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SUMMARY

A well-designed experiment is an efficient way of learning about the world. Because exper-

iments cannot avoid random error even in the carefully controlled conditions of laboratories,

statistical methods are essential for their efficient design and analysis.

To design experiments we need to know and apply the theory of optimal experimental

design. In this thesis we aim to achieve several goals in D-optimal design about multinomial

logistic models with responses having more than two categories. These are:

1◦ Constructing unified matrix expression for all types of multinomial logistic models. The

matrix expression is in unified form, with some items expressed differently for a different

model.

2◦ Unified form of Fisher information matrix and its determinant can be derived based on the

unified matrix expression for models. Again, the results apply to all types of multinomial

logistic models.

3◦ D-optimal designs are available for all types of multinomial logistic models, based on the

unified form of Fisher information matrix. In some special cases, the analytic solutions

of D-optimal design exist.

This thesis is organized as follows: Chapter 1 introduces the current multinomial logistic mod-

els, which include four different logit models for multinomial responses and three types of odds

assumptions for model parameters. Basic concepts of optimal design and current study methods

and results about Design of multinomial logistic models are described. Chapter 2 first summa-
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SUMMARY (Continued)

rizes all types of multinomial logistic models, then constructs unified matrix expression for all

types of multinomial logistic models, following (1) and (2), but in an explicit way. The uni-

fied form of Fisher information matrix is derived and expressed in Equation 2.10, D-optimality

can be invariant for a certain reparametrization based on Jacobian transformation of Fisher

information matrix.

Chapter 3 starts from another form of Fisher information matrix Equation 3.7, then dis-

cusses positive definiteness of the Fisher information matrix based on that. The number of

minimally supported points can be obtained as well. Chapter 4 focuses on determinant of

Fisher information matrix. Fisher information matrix can be further reformulated in Equa-

tion 4.1, so the general formula for determinant of Fisher information matrix can be calculated,

which gives the overall look. But in some special cases, the analytic form of Fisher information

matrix’s determinant can be calculated. We also tried another approach, it didn’t work in many

situations. However, it greatly simplified the determinant for the continuation-ratio logit model

with non-proportional odds. Chapter 3 and Chapter 4 give the most important results and are

a foundation in this thesis.

Chapter 5 discusses design space for multinomial logistic models. Basically the design space

has no limitations for all of the models except for cumulative logit models, there the order

constraints about the linear predictors exist. The solutions of multinomial response probabilities

are also calculated from the model equations.

Chapter 6 introduces different D-optimal designs, including approximate design and exact

design, both of them belong to local D-optimal design. We use EW D-optimal design as

xi



SUMMARY (Continued)

an efficient surrogate of Bayesian D-optimal design. Besides, minimally supported design is

discussed.

Chapter 7 illustrates application of D-optimal design in two examples. One example is

fitted with continuation-ratio logit model with non-proportional odds, another example applies

cumulative logit model with non-proportional odds. The results show that uniform design

usually is not optimal design, although it is commonly adopted in practice. The uniform

design’s efficiency could be improved greatly by D-optimal design. The D-optimal designs

found by algorithms also confirm the corresponding theoretical results.

xii



CHAPTER 1

INTRODUCTION

1.1 Multinomial Logistic Models

In statistics, categorical variables are those variables that fall into a particular category.

Usually, the variables take on one of a number of fixed values in a set. Many categorical

variables have only two categories. Such variables, for which the two categories (often given

the generic labels “success” and “failure”) are called binary variables.

When a categorical variable has more than two categories, we distinguish between two

types of categorical scales. Variables having categories without a natural ordering are said

to be measured on a nominal scale and are called nominal variables. Examples are mode of

transportation to get to work (automobile, bicycle, bus, subway, walk), favorite type of music

(classical, country, folk, jazz, rock), and choice of residence (apartment, condominium, house,

other). For nominal variables, the order of listing the categories is irrelevant to the statistical

analysis.

Many categorical variables do have ordered categories. Such variables are said to be mea-

sured on an ordinal scale and are called ordinal variables. Examples are social class (upper,

middle, lower), political philosophy (very liberal, slightly liberal, moderate, slightly conserva-

tive, very conservative), patient condition (good, fair, serious, critical), and rating of a movie

for Netflix (1 to 5 stars, representing hated it, didn’t like it, liked it, really liked it, loved it). For

1
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ordinal variables, distances between categories are unknown. Although a person categorized

as very liberal is more liberal than a person categorized as slightly liberal, no numerical value

describes how much more liberal that person is.

Among the ordinal variables, there exists a special type called hierarchical variables: the

responses have a clear nested or hierarchical structure, for example, in Zocchi and Atkinson’s

flies example (2), death before emergence and death during emergence occur in two different

stages. This type of hierarchical variables have some special features, use different models

compared with other ordinal variables, so we list hierarchical variables as one separate type of

variables, following (2).

Generally all of the categorical response variables discussed above are assumed to follow

multinomial distributions, and we often use multinomial logistic models (other models also exist,

but in this thesis we focus on these types of models) to fit them. These models are actually

natural extensions of ordinary logistic regression models, which are applied to binary responses

and assume a binomial distribution. However, the extension could be different according to

different type of response variables.

In statistical literature, four kinds of logit models have been commonly used, including the

baseline-category logit model for nominal responses, for example, (2; 3), the cumulative logit

model for ordinal responses (4; 5), the adjacent-categories logit model for ordinal responses

(3; 6) and the continuation-ratio logit model for hierarchical responses (2; 3). The following

examples are given to explain these models.
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Example 1.1. Baseline-category logit model

Agresti (3) introduced a famous study about food choice of alligators. The study captured 219

alligators in four Florida lakes. The response variable is the primary food type in an alligator’s

stomach. This had five categories: fish, invertebrate, reptile, bird, other. These categories

haven’t orderings so the response is a nominal variable. The alligators are classified according

to L = lake of capture (Hancock, Oklawaha, Trafford, George), G = gender (male, female), and

S = size ( < 2.3 meters long, > 2.3 meters long), These variables can serve as predictors or

explanatory variables.

Let x be a fixed experimental setting for explanatory variables. For observations at that

setting, the response Y could fall into one of the J categories as a multinomial variable with

probabilities (π1(x), · · · , πJ(x)). Baseline-category logistic models pair each response category

with a baseline category, such as the last one or the most common one. But any category could

be treated as a baseline-category. Consider the model

log
πj(x)

πJ(x)
= αj + βTj x j = 1, · · · , J − 1

The left-hand side is the log of ratio of πj(x) over πJ(x), it is equivalent to the logit of a

conditional probability, logit[P (Y = j|Y = j or J)]. This model treats the Jth category as a

baseline-category and pair each other category with the Jth category. There are totally J − 1

logits and related equations. These equations describe the effects of x on these J−1 logits. This

model is a typical baseline-category logit model.
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If we look at the right-hand side, we will find j appear as subscript of β. This indicates

that the effects of predictors (x) vary with different logit, thus the parameters for different logit

equations are different. This assumption is called non-proportional odds (NPO).

Returning to this example, the prediction equation for the logit of selecting invertebrates

instead of fish is

log
π̂I
π̂F

= −1.55 + 1.46s− 1.66ZH + 0.94ZO + 1.12zT

Here s = 1 for size < 2.3 meters and 0 otherwise, and zH , zO and zT are indicator variables

for Lakes Hancock, Oklawaha and Trafford. This is the only one equation, we can have other 3

logit equations, i.e., the logit of selecting reptile instead of fish, the logit of selecting bird instead

of fish, the logit of selecting other instead of fish, these 4 logit equations consist of one whole

baseline-category logit model.

Example 1.2. Cumulative logit model

McCullagh (4) applied a cumulative logit model to an example of tonsil size study. 1398 chil-

dren are classified 3 categories according to their relative tonsil size: Present but not enlarged,

Enlarged and Greatly enlarged (response variables), and whether or not they were carriers of

Streptococcus pyogenes (explanatory variables). The response variables have natural orders and

are ordinal variables. The cumulative logit model is

log
γj(x)

1− γj(x)
= θj − βTx 1 6 j < k
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where γj(x) = π1(x) + · · · + πj(x) is the cumulative probability from the 1st category to the

jth category, the ratio γj(x)/(1 − γj(x)) is the odds for the event Y 6 j. Basically each logit

equation calculates the log odds for the event Y 6 j. Since there are k − 1 cutoff points among

k categories, a cumulative logit model has k − 1 logit equations.

Here we find the right-hand side has only β, without j as its subscript. Therefore, the

effects of predictors are the same across different logit equations, which is often referred to as

proportional odds assumption (PO).

Example 1.3. Adjacent-categories logit model

The cumulative logit model is often used for ordinal responses. However, an alternative: adjacent-

categories logit model (3; 6) can also be applied for ordinal responses:

log[P (Y = j|x)/P (Y = j + 1|x)] = αj − β′x j = 1, · · · , c− 1

Just like its name implies, it pairs each category with its adjacent category in logit equations.

The model is a special case of the baseline-category logit model commonly used for nominal

response variables (i.e., no natural ordering), with reduction in the number of parameters by

utilizing the ordering to obtain a common effect. It utilizes single-category probabilities rather

than cumulative probabilities, so it is more natural when one wants to describe effects in terms

of odds relating to particular response categories. This model received considerable attention in

the 1980s and 1990s, partly because of connections with certain ordinal loglinear models. It is
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very clear that the model assumes PO since the right-hand side has common effect β related to

predictors x .

Example 1.4. Continuation-ratio logit model

Price (7) did a developmental toxicity study. This study administered diEGdiME (toxic sub-

stance) in distilled water to pregnant mice. Each mouse was exposed to one of five concentration

levels for 10 days early in the pregnancy. Two days later, the uterine contents of the pregnant

mice were examined for defects. Each fetus has three possible outcomes (nonlive, malforma-

tion, normal). The outcomes are ordered, with nonlive the least desirable result. We fitted the

continuation-ratio logit models for this study

log
π1(xi)

π2(xi) + π3(xi)
= α1 + β1xi log

π2(xi)

π3(xi)
= α2 + β2xi

We want to model (1) the probability π1 of a nonlive fetus, and (2) the conditional probability

π2/(π2+π3) of a malformed fetus, given that the fetus was live. Generally the continuation-ratio

logits are defined as

log
πj

πj+1 + · · ·+ πJ
j = 1, · · · , J − 1

Let wj = P (Y = j|Y > j), The above continuation-ratio logits are just ordinary logits of these

conditional probabilities: log[wj/(l − wj)].

According to (8), the continuation-ratio logit form is useful when a sequential mechanism,

such as survival through various age periods, determines the response outcome.
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The above examples give 4 different logit models based on different responses. We also

introduced proportional odds (PO) assumptions for ordinal responses and non-proportional

odds (NPO) assumptions for nominal responses. The third type–Partial proportional odds

models (PPO) were proposed by Peterson (9) in order to incorporate PO and NPO components.

It is given as follows:

Example 1.5. Partial proportional odds models (PPO)

We assume that n independent random observations are sampled and that the responses of these

observations on an ordinal variable Y are classified in k + 1 categories with Y = 0, 1, · · · , k.

Thus, each observation has an independent multinomial distribution. The model suggested for

the cumulative probabilities is

Cij = Pr(Y > j|Xi) =
1

1 + exp(−αj −X′iβ −T′iγj)
j = 1, · · · , k

where Xi is a p×1 vector containing the values of observation i on the full set of p explanatory

variables, β is a p × 1 vector of regression coefficients associated with the p variables in Xi

(the elements of β are denoted by βl, l = 1, · · · , p), Ti is a q × 1 vector, q 6 p, containing the

values of observation i on that subset of the p explanatory variables for which the proportional

odds assumption either is not assumed or is to be tested,and γj is a q × 1 vector of regression

coefficients associated with the q variables in Ti, so that T′iγj an increment associated only

with the jth cumulative logit, j = 1, · · · , k, and γ1 = 0. The elements of γj are denoted by

γjl, l = 1, · · · , q. If γj = 0 for all j, then this model reduces to the proportional odds model.
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TABLE I: Data Structure for Multinomial Experiments

Experimental Settings Response Observations Total Trials

x1(x11 · · ·x1d) Y1(Y11 · · ·Y1J) n1 = Y11 + · · ·+ Y1J
...

...
...

xm(xm1 · · ·xmd) Ym(Ym1 · · ·YmJ) nm = Ym1 + · · ·+ YmJ

PPO models sometimes may have better performance than pure PO or NPO models (10).

In fact, PPO models are available to be fitted using software including SAS (11) and R (12), as

well as PO or NPO models. Actually, PPO models are more general in terms of model matrix

structure, which can include PO and NPO models as special cases. Our PPO model equations

are slightly different from this example in terms of parameters, but they are essentially the

same.

In a multinomial response experiment, observations made on different runs are assumed

to be independent; there are totally n = n1 + n2 + · · · + nm runs of the process, each ni

replicates based on a given experimental setting xi, there are totally m experimental settings.

The response Yi falls into one of J categories, so observations will be held in an J × 1 vector,

then Yi = (Yi1, · · · , YiJ). A schematic of the data is given in Table I.

1.2 Optimal Designs and Efficiency

Design of experiment with categorical responses is becoming increasingly popular in a rich

variety of scientific disciplines. Examples include wine bitterness study (13), trauma clinical

trial (14), emergence of house flies (2), polysilicon deposition study (15), toxicity study (3), and

odor removal study (16), etc.
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When the response is binary, generalized linear models are widely used. For optimal designs

under generalized linear models, there is a growing body of literature (see (17), (18), (19) and

references therein). In this case, it is known that the minimum number of experimental settings

required by a non-degenerated Fisher information matrix is equal to the number of parameters

(20; 21). It is also known that the experimental units should be uniformly allocated when a

minimally supported design (design with the least number of experimental settings) is adopted

(21).

Multinomial categorical responses frequently occur in medical experiments or social stud-

ies. While many different multinomial logistic models are proposed to analyze these types of

responses (3; 4; 5; 22), the relevant results in the design literature with multinomial logistic

models are meager and restricted to special classes. Zocchi and Atkinson (2) constructed a gen-

eral framework of optimal designs for multinomial logistic models (which covers all the four logit

models due to the frame work built by Glonek and McCullagh (23)) but with non-proportional

odds only. Perevozskaya et al. (24) discussed a special class of cumulative logit models with

proportional odds. The recent study Yang et al. (16) was able to obtain comprehensive results

for cumulative link models (an extension of cumulative logit models with fairly general link

functions suggested by McCullagh (4)) with proportional odds.

The theoretical results and real experimental examples provided by Yang et al. (16) showed

that the optimal designs for multinomial responses are very different from the ones for binary

responses in at least two aspects: (1) the minimum number of experimental settings required

can be strictly less than the number of parameters; (2) even for a minimally supported design,
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generally uniform allocation is not optimal anymore. A natural question is whether those

findings are true for all multinomial logistic models, or just for cumulative link models with

proportional odds. In this paper, we aim to obtain general results on optimal designs for all

multinomial logistic models commonly used, which covers all the four logit models and all the

three odds structure.

Now we introduce some basic concepts of optimal designs. A design point is a specification

of an experimental setting or some combination of explanatory factors. xi = (xi1, . . . , xid)
T is

the ith experimental setting or the ith level combination of the d factors. Design points have

the form (xi), i = 1, · · · ,m and are usually distinct. The goal of optimal design is to reduce

the cost or improve efficiency. It needs to find suitable weight or experimental runs allocated

to each design point in order to optimize some objective function for a certain design criterion.

For example, approximate design having m design points can be written as:

ξapprox =

x1 x2 · · · xm

w1 w2 · · · wm

 (1.1)

where the weight wi is allocated to the ith support point xi, and w1 + w2 + · · ·+ wm = 1, 0 <

wi < 1, i = 1, · · · ,m. If a support point has weight 1/3, and n = 6 total runs are to be made,

two runs should be conducted at that support point.

In practice all designs are exact, i.e. the number of experimental runs on each support point

xi is an integer. An exact design can be regarded as having a support point xi allocated with

ni runs for all of m design points, n1 +n2 + · · ·+nm = n and n is the total number of runs that
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will be made. The exact design can be written in Equation 1.2. Although exact designs can be

obtained from rounding approximate designs, it could lose efficiency when the total number of

runs is small. So we use a different strategy to obtain exact design.

ξexact =

x1 x2 · · · xm

n1 n2 · · · nm

 (1.2)

Most of optimal design methods maximize or minimize a function of the Fisher information

matrix about parameter estimates, which are dependent on the models. D-optimality maximizes

the determinant of Fisher information matrix, which is equivalent to minimizing the generalized

variance of the parameter estimates. D-optimality performs well according to other optimal

criteria, so it is the most popular optimal design.

For a general non-linear model (including but not limited to multinomial logistic model), a

design ξ is called D-optimal if it maximizes the objective function:

φ(ξ) = |M(ξ,θ)|

where | : | denotes determinant. M is a Fisher information matrix containing ξ and θ due to

non-linearity in the parameters, so any optimal design will depend on the values of θ. When

parameter values are assumed or given in advance, a D-optimal design is called locally D-optimal

design.
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In this thesis, a design ξ will be assessed via its D-efficiency, which is defined as

Deff =

(
|M(ξ,θ)|
|M(ξ∗,θ)|

)1/p

where p is the number of parameters, and ξ∗ is a D-optimal design (18).

If the relative performances of two designs ξ1 and ξ2 are of interest, their relative D-efficiency

can be calculated (18), and is given by

DReff =

(
|M(ξ1,θ)|
|M(ξ2,θ)|

)1/p



CHAPTER 2

UNIFIED FORM OF MULTINOMIAL LOGISTIC MODELS AND ITS

FISHER INFORMATION MATRIX

2.1 Unified Form of Multinomial Logistic Models

We discussed different multinomial logistic models in Section 1.1. Since PPO models are

more general in terms of model structure, which can include PO and NPO models as special

cases, we write the four logit models (baseline-category, cumulative, adjacent-categories, and

continuation-ratio) in the same format with PPO structure as follows:

log

(
πij
πiJ

)
=

pj∑
k=1

hjk(xi)βjk +

pc∑
k=1

hk(xi)ζk , baseline

log

(
πi1 + · · ·+ πij

πi,j+1 + · · ·+ πiJ

)
=

pj∑
k=1

hjk(xi)βjk +

pc∑
k=1

hk(xi)ζk , cumulative

log

(
πij
πi,j+1

)
=

pj∑
k=1

hjk(xi)βjk +

pc∑
k=1

hk(xi)ζk , adjacent

log

(
πij

πi,j+1 + · · ·+ πiJ

)
=

pj∑
k=1

hjk(xi)βjk +

pc∑
k=1

hk(xi)ζk , continuation

where πij is the probability that the response Yi falls into the jth category at the ith ex-

perimental setting, i = 1, . . . ,m, j = 1, · · · , J − 1, so there are m(J − 1) equations for

each model. xi = (xi1, . . . , xid)
T is the ith experimental setting or the ith level combina-

tion of the d factors, i = 1, . . . ,m. Here we don’t use common form of linear predictors

αj +
∑d1

k=1 xikβjk +
∑d

k=d1+1 xikζk, instead, we use function of xi to make models more general.

13
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Actually, the linear predictors of the above models can be written as vector form:

ηij =

pj∑
k=1

hjk(xi)βjk +

pc∑
k=1

hk(xi)ζk = hTj (xi)βj + hTc (xi)ζ

where hTj (·) = (hj1(·), . . . , hjpj (·)) are known functions to determine the predictors for only

jth equation, βj = (βj1, . . . , βjpj )
T consists of pj unknown parameters for only jth equation,

hTc (·) = (h1(·), . . . , hpc(·)) are known functions to determine common predictors for all of equa-

tions, ζ = (ζ1, . . . , ζpc)
T consists of pc unknown common parameters for all of the equations.

Following (1) and (2), we rewrite these four logit models into a unified form

CT log(Lπi) = ηi = Xiθ, i = 1, · · · ,m (2.1)

where πi = (πi1, . . . , πiJ)T , ηi = (ηi1, . . . , ηiJ)T ,

CT =



1 −1 0

1 −1 0

. . .
. . .

...

1 −1 0

0 0 · · · 0 0 0 · · · 0 1


J×(2J−1)

(2.2)
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is the same for all the four logit models, while L does take different forms as follows:

Lbaseline =



1 0

1 0

. . .
...

1 0

0 0 · · · 0 1

0 0 · · · 0 1

...
...

. . .
...

...

0 0 · · · 0 1

1 1 · · · 1 1


(2J−1)×J

Lcumulative =



1 0 · · · 0 0

1 1 0 · · · 0

...
...

. . .
...

1 1 · · · 1 0

0 1 · · · 1 1

0 0 1 · · · 1

...
...

. . .
. . .

...

0 0 · · · 0 1

1 1 · · · 1 1


(2J−1)×J

Lcontinuation =



1 0

1 0

. . .
...

1 0

0 1 · · · 1 1

0 0 1 · · · 1

...
...

. . .
. . .

...

0 0 · · · 0 1

1 1 · · · 1 1


(2J−1)×J

Ladjacent =



1 0

1 0

. . .
...

1 0

0 1

0 1

...
. . .

0 1

1 1 · · · 1 1


(2J−1)×J
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for partial proportional odds models, the model matrix is

Xi =



hT1 (xi) 0T · · · 0T hTc (xi)

0T hT2 (xi)
. . .

...
...

...
. . .

. . . 0T hTc (xi)

0T · · · 0T hTJ−1(xi) hTc (xi)

0T · · · · · · 0T 0T


J×p

(2.3)

and the parameter vector

θ = (β1,β2, · · · ,βJ−1, ζ)T (2.4)

consists of p = p1 + · · ·+ pJ−1 + pc unknown parameters in total.

Non-proportional odds models can be regarded as one degenerated case of partial propor-

tional odds models, the model matrix is then

Xi =



hT1 (xi) 0T · · · 0T

0T hT2 (xi)
. . .

...

...
. . .

. . . 0T

0T · · · 0T hTJ−1(xi)

0T · · · · · · 0T


J×p

(2.5)

and the parameter vector reduces to

θ = (β1,β2, · · · ,βJ−1)T (2.6)
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which consists of p = p1 + · · ·+ pJ−1 unknown parameters in total.

Proportional odds models can be regarded as another degenerated case of partial propor-

tional odds models. In this case, all of hTj (xi) functions are replaced with 1′s. The corresponding

model matrix is

Xi =



1 0 · · · 0 hTc (xi)

0 1
. . .

...
...

...
. . .

. . . 0 hTc (xi)

0 · · · 0 1 hTc (xi)

0 0 · · · 0 0T


J×p

(2.7)

and the parameter vector

θ = (β1, β2, · · · , βJ−1, ζ)T (2.8)

consists of p = J − 1 + pc unknown parameters in total. The previous βj reduces to βj serving

as the cut-off point in this case. Typically, the notation αj is used in the literature to express

cut-off points. In this paper, we use βj for consistency.

Now we give some examples for the above cases.
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Example 2.1. Non-proportional odds models

An example of Xiθ for non-proportional odds models can be found in (2), which takes the form

of

Xiθ =


1 xi x2

i 0 0

0 0 0 1 xi

0 0 0 0 0





β11

β12

β13

β21

β22


�

Note that different predictor functions hTj (xi) can be used for different logit equations

respectively. Example 2.2 provides an example of proportional odds models.

Example 2.2. Proportional odds models

An example with J=3 can be found in (24), which essentially takes the form of

Xiθ =


1 0 xi

0 1 xi

0 0 0




β1

β2

ζ1


�
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Example 2.3. Partial proportional odds models

Suppose d = 4 and xi = (xi2, xi3, xi4, xi5)T . An illustrative example of Xiθ with J = 3 (from

(12) page 176) is

Xiθ =


1 xi3 xi5 0 0 0 xi2 xi4

0 0 0 1 xi3 xi5 xi2 xi4

0 0 0 0 0 0 0 0





β11

β12

β13

β21

β22

β23

ζ1

ζ2


�

Note that in all of the above cases, πi1 + · · ·+ πiJ = 1 implies that ηiJ = 0 and the last row

of Xi is all 0’s.

2.2 Fisher Information Matrix for Multinomial Logistic Models

Following (1) and (2), the multinomial logistic models take the unified form Equation 2.1:

CT log(Lπi) = ηi = Xiθ i = 1, · · · ,m
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for nominal, ordinal and hierarchical multinomial responses. Note that Equation 2.1 covers all

of PO, NPO and PPO models. We need the following formulas of matrix differentiation (see,

for example, (25) (2008, Chapter 17))

∂y

∂xT
=

(
∂yi
∂xj

)
ij

∂Ax

∂xT
= A

∂z

∂xT
=

∂z

∂yT
· ∂y

∂xT

∂ log y

∂xT
= [diag(y)]−1 ∂y

∂xT

where x = (xi)i, y = (yi)i, z and thus log y = (log yi)i are vectors and A is a constant matrix.

Then

∂πi

∂θT
=
∂πi

∂ηTi
· ∂ηi
∂θT

=

(
∂ηi
∂πTi

)−1

·Xi

=

(
∂[CT log(Lπi)]

∂[log(Lπi)]T
· ∂[log(Lπi)]

∂[Lπi]T
· ∂[Lπi]

∂πTi

)−1

·Xi

=
(
CT [diag(Lπi)]

−1L
)−1

Xi

That is,

∂πi

∂θT
= (CTD−1

i L)−1Xi (2.9)

where Di = diag(Lπi). Note that Equation 2.9 is due to the linear form of Xi and θ.
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Suppose for distinct xi, i = 1, · · · ,m, we have independent multinomial response

Yi = (Yi1, · · · , YiJ)T ∼ Multinomial(ni;πi1, · · · , πiJ)

where ni =
∑J

j=1 Yij . Then the log-likelihood for the multinomial model is

l(θ) = logL(θ)

= log

m∏
i=1

ni!

Yi1! · · ·YiJ !
πYi1i1 · · ·π

YiJ
iJ

= constant+

m∑
i=1

YT
i logπi

where logπi = (log πi1, · · · , log πiJ)T . Then the score vector

∂l

∂θT
=

m∑
i=1

YT
i diag(πi)

−1 ∂πi

∂θT

∂l

∂θ
= (

∂l

∂θT
)T =

m∑
i=1

(
∂πi

∂θT
)Tdiag(πi)

−1Yi

Lemma 2.1.

πi
T diag(πi)

−1(CTD−1
i L)−1Xi = 0T



22

Proof of Lemma 2.1: Since

CT =



∗ ∗ · · · 0

∗ ∗ · · · 0

. . .

0 0 · · · 1


L =



∗ ∗ · · · ∗

∗ ∗ · · · ∗

. . .

1 1 · · · 1



D−1
i = diag(Lπi)

−1 =



∗ 0 · · · 0

0 ∗ · · · 0

. . .

0 0 · · · 1
1Tπi


=



∗ 0 · · · 0

0 ∗ · · · 0

. . .

0 0 · · · 1


then

D−1
i L =



∗ · · · ∗

∗ · · · ∗

. . .

1T


and CTD−1

i L =



∗ · · · ∗

∗ · · · ∗

. . .

1T


Rewrite (CTD−1

i L)−1 = (a1, · · · ,aJ). Then 1Ta1 = · · · = 1TaJ−1 = 0 and 1TaJ = 1 (just

look at the last row of CTD−1
i L). Since πTi diag(πi)

−1 = (1, · · · , 1), then

πi
Tdiag(πi)

−1(CTD−1
i L)−1 = (1 · · · 1)(a1, · · · ,aJ) = (0, · · · , 0, 1)
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Recall that the last row of Xi is all 0. Then

πi
Tdiag(πi)

−1(CTD−1
i L)−1Xi = 0T

�

As a direct conclusion of Lemma 2.1,

E(
∂l

∂θT
) =

m∑
i=1

niπi
Tdiag(πi)

−1(CTD−1
i L)−1Xi = 0T

Then the Fisher information matrix is, see (26) (1995, Section 2.3.1)

F = Cov

(
∂l

∂θ
,
∂l

∂θ

)
= E

(
∂l

∂θ
· ∂l
∂θT

)

= E

 m∑
i=1

(
∂πi

∂θT
)Tdiag(πi)

−1Yi ·
m∑
j=1

YT
j diag(πj)

−1 ∂πj

∂θT


= E

 m∑
i=1

m∑
j=1

(
∂πi

∂θT
)Tdiag(πi)

−1YiY
T
j diag(πj)

−1 ∂πj

∂θT



Since Yi’s follow independent multinomial distribution, then

E(YiY
T
i ) =


ni(ni − 1)π2

i1 + niπi1 · · · ni(ni − 1)πisπit

...
. . .

...

ni(ni − 1)πisπit · · · ni(ni − 1)π2
iJ + niπiJ


= ni(ni − 1)πiπ

T
i + nidiag(πi)
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On the other hand, for i 6= j,

E(YiY
T
j ) = E(Yi) · E(YT

j ) = ninjπiπ
T
j

Then the Fisher information matrix

F =

m∑
i=1

(
∂πi

∂θT
)Tdiag(πi)

−1ni(ni − 1)πiπ
T
i diag(πi)

−1 ∂πi

∂θT

+
m∑
i=1

(
∂πi

∂θT
)Tdiag(πi)

−1nidiag(πi)diag(πi)
−1 ∂πi

∂θT

+
∑
i 6=j

(
∂πi

∂θT
)Tdiag(πi)

−1ninjπiπ
T
j diag(πj)

−1 ∂πj

∂θT

, (a) + (b) + (c)

where

(b) =

m∑
i=1

(
∂πi

∂θT
)Tdiag(πi)

−1 ∂πi

∂θT
ni

(a) + (c) =

[
m∑
i=1

(
∂πi

∂θT
)Tdiag(πi)

−1πini

][
m∑
i=1

(
∂πi

∂θT
)Tdiag(πi)

−1πini

]T

−
m∑
i=1

(
∂πi

∂θT
)Tdiag(πi)

−1niπiπi
Tdiag(πi)

−1 ∂πi

∂θT

Actually, let

Ei = πi
Tdiag(πi)

−1 ∂πi

∂θT
= πi

Tdiag(πi)
−1(CTD−1

i L)−1Xi
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which is 0T for each i according to Lemma 2.1. Then

(a) + (c) =

[
m∑
i=1

niE
T
i

][
m∑
i=1

niE
T
i

]T
−

m∑
i=1

niE
T
i Ei = 0J×J

The arguments above have proved the following theorem:

Theorem 2.1. Consider the multinomial logistic model Equation 2.1 with independent obser-

vations. The Fisher information matrix

F =

m∑
i=1

niFi (2.10)

where

Fi = (
∂πi

∂θT
)T diag(πi)

−1 ∂πi

∂θT
,
∂πi

∂θT
= (CTD−1

i L)−1Xi, Di = diag(Lπi)

2.3 Reparametrization and D-optimaltiy

Consider a general linear predictor of generalized linear models at the ith experimental

setting

ηij = hTj (xi)βj + hTc (xi)ζ , j = 1, · · · , J − 1 (2.11)

The model contains the following parameters: θ = (βT1 , · · · ,βTJ−1, ζ)T , which can be rewritten

as θ = (θ1, . . . , θp)
T . Suppose we reparametrize the model with a different set of parameters:

ϑ = (ϑ1, . . . , ϑp)
T , such that,

θl = hl(ϑ), l = 1, · · · , p
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Suppose the map θ = θ(ϑ) = (h1(ϑ), . . . , hp(ϑ))T is one-to-one, hl’s are differentiable, and

|J| 6= 0, where J = (∂hi(ϑ)
∂ϑj

)ij is the p × p Jacobian matrix. Given a design ξ = {(xi, wi), i =

1, . . . ,m} with distinct experimental settings xi and proportions wi ∈ [0, 1], according to (26)

(1995, page 115), the Fisher information matrix Iξ(ϑ) at ϑ and the Fisher information matrix

Iξ(θ) at θ = θ(ϑ) satisfy

Iξ(ϑ) = JT Iξ[θ(ϑ)]J (2.12)

Then |Iξ(ϑ)| = |J|2 · |Iξ[θ(ϑ)]|. Note that J contains no design points but parameters. A

locally D-optimal design maximizing |Iξ(ϑ)| also maximizes |Iξ[θ(ϑ)]|. That is, finding D-

optimal designs for parameters ϑ or θ are equivalent.

In terms of Bayesian D-optimal criterion, if a prior distribution of ϑ is available, it induces

a prior distribution of θ since θ = θ(ϑ) is one-to-one.

Eϑ log |Iξ(ϑ)| = Eϑ log
∣∣JT Iξ[θ(ϑ)]J

∣∣
= Eϑ log |J|2 + Eϑ log |Iξ[θ(ϑ)]|

= Eϑ log |J|2 + Eθ log |Iξ(θ)|

Therefore, a Bayesian D-optimal design that maximizes Eθ log |Iξ(θ)| also maximizes Eϑ log |Iξ(ϑ)|.

Example 2.4. Perevozskaya et al. (24) Consider a proportional odds model as follows:

log
γj(x)

1− γj(x)
=
x− α′j
β′

j = 2, . . . , J (2.13)
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where γj(x) = P (Y > j|x). Following (24), j = 2, . . . , J are used for the response category

related equations, which is actually equivalent to j = 1, . . . , J − 1 equations.

If we reparametrize this model into:

log
γj(x)

1− γj(x)
= αj + βx j = 2, . . . , J (2.14)

Following (2) with J = 3,

Xiθ =


1 0 xi

0 1 xi

0 0 0




α2

α3

β


where θ = (α2, α3, β)T . Let ϑ = (α′2, α

′
3, β
′)T . Note that β = 1

β′ , α2 = −α′2
β′ , α3 = −α′3

β′ . Then

J =


− 1
β′ 0

α′2
β′2

0 − 1
β′

α′3
β′2

0 0 − 1
β′2


Based on Theorem 2.1, at the ith design point, the Fisher information

Ii(θ) = XT
i [(CTD−1

i L)−1]Tdiag(πi)
−1(CTD−1

i L)−1Xi

=


πi1π

2
i2,3πi1,2
πi2

−πi1πi1,2πi2,3πi3
πi2

πi1πi1,2πi2,3xi

−πi1πi1,2πi2,3πi3
πi2

π2
i1,2πi2,3πi3

πi2
πi3πi1,2πi2,3xi

πi1πi1,2πi2,3xi πi3πi1,2πi2,3xi (πi1π
2
i2,3 + πi2(πi1 − πi3)2 + π2

i1,2πi3)x2
i


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Here πij is the probability that the response falls into the jth catogory at the ith design point,

and πij,k = πij + πik. According to Equation 2.12, Ii(ϑ) = JT Ii(θ)J equals to


πi1π

2
i2,3πi1,2
β′2πi2

−πi1πi1,2πi2,3πi3
β′2πi2

1
β′3 [−α′2πi1π

2
i2,3πi1,2
πi2

+
α′3πi1πi2,3πi1,2πi3

πi2
+ πi1πi1,2πi2,3xi]

−πi1πi1,2πi2,3πi3
β′2πi2

π2
i1,2πi2,3πi3
β′2πi2

1
β′3 [

α′2πi1πi2,3πi1,2πi3
πi2

− α′3π
2
i1,2πi2,3πi3
πi2

+ πi3πi1,2πi2,3xi]

· · · · · · · · ·


The last row is not expressed due to limited space. Since the matrix is symmetric, Ii(ϑ)31 =

Ii(ϑ)13, and Ii(ϑ)32 = Ii(ϑ)23. The element of last row and last column is

Ii(ϑ)33 =
πi1πi1,2πi2,3πi3(α′2 − α′3)2

β′4πi2
+
πi1,2πi2,3(α′2πi1 + α′3πi3)(1− 2xi)

β′4

+
(πi1π

2
i2,3 + πi2(πi1 − πi3)2 + π2

i1,2πi3)x2
i )

β′4

It can be verified that Ii(ϑ) above is equal to the corresponding one given by (24). The

transformation of Equation 2.12 is confirmed in this case. Therefore, the D-optimal designs for

Model (Equation 2.13) and Model (Equation 2.14) are the same.



CHAPTER 3

POSITIVE DEFINITENESS OF THE FISHER INFORMATION MATRIX

3.1 Reformulation of Fisher Information Matrix as HUHT

We start from the unified form Equation 2.1 and Equation 2.10. In this subsection, we do

not need to specify the forms of L, Xi and θ in the model Equation 2.1. Therefore, the formulas

derived are good for all of the multinomial logistic models we discussed previously. It could

include 10 models (4 × 3 − 2), since there are 4 kinds of logit models combined with 3 types

of odds assumptions, while the baseline logit model combined with PO or PPO doesn’t follow

correct logic.

According to Theorem 2.1, we need to calculate (CTD−1
i L)−1. Actually, if we denote

(CTD−1
i L)−1 4= (ci1, . . . , ciJ)

where cij is a J × 1 vector, j = 1, . . . , J , we can rewrite Fi into a simpler form as a corollary

of Theorem 2.1:

Corollary 3.1. Under the setup of Theorem 2.1, the Fisher information at the ith design point

Fi = XT
i UiXi (3.1)

29
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where

Ui =



u11(πi) · · · u1,J−1(πi) 0

...
. . .

...
...

uJ−1,1(πi) · · · uJ−1,J−1(πi) 0

0 · · · 0 1


(3.2)

and

ust(πi) = cTisdiag(πi)
−1cit (3.3)

for s, t = 1, . . . , J − 1.

Because the last row of Xi consists of all zeros, the entries in the last row and last column

of Ui actually won’t make any difference. In order to simplify the notations in this chapter, we

rewrite

hji , hj(xi) j = 1, . . . , J − 1; i = 1, . . . ,m

hci , hc(xi) i = 1, . . . ,m

usti , ust(πi) s, t = 1, . . . , J − 1; i = 1, . . . ,m

us·i ,
J−1∑
t=1

usti s = 1, . . . , J − 1; i = 1, . . . ,m

u·ti ,
J−1∑
s=1

usti t = 1, . . . , J − 1; i = 1, . . . ,m

u··i ,
J−1∑
s=1

J−1∑
t=1

usti i = 1, . . . ,m
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Based on Corollary 3.1 and when Xi takes partial proportional odds form Equation 2.3

Fi = XT
i UiXi =



u11ih1ih
T
1i · · · u1,J−1,ih1ih

T
J−1,i u1·ih1ih

T
ci

...
. . .

...
...

uJ−1,1,ihJ−1,ih
T
1i · · · uJ−1,J−1,ihJ−1,ih

T
J−1,i uJ−1·ihJ−1,ih

T
ci

u·1ihcih
T
1i · · · u·J−1,ihcih

T
J−1,i u··ihcih

T
ci


Then we have

F =

m∑
i=1

niFi (3.4)

=



m∑
i=1

niu11ih1ih
T
1i · · ·

m∑
i=1

niu1,J−1,ih1ih
T
J−1,i

m∑
i=1

niu1·ih1ih
T
ci

...
. . .

...
...

m∑
i=1

niuJ−1,1,ihJ−1,ih
T
1i · · ·

m∑
i=1

niuJ−1,J−1,ihJ−1,ih
T
J−1,i

m∑
i=1

niuJ−1·ihJ−1,ih
T
ci

m∑
i=1

niu·1ihcih
T
1i · · ·

m∑
i=1

niu·J−1,ihcih
T
J−1,i

m∑
i=1

niu··ihcih
T
ci


(3.5)

=



H1

. . .

HJ−1

Hc · · · Hc




U11 · · · U1,J−1

...
. . .

...

UJ−1,1 · · · UJ−1,J−1




HT

1 HT
c

. . .
...

HT
J−1 HT

c

 (3.6)

The arguments above have proved the following theorem:

Theorem 3.1. Consider the multinomial logistic model Equation 2.1 with independent obser-

vations. The Fisher information matrix

F = HUHT (3.7)



32

where

H =



H1

. . .

HJ−1

Hc · · · Hc


U =


U11 · · · U1,J−1

...
. . .

...

UJ−1,1 · · · UJ−1,J−1



and

Hj =

(
hj(x1) · · · hj(xm)

)
j = 1, . . . , J − 1

Hc =

(
hc(x1) · · · hc(xm)

)

Ust =


n1ust1

. . .

nmustm

 s, t = 1, . . . , J − 1

are block matrices.

The above H is for PPO models. If models take NPO or PO form, then

HNPO =


H1

. . .

HJ−1

 HPO =



1T

. . .

1T

Hc · · · Hc


The other expressions keep unchanged.



33

A singular Fisher information matrix may lead to unavailability of unbiased estimators of

parameters with finite variance (27). In this section, we study when the Fisher information ma-

trix is nonsingular, or equivalently, positive definite, under general multinomial logistic models.

We start from the unified form Equation 2.1, which covers all of 10 multinomial logistic models

we mentioned.

3.2 Positive Definiteness of U

Recall that the m(J − 1) × m(J − 1) matrix U in Theorem 3.1 consists of niust(πi) =

nic
T
isdiag(πi)

−1cit with πi = (πi1, . . . , πiJ)T , i = 1, . . . ,m and s, t = 1, . . . , J − 1. For typical

applications, we assume 0 < πij < 1 for all i = 1, . . . ,m, j = 1, . . . , J . In order to simplify the

notations, we first assume ni > 0 for i = 1, . . . ,m.

Theorem 3.2. Assume that πij > 0 and ni > 0 for all i = 1, . . . ,m; j = 1, . . . , J . Then U is

positive definite.
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Proof of Theorem 3.2: Recall that (CTD−1
i L)−1 = (ci1 · · · ciJ) and ust(πi) = cTisdiag(πi)

−1cit,

for s, t = 1, . . . , J − 1 and i = 1, . . . ,m. Denote

C̃ =



cT11

. . .

cTm1

cT12

. . .

cTm2

...
. . .

...

cT1,J−1

. . .

cTm,J−1


m(J−1)×mJ

and W̃ =


n1diag(π1)−1

. . .

nmdiag(πm)−1


mJ×mJ
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We claim that U = C̃W̃C̃T . Actually

C̃W̃ =



n1c
T
11diag(π1)−1

. . .

nmcTm1diag(πm)−1

...
. . .

...

n1c
T
1,J−1diag(π1)−1

. . .

nmcTm,J−1diag(πm)−1


and

C̃W̃C̃T = C̃W̃


c11 · · · c1,J−1

. . .
. . .

. . .

cm1 · · · cm,J−1



=


U11 · · · U1,J−1

...
. . .

...

UJ−1,1 · · · UJ−1,J−1

 = U
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Note that W̃ is diagonal with positive diagonal entries. Thus W̃ is positive definite. By

adjusting the rows, we can verify that rank(C̃) is the same as rank(C̃′), where

C̃′ =



cT11

...

cT1,J−1

cT21

...

cT2,J−1

. . .

cTm1

...

cTm,J−1



That is, C̃ has full row rank and thus U is positive definite. �

Furthermore, we obtain the determinant of U as follows:

Theorem 3.3. Consider the m(J − 1)×m(J − 1) matrix U in Theorem 3.1.

|U| =

(
m∏
i=1

ni

)J−1

·
m∏
i=1

 J∏
j=1

πij

−1

|CTD−1
i L|−2 (3.8)
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Theorem 3.3 clearly indicates that U is singular if ni = 0 for some i = 1, . . . ,m. Since

F = HUHT according to Theorem 3.1, F can still be positive definite even if U is singular, as

long as the rank of H is equal to the number of its rows.

In general, given an allocation of n experimental units (n1, . . . , nm) with ni > 0 and∑m
i=1 ni = n, we denote k := #{i : ni > 0} and U∗st = diag{niust(πi) : ni > 0} and

U∗ =


U∗11 · · · U∗1,J−1

...
. . .

...

U∗J−1,1 · · · U∗J−1,J−1

 (3.9)

which is a k(J − 1) × k(J − 1) matrix. Let’s remove all columns of H associated with ni = 0

and denote the leftover as H∗, which is a p× k(J − 1) matrix. It can be verified that

Lemma 3.1. HUHT = (H∗) (U∗) (H∗)T .

Lemma 3.2. |U∗| =
(∏

i:ni>0 ni
)J−1 ·

∏
i:ni>0

(∏J
j=1 πij

)−1
|CTD−1

i L|−2.

According to Lemma 3.2, U∗ is non-singular if πij > 0 for all i satisfying ni > 0 and all

j = 1, . . . , J . Note that U∗ is simply U if ni > 0 for all i = 1, . . . ,m. In order to check when

F is positive definite, we still need to check if U∗ is positive definite. The following result

addresses this question as a corollary of Theorem 3.2:

Corollary 3.2. If πij > 0 for all i satisfying ni > 0 and all j = 1, . . . , J , then U∗ defined in

Equation 3.9 is positive definite.
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As a direct conclusion of Lemmas 3.1 & 3.2 and Theorem 3.2, we derive a necessary and

sufficient condition for F to be positive definite:

Theorem 3.4. Suppose πij > 0 for all i satisfying ni > 0 and all j = 1, . . . , J . Then the

Fisher information matrix F is positive definite if and only if rank(H∗) = p, that is, H∗ is of

full row rank. Furthermore, if ni > 0 for all i = 1, . . . ,m, then F is positive definite if and only

if rank(H) = p, that is, H is of full row rank.

3.3 Row Rank of H Matrix

According to Theorem 3.4, the positive definiteness of the Fisher information matrix F

depends on the row rank of H or H∗.

To simplify the notations, we assume ni > 0, i = 1, . . . ,m throughout this section. In this

case, H = H∗ and U = U∗. We also assume that

m > pj , j = 1, . . . , J − 1 and m > pc if applicable (3.10)

due to the following lemma:

Lemma 3.3. The rank of H matrix in Theorem 3.1 equals to the number of its rows p only if

rank(Hj) = pj, j = 1, . . . , J − 1 and rank(Hc) = pc if applicable.

Under Assumption Equation 3.10, rank(Hj), rank(Hc) and thus rank(H) are all equal to

the numbers of rows of the corresponding matrices respectively, given that they are of full rank.
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The simplest case is non-proportional odds (NPO) models, the H matrix in Theorem 3.1 in

this case is

HNPO =


H1

. . .

HJ−1


which satisfies

rank(HNPO) = rank(H1) + · · ·+ rank(HJ−1) (3.11)

In order to keep the Fisher information matrix F positive definite, or simply |F| > 0, we need

Hj is of full rank pj for all j = 1, . . . , J − 1. Then a necessary condition for |F| > 0 in this case

is

m > max{p1, . . . , pJ−1}

The most complicated case is partial proportional odds (PPO) models, the H matrix in

Theorem 3.1 in this case is

HPPO =



H1

. . .

HJ−1

Hc · · · Hc


p×m(J−1)

where Hj is pj ×m, j = 1, . . . , J − 1, Hc is pc ×m, and p = p1 + · · ·+ pJ−1 + pc in this case.
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Theorem 3.5. For partial proportional odds (PPO) models,

rank(HPPO) = rank(H1) + · · ·+ rank(HJ−1) + r0 (3.12)

where r0 = rank(Hc)−dim
[
M(HT

c ) ∩ (∩J−1
j=1M(HT

j ))
]
, M(HT

c ) is the column space of HT
c or

the row space of Hc.

Proof of Theorem 3.5: A sequence of linear subspaces are

{0} ⊂ M(HT
c ) ∩ (∩J−1

j=1M(HT
j )) ⊂M(HT

c )

with corresponding dimensions 0 6 rc−r0 6 rc , rank(Hc). Then there exist α1, · · · , αrc−r0 , αrc−r0+1, · · · , αrc ∈

Rm s.t. {α1, · · · , αrc−r0} forms a basis ofM(HT
c )∩(∩J−1

j=1M(HT
j )) and {α1, · · · , αrc} forms a ba-

sis ofM(HT
c ), and by simple operations Hc can be transformed into H∗c = (α1, · · · , αrc ,0, · · · ,0)T

and Hj can be transformed into

H∗j = (α1, · · · , αrc−r0 , α
(j)
rc−r0+1, · · · , α

(j)
rj ,0, · · · ,0)T
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where rj = rank(Hj), j = 1, 2, · · · , J − 1. Then rank(HPPO) = rank(H∗PPO) with

H∗PPO =



H∗1

. . .

H∗J−1

H∗c · · · H∗c


p×m(J−1)

Since the first rc − r0 rows of (H∗c , · · · ,H∗c) can be eliminated by applying row operations

of H∗j onto it separately, then rank(H∗PPO) = rank(H∗∗PPO) where

H∗∗PPO =



H∗1

. . .

H∗J−1

H∗∗c · · · H∗∗c


p×m(J−1)

and H∗∗c = (0, · · · ,0, αrc−r0+1, · · · , αrc ,0, · · · ,0)T . Therefore, rank(HPPO) = rank(H∗∗PPO) 6

r1 + · · ·+ rJ−1 + r0.

We claim that the nonzero rows of H∗∗PPO are linearly independent which will lead to the

final conclusion. Actually, let’s denote those nonzero rows of H∗∗PPO as Λ
(j)
i , i = 1, 2, · · · , rj , j =

1, 2, · · · , J−1 and Λrc−r0+1, · · · ,Λrc , where Λ
(j)
i is the ith row of (0, · · · ,0,H∗j , 0, · · · , 0), and Λi
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is the ith row of (H∗∗c , · · · ,H∗∗c ). Suppose there exist a
(j)
i ∈ R, i = 1, 2, · · · , rj , j = 1, 2, · · · , J−1

and ai ∈ R, i = rc − r0 + 1, · · · , rc s.t.

0 =

J−1∑
j=1

rj∑
i=1

a
(j)
i Λ

(j)
i +

rc∑
i=rc−r0+1

aiΛi

then for j = 1, . . . , J − 1,

0 =

rc−r0∑
i=1

a
(j)
i αi +

rj∑
i=rc−r0+1

a
(j)
i α

(j)
i +

rc∑
i=rc−r0+1

aiαi

which implies for j = 1, . . . , J − 1,

rc∑
i=rc−r0+1

aiαi = −
rc−r0∑
i=1

a
(j)
i αi −

rj∑
i=rc−r0+1

a
(j)
i α

(j)
i ∈M(HT

c ) ∩M(HT
j )

Thus,
∑rc

i=rc−r0+1 aiαi ∈ M(HT
c )
⋂(
∩J−1
j=1M(HT

j )
)

. Then we must have
∑rc

i=rc−r0+1 aiαi = 0

since {αrc−r0+1, . . . , αrc} and {α1, . . . , αrc−r0} are linearly independent. Therefore, ai = 0 for

i = rc − r0 + 1, . . . , rc and thus

0 =

rc−r0∑
i=1

a
(j)
i αi +

rj∑
i=rc−r0+1

a
(j)
i α

(j)
i

It implies a
(j)
i = 0, i = 1, . . . , rc−r0, rc−r0 +1, . . . , rj since {α1, . . . , αrc−r0 , α

(j)
rc−r0+1, . . . , α

(j)
rj }

are linear independent. �
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In order to apply Theorem 3.5, we need an efficient way to calculate dim
[
M(HT

c ) ∩ (∩J−1
j=1M(HT

j ))
]
,

or in general, to calculate dim(
⋂n
i=1M(HT

i )) for general matrices. The following theorem an-

swers to this need:

Theorem 3.6. Suppose Hi is of pi×m with rank ri, i = 1, . . . , n. Denote rank
(
(HT

i1
, . . . ,HT

ik
)
)

=

ri1,...,ik for any 2 6 k 6 n and 1 6 i1 < · · · < ik 6 n. Then

dim

(
n⋂
i=1

M(HT
i )

)
=

n∑
i=1

ri −
∑
i1<i2

ri1,i2 +
∑

i1<i2<i3

ri1,i2,i3 − · · ·+ (−1)n−1r1,2,...,n (3.13)

Proof of Theorem 3.6: Recall that dim(M(HT
i )) = rank(HT

i ) = ri and dim(M(HT
i1

)+ · · ·+

M(HT
ik

)) = dim(M((HT
i1
, · · · ,HT

ik
))) = rank((HT

i1
, · · · , HT

ik
)) = ri1,...,ik , for i1 < · · · < ik and

k = 2, . . . , n, where “+” stands for the sum of two linear subspaces.

First of all, dim(M(HT
1 )∩M(HT

2 )) = dim(M(HT
1 ))+dim(M(HT

2 ))−dim(M(HT
1 )+M(HT

2 )) =

r1 + r2 − r12. That is, Equation 3.13 is true for n = 2.

Suppose Equation 3.13 is true for n = k. Then for n = k + 1,

dim(∩k+1
i=1M(HT

i )) = dim(∩ki=1M(HT
i ) ∩M(HT

k+1))

= dim(∩ki=1M(HT
i )) + dim(M(HT

k+1))− dim(∩ki=1M(HT
i ) +M(HT

k+1))

=

k∑
i=1

ri −
∑

16i1<i26k

ri1i2 + · · ·+ (−1)k−1r12···k + rk+1 −4
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where

4 = dim(∩ki=1M(HT
i ) +M(HT

k+1)) = dim(∩ki=1M((HT
i ,H

T
k+1)))

=
k∑
i=1

rank((HT
i ,H

T
k+1))−

∑
16i1<i26k

rank((HT
i1 ,H

T
k+1,H

T
i2 ,H

T
k+1))

+ · · ·+ (−1)k−1rank((HT
1 ,H

T
k+1, · · · ,HT

k ,H
T
k+1))

=

k∑
i=1

ri,k+1 −
∑

16i1<i26k

ri1,i2,k+1 + · · ·+ (−1)k−1r1,2,...,k+1

Therefore,

dim(∩k+1
i=1M(HT

i ))

=
k∑
i=1

ri −
∑

16i1<i26k

ri1i2 + · · ·+ (−1)k−1r12···k + rk+1

−
k∑
i=1

ri,k+1 +
∑

16i1<i26k

ri1,i2,k+1 + · · ·+ (−1)kr1,2,...,k+1

=

k+1∑
i=1

ri −
∑

16i1<i26k+1

ri1i2 + · · ·+ (−1)(k+1)−1r1,2,...,k+1

That is, Equation 3.13 is true for n = k+ 1. By mathematical induction, Equation 3.13 is true

for general n. �

The proportional odds (PO) models can be regarded as special cases of partial proportional

odds (PPO) models. As direct conclusions of Theorem 3.5, we have

Theorem 3.7. For proportional odds models, rank(HPO) = rank(
(
1,HT

c

)
) + J − 2.
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Combining Theorem 3.4, equation Equation 3.11, Theorem 3.5 and Theorem 3.7, we obtain

the theorem as follows:

Theorem 3.8. Consider the multinomial logistic model Equation 2.1 with m distinct experi-

mental settings xi and corresponding number of observations ni, i = 1, . . . ,m. Suppose πij > 0,

ni > 0, i = 1, . . . ,m; j = 1, . . . , J . Then the Fisher information matrix F is positive definite if

and only if

(1) For non-proportional odds (NPO) models, m > max{p1, . . . , pJ−1} and xi’s keep Hj of

full row rank pj, j = 1, . . . , J − 1.

(2) For proportional odds (PO) models, m > pc + 1 and the extended matrix (1,HT
c ) is of full

rank pc + 1.

(3) For partial proportional odds (PPO) models, m > max{p1, . . . , pJ−1, pc} and xi’s keep

Hj of full row rank pj, j = 1, . . . , J − 1; Hc of full row rank pc; as well as M(HT
c ) ∩(

∩J−1
j=1M(HT

j )
)

= {0}.

(4) For a special case of PPO models with H1 = · · · = HJ−1, m > p1 + pc and the extended

matrix (HT
1 ,H

T
c ) is of full rank p1 + pc.

Based on Theorem 3.8(3), we have the following lemma:

Lemma 3.4. Given (1)rank(Hj) = pj , j = 1, · · · , J−1, (2)rank(Hc) = pc, (3)M(HT
C )∩MH =

0, where MH = ∩J−1
j=1M(HT

j ), write pH = dim(MH), then m > pH + pc.

Proof of Lemma 3.4: Suppose pH > 0, there exist α1, · · · , αpH ∈ Rm, which form a basis of

MH . After row transformations, Hj can be rewritten as [α1, · · · , αpH , α
(j)
pH+1, · · · , α

(j)
pj ]T , write
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Hc = [γ1, · · · , γpc ]T , then (3) implies [α1, · · · , αpH , γ1, · · · , γpc ] ∈ Rm are linearly independent.

Thus m > pH + pc.

Then we can rewrite Theorem 3.8(3) as Theorem 3.8(3’):

(3’) For partial proportional odds (PPO) models, m ≥ max{p1, . . . , pJ−1, pH + pc} and xi’s

keep Hj of full row rank pj , j = 1, . . . , J−1; Hc of full row rank pc; and dim
(
∩J−1
j=1M(HT

j )
)

=

pH .

Theorem 3.8(3’) actually covers all of model situations. If it is NPO model, pc = 0 and

pH 6 max{p1, . . . , pJ−1}, (3’) is degenerated as m ≥ max{p1, . . . , pJ−1}. If it is PO model,

pH = p1 = . . . = pJ−1 = 1, (3’) is degenerated as m > pc + 1. In case of special PPO,

pH = p1 = . . . = pJ−1, (3’) becomes m ≥ p1 + pc.

Theorem 3.8 says that the number m of distinct experimental settings for a partial propor-

tional odds model could be as low as max{p1, . . . , pJ−1, pc + pH}, which is strictly less than p.

The following artificial example provides such a case.

Example 3.1. Consider an experiment with three factors (d = 3), three response categories

(J = 3), and three distinct experimental settings (m = 3). Then the experimental settings are

xi = (xi1, xi2, xi3)T , i = 1, 2, 3. Consider a multinomial logistic model with partial proportional

odds such that

HT
1 =


1 x11

1 x21

1 x31

 , HT
2 =


1

1

1

 , HT
c =


x12 x13

x22 x23

x32 x33


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That is, p1 = 2, p2 = 1, pc = 2, pH = 1, max{p1, p2, pc + pH} = 3, and p = p1 + p2 + pc = 5. In

this case, 

1 1 1 0 0 0

x11 x21 x31 0 0 0

0 0 0 1 1 1

x12 x22 x32 x12 x22 x32

x13 x23 x33 x13 x23 x33


is 5×6. It can be verified that rank(H) = 5 for general x1,x2,x3 according to Theorem 3.5. That

is, the minimal number of experimental settings in this case is m = max{p1, . . . , pJ−1, pc+pH} =

3.

Example 3.2. Consider another experiment with four factors (d = 4), three response categories

(J = 3), and four distinct experimental settings (m = 4). Then the experimental settings

are xi = (xi1, xi2, xi3, xi4)T , i = 1, 2, 3, 4. Consider a multinomial logistic model with partial

proportional odds such that

HT
1 =



1 x11 x12 x13

1 x21 x22 x23

1 x31 x32 x33

1 x41 x42 x43


, HT

2 =



1 x11

1 x21

1 x31

1 x41


, HT

c =



x14

x24

x34

x44


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That is, p1 = 4, p2 = 2, pc = 1, pH = 2, max{p1, p2, pc + pH} = 4, and p = p1 + p2 + pc = 7. In

this case, 

1 1 1 1 0 0 0 0

x11 x21 x31 x41 0 0 0 0

x12 x22 x32 x42 0 0 0 0

x13 x23 x33 x43 0 0 0 0

0 0 0 0 1 1 1 1

0 0 0 0 x11 x21 x31 x41

x14 x24 x34 x44 x14 x24 x34 x44


is 7×8. It can be verified that rank(H) = 7 for general x1,x2,x3,x4 according to Theorem 3.5.

That is, the minimal number of experimental settings in this case is m = max{p1, . . . , pJ−1, pc+

pH} = 4.



CHAPTER 4

DETERMINANT OF FISHER INFORMATION MATRIX

4.1 Further Reformulation of Fisher Information Matrix for Multinomial Logistic Models

In order to calculate the determinant of the Fisher information matrix F, we reformulate it

into the format of GTWG with a diagonal matrix W in this section.

Actually, according to Theorem 3.1, F = HUHT . From the proof of Theorem 3.2, U =

C̃W̃C̃T , where W̃ is a diagonal matrix. Therefore,

F = HC̃W̃C̃THT

which leads to the theorem as follows:

Theorem 4.1. Consider the multinomial logistic model Equation 2.1 with independent obser-

vations. The Fisher information matrix

F = nGTWG (4.1)

49



50

where n is the total number of observations with ni of them assigned to the ith experimental

setting xi, W = diag{w1diag(π1)−1, . . . , wmdiag(πm)−1} is an mJ × mJ matrix with wi =

ni/n, G is an mJ × p matrix which takes the forms of

GPPO =



c11h
T
1 (x1) · · · c1,J−1h

T
J−1(x1)

∑J−1
j=1 c1j · hTc (x1)

c21h
T
1 (x2) · · · c2,J−1h

T
J−1(x2)

∑J−1
j=1 c2j · hTc (x2)

· · · · · · · · · · · ·

cm1h
T
1 (xm) · · · cm,J−1h

T
J−1(xm)

∑J−1
j=1 cmj · hTc (xm)



GNPO =



c11h
T
1 (x1) · · · c1,J−1h

T
J−1(x1)

c21h
T
1 (x2) · · · c2,J−1h

T
J−1(x2)

· · · · · · · · ·

cm1h
T
1 (xm) · · · cm,J−1h

T
J−1(xm)



GPO =



c11 · · · c1,J−1
∑J−1

j=1 c1j · hTc (x1)

c21 · · · c2,J−1
∑J−1

j=1 c2j · hTc (x2)

· · · · · · · · · · · ·

cm1 · · · cm,J−1
∑J−1

j=1 cmj · hTc (xm)


for PPO, NPO, PO models, respectively.

4.2 General Formula for Determinant of Fisher Information Matrix

The general determinant of Fisher Information Matrix can be obtained from |GTWG| in

Equation 4.1. Since W is diagonal, we obtain the following theorem as a direct conclusion of

Theorem 1.1.2 of (20) or Lemma 3.1 of (21):
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Theorem 4.2. Up to the constant np, the determinant of Fisher information matrix is

|GTWG| =
∑

α1≥0,...,αm≥0 :
∑m
i=1 αi=p

cα1,...,αm · w
α1
1 · · ·w

αm
m (4.2)

with

cα1,...,αm =
∑

(i1,...,ip)∈Λ(α1,...,αm)

|G[i1, . . . , ip]|2
∏

k:αk>0

∏
l:(k−1)J<il6kJ

π−1
k,il−(k−1)J > 0 (4.3)

where α1, . . . , αm are nonnegative integers, and

Λ(α1, . . . , αm) = {(i1, . . . , ip)|1 ≤ i1 < · · · < ip ≤ mJ ;

#{il : (k − 1)J < il 6 kJ} = αk; k = 1, . . . ,m}

and G stands for the submatrix consisting of the i1, . . . , ipth rows of G.

According to Theorem 4.2, the determinant of Fisher information matrix is an order-p

homogeneous polynomial function of w1, . . . , wm. Another important conclusion is that the

coefficient cα1,...,αm must be nonnegative according to Equation 4.3. Actually, the structure of

the determinant can be significantly simplified due to the following results on the coefficient

cα1,...,αm of wα1
1 · · ·wαmm :

Lemma 4.1. If max1≤i≤m αi > J , then |G[i1, . . . , ip]| = 0 for any (i1, . . . , ip) ∈ (α1, . . . , αm).

Therefore, cα1,...,αm = 0 in this case.
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Proof of Lemma 4.1: Actually, max1≤i≤m αi 6 J . Suppose max1≤i≤m αi > J , which means

max1≤i≤m αi = J . Without any loss of generality, we assume α1 = J . Then ij = j for

j = 1, . . . , J .

According to subsection 4.3.2, we have 1T cij = 0 for i = 1, . . . ,m and j = 1, . . . , J−1. Then

1T (c11 + · · · + c1,J−1) = 0 and thus 1TG[i1, . . . , iJ ] = 0. That is, rank(G[i1, . . . , iJ ]) 6 J − 1.

Therefore, rank(G[i1, . . . , ip]) 6 p− 1 and |G[i1, . . . , ip]| = 0. �

Theorem 4.3. The coefficient cα1,...,αm as defined in Equation 4.3 is nonzero only if the re-

stricted Fisher information matrix Fres =
∑

i:αi>0 Fi is positive definite, where Fi is defined in

Theorem (2.1).

Proof of Theorem 4.3: Suppose cα1,...,αm 6= 0 for some (α1, . . . , αm). Therefore, there exist

(i1, . . . , ip) ∈ (α1, . . . , αm) such that G[i1, . . . , ip] is of full rank p. Without any loss of generality,

we assume α1 > · · · > αk > 0 = αk+1 = · · · = αm, that is, {i | αi > 0} = {1, . . . k}. Consider

the submatrix G̃ := G[1, . . . , kJ ] which is kJ×p and contains G[i1, . . . , ip] as a submatrix. Then

G̃ is of rank p or G̃T is of full row rank p. Write W̃ = k−1diag{diag(π1)−1, . . . ,diag(πk)
−1}.

Then the restricted matrix F := nG̃TW̃G̃ is positive definite. On the other hand, F is the

Fisher information matrix nGTWG as defined in Equation 4.1 with w1 = · · · = wk = 1/k

and wk+1 = · · · = wm = 0. According to Theorem 4.1 and Theorem 2.1, F = nk−1
∑k

i=1 Fi.

Therefore, Fres :=
∑k

i=1 Fi is positive definite. �

Combining Theorem 3.4 and Theorem 4.3, Theorem 3.8 and Theorem 4.3, respectively, we

obtain the following corollaries:
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Corollary 4.1. The coefficient cα1,...,αm is nonzero only if Hα1,...,αm is of full row rank p, where

Hα1,...,αm is the submatrix of H after removing all columns associated with xi such that αi = 0.

Corollary 4.2. The coefficient cα1,...,αm = 0 if #{i | αi > 0} 6 kmin − 1, where

(1) kmin = max{p1, . . . , pJ−1} for NPO models;

(2) kmin = pc + 1 for PO models;

(3) kmin = max{p1, . . . , pJ−1, pH + pc} for PPO models;

(4) kmin = p1 + pc for PPO models with H1 = · · · = HJ−1.

For typical applications kmin > 2. The determinant of a PPO model could in general be

more complicated than a PO model’s. Here’s one example which shows that cα1,...,αm could be

zero for PPO models given that #{i | αi > 0} = pH + pc − 1.

Example 4.1. Consider an artificial example with responses in J = 4 categories, d = 5

factors, and m = 5 distinct experimental settings xi = (xi,1, . . . , xi,5)T , i = 1, . . . , 5. Suppose a

multinomial logistic model with

HT
1 =



1 x11 x12

1 x21 x22

...
...

...

1 x51 x52


, HT

2 =



1 x11

1 x21

...
...

1 x51


, HT

3 =



1

1

...

1


, HT

c =



x13 x14 x15

x23 x24 x25

...
...

...

x53 x54 x55


is used. That is, p1 = 3, p2 = 2, p3 = 1, pH = 1, pc = 3 and p = 9. The G matrix in

this case is 20× 9. pH + pc = 4 should be the minimum number of non-negative of α1, . . . , αm

to make |G[i1, . . . , ip]| 6= 0. It can be verified that (i1, . . . , i9) = (1, 2, 3, 6, 7, 8, 10, 11, 12) ∈
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Λ(3, 3, 3, 0, 0) = Λ(α1, . . . , α5) leads to Rank G([ i1, . . . , i9]) = 8, while (1, 2, 5, 6, 9, 10, 13, 14, 15) ∈

Λ(2, 2, 2, 3, 0) leads to Rank(G[i1, . . . , ip]) = 9. Therefore, |G[i1, . . . , ip]| 6= 0 in general if

(i1, . . . , ip) ∈ Λ(2, 2, 2, 3, 0) for such a PPO model.

The following example shows that Lemma 4.1 and Corollary 4.2 may simplify the structure

of |F| significantly.

Example 2.3 (Continued) : In this example, the number of factors is d = 4, and the experi-

mental settings are xi = (xi2, xi3, xi4, xi5)T , i = 1, . . . ,m. Since p1 = p2 = 3, pc = 2, and the

number of parameters p = p1 + p2 + pc = 8 in this case, the minimal number of experimental

settings is m = p1 + pc = 5 according to Theorem 3.8. We consider the simplest case m = 5.

That is,

HT
1 = HT

2 =



1 x13 x15

1 x23 x25

...
...

...

1 x53 x55


, HT

c =



x12 x14

x22 x24

...
...

x52 x54


According to Theorem 4.2, the determinant of the Fisher information matrix |F| is an order-

8 homogeneous polynomial allocating to 5 experimental settings which may contain up to

(8 + 5 − 1)!/(8!(5 − 1)!) = 465 items. However, Lemma 4.1 implies cα1,...,α5 6= 0 only if αi ∈

{0, 1, 2}, i = 1, . . . , 5. On the other hand, Corollary 4.2 says cα1,...,α5 6= 0 only if #{i | αi > 0} >
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p1 + pc = 5, that is, αi > 0 for all i = 1, . . . , 5. Then only items with αi ∈ {1, 2}, i = 1, . . . , 5

left and the polynomial |F| contains only 5!/(3!2!) = 10 items. That is,

|F| =
5∏
i=1

wi ·
∑

1≤i1<i2<i3≤5

ei1,i2,i3wi1wi2wi3

for some coefficients ei1,i2,i3 , where wi = ni/n, i = 1, . . . , 5 and wi1 = ni1/n. Actually, ei1,i2,i3 is

related to cα1,...,αm in Equation 4.3 of Theorem 4.2. For example, e1,2,3 = c2,2,2,1,1. �

4.3 Determinant of Fisher Information Matrix in Some Special Cases

The above section gives the general formula for determinant of Fisher information matrix,

which could be applied to any multinomial logistic models, i.e., four types of logit models and

three types of odds assumptions. In some special cases, we can get simpler formulas even

analytic forms for determinant of Fisher information matrix.

4.3.1 Determinant of U matrix

Lemma 4.2. If we just look at the determinant of U in Theorem 3.1, then

|U| = (

m∏
i=1

ni)
J−1|V|
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where

V =


V11 · · · V1,J−1

...
. . .

...

VJ−1,1 · · · VJ−1,J−1



=



u111 · · · u1,J−1,1

. . .
. . .

u11m · · · u1,J−1,m

...
. . .

...

uJ−1,1,1 · · · uJ−1,J−1,1

. . .
. . .

uJ−1,1,m · · · uJ−1,J−1,m


Note: Lemma 4.2 implies if H is a square matrix, then n1 = n2 = · · · = nm = n/m would be

D-optimal.

Kovacs et al. (28) generalized Schur’s Formula (29), and their theorem is as follows:

Lemma 4.3. Theorem 1 of (28)

Assume that M is a k × k block matrix, each block element Aij is an n× n matrix.

M =


A11 · · · A1k

...
. . .

...

Ak1 · · · Akk


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If all of A′ijs commute pairwise, that is, AijAlm = AlmAij for all possible pairs of indices i, j

and l, m. Then

|M| =

∣∣∣∣∣∣
∑
π∈Sk

(sgnπ)A1π(1)A2π(2) · · ·Akπ(k)

∣∣∣∣∣∣ (4.4)

Here the sum is computed over all permutations π of the set 1, 2, ..., k. A permutation is a

function that reorders this set of integers. The value in the ith position after the reordering

π is denoted π(i). For example, for n = 3, the original sequence 1, 2, 3 might be reordered

to π = [2, 3, 1], with π(1) = 2, π(2) = 3, and π(3) = 1. The set of all such permutations

(also known as the symmetric group on k elements) is denoted Sk. For each permutation π,

sgn(π) denotes the signature of π, a value that is +1 whenever the reordering given by π can

be achieved by successively interchanging two entries an even number of times, and 1 whenever

it can be achieved by an odd number of such interchanges.

In our case, all of V′ijs are diagonal matrices, so they commute pairwise. Moreover, the

sum of product matrices in Equation 4.4 is a diagonal matrix, in which each element is the sum

of products of the corresponding elements in those matrices. If we apply the above lemma, we

get

|V| =

∣∣∣∣∣∣
∑

π∈SJ−1

(sgnπ)V1π(1)V2π(2) · · ·VJ−1,π(J−1)

∣∣∣∣∣∣
=

m∏
i=1

∣∣∣∣∣∣
∑

π∈SJ−1

(sgnπ)u1π(1)iu2π(2)i · · ·uJ−1,π(J−1),i

∣∣∣∣∣∣
So the following theorem is naturally approved
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Theorem 4.4.

|V| =
m∏
i=1

|Vi| (4.5)

where

Vi =


u11(πi) · · · u1,J−1(πi)

...
. . .

...

uJ−1,1(πi) · · · uJ−1,J−1(πi)


Note that the Vi defined above is very similar to Ui we defined before, see Equation 3.2.

4.3.2 Key intermediate results for four types of logit models

In order to get |Vi|, we need to examine its element ust(πi), which is related to (CTD−1
i L)−1

according to its definition Equation 3.3.

Now look at the four different kinds of multinomial logistic models. Note that πi1+· · ·+πiJ =

1, i = 1, . . . ,m. Then

(CTD−1
i L)baseline =



1
πi1

0 · · · 0 − 1
πiJ

0 1
πi2

. . .
... − 1

πiJ

...
. . .

. . . 0
...

0 · · · 0 1
πi,J−1

− 1
πiJ

1 1 · · · 1 1


J×J
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(CTD−1
i L)cumulative =



1
γi1

− 1
1−γi1 − 1

1−γi1 · · · − 1
1−γi1

1
γi2

1
γi2

− 1
1−γi2 · · · − 1

1−γi2

...
...

. . .
. . .

...

1
γi,J−1

1
γi,J−1

· · · 1
γi,J−1

− 1
1−γi,J−1

1 1 · · · 1 1


J×J

(CTD−1
i L)continuation =



1
πi1

− 1
1−γi1 − 1

1−γi1 · · · − 1
1−γi1

0 1
πi2

− 1
1−γi2 · · · − 1

1−γi2

...
. . .

. . .
. . .

...

0 · · · 0 1
πi,J−1

− 1
1−γi,J−1

1 1 · · · 1 1


J×J

(CTD−1
i L)adjacent =



1
πi1

− 1
πi2

0 · · · 0

0 1
πi2

− 1
πi3

. . .
...

...
. . .

. . .
. . . 0

0 · · · 0 1
πi,J−1

− 1
πiJ

1 1 · · · 1 1


J×J
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where γij = πi1 + · · · + πij is the cumulative categorical probability, j = 1, . . . , J − 1. The

corresponding inverse matrices are

(CTD−1
i L)−1

baseline

=



−π2
i1 + πi1 −πi1πi2 · · · −πi1πi,J−1 πi1

−πi1πi2 −π2
i2 + πi2 · · · −πi2πi,J−1 πi2

...
...

. . .
...

...

−πi1πi,J−1 −πi2πi,J−1 · · · −π2
i,J−1 + πi,J−1 πi,J−1

−πi1πiJ −πi2πiJ · · · −πi,J−1πiJ πiJ


J×J

4
=

(
ci1 ci2 · · · ciJ

)
baseline

where (cij)baseline = πij(ej −πi), j = 1, . . . , J − 1, (ciJ)baseline = πi, and ej is the J × 1 vector

with the jth coordinate 1 and all others 0. Recall that πi = (πi1, . . . , πiJ)T .
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(CTD−1
i L)−1

cumulative

=



γi1(1− γi1) 0 · · · 0 πi1

−γi1(1− γi1) γi2(1− γi2)
. . .

... πi2

0 −γi2(1− γi2)
. . . 0

...

...
. . .

. . . γi,J−1(1− γi,J−1) πi,J−1

0 · · · 0 −γi,J−1(1− γi,J−1) πiJ


J×J

4
=

(
ci1 ci2 · · · ciJ

)
cumulative

where (cij)cumulative = γij(1−γij)(ej−ej+1) with ej defined as above; and (ciJ)cumulative = πi .

(CTD−1
i L)−1

continuation

=



πi1(1− γi1) 0 · · · 0 πi1

−πi1πi2 πi2(1−γi2)
1−γi1

. . .
... πi2

...
...

. . . 0
...

−πi1πi,J−1 −πi2πi,J−1

1−γi1 · · · πi,J−1(1−γi,J−1)
1−γi,J−2

πi,J−1

−πi1πiJ −πi2πiJ
1−γi1 · · · −πi,J−1πiJ

1−γi,J−2
πiJ


J×J

=

(
ci1 ci2 · · · ciJ

)
continuation
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where (ci1)continuation = πi1(1 − γi1,−πi2, . . . ,−πiJ)T , (cij)continuation =
πij

1−γi,j−1
(0, . . . , 0, 1 −

γij ,−πi,j+1, . . . ,−πiJ)T with “1−γij” being the jth coordinate, j = 2, . . . , J−1, and (ciJ)continuation =

πi .

(CTD−1
i L)−1

adjacent

=



(1− γi1)πi1 (1− γi2)πi1 · · · (1− γi,J−1)πi1 πi1

−γi1πi2 (1− γi2)πi2 · · · (1− γi,J−1)πi2 πi2

...
...

. . .
...

...

−γi1πi,J−1 −γi2πi,J−1 · · · (1− γi,J−1)πi,J−1 πi,J−1

−γi1πiJ −γi2πiJ · · · −γi,J−1πiJ πiJ


J×J

=

(
ci1 ci2 · · · ciJ

)
adjacent

where (cij)adjacent = ((1 − γij)πi1, . . . , (1 − γij)πij ,−γijπi,j+1, . . . ,−γijπiJ)T , j = 1, . . . , J − 1,

and (ciJ)adjacent = πi .

From the above results, ust(πi) can be calculated for 4 kinds of logit models according to

Equation 3.3,

ust(πi)baseline =


πis(1− πis), if s = t;

−πisπit , if s 6= t

(4.6)
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ust(πi)cumulative =



γ2
is(1− γis)2(π−1

is + π−1
i,s+1), if s = t;

−γisγit(1− γis)(1− γit)π−1
i,s∨t, if |s− t| = 1;

0, if |s− t| > 2

(4.7)

ust(πi)continuation =


πis(1−γis)
1−γi,s−1

, if s = t;

0, if |s− t| > 1

(4.8)

ust(πi)adjacent =


γis(1− γis), if s = t;

γi,s∧t(1− γi,s∨t), if s 6= t

(4.9)

where s, t = 1, . . . , J − 1, s ∧ t stands for min{s, t} and s ∨ t stands for max{s, t}.

With ust(πi) expressed, the determinant of Fisher information matrix with non-proportional

odds can be expressed in analytic form in some special cases.

4.3.3 Some preliminary results

For multinomial logit models with nonproportional odds, Xi is defined as in Equation 2.5

and θ is defined as in Equation 2.6. Then H in Equation 3.7 is

H =


H1

. . .

HJ−1


Here H is p×m(J−1) matrix, and p = p1+· · ·+pJ−1, U is the same as defined in Equation 3.7,

which is a m(J − 1)×m(J − 1) matrix. Therefore F = HUHT is a p× p matrix.
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Lemma 4.4. rank(H) = rank(H1) + · · ·+ rank(HJ−1)

Lemma 4.5. |F| 6= 0 only if rank(H) = p

Theorem 4.5. |F| > 0 only if m > maxsps

Proof of Theorem 4.5: Without loss of generality, assume p1 = maxsps.

If m < p1, then rank(H1) < p1 and thus rank(H) < p.

According to Lemma 4.5, |F| = 0 in this case. �

Lemma 4.6. If p = m(J − 1) and rank(H) = p then p1 = · · · = pJ−1 = m

Theorem 4.6. If p1 = · · · = pJ−1 = m then

|F| = (

m∏
i=1

ni)
J−1

J−1∏
j=1

|Hj |2|V| (4.10)

Which implies minimally supported points D-optimal design is n1 = n2 = · · · = nm = n/m.

Note in Theorem 4.6, we don’t need h1i = · · · = hJ−1,i, we only need p1 = · · · = pJ−1. Also, all

of conclusions are based on given experimental points and parameters (local optimal design).

Because of this, we conclude:

(1) The Fisher information matrix F is positive definite if and only if Hs = (hs(x1), . . . ,hs(xm))T

is of full rank ps for each s = 1, . . . , J − 1.

(2) max{ps, s = 1, . . . , J − 1} is also the number of support points in a minimally supported

design.

(3) A uniform design is D-optimal in a minimally supported design given same dimension of
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predictors for different logit equations, i.e., m = p1 = p2 = · · · = pJ−1.

4.3.4 Continuation-ratio logit model with NPO

First, all of lemmas and theorems and conclusions in subsection 4.3.3 can be applied here.

Second, look at Vi defined in Theorem 4.4. Refer to Equation 4.8, Vi is a diagonal matrix,

so its determinant is

|Vi| =
J−1∏
s=1

uss(πi) =
J∏
j=1

πij , i = 1, . . . ,m.

Combine this with Equation 4.5, we get

|Vcontinuation| =
m∏
i=1

J∏
j=1

πij

Plug this equation in Equation 4.10 of Theorem 4.6, we get

|Fcontinuation| =
J−1∏
j=1

|Hj |2
m∏
i=1

J∏
j=1

πij(

m∏
i=1

ni)
J−1 (4.11)

4.3.5 Baseline-category logit model with NPO

Consider the baseline-category logit model with nonproportional odds for nominal responses.

First, all of lemmas and theorems in subsection 4.3.3 still can be applied here, and the conclu-

sions are the same.
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Look at Vi defined in Theorem 4.4, we first add last row and last column to it to get a

larger V′i, then we do some column operations and row operations to change it into an upper

triangular matrix, all of these operations won’t change the determinant of Vi.

V′i =



πi1(1− πi1) −πi1πi2 · · · −πi1πi,J−1 πi1

−πi1πi2 πi2(1− πi2) · · · −πi2πi,J−1 πi2

...
...

. . .
...

...

−πi1πi,J−1 −πi2πi,J−1 · · · πi,J−1(1− πi,J−1) πi,J−1

0 · · · · · · 0 1


(Cj → Cj + CJ × πij , j = 1, · · · , J − 1)

=



πi1 0 · · · 0 πi1

0 πi2
. . .

... πi2

...
. . .

. . . 0
...

0 · · · 0 πi,J−1 πi,J−1

πi1 πi2 · · · πi,J−1 1


(RJ → RJ −

J−1∑
j=1

Rj)

=



πi1 0 · · · 0 πi1

0 πi2
. . .

... πi2

...
. . .

. . . 0
...

0 · · · 0 πi,J−1 πi,J−1

0 0 · · · 0 1− πi1 − · · · − πi,J−1


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In the above operations, Rj means jth row and Cj means jth column. Therefore

|Vi| =
J∏
j=1

πij , i = 1, . . . ,m.

Combine this with Equation 4.5, we get

|Vbaseline| =
m∏
i=1

J∏
j=1

πij

Plug this equation in Equation 4.10 of Theorem 4.6, we get

|Fbaseline| =
J−1∏
j=1

|Hj |2
m∏
i=1

J∏
j=1

πij(
m∏
i=1

ni)
J−1 (4.12)

It is exactly same as Equation 4.11.

4.3.6 Adjacent-categories logit model with NPO

Consider the adjacent-categories logit model with nonproportional odds. First, all of lemmas

and theorems in subsection 4.3.3 still can be applied here, and the conclusions are the same.
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Look at Vi defined in Theorem 4.4, we first add last row and last column to it to get a

larger V′i, then we do some column operations and row operations to change it into an upper

triangular matrix, all of these operations won’t change the determinant of Vi.

V′i =



γi1(1− γi1) γi1(1− γi2) · · · γi1(1− γi,J−1) γi1

γi1(1− γi2) γi2(1− γi2) · · · γi2(1− γi,J−1) γi2

...
...

. . .
...

...

γi1(1− γi,J−1) γi2(1− γi,J−1) · · · γi,J−1(1− γi,J−1) γi,J−1

0 · · · · · · 0 1


(Cj → Cj + CJ × γij , j = 1, · · · , J − 1)

⇒



γi1 γi1 · · · γi1 γi1

γi1 γi2 · · · γi2 γi2

...
...

. . .
...

...

γi1 γi2 · · · γi,J−1 γi,J−1

γi1 γi2 · · · γi,J−1 1


(Rj → Rj −Rj−1, j = 2, · · · , J)

⇒



γi1 γi1 · · · γi1 γi1

0 γi2 − γi1 · · · γi2 − γi1 γi2 − γi1
...

. . .
. . .

...
...

0 · · · 0 γi,J−1 − γi,J−2 γi,J−1 − γi,J−2

0 0 · · · 0 1− γi,J−1


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In the above operations, Rj means jth row and Cj means jth column. Therefore

|Vi| =
J∏
j=1

πij , i = 1, . . . ,m.

Combine this with Equation 4.5, we get

|Vadjacent| =
m∏
i=1

J∏
j=1

πij

Plug this equation in Equation 4.10 of Theorem 4.6, we get

|Fadjacent| =
J−1∏
j=1

|Hj |2
m∏
i=1

J∏
j=1

πij(
m∏
i=1

ni)
J−1 (4.13)

It is exactly same as Equation 4.11 and Equation 4.12. Note the determinants of Fisher infor-

mation matrix for non-proportional odds models have the same expression for the above three

logits: continuation-ratio logit, baseline-category logit and Adjacent-categories logit, only if

p1 = p2 = · · · = pJ−1 = m.

4.3.7 Cumulative logit model with NPO

We need to simplify notation in order to express Vi defined in Theorem 4.4, then we do

some column operations and row operations to change it into an upper triangular matrix, finally

get the determinant of Vi.
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Let fij = γij(1− γij), j = 1, · · · , J − 1, we have

Vi =



f2
i1( 1

πi1
+ 1

πi2
) −fi1fi2 1

πi2
0 · · · 0

−fi1fi2 1
πi2

f2
i2( 1

πi2
+ 1

πi3
) −fi2fi3 1

πi3

. . .
...

0
. . .

. . .
. . . 0

...
. . . −fi,J−3fi,J−2

1
πi,J−2

f2
i,J−2( 1

πi,J−2
+ 1

πi,J−1
) −fi,J−2fi,J−1

1
πi,J−1

0 · · · 0 −fi,J−2fi,J−1
1

πi,J−1
f2
i,J−1( 1

πi,J−1
+ 1

πi,J
)


(R2 → R2 +R1γi1fi2/γi2fi1)

⇒



f2i1γi2
γi1πi2

−fi1fi2 1
πi2

0 · · · 0

0
f2i2γi3
γi2πi3

−fi2fi3 1
πi3

. . .
...

0
. . .

. . .
. . . 0

...
. . . −fi,J−3fi,J−2

1
πi,J−2

f2
i,J−2( 1

πi,J−2
+ 1

πi,J−1
) −fi,J−2fi,J−1

1
πi,J−1

0 · · · 0 −fi,J−2fi,J−1
1

πi,J−1
f2
i,J−1( 1

πi,J−1
+ 1

πi,J
)


(R3 → R3 +R2γi2fi3/γi3fi2) · · ·

⇒



f2i1γi2
γi1πi2

−fi1fi2 1
πi2

0 · · · 0

0
f2i2γi3
γi2πi3

−fi2fi3 1
πi3

. . .
...

0
. . .

. . .
. . . 0

...
. . . 0

f2i,J−2γi,J−1

γi,J−2πi,J−1
−fi,J−2fi,J−1

1
πi,J−1

0 · · · 0 0
f2i,J−1γi,J

γi,J−1πi,J



Then

|Vi| =
∏J−1
j=1 fij∏J
j=1 πij

=

∏J−1
j=1 γij(1− γij)∏J

j=1 πij
, i = 1, . . . ,m.
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Combine this with Equation 4.5, we get

|Vcumulative| =
∏m
i=1

∏J−1
j=1 γij(1− γij)∏m

i=1

∏J
j=1 πij

Plug this equation in Equation 4.10 of Theorem 4.6, we get

|Fcumulative| =
J−1∏
j=1

|Hj |2(

m∏
i=1

ni)
J−1

∏m
i=1

∏J−1
j=1 γij(1− γij)∏m

i=1

∏J
j=1 πij

(4.14)

Cumulative logit model’s determinant is different from other logit model’s determinants.

4.4 Alternative Approach to Explore Determinant of Fisher Information Matrix for NPO

Section 4.3 discusses determinant of Fisher information matrix in some special cases. This

section considers another special case: NPO. It is our first work to explore determinant of Fisher

information matrix, it just works in continuation-ratio logit models, but the determinant’s

formula is much simpler than the general formula in that case. For other 3 logit models, it also

gives us some idea about the structure of Fisher information matrix. This part of work is not

complete, but has its own meaning, so we show it in the following subsections.
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4.4.1 Preliminary results for NPO

From Equation 3.5, we get the Fisher information matrix for NPO as

F =

m∑
i=1

niFi =


F11 · · · F1,J−1

...
. . .

...

FJ−1,1 · · · FJ−1,J−1

 (4.15)

where

Fst =

m∑
i=1

nihs(xi)c
T
isdiag(πi)

−1cith
T
t (xi)

=
m∑
i=1

niust(πi)hs(xi)h
T
t (xi)

=

(
hs(x1) · · · hs(xm)

)

n1ust(π1) 0

. . .

0 nmust(πm)




hTt (x1)

...

hTt (xm)


, Hs ·Ust ·HT

t

and

ust(πi) = cTisdiag(πi)
−1cit

F is a block matrix.
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4.4.2 Determinant of Fisher information matrix for continuation-ratio logit models with NPO

In this subsection, we consider the continuation-ratio logit model with nonproportional

odds. We got Fisher information matrix from Equation 3.7 in the previous section. If we start

from Equation 3.5, we can obtain the same results.

Recall that γis = πi1 + · · ·+πis, s = 1, . . . , J−1. We define γi0 = 0 and γiJ = 1. We rewrite

Equation 4.8 as follows:

ust(πi)continuation =


πis(1−γis)
1−γi,s−1

, if s = t;

0, if |s− t| > 1

Where s, t = 1, . . . , J − 1. Then based on above equation and Equation 3.5 of F for NPO, we

derive the theorem as follows:

Theorem 4.7. For a continuation-ratio logit model with nonproportional odds, the Fisher in-

formation matrix

Fcontinuation =



F11 0 · · · 0

0 F22
. . .

...

...
. . .

. . . 0

0 · · · 0 FJ−1,J−1


and its determinant |Fcontinuation| = |F11||F22| · · · |FJ−1,J−1| with

Fss =

m∑
i=1

niuss(πi)hs(xi)h
T
s (xi) = HsUssH

T
s , s = 1, . . . , J − 1
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Fcontinuation for NPO is a diagonal block matrix. Assume 0 < πis < 1 and ni > 0 for

i = 1, . . . ,m and s = 1, . . . , J . According to Equation 4.8, niuss(πi) > 0, for all i = 1, . . . ,m

and s = 1, · · · , J−1. That is, Uss = diag(n1uss(π1), . . . , nmuss(πm)) is positive definite. Thus

Fss is positive definite if and only if the ps ×m matrix Hs = (hs(x1), . . . ,hs(xm))T is of full

rank ps, which also implies m ≥ ps, s = 1, . . . , J − 1 in this case.

Therefore, in order to keep the Fisher information matrix positive definite, a minimally

supported design contains at least max{p1, . . . , pJ−1} design points in this case.

As a direct conclusion of Theorem 4.7 and Lemma 3.1 in (21), we have the explicit form of

the determinant as follows:

Theorem 4.8. Consider an exact design ξ = {(xi, ni)i=1,...,m} with ni > 0, i = 1, . . . ,m for

a continuation-ratio logit model with nonproportional odds for hierarchical responses. Suppose

0 < πis < 1, i = 1, . . . ,m; s = 1, . . . , J . Then the Fisher information matrix F is positive

definite if and only Hs = (hs(x1), . . . ,hs(xm))T is of full rank ps for each s = 1, . . . , J − 1. In

this case, we must have m ≥ max{ps, s = 1, . . . , J − 1} and

|F| =
J−1∏
s=1

 ∑
16i1<···<ips6m

|Hs[i1, · · · ips ]|2ni1 · · ·nipsuss(πi1) · · ·uss(πips )

 (4.16)

where Hs[i1, · · · ips ] is the submatrix consisting of the i1, . . . , ipsth rows of Hs .

Remark 4.1. The Equation 4.16 shows that |Fcontinuation| is an order-p homogenous polynomial

of (n1, . . . , nm). If an approximate design ξ = {(xi, wi), i = 1, . . . ,m} with wi = ni/n > 0 and∑m
i=1wi = 1 is considered, then Theorem 4.8 is true with ni replaced with wi. In order to
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numerically find out a D-optimal design, a lift-one algorithm similar as the one in (21) can be

derived accordingly. �

Due to Equation 4.8, we can verify that

J−1∏
s=1

uss(πi) =
J∏
j=1

πij , i = 1, . . . ,m.

Then we can derive the corollary as follows:

Corollary 4.3. Under the assumptions of Theorem 4.8, assume further h1 = · · · = hJ−1 .

Then p1 = · · · = pJ−1, H1 = · · · = HJ−1 . Suppose further there exist m = p1 design points

x1, . . . ,xm such that the p1 × p1 matrix H1 is of full rank p1. Then

|Fcontinuation| = |H1|2(J−1)
m∏
i=1

J∏
j=1

πij

(
m∏
i=1

ni

)J−1

(4.17)

which attains its maximum at n1 = · · · = nm = n/m .

This equation is exactly same as Equation 4.11 given same condition.

Example 4.2. Suppose there are d = 2 design factors x1, x2, J = 4 response categories, and

m = 3 support points xi = (xi1, xi2)T , i = 1, 2, 3. Consider an exact design ξ = {(xi, ni)i=1,...,3}

with ni > 0 for a continuation-ratio logit model with nonproportional odds. Assume hs(xi) =

(1, xi1, xi2)T is the same for s = 1, 2, 3. Then

|Fcontinuation| = |H1|6(n1n2n3)3
3∏
i=1

4∏
j=1

πij
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where |H1| = x31(−x12 + x22) + x21(x12 − x32) + x11(−x22 + x32). �

4.4.3 Determinant of Fisher information matrix for other three logit models with NPO

In the case of cumulative logit model, we rewrite Equation 4.7

ust(πi)cumulative =



γ2
is(1− γis)2(π−1

is + π−1
i,s+1), if s = t;

−γisγit(1− γis)(1− γit)π−1
i,s∨t, if |s− t| = 1;

0, if |s− t| > 2

Where s, t = 1, . . . , J − 1 and s ∨ t stands for max{s, t}. Then

Fcumulative =



F11 F12 0 · · · 0

F21 F22 F23
. . .

...

0
. . .

. . .
. . . 0

...
. . . FJ−2,J−3 FJ−2,J−2 FJ−2,J−1

0 · · · 0 FJ−1,J−2 FJ−1,J−1



is a tri-diagonal block matrix.

In the case of nominal response model, from Equation 4.6

ust(πi)baseline =


πis(1− πis), if s = t;

−πisπit , if s 6= t

The Fisher information matrix’s structure can’t be simplified.
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In the case of adjacent-categories logit model, from Equation 4.9

ust(πi)adjacent =


γis(1− γis), if s = t;

γi,s∧t(1− γi,s∨t), if s 6= t

Where s, t = 1, . . . , J − 1, s ∧ t stands for min{s, t} and s ∨ t stands for max{s, t}. The Fisher

information matrix’s structure can’t be simplified.



CHAPTER 5

RELATED FORMULAS FOR MULTINOMIAL LOGISTIC MODELS AND

DESIGN SPACE

The multinomial logistic models Equation 2.1 include two sets of quantities related to the

model parameters. One set consists of πij , i = 1, . . . ,m; j = 1, . . . , J − 1. For typical applica-

tions, we assume 0 < πij < 1, i = 1, . . . ,m; j = 1, . . . , J − 1. The other set consists of θ, which

typically are real vectors. A multinomial logistic model connects the two sets of quantities by

a log link and the model matrix Xi described in Equation 2.3, which consists of both hTj (xi)

and hTc (xi), i = 1, . . . ,m, j = 1, . . . , J − 1.

Definition 5.1. The design space X for a multinomial logistic model Equation 2.1 is the col-

lection of design points or level combinations of design factors x = (x1, . . . , xd)
T such that

the categorical probabilities of response (π1, . . . , πJ) exist uniquely and satisfy 0 < πj < 1,

j = 1, . . . , J . That is,

X =
{
x = (x1, . . . , xd)

T | 0 < πj < 1, j = 1, . . . , J exist uniquely
}

5.1 Baseline-Category Logit Model for Nominal Response

Recall the baseline-category logit model for nominal response (2; 3)

log

(
πij
πiJ

)
= hTj (xi)βj + hTc (xi)ζ , j = 1, . . . , J − 1 (5.1)

78
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Proposition 5.1. Fixing xi, βj , j = 1, · · · , J − 1 and ζ in Equation 5.1, let ηij = hTj (xi)βj +

hTc (xi)ζ, j = 1, . . . , J − 1. Then 0 < πij < 1, j = 1, . . . , J exist uniquely if and only if

−∞ < ηij <∞, j = 1, . . . , J − 1. In this case,

πij =


eηij

eηi1+···+eηi,J−1+1
1 6 j 6 J − 1

1
eηi1+···+eηi,J−1+1

j = J

(5.2)

Proof of Proposition 5.1: Write yj = log πij , j = 1, . . . , J . Then 0 < πij < 1, j = 1, . . . , J

if and only if yj ∈ (−∞, 0), j = 1, . . . , J . In this case, Equation 5.1 implies ηij = yj − yJ ∈

(−∞,∞), j = 1, . . . , J − 1.

On the other hand, for any given ηi1, . . . , ηi,J−1 ∈ (−∞,∞), yj = ηij + yJ , j = 1, . . . , J − 1.

Note that

1 = πi1 + πi2 + · · ·+ πi,J−1 + πiJ

= ey1 + ey2 + · · ·+ eyJ−1 + eyJ

= eηi1+yJ + eηi2+yJ + · · ·+ eηi,J−1+yJ + eyJ

= eyJ (eηi1 + eηi2 + · · ·+ eηi,J−1 + 1)

Since πij = eyj , we get solutions of πij given in Equation 5.2, and thus πij ∈ (0, 1) exists and is

unique, j = 1, . . . , J . �
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5.2 Cumulative Logit Model for Ordinal Response

The cumulative logit model (with partial-proportional odds) for ordinal responses (4; 5) is

described in general as follows:

log

(
πi1 + · · ·+ πij

πi,j+1 + · · ·+ πiJ

)
= hTj (xi)βj + hTc (xi)ζ , j = 1, . . . , J − 1 (5.3)

Proposition 5.2. Fixing xi, βj , j = 1, · · · , J − 1 and ζ in Equation 5.3, let ηij = hTj (xi)βj +

hTc (xi)ζ, j = 1, . . . , J − 1. Then 0 < πij < 1, j = 1, . . . , J exist and are unique if and only if

−∞ < ηi1 < ηi2 < · · · < ηi,J−1 <∞. In this case,

πij =



exp(ηi1)
1+exp(ηi1) j = 1

exp(ηij)
1+exp(ηij)

− exp(ηi,j−1)
1+exp(ηi,j−1) 1 < j < J

1
1+exp(ηi,J−1) j = J

(5.4)

Proof of Proposition 5.2: Taking j = 1 in Equation 5.3, we get log
(

πi1
1−πi1

)
= ηi1 and thus

πi1 = exp(ηi1)
1+exp(ηi1) . Then 0 < πi1 < 1 if and only if −∞ < ηi1 <∞.

For j = 2, · · · , J − 1,

πij =
exp(ηij)

1 + exp(ηij)
− exp(ηi,j−1)

1 + exp(ηi,j−1)
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which implies that πij > 0 if and only if ηij > ηi,j−1 . Therefore, πiJ = 1− (πi1 + · · ·+πi,J−1) =

1 − exp(ηi,J−1)
1+exp(ηi,J−1) = 1

1+exp(ηi,J−1) , which indicates 0 < πiJ < 1 if and only if −∞ < ηi,J−1 < ∞.

Given πi1 + · · ·+ πiJ = 1, we have

−∞ < ηi1 < ηi2 < · · · < ηi,J−1 <∞⇔ πij ∈ (0, 1), j = 1, . . . , J

�

Corollary 5.1. For proportional odds model

log

(
πi1 + · · ·+ πij

πi,j+1 + · · ·+ πiJ

)
= βj + hTc (xi)ζ , j = 1, . . . , J − 1 (5.5)

The design space becomes

−∞ < β1 < β2 < · · · < βJ−1 <∞⇔ πij ∈ (0, 1), j = 1, . . . , J

5.3 Adjacent-Categories Logit Model for Ordinal Response

The adjacent-categories logit model for ordinal responses (3; 6) takes the form as follows:

log

(
πij
πi,j+1

)
= hTj (xi)βj + hTc (xi)ζ , j = 1, . . . , J − 1 (5.6)
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Proposition 5.3. Fixing xi, βj , j = 1, · · · , J − 1 and ζ in Equation 5.6, let ηij = hTj (xi)βj +

hTc (xi)ζ, j = 1, . . . , J − 1. Then 0 < πij < 1, j = 1, . . . , J exist uniquely if and only if

−∞ < ηij <∞, j = 1, . . . , J − 1. In this case,

πij =


exp(ηi,J−1+···+ηij)

exp(ηi,J−1+···+ηi1)+exp(ηi,J−1+···+ηi2)+···+exp(ηi,J−1)+1 j = 1, . . . , J − 1

1
exp(ηi,J−1+···+ηi1)+exp(ηi,J−1+···+ηi2)+···+exp(ηi,J−1)+1 j = J

(5.7)

Proof of Proposition 5.3: Let yj = log πij . Then 0 < πij < 1, j = 1, . . . , J if and only if yj ∈

(−∞, 0). In this case, Model Equation 5.6 implies ηij = yj − yj+1 ∈ (−∞,∞), j = 1, . . . , J − 1.

On the other hand, for any given ηi1, . . . , ηi,J−1 ∈ (−∞,∞), yj = (ηi,J−1 + · · · + ηij) + yJ ,

j = 1, . . . , J − 1. Note that

1 = πi1 + πi2 + · · ·+ πi,J−1 + πiJ

= ey1 + ey2 + · · ·+ eyJ−1 + eyJ

= eyJ
(
eηi,J−1+···+ηi1 + eηi,J−1+···+ηi2 + · · ·+ eηi,J−1 + 1

)

Since πij = eyj , we get solutions of πij given in Equation 5.7, and thus πij ∈ (0, 1) exists and is

unique, j = 1, . . . , J . �
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5.4 Continuation-Ratio Logit model for Hierarchical Response

The continuation-ratio logit model for hierarchical responses (2; 3) takes the general form

as follows:

log

(
πij

πi,j+1 + · · ·+ πiJ

)
= hTj (xi)βj + hTc (xi)ζ , j = 1, . . . , J − 1 (5.8)

Proposition 5.4. Fixing xi, βj , j = 1, · · · , J − 1 and ζ in Model Equation 5.8, let ηij =

hTj (xi)βj + hTc (xi)ζ, j = 1, . . . , J − 1. Then 0 < πij < 1, j = 1, . . . , J exist uniquely if

and only if −∞ < ηij <∞, j = 1, . . . , J − 1. In this case,

πij =


eηij

∏j
s=1 (eηis + 1)−1 j = 1, . . . , J − 1∏J−1

s=1 (eηis + 1)−1 j = J

(5.9)

Proof of Proposition 5.4: Let yj = log πij . Then 0 < πij < 1, j = 1, . . . , J if and only if

yj ∈ (−∞, 0). In this case, Equation 5.8 implies ηij = yj − log(eyj+1 + · · · eyJ ) ∈ (−∞,∞),

j = 1, . . . , J − 1.

On the other hand, for any given ηi1, . . . , ηi,J−1 ∈ (−∞,∞), it can be verified by induction

that

eyJ−1 = eyJ eηi,J−1

eyJ−2 = eyJ eηi,J−2 (eηi,J−1 + 1)

eyj = eyJ eηij (eηi,j+1 + 1) · · · (eηi,J−1 + 1) , j = J − 3, J − 4, · · · , 1
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Therefore, it can be verified that

1 = πi1 + πi2 + · · ·+ πi,J−1 + πiJ

= ey1 + ey2 + · · ·+ eyJ−1 + eyJ

= eyJ (eηi1 + 1) (eηi2 + 1) · · · (eηi,J−1 + 1)

Since πij = eyj , we get solutions of πij given in Equation 5.9, and thus πij ∈ (0, 1) exists and is

unique, j = 1, . . . , J . �

5.5 Design Space

In this section, we summarize our results for different multinomial logistic models and derive

the corresponding design spaces. As a direction conclusion of Propositions 5.1, 5.2, 5.3, and

5.4, we have the theorem as follows:

Theorem 5.1. For the baseline-category logit model Equation 5.1, the adjacent-categories logit

model Equation 5.6, or the continuation-ratio logit model Equation 5.8, the design space

X = {x = (x1, . . . , xd)
T | ηj ∈ (−∞,∞), j = 1, . . . , J − 1};

for the cumulative logit model Equation 5.3, the design space

X = {x = (x1, . . . , xd)
T | −∞ < η1 < η2 < · · · < ηJ−1 <∞},

where ηj = hTj (x)βj + hTc (x)ζ, j = 1, . . . , J − 1.
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Based on the model Equation 2.1

CT log(Lπi) = ηi = Xiθ , (ηi1, ηi2, · · · , ηi,J−1, 0)T

We may have solutions for the following models respectively.

(1) Baseline-category logit model

log(πi) =



1 −1

1 −1

. . .
...

1 −1

−1


J×J

· log





1 0

1 0

. . .
...

1 0

1 1 · · · 1 1


J×J

· exp(ηi)


(2) Adjacent-categories logit model

log(πi) =



1 −1

1 −1

. . .
...

1 −1

−1


J×J

· log





1 0

1 0

. . .
...

1 0

1 1 · · · 1 1


J×J

· exp





1 1 · · · 1 0

1 · · · 1 0

. . .
...

...

1 0

1


J×J

· ηi




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(3) Continuation-ratio logit model

log(πi) = ηi −



1

1 1

...
. . .

1 1 · · · 1

1 1 · · · 1 1


J×J

· log





1 0 · · · 0 1

0 1 · · · 0 1

. . .

0 0 · · · 1 1

0 0 · · · 0 1


J×J

· exp(ηi)


(4) Cumulative logit model

log





1

1 1

...
. . .

1 1 · · · 1

0 0 · · · 0 1


J×J

· πi


=



1 −1

. . .
. . .

1 −1

0 · · · 0 0 · · · −1


J×2(J−1)

· log





1 0

. . .
...

1 0

1 1

1 1

. . .
...

1 1


2(J−1)×J

· exp(ηi)


Note that the above models could be with proportional, non-proportional, or partial propor-

tional odds.



CHAPTER 6

D-OPTIMAL DESIGN

6.1 D-optimal Approximate Design

Given experimental settings xi ∈ X , i = 1, . . . ,m, we are looking for D-optimal approximate

allocations w = (w1, . . . , wm)T that maximizes |GTWG| defined in Equation 4.1. Note that

xi ∈ X implies 0 < πij < 1, j = 1, . . . , J .

All feasible approximate allocations form into a bounded closed convex set S = {(w1, . . . , wm)T ∈

Rm | wi > 0, i = 1, . . . ,m;
∑m

i=1wi = 1}. The objective function is f(w) = |GTWG| which

is an order-p homogeneous polynomial according to Theorem 4.2. Therefore, a D-optimal ap-

proximate design that maximizes f(w) must exist. For typical applications, we need designs

coming from S+ = {w ∈ S | f(w) > 0}. Due to Theorem 2.1 and log-concavity of determinant

on positive semi-definite matrices, we know f(w) is log-concave (30; 16) and S+ is convex. A

useful result as a corollary of Theorem 3.4 is as follows:

Corollary 6.1. S+ is nonempty if and only if f(wu) > 0, where wu = (1/m, . . . , 1/m)T is

the uniform allocation. In this case, f(w) > 0 for any w = (w1, . . . , wm)T such that 0 < wi <

1, i = 1, . . . ,m.

Proof of Corollary 6.1: We only need to verify the “only if” part. According to Theorem 3.4,

if f(w) > 0 for some w = (w1, . . . , wm)T = (n1, . . . , nm)T /n, then the corresponding H∗ is

of full row rank. Note that H∗ can be obtained from H after removing the columns of H

87



88

corresponding to ni = 0. Thus H is of full row rank too, which corresponds to the uniform

allocation. That is, f(wu) > 0. In this case, any w = (w1, . . . , wm)T such that 0 < wi < 1, i =

1, . . . ,m leads to f(w) > 0 since it corresponds to the same H matrix. �

In order to avoid trivial cases, we assume f(wu) > 0 from now on.

Following (16) (2016, Section 3) (see also (21) and (31)), we define fi(z) = f(w1(1−z)/(1−

wi), . . . , wi−1(1− z)/(1− wi), z, wi+1(1− z)/(1− wi), . . . , wm(1− z)/(1− wi)) with 0 6 z < 1

given w = (w1, . . . , wm)T ∈ S+ and i = 1, . . . ,m. Parallel to Theorem 3.2.6 in (16), we obtain

the result as follows according to Theorem 4.2:

Theorem 6.1. Given an approximate allocation w = (w1, . . . , wm)T ∈ S+ and i ∈ {1, . . . ,m},

for 0 ≤ z 6 1,

fi(z) = (1− z)p−J+1
J−1∑
j=0

bjz
j(1− z)J−1−j (6.1)

f ′i(z) = (1− z)p−J
J−1∑
j=1

bj(j − pz)zj−1(1− z)J−j−1 − pb0(1− z)p−1 (6.2)

where b0 = fi(0), (bJ−1, . . . , b1)T = B−1
J−1c, BJ−1 = (st−1)st is a (J − 1)× (J − 1) matrix, and

c = (c1, . . . , cJ−1)T with cj = (j + 1)pjJ−1−pfi(1/(j + 1))− jJ−1fi(0), j = 1, . . . , J − 1.

Theorem 6.1 says that fi(z) is an order-p polynomial of z. Since fi(1) = 0, the solution of

maximization of fi(z), 0 ≤ z ≤ 1 could only occur at z = 0 or 0 < z < 1 such that f ′i(z) = 0,

that is,
J−1∑
j=1

jbjz
j−1(1− z)J−j−1 = p

J−1∑
j=0

bjz
j(1− z)J−j−1, 0 < z < 1 (6.3)



89

which is an order-(J − 1) polynomial of z. For J ≤ 5, Equation 6.3 yields analytic solutions.

For J > 6, a quasi-Newton algorithm could be applied for searching numerical solutions.

In order to find D-optimal designs numerically, a lift-one algorithm, which is essentially the

same as the one in (16) (2016, Section 3), is described as follows:

Lift-one algorithm for D-optimal allocation w = (w1, . . . , wm)T :

1◦ Start with an arbitrary allocation w0 = (w1, . . . , wm)T satisfying 0 < wi < 1, i = 1, . . . ,m

and compute f (w0).

2◦ Set up a random order of i going through {1, 2, . . . ,m}.

3◦ For each i, determine fi(z) according to Theorem 6.1. In this step, J determinants

fi(0), fi(1/2), fi(1/3), . . . , fi(1/J) are calculated.

4◦ Use quasi-Newton algorithm to find z∗ maximizing fi(z) with 0 ≤ z ≤ 1. If fi(z∗) 6 fi(0),

let z∗ = 0. Define w
(i)
∗ = (w1(1 − z∗)/(1 − wi), . . . , wi−1(1 − z∗)/(1 − wi), z∗, wi+1(1 −

z∗)/(1− wi), . . . , wm(1− z∗)/(1− wi))T . Note that f(w
(i)
∗ ) = fi(z∗).

5◦ Replace w0 with w
(i)
∗ , and f (w0) with f(w

(i)
∗ ).

6◦ Repeat 2◦ ∼ 5◦ until convergence, that is, f(w0) = f(w
(i)
∗ ) for each i.

Lift-one algorithm is essentially of general-equivalence-theorem type (16; 31). The conver-

gence to a global maximum is guaranteed (21).

Theorem 6.2. When the lift-one algorithm converges, the resulting w maximizes f(w).
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6.2 D-optimal Exact Design

Given distinct experimental settings xi, i = 1, . . . ,m and the total number n of experimen-

tal units, we are looking for an integer-valued allocation n = (n1, . . . , nm)T that maximizes

|
∑m

i=1 niFi| as defined in Equation 2.10, known as a D-optimal exact allocation.

For simplicity in notations, we also denote the objective function f(n) = f(n1, . . . , nm) =

|
∑m

i=1 niFi| as long as there is no ambiguity. Following (31) and (16), we define fij(z) =

f(n1, . . . , ni−1, z, ni+1, . . . , nj−1, ni + nj − z, nj+1, . . . , nm) with z = 0, 1, . . . , ni + nj for 1 ≤

i < j 6 m and given n = (n1, . . . , nm)T .

Similar to Theorem 4.2.9 in (16), we obtain the following result from Theorem 4.2, Lemma 4.1

and Corollary 4.2:

Theorem 6.3. Suppose n = (n1, . . . , nm)T satisfies f(n) > 0 and ni + nj ≥ q for given

1 ≤ i < j 6 m, where q = min{2J − 2, p− kmin + 2, p}. Then for z = 0, 1, . . . , ni + nj ,

fij(z) =

q∑
s=0

gsz
s (6.4)

where g0 = fij(0), and g1, . . . , gq can be obtained using (g1, . . . , gq)
T = B−1

q (d1, . . . , dq)
T with

Bq = (st−1)st as a q × q matrix and ds = (fij(s)− fij(0))/s, s = 1, . . . , q.

Proof of Theorem 6.3: According to Theorem 4.2,

fij(z) =
∑

αi≥0,αj≥0,αi+αj≤p
coefficient · zαi(ni + nj − z)αj
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is a polynomial with nonnegative coefficients, whose order depends on the largest possible

αi+αj . Lemma 4.1 implies that max{αi, αj} 6 J −1 for positive coefficients and Corollary 4.2

further implies that αi +αj 6 p− (kmin − 2) = p− kmin + 2 for positive coefficients. Therefore,

fij(z) is at most an order-q polynomial of z. �

For a given number n of experimental units, we assume there exists an exact allocation

n = (n1, . . . , nm)T such that f(n) > 0 (otherwise, the maximization problem is trivial). In this

case, if n > m, one may choose any n such that ni > 0, i = 1, . . . ,m. Then the essentially same

exchange algorithm in (16) (2016, S1.5) can be applied for this case:

Exchange algorithm for D-optimal allocation (n1, . . . , nm)T given n > 0:

1◦ Start with an initial allocation n = (n1, . . . , nm)T such that f(n) > 0.

2◦ Set up a random order of (i, j) going through all pairs {(1, 2), (1, 3), . . . , (1,m), (2, 3),

. . . , (m− 1,m)}.

3◦ For each (i, j), let c = ni + nj . If c = 0, let n∗ij = n. Otherwise, there are two cases.

Case one: 0 < c ≤ q, we calculate fij(z) for z = 0, 1, . . . , c directly and find z∗ which

maximizes fij(z). Case two: c > q, we first calculate fij(z) for z = 0, 1, . . . , q; secondly

determine g0, g1, . . . , gq in Equation 6.4 according to Theorem 6.3; thirdly calculate fij(z)

for z = q + 1, . . . , c based on Equation 6.4; fourthly find z∗ maximizing fij(z) for z =

0, . . . , c. For both cases, we define

n∗ij = (n1, . . . , ni−1, z
∗, ni+1, . . . , nj−1, c− z∗, nj+1, . . . , nm)T
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Note that f(n∗ij) = fij(z
∗) > f(n) > 0. If f(n∗ij) > f(n), replace n with n∗ij , and f(n)

with f(n∗ij).

4◦ Repeat 2◦ ∼ 3◦ until convergence, that is, f(n∗ij) = f(n) in step 3◦ for any (i, j).

6.3 Minimally Supported Design

One important question is, how many design points we need at least to keep F positive

definite? In other words, what is the number of distinct experimental settings for a minimally

supported design? According to Theorem 3.4, two conditions are needed: (1) πij > 0, j =

1, . . . , J for all design point xi, that is, xi ∈ X , i = 1, . . . ,m (see Section 5); (2) H is of full row

rank p (we assume ni > 0 for i = 1, . . . ,m since we are considering minimal m). Theorem 3.8

provides the lower bound of the minimal number of experimental settings needed, which is also

represented by kmin in Corollary 4.2. More precise answers would depend on specific forms of

the predictor functions hj (and hc if applicable).

Another important question is whether a uniform allocation wu = (1/m, . . . , 1/m)T is

D-optimal given that m is the minimal number of experimental settings. The answer is yes for

J = 2, but no for J ≥ 3 with cumulative link models and proportional odds (16).

Theorem 6.4. Consider Multinomial logit model (Equation 2.1) with only two response cate-

gories (J = 2). In this case, the minimum number of support points is m = p. The objective

function f(w) ∝ w1 · · ·wm and the D-optimal allocation for a minimally supported design is

w = (1/m, . . . , 1/m)T .
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Proof of Theorem 6.4: In this case, the model is essentially a generalized linear model for bi-

nomial response with logit link. Theorem 4.2 says that the objective function f(w) = |GTWG|

is an order-p polynomial consisting of terms cα1,...,αmw
α1
1 · · ·wαmm . According to Lemma 4.1,

cα1,...,αm 6= 0 only if αi ∈ {0, 1}, i = 1, . . . ,m. Therefore, in order to keep f(w) > 0, we must

have m ≥ p. In other words, a minimally supported design may contain exactly m = p distinct

design points or experimental settings. In this case, the objective function f(w) ∝ w1 · · ·wm

and the D-optimal allocation is w = (1/m, . . . , 1/m)T . �

For cases with three or more response categories (J ≥ 3), in general we have m ≤ p for

a minimally supported design. Whether the uniform allocation is D-optimal for a minimally

supported design depends on the model setup. For example, for cumulative link models with

proportional odds, (16) showed that the minimal number of experimental settings is m =

pc + 1 < pc +J − 1 = p, which is also verified by Corollary 4.2, and a D-optimal allocation on a

minimally supported design is not uniform in general. Similar results are expected for partial

proportional odds models as a more general framework than proportional odds models.

However, for certain non-proportional models for multinomial responses with three or more

categories, uniform allocations could be D-optimal for minimally supported designs due to the

following result as a direct conclusion of Theorem 3.1, Theorem 3.3:

Corollary 6.2. Consider Multinomial logit model Equation 2.1 with non-proportional odds.

Suppose p1 = · · · = pJ−1 and there exist p1 distinct experimental settings such that rank(H1) =

· · · rank(HJ−1) = p1. Then the minimal number of experimental settings is m = p1 and the

uniform allocation is D-optimal for a minimally supported design.
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Corollary 6.2 shows that a uniform allocation is D-optimal for npo models under the con-

dition p1 = · · · = pJ−1, which confirms the D-optimal design discovered for the trauma clinical

trial (Example 7.2). Nevertheless, the following lemma and example represent that even for

non-proportional odds, the uniform allocations again are not D-optimal for minimally supported

designs if such a condition is violated.

Lemma 6.1. Consider the maximization problem f(w1, w2, w3) = w1w2w3( c1w2w3 +c2w1w3 +

c3w1w2) given 0 < c1 ≤ c2 ≤ c3 with respect to 0 ≤ wi ≤ 1 and w1 + w2 + w3 = 1. Then

(i) If c1 = c2 = c3, then the solution is w1 = w2 = w3 = 1/3.

(ii) If c1 = c2 < c3, then w1 = w2 > w3 > 0. Actually, w1 = w2 = (−2c1 + c3 + ∆1)/D1 and

w3 = c3/D1, where ∆1 =
√

4c2
1 − c1c3 + c2

3 and D1 = −4c1 + 3c3 + 2∆1.

(iii) If c1 < c2 = c3, then w1 > w2 = w3 > 0. Actually, w1 = (−c1 + 2c3 + ∆2)/D2 and

w2 = w3 = 3c3/D2, where ∆2 =
√
c2

1 − c1c3 + 4c2
3 and D2 = −c1 + 8c3 + ∆2.

(iv) If c1 < c2 < c3, then w1 > w2 > w3 > 0. The procedure of obtaining analytic solu-

tions of w1, w2, w3 is as follows: (1) obtain y1 from (Equation 6.11); (2) obtain y2 from

(Equation 6.9); (3) w1 = y1/(y1 + y2 + 1), w2 = y2/(y1 + y2 + 1), w3 = 1/(y1 + y2 + 1).

Proof of Lemma 6.1: First of all, we only need to consider the cases of 0 < wi < 1, i = 1, 2, 3

(otherwise, f(w1, w2, w3) = 0). It can also been verified that 0 < c1 ≤ c2 ≤ c3 implies that

w1 ≥ w2 ≥ w3 > 0 (otherwise, for example, if w1 < w2, one may replace w1, w2 both with

(w1 + w2)/2 and strictly increase f). The same argument implies that if ci = cj , then wi = wj

in the solution.
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According to Theorem 5.10 in (16), (w1, w2, w3)T maximizes f(w1, w2, w3) if and only if

∂f

∂w1
=

∂f

∂w2
=

∂f

∂w3

which is equivalent to ∂f/∂w1 = ∂f/∂w3 and ∂f/∂w2 = ∂f/∂w3 and thus equivalent to

c3w1w2(w1 − 2w3) + 2c2w1w3(w1 − w3) = c1w2w3(−2w1 + w3) (6.5)

c3w1w2(w2 − 2w3) + 2c1w2w3(w2 − w3) = c2w1w3(−2w2 + w3) (6.6)

Following Yang et al. (16) (2016b, Section 5.2), we denote y1 = w1/w3 > 0 and y2 = w2/w3 > 0.

Actually, w1 ≥ w2 ≥ w3 > 0 implies y1 ≥ y2 ≥ 1. Since w1 + w2 + w3 = 1, it implies

w3 = 1/(y1 + y2 + 1), w1 = y1/(y1 + y2 + 1), and w2 = y2/(y1 + y2 + 1). Then (Equation 6.5)

and (Equation 6.6) are equivalent to

c3y1y2(y1 − 2) + 2c2y1(y1 − 1) = c1y2(−2y1 + 1) (6.7)

c3y1y2(y2 − 2) + 2c1y2(y2 − 1) = c2y1(−2y2 + 1) (6.8)

From (Equation 6.7) we get y2[c3y
2
1−2(c3− c1)y1− c1] = 2c2y1(1−y1). If y1 = 1, then we must

have y2 = 1 and c3 − 2(c3 − c1)− c1 = 0, which implies w1 = w2 = w3 = 1/3 and c1 = c2 = c3.

Actually, we can also verify that c1 = c3 implies y1 = 1.
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Now we assume y1 > 1, which implies c1 < c3. Then

y2 =
2c2(1− y1)y1

c3y2
1 − 2(c3 − c1)y1 − c1

(6.9)

After plugging (Equation 6.9) into (Equation 6.8), we get

a0 + a1y1 + a2y
2
1 + a3y

3
1 + y4

1 = 0 (6.10)

where a0 = c2
1/c

2
3 > 0, a1 = 4c1(−2c1 + c2 + 2c3)/(3c2

3) > 0, a2 = 2(2c2
1− 2c1c2− 7c1c3− 2c2c3 +

2c2
3)/(3c2

3), and a3 = 4(2c1 + c2 − 2c3)/(3c3).

Denote h(y1) = a0 + a1y1 + a2y
2
1 + a3y

3
1 + y4

1. Note that h(∞) =∞, h(−c1/c3) = −c2
1(c2

1 +

8c1c2 − 2c1c3 + 8c2c3 + c2
3)/(3c4

3) < 0, h(0) = c2
1/c

2
3 > 0, h(1) = −(c1 − c3)2/(3c2

3) < 0, and

h(∞) =∞. Then h(y1) = 0 yields four real roots in (∞,−c1/c3), (−c1/c3, 0), (0, 1), and (1,∞),

respectively. That is, there is one and only one y1 ∈ (1,∞).

According to (32) (2014, equation (12)),

y1 = −a3

4
+

√
A1

2
+

√
C1

2
, (6.11)
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where

A1 = −2a2

3
+
a2

3

4
+

G1

3× 21/3
,

C1 = −4a2

3
+
a2

3

2
− G1

3× 21/3
+
−8a1 + 4a2a3 − a3

3

4
√
A1

,

G1 =

(
F1 −

√
F 2

1 − 4E3
1

)1/3

+

(
F1 +

√
F 2

1 − 4E3
1

)1/3

,

E1 = 12a0 + a2
2 − 3a1a3 ,

F1 = 27a2
1 − 72a0a2 + 2a3

2 − 9a1a2a3 + 27a0a
2
3 .

The calculation of G1, A1, C1, and y1 are operations among complex numbers, while y1 at the

end would be a real number.

The procedure of obtaining analytic solutions of w1, w2, w3 would be, (1) obtain y1 from

(Equation 6.11); (2) obtain y2 from (Equation 6.9); (3) w1 = y1/(y1 + y2 + 1), w2 = y2/(y1 +

y2 + 1), w3 = 1/(y1 + y2 + 1).

Now we discuss some special cases.

(i) If c1 = c2 < c3, then w1 = w2 and thus y1 = y2. Both (Equation 6.7) and (Equation 6.8)

yield y1 = c−1
3 (−2c1 + c3 +

√
4c2

1 − c1c3 + c2
3), which implies

w1 = w2 =
−2c1 + c3 + ∆1

−4c1 + 3c3 + 2∆1
, w3 =

c3

−4c1 + 3c3 + 2∆1

where ∆1 =
√

4c2
1 − c1c3 + c2

3. Note that w1 > w3 since ∆1 > 2c1.
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(ii) If c1 < c2 = c3, then w2 = w3 and thus y2 = 1. From (Equation 6.7) we get y1 =

3c−1
3 (−c1 + 2c3 +

√
c2

1 − c1c3 + 4c2
3), which implies

w1 =
−c1 + 2c3 + ∆2

−c1 + 8c3 + ∆2
, w2 = w3 =

3c3

−c1 + 8c3 + ∆2

where ∆2 =
√
c2

1 − c1c3 + 4c2
3. Note that w1 > w2 since ∆2 > c1 + c3.

(iii) If c1 < c2 < c3, then y1, y2 and thus w1, w2, w3 can be obtained analytically. We have

proven y1 ≥ y2 ≥ 1. Using (Equation 6.7) and (Equation 6.8), it can be verified that

y1 6= y2 unless c1 = c2; and y2 6= 1 unless c2 = c3. That is, y1 > y2 > 1 and w1 > w2 > w3.

�

6.4 EW D-optimal Design

The D-optimal approximate designs and exact designs are known as “locally” D-optimal in

the literature since the values of parameters need to be assumed in advance. It is the case for

typical nonlinear models, generalized linear models, and multivariate generalized linear models

as well. Bayesian criterion has been applied to address this issue (33). It maximizes E(log |F|)

after assigning a prior distribution on the unknown parameters. A drawback of Bayesian ap-

proach is its computational intensity since its objective function deals with multiple integrals.

An alternative solution is the EW D-optimality (16; 31; 18), which maximizes log |E(F)| or

|E(F)| instead. (31) shows that an EW D-optimal design could be highly efficient in terms of

Bayesian criterion compared with the Bayesian D-optimal one, while the computational time
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complexity is essentially same as the locally D-optimal one. (16) also used EW-criterion for

cumulative link models with proportional odds.

According to Theorem 2.1 and Corollary 3.1, the Fisher information matrix in our case

is F =
∑m

i=1 niX
T
i UiXi, where Ui consists of ust(πi), the only component involving model

parameters. Therefore, in order to calculate E(F) with respect to a prior on parameters, we

only need to calculate E(ust(πi)), s, t = 1, . . . , J − 1, i = 1, . . . ,m. Then the results and

algorithms developed in the previous sections of Chapter 6 can be used for EW D-optimal

designs directly.

We provide formulas in Chapter 5 for calculating πij ’s given Xi’s and the parameter values.

We also provide formulas for calculating ust(πi)’s given πij ’s in Section 4.3.2.



CHAPTER 7

APPLICATIONS

7.1 Experiment on the Emergence of House Flies

Example 7.1. Toxicological experiments involving laboratory animals often yield multinomial

count data. In an experiment on the emergence of house flies (34), seven sets of 500 pupae

were exposed to one of several doses of radiation. Observations from each set of pupae after a

period of time included the number of flies that died before the opening of the pupae (unopened

pupae) (y1) , the number of flies that died before complete emergence (y2) , and the number of

flies that completely emerged (y3) from 500 pupae given a dose (x) of gamma radiation . Given

x, the response (y1, y2, y3) is a trinomial random variable. In this study, the responses have a

clear nested or hierarchical structure. Typical data are given in Table II.

TABLE II: An Experiment on the Emergence of House Flies

Dose of radiation Response categories Total number
(Gy) x y1 y2 y3 of pupae

80 62 5 433 500
100 94 24 382 500
120 179 60 261 500
140 335 80 85 500
160 432 46 22 500
180 487 11 2 500
200 498 2 0 500

100
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7.1.1 Locally optimal design

We tried different models and found that continuation-ratio logit models with NPO is the

best model, which is much better than other models in terms of AIC and BIC, see Table III.

Actually, Atkinson (2) example adopted the non-proportional odds model with continuation-

ratio logit link.

TABLE III: Model Comparison for the Flies Study (PO and NPO)

Cumulative Cumulative Continuation Continuation Adjacent Adjacent
PO NPO PO NPO PO NPO

AIC 195.87 121.17 116.40 114.42 209.64 194.47
BIC 195.71 120.96 116.24 114.20 209.47 194.25

Following Atkinson (2), the non-proportional odds model with continuation-ratio logit link

could be expressed as

log

(
πi1

πi2 + πi3

)
= β11 + β12xi + β13x

2
i

log

(
πi2
πi3

)
= β21 + β22xi

This model is equivalent to the following unified form expressions

CT log(Lπi) = ηi = Xiθ, i = 1, · · · , 7
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where

CT =


1 0 −1 0 0

0 1 0 −1 0

0 0 0 0 1

 L =



1 0 0

0 1 0

0 1 1

0 0 1

1 1 1



Xi =


1 xi x2

i 0 0

0 0 0 1 xi

0 0 0 0 0

 θ =



β11

β12

β13

β21

β22


Fitting the model, we get the parameter estimates as follows

θ̂ = (−1.935,−0.02642, 0.0003174,−9.159, 0.06386)T (7.1)

This is parameter input for locally optimal design.

Solving the model equations, we get the probabilities as follows

πi1 =
exp(β11 + β12xi + β13x

2
i )

1 + exp(β11 + β12xi + β13x2
i )

πi2 =
exp(β21 + β22xi)

(1 + exp(β11 + β12xi + β13x2
i ))(1 + exp(β21 + β22xi))

πi3 =
1

(1 + exp(β11 + β12xi + β13x2
i ))(1 + exp(β21 + β22xi))
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Combining the above expressions with Corollary 3.1, we get

Ui =


exp(β11+β12xi+β13x

2
i )

(1+exp(β11+β12xi+β13x2i ))
2 0 0

0 exp(β21+β22xi)
(1+exp(β11+β12xi+β13x2i ))(1+exp(β21+β22xi))2

0

0 0 1



and Fi = XT
i UiXi.

Since

F = n

m∑
i=1

wiFi

Given all of the above inputs, |F| is a polynomial of wi. We can use Lift-one algorithm to

maximize |F| and find the D-optimal approximate design.

The D-optimal approximate design assigns all of experimental units to the following 4

design points: dose 80, 120, 140 and 160. The D-efficiency of the original uniform allo-

cation is (585317/1480378)1/5 = 83.1%, see Table IV. The efficiency could be improved by

100/83.1− 1 = 20.3% if the D-optimal design is adopted.

TABLE IV: The D-optimal approximate design for the flies Data

Design Point 1 2 3 4 5 6 7
Doses of Radiation 80 100 120 140 160 180 200 Determinant

Original sample allocation 0.1429 0.1429 0.1429 0.1429 0.1429 0.1429 0.1429 585317
Optimal sample allocation 0.3116 0 0.2917 0.1071 0.2896 0 0 1480378
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If we use grid search (grid=5) to find an optimal design with a finer space, then we get the

following optimal design with design space {80, 85, 90, · · · , 195, 200}.

TABLE V: The Continuous D-optimal Design for the Flies Study (Grid=5)

Doses of Radiation 80 120 125 155 160 Determinant
Optimal Sample Allocation 0.3163 0.1429 0.2003 0.1683 0.1723 1497192

The number of support points is increased to five. The efficiency of the original uniform

allocation is (585317/1497192)1/5 = 82.9%, the efficiency could be improved 100/82.9 − 1 =

20.6% by the optimal design.

If we adopt an even finer design space with grid 1, then we get the following optimal design

with design space {80, 81, 82, · · · , 199, 200}.

TABLE VI: The Continuous D-optimal Design for the Flies Study (Grid=1)

Doses of Radiation 80 122 123 157 158 Determinant
Optimal Sample Allocation 0.3163 0.0786 0.2636 0.2206 0.1209 1504236
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The efficiency of the original uniform allocation is (585317/1504236)1/5 = 82.8%, the effi-

ciency could be improved 100/82.8 − 1 = 20.8% by the optimal design. Here exists two facts:

(1), The optimal design’s efficiency increases, but becomes slowly when the grid search is finer.

(2), The number of optimal design points is still five, but with two clusters of points, each

cluster consists of two points which become closer and closer to each other. It seems that the

optimal design with a continuous space [80, 200] would consist of three points only, which is

minimally supported. We consider the following minimally supported design

TABLE VII: The Minimally Supported D-optimal Design for the Flies Study

Doses of Radiation 80 123 157 Determinant
Optimal Sample Allocation 0.3163 0.3422 0.3415 1503272

In Table VII, we accumulate the weights on point(dose) 122 and 123 to point 123, similarly

accumulate the weights on point(dose) 157 and 158 to point 157. The determinant is very close

to optimal design’s determinant. This design’s efficiency is (1503272/1504236)1/5 = 99.99%,

the minimally supported design is highly efficient.

Here the minimally supported design is not uniform. Actually we can find the analytic form

of Fisher information matrix’s determinant. Consider the above non-proportional odds model,

where h1(xi) = (1, xi, x
2
i )
T , h2(xi) = (1, xi)

T , J = 3, p1 = 3, p2 = 2, and p = 5. According
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to Corollary 4.2, the minimum number of support points is m = max{p1, p2} = 3, which is

feasible. The objective function f(w) is an order-5 polynomial with items cα1,α2,α3w
α1
1 wα2

2 wα3
3 .

Lemma 4.1 implies that αi ∈ {0, 1, 2}, i = 1, 2, 3 in order to keep cα1,α2,α3 6= 0. Combined with

Corollary 4.2, we further know αi ∈ {1, 2}, i = 1, 2, 3. Therefore, the objective function

f(w1, w2, w3) = w1w2w3(c122w2w3 + c212w1w3 + c221w1w2)

where

c122 = [x2x3(x2 − x3)− x1x3(x1 − x3) + x1x2(x1 − x2)]2(x2 − x3)2π11(π12 + π13)π21π22π23π31π32π33

c212 = [x2x3(x2 − x3)− x1x3(x1 − x3) + x1x2(x1 − x2)]2(x1 − x3)2π11π12π13π21(π22 + π23)π31π32π33

c221 = [x2x3(x2 − x3)− x1x3(x1 − x3) + x1x2(x1 − x2)]2(x1 − x2)2π11π12π13π21π22π23π31(π32 + π33)

which in general does not yield a maximal occurring at w1 = w2 = w3 = 1/3.

About D-optimal exact design, we have F =
∑m

i=1 niFi, which is a polynomial about ni,

then we can use exchange algorithm to maximize |F| to find D-optimal exact design. The

D-optimal exact designs for this model are very similar to D-optimal approximate designs due

to large sample size. So we skip this part results. But D-optimal exact designs are not always

equivalent to D-optimal approximate designs, especially for small sample size.

7.1.2 EW D-optimal design

Because model parameters’ distribution is hard to specify, we use empirical method to ob-

tain it. We bootstrap original sample to generate 1000 simulated samples, fit each simulated
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sample to get one parameter vector. The total 1000 parameter vectors can serve as parame-

ters’ empirical distribution. Then we can obtain the EW optimal design. The results are in

Table VIII.

TABLE VIII: The EW D-optimal Design for the Flies Study (Bootstrap Samples)

Design Point 1 2 3 4 5 6 7
Doses of Radiation 80 100 120 140 160 180 200 Determinant

Uniform Design 0.1429 0.1429 0.1429 0.1429 0.1429 0.1429 0.1429 585185
EW Design 0.3120 0 0.2911 0.1087 0.2882 0 0 1467951

We also tried a modified EW design, that is, we take median values, entry by entry, of

Fisher information matrix instead of expected F. We call it: MW design, indicating median of

F. The MW optimal design’s results are in Table IX.

TABLE IX: The MW D-optimal Design for the Flies Study (Bootstrap Samples)

Design Point 1 2 3 4 5 6 7
Doses of Radiation 80 100 120 140 160 180 200 Determinant

Uniform Design 0.1429 0.1429 0.1429 0.1429 0.1429 0.1429 0.1429 581275
MW Design 0.3117 0 0.2917 0.1077 0.2889 0 0 1471161



108

Based on the same set of bootstrap samples, we can also find Bayes optimal design, which

maximizes φ(w).

φ(w) = ˆElog|F| = 1

1000

1000∑
j=1

log|F (θ
(b)
j )| = 1

1000

1000∑
j=1

log|
m∑
i=1

wi|Fi(θ(b)
j )|

where (θ
(b)
1 , · · · ,θ(b)

1000) are the bootstrapped parameter vectors. The results are in Table X.

TABLE X: The Bayes D-optimal Design for the Flies Study (Bootstrap Samples)

Design Point 1 2 3 4 5 6 7
Doses of Radiation 80 100 120 140 160 180 200 Determinant

Uniform Design 0.1429 0.1429 0.1429 0.1429 0.1429 0.1429 0.1429 572369
Bayesian Design 0.3159 4.4 ×10−7 0.2692 0.1160 0.2990 1.1 ×10−6 7.1 ×10−10 1438052

In terms of Bayesian Criterion, the uniform design wu’s efficiency is exp[(φ(wu)−φ(wb)/5]×

100% = 83.2%, the EW design’s efficiency is exp[(φ(we)−φ(wb)/5]×100% = 100.1%, the MW

design’s efficiency is exp[(φ(wm)− φ(wb)/5]× 100% = 100.1%.
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From the fitted model, the parameters’ generalized variances are

Σ(θ) =



7.845× 10−1 −1.265× 10−2 4.889× 10−5 0 0

−1.265× 10−2 2.080× 10−4 −8.182× 10−7 0 0

4.889× 10−5 −8.182× 10−7 3.271× 10−9 0 0

0 0 0 2.734× 10−1 −2.128× 10−3

0 0 0 −2.128× 10−3 1.703× 10−5


(7.2)

the correlation matrix is

ρ(θ) =



1 −0.990 0.965 0 0

−0.990 1 −0.992 0 0

0.965 −0.992 1 0 0

0 0 0 1 −0.986

0 0 0 −0.986 1



Since the model parameters are highly correlated, we assume the model parameters follow

multivariate normal distributions with mean expressed in Equation 7.1 and variance co-variance

structure as Equation 7.2. The corresponding EW D-optimal design results are very similar to

bootstrap’s results in terms of design points and weights, we skip the results.

In order to check robustness towards misspecified parameter values, we use 1000 bootstrap

samples. For each θ, we use the lift-one algorithm to find the D-optimal allocation wθ and

the corresponding determinant f(wθ) = |F (wθ)|, and then calculate the relative efficiency

D(w,θ) = (f(w)/f(wθ))1/5 for w = wb (Bayes optimal design), we (EW optimal design),

wm (MW optimal design) and wu (uniform optimal design), respectively. Table XI shows the
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summary statistics of the relative efficiencies for these optimal designs. It implies that wb, we

and wm, are comparable and all of them are much better than wu in terms of robustness.

TABLE XI: Summary Statistics of Relative Efficiencies in Flies Study

Design Min 1st Quartile Median 3rd Quartile Max

Bayes wb 0.9912 0.9985 0.9989 0.9992 0.9998
EW we 0.9934 0.9991 0.9996 0.9998 0.999999
MW wm 0.9933 0.9991 0.9996 0.9998 0.999998
Uniform wu 0.7762 0.8181 0.8304 0.8445 0.8861

7.2 Trauma Clinical Trial

Example 7.2. Chuang (14) studied a group of data which have five ordered response categories

ranging from “death” to “good recovery” describing the clinical outcome of trauma patients.

These five categories are often called the Glasgow Outcome Scale (GOS, (35)) in the literature

on critical care. There were four treatment groups labeled as Placebo, Low dose, Medium dose

and High dose reported in the data. Note that the original data didn’t provide the exact dosage

but treat them as 1,2,3,4 instead. Table XII is regenerated from (14).

7.2.1 Locally optimal design

In order to model ordered categorical responses, a popular choice seems to be the pro-

portional odds model with cumulative logit link. However, Agresti (22) found some strong

evidence against the assumption of proportional odds. We fit the data with non-proportional
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TABLE XII: Glasgow Outcome Scales from the Trauma Clinical Trial

Treatment Glasgow Outcome Scale
group

Death Vegetative Major Minor Good

state disability disability recovery

Placebo 59 25 46 48 32
Low 48 21 44 47 30
Medium 44 14 54 64 31
High 43 4 49 58 41

odds model with cumulative logit link and find that it is better than proportional odds model in

terms of AIC and BIC (see Table XIII). We also compared it with other commonly used models

including continuation-ration (for hierarchical response) and adjacent-categories logit models,

the non-proportional odds model with cumulative logit link is still best. It shows us that under

some circumstances, a non-proportional odds model could be better than a proportional odds

model with cumulative logit link.

TABLE XIII: Model Comparison for the Trauma Data

Cumulative Cumulative Continuation Continuation Adjacent Adjacent
PO NPO PO NPO PO NPO

AIC 107.75 99.41 108.98 101.36 107.67 101.54
BIC 104.68 94.51 105.91 96.45 104.60 96.63
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From this data, the non-proportional odds model with cumulative logit link could be ex-

pressed as

log

(
πi1 + · · ·+ πij
πi,j+1 + · · ·+ πi5

)
= βj1 + βj2xi , j = 1, 2, 3, 4

This model is equivalent to the following unified form expressions

CT log(Lπi) = ηi = Xiθ, i = 1, · · · , 4

where

CT =



1 0 0 0 −1 0 0 0 0

0 1 0 0 0 −1 0 0 0

0 0 1 0 0 0 −1 0 0

0 0 0 1 0 0 0 −1 0

0 0 0 0 0 0 0 0 1


L =



1 0 0 0 0

1 1 0 0 0

1 1 1 0 0

1 1 1 1 0

0 1 1 1 1

0 0 1 1 1

0 0 0 1 1

0 0 0 0 1

1 1 1 1 1


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Xi =



1 xi 0 0 0 0 0 0

0 0 1 xi 0 0 0 0

0 0 0 0 1 xi 0 0

0 0 0 0 0 0 1 xi

0 0 0 0 0 0 0 0


θ =



β11

β12

β21

β22

β31

β32

β41

β42


Fit the model to get parameter estimators

θ̂ = (−0.86459,−0.11291,−0.09374,−0.26890, 0.70625,−0.18234, 1.90867,−0.11926)T

This is parameter input for local optimal design.

From this model, we can solve the equation to get the probability as follows

πi1 =
exp(β11 + β12xi)

1 + exp(β11 + β12xi)

πij =
exp(βj1 + βj2xi)

1 + exp(βj1 + βj2xi)
− exp(βj−1,1 + βj−1,2xi)

1 + exp(βj−1,1 + βj−1,2xi)
, j = 2, 3, 4

πi5 =
1

1 + exp(β41 + β42xi)
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Combine the above expression with Corollary 3.1, we can express each element of Ui as

function of parameters and xi.

Since

F = n
m∑
i=1

wiFi and Fi = XT
i UiXi

Given all of the above inputs, |F| is a polynomial about wi, then we can use Lift-one algorithm

to maximize |F| to find D-optimal approximate design.

The D-optimal approximate design for this model is summarized as the following table, here

design point corresponds to a different treatment group:

TABLE XIV: The D-optimal Approximate Design for the Trauma Data

Design Point 1 2 3 4
Treatment Group Placebo Low Medium High Determinant

Original Sample Allocation 0.2618 0.2369 0.2581 0.2431 0.0002832108
Optimal Sample Allocation 0.5 0.0 0.0 0.5 0.002989844

Here the D-optimal exact design assigns all of experimental units to the following two design

points: Placebo and High treatment. Actually, the minimally supported points are 2 according

to our previous derivation: max(p1, . . . , pJ−1, pH + pc). Since this is cumulative logit model
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with NPO assumption, pc = 0 and p1 = . . . = pJ−1 = pH = 2. The optimal design found here

is actually a uniform design, confirmed the conclusion of Theorem 4.6.

The efficiency of the original sample allocation is (0.0002832108/0.002989844)1/8 = 74.5%,

the efficiency could be improved 100/74.5− 1 = 34.2% by optimal design.

The D-optimal exact design has very similar results with D-optimal approximate design, so

we skip its results.

7.2.2 EW D-optimal design

In trauma study, we still use bootstrap method to generate 1000 simulated samples, then

obtain Bayesian, EW and MW optimal designs based on these samples. The results are in

Table XV.

TABLE XV: The Bayesian, EW and MW D-optimal Designs for the Trauma Study

Design Point 1 2 3 4
Treatment group Placebo Low Medium High Determinant

Bayes Design 0.4997 1.0 ×10−8 2.5 ×10−8 0.5003 2.773737×10−8

EW Design 0.5 0.0 0.0 0.5 10575
MW Design 0.5 0.0 0.0 0.5 0.007652482

Here it is very interesting that all of non-local D-optimal designs give the same sample

allocation as local D-optimal designs. If we examined Theorem 4.6, it states that if it is a
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minimally supported design for NPO models, and p1 = p2 = · · · = pJ−1, then uniform design

is D-optimal design. In our case, no matter if it is a local or non-local D-optimal design, all of

the above conditions are satisfied, so the results are the same, which also verified Theorem 4.6.

We also obtained EW designs assuming uniform and normal distributions for parameters,

the results are the same as above, so we skip the results.

7.3 Conclusion

In this chapter, we use two real experiments to illustrate how much improvement can be

made by applying D-optimal designs. Some designs probably are not applicable in real life, e.g.,

the trauma study optimal design just assigns two design points, but it provides us a benchmark

and criterion. So we know how to make our design more efficient aiming at D-optimal design.

If model parameters are assumed to follow some unknown distributions, we bootstrap our

original samples to get simulated samples. Then we can obtain Bayes, EW and MW optimal

designs based on those simulated samples. These designs are robust and similar to local optimal

design.

Our D-optimal designs recommended in the examples are minimally supported, actually the

minimum number of experimental settings are strictly less than the number of parameters.

While in the real life, uniform design is most commonly adopted. But generally the uniform

design is not D-optimal design for multinomial logistic models. Only NPO models having

minimally supported points and same number of parameters for each logit equation, i.e., m =

p1 = p2 = · · · = pJ−1, will have uniform design as D-optimal design.



117

APPENDIX

NOTATIONS

bj Coefficients in representing fi(z), j = 0, . . . , J − 1

BJ J × J constant matrix used for deriving the coefficients of fi(z), (st−1)st

C J × (2J − 1) constant matrix, same for all the four logit models

c Vector used for deriving coefficients of fi(z), (c1, . . . , cJ−1)T

cij J × 1 vectors such that (CTD−1
i L)−1 = (ci1, . . . , ciJ)

cj (j + 1)pjJ−1−pfi(1/(j + 1))− jJ−1fi(0), j = 1, . . . , J − 1

cα1,...,αm Coefficient of wα1
1 · · ·wαmm in the determinant of GTWG

d Total number of design factors

ds ds = (fij(s)− fij(0))/s, s = 1, . . . , q, for coefficients in fij

Di diag(Lπi)

F Fisher information matrix of the design, F =
∑m

i=1 niFi

f f(w) = f(w1, . . . , wm) = |GTWG| which is proportional to |F|; or f(n) =

f(n1, . . . , nm) = |
∑m

i=1 niFi| = |F|

Fi Fisher information matrix at the ith design point

fi fi(z) = f(w1(1 − z)/(1 − wi), . . . , wi−1(1 − z)/(1 − wi), z, wi+1(1 − z)/(1 −

wi), . . . , wm(1− z)/(1− wi)) with 0 ≤ z < 1
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APPENDIX (Continued)

fij fij(z) = f(n1, . . . , ni−1, z, ni+1, . . . , nj−1, ni +nj − z, nj+1, . . . , nm) with z =

0, 1, . . . , ni + nj

G Matrix component for Fisher information matrix such that F = nGTWG,

mJ × p

gs g0 = fij(0) and (g1, . . . , gq)
T = B−1

q (d1, . . . , dq)
T

H Matrix component for Fisher information matrix such that F = HUHT ,

consisting of H1, . . . ,HJ−1 and possibly Hc, p×m(J − 1)

Hc Matrix for the common component of J − 1 equations, (hc(x1), . . . ,hc(xm)),

pc ×m

hc(xi) Vector of common predictors for all of J − 1 equations as known functions of

the ith experimental setting, (h1(xi), . . . , hpc(xi))
T

Hj Matrix for the jth J − 1 equation only, (hj(x1), . . . ,hj(xm)), pj ×m

hj(xi) Vector of predictors for the jth J − 1 equation as known functions of the ith

experimental setting, (hj1(xi), . . . , hjpj (xi))
T

J Total number of response categories

kmin Smallest possible #{i | αi > 0} such that cα1,...,αm > 0

L Constant (2J − 1)× J matrix, different for the four logit models

m Total number of distinct experimental settings or design points

M(H) Column space of matrix H, that is, the linear subspace spanned by the

columns of H
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APPENDIX (Continued)

n Total number of experimental units, n = n1 + · · ·+ nm

n Allocation of experimental units, (n1, . . . , nm)T , ni ≥ 0,
∑

i ni = n

ni Number of replicates at the ith experimental setting

p Total number of parameters

pc Number of common parameters for all of J − 1 equations of logit model

pH dimension of row space for J − 1 intersection of Hjs

pj Number of parameters for the jth equation only

q min{2J − 2, p− kmin + 2, p}, upper bound of order of fij(z)

S Collection of all feasible approximate allocations, {(w1, . . . , wm)T ∈ Rm |

wi ≥ 0, i = 1, . . . ,m;
∑m

i=1w1 = 1}

S+ Collection of approximate allocations, {w ∈ S | f(w) > 0}

U Block matrix (Ust)s,t=1,...,J−1, m(J − 1)×m(J − 1)

Ust diag{n1ust(π1), . . . , nmust(πm)}, m×m

ust(πi) cTisdiag(πi)
−1cit for s, t = 1, . . . , J − 1

w Real-valued allocation of experimental units, (w1, . . . , wm)T , wi ≥ 0,
∑

iwi =

1

W diag{w1diag(π1)−1, . . . , wmdiag(πm)−1}, mJ ×mJ

wi Proportion of experimental units assigned to the ith experimental setting,

ni/n
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wu Uniform allocation, (1/m, . . . , 1/m)T

X Design space, the collection of all design points yielding strictly positive cat-

egorical probabilities of response

xi The ith distinct experimental setting or design point, (xi1, . . . , xid)
T

Xi Model matrix at the ith design point, J × p, the last row is all 0’s

βj Vector of parameters for the jth equation only, (βj1, . . . , βjpj )
T

γij The cumulative probability from the 1th to jth catogory at the ith experi-

mental setting, γij = πi1 + · · ·+ πij .

ζ Vector of common parameters for all of the J − 1 equations, (ζ1, . . . , ζpc)
T

ηi Vector of linear predictors at the ith experimental setting, ηi = (ηi1, . . . , ηiJ)T =

Xiθ with ηiJ ≡ 0

θ Vector of all parameters, p× 1

πi Vector of response category probabilities at the ith experimental setting.

πi = (πi1, . . . , πiJ)T , πi1 + · · ·+ πiJ = 1

πij Probability that the response falls into the jth catogory at the ith experi-

mental setting
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