one

of an agent including I-POMDPl−1 models in its belief space. Note that we still use the term

I-POMDPl for agents including both I-POMDPl−1 and I-POMDPl−x models in its belief

space.

Due to this similarity to Partially Observable Markov Decision Process , we can intuitively

convert an I-POMDPn to a I-POMDP0.

4.1 IPOMDP to POMDP reduction

In order to reduce a Interactive Partially Observable Markov Decision Process to a POMDP,

we need to perform a comparison between the I-POMDP definition in 2.2 and the POMDP

definition in 2.1. The reduction is performed by comparing each element of the two frameworks

and providing a formula capable to link the two definitions which are reported in Appendix

A.1:

• State: I-POMDP concept of state defined in Equation 2.6 is more complex than POMDP’s

state definition. However S ⊆ ISi and, in order to reduce the model, it is possible to

marginalize S .

• Belief : I-POMDP interactive belief defined in Equation 2.7 might be marginalized to a

POMDP belief by marginalizing the models of the agents present in ISi

bti(s) =
∑

is′,t:s′,t=st

bti(is
′,t). (4.3)
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• Actions: There is a one-to-one correspondence between the I-POMDP agent actions Ai

and the POMDP’s action set A. By reminding that the agent actions Ai are the superset

of all the models of I’s action sets, again A ⊆ Ai and, in the moment we are reducing a

specific I-POMDP frame to a POMDP

A = Am̂i
.

• Observations: They can be easily converted, due to the fact that

Ω = Ωi.

• Transition function: The transition function is very different in POMDPs and I-POMDPs.

The latter model considers the actions of all the agents in the environments in order to

predict the change in the physical state, while the former do not include the presence

of other players in the game. In order to provide a mapping between the I-POMDP

transition and the POMDP transition functions, it is needed to incorporate the actions

of all the agents other than I as noise in the transition. This can be formulated as:

T (st−1, at−1
i , st | bi) =

∑
at−1
j ε{Aj×···×An}

P (st | st−1, at−1
i , at−1, bt−1

i )

×
∏

xε{J,...,N}

∑
mxεMx

P (ax | mx)P (mx | bi)

(4.4)
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where the other agents are marginalized by calculating the probability of their actions

and of their models.

• Observation function: The same concept as above is applied to the observation func-

tion. The other agents are included as environmental noise and the received observations

probabilities reflect the probabilities the other agents to perform certain actions:

O(st, at−1
i , oti | bi) =

∑
at−1
j ε{Aj×···×An}

P (oti | st, at−1
i , at−1, bt−1

i )

×
∏

xε{J,...,N}

∑
mxεMx

P (ax | mx)P (mx | bi).

(4.5)

• Reward function: The third function where the main difference between I-POMDP and

POMDP definition is the inclusion of the other agents’ actions in the reward function.

The approach is the same taken for the transition and observation functions:

R(s, ai | bi) =
∑

aε{Aj×···×An}

Ri(s, ai, a)
∏

xε{J,...,N}

∑
mxεMx

P (ax | mx)P (mx | bi). (4.6)

• Optimality criterion: It is independent on the framework implementation. In fact, it is

straightforward to define:

γPOMDP = γIPOMDP .

• Belief update: While I-POMDP and POMDP belief update functions look similar for

they require the same parameters (bt−1
i , at−1

i , oti) their inner behavior is profoundly dif-

ferent. Updating an Interactive Partially Observable Markov Decision Process requires



41

to consider all the possible observations and actions of all the other models, other than

estimating updated version of them. This is completely absent in the POMDP updated

function. As a consequence the update function is not reducible. This leads to prob-

lems in terms of precision of a solver implementing such technique. It has been shown in

Equation 4.4, Equation 4.5, Equation 4.6, and Equation 4.3 that the generated POMDP

elements are directly proportional to P (ax | mx)P (mx | bi). However, these terms might

change each time the agent’s belief needs to be changed. This leads to generated POMDP

which is consistent with the I-POMDP only for the current time t. However, solution algo-

rithms to Partially Observable Markov Decision Processes do not consider the possibility

for the agent model to change at each time step. This inconvenience reduces the precision

of any solver which implements the I-POMDP to POMDP reduction technique.

• Utility function: Utility for a I-POMDP is described in Equation 2.13. Such function is

composed by several parts:

– The immediate reward part for both IPOMDP and POMDP utility can be reduced

by means of equation Equation 4.6.

– The part related to the future reward seems already identical between POMDP and

I-POMDP utility function definitions.

However, the future reward part includes the belief update function. Due to the fact that

the belief update is not consistent, the utility function should be considered coherent only

for the current time step t and hence only for its immediate reward section.
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4.2 Julia.IPOMDPs

In order to provide Julia.IPOMDPs with the ability to define and extend solvers it is needed

to design an interface each solver should implement. Such interface is referred as the solver

interface. It is strictly related to the solver definition in Julia.POMDPs [18] and is defined as:

• IPOMDPs.updater: Provides the user with the belief update the solver is designed to use.

• IPOMDPs.initialize belief: Provides the initial belief bt=0
i state for the problem. This

function acts as a wrapper for the real belief initialization function.

• IPOMDPs.update: Updates the belief by using the logic provided by the belief updater.

This method is often used as a wrapper for the real belief update function.

• IPOMDPs.solve: provides the user with a policy. This method can be profoundly different

in on-line and off-line solver. In the former type this method is very light and it is just

used in order to create a policy object which will be propagated for all the agent’s life-

time. On-line solvers do not need to carry policies over the time, since they generate the

current policy at time t. However, a policy object could be extremely useful to carry

informations used in order to significantly speed up the computation. In the case of Off-

line solvers this method includes the major part of the complexity of solving Interactive

Partially Observable Markov Decision Processes.

• IPOMDPs.action: is the complementary method of IPOMDPs.solve. It is used in order to

determine the optimal action for a certain belief state given the policy object. In case of

on-line solvers this method includes the majority of the complexity of the problem. The
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solver, in fact, needs to partially solve the problem and determine the current optimal

action. For off-line solvers, instead, IPOMDPs.action is used in order to query the policy

and determine which is the optimal strategy.

4.3 ReductionSolver.jl

ReductionSolver.jl is the module of Julia.IPOMDPs developed in order to provide the user

with the means to solve Interactive Partially Observable Markov Decision Processes . It is an

on-line solver, meaning that the optimal action is calculated depending only on the current

belief state and do not include the presence of any policy. In order to design ReductionSolver,

it has been followed an approach significantly different from the one taken by all the solvers

present in the I-POMDP solver ecosystem. While most of the solvers rely on iteration methods

such as value iteration or policy iteration in order to calculate the value of a policy and a

specific interactive belief, reduction solver tries to solve the maximization problem by reducing

the I-POMDP to a POMDP and relying on the existent ecosystem of solvers already available

to solve Partially Observable Markov Decision Processes.

In order to implement the functions described in section 4.2 and hence provide all the

necessary functionalities, it is first needed to define elements such as belief type, belief updater,

policy type and solver object:

• DiscreteInteractiveBelief : The interactive belief object is the implementation of a prob-

ability mass function on the discrete variable ISi
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• DiscreteInteractiveUpdater : It is the object responsible of the behavior of the IPOMDP

agent belief update and initialization. It implements the belief initialization function by

extending the solver interface function IPOMDPs.initialize belief and providing the

first two operations described in 3.2: Interactive state set definition and Initial belief

creation.

• ReductionPolicy : The policy object is defined in order to maintain data produced during

successive runs of the solving algorithm. It is passed along with the belief toIPOMDPs.action.

The implementation contains a table of all those POMDPs which have already been con-

verted and solved. This element is necessary at each phase present in the Usage phase

described in section 3.3.

• ReductionSolver : the solver object is intended as a container for all the possible settings

needed for the solver. It is passed as an argument to the IPOMDPs.solve function and

takes part to the policy generation process.

4.3.1 IPOMDP reduction

ReductionSolver takes advantage of the existent ecosystem of POMDP solvers by reduc-

ing I-POMDPs to Partially Observable Markov Decision Processes. The actual conversion is

performed by defining a special POMDP type called gPOMDP. gPOMDP is defined by relying on

Julia.POMDPs interface. All the POMDP elements reflect the relative equations defined in 4.1,

which are converted in order to make them easily computable. After the conversion process,

the general POMDP is solved by means fo the SARSOP off-line solver. In order to provide a

more accurate solution, the problem is solved by using as initial state distribution the current
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reduced belief. Once the gPOMDP object is solved and a policy created the optimal action is

generated.

4.3.2 Curse of history reduction

Due to the fact that ReductionSolver is an on-line solver, a real policy does not exist.

However, the implementation structure of IPOMDPs.action requires a policy object to be passed

as an argument. In order to speed up the process of calculating the optimal action, the policy

object can be used as a storage for solved gPOMDP problems. In fact, gPOMDPs are not unique.

They could be equal to other already solved if the I-POMDP models used in order to generate

them are identical both in the frame and the belief over interactive states. As a consequence it is

possible, after defining a suitable comparing function, to define a table to store solved gPOMDPs

to avoid repeated calculations. This tweak allows to significantly reduce the time needed for

calculating the optimal action. In fact, without it, solving 2-level I-POMDPs would be nearly

impossible. As a consequence, the impact of the curse of history, while it is not completely

avoided, it is significantly mitigated by storing the known solution to already visited problems.



CHAPTER 5

TESTS

In order to correctly test the solver and to show the possible applications, it could be useful

to define some hypothetical games and compare the performances with other existent solvers.

The testing equipment is a Lenovo Thinkpad T460 laptop mounting an Intel® Core™ i5-6300U

CPU with 16 GB RAM.

5.1 Test environment

Tiger game (Appendix B) is a theoretical game proposed in [24] and is reported in Appendix

C. The tiger game has a setup containing two doors. The agent can either open them or listen

for the tiger location. If the agent opens the wrong door receives a large penalty. The agent

uses the infinite horizon with discounted rewards optimality criterion in order to calculate the

best action.

The problem is particularly suited for Partially Observable Markov Decision Process be-

cause it includes an information gathering phase, implemented through the possibility of the

agent listening. In this section it will be derived a variant of such game which is used as a

reference game for testing Julia.IPOMDPs.

The multi-agent tiger game (Appendix C) described in this paper is a modification of the

multi-agent game described in [4], which is itself derived from the single-agent tiger game. The

46
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environment includes two agents I and J . The states are the same of the original tiger game.

As a consequence we can define

S = {TL, TR}

Each agent can perform one of these three actions:

Ai = Aj = {OL,L,OR}

and, depending on the state the action is taken, the agent is rewarded accordingly. Similarly to

the original tiger game, the agent can receive observations but in this case they are expanded.

It has been included the possibility to hear creeks generated by J ’s actions. However, these

observations are noisy.

Ωi = {GLCL,GLCR,GLS,GRCL,GRCR,GRS}

The environment is a non-deterministic environment which can generate transitions following

Table XII, which are reported below:
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TABLE I: TRANSITION FUNCTION

〈ai, aj〉 State TL TR

〈OL, ∗〉 * 0.5 0.5

〈OR, ∗〉 * 0.5 0.5

〈∗, OL〉 * 0.5 0.5

〈∗, OR〉 * 0.5 0.5

〈L,L〉 TL 1.0 0.0

〈L,L〉 TR 0.0 1.0

5.2 Multi-agent tests

There are some interesting implications of applying Interactive Partially Observable Markov

Decision Processes in a multi-agent environment. The Most interesting one is that with a 1-level

agent it is possible to define the behavior I has with respect to J . The three versions of the

agent have been denominated:

• Neutral : Agent I does not pay any interest to J . It emulates the other agent in order to

better predict the environment.
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• Cooperative: Agent I is designed as a friend of J . Is reward function is declared in

Table XVIII and it is created in order to maximize I’s reward when also J opens the

correct door.

• Competitive: Agent I in this case is an enemy of J . Is reward function is declared in

Table XVII and it is created in order to maximize I’s reward when J opens the wrong

door

In order to define the behavior of the agents it is sufficient to change their reward function.

Here are reported the reward functions described in Table XV, Table XVIII and Table XVII:
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TABLE II: POSSIBLE AGENT I REWARD FUNCTIONS

〈ai, aj〉 TL TR

〈OL, ∗〉 -100.0 10.0

〈OR, ∗〉 10.0 -100.0

〈L, ∗〉 -1.0 -1.0

(a) NEUTRAL AGENT

〈ai, aj〉 TL TR

〈OL,OL〉 -150.0 15.0

〈OL,OR〉 -95.0 -40.0

〈OL,L〉 -100.5 9.5

〈OR,OL〉 -40.0 -95.0

〈OR,OR〉 15.0 -150.0

〈OR,L〉 9.5 -100.5

〈L,OL〉 -51.0 4.0

〈L,OR〉 4.0 -51.0

〈L,L〉 -1.5 -1.5

(b) COOPERATIVE AGENT

〈ai, aj〉 TL TR

〈OL,OL〉 -50.0 5.0

〈OL,OR〉 -105.0 60.0

〈OL,L〉 -99.5 10.5

〈OR,OL〉 60.0 -105.0

〈OR,OR〉 5.0 -50.0

〈OR,L〉 10.5 -99.5

〈L,OL〉 49.0 -6.0

〈L,OR〉 -6.0 49.0

〈L,L〉 -0.5 -0.5

(c) COMPETITIVE AGENT
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The agents receive observations from the environment by following:

TABLE III: AGENT I OBSERVATION FUNCTION

〈ai, aj〉 State GLCL GLCR GLS GRCL GRCR GRS

〈OL,OL〉 TL 0.167 0.167 0.167 0.167 0.167 0.167

〈OL,OL〉 TR 0.167 0.167 0.167 0.167 0.167 0.167

〈OL,OR〉 TL 0.167 0.167 0.167 0.167 0.167 0.167

〈OL,OR〉 TR 0.167 0.167 0.167 0.167 0.167 0.167

〈OL,L〉 TL 0.167 0.167 0.167 0.167 0.167 0.167

〈OL,L〉 TR 0.167 0.167 0.167 0.167 0.167 0.167

〈OR,OL〉 TL 0.167 0.167 0.167 0.167 0.167 0.167

〈OR,OL〉 TR 0.167 0.167 0.167 0.167 0.167 0.167

〈OR,OR〉 TL 0.167 0.167 0.167 0.167 0.167 0.167

〈OR,OR〉 TR 0.167 0.167 0.167 0.167 0.167 0.167

〈OR,L〉 TL 0.167 0.167 0.167 0.167 0.167 0.167

〈OR,L〉 TR 0.167 0.167 0.167 0.167 0.167 0.167

〈L,OL〉 TL 0.765 0.043 0.043 0.135 0.007 0.007

〈L,OL〉 TR 0.135 0.007 0.007 0.765 0.043 0.043

〈L,OR〉 TL 0.043 0.765 0.043 0.007 0.135 0.007

〈L,OR〉 TR 0.007 0.135 0.007 0.043 0.765 0.043

〈L,L〉 TL 0.043 0.043 0.765 0.007 0.007 0.135

〈L,L〉 TR 0.007 0.007 0.135 0.043 0.043 0.765
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In the case one agent participating to the game is a Partially Observable Markov Decision

Process , some adaptations should be performed. Since POMDP is a single-agent framework, it

is useless to provide the agent with observations regarding the other agent’s actions (meaning

creek and silence). It is considered that agent J simply ignores such informations, hereby, as

described in table Table XI, the world observations will result in:

TABLE IV: SIMPLIFIED OBSERVATION FUNCTION

a State GL GR

OL * 0.5 0.5

OR * 0.5 0.5

L TL 0.85 0.15

L TR 0.15 0.85

5.2.1 Performances

There are two main important factors to consider when profiling an algorithm: space and

time performances. These aspects are particularly crucial in a Interactive Partially Observable

Markov Decision Process simulator due to its complexity.
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• Execution time: It is the time needed in order to perform one agent loop. The two main

operations are selecting the action and updating the model.

• Memory consumption: It is the amount of memory necessary in order to store all the

necessary data structures.

• Number of distinct interactive states: It is used as an index on the level of complexity

of the problem. The more interactive states are present, the more computation time is

expected to be used, due to the fact that more simulations need to be performed.

In order to provide an useful statistics, a test over 1000 rounds has been performed. The

feature extracted are the mean values on

• action time: It is the time needed for the function IPOMDPs.action to return the optimal

action.

• update time: It is the time that IPOMDPs.update needs in order to update the model of

I given the past action and current observation.

• memory allocated : Indicates the number of kB that have been allocated during the run

time of both IPOMDPs.action and IPOMDPs.update. Note that this value might not be

the exact amount of memory used by the program, sue to the fact that there are other

factors which influence the runtime memory, such as garbage collector and other functions

allocations.

• IS size: The average number of interactive states present during execution time.
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The tests are aimed in order to understand the consequences of modeling multiple frames

for the possible agent: In Figure 7 the I-POMDP agent is interacting with a normal POMDP

agent:

I-POMDPcooperative

POMDPnormal

Figure 1: Example 1

In Figure 2 the I-POMDP agent is interacting both with a normal POMDP agent and a

suicidal POMDP agent:

I-POMDPcooperative

POMDPsucidalPOMDPnormal

Figure 2: Example 2

In Figure 3 the I-POMDP agent is interacting both with a normal POMDP agent, a suicidal

POMDP agent and a Random agent:



55

I-POMDPcooperative

RandomPOMDPsucidalPOMDPnormal

Figure 3: Example 3

The data present in Table V has been recorded by performing 1000 runs and parsing the

results by means of a Matlab script. The precision is indicated as standard deviation. The

TABLE V: AGENT I RUN TIME FOR 1-LEVEL I-POMDP

action time(s) update time(s) memory allocated (kB) supp(b(IS))

One model 0.7546± 0.8138 0.0009± 0.0153 943.3134± 4199.8784 10
Two models 0.7178± 0.8060 0.0014± 0.0092 1205.5657± 2837.1635 20

Three models 0.7962± 1.0892 0.0071± 0.0644 1766.9841± 13605.3668 22

comparison factor used is the number of interactive states. In fact it is clear to be directly

responsible of the increase of the allocated memory and the update time increase. Nonetheless,

the time needed in order to select the optimal action is relatively stable. This behavior is due to

the optimizations taken in order to contain the curse of history. The solved models are stored

in a table, which is queried each time the agent needs to retrieve the probability of specific

actions.

One interesting result is that the number of interactive states present in the problem’s belief

space during time tends to a finite amount: It is clear to note in figure Figure 4 that the
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Figure 4: Number of Interactive States in each run for Example 1

program tends to convert to a fixed amount of interactive states. The interactive states set size

is relatively low due to the fact that they depend on the possible combination of J belief states

which are shown in Table VI and the physical states S of the system creating 10 interactive

states as expected.
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TABLE VI: POSSIBLE J BELIEFS

P(TL) P(TR)

1 0.5 0.5

2 0.85 0.15

3 0.85 0.15

4 0.97 0.03

5 0.03 0.97

Consequently, we can infer that the number of interactive states generated by Julia.IPOMDPs

will not be infinite bu will instead depend on the number of states of the finite-state controller

that can be derived from the POMDP problem of the emulated model.

5.3 Effects on other agents

The various settings of the multi-agent tiger game are useful in order to test the influence

the agent I can have on the agent J reward factor. In the second experiment the various agents

are playing in the same environment with the POMDP tiger agent.

Results are reported in Table VII:

It is possible to note the influence of the agent I on J ’s rewards. This concept is useful since it

shows the applicability of Interactive Partially Observable Markov Decision Processes to those
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I-POMDPcooperative

POMDPnormal

(a) Example Cooperative

I-POMDPneutral

POMDPnormal
(b) Example Neutral

I-POMDPcompetitive

POMDPnormal

(c) Example Competitive

Figure 5: Behavioral examples

TABLE VII: AVERAGE DISCOUNTED REWARD FOR AGENT J .

Example mean

Cooperative 9.2084
Neutral 7.1288

Competitive -4.5190

problems where the influence one agent can have on the other is fundamental, like an assistant.

In order to how the results in a more intuitive way it is possible to plot them in Figure 6:

Table VII and Figure 6 are formed by picking 400 samples from the whole execution dataset

on a problem run with . The result shows how the actions of I and its behavior influence

the reward of J . However, even if in Figure 6 the behaviors are rather noisy, it is possible

to recognize the agents by the number of lower peaks of the three functions. The cooperative

agent allows J to make less errors than both the neutral and competitive agents.

5.4 Higher level multi-agent tiger game

One of the main strength of the Interactive Partially Observable Markov Decision Process

framework is the possibility to define agents on various complexity levels. Julia.IPOMDPs is
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Figure 6: Discounted reward for Agent J

structured in order to take full advance of this strength and make it as easy as possible for the

user to define nested models. In the 2-level multi-agent tiger game both the agents are described

as Interactive Partially Observable Markov Decision Processes : while I is a 2-level I-POMDP,

J is a 1-level I-POMDP. As a consequence I is emulating J which is itself emulating I (this

time as a 0-level POMDP). This example is relatively easy, but it is enough in order to allow

us to understand one of the main problems of Interactive Partially Observable Markov Decision

Processes : Computational and space complexity as described in 2.2.2. The same data taken

for Table V is taken. However, no mean value is calculated due to the scarcity of elements.
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I-POMDPneutral

I-POMDPneutral

POMDPnormal

Figure 7: Example 7

TABLE VIII: AGENT I RUN TIME FOR 2-LEVEL I-POMDP

run action time(s) update time(s) memory allocated (kB) supp(bi(IS))

1 9.2261 8.6383 415, 816.0500 4

2 49.1595 40.7981 1, 153, 249.4400 6

3 125.6628 105.5685 2, 890, 821.1360 14

4 455.9217 385.2239 11, 104, 481.3120 28

5 1, 701.2110 1, 419.9813 42, 872, 848.4000 116

In fact, run times are significantly higher than the ones obtained in the former examples.

This is expected due to the increased complexity of the problem. There are now more interactive

states to parse and, moreover, it is necessary to recurse more deeply in the model structure.

Even if some precautions in order to improve the execution time have been adopted in section

4.3.2, it is interesting to note how the execution and the memory time increase due to the curse
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of history. As a consequence we can confirm that the explored gPOMDP table is useful only in

case the program visits again the same belief state (e.g. during IPOMDPs.actionP).

5.5 Agent model learning

Another interesting use of Interactive Partially Observable Markov Decision Process frame-

work is to use its belief update function in order to learn the other agents’ model. In this

experiment the task of agent J is still to maximize the multi-agent tiger game reward, but the

data we are interested in is its capability of recognizing the agent it is interacting with.

In order to setup the experiment, we need to define the possible agent behaviors J can

assume:

• normal agent : This agent acts following the rules of the original tiger game.

• suicidal agent : This agent acts in the opposite way of the other. It is rewarded whenever

it is eaten by the tiger and it gets a strong penalty when it fails to do so.

I starts without any information neither on which agent he is playing with or the tiger

location and as a consequence its initial belief is:

TL TR φ

θj,n 0.25 0.25 0.5

θj,s 0.25 0.25 0.5
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The aim of the test is to recognize which agent I is playing with. After 250 runs in a

simulator where I is playing against the suicidal agent, the precision is extremely high as

shown in table Figure 8:

Figure 8: Recognition of the normal Tiger POMDP

Learning the other agent’s model is very useful because allows the agent to take actions

depending on the behavior of the other agents it is interacting with.

5.6 Conclusions

Development of Interactive Partially Observable Markov Decision Processes by means of

Julia.IPOMDPs results smooth and straight-forward thanks to its interface architecture. Due
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to the nature of the thesis work it has not been possible to control all the parts of developing such

a project. There are several improvements which are left for future development and possible

research area. It has been shown the procedure used in order to create the framework, but

creating a software does not only require the design and implementation phase. One immediate

improvement of the work could be by implementing a regression testing suite in order to provide

consistent results in the future possible releases. Moreover, Julia.IPOMDPs does not provide

a simulator capable of easily handling the agent testing phase. Reduction solver, even if it

is affected by the problem explained in 4.1, proves beyond expectations in terms of speed.

However, it cannot be considered as an exact I-POMDP solver. Whether or not it is possible to

implement a correct reduction respecting the POMDP belief update is left as matter of further

research.
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Appendix A

REDUCTION FORMULAS

A.1 Transition reduction formula

T (st−1, at−1
i , st | bi) = P (st | st−1, at−1

i , bt−1
i )

=
∑

at−1
j εAj

P (st | st−1, at−1
i , at−1

j , bt−1
i )P (at−1

j | st−1, at−1
i , bt−1

i )

=
∑

at−1
j εAj

P (st | st−1, at−1
i , at−1

j , bt−1
i )

×
∑

mt−1
j εMj

P (at−1
j | st−1, at−1

i , bt−1
i ,mt−1

j )P (mt−1
j | st−1, at−1

i , bt−1
i )

=
∑

at−1
j εAj

P (st | st−1, at−1
i , at−1

j , bt−1
i )

∑
mt−1

j εMj

P (at−1
j | mt−1

j )

× P (st−1, at−1
i , bt−1

i )P (mt−1
j | bt−1

i )P (st−1, at−1
i )

=
∑

at−1
j εAj

P (st | st−1, at−1
i , at−1

j , bt−1
i )

×
∑

mt−1
j εMj

P (at−1
j | mt−1

j )P (mt−1
j | bt−1

i )

(A.1)

A.1.1 Note: at−1
j indep. st−1, at−1

i , bt−1
i given mt−1

j :

It is part of the IPOMDP framework definition that the action aj is determined only by

the model mj .
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Appendix A (continued)

A.1.2 Note: mt−1
j indep. st−1, at−1

i given bt−1
i :

It is part of the IPOMDP framework definition that the action aj is determined only by

the model mj . Moreover, mj is part of bt−1
i .

A.2 Observation reduction formula

O(st, at−1
i , oti | bi) = P (oti | st, at−1

i , bt−1
i )

=
∑

at−1
j εAj

P (oti | st, at−1
i , at−1

j , bt−1
i )P (at−1

j | st, at−1
i , bt−1

i )

=
∑

at−1
j εAj

P (oti | st, at−1
i , at−1

j , bt−1
i )

×
∑

mt−1
j εMj

P (at−1
j | st, at−1

i , bt−1
i ,mt−1

j )P (mt−1
j | st, at−1

i , bt−1
i )

=
∑

at−1
j εAj

P (oti | st−1, at−1
i , at−1

j , bt−1
i )

∑
mt−1

j εMj

P (at−1
j | mt−1

j )

× P (st, at−1
i , bt−1

i )P (mt−1
j | bt−1

i )P (st, at−1
i )

=
∑

at−1
j εAj

P (oti | st, at−1
i , at−1

j , bt−1
i )

×
∑

mt−1
j εMj

P (at−1
j | mt−1

j )P (mt−1
j | bt−1

i )

(A.2)

A.2.1 Note 4: at−1
j indep. st, at−1

i , bt−1
i given mt−1

j :

It is part of the IPOMDP framework definition that the action aj is determined only by

the model mj .
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Appendix A (continued)

A.2.2 Note 5: mt−1
j indep. st, at−1

i given bt−1
i :

It is part of the IPOMDP framework definition that the action aj is determined only by

the model mj . Moreover, mj is part of bt−1
i .

A.3 Reward reduction formula

R(s, ai | bi) :

=
∑
ajεAj

Ri(s, ai, aj)P (aj | bi)

=
∑
ajεAj

Ri(s, ai, aj)
∑

mjεMj

P (aj | mj , bi)P (mj | bi)

=
∑
ajεAj

Ri(s, ai, aj)
∑

mjεMj

P (aj | mj)P (bi)P (mj | bi)

=
∑
ajεAj

Ri(s, ai, aj)
∑

mjεMj

P (aj | mj)P (mj | bi)

(A.3)

A.3.1 Note: aj indep. bi given mj:

It is part of the IPOMDP framework definition that the action aj is determined only by

the model mj . Moreover mj is part of the belief bi
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Appendix B

POMDP TIGER GAME DEFINITION

B.1 States

S = {TL, TR}

B.2 Actions

A = {L,OL,OR}

B.3 Observations

Ω = {GL,GR}

B.4 Transition function

TABLE IX: TRANSITION FUNCTION

a State TL TR

OL * 0.5 0.5

OR * 0.5 0.5

L TL 1.0 0.0

L TR 0.0 1.0
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Appendix B (continued)

B.5 Observation function

TABLE X: OBSERVATION FUNCTION

a State GL GR

OL * 0.5 0.5

OR * 0.5 0.5

L TL 0.85 0.15

L TR 0.15 0.85

B.6 Reward function

TABLE XI: AGENT J REWARD FUNCTION

a TL TR

OL -100.0 10.0

OR 10.0 -100.0

L -1.0 -1.0
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Appendix C

MULTI-AGENT TIGER GAME DEFINITION

Definition for Agent I multi-agent Tiger game.

Agent J is considered to be defined as in Appendix B

C.1 States

S = {TL, TR}

C.2 Agent actions

Ai = {OL,L,OR}

C.3 Observations

Ωi = {GLCL,GLCR,GLS,GRCL,GRCR,GRS}
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Appendix C (continued)

C.4 Transition function

TABLE XII: TRANSITION FUNCTION

〈ai, aj〉 State TL TR

〈OL, ∗〉 * 0.5 0.5

〈OR, ∗〉 * 0.5 0.5

〈∗, OL〉 * 0.5 0.5

〈∗, OR〉 * 0.5 0.5

〈L,L〉 TL 1.0 0.0

〈L,L〉 TR 0.0 1.0
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Appendix C (continued)

C.5 Observation functions

TABLE XIII: AGENT I OBSERVATION FUNCTION

〈ai, aj〉 State GLCL GLCR GLS GRCL GRCR GRS

〈OL,OL〉 TL 0.167 0.167 0.167 0.167 0.167 0.167

〈OL,OL〉 TR 0.167 0.167 0.167 0.167 0.167 0.167

〈OL,OR〉 TL 0.167 0.167 0.167 0.167 0.167 0.167

〈OL,OR〉 TR 0.167 0.167 0.167 0.167 0.167 0.167

〈OL,L〉 TL 0.167 0.167 0.167 0.167 0.167 0.167

〈OL,L〉 TR 0.167 0.167 0.167 0.167 0.167 0.167

〈OR,OL〉 TL 0.167 0.167 0.167 0.167 0.167 0.167

〈OR,OL〉 TR 0.167 0.167 0.167 0.167 0.167 0.167

〈OR,OR〉 TL 0.167 0.167 0.167 0.167 0.167 0.167

〈OR,OR〉 TR 0.167 0.167 0.167 0.167 0.167 0.167

〈OR,L〉 TL 0.167 0.167 0.167 0.167 0.167 0.167

〈OR,L〉 TR 0.167 0.167 0.167 0.167 0.167 0.167

〈L,OL〉 TL 0.765 0.043 0.043 0.135 0.007 0.007

〈L,OL〉 TR 0.135 0.007 0.007 0.765 0.043 0.043

〈L,OR〉 TL 0.043 0.765 0.043 0.007 0.135 0.007

〈L,OR〉 TR 0.007 0.135 0.007 0.043 0.765 0.043

〈L,L〉 TL 0.043 0.043 0.765 0.007 0.007 0.135

〈L,L〉 TR 0.007 0.007 0.135 0.043 0.043 0.765
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Appendix C (continued)

TABLE XIV: AGENT J OBSERVATION FUNCTION

〈aj , ai〉 State GLCL GLCR GLS GRCL GRCR GRS

〈OL,OL〉 TL 0.167 0.167 0.167 0.167 0.167 0.167

〈OL,OL〉 TR 0.167 0.167 0.167 0.167 0.167 0.167

〈OL,OR〉 TL 0.167 0.167 0.167 0.167 0.167 0.167

〈OL,OR〉 TR 0.167 0.167 0.167 0.167 0.167 0.167

〈OL,L〉 TL 0.167 0.167 0.167 0.167 0.167 0.167

〈OL,L〉 TR 0.167 0.167 0.167 0.167 0.167 0.167

〈OR,OL〉 TL 0.167 0.167 0.167 0.167 0.167 0.167

〈OR,OL〉 TR 0.167 0.167 0.167 0.167 0.167 0.167

〈OR,OR〉 TL 0.167 0.167 0.167 0.167 0.167 0.167

〈OR,OR〉 TR 0.167 0.167 0.167 0.167 0.167 0.167

〈OR,L〉 TL 0.167 0.167 0.167 0.167 0.167 0.167

〈OR,L〉 TR 0.167 0.167 0.167 0.167 0.167 0.167

〈L,OL〉 TL 0.765 0.043 0.043 0.135 0.007 0.007

〈L,OL〉 TR 0.135 0.007 0.007 0.765 0.043 0.043

〈L,OR〉 TL 0.043 0.765 0.043 0.007 0.135 0.007

〈L,OR〉 TR 0.007 0.135 0.007 0.043 0.765 0.043

〈L,L〉 TL 0.043 0.043 0.765 0.007 0.007 0.135

〈L,L〉 TR 0.007 0.007 0.135 0.043 0.043 0.765
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Appendix C (continued)

C.6 Reward function

TABLE XV: AGENT I REWARD FUNCTION

〈ai, aj〉 TL TR

〈OL, ∗〉 -100.0 10.0

〈OR, ∗〉 10.0 -100.0

〈L, ∗〉 -1.0 -1.0

TABLE XVI: AGENT J REWARD FUNCTION

〈aj , ai〉 TL TR

〈OL, ∗〉 -100.0 10.0

〈OR, ∗〉 10.0 -100.0

〈L, ∗〉 -1.0 -1.0
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Appendix C (continued)

C.7 Variations

TABLE XVII: COMPETITIVE TIGER GAME AGENT I REWARD FUNCTION

〈ai, aj〉 TL TR

〈OL,OL〉 -50.0 5.0

〈OL,OR〉 -105.0 60.0

〈OL,L〉 -99.5 10.5

〈OR,OL〉 60.0 -105.0

〈OR,OR〉 5.0 -50.0

〈OR,L〉 10.5 -99.5

〈L,OL〉 49.0 -6.0

〈L,OR〉 -6.0 49.0

〈L,L〉 -0.5 -0.5
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Appendix C (continued)

TABLE XVIII: COOPERATIVE TIGER GAME AGENT I REWARD FUNCTION

〈ai, aj〉 TL TR

〈OL,OL〉 -150.0 15.0

〈OL,OR〉 -95.0 -40.0

〈OL,L〉 -100.5 9.5

〈OR,OL〉 -40.0 -95.0

〈OR,OR〉 15.0 -150.0

〈OR,L〉 9.5 -100.5

〈L,OL〉 -51.0 4.0

〈L,OR〉 4.0 -51.0

〈L,L〉 -1.5 -1.5
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