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SUMMARY

Being able to observe how animals interact among themselves has always been a crucial
requirement for behavioral scientists who study social species. Physically watching them to see
when interactions occur is extremely time-consuming, results in many missed observations and
it becomes extremely difficult to do for a very extended period of time. This is especially true
for animals who live in large territories and for animals who behave differently when nearby
human beings. To overcome these problems, scientists are accustomed to use several different
kinds of sensors which are usually attached to the target animals to record some kind of raw
data which, once collected, is used to analyze the behavior of their hosts.

The sensors have to be as least invasive as possible for the animal to behave as if it wasn’t
wearing them. This implies that sensors have to be light with respect to the animal, they must
not emit a considerable amount of heat and the wavelength they use must not be perceptible
by the animals near them.

The most popular type of data extracted from sensors attached to animals is Global Posi-
tioning System (GPS) data. GPS data is very easy to extract and it can be used to efficiently
track the positions of entire groups of animals. However, when we are interested in pairwise
interactions between animals and not in their positions, GPS data is not very reliable either
because of its low accuracy and because it might not be in line of sight with the satellites it

relies on.



SUMMARY (continued)

In this study, we introduce synthesized sensor data based on a type of non-invasive short
range proximity sensor in order to understand whether some animals interact among themselves
at a given time. It is essential to label the data in order to be aware of the interactions as they
occur during the traning phase.

The sensors whose data we are interested in synthesizing can be used on animals that are
capable of wearing them due to weight or size constraints and as long as the sensor range
contains the interaction range of the animals we are interested in. The models we analyze in
this work don’t assume either that all of the animals behave uniformly amongst each other and
also the independence amongst interactions.

We present a framework to synthesize proximity, location and speed data extracted from
sensors with several different configurations and we present models to infer animal interactions.

Finally, we evaluate the methodology we use by proposing a case study where we perform
different analyses to understand when our models are fit for the inference task, what are the
most critical parameters impacting their performances and when we should start assuming

independence conditions to simplify the task.

xi



CHAPTER 1

INTRODUCTION

Humans have been observing animals since ancient times. The reasons have been very
different from being as effective as possible for hunting and to avoid dangerous predators to
pure interest in the everyday life of animals.

After the work of Charles Darwin and the birth of the theory of Evolution [1], observing
animals has become extremely interesting because of the connection of animals with humans.
Moreover, with the discovery of the Deoxyribonucleic Acid (DNA) in 1869 and its molecular
structure’s identification in 1953 [2], the study of animal behavior has become important to
also understand human behavior.

However, observing animals is not always an easy task, either because of the time it takes
to gather significant information from animals and because sometimes it is very hard to follow
some types of animals, such as predators whose territory is usually very vast. The advent of the
technology revolution of the most recent years gave biologists a new way to observe animals.

By exploiting sensors attached to several individuals of a given species, we can observe their
movements for a very long period of time. This gives us insight of what certain animals do,
where they go, what their usual route is, for example for hunting, and ultimately how they
interact with their environment and companions even when it would not be possible to be

observed by a scientist.



The most used sensor data for these tasks nowadays is GPS data. It is a space-based
navigation system which gives information about time and position, given in longitude and
latitude, and can be used anywhere in the world as long as there are four or more GPS satellites
that have an unobstructed line of sight to the sensor used. This makes GPS data available
almost anywhere on Earth and extremely efficient in tracking the movements of animals in
their habitat, especially when they live in a vast area free of obstructions, basically anywhere
but thick forests.

However, GPS data has its shortcomings; the standard accuracy of an average GPS sensor
is about 15 meters (49 feet), which can be improved to 3 meters (9.8 feet) by using Wide Area
Augmentation System (WAAS). The accuracy of a sensor is how confident we are about the
position we are recording. This means that having an accuracy of 3 meters implies that the
real position of the sensor can be anywhere in a circle with a radius of 3 meters. Despite being
acceptable for tracking animal movements in large areas, this is not the case when we want to
spot interactions between two individuals.

In fact, animals tend to have topological interactions instead of metric interactions [3];
they usually interact with a small, hardly varying number of the closest animals instead of
every animal closer than a threshold. Thus, being uncertain of a distance by four times the
accuracy of a single sensor between two animals (twice the accuracy per animal), makes GPS
data by itself, without great redundancy, unfit for the task. Moreover, for smaller animals, the
redundancy needed to have usable data might make the task impossible due to weight as well

as cost constraints.



An alternative to GPS data is to use Bluetooth Low Energy (BLE) transmitters and re-
ceivers so that the receiver is able to compute an Received Signal Strength Indication (RSSI)
value, which stands for the strength of the signal between the two sensors. This is far more
accurate than GPS data, however it does not give either absolute positions and accurate ab-
solute distances between sensors, because of the many reasons a signal could be weaker than
expected. Still, it is sufficient when we want to understand interactions between animals, which

is very dependent on their relative distances

1.1 Thesis Objective

This work will exploit RSSI data, as well as accelerometer data to extract interactions among
groups of animals. We will work with different configurations of sensors, creating a framework
able to synthesize such networks to extract the best model for a given instance and test its
performances with different parameters to understand when it does and does not perform well.

When scientists are interested in interactions between animals, what they mean by interac-
tion may well vary from one to another. Some might consider an interaction when two animals
are sufficiently near one another, others when one approaches the other and the interaction
might be only an instant despite them being close for a longer period. Others might think an
interaction to be when two animals do something together, others when one follows another
one. Given that the word “interaction” is so arbitrary, in order to train any model to fit the
specific definition of any given instance, it implies the need to have labeled data.

Labeled data means that along with the raw input data which comes from the sensors, we

are given the interactions that occur among the animals we are considering at any given time



period we are interested in sampling. This is necessary for most models that want to learn how
to predict an output ( in our case the interactions between our animals) given an input (in our
case our raw data collected from sensors).

Unfortunately, this means that scientists still have to manually annotate interactions of
animals for a fairly large amount of time; the longer they annotate interactions, the more
robust the models will be. This might seem counterintuitive; we want to build a model to not
manually annotate interactions, and we require them for our model to work. However, the
amount of data we have to label is significantly different; ideally, once we labeled a sufficient
amount of data, we would not need to label it anymore in the future, regardless of the number of
instances we would be able to sample with our sensors. Suppose we had a month of recordings
of interactions of animals, we would probably need to label only about a few days or even a few
hours of interactions to be able to build a reasonably good model, which would then label all
the remaining time.

The models we analyze in this work take into account uniquely identifiable animals, that is
every animal is considered differently from every other one, and if an interaction occurs between
two animals, it may impact the likelihood of other interactions. These are probably some of the
most nonconstraining assumptions we can make, however such models have their shortcomings;
they require a lot of data, w.r.t. other possibilities.

We estimate that the ideal model to spot interactions depends on the rarity of the interac-
tions themselves (Figure 1); when we have enough data to spot every single possible pairwise

interaction a fair amount of times, we expect our model to perform extremely well. However,



OUR WORK

Supervised, Independence
Assumptions

Size of Data Required (Rarity of interactions)

Figure 1: Partitioning of the best model to infer interactions with respect to the rarity of them.

when interactions become extremely rare and we only see a bunch of them, and not for every
possible pair (which of course scales also with respect to the number of animals), we would need
to drop some assumptions so that every label can be used to train any pairwise prediction.
Finally, when spotting interactions becomes extremely time consuming, we can decide to
automatically detect them without training any model. This is called unsupervised learning,
and it should be used only when no other options are possible, because it is most likely going to
give either an extremely large number of false positives or an extremely large number of false

negatives, and the worst part of it is that, even if we can reason about the quantity of false



positives, we cannot do so for false negatives: we wouldn’t know how many interactions we are

missing unless we started manually labeling all our data.



1.2 Structure of the Thesis

Chapter 2 will briefly give an insight of the related work. Interestingly enough, supervised
learning has hardly ever been considered for animal interactions, most likely because of the
time it would need to be done well. Chapter 3 will give necessary background of most of
the approaches we will use to build our framework. This chapter is intended to aid a lack of
knowledge in a specific area and it is not necessary whenever the reader already has a sufficiently
large background on a specific subsection. We still recommend to quickly look at it even in the
latter case, to better understand how we are going to use such concepts later on. Chapter 4 will
explain the proposed approach. First, it will formally define our tasks, specifying our sensors
and our configurations, second, it will explain our models and framework. Chapter 5 will show
a case study where we will perform some sensitivity analysis and discuss the obtained results.

Chapter 6 will give conclusive observations and talk about possible future work.



CHAPTER 2

RELATED WORK

Whenever we are interested in animals, we are interested in their behavior. Behavior is
what makes an animal different from another, behavior is what leads an animal to do what
they do. Whenever biologists are interested in studying animal behavior, they need to observe
the behavior of animals not only considering single individuals, but how they interact among
themselves as well.

Although observing animals manually can be done [4; 5], it can only be done for a small
amount of time and usually within small areas.

When interested in small animals constrained to live in a controlled environment such as
fish or insects, video tracking technology can seriously help biologists [6; 7; 8].

When facing larger animals, we can sense various information such as their location, move-
ment and orientation thanks to different wireless sensors [9; 10; 11; 12; 13; 14].

GPS data is customary to be used to track animal positions, a well known example is where
researchers at Princeton built ZebraNet [15], a tracking system which involves the usage of
tracking collars worn by some zebras in Kenya which collect GPS data. Tracking collars were
also used to track deer movements over a seven-year time period [16].

However, GPS data is not accurate enough to be successfully used to spot animal interactions

[17].



Video or RFID [18] can be used to better detect proximity among animals when it is possible
to cover vast areas with location systems. However, it is hardly the case. Ultrasonic tracking
could still be used for some animals [19], but it may disturb several other species, making it
impossible to be deployed in most cases.

Regarding inferring animal interactions, researchers recently exploited GPS data to track
baboons movements [20] in order to study shared decision making movements, dominance
interactions by first automatically extracting and then manually validating them as well as
extracting dominance hierarchies.

Scientists used k-means algorithm to cluster cows GPS data to spot different behaviors [21].
This is again an unsupervised learning classification. It is indeed usual to automatically extract
interactions among animals in many different ways: unsupervised learning can be used to find
interactions among cattle using a distance threshold and discern stronger ones by timing their
lengths [22], scientists can exploit maximum entropy models to infer interactions of mice [23];
others [24] use various formulas as well, but tested its results with some synthesized labeled
data, and with a little real labeled data, also showing the usefulness of synthesizing this type
of data.

However, unsupervised learning methods have various limitations despite being easy to
deploy: inferring a specific kind of interaction is extremely difficult, in fact the interaction is
defined by our model, there is no way to estimate its recall and a recent work [25] discusses how
generally wrong is the concept of interaction extracted from thresholds w.r.t. what biologists

really look for. An alternative to that is supervised learning, as shown in another recent
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work [26], where mouse social behaviors were extracted through a supervised learning approach
involving data acquisition and adjustment from different sources and a labeling of around
150,000 video frames fed into a Random Decision Forest model.

The gain of supervised learning approaches is undeniable, thus in this study we are especially
interested in knowing when we can exploit such a powerful method, instead of using the well

known unsupervised approaches.



CHAPTER 3

BACKGROUND

This chapter is going to focus on giving a background knowledge of some key concepts which
are going to be used in our proposed approach. Section 3.1 presents the concept of graphs.
Section 3.2 explains the basic data subdivision used in building a model. Section 3.3 describes
the Markov Assumption. Section 3.5 explains the concept of Support Vector Machine (SVM).
Section 3.6 presents the model of Neural Network (NN) and the instances used in this work.
Section 3.7 talks about Decision Tree (DT')s while focusing on its ensemble methods. Section 3.8
explains what is a test for statistical significance and why it is useful. Finally, Section 3.9 talks

about Sensitivity Analysis, which is going to be the focus of our work.

3.1 Graph Representation

A graph is a mathematical representation of a set of objects usually referred to as vertices,
nodes or points, where some pairs of them are connected by links, usually referred to as edges,
arcs or lines. The links can either be directed, being referred as arcs, or undirected, usually
being referred as edges. In our work we mostly name the objects nodes and the links edges
when referring to undirected links, and arcs when referring to directed links.

To understand what is the difference between directed and undirected links, we first need to
understand what means to have a link between two nodes. Being a mathematical representation

of elements, a link represents the occurrence of a relation between two of them. The meaning

11
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of such relations is ours to give, so for example suppose that we have two nodes called “Dante”
and “Beatrice” and the relation we are interested in is “love”. Dante loves Beatrice, so we
would say with a mathematical relation Love(Dante,Beatrice). Here, the position of the nodes
is relevant: Love(x,y) means: “x loves y”, while Love(y,x) means: “y loves x”. In this example,
Beatrice doesn’t love Dante, so, if we wanted to represent our relationships with a graph, we
would have to use a directed graph, that is a graph which uses directed links and have an arc
from Dante to Beatrice.

Suppose instead that we are interested in a relation such as friendship. We generally
think that if an individual Foo is friend with Bar, then Bar is also friend with Foo, that is
Friend(Foo,Bar) <= Friend(Bar,Foo). This is called a symmetric relation. If we wanted to
represent such relations with a graph, we would use an undirected graph, that is a graph which
uses undirected links.

Edges (as well as arcs) can have weights attached to them, meaning that two nodes have
a relation which can be quantified with a number. For example, suppose we are interested
in representing the distance between nodes. Every node would have an edge with a number
attached to it, which would represent their distance. In a mathematical representation it
might be something like Distance(x,y) = Distance(y,x) = k, or in a logical representation
Distance(x,y,k) = Distance(y,x,k). A graph with weights attached to its edges is called weighted
graph, if there are no weights it is called unweighted graph.

In this work we will use both weighted and unweighted graphs to represent our instances. To

represent the interactions occurring between animals, we are going to use unweighted undirected
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graphs, where an edge between two nodes would represent an interaction between them. By
the definition of interaction we will use in this work, we know that it is a symmetrical relation,
and we are not interested in the strength of such act, so it will be unweighted.

Sometimes, we will represent our input data with weighted graphs to show distances between
nodes. Given the peculiar type of data we handle, it might not be the case that the graph is
undirected. In that case, we would use directed weighted graphs to represent perceived distances

between nodes.

3.2 Data Subdivision

To build a model able to accomplish the task we need it to do, it is usually necessary to
have some data that it has to fit. This is referred as training data (set).

To fit some data for a model means to extract some latent information from it in order to
understand some patterns which lead to a specific prediction [27].

Once a model is learned, it is customary to test it to see whether it is effective at predicting
some new data. We do not want to test our model on the same data we trained it with, because
it might be the case that the model overfit the data, and would perform very badly with
new, never seen instances of the input data. Overfitting occurs when the model is excessively
complex with respect to the real function that describes our output [28]. Being so complex,
what it really does is fitting a random noise in the training data, and how it behaves for unseen

instances between two seen ones is most likely going to be random.
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To overcome this problem, when we want to evaluate our model properly, we use a different
partition of our data which has been untouched by our training process, that is called test data
(set).

This partitioning of our available data is usually enough to train and evaluate simple models.
However, sometimes this is not enough to give unbiased evaluations of our model.

Suppose we have an extra parameter that we want to fine-tune. We can imagine it being the
order of our function, or the type of input given to the model, or completely different models. If
we trained it with our training set and tested with our test set and then selected the parameter
that maximizes our evaluation function, we would be overfitting with respect to the test set.
Basically, we would choose the model that best fits our test data, but it would have unknown
results for new, never seen data.

When we face this problem, we split our data into three partitions: the training, the cross
validation (or simply validation) and the test sets.

Following the exact same reasoning done with just train and test sets, we will not touch
our test set for all the tuning of our model, and we will instead train with our training set and
evaluate with our validation set. In the end, after we choose the best model, we will see its
performance against the test set.

We are going to use this partitioning policy to develop our model. Further details will be

given once the needed background will be presented.
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3.3 Markov Assumption

Suppose we are interested in knowing what the weather will be like today. We might suspect
that the weather of today depends on the weather we observed the previous days. For example
we might find out that if it has been sunny for several days in a row, it is most likely going
to be sunny today as well, with a small probability of being cloudy, and it never happens to
rain. If we wanted to model this behavior we would talk about conditional probabilities, for
example, suppose that w; is a variable representing the weather at day t, we would be interested
in knowing P(w¢|w¢—1, wi—9,wi—3,,wo) which is generally different than P(w;). Although this
would be a very precise estimation of the probability of a given weather condition for today,
it is most likely impossible to have enough data to make it usable in practice, as well as
being a very burdensome task. Suppose we find out that in reality, the probability of a given
weather today is dependent on only a fixed amount of previous days, for example 2. Then, we
would be able to compute its probability in a much easier way: P(w¢|w—1, wi—o, W_3, ..., Wp) =
P(w¢|wi—1,wi—2). We call this a Markov assumption (in particular, a second-order Markov
assumption).

More in general, we have a n‘*-order Markov assumption if we believe that the probability
of a given variable at time t depends only on the n previous times. Usually, this is not true,
but it is a necessary assumption to make the problem tractable.

Now, suppose we know the relative positions of every animal we are observing with respect
to any other animal at any time t. The best thing to do to find out if two animals are interacting

would be to see all the previous history of the network. However, to do so, we would need an
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enormous amount of data: suppose that we would need X instances to have a good estimation
of a specific input configuration, then, every time we increase our Markov assumption by one,
we would need to double the overall required input data for each input variable we consider at
any give time. Also, this would be the lucky case where our variables had only two possible
values, and we would have to triple, quadruple, etc. for a bigger range.

Thus, we need to make a reasonable Markov assumption. Suppose that the interaction
between two animals would only be dependent on the actual time, then a zero-order Markov
assumption would be fine. In general, we are interested in finding the best Markov assumption,
that gives us good results w.r.t. the size of the data we have, without being too computationally

expensive.

3.4 Cost Sensitive Learning

Generally, every classifier is built to maximize the accuracy of its predictions. Although it
is usually what the user wants, sometimes this is not the case.

Suppose that we are predicting whether or not a patient has pancreas cancer. Surely we
would like to accurately have only true positives and true negatives; however, when we are
wrong, the two effects are dramatically different; if we have a false positive, we can just double
check with maybe another method to be actually sure that he is ill. More in general, if he is in
a hospital, he stays in the hospital and no harm is done. However, if we have a false negative,
we would set the patient free and the next time he comes, his situation will be much worse than

before.
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In all the cases where a false negative is different than a false positive, cost sensitive learning
should be done. Cost sensitive learning is also often used to diminish the harm of having
unbalanced data, when sampling is not very practical or would worsen the results (such as
when we don’t have enough data).

3.4.1 Cost Matrix

If we want to represent the different costs of our classifications, it is customary to use a cost
matrix, where the rows are the actual values and the columns are the inferred values. Sometimes
in other papers the convention is the opposite, so we ask special care from the reader when

looking at them.

TABLE I: OUR COST MATRIX: ROWS ARE ACTUAL LABELS, COLUMNS ARE IN-
FERRED LABELS

T F
T 0 Cfn
F Cfp 0

Usually both the true positive and true negative costs are 0, while very rarely true positives
might have negative values to indicate profit. Given that the higher the cost the worse our
model is at predicting, to evaluate a model while using cost sensitive learning, we will use a
cost function which will simply multiply the number of predictions p;; with the cost weight

c;j of that specific cost matrix and sum them all. Clearly, the lower the score, the better the
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performance. To our purposes, we will have Os on both true positives and true negatives, and
have a higher weight for false negatives w.r.t. false positives. Table I shows our target cost

matrix.

3.4.2 Classifier Adjustments

To make a classifier work with a cost matrix, adjustments must be made. We hereby discuss

the most common methods used:

e Make the classifier provide probability estimates, compute the expected cost of each can-

didate and select the one which minimizes the cost.

e Sample the data during training phase in such a way to have uneven distributions of the

classes, which will bias most classifiers to specific outcomes.

e Directly modify the inner workings of the classifier to make it use the cost matrix, which

should maximize the fit of that classifier to that specific cost matrix.

The limitations of these approaches come from how specific classifiers work and the type of
data we have available while training: most algorithms can’t be modified to fit a cost matrix or
cannot provide probability estimates. NNs can both provide probability estimates and modify
their inner workings (the latter is preferred), but have a hard time sampling the input data
when it returns multiple outputs. Given that what we usually want is to have a balanced
distribution while training, a stronger weight in the cost matrix might be needed to impartially

act as an equalizer.
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3.5 Support Vector Machines

A Support Vector Machine (SVM) [29] is a model based on a supervised approach which can
perform both classification and regression analysis. It needs as input a set of training data, each
line labeled as one of the only two possible categories, to output a deterministic binary linear
classifier. It can also perform a non-linear classification by performing the so called ‘kernel
trick’.

An SVM wants to find a hyperplane which can be used as a classifier between the two selected
classes. Ideally, it tries to find a hyperplane that perfectly subdivides the two categories and
selects among the many possible, the one furthest from all points. This is usually impossible
to do, thus it uses a soft-margin, meaning that it tries to split its points at best, trying to
minimize the cost of the misclassifications which are proportional to how far is the misclassified
point from the right side of the hyperplane.

When a linear classifier is not enough, a transformation is used to represent our input data
into a feature space that makes the dimension easier to be separated by a hyperplane. This
operation however would be extremely time-consuming, thus a kernel trick is used: we don’t
need to transform our dataset, we just need to perform a dot product of an N dimensional space
with a M > N dimensional space. This can be efficiently done with a kernel function, thus the
so called kernel trick.

There exist several extensions for SVMs, which are not needed for our purposes, such as

multiclass SVMs and support vector clustering.
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3.6 Neural Networks

Artificial Neural Networks, or NNs, are a family of many models inspired by the real bio-
logical neural networks.

While they may vary a lot one another, they all have in common their basic structure, which
consists of interconnected artificial neurons that send messages each other. An artificial neuron
is usually modeled taking example from the Hebbian Rule in biology: basically we receive a
number of inputs with some weights attached, we have a threshold called bias and we fire an
output. From that, we can have many various implementations.

We are interested in supervised learning with NNs. While the details of these models are
many, the general approach is, during training, to try to compute an output while giving a
sample input, compute its error w.r.t. the expected output for every output neuron, and then
use backpropagation, which is a method to adjust more the weights of the network which are
most responsible for the error by using the gradient of its error.

In our work, we will use a fully connected feedforward neural network, which is the oldest
and most commonly used, built however using mostly state of the art methods: Rectified Linear
Unit (ReLU) activation function with dropout neurons and a Bernoulli negative log-likelihood
error function.

A ReLU is a very trivial activation function: the idea is simply to have f(z) = max(0, z).
This has been shown [30] to be more biologically plausible than the more common functions

such as logistic sigmoid and hyperbolic tangent. Usually, we prefer not to have 0 values, thus
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the rectifier function is smoothed: f(z) = In(1 + €*), which only gives positive numbers, still
resembling the rectifier function.

Dropout is considered one of the most successful recent discoveries of the decade. During
training phase, we randomly ‘drop out’ some neurons, setting their output to 0, thus basically
not making them fire. During prediction phase, every neuron is allowed to fire. This has again
a biological inspiration, from genes: when a child is born, it receives half its genes from both
parents, thus every gene has to be able to adapt with unknown other genes, and be useful by
itself.

This method has several advantages: it prevents co-adaptations thus avoiding overfitting
and it results as a very powerful ensemble method, as it can be seen, while training, to train up
to 2" different networks, where n is the number of neurons, and while testing to merge them.
This sometimes implies the need of a higher amount of data required or simply a longer training
phase, but it has been shown to own the state of the art performance for several deep learning

classification tasks.

3.7 Decision Trees

DTs are a very common type of classifiers. They use a tree to decide how to label an input
instance, where the leaves are the class labels and the nodes are some conditions of the input
that branches the decision to be taken.

DTs can either predict multiple classes or a continuous value, in the latter case they are

called Regression Trees.
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This classifier is very popular, mostly because of its simplicity and its reasoning is under-
standable by humans and can be easily plotted.

A tree is built by greedily deciding what attribute to split at every step, selecting it by
choosing a scoring measure. A very well known measure is the Information Gain, which tries to
minimize the overall entropy of the system. Informally, we can say that Information Gain = En-
tropy (parent) - Weighted Sum of Entropy(Children). We do that for every possible child split
and select the one with the maximum score. If a node already perfectly explains the data (it
classifies all its data with just one label), it becomes a leaf. This process usually continues until
or all nodes become leaves or there are no more features to split or the gain from splitting is
less than a given threshold.

Usually, branches get pruned also after this process, to reduce overfitting.

3.7.1 Ensemble Methods

DTs by themselves perform well, but they don’t own the state of the art performances.
Whenever we are not interested in having a decision tree representation and we only want the
best classifier, ensemble methods come into play.

Ensemble methods consist of using more than one classifier to infer a label. How the result is
chosen among the individual classifications may vary one method another. Ensemble methods
work well when the basic classifier is simple and very susceptible to noise. Decision trees are
the most common models used because of these needs.

The most common ensemble methods are:

e Bagging [31]
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e Boosting [32]

e Random Forest [33]

The main idea is more or less the same for the three of them: we want to have a big number
of independent classifiers, that means that ideally if classifier A says ‘Yes’, we don’t know
anything about what classifier B is about to say. If every classifier has an accuracy greater than
50% and we take the majority vote, we end up increasing the accuracy ideally by as much as
we want, depending on how many classifiers we use, because the more classifiers we use, the
more likely it is that the majority of them classified correctly.

This directly applies to bagging and random forests, the difference is how they achieve the
condition of independence of their classifiers (also, it is anyway impossible to have a perfect
independence among them): bagging, or bootstrap aggregating, trains with up to the same
number of data of the input data, however it samples them with replacement from it. This is
shown to give (1 —1/e) ~ 63.2% unique elements, while the rest are duplicates. Being decision
trees very sensible to noise in the data, the resulting classifiers behave very differently. Of
course, to have even less resemblance, a smaller number of samples can be taken.

Random forests do exactly as bagging, but they increase the classifiers independence by also
ignoring a certain number of input features (usually they use the square root or half of such
number), making them more prone to error, but still usually over 50%.

Usually random forests perform better than bagging, but, as we will see, this is not the case

for our instances.
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Boosting uses a slightly different approach: it keeps adding classifiers which specialize where
the previous classifiers mispredicted the most. In the end, every classifier is weighted and besides
predicting the label, it also gives a confidence on how certain it is. The final results are computed
by weighting the classifiers by also considering this confidence and the most likely overall result

is selected.

3.8 Statistical Significance

Sometimes, we try different models to see which one performs best w.r.t. our data. Now,
suppose we have two models which performed similarly, i.e. they had almost the same accuracy,
precision and recall. Is really one better than the other, or are they coming from the same
distribution, thus either one of the two is the same for us?

To answer these questions, we do a test of statistical significance: how likely is the null
hypothesis to be true for the two output distributions of our models? The null hypothesis is
supposing that the two populations come from two different distributions (there is no correlation
between them).

A test of statistical significance computes a p-value, which is the probability of obtaining
results at least as extreme given that the null hypothesis is true, thus they are from two different
distributions. A significance level « is introduced to understand when this p-value is excessively
small: « is the probability to reject the null hypothesis in the case it is actually true.

Thus, suppose that our p-value is greater than our selected «, then we would be confident
with probability 1 — « that the null hypothesis is true. However, if the p-value is less than our

significance level, it is very unlikely for the null hypothesis to be true, so we reject it.
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Different distributions use a different test, for example for Gaussian distributions, t-test is

the most commonly used.

3.8.1 Multiple Comparisons

When we have to do multiple comparisons, the standard statistical significance tests become
unfit for the task.

Suppose in fact that we are testing a new drug and we want to know if it is helping to cure
any of 100 disease symptoms. To do that, we perform a test of statistical significance with a
significance level of 5%, thus we have 5% chance to incorrectly reject the null hypothesis if it is
true.

However, supposing that the null hypothesis is true for all 100 symptoms, that is, it doesn’t
have any effect at all, we should expect to incorrectly reject 5 of them. Moreover, the probability
to have at least an incorrect rejection is as much as 99.4%.

To solve this issue, we want to adjust our significance level to be more stringent. One very
common example is the Bonferroni adjustment, where from Boole’s inequality we know that if
we have k tests and a target significance of «, adjusting it to a/k for each one of them we are

sure for the total error to not exceed «.

3.9 Sensitivity Analysis

Whenever we ask the questions: “Why does my model not work? What are the weak points
of my model? Are there useless inputs? How robust to noise is my model?” we want to perform
some sensitivity analysis. It is the study of how the uncertainty in the output of a model can

be properly split among uncertainties in its inputs.
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There are different ways to do these analyses. One widely used is One-Factor-At-a-Time
(OFAT): as the name suggests, we modify one factor at a time while not varying the remaining
factors to see what effects it produces to the output.

Sensitivity analysis is infamously known to be computationally expensive, thus a full analysis
might be unfeasible, especially when we have a big number of factors we are interested in. Still,

we are going to do as many experiments as we can, to thoroughly test our models.



CHAPTER 4

PROPOSED APPROACH

Our task is given a configuration and some data regarding such configuration, labeled at
every interval with the interactions occurring among any animal, find the model that best infers
those interactions. Ideally, to infer some interactions at time ¢, we can look at our input data
at time t — 1, t — 2 and so on. So, for every timestamp ¢ to infer, we can use several input data
of time ' < t to aid our inferences. Figure 2 shows an example of input and output data.

Moreover, we consider false negatives to be more relevant than false positives: There are

three reasons for that:

e The expected interaction network is very sparse. This implies that the trivial model that
claims there are no interactions will have reasonably high accuracy, but terrible recall.
We want to avoid this scenario, of course, which means to be more biased towards having

less false negatives than false positives.

e False positives can be removed manually after the inference, if they are not too many,

while false negatives cannot.

e Having a high number of false negatives seriously worsens the quality of the inferred

network, and its structure might look like random [25].

Of course, saying “every animal always interacts with everybody else” would give us a recall of

1, but a terrible precision. On the other hand, precision by itself is still not sufficient, because

27
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Figure 2: An example of inference: given several timestamps of sensor data, we want to infer
an undirected graph of interactions.

we wouldn’t be able to realize how many interactions we are missing. Thus, only using either
recall or precision would not be enough to understand how good is our model.

This Chapter will further explain our proposed sensors, the model and the framework we
built to respectively infer interaction networks in any configuration and understand when this
model gives good results and when and why it doesn’t. Section 4.1 will describe our new sensors.
Section 4.2 explains the proposed model of this work. Section 4.3 will describe the proposed

framework.

4.1 Proposed Sensors

We are interested in inferring the interactions occurring among animals, in order to build
a graph of interactions for every given timestamp. If we want to infer interactions between

two animals, knowing their absolute positions is not strictly necessary. Instead, we would be
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interested in their distances. Moreover, we would like to know the distances among all the
animals we are observing, which might spot interesting patterns.

Having accurate absolute distances would be ideal, however the state-of-art technology
doesn’t allow us to have an accuracy as good to be used by itself for such purposes. GPS
data, with an accuracy of 3 meters, is unfit to be used for most animals, especially the smaller
ones. Adjustments can be done and it has been reported an average accuracy of 30 centimeters
[20] on a controlled environment. However, its reliability is very dependent on the signal and
obstruction of the line of sight with some satellites is likely to occur. Also, in certain cases such
as with small animals, even if we always had the guarantee of 30 centimeters accuracy it would
still be too much. What we could use to have more accurate information are pairs of BLE
sensors (one transmitter and one receiver) [34], the receiver would sense a signal and attach
to it an RSSI value [35], which stands for the strength of the perceived signal. If we tried to
convert our RSSI value into absolute distances, it would result to a relatively high error but it
would still be more informative than using pairs of GPS sensors.

Moreover, suppose we received two signals from two different transmitters, then we would
have two RSSI values and we could compare them. This makes us have arguably more accurate
relative ranking distances among sensors: we would be able to say who is closest to me, who
is second, and so on. Of course, we would still use thresholds of uncertainty so we might
end up considering multiple sensors as equally “second”. Ranking distances might be of key
importance to spot interactions, as studies show how animals interact with a fixed number of

closest neighbors [3].
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Also, for both the inaccurate absolute distances and the somewhat accurate relative ranking
distances, it may well be the case that a receiver doesn’t receive any signal from a specific
transmitter. This might either imply that the transmitter is too far away to be spotted, or
that the signal was obstructed and wasn’t able to reach its destination. Thus, we are in
the unfortunate situation where “missing data” might be caused by two completely opposite
reasons. This will get our data even noisier than just the inherent errors of precision of the
sensors. Still, having redundant sensors, or multiple sensors in different positions should spot
these errors and overcome them.

Also, our animals can be equipped with Magnetic Pick-Up (MPU) sensors to either extract
accelerometer and/or gyroscope data. We will disregard gyroscope data for our instances and
instead sometimes use the absolute value of the speed extracted from the accelerometer. We
also have the per-axis speed, however it doesn’t really make a lot of sense if we are not planning
to use absolute positions but only distances.

Now, let’s look at the input data we are going to use; we said we want to transform our
RSSI values in absolute and ranking distances. However, both transformations suffer from the
absence of received signal. To be able to input something also on these cases, we need to have
discrete domains for both absolute and relative distances.

Ranking distances as we defined them are already discrete; we would have the closest ones,
the second closests one, and so on. The only thing we would have to add is a ranking representing
when we don’t spot any signal. We can either say that all those sensors are considered the

furthest (i.e. if the furthest spotted is in third position, we would add a fourth position for all
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the others), or we would define a default position for all of them (i.e. suppose that we at most
are able to discern 5 ranking positions, we would add a sixth position that would refer to all the
not received signals). To remain consistent with the concept of ranking, we decided to exploit
the first option.

Absolute distances are continuous instead. However, we wouldn’t be able to build a not-
biased model with continuous distances and many not received signals. What we can do is to

“very close”, “close”, “medium”, “far” and a special

split the input in different ranges such as
distance “very far” for when we don’t sense anything.

As mentioned before, when the input should be sufficiently near to be sensed but it doesn’t
for any reason, it worsens our input data. That is one of the reasons why we would like to add
information such as fixed receivers around our grid, to overcome such problems.

Finally, notice how these discretizations give us an ordered domain, that is we are using
ordinal values, so our model can exploit the knowledge that “medium” is further than “close”
and “very close” but closer than “far” and “very far”. Likewise for rankings.

Once we have these sensors available, we can decide on using several different configurations;
first of all, for all possible configurations we can either have or not have accelerometer data from
each animal. We might decide to put a transmitter on every animal and put some receivers
on some fixed positions over them (for example onto some beacons). We would then receive
ranking and absolute distances of every animal from every fixed position.

Or, we could attach both receivers and transmitters to each animal, thus being able to

have distances directly among them. Notice that, being relative, we would represent it with a
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Figure 3: An example of input ranking distances data in a configuration with receivers on both
animals and beacons. The black nodes are animals, while the blue nodes are fixed position
beacons.

directed weighted graph, because it is not necessarily true that, given two individuals x and vy,
SensedDistance(x,y) = SensedDistance(y,x).

Finally, we could have both configurations altogether; transmitters and receivers on every
animal, and receivers in some fixed positions.

Figure 3 shows an example of input ranking distances data. As we can see, this is a directed
weighted graph where distances are discrete positive numbers, there can be multiple arrows
of the same rank starting from the same node, but there are no gaps in the rankings. Also,
receivers only sense distances and are not sensed. We can see that sometimes receivers do not

sense a transmitter, for example B senses C, but C doesn’t sense B. Also, ranks between two
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Figure 4: An example of input absolute discretized distance data in a configuration with re-
ceivers on both animals and beacons. The black nodes are animals, while the blue nodes are
fixed position beacons.

nodes can be different either for noise in the data (pair AB) and for structural properties which
have nothing to do with noise (pair CE, where E only senses C thus it is distant 1, but C senses
A as well, which is closer, so it says E is distant 2).

Figure 4 shows a possible absolute distance input (already partially discretized) for the
same timestamp. What wasn’t sensed remains not sensed, however we can see that distances
don’t necessarily start from 1 (also, they could start from 0 if very close), there can be gaps
and distances without noise are more consistent. In fact, even if pair AB due to noise gives a

contradictory distance, pair CE this time spots the same distance from each other.
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4.2 Proposed Model

Given some labeled data of a specific configuration of sensors, whose values are discrete
ordinals and possibly floating point numbers (regarding speed in our examples, but not limited
to them), we want to build a model which explains at best our data.

Our output will ultimately be an undirected unweighted graph of interactions. The first
question we have to answer is: how do we want to predict the edges of our graph? Do we
want to predict pairwise interactions one at a time, or predict them altogether? We propose
a mixture of them; we are going to predict pairwise interactions by considering not only data

regarding two specific nodes at a time, but all of the available data for all possible pairs.

4.2.1 Pairwise Classification

We want to individually predict every edge. This does not mean that we suppose that the
presence of an edge is independent from all the other edges (in fact we suppose the opposite),
what it means is that we are going to have one output for each edge, representing whether we
consider an interaction occurring or not.

We feed our model with all the input data we have at any given time, and we individually
predict every edge from such data. This makes every edge possibly dependent from the others,
even if we were to predict such edges one at a time (notice that it is not always the case).

To understand why they are dependent, imagine what we would do if we considered every
edge to be independent to the other edges. For now, consider a simple configuration, which can
be easily generalized to all our cases, where every animal has both a transmitter and a receiver

and we want to classify an edge between two of them. If we believed in edge independence,
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we wouldn’t care about any data regarding any pair of animals but the ones we are classifying
now (why caring about the distances between animals 3 and 4, if we are analyzing 1 and 27
Also, why caring about the interaction between 2 and 3, when interested in 1 and 2, if the
presence or not of an edge between 2 and 3 does not imply anything for 1 and 27). Interestingly
enough, the concept of “ranking distances” starts being less useful (why caring to know that 2
is second in distance to 1, if we don’t care about other interactions?), however it should still
be useful by itself, considering that animals are supposed to interact with a fixed number of
closest neighbors, as previously noticed [3]. Likewise for speed, we would only care about their
two values.

Generalizing, if we had fixed position receivers, we would be interested in only the signals
received from the 2 animals we are considering. Knowing that edges can be dependent from
other edges makes all our data useful for their classifications.

To actually classify, we consider several models and a baseline approach:

Baseline: distance and time threshold

e NNs

e SVMs

Ensemble methods for DT's

4.2.1.1 Baseline Classification

Our baseline approach assumes that both transmitters and receivers are on each animal and

disregards the preprecessing of the data into ordinal categories; it wants to find, for each pair
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of animals, the maximum distance and for how long that distance must be kept to consider it
an interaction.

We only consider the distances between the two animals we care about, thus we can have
at most two input values for each pair, and if at least one of them is sensed to be closer than
the threshold, we consider them close. If they remain close for the minimum time threshold,
we consider it an interaction. If no signal has been sensed, we consider it to be ‘far away’ and
no interaction is spotted.

We want to find the couple of thresholds that minimizes our cost function. The maximum
distance threshold is clearly the maximum range of the receivers, while the time threshold is
a parameter to be chosen. However, the optimal threshold is hardly ever going to be greater
than 3, thus we could select 3 for most instances, and only if 3 happened to be the optimal
threshold for a specific instance, we might want to increase this number.

This baseline is simple enough to be able to find the best parameters (global optimum) by a
bruteforce approach. Heuristics that find local optima in logarithmic time with respect to the

range of the receivers exist, but are not needed in this case.

4.2.1.2 Neural Network Classification

Neural networks seem ideal for our target configurations: they can be built to have any
number of numeric inputs as well as any number of binary outputs. Moreover, even if just
slightly, mispredictions of one output modify most of the network which is shared by all outputs,
thus actually being theoretically dependent from the other outcomes. We used a fully connected

feedforward neural network with dropout ReLU neurons for all but the output neurons, and for
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output neurons we used a standard sigmoid activation function where being close to 1 means
interaction and being close to 0 means no interaction.

One problem with NNs is that their input data cannot be balanced. We can theoretically
decrease the unbalance of Os w.r.t. 1s by completely discarding train data without a single
positive classification, but this, especially for networks with a lot of nodes, doesn’t solve the
problem.

Here, we decided to not discard training data (because it was not needed for our tested
instances) and to balance the problem by using cost sensitive learning: we took the Bernoulli
Negative Log-likelihood error function described this way where x is the inferred and y is the
expected value:

error(z,y) = —ylnz — (1 —y)In(1 — x) (4.1)

noticing that

—In(1—2z), ify=0,
error(x,y) = (4.2)

—Inz, ify = 1.
thus, suppose we have a cost matrix where mispredicting false negatives and false positives
have a cost of fn and fp, respectively, where in our case fn > fn, we want to weight this
error function to backpropagate differently those two types of error. First of all, we normalize
the two weights so that we are sure to find convergence: wg, = fn/max(fn, fp) and wy, =

fp/max(fn, fp) so that the weight for the bigger cost will remain 1 and the weight for the
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smaller one will be reduced proportionally. Then, we multiply the two parts of our former cost

function accordingly:

—wgpln(l —z), ify=0,
new-error(z,y) = —wepylne —wep(l —y)In(l —2) = (4.3)

—Wgp Inz, ify =1.

This means that if we mispredicted and y = 1, then we must have said that z = 0 thus we
had a false negative and we backpropagate multiplying its error with a wy, factor, likewise for
false positive errors, accordingly to our goals. In fact, even if the data is inherently unbalanced,
by weighting less the false positives, we effectively help our model in being more balanced.

4.2.1.3 Balancing Data

The remaining classifiers have the way we handled data in common; we created one classifier
for every possible output, effectively creating n(n — 1)/2 binary classifiers which specialize in a
single edge. This number, although being linear w.r.t. the size of the output, is easily handled
for small to medium size networks of animals, which is always going to be the case for these
kinds of inferences. This trick makes our input data easily balanceable: we can always use all
the minority class input instances and the same number, randomly sampled, of majority class
input instances.

Experimenting this turned out to make us not need to use cost sensitive learning, even if it
was possible for all the following models.

While there is nothing more to add for our SVM models, we still have to discuss our ensemble

methods.
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4.2.1.4 Ensemble Methods for Decision Trees

We tried three different ensemble methods with DT's:

e Bagging with a sampling size of 50% of the data and 100 trees.
e Random Forest with 100 trees.

e AdaBoost boosting with a maximum number of 100 trees.

AdaBoost is one of the most used boosting ensembles on the market. While we can’t ever
suppose a priori which will perform best between AdaBoost and the two more similar Bagging
and Random Forest, we don’t even know which of the latter two will perform better than the
other.

In fact, the main idea of Random Forest is to increase the diversity of the classifiers by
selecting only a small number of input features. However, we already know that there are going
to be a very, very small number of features which are going to be extremely important for
classifications, while the others will impact our results much less. Thus, randomly removing a
big number of features implies to very usually not have any of the most important features.

We expect this to often result in a worsening of the results, because it will decrease drastically
the average accuracy of every classifier, even if increasing the diversity. Still, we don’t expect
Random Forests to perform badly, because the only condition they have to meet to give good
results is to have an accuracy higher than 50% which with a binary classification is extremely
easy to achieve, even with not so important features. Thus, it will be interesting to see what

impacts best the results. Will it be a higher accuracy or a higher diversity?
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4.2.1.5 Markov Assumption and Data Subdivision

Up to now, we only considered the input data of the specific time we want to label. This is
a zero-order Markov assumption and it is not necessarily the case that it holds. It could be the
case that the distances of our animals of one, two, etc. previous time periods might well alter
the likelihood of an interaction. Thus, we would like to try different assumptions. To do that,

we need several things:

e A way to compare two results.

e To split the data into train, validation and test sets.

e Understand when to stop increasing our order of Markov assumption.

In order to understand if a bigger order model would eventually overfit the data, we need to
evaluate our results and compare them; if we find out that a bigger order Markov assumption
behaves worse than a smaller order, we would select the lower order one. This implies that we
need to test our models while training, thus we need to have a validation set to not overfit the
test set. The test set will only be used at the end of every model tuning.

To evaluate our performances we will use a cost function directly extracted from our cost
matrix: the lower the result is, the better our model is.

Finally, it might be the case that using a higher order assumption only slightly increases
our results. This is a good hint for understanding that the proper assumption was the previous
one, because it means that adding new information doesn’t improve our model. But what if a

higher order actually improved the results? Using a threshold of improvement is not the best
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way to tackle the problem.But what if a higher order actually improved the results? Using a
threshold of improvement is not the best way to tackle the problem.But what if a higher order
actually improved the results? Using a threshold of improvement is not the best way to tackle
the problem. But what if a higher order actually improved the results? Using a threshold of
improvement is not the best way to tackle the problem. What we will do is make a test of
statistical significance between those two models, using the multiple comparisons approach. If
the two models are most likely going to not be statistically different, we would refuse the higher

order assumption to select the lower one.

4.3 Proposed Framework

In order to evaluate our proposed models and to perform sensitivity analyses on them, we
first need to be able to synthesize our data. Also, we need to do it in such a way that it is

easily possible to fine-tune its parameters that impact the reliability of the input data.

4.3.1 Creating the Environment

Accurately synthesizing some real data is a very complex task whose results are very often
far from perfect.

The background setup is straightforward; we create a virtual world, where we put inside a
given number of animals with some transmitters and possibly receivers and eventually also put
pillars in fixed positions with some receivers. We make our animals ‘move’ a fixed number of
times while sampling either the values from our sensors and the occurring interactions every k
steps with k not necessarily being equal to 1.

During this process we stumbled across three major design issues:
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e Simulate the data retrieved from our sensors.

e Simulate the behavior of our animals

e Label the interactions of our animals

4.3.1.1 Simulating the Data

How do we design our sensors? Which parameters do they take? How are their outputs
presented to us?

We want our sensors to give us data similar to RSSI values. Their absolute values are
not relevant as long as their relative values are consistent, but we expect our sensors to fail
sometimes and even when they don’t fail we expect to have some noise in the values received.

We know that our receivers are unable to spot signals further than a given range, thus we
could easily say that if the two sensors (one transmitter and one receiver) are distant more than
that range, the receiver doesn’t receive any signal. But what about when they are not as far
away?

If we want to model the possibility of failure, we can just assume that every transmitter has
a probability of failure to transmit a given signal and likewise for receivers if needed.

The strength of the signal sent can vary for several reasons, and that can be modeled by
using a Gaussian noise which modifies the position we infer (instead of using RSSI values we
directly estimate the distances between the two sensors, which requires one less computational
step and gives us the same results).

However, when we do receive a signal, it is unlikely to be noiseless. We want to add some

noise to it, also, the further it travels, the bigger the noise we can receive. We model this by
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using a Gaussian noise with mean 0 and a parameter for the standard deviation which decreases
linearly the closer the two sensors are. The good thing about it is that those parameters can be

fine-tuned for our sensitivity analysis and fairly accurately describe the real world examples.

4.3.1.2 Simulating Animals Behavior and Labeling

The last two issues will be solved together, but before explaining how, it is important to
understand why such things are difficult to deal with.

If we want to synthesize data properly, we want to have inputs as close as possible to reality,
thus simulating animals behavior becomes crucial for our framework. Clearly, if animals didn’t
move at all, or moved at random all the time, their behavior would be useless for our purposes.
Our goal is to be able to construct an animal which resembles sufficiently the behavior of a real
animal, but not so much in details to have too many arbitrary parameters which could make
us jump into false conclusions.

For labeling we have yet again a problem: we can’t manually annotate interactions after
creating some data. Well, in theory we could: we would first create our input data, then we
would have to plot it somehow and to manually say at every timestamp which are the interacting
pairs. After all this is what we will have to do with the real data, so what is the problem?

Fist of all, one of the main goals of our study is to estimate how much data we need to label
in order to build a reasonable model to spot interactions, so we don’t know this information
here yet. Connected to this rises the second problem; we want to synthesize a variable amount

of data, from a lot to very little, an enormous amount of time to perform sensitivity analysis.
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Ideally, this type of analysis can be made automatically, thus we really can’t manually label
our data, and even if we could, it would probably require years.

So how do we automatically label our data? We could say that if two animals are closer
than a certain threshold for a certain time threshold, then they are interacting. The problem
with that is it is too simple. We want to have challenging interactions to be spotted, otherwise
we could wrongly believe our models are good, while they are good only for trivial cases.

As anticipated, we solved these two problems at the same time. We performed a very simple
instance of agent based modeling [36], by building a Finite-State Machine (FSM) artificial agent
intelligence. Agent based modeling is a very wide and complex field, and this work does not
intend on going in depth into that. Given that our needs are not having extremely accurate
behaviors (which for most animals would be impossible to have, otherwise we wouldn’t need to
observe them in the first place), a simple FSM with random transitions will suffice.

We decided to model the behavior of every animal as a machine which lives in several
different states, and that behaves differently accordingly to its actual one. It must have a
movement function which can switch states as well as performing its state behavior.

This FSM must of course be handled case by case, and the only requirement it has, is to
have a special interacting state. In this state, an agent is interacting with at least another one,
and we know who it is interacting with. This makes our labeling of interactions trivial; at any
timestamp, we just look at every agent, if it is interacting, we add an edge of interaction with
every one it is interacting with. Even if our interacting behavior is somehow directed for now,

we can still create an undirected edge (or directed if preferred).
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The nice thing about that is we never miss an interaction, being as close as possible to a
perfect labeling. If we don’t believe it to be the case, we can add uncertainty to the automatic
labeling. However, sensitivity analysis about that is far from useful, because it would be useless
to say to our labelers ‘Be sure to be accurate at least 87% of the time!’” because we are supposing
that they are as accurate as they can be and they wouldn’t know to be mistaken most of the
time.

Finally, this gives us the possibility to actually label a specific behavior not by using our
input data, thus our models will need to reverse engineer the correlations between our input

data and the labelling, which is, said in a less fashioned way, performing supervised learning.



CHAPTER 5

CASE STUDY

We propose a case study where we synthesize some data and do some sensitivity analysis
on it, to show example of how our framework and model work and evaluate our methodology
while possibly giving some insights on general properties of dyadic interactions.

As anticipated, we need to create a random agent FSM. We decided to make one very simple
agent which lives in four different states, and that behaves differently accordingly to its actual
one. We made it fairly simplistic to avoid making assumptions of any type. It has a body and
moves not much more than its body length for every timestamp, but we didn’t assume how it
senses any other agent, thus it has no explicit sensory system. Every number you will see is a
specific instance of our more general parametric model. Of course, their numbers will be pure
(without a dimension such as distance in meters or time etc.), but for the readers’ clarity we
will interpret them as centimeters.

The four states actually implemented are the following:

Normal

e Hungry

Sleeping

Interacting

46
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Figure 5: The actually implemented FSM of our agents. Transitions from states are random,
although their chance may vary.

Figure 5 shows the FSM of our agents. The Normal state is the core of our automaton:
it can either behave ‘normally’ or it can switch to any of the other three states. If it behaves
normally, it can either stay still or move, whereto is irrelevant.

Randomly, the agent can switch from Normal to Hungry state. When it does, its priority
becomes to feed. To implement this behavior we created in our virtual world a spot where our

agents can eat food (and ideally drink), when an agent is hungry, it doesn’t anymore behave at
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random, but it instead moves towards the food spot of the fence and eats there to its heart’s
content (conveniently modeled by a number). After that, it goes back to Normal.

Or, starting from Normal state, the agent can decide to go to sleep. If it goes to sleep it
doesn’t move at all for a variable number of turns. After that, it wakes up and goes back to
Normal.

Finally, it can try to start an interaction. If the agent is in Normal state and wants to interact
with another agent, it can look around itself. If there is another agent close to its position, it
can start interacting with them. This has a completely different behavior than the general case;
the interacting agent starts moving towards and around the other agent (simulating either a
poke or some active jumps around the other individual). Moreover, being playful increases the
chance to interact with any other close agent. If it is interacting with more than one agent at
the same time, it randomly decides who to torment. Also, it randomly decides whether to drop
an interaction with an agent at any time and, if there are no more interactions active, it goes
back to Normal.

In details, we implemented our agent behavior with these parameters:

e Normal state is the starting state of any agent.

e While in Normal state, it can transition to Hungry or Sleeping states with 5% chance
each, and if sufficiently close (there is at least one other agent closer than 50 cm to our

target agent) it has a 20% chance to transition to Interacting state.

e An agent in Sleeping state stays there for a random number of timestamps varying from

3 to 20.
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e An agent in Hungry state, once reached a feeding spot, stays there for a random number

of timestamps varying from 1 to 4.

e While in Interacting state, an agent can start interacting also with another agent very
close to it (less than 30 cm) with a 30% chance. However, any occurring interaction can

drop with a 40% chance at the beginning of every timestamp.

The interacting likelihood is a parameter we will modify later, to make interactions occur less
and less often to make sensitivity analysis on our models.

Modeling an animal this way is reasonably similar to a real animal behavior (which still
needs several parameters to be set to better resemble them, such as sleeping time, movement
chance and so on), but not as specific to be close to one specific type of animal, and does
not assume anything like the line of sight, hearing and smell of an animal, which is usually
unknown.

Notice that this behavior construction is made purposely to have hard time inferring inter-
actions from our model. It is most likely going to be harder than the real labels, so that we
can give a lower bound for our parameters to surely have acceptable results even on simpler
cases. Of course, for this to be the case, the right types of sensors must be given for the specific
interaction we are interested in (suppose we are interested in a type of interaction between two
animals that is performed by some arms’ movements, and we don’t have any accelerometer data
in the arms of the animals. That interaction is impossible to be spotted with no false positives,

regardless of the model).
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However, this is only a draft and can be either made simpler or more realistic. Some
examples for improvement are: to really model the starving factor of an animal as well as its
fatigue which directly affect which state is most likely to be selected. To model the orientation
of an animal and its field of vision (otherwise the orientation would be useless). To say that
if you are sleeping and an interacting animal pokes you, or even every time a animal stumbles
across you, you have a chance to wake up. Or, if some animal is interacting with you and you
are not sleeping or hungry, you have a very high chance to either avoid it, or start interacting
as well. As anticipated, the last improvements regarding interaction were not implemented to
make the inference harder and more general, but if you are willing to have a more realistic
interaction, it is implementable in our framework in theory. However, once the complexity of
the agents becomes reasonably big, we suggest using specific tools for agent based modeling
such as NetLogo [37]. Nevertheless, care is recommended if following that route; setting the
wrong (very specific) parameters w.r.t. the real animal’s might result in completely misleading
results.

We will put our agents in a MxN (5x5 is what we arbitrarily decided) m? fence. Whenever
we say we use fixed position beacons in this work, we will refer to a configuration where beacons
are positioned in a very redundant way; they are positioned in a grid, where their distance from
either a wall or another beacon is exactly as big as its range, thus we are confident that an
agent would be sensed by at least two beacons in most places, if there weren’t reliability issues.

Figure 6 shows our target positions of beacons.
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Figure 6: Positions of beacons in the synthesized world. The blue dots represent the beacons
containing the receivers.

First, we have to estimate some parameter thresholds regarding error and reliability of our
sensors. We don’t suppose our sensors (both transmitter and receivers) will be 100% reliable.
Thus, we will estimate that their reliability, that is the probability to send/receive a signal,
will never exceed 95%. Also, in our synthesized world we could be 100% sure of the distances
between the two sensors, thus we add positional errors being sent from the transmitters and
a distance error being received by the receiver. They are both coming from a Gaussian noise,
where we give as input parameter the standard deviation.

A reasonably starting value for these errors is, given that the maximum sensed distance is

100 cm, we give a transmitter standard deviation of 10, and receiver distance standard deviation
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of 15. Thus we suppose our signals to be reasonably noisy to begin with because it wouldn’t
make much sense to suppose no noise in our default case.

For all our evaluations, we will always use a test size of 2000 time frames. This is large enough
to give us relevant estimates of our results, but more importantly it is necessary to always have
the same arbitrary size once decided, to be able to compare results with different parameters.
Also, we will use a cost matrix where false positives are weighted 1, false negatives are weighted
3, and true positives and negatives have 0 weight whenever we don’t specify otherwise. The
cost matrix is a sometimes crucial parameter which has to be manually inserted. There is no
objective way to define the best cost matrix, however a good rule of thumbs looks like to weight
false negatives close to the inverse ratio of their proportion with false positives.

However, input size is the most important parameter to estimate as first; the lower the input
size needed, the faster all our other analyses will be.

Also, as the generation of the data is a random process, as well as some inner calculations
of our classifiers while being trained (think of how a Neural Network gets trained, or a Random
Forest, for example), we want to repeat every analysis multiple times and average results. We
decided 5 to be the number of repetitions, only for computational constraints (some of our
analyses are too long to be repeated more than 5 times for every classifier). Thus, whenever
we show evaluation measures, they are all averaged from 5 runs. Given the variability of
our training phase, we believe that a greater number of tests for each model would be more
insightful. However, as you will see shortly, the variance of our models does not seem like to

be a primal concern.
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Finally, special care must be taken with the parameters regarding our agents; they are very
complex to be finely tuned. At first, we are supposing to have 6 (a partially arbitrary starting
number, driven by the fact that a small number of agents should suffice in showing patterns
and that real world labeling would start with a small number of animals first, however why
exactly 6 was a preference of the author) agents which interact relatively often when they are
close (20 % as stated before) in a time frame. This can and will later be significantly reduced
to see how our models behave with much more unbalanced data. Also, this work will always
put one receiver and transmitter on every single agent, although future analyses might be done
to see what happens with different configurations.

To give an insight of what data without noise would give as a result, we performed two tests,
one without (Table IT) and one with beacons (Table III), where there is no noise whatsoever.
We will also show its uncertainty, so we performed 10 runs each (twice what we will do after

this) to be more precise on the analysis.

TABLE II: EVALUATIONS OF SEVERAL MODELS FOR A CONFIGURATION WITH NO
BEACONS AND A TRAINING SET OF 10000 SAMPLES WITHOUT NOISE

Method Cost Accuracy Precision Recall
Baseline 12371 + 643 0.677+0.019 | 0.390+0.014 | 0.800 4+ 0.018
SVM 13857 £ 630 0.638 +£0.022 | 0.356+0.017 | 0.776 +0.016
NN 8793 + 1184 0.782 £0.018 | 0.506 + 0.008 | 0.834 +0.049
Bagging 7753 £1091 | 0.784 +0.028 | 0.509 £ 0.021 | 0.906 + 0.016
Boosting 8169 + 966 0.774 £ 0.025 0.496 + 0.02 0.896 £ 0.015
Random 8136 + 868 0.775+£0.021 | 0.497+0.018 | 0.896 +0.019
Forest,
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TABLE III: EVALUATIONS OF SEVERAL MODELS FOR A CONFIGURATION WITH
BEACONS AND A TRAINING SET OF 10000 SAMPLES WITHOUT NOISE

Method Cost Accuracy Precision Recall
Baseline 12085 + 610 0.687 +0.013 | 0.397 +£0.009 | 0.796 £+ 0.016
SVM 10759 + 474 0.710 £0.014 | 0.4224+0.008 | 0.846 + 0.010
NN 19720 +£ 1509 | 0.7314+0.053 | 0.196 +0.144 | 0.121 £+ 0.094
Bagging 7863 + 859 0.782+0.021 | 0.504 +0.018 | 0.900 + 0.022
Boosting 8147 + 704 0.776 £0.017 | 0.496 +0.017 | 0.892 + 0.021
Random 7763 + 729 0.784 +0.019 | 0.506 + 0.021 | 0.904 4+ 0.017
Forest

We can see from Table II and Table III that bagging performs better than any other classifier
with no beacons, and random forest performs better with beacons. This might be because when
we significantly increase the number of input features, having a higher variability in our default
decision trees is better than having a higher accuracy. However, we can also notice that our top
performing classifiers do not gain much from having beacons when there is no noise, hinting
that fixed positions do not help for spotting interactions. We can also notice that NN perform
terribly with beacons, and we will discuss about that later, and that SVM improves significantly
in both precision and recall. Finally, notice that variance of our models is not of crucial concern,
especially for recall.

5.1 Estimating the Training Size

Estimating the size of the training data needed to have reasonable results is extremely

important. We will have to estimate them for at least two configurations:

e Without fixed position beacons holding receivers.
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Figure 7: Cost evaluation of our selected models with different training size and with no beacons.

e With them.

The reason is simple; the size of the input features significantly increases when we add those
beacons, thus it may be the case that a small size of data for the first configuration is not
enough for the second.

We will start without beacons and see how our models behave with gradually less data.
We start from 10000 time frames which we believe it to be reasonably high (it would mean
that 10000 different time frames would have been manually labeled, which is unlikely), and go

downwards in a non linear fashion.
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Figure 8: Recall evaluation of our selected models with different training size and with no
beacons.

The first thing we can notice is that even if having a configuration with no noise improves

the results, it doesn’t for the top performing classifiers in a significant way.

Looking at Figure 7 we can see different things: although as we could expect the more data

we have, the better we predict, there appears to not be significant difference between 10000

and 5000, and starting from 5000 going downwards the cost evaluations of most classifiers drop
significantly.

In particular, the best classifier appears to be Bagging when we feed it with a lot of data

(10000-5000) and there is no significant difference among the three ensemble methods with lower
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Figure 9: Precision evaluation of our selected models with different training size and with no
beacons.

data. As expected, the Baseline performs consistently with a little variety in the results. Also,
SVM has the worst performance consistently among the not baseline classifiers and doesn’t
seem to perform significantly better than the baseline even with a lot of data. Finally, NN
performs better than the baseline with a lot of data, but struggles with less.

Figure 8 shows us the recall evaluations of our models. It appears that NN still struggles
to have a high recall even with cost sensitive learning, while all other models lose only a small

amount of recall, exception made for the 500 training size configuration.
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Figure 10: Cost evaluation of our selected models with different training size and with beacons.

Figure 9 shows the precision of our models. Interestingly NN is competitive with the en-
sembles methods here, and, exception made for Bagging and SVM, they keep a stable value by
decreasing the training size.

Adding information from fixed position receivers, as we can see in Figure 10, shows a
little improvement on bagging, a remarkable improvement on SVM, which appears to perform
extremely better than the baseline with a lot of data, no improvement for both boosting and
random forest as well as no improvement for bagging with little data, and a surprising worsening

of the performance for NN, most likely caused by underfitting.
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Summing things up:

e There does not appear to be an extreme advantage on using fixed position sensors for the

top performing classifiers, with this little noise in the data, even if it helps a bit.

e NN tuning of layers and number of neurons appears to be extremely difficult and time

consuming to be used in an automatic way, for so many different configurations.

e Although having more data does improves the results, we cannot always use a large
amount of data for computational constraints as well as for comparisons with real world
labeling, thus we will use 2000 samples from now on, which still gives reasonably good

performance while maintaining small enough computation time.
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Figure 11: Cost evaluation of our selected models with different transmitter reliability and with
no beacons.

5.2  Sensor Reliability

How reliable must sensors be to still have reasonable results? In this Section, we are inter-
ested in dropping the reliability of a transmitter to send a signal. If it doesn’t, in that time
frame no receiver receives it.

We will not use NNs anymore, as they appear to not be fit for the task, and we will decrease

the reliability in a non linear fashion again. The first analysis is done with no beacons.
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Figure 12: Recall evaluation of our selected models with different transmitter reliability and

As expected, the performances drop for all classifiers (Figure 11). In particular, the precision

is harmed significantly by this noise, as shown in Figure 13, for our ensemble methods, while

both SVM and the baseline keep their (low) performance stable.

Surprisingly, recall remains very high.

In particular, the ensemble methods are able to
make reasonable inferences even with extremely unreliable data, as seen in Figure 12, even if

the precision falls behind 40%, maintaining a 80% recall.

Finally, our baseline’s recall drops drastically, making it not usable at all.
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Figure 13: Precision evaluation of our selected models with different transmitter reliability and
with no beacons.

Unexpectedly, adding fixed position receivers does not help even with unreliable transmitters
for all models but SVM, which improves significantly (Figure 14).
However, we can conclude that these receivers are not needed in such a configuration, by

looking at the top performing classifiers again.
5.3 Sensor Error
Transmitter and receiver errors are modeled in two different ways and have two different

effects on our input data. We will first increase the noise on solely the transmitter signals.

Second, we will analyze the effects of the noise in the receivers.
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Figure 14: Cost evaluation of our selected models with different transmitter reliability and with
beacons.

5.3.1 Transmitter Error

It appears that this kind of noise heavily impacts the performance of all our models in a
configuration with no beacons (Figure 15). The baseline’s performance in particular is terri-
ble, while our models still keep respectable results. In particular, recall remains untouched
(Figure 16), while precision drastically drops (Figure 17).

Apparently, adding beacons does not mitigate significantly the errors caused by this type

of errors (Figure 22), which was to be expected because beacons have no transmitters.
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Figure 15: Cost evaluation of our selected models with different transmitter error and with no
beacons.

5.3.2 Receiver Error

With respect to the transmitter noise, this kind of noise impacts significantly less the per-
formances of our classifiers (Figure 19). Recall still performs well (Figure 20), while precision
decreases with a ‘lesser’ slope (Figure 21).

Again, the gain of accuracy adding beacons does not justify their cost even to mitigate this

kind of noise (Figure 22).
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Figure 16: Recall evaluation of our selected models with different transmitter error and with
no beacons.

5.4 Feature Relevance

We are interested in knowing what are the input features that impact the most on our

models, to eventually trim down the input size
We split our input features into:
e Absolute pairwise distances.

e Ranking pairwise distances.

e Speed of agents.
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Figure 17: Precision evaluation of our selected models with different transmitter error and with
no beacons.

Exception made for the speed features, which are useless by themselves, we tried every com-
bination of features with our standard configuration of 2000 training size, standard noise and
with and without beacons.

As we can see from Figure 23, it appears that our models without speed features are worse
than the baseline. Also, the ranking distances by themselves give significantly worse results than
the ones obtained with absolute distances alone but they are still very good at both precision
and recall, and the combination of the two does not improve significantly with respect to just

having absolute distances.
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Figure 18: Cost evaluation of our selected models with different transmitter error and with
beacons.

This result is interesting, and it is probably ought to the artificial labeling of our data. It
is extremely reasonable to suppose that humans would label in a way much more similar to
relative ranking distances than absolute ones, thus future work might want to see whether with
different labels the situation might change.

Figure 24 and Figure 25 show recall and precision evaluations, respectively.

Figure 26 shows the cost evaluations with beacons. Exception made for the surprisingly
good results given by boosting and bagging with the configuration of absolute distances and
speed, outperforming the complete features configuration, everything said for the configurations

with no beacons remains true.
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Figure 19: Cost evaluation of our selected models with different receiver error and with no
beacons.

It appears that the best configuration is found with beacons and absolute distances with
speed, using either boosting or bagging, this time with an improvement with respect to the
configuration with no beacons. However, adding beacons generally requires more data and
more computational training time.

5.5 Adding Agents

We are interested in knowing what happens when we increase the number of agents in our
fence. Up to now, we have always had 6 agents in our 5x5 meters squared environment. Now,
we will increment this number. From now on, we will only use absolute distances and speeds,

as it was shown to be more than enough in these configurations. Our cost evaluation starts not
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Figure 20: Recall evaluation of our selected models with different receiver error and with no
beacons.

making sense here, because increasing the number of agents significantly changes the expected
cost, thus we will only show recall and precision. Also, this task turned out to be extremely
time consuming, thus we didn’t perform this evaluation for the configuration with beacons, and
stopped after it took more than one day to compute a complete cycle.

Figure 27 shows recall drops drastically for SVMs, a little for our ensemble methods and

surprisingly it increases for our baseline. Figure 28 shows an increase of precision for all our

classifiers, baseline included.
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Figure 21: Precision evaluation of our selected models with different receiver error and with no
beacons.

It appears that the more agents we add, the more likely we are to have an interaction,
this explains the linear increase in performance for our baseline. Still, our ensemble methods
perform consistently better than it.

We are curious to know what would happen in a larger environment, or with even more

agents, or with a different agents behavior.
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Figure 23: Cost evaluation of our selected models with different features and no beacons.
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Figure 24: Recall evaluation of our selected models with different features and no beacons.
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Figure 25: Precision evaluation of our selected models with different features and no beacons.
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Figure 26: Cost evaluation of our selected models with different features and with beacons.
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Figure 27: Recall evaluation of our selected models with different numbers of agents and with
no beacons.
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Figure 28: Precision evaluation of our selected models with different numbers of agents and
with no beacons.
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5.6 Decreasing Interactions

Probably the most critical parameter for our models to work is the likelihood of interactions
between two close animals.

As a supervised learning approach which assumes differences among our animals, it generally
needs a lot of data to work properly. When interactions become extremely rare, it starts to be
a very big problem for our model to be trained properly.

We are going to decrease our interaction likelihood and try to understand when our proposed
models become unfit for the task, and different approaches should be considered.

Up to now, we have always used a 20% chance of interaction between two close animals.
We will start with 50% and decrease it significantly, with a training size of 2000 timestamps,
a cost matrix which considers false negatives three times more important than false positives
and only using absolute distances and speeds, as before.

Also, comparing results with our cost function doesn’t make sense here again, because
decreasing positives modifies the expected result of an evaluation. Thus, we will analyze recall
and precision only.

Figure 29 shows how the baseline quickly drops down to not ever predicting a positive result,
while our models appear to hold a very high recall up to 5% interactions, to drastically drop
their performance after.

Figure 30, however, shows how precision drops all the time we decrease the likelihood of

interactions and even more when we reach 1%.
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Figure 29: Recall evaluation of our selected models with different likelihood of interactions and
with no beacons.

This was again predictable, because if the agents stay in the same small environment but
interact less, its is extremely likely that just by chance more of their random movements look
like an interaction, but it isn’t. If we had a different type of interaction, in a bigger area, where
being close to each other significantly increases the likelihood of an interaction, or with more
specific accelerometer and orientation data, we expect our model to perform much better.

Still, we asked what would happen if we had more data. First of all, we modified the cost
matrix to consider false negatives ten times more than false positives, then we significantly

increased the training size to see if our models improved and by how much.
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Figure 30: Precision evaluation of our selected models with different likelihood of interactions
and with no beacons.

Figure 31 shows how recall increases until it stabilizes at 96% for all models but the baseline,
which remains unable to predict a positive interaction. Figure 32 shows how precision grows
very slowly, becoming excessively slow after 50000 samples.

This suggests us that for spotting this specific kinds of interactions, either this model might
be too complex and we would need too much data, thus we should go with pairwise independent
models, or it is too difficult to understand when an interaction does not occur without dropping
the more important recall. Future work might want to question this idea by using simpler

models.
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Figure 31: Recall evaluation of our selected models with different training size, 1% likelihood
of interactions and no beacons.

Finally, we tried all these configurations with beacons too, but the results are conceptually

identical, thus we avoided to insert them here.

5.7 Case Study Conclusions

We performed sensitivity analysis on our case study with FSM agents in a virtual fence with
and without fixed position receivers.
The more training data we have, the better we classify. Reliability on transmitters is not

critical for practical configurations, but their error is. Receivers error is sustainable in small
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Figure 32: Precision evaluation of our selected models with different training size, 1% likelihood
of interactions and no beacons.

amounts and in our configurations having fixed position beacons doesn’t seem to be necessary,
even with extremely noisy data.

With the types of interactions we created, ranking distances perform worse than absolute
distances, but they are still very useful by themselves. However, we believe them being worse
than absolute ones might be caused by our bias at creating interactions in that specific way,
so it might be that more realistic agents or human labeling might turn this conclusion upside

down.
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Increasing the number of agents improved our performances, probably by making our pre-
dictions easier, but significantly increased the computational time needed to perform our tests.

Finally, decreasing the likelihood of agents interactions extremely impacted our results,
dropping the precision by an exponential amount. This might be caused by either some inherent
factors due to our synthesized model, or because of the extremely big amount of data required
to make good predictions. We believe that once reached a 1% chance or less of interaction
for two close animals, it is worthwhile starting to make some assumptions and try with some
simpler methods which require much less data, to see if their performance outperforms our

more needy model.



CHAPTER 6

CONCLUSIONS AND FUTURE WORK

We introduced a new way of using proximity data extracted from RSSI values to infer pair-
wise interactions of animals. We created different models for a supervised learning, assumptions
free environment. We created a framework to perform extensive sensitivity analysis for cali-
brating any sensor system for inferring biological interactions which gives us the best model to
use given any type of sensor data.

Our models work with arbitrary sensor data (GPS data can be used as well, of course it is
still recommended to give distances and not positions as inputs) and can use context variables
such as time of the day, season, specific places and so on.

Our framework for sensitivity analysis can be used to give guidelines for deploying sensors
for a real configuration as well as suggesting the amount of training data required, and can give
protocols for models and parameters selections.

Actual suggestions we were able to give to biologists are: we showed evidence supporting the
thesis that ranking distances are useful and usable, that BLE sensors can be used in the field,
that fixed position beacons are not necessary when we are interested in dyadic interactions, at
least when we can have pairwise distances by applying them to animals, that accelerometer
data is vital to spot specific types of interactions. We also discussed about when such models

can be used and for what types of interactions. Finally, we gave some guidelines to how much
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data we would need to have labeled for our models to work, with respect to the likelihood of
interactions.

Future work can be done in many areas: we definitely need to try our models with human
labeled data to see how it performs with real configurations.

We can add information of orientation of animals, to be able to give an idea if an animal is
looking at another kin or not, which might significantly increase the accuracy of most human
labeled and better synthesized models.

We can exploit Active Learning [33] to manually aid our model where it doesn’t perform
well, in our case, to try to increase the precision, trying to understand when it isn’t able to
spot a false positive and focus on labelling the types of interactions that are classified with the
most errors, effectively decreasing the amount of data to label.

Comparing the performance of our model with respect to a simpler one which assumes
independence of individuality and of interactions is extremely important, therefore we expect
to build a new family of models and compare it with the ones we discussed here in a future
extension of this work [38].

Finally, we might also be interested in knowing the absolute positions of our animals given
our sensor, to see if it is possible to accurately triangulate their positions in a closed environ-

ment.
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