
Invariant Kernels for Few-shot Learning

by

Amlaan Bhoi
B.Tech., Amity University, 2017

Thesis submitted in partial fulfillment of the requirements
for the degree of Master of Science in Computer Science

in the Graduate College of the
University of Illinois at Chicago, 2019

Chicago, Illinois

Defense Committee:
Xinhua Zhang, Chair and Advisor
Tanya Berger-Wolf
Xiaorui Sun

Copyright by

Amlaan Bhoi

2019

I dedicate this to my parents who have supported me throughout everything.

iii

ACKNOWLEDGMENTS

I would first like to express my deepest gratitude and appreciation to my thesis advisor

Professor Xinhua Zhang for giving me the opportunity to work with him. He always kept his

door open for any questions I had or needed the correct direction in research. For the times I

was lost, he made sure to steer me back to the correct track.

I would also like to thank Somshubra Majumdar for the invaluable, stimulating discussions

we had about theoretical concepts and code implementation. He helped me discover problems

that I missed or brainstorm ideas to implement. Porting theory to efficient code requires

competing thoughts and Somshubra was integral in that process.

I would also like to thank Professor Chris Kanich for access to the BITS cluster where

the majority of the experiments in this thesis were conducted on. I would also like to thank

Professor Tanya Berger-Wolf and Xiaorui Sun for agreeing to serve on the defense committee.

Finally, I would like to greatly thank my family and friends for providing me with continuous

encouragement throughout this journey. My parents have been the backbone on which all this

is possible. I would like to specifically thank Kamal Ballava Dash for being a constant source

of motivation, support, and guidance. I would also like to thank Debojit Kaushik, Shubadra

Govindan, and Sandeep Joshi for their unfailing support and bolstering words.

AB

iv

TABLE OF CONTENTS

CHAPTER PAGE

1 INTRODUCTION . 1
1.1 Motivations . 2
1.2 Limitations of Previous Work 3
1.3 Contributions . 4

2 PROBLEM DEFINITION . 6
2.1 Few-shot Learning Problem Description 6
2.2 Datasets . 8
2.2.1 Omniglot . 8
2.2.2 MNIST . 8
2.2.3 MiniImagenet . 9

3 BACKGROUND . 12
3.1 Machine Learning Overview . 12
3.1.1 Categorization . 12
3.1.2 Learning Paradigm . 13
3.2 Deep Feedforward Networks . 14
3.3 Optimization . 15
3.3.1 Stochastic Gradient Descent . 18
3.3.2 Adaptive Moment Estimation 18
3.4 Convolutional Neural Networks 19
3.5 Shift Invariant Kernels . 24
3.6 Low-Rank Matrix Approximation 25
3.6.1 Singular Value Decomposition 25

4 PREVIOUS WORK . 27
4.1 Prototypical Networks for Few-shot Learning 27
4.1.1 Model definition . 28
4.2 Model-Agnostic Meta-Learning for Fast Adaptation of Deep

Networks . 28
4.3 Learning to Compare: Relation Network for Few-Shot Learning 31
4.3.1 Model Definition . 32
4.3.2 Network Architecture . 33
4.4 Invariance Learning . 35
4.5 Local Group Invariant Representations via Orbit Embeddings 36
4.6 Kernel Approximation . 38
4.6.1 Problem with Kernel Matrix Calculation 38

v

TABLE OF CONTENTS (Continued)

CHAPTER PAGE

4.6.2 Nyström Approximation . 39

5 METHODOLOGY . 43
5.1 Problem Formulation . 43
5.2 Data Pre-computation . 44
5.3 Relation Network . 47
5.4 Mini Relation Network (MRN) 48
5.5 Evaluation . 50

6 EXPERIMENTAL RESULTS . 52
6.1 Experiment Settings . 52
6.2 Experiment Scenarios . 53
6.3 Results . 55
6.3.1 Baseline Method . 55
6.3.2 Modified Relation Network . 55
6.3.3 Mini Relation Network . 56
6.4 Observations . 58

7 CONCLUSION AND FUTURE WORK 62

CITED LITERATURE . 64

VITA . 67

vi

LIST OF TABLES

TABLE PAGE

I MODIFIED RELATION NETWORK: EMBEDDING MODULE AND
RELATION MODULE OUTPUT . 51

II MINI RELATION NETWORK: EMBEDDING MODULE AND RE-
LATION MODULE OUTPUT . 51

III BASELINE RESULTS . 60

IV ACCURACIES FOR MODIFIED RN AND MINI RN ON OMNIGLOT 60

V ACCURACIES FOR MODIFIED RN AND MINI RN FOR MNIST 60

VI ACCURACIES FOR MODIFIED RN AND MINI RN ON MINIIM-
AGENET . 61

vii

LIST OF FIGURES

FIGURE PAGE

1 On the left, we have the support set S with known labels. On the right,
we have the query image from B without ground truth available to the
learner. 7

2 Sample images from the Omniglot dataset. 525/1623 character classes
are shown here with one example from each class. 9

3 Sample images from the MNIST dataset. This figure shows the pixel
values inverted. Original pixel value range was 0 = white and 255 = black. 10

4 Randomly sampled images from the MiniImagenet dataset. 11

5 Feedforward Neural Network: A computational graph representing an
N -level feedforward neural network. Since we have every node Ii or Hi

connected to every subsequent node in the next layer, this is a fully-
connected network. 16

6 An example of sparse connectivity (above) versus full connectivity (be-
low). With x3 as input, we have s2 − s4 as activated neurons for next
layer in sparse connectivity. We have s1 − s5 activated neurons in full
connectivity. [1] . 21

7 An example of parameter sharing (above) versus non-parameter sharing
(below). The top paradigm has the same parameter being shared across
all input dimensions. The bottom one has the parameter not being
shared and is local to its current input xi. [1] 22

8 Singular Value Decomposition: We can decompose our matrix A into
Uk and VT

k with Sk containing sorted, non-zero elements in its diagonal.
Our low-rank approximation of A is thus: Ak = UkSkV

T
k 25

9 Relation Network architecture for a 5-way, 1-shot classification problem
with one query example. 34

viii

LIST OF FIGURES (Continued)

FIGURE PAGE

10 In this figure, we present an example of our procedure. For every image
Ii, we generate r transformed samples (in this case, r = 3). We patch
these r transformed samples and stack these patches linearly. Our input
to our Nyström’s approximation is this large matrix. After we approxi-
mate patch features, we take the average of these features patchw-wise
as shown. These averaged features are now our input to our Relation
Network. 46

11 Here, we see our we define a patch P (i, j) based on the indices in the
original image. We have (h,w, c) as the original image’s height, width,
and number of channels. Subsequently, we have Ph, Pw, Pc as a patch’s
height, width, and number of channels. 47

12 Modified Relation Network architecture for few-shot learning. The over-
all architecture is inspired by the original Relation Network. Here, our
input feature vectors are not images but our transformed features with
shape (P, P,m) where P is the number of patches. 49

13 Small Relation Network architecture for few-shot learning. This is our
smaller model with one conv block in both the embedding module and
relation module. 50

14 Accuracies for Modified Relation Network and Mini Relation Network
versus the Baseline method on Omniglot. 57

15 Accuracies for Modified Relation Network and Mini Relation Network
versus the Baseline method on MNIST. 57

16 Accuracies for Modified Relation Network and Mini Relation Network
versus the Baseline method on MiniImagenet. 58

ix

LIST OF ABBREVIATIONS

SVD Singular Value Decomposition

GAN Generative Adversarial Network

MLP Multilayer Perceptron

SGD Stochastic Gradient Descent

CNN Convolutional Neural Network

SVM Support Vector Machine

RLS Regularized Least Squares

RN Relation Network

MSE Mean squared Error

RBF Radial Basis Function

MRN Mini Relation Network

CKN Convolutional Kernel Network

x

SUMMARY

Recent work on few-shot learning, the problem of learning with data starved classes, has

dealt with developing meta-learning and improving distance-based algorithms. However, most

of these approaches do not strongly consider the robustness of the model to perturbations or

transformations. In the domain of computer vision, this perturbation can be introduced in

terms of rotation, translation, translation, and more. Standard approaches that combat such

perturbations, i.e., enforcing invariances, are based on data augmentation, which simply trains

the model with the training set explicitly multiplied by applying the transformations of interest.

This procedure can be expensive due to the much increased size of training set. In this thesis,

we propose to introduce a variety of invariances in few-shot learning through orbit embeddings

that implicitly and approximately integrate the images resulting from an orbit/trajectory of

transformation.

We first use a procedure to create image patches in a set of transformed images. We then

extend the idea of modeling invariance through orbit embeddings to patch-wise representation.

This allows us to use convolutional neural networks for spatial invariance modeling. These

embeddings can be calculated through kernels such as the Gaussian kernel. However, calculating

such a large kernel will be computationally expensive. Thus, we use Nyström’s method as means

to generate a low-rank matrix approximation of the kernel matrix to reduce computational

requirements.

xi

SUMMARY (Continued)

We then input these transformed features as input to a modified Relation Network for the

task of classifying N -way, N -shot classification. We test our framework in 5-way, 5-shot and

5-way, 1-shot classification for evaluation.

We show the performance of our framework on three popular few-shot learning datasets:

Omniglot, MiniImagenet, and MNIST. We empirically show that under heavy test-time data

augmentation, our approach outperforms baseline methods.

xii

CHAPTER 1

INTRODUCTION

Recent advances in deep learning research have produced a deluge of models that perform

a specified task well. These models are complex function approximators that minimize an error

to increase accuracy or other objective. A majority of these models have achieved state-of-the-

art performance on a wide variety of datasets in the domain of natural language processing,

information retrieval, or visual recognition.

A primary assumption of training these deep learning models is that we have a huge abun-

dance of training samples per training class. This assumption also encompasses situations where

we have training samples with a variety of transformations or variations in the images. This

is to ensure the model generalizes well to a diverse range of test images rather than learning a

specific representation of an object/class.

However, this assumption cannot be guaranteed and often is not true in real-world scenarios.

As an example, let us assume we have a visual dataset of animal images from a forest. It is

highly possible we do not have images of endangered animals or creatures. Another possibility

is we have too many images but the cost of human annotation is too great. In these scenarios,

we would not have enough labeled instances to train our models on. Therefore, it would be

great to generalize our model to instances belonging to classes with scarce amount of data or

no data at all. We call the problem of not having enough training instances for some class C

as data starvation.

1

2

To solve the problem of data starvation, there has been recent research on developing models

for few-shot learning also known as low-shot learning. A more in-depth definition is given in

the next section. The approach is to create a meta-learning algorithm to learn learners or use

a distance-based approach to create a mapping between input samples with respect to training

samples.

However, a highly overlooked issue with these approaches is the algorithm’s robustness to

perturbations or variances in data. They do not model invariance in their learning without

generating additional samples and thus fail to generalize at test time where there may be heavily

transformed data as input. Thus, we need a method to introduce invariance to such models

with provable results.

1.1 Motivations

Many previous approaches to modeling invariance of input data in few-shot learning stem

on naively generating more samples with random augmentations. This approach is called the

virtual sample approach. If we take the case of images, this can include randomly rotating or

scaling images with a probability. However, this method just multiplies the dataset size by the

number of invariances. Another approach is to generate more input samples using Generative

Adversarial Networks [2][3] to generate more samples for training. This is clearly more expensive

and computationally more time consuming for a learning algorithm.

We wish to employ a framework which can strongly induce invariance in our dataset and

provide an input representation that our model can learn without passing more samples through

3

our feedforward neural network at run-time. We wish to develop a representation learning

algorithm while retaining computational and spacial efficiency.

Thus, we wish to utilize kernel representation learning using shift-invariant kernels such as

Gaussian kernels. However, applying Gaussian kernels at the level of entire images will lead to

loss of properties required by convolutional neural networks such as spatial invariance. Thus, we

wish to apply these kernels on patches of images. Another issue is that calculating such a large

kernel matrix is computationally expensive. Thus, we utilize Nyström’s method to approximate

this kernel matrix.

1.2 Limitations of Previous Work

Previous works in few-shot learning [4][5][6][7][8] have not strongly studied the effect of

invariance in modeling. For example, the first approach that introduced a hint of invariance to

input data was proposed by Santoro et. al [9] in 2016. They proposed to generate more input

images based on image rotations in the range of {90, 180, 270} degrees. Subsequent papers

such as Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks [4], Prototypicaal

Networks for Few-shot Learning [5], Matching Networks for One Shot Learning [8], and Learning

to Compare: Relation Network for Few-shot Learning [7] follow the same procedure.

Even though these approaches modeled rotations in their learning, there was no guarantee

of strong test time augmentations performed in their results. As we shall see later, testing under

heavily augmented images, we empirically show that one of these algorithms (Relation Network),

does not perform adequately under augmented images. Thus, we need another method to model

4

invariance in our input data so that our model can learn adequately in presence of augmented

data.

1.3 Contributions

In this work, we use the concept of using shallow random features [10] as inputs to our deep

learning model for few-shot learning. This is done in an attempt to reduce model complexity

and to introduce data invariance to our model. We extend orbit embeddings for patch-wise

representation to introduce invariance to transformations in input data. We only consider

images as our input in this work. We can now introduce a variety of invariances to our images

including rotation, translation, scaling, shearing, and more.

We wish to introduce invariance in images that can be fed into a convolutional neural

network, hence preserving the spatial invariance of the model. So, we divided images into

patches which we consider as our samples for our kernel matrix calculation. Now, we can

extract a three-dimensional matrix which can be fed into any convolutional neural network.

However, by patching up images, we have also increased the number of samples that need

to be considered for our kernel matrix. We do not wish to compute the entire kernel matrix

as the number of samples in consideration will be in the order of millions. Thus, we utilize

Nyström’s method for low-rank matrix approximation to approximate our kernel matrix. With

this method, we can greatly reduce our computational cost for computing the kernel matrix.

We then modify the Relation Network (RN) [7] to accommodate for our custom input. We

again modify the Relation Network to create our own version called the Mini Relation Network

5

(MRN) which significantly reduces the number of parameters in our deep learning model. This

is another effort to try to reduce the computational cost of our learning task.

CHAPTER 2

PROBLEM DEFINITION

In this chapter, we formalize our problem statement of few-shot learning. A formal notation

can help us understand the underlying assumptions of the problem. We shall explore problem

formulation for our kernel learning and approximation in Chapter 5. In Section 2.1, we broadly

formulate the few-shot learning problem in a formal manner. In Section 2.2, we describe the

various datasets we use in our training and evaluation procedure.

2.1 Few-shot Learning Problem Description

This problem of learning with few or no samples for certain classes is called few-shot learning.

The learning scenario of few-shot learning has attracted much attention in recent years [5] [9] [4].

These algorithms can be broadly categorized as metric-learning methods [8] [7], hallucination-

based methods [11] [12], or model initialization based methods [13].

Few-shot learning learning scenario consists of a train set, a support set, and a test set

for evaluation [8]. The training set usually does not share any classes with the support set or

test set. The support set and test set may share classes. The formal classification of a few-shot

learning setting is dependent on the number of images and classes in the support set. Let us

assume we have our training samples Dtrain and testing samples Dtest, and we can sample a

set L where L ∼ Dtrain. We can then sample a support set S where S ∼ L. We also sample

B query images from L. These queries act as our validation given information in S. We also

6

7

Figure 1. On the left, we have the support set S with known labels. On the right, we have the
query image from B without ground truth available to the learner.

ensure no samples from S exist in B. We can now randomly sample set L and change it every

episode. This is what is known as episodic training in few-shot learning.

If the support class S has K labeled examples for C unique classes, the problem is called

a C-way K-shot classification. Informally, the support set contains classes which do not have

enough image samples for normal training. In an ideal setting, we could just use the support

set to train the model. However, due to the lack of samples, we do not. We will form more

specific training and testing settings in later chapters. For now, we wish to exploit our training

set to create a mapping between training class samples, support class samples, and test class

samples. For example, let us say we have K = 1 and C = 5, we would have a 5-way 1-shot

classification. In this case, we have only one training sample per class.

8

2.2 Datasets

In this section, we explore the different datasets we train and evaluate our model on. Each

of them have different characteristics and make our learning problem difficult enough to show

generalization.

2.2.1 Omniglot

The Omniglot [14] dataset consists of 50 different alphabets with 1623 characters (or classes)

across all of them. There are 32460 images overall with each image of shape (28, 28). The

dataset was collected by asking 20 people from Amazon’s Mechanical Turk to manually hand

draw these images. Omniglot is a popular choice for evaluating few-shot learning algorithms

as learning each alphabet can be considered as learning a new task. There is limited similarity

across alphabets.

2.2.2 MNIST

The MNIST [15] dataset is a highly popular dataset of handwritten images. The images

contain handwritten digits from 0 − 9 in different variations. There are 60,000 training and

10,000 testing images. MNIST is a great benchmark to test algorithms on as it is comprehensive

in showing the learning performance of CNNs. We also chose MNIST due to the similarity in

nature in image properties between MNIST and Omniglot. The image sizes are of shape (28, 28)

as well. The only difference is that Omniglot images are binary with pixel values in range 0− 1

while MNIST pixel values range between 0− 255. However, both datasets have single channel

dimensions.

9

Figure 2. Sample images from the Omniglot dataset. 525/1623 character classes are shown
here with one example from each class.

2.2.3 MiniImagenet

The final dataset we test our model is on the MiniImagenet [16] dataset. This dataset is

derived from the larger ILSVRC-12 dataset [17]. The MiniImagenet split consists of 60,000

color images of shape (84, 84, 3). There are 100 classes with 600 examples each. These images

are randomly sampled from the ImageNet dataset and serves as a great testing ground for our

few-shot learning setting.

10

Figure 3. Sample images from the MNIST dataset. This figure shows the pixel values
inverted. Original pixel value range was 0 = white and 255 = black.

11

Figure 4. Randomly sampled images from the MiniImagenet dataset.

CHAPTER 3

BACKGROUND

This chapter introduces some background information and concepts required to understand

this work. In Section 3.1, we discuss basics of machine learning and how it is defined. In

Section 3.2, we discuss deep feedforward networks which are the foundations of many deep

learning models today. In Section 3.3, we discuss optimization and backpropagation for deep

neural networks. Then, in Section 3.4, we discuss convolutional neural networks which is the

deep architecture we use for many tasks including visual recognition. In Section 3.5, we explore

shift-invariant kernels and their properties. Finally, in Section 3.6, we explore how to perform

low-rank matrix approximation.

3.1 Machine Learning Overview

Before we dive deep into deep learning, we explore machine learning first. Machine Learn-

ing algorithms are algorithms which learn from data and the output from these models are

data-dependent. Tom Mitchell gives an excellent formulation of a machine learning task which

can be setup in the following manner: “A computer program is said to learn from experience E

with respect to some class of tasks T and performance measure P , if its performance at tasks

in T , as measured by P , improves with experience E.” [18]

3.1.1 Categorization

We can categorize machine learning tasks into many categories with two main categories as:

12

13

1. Classification: Given a set of labeled training samples {(xi, yi)}ni=1 where we have n

training samples, we take input samples as xi and map the input to an output yi. We do

this by approximating a function y = f(x) that can map input values x to the appropriate

y. The assumption is that we have enough samples xi per class Cc. Arguably, classification

is the most famous type of machine learning task. A common classification task is to

identify what object/class an image belongs to. This is known as image classification.

2. Regression: Regression deals with mapping an input value xi to some value yi where yi

is not discrete but continuous. The task is to learn a function f : Rn −→ R. A concrete

example of this task would be predicting the house value given some features such as

number of rooms, location, etc.

3. Clustering: Clustering deals with using some distance metric such as Minkowski’s

distance to cluster data points together in an unsupervised manner. This assumes the

input data does not contain output labels yi. Cluster evaluation is an important topic and

evaluation depends on many factors including the output and domain on which cluster

analysis is being performed.

3.1.2 Learning Paradigm

Our problem in this work is a supervised learning problem. Thus, we will primarily be

concerned with that. A supervised learning algorithm tries to learn a probability distribution

p(x) and to predict y from x, estimate p(y|x). For a vector x ∈ Rn, the joint distribution is

calculated as:

14

p(x) =

n∏
i=1

p(xi|x1, ..., xi− 1). (3.1)

We can also learn this joint distribution by learning the joint distribution p(x, y), then

computing:

p(y|x) =
p(x, y)∑
y′ p(x, y

′)
(3.2)

In practical approaches, we calculate these probabilities using a Softmax classifier. A

softmax classifier estimates the probability distribution by applying a log function on the above

equation.

The learning is done by separating the given dataset X into two sets: a train set and

test set. Both these sets are disjoint where no samples overlap and have no intersection. This

ensures that while we can use the training set to train the model, the algorithm is evaluated on

the test set which has unseen examples. Finally, the performance of an algorithm or model can

be determined by calculating different metrics such as accuracy, precision, recall, F1-score,

and more.

3.2 Deep Feedforward Networks

In this section, we explore deep feedforward neural networks which play as the basis for

many deep learning networks. We assume the reader is familiar with perceptrons. Feedfor-

ward networks are a collection of perceptrons or neurons layered sequentially and layer-wise.

Thus, feedforward networks are also known as multi-layer perceptrons (MLPs).

15

If we consider each layer in a feedforward network as a function f (i), and we have three

layers in a feedforward fashion, then our output would turn out to be a chain combination of

these functions such as: f(x) = f (3)(f (2)(f (1)(x))). Each layer or each function f (i) can be a

non-linear combination of multiple perceptrons. Thus, this is one of the main advantages of

feedforward network; the expressiveness they have in learning non-linear functions. The number

of layers can be considered as the depth of the network.

More formally, the objective of a deep neural network is to approximate some optimal

function f∗(x). Our initial estimate of this function, f(x) is the function that needs to be

optimized to try and match the optimal function. This optimization is generally done through

assigning some weight parameters to the model and optimizing them.

3.3 Optimization

In this section, we will explore how to optimize deep learning models and what optimization

algorithms are generally used for this purpose. We will explore two popular optimization

algorithms: stochastic gradient descent and Adam. Optimization of a deep learning model

to minimize empirical risk and maximize performance P is quite different than traditional

machine learning models. For a given empirical distribution p̂(x, y), we have empiral risk :

Ex,y∼p̂data(x,y)[L(f(x; θ), y) =
1

m

m∑
i=1

L(f(x(i); θ), y(i))], (3.3)

16

Figure 5. Feedforward Neural Network: A computational graph representing an N -level
feedforward neural network. Since we have every node Ii or Hi connected to every subsequent

node in the next layer, this is a fully-connected network.

where m is number of training samples, f(x; θ) is the function output (predicted value), y is

ground truth, and L is the loss function. We can also derive the error function now as:

J∗(θ) =
∑
x

∑
y

pdata(x, y)L(f(x, θ), y) (3.4)

In reality, we have many challenges which prevent us from globally minimizing this risk. A

small subset of these challenges to neural network optimization include:

1. Local Minima: Unlike convex optimization problems, a local minima in a non-convex

function is not guaranteed to be the global minima. A non-convex function which a

17

neural network might try to approximate may have multiple local minimas. However,

with enough training samples, we can eliminate many of these local minimas to result

in the one that is desired. Another point to note is that with a sufficiently large neural

network architecture and dataset, we do not necessarily need to find the global minima

in order to achieve desired model performance.

2. Plateaus, Saddle Points, Other Flat Regions: Let us assume we have a high-

dimensional non-convex function. There might be a point where we have a zero or flat-

tened gradient. This point is called a saddle point. At a saddle point, our second order

derivative matrix has a mixture of positive and negative eigenvalues. As we shall see,

there are algorithms designed to overcome this kind of problem effectively.

3. Exploding Gradients: In a complex enough neural network, we may also have steep

points where gradients change drastically. If we are not careful, our algorithm can jump

off a cliff too quickly and end up with vanishing or exploding gradients. To avoid this,

we can employ a technique called gradient clipping which limits the step size we take

in our gradient update.

4. Inexact Gradients: We may not have determined the exact gradients when optimizing

our algorithm. Our gradients may be noisy or be an estimate of the true values. This can

occur due to the fact that many algorithms sample data in batches instead of running

through gradient updates on the entire dataset. The problem of inexact gradients can

also occur if our objective function is intractable.

18

3.3.1 Stochastic Gradient Descent

Stochastic Gradient Descent (SGD) is one of the most commonly used gradient descent

algorithm today. It computes the gradient of a cost function J(θ) for each training example xi

and ground label yi. SGD heavily depends on the learning rate ε. Due to the nature of gradient

updates, it is useful to decrease the step size we take at every iteration of our optimization. We

can accomplish this by employing a learning rate scheduler to decrease learning rate ε to εk

at every iteration k. This is to prevent overshooting the minima and preventing convergence

condition. Two examples of successful schedulers are linear scheduler or exponential decay

scheduler.

The best way to choose a learning rate epsilon is by empirical analysis. There is no universal

metric for choosing the learning rate. We can observe the loss function and objective function

and adjust our learning rate as required. A more popular variant of the SGD algorithm is

SGD with momentum. Momentum is basically accumulating exponentially decaying moving

average of past gradients to move the current gradient update to their direction.

3.3.2 Adaptive Moment Estimation

Adaptive Moment Estimation or Adam [19] is an adaptive learning rate optimization al-

gorithm. Adam is inspired by adaptive moments. Not unlike the momentum technique, Adam

keeps an exponentially decaying average of past gradients mt. The difference here is Adam has

bias corrections for both first-order moments and second-order moments. While momentum

acts like a ball running down a slope, Adam acts like a heavy ball with friction. Throughout

deep learning literature, Adam is considered as robust to the initialization of hyper-parameters.

19

However, there is still debate about the speed of convergence when compared to SGD with man-

ual tweaking of hyper-parameters.

The ultimate choice of which optimizer to use is up to the user as it can depend on many

factors including how familiar the user is with the hyper-parameters. An actual factor to

consider is also the size and distribution of the dataset. Sometimes, it is easier for SGD

optimizers to converge faster than adaptive moment algorithms. In this work, we utilize the

Adam optimizer.

3.4 Convolutional Neural Networks

In this section, we explore convolutional neural networks or CNNs [20] which are an

extension of feedforward networks in specialized domains such as images or time-series data. In

simple terms, CNNs are feedforward networks with the fully-connected matrix multiplication

operations replaced by convolution operations. We shall define convolution operations and

a special operation called pooling which is extensively used by almost every convolutional

network out there. In a typical convolutional network, we have three stages where we first

start off with several parallel convolution operations concatenated as feature maps, then passed

through a non-linear activation function, and finally passed through a pooling layer. We shall

explore the convolution operation, motivation for CNNs, and the pooling operation.

20

The convolution operation is defined as an operation on two real-valued functions. This

operation can be in the continuous or discrete space. If we only consider our machine learning

case, our function space is discrete. We can define a convolution operation as:

C(x, y) = (K ∗ I)(x, y) =
∑
j

∑
k

I(x− j, y − k)K(j, k) (3.5)

This operation is also commutative. In real-world neural network libraries, the authors imple-

ment the cross-correlation and call it as the convolution operation. This operation is the

same as convolution except we do not flip the kernel matrix K. Thus, our cross-correlation

operation becomes:

C(x, y) = (K ∗ I)(x, y) =
∑
j

∑
k

I(x+ j, y + k)K(j, k) (3.6)

The motivation for employing convolutions instead of normal fully-connected operations can

be divided into three features we can exploit in our specialized data domain.

• Sparse Connectivity: In traditional neural network architectures, we have every neuron

connected with every other neuron in a subsequent layer. This means that the parameter

matrix of one layer is completely dependent on every other parameter from the previous

layer. This does not necessarily hold true in data domains such as images. Thus, con-

volutional networks have sparse connectivity or sparse weights. This can be made

possible by having a smaller kernel matrix K when compared to input m × n. This

assumption and thus concept has many benefits including reducing the number of param-

21

Figure 6. An example of sparse connectivity (above) versus full connectivity (below). With x3

as input, we have s2 − s4 as activated neurons for next layer in sparse connectivity. We have
s1 − s5 activated neurons in full connectivity. [1]

Source: Goodfellow et. al. [1]

22

Figure 7. An example of parameter sharing (above) versus non-parameter sharing (below).
The top paradigm has the same parameter being shared across all input dimensions. The
bottom one has the parameter not being shared and is local to its current input xi. [1]

Source: Goodfellow et. al. [1]

eters shared drastically, reducing memory requirements, improving statistical efficiency,

and reducing the computational complexity of the model. For example, if we have m× n

parameters, our running time in a feedforward neural network would be O(m × n). In

our convolutional network, if we limit to only k connections, then our running time is

bounded by O(k × n).

• Parameter Sharing (spatial invariance): In a traditional neural network, every pa-

rameter associated with a node is local. This means the parameter is used for that input

or node and never revisited. There is no parameter reuse. However, in convolutional net-

works, we can employ the concept of parameter sharing (or spatial invariance within an

image) in which we can share parameters across input dimensions. These parameters are

23

also called tied weights. Because we move the kernel matrix K across different portions

of the image in a sliding fashion, we apply the same transformation across different input

values. We can reuse the same parameters we learned in a different portion of the image

for another portion.

• Equivariant Representations: Due to the sliding nature of our kernel K, our con-

volutional network is invariant to translation transformations. We can say a function is

equivariant and we can expect a similar change in output when there is some change in

input to a function.

The primary motivation behind the pooling operation is to extract the most important

summary from a local patch of information. This also introduces certain sense of invariance to

properties such as translation. There are many types of pooling but the two most popular ones

are Average Pooling and Max Pooling. Max Pooling [21] returns the maximum value out

of a local region while average pooling takes the element-wise average of the region and returns

that value. Pooling operations can be seen as adding invariance to small translations while

also providing an infinitely strong prior for the function to learn from. In popular applications,

pooling is applied with downsampling to reduce computational complexity and reduce storage

requirements.

There are many variants of the convolution operation as well including dilated convolu-

tions, transposed convolutions, and separable convolutions. We shall not discuss these

in our work but these are useful improvements over the vanilla convolution operation.

24

3.5 Shift Invariant Kernels

Kernel functions can be described as mapping some input data to a high dimensional

feature mapping in a Hilbert space H. This can be useful to convert non-linearly separable

features to linearly separable features. This is useful for utilizing the kernel trick in algorithms

such as Support Vector Machines or SVMs where where we do not need to explicity compute

the kernel values. A kernel can be defined as any function in the form:

K(x,x′) = 〈ψ(x), ψ(x′)〉 (3.7)

where ψ is any function that maps input vectors x to a high dimensional vector space. The

intuition is that kernel functions compute the inner-product between two input vectors. The

representation in that higher-dimesion space is that of pair-wise distances between pair of any

two points xi and xj .

Shift invariant kernels are kernel functions which introduce some invariance to the input

data. This can be in form of scale invariance, rotation invariance, or more. In this work, we

consider the Gaussian kernel or also called the Radial Basis Kernel. This kernel function

is defined as:

K(x− y) = e−
‖x−y‖2

2 (3.8)

For Gaussian kernels, the ψ function projects vectors in n dimensional space to infinite dimen-

sional space as: ψRBF : Rn → R∞. In this work, we use a Gaussian kernel as the shift-invariant

kernel to introduce rotation invariance in our images.

25

Figure 8. Singular Value Decomposition: We can decompose our matrix A into Uk and VT
k

with Sk containing sorted, non-zero elements in its diagonal. Our low-rank approximation of
A is thus: Ak = UkSkV

T
k

3.6 Low-Rank Matrix Approximation

Let us assume we have a matrix A of size n×d where n represents a number of points and d

is cardinality of dimensions each point contains. We can also consider this matrix A as singular

(such as an image). If we have n and/or d to be a large number (in order of millions), then it

is difficult for us to store or even operate on this sort of matrix realistically. Thus, we wish to

approximate this matrix by using two smaller matrices U and V . This can reduce our storage

requirements as well as reduce computational complexity.

We can reduce the matrix by reducing the rank of the matrix A.

3.6.1 Singular Value Decomposition

We will use singular value decomposition or SVD for low-rank matrix approximation.

With any matrix K, the SVD can be determined by:

K = USVT , (3.9)

26

where:

1. U is an n× n orthogonal matrix;

2. V is a d× d orthogonal matrix;

3. S is an n× d diagonal matrix with non-negative entries with diagonal entries sorted from

high to low.

The final matrix approximation is:

Kk = UkSkV
T
k (3.10)

Storing the original matrix A requires O(k(n + d) space while our approximate matrix Ak

requires O(nd) space. This reduces our computational storage requirement by a large margin.

CHAPTER 4

PREVIOUS WORK

In this chapter, we explore two distance-based and one meta-learning algorithm for few-shot

learning. We explore how they work and what is the intuition behind them. We also note how

they do not strongly consider data augmentation as a factor in learning. In Section 4.4, we

explore various approaches to invariance learning proposed before. In Section 4.5, we explore a

previous work on using orbit embeddings to learn local group invariant representations in data.

Finally, in Section 4.6, we explore kernel approximation through Nyström’s method.

4.1 Prototypical Networks for Few-shot Learning

Prototypical Networks for Few-shot Learning [5] approaches the problem of few-

shot learning by proposing a method to project a non-linear mapping of input to a high-

dimensional feature embedding space in order to cluster same class points near a single prototype

representation of each class. Classification just simply means finding the nearest prototype

representation. This is a distance metric based approach to compute nearest neighbors in

embedding space instead of input space.

27

28

4.1.1 Model definition

A prototype is defined as a representation ck ∈ RM in an M -dimensional space of a class

through any embedding function fφ : RD → RM with learnable parameters φ. Each prototype

representation is the mean vector of the embedded support points belonging to its class:

ck =
1

|Sk|
∑

(xi,yi)∈Sk

fφ(xi) (4.1)

If we have a distance function d : RM × RM → [0,+∞), prototypical networks produce a

probability distribution over classes for a test point x based on softmax classiifcation in the

embedding space:

pφ(y = k|x) =
exp(−d(fφ(x), ck))∑
k′ exp(−d(fφ(x), ck′))

(4.2)

The model then minimizes the negative log-probability J(φ) = − log pφ(y = k|x) of true class

k using SGD.

Based on the paper’s results, Euclidean distance is an efficient choice. This can be attributed

to the fact that the embedding function can learn the non-linearity in data. To introduce in-

variance, the authors only rotate Omniglot [14] images by 90 degrees randomly. This is not

conclusive and may only introduce noise without contributing to invariance to image transfor-

mations.

4.2 Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks

Finn et.al [4] propose an algorithm for meta-learning that can adapt to various learning

problems including classification, regression, and reinforcement learning. This algorithm is

29

Algorithm 1 Training episode loss computation for prototypical networks. N is number of
examples in training set, K is number of classes in training set, NC ≤ K is number of classes
per episode, NS is number of support examples per class, NQ is number of query examples per
class. RANDOMSAMPLE(S,N) denotes a set of N elements chose uniformly at random from
set S, without replacement.

Input: Training set D = {(x1, y1), ..., (xN , yN)}, where each yi ∈ {1, ...,K}. D denotes the
subset of D containing all elements (xi, yi) such that yi = k.

Output: The loss J for a randomly generated training episode.
V ← RANDOMSAMPLE({1, ...,K}, NC) . Select class indices for episode
for k in {1, ..., NC} do

Sk ← RANDOMSAMPLE(DVk , NS) . Select support samples
Qk ← RANDOMSAMPLE(DVk \ Sk, NQ) . Select query samples
ck ← 1

NC

∑
(xi,yi)∈Sk fφ(xi) . Compute prototype from support samples

end for
J ← 0 . Initialize loss
for k in {1, ..., NC} do

for (x, y) in Qk do
J ← J + 1

NCNQ
[d(fφ(x, ck)) + log

∑
k′ exp(−d(fφ(x, ck))] . Update loss

end for
end for

called Model-Agnostic Meta-Learning. The hypothesis is that training a model with few

gradient steps and on small training data can allow the model to generalize well on new tasks.

The aim of the work is to achieve rapid adaptation in few-shot learning settings.

As a general setup, we consider a model f that maps samples x to outputs a. We can

consider each task T = {L(x1,a1,,xH ,aH), q(x1), q(xt+1|xt,at), H} with loss function L,

distribution over initial observations q(x1), a transition distribution q(xt+1|xt,at), and episode

length H. In the K-shot learning setting, our model f is trained to learn a new task Ti from

only K samples drawn from qi and feedback LTi generated by Ti. The model f is optimized or

trained based on test error.

30

The overall aim is to train a model f to learn low-level feature representations so that

training on new tasks can be rapid without overfitting. In effect, the aim is to find model

parameters that are sensitive to changes in task. These small changes in parameters should

provide large improvements on loss function on new new task Ti.

Algorithm 2 Model-Agnostic Meta-Learning

Require: p(T): distribution over tasks
Require: α, β: step size hyperparameters
1: randomly initialize θ
2: while not done do
3: BTi = Ti ∼ p(T) . Sample batch of tasks
4: for Ti ∈ BTi do
5: Evaluate ∇θLTi(fθ) w.r.t K samples
6: Compute adapted parameters with gradient descent: θ

′
i = θ − α∇θLTi(fθ)

7: end for
8: Update θ ← θ − β∇θ

∑
Ti∼p(T) LTi(fθ′i)

9: end while

The meta-objective that we have can be formally defined as:

min
θ

∑
Ti∼p(T)

LTi(fθ′i) =
∑
Ti∼p(T)

LTi(fθ−α∆θLTif(θ)) (4.3)

The meta-optimization is performed via stochastic gradient descent (SGD) with β as the step

size.

31

Algorithm 3 MAML for Few-shot Learning

Require: p(T): distribution over tasks
Require: α, β: step size hyperparameters
1: randomly initialize θ
2: while not done do
3: BTi = Ti ∼ p(T) . Sample batch of tasks
4: for Ti ∈ BTi do
5: Sample K datapoints D = {x(j),y(j)} from Ti
6: Evaluate ∇θLTi(fθ) using D and LTi
7: Compute adapted parameters with gradient descent: θ

′
i = θ − α∇θLTi(fθ)

8: Sample datapoints D′i = {x(j),y(j)} from Ti for meta-update
9: end for
10: Update θ ← θ − β∇θ

∑
Ti∼p(T) LTi(fθ′i) using each Dii and LTi

11: end while

For discrete few-shot learning classification with cross-entropy loss, our loss function takes

the form:

LTi(fφ) =
∑

x(j),y(j)∼Ti

y(j) log fφ(x(j)) + (1− y(j)) log(1− fφ(x(j)) (4.4)

For K-shot classification, we take K input/output pairs from each class for a total of N ×K

data points for N -way classification.

In terms of introducing invariance to data, for the Omniglot [14] dataset, the authors also

rotated the images randomly in 90 degree increments as proposed by [9]. However, again, this

is not conclusive and does not provide a strong evidence of invariance in a principled manner.

4.3 Learning to Compare: Relation Network for Few-Shot Learning

Sung et.al. [7] presented a framework for few-shot learning which is fairly straightforward

and extensible. Their model is a distance metric based approach rather than the meta-learning

32

based approach other authors have proposed. In brief, the relation network learns to classify

query images based on few examples of new classes without updating the network any further.

The Relation Network (RN) contains two branches. This network then learns to compare

query images against few-shot labeled sample images. The two modules in this relation network

are the embedding module and relation module. The embedding module generates internal rep-

resentations of query images in some d-dimensional space. The relation module then determines

if these representations are from an existing matching category or not.

4.3.1 Model Definition

More formally, the Relation Network (RN) contains two modules: an embedding module fψ

and relation module gψ. If we have sample images xj from query set Q and sample images

xi from sample set S, we can feed them into the embedding module fψ to produce feature

maps fψ(xi) and fψ(xj). These individual representations are then combined with an operator

C(fψ(xi), fψ(xj)). We can assume C(·, ·) to be anything. The authors defined this operator as

a simple concatenation of the two feature maps in depth. This operator is open-ended and any

other operator can be tried.

This combined feature map can now be input into our relation module gψ which eventually

regresses between a value of 0 to 1. This value, which the authors call the relation score,

represents the similarity between xi and xj . For theK-shot setting, the outputs from embedding

module are summed up element-wise. This pooled class-level feature vector is combined with the

33

query vector. Given a C-way classification setting, the relation score between xj and training

sample set xi can be viewed as:

ri,j = gψ(C(fψ(xi), fψ(xj))), i = 1, 2, ..., C (4.5)

The objective function is optimized over the mean square error (MSE) loss as follows:

ψ, φ← argminψ,φ

m∑
i=1

n∑
j=1

(ri,j − 1(yi == yj))
2 (4.6)

The overall working of the relation network can be visualized in Figure 9.

4.3.2 Network Architecture

Following most few-shot learning papers [5][8], the authors decided to use four convolutional

blocks in a stack for their embedding module. The embedding module should be able to extract

meaningful representations from the images. The original implementation calls for 64-filter,

3× 3 convolution, batch normalization, and a ReLU nonlinear layer. The first two blocks also

contain a 2×2 max-pooling layer to downsample feature maps for less expensive concatenation

later for the relation module. The relation module contains two convolution blocks followed by

two fully-connected layers of size 8 and 1, respectively. All fully-connected layers have ReLU

nonlinearity except the last layer which has Sigmoid activation. In our work, we make certain

modifications which we explore more in detail in Chapter 5.

34

Figure 9. Relation Network architecture for a 5-way, 1-shot classification problem with one
query example.

35

4.4 Invariance Learning

Incorporating invariance in machine learning has been extensively used to bias supervised

learning with a given representation of data. Invariant representations can help algorithms be

more robust to adverse or perturbed data. There is a large body of existing work that try to

model invariance in learning.

For example, given a space of functions and representation of data, one approach is the

virtual sample approach, a.k.a data augmentation [22]. This approach explicitly adds perturbed

samples into training set. This approach, however, is computationally expensive and has higher

storage requirements. Beside the stochastic nature of the approach, it also multiplies the

training set by the number of invariances.

An approach to tackle these issues is to approximate invariance. Sparse approximation

greedily finds the most violated invariance but the bottleneck is the tractibility of finding that

invariance. This can limit its applicability on large learning problems.

Convolutional neural networks (CNNs) inherently enforce invariances via pooling or scatter-

ing transform [23]. The drawback is that these methods are parametric and induce invariance

across entire domain of samples.

A similar parametric approach is to re-engineer kernel functions for invariance to a group

of transformations [24]. This approach, however, does not allow multi-layer transformations.

Even finite approximation is expensive requiring O(d/ε2) samples of transformation where d is

dimensionality of underlying space.

36

Ma et. al. propose a method to learn invariant representations with kernel warping [25].

They wish to overcome the limitations of hard coding invariances as well as invariance modelled

through Haar integration kernels on group transformations. Their approach incorporates invari-

ances beyond transformation. They use random features [26][10] to transform representations

through multiple layers. This yields a deep kernel offering invariance modeling and subsequent

supervised learning. They apply kernel warping on convolutional kernel networks (CKN) [27]

to model data-dependent invariance.

4.5 Local Group Invariant Representations via Orbit Embeddings

One of the strongest inspiration for this work stems from the work by Raj et.al. [24]

titled Local Group Invariant Representations via Orbit Embeddings. This paper

proposes considering transformations that form a group and derive local group invariant feature

representations using kernel methods. They prove that learning local invariant features as input

and employing a decision function on it can perform comparably to group-equivariant CNNs.

We want to introduce invariance in our images through some transformation function g ∈ G

where G is the set of transformation functions where each element satisfies certain axioms.

These axioms are of (i) closure : a, b ∈ G⇒ ab ∈ G, (ii) associativity : (ab)c = a(bc), and (iii)

inverse element: for each g ∈ G, ∃g−1 ∈ G such that gg−1 = g−1g = e ∈ G, where e is identity

element satisfying ge = eg = g,∀g ∈ G. So, for any transformation function g and sample

image x, we have Ox|G = {gx|g ∈ G}. We then generate r transformed samples and take the

average over them to introduce invariance. [24]

37

We can assume that input features belong to a set X ⊂ Rd. We can learn a mapping or

action on our set S through some group element g ∈ G as gS = {Tg(x)|x ∈ S ⊆ X}. We can

then define an orbit of any element x ∈ X as Ox|G = {gx|g ∈ G}. An orbit of an image for any

group transformation is the infinite set consisting of all transformed versions of the image. We

also have our global group invariant kernel as:

kG(x, x
′
) =

∫
G

∫
G
k(gx, g

′
x
′
)dν(g)dν(g

′
) (4.7)

which satisfies the property kG(gx, g
′
x
′
) = kG(x, x

′
) for any g, g

′ ∈ G and for any x, x
′ ∈ X.

This kernel is also termed as Haar integration kernel. We wish to place images transformed by

the same function in the same class. Also, these kernels do not preserve any locality information.

For example, if we have rotated images, images of digits 9 and 6 will be placed under the same

equivalence class. However, we only need ν to be normalized right Haar measure for global

invariance property to hold. A unique right Haar measure exists for all locally compact groups

including all Lie groups (rotation, translation, scaling, affine).

Learning with this kernel kG is great but suffers from scalability issues due to the need to

compute kernel values for all pairs of data points. We can approximate this kernel using Random

Fourier Features [10] or Nyström’s Approximation [26]. Using Nyström’s approximation, we can

sample landmarkpoints and approximate each function f ∈ H by its orthogonal projection onto

subspace spanned by {k(·, zi)}si=1. The paper proposed using these generated features as input

to a SVM or RLS (linear regularized least squares). In our approach, we approximate

38

kernel kG by sampling few transformed patches. The approximated kernel is then used to

transform images in our dataset. These new feature vectors are finally fed into our Modified

Relation Network.

4.6 Kernel Approximation

4.6.1 Problem with Kernel Matrix Calculation

A major problem with calculating kernels for kernel-based methods is the computation

required to find a solution. This computation scales at a rate of O(n2) where n is the number

of training samples. This is highly inefficient and can present itself as a bottleneck in learning

algorithms [28].

Another issue with calculating full-rank kernel matrices (usually in order of millions of rows)

arises when storing them in memory or using them for inference on new test samples. This

also is practically infeasible when the number of samples N is large or when there is an online

learning scenario.

To concretely cement this motivation, let us take an example in the domain of image clas-

sification. Let us say we have n number of images of size h×w× c where h,w, c are the size of

height, width, and channel correspondingly. If we flatten our image dimensions into a vector

of size d where d = h · w · c, we end up with a matrix of size n × d. Let us call this matrix

A. If we calculate a Gaussian kernel on the entire dataset, we end up with a kernel matrix of

size n × n. If n is large, this matrix would be extremely huge. Instead, it would be better if

we could extract k rows as bases where k � n and approximate the entire kernel matrix with

a smaller matrix with rank k. This small matrix can then represent each row or example by

39

a k-dimensional vector. This is where low-rank matrix approximation comes in with methods

such as Nyström Approximation and Random Fourier Features.

4.6.2 Nyström Approximation

The problem of approximating a large matrix can be found in many machine learning

settings including robust principal component analysis, collaborative filtering, clustering, etc.

This approximation needs to be efficient to compute, small in size, and accurate enough to

a certain degree with respect to the original matrix. A fairly popular method for matrix

approximation is the Nyström method [26]. Nyström approximation uses low-rank matrix

approximation techniques such as singular value decomposition and thus can be applied to

any type of kernel. Unlike other approximation methods, Nyström is data-dependent and

rows/columns are sampled from the input data.

We now define our linear shift-invariant kernel function G(x). In our work, we mainly focus

on the Gaussian kernel. The one-dimensional Gaussian kernel can be defined as:

f(x) =
1

σ
√

2π
e−

(x−µ)2

2σ2 (4.8)

where the x is the input vector, µ is the mean, and σ is the standard deviation. In our

implementation, σ is a variable hyper-parameter we set to control the flatness or width of the

40

normal distribution bell curve. The Gaussian distance is based on the Euclidean distance.

In N -dimensional space, our Euclidean distance function can be defined as:

distL2(a, b) = ‖a− b‖ =

√√√√ n∑
i=0

(ai − bi)2 (4.9)

The Gaussian kernel in kernelized learning algorithm domain is known as the radial basis

function kernel or RBF kernel. The kernel function can now be defined as:

K(x,x
′
) = exp(−

∥∥∥x− x
′
∥∥∥2

2σ2
) (4.10)

Our default value for σ = 2. Using Nyström’s approximation, from our matrix K, we sample n

rows and columns from W and K21.

K =

W K>21

K21 K22

 (4.11)

Our approximated kernel matrix then becomes K̃ = CW+
k C>. The computational cost of

performing SVD on W is O(m3) and calculating K̃ takes complexity O(nmk). In our exper-

iments, the number of landmarks we sample are in the range of {64, 128, 256, 512, 1024}. We

must remember, in our case, the matrix W is the patches of images from all images in the

dataset. We convert our image data into PyTorch [29] tensors. These tensors are in the shape

of (# samples, # landmarks). We are now ready to pass our feature vectors into the Relation

Network.

41

Let us see an example of feature generation via Nyström approximation. We consider the

case of shift-invariant kernels satisfying k(x, x
′
) = k̃(x−x′) which includes common kernels such

as Gaussian or Laplacian kernels. In Nyström approximation, we start sampling or choosing

m landmark points from a sample set X. The problem of sampling or choosing the best points

is an active field of research. Although, it has been shown that random sampling often works

best [30]. The Nyström method approximates a kernel as k(x, x
′
) ≈ K>Z,xK

+
Z,ZKZ,x

′ where

KZ,x = [k(x, z1), ..., k(x, zs)]
> and KZ,Z is the square kernel matrix for landmark points with

K+
Z,Z indicating the pseudo-inverse. Since KZ,Z is a PSD matrix, we can let K+

Z,Z = L>L,

where L ∈ Rrank(KZ,Z)×s. [24]

The features from our Nyström approximation are given by

ψNys(x) =
1

r
L

r∑
k=1

KZ,gkx ∈ Rrank(KZ,Z) (4.12)

where r is the number of transformed samples, KZ,gkx is our approximated kernel matrix, and

gkx is the group transformation function at k.

As long as the base kernel satisfies k(gx, gx
′
) = k(x, x

′
), ∀g, x, x′ , we can transfer invariance

from the original data points to landmark points as k(gx, z) = k(g−1gx, g−1z) = k(x, g−1x)

without affecting Nyström approximation of kq,G. In cases where the number of data points n

are much larger than number of landmark points m, this property becomes more important.

The general guide to choosing the number of landmark points ism should at least be the rank

of the matrix to be approximated. Thus, m ≥ rank(K). The low-rank matrix approximation

42

is usually performed through singular value decomposition (SVD). To motivate where SVD is

used, let us assume our linear kernel K is:

K =

A B

B> C

 (4.13)

where A = R>R is a positive semi-definite matrix. Nyström’s approximation says if we know A

and B, we can approximate C. If we decompose A as A = UΣU>, we get R>R = UΣU>. Fi-

nally, we get R = Σ
1
2U>. Similarly, we can decompose B = R>S and derive S as S = Σ−

1
2U>B.

Finally, our C can be approximated by C = B>A−1B. Since running SVD requires O(ml2) and

matrix multiplication with K takes O(mln), the total complexity of Nyström approximation

is in O(mln). This complexity is much lower than complexity required to calculate the whole

kernel matrix.

CHAPTER 5

METHODOLOGY

In this chapter, we go through the problem formulation of introducing invariance through or-

bit embeddings in patch-wise image representation. We then explore the various pre-computation

steps we perform on the input dataset, our kernel approximation procedure, training our Rela-

tion Network, and finally evaluation of our results based on different few-shot learning settings.

Our primary pipeline is divided into two phases: a learning phase and a non-learning, pre-

computation phase. We perform the pre-computation operations once per dataset and store

the results for future use.

5.1 Problem Formulation

Let us explore the intuition behind our approach to introducing invariance through kernel

methods. We wish to introduce data invariance in few-shot learning by passing our images

through a shift-invariant kernel such as the Gaussian kernel. In our experiments, we pass rotated

images through the kernel to get feature vectors that we can input to our deep model. However,

the main issue is that the kernel output is a single feature vector and we wish to preserve the

advantage of convolutional neural networks. Thus, we operate the kernel on patches of images

and retain the patch-structured input which is amenable to our convolution layer. In addition,

we wish to approximate our kernel matrix K in an attempt to avoid calculating the entire

matrix and saving computation time and storage.

43

44

We wish to approximate a linear base kernel kG(x, x
′
) by using a low-rank matrix approxi-

mation technique. In this work, we use the Nyström’s method for approximating this kernel

matrix. Formally, the features we extract from this kernel through this approximated kernel

can be viewed as:

ψNys(x) =
1

r
L

r∑
k=1

KZ,gkx ∈ Rrank(KZ,Z) (5.1)

Instead of using all samples for kernel matrix calculation, we sample some points called landmark

points which serve as our input for approximating the whole matrix. The number of landmark

points l to choose is recommended to be rank(K) ≤ l ≤ 2 × rank(K) [31]. The method on

how to efficiently and accurately sample these landmark points is an open research problem.

However, enough empirical evidence has shown that random sampling of these points usually

provides a great approximation of the original matrix and is decent in practice.

Our input data is assumed to be image data. Thus, for every dataset D, we have {(Ii, yi)}Ni=1 ∈

D where each image Ii ∈ Rh×w×c with h,w, c being height, width, and channel respectively. For

each image Ii, we define a patch Pi,j ∈ RPh,Pw,Pc as a sub-image or location of Ii. Naturally, we

have constraints Ph ≤ h, Pw ≤ w,Pc ≤ c. We consider each patch Pi,j as an individual sample

in our kernel matrix calculation.

5.2 Data Pre-computation

We start with describing the data pre-computation portion of the pipeline. We perform

this step only once for each dataset D. For each image Ii, i = 1, 2, ...N from dataset D, we

perform a binarize operation to turn our raw pixel values from range {0, 255} to {0, 1}. Our

intuition for performing this step is the following: Given a set of patches Pr,c ∈ RPh,Pw from an

45

image Ii, we want to sample patches for our kernel approximation. If we have raw pixel values

p in range {0, 255} for each channel c, the number of unique possible patches exponentially

increases. However, if we restrict our pixel values to {0, 1}, the number of unique patches stays

feasible. Thus, we can adequately sample a small number of patches and still obtain a decent

approximation of the kernel matrix K. For each image Ii, we apply transformation function

g(I) to get a transformed image I
′
i . We then bag this collection of images I

′
i and subsample

each image to its nearest odd multiple of 3. We do this because our convolution layer kernel

size is 3× 3 and we wish to not introduce any zero-padding. We then mean-normalize the data

to restrict our pixel values between {0, 1}.

Let us explain the above with a concrete example to cement the idea. Let us assume our

dataset D is the Omniglot [14] dataset. In this case, we have N = 32460, h = 27, w = 27, c = 1.

We define our input tensor T of shape (32640, 27, 27, 1). We now take a transformation function

g which is a rotation operation in the range of [−15,−10,−5, 0,+5,+10,+15]. After application

of our function g, we end up with T with shape (32640, 7, 27, 27, 1). Our patch size can be

defined with shape (3, 3, 1). We then divide our images into patches resulting in T with shape

(32640, 7, 9, 9, 3, 3, 1). Due to implementation notions, we place the channel dimension before

height and width to end up with shape (32640, 7, 9, 9, 1, 3, 3). In more general terms, our tensor

shape is (N, r, l, l, c, Ph, Pw). We now reshape our tensor into shape (N × r× l× l, c×Ph×Pw).

In our example, we do (32640×7×9×9, 1×3×3) to end up with (18506880, 9). We treat each

patch as a training example. Now, as we can see, this is a huge amount of data (18506880) to

perform our kernel matrix calculation on. Thus, we wish to subsample k rows and approximate

46

Figure 10. In this figure, we present an example of our procedure. For every image Ii, we
generate r transformed samples (in this case, r = 3). We patch these r transformed samples

and stack these patches linearly. Our input to our Nyström’s approximation is this large
matrix. After we approximate patch features, we take the average of these features

patchw-wise as shown. These averaged features are now our input to our Relation Network.

47

Figure 11. Here, we see our we define a patch P (i, j) based on the indices in the original
image. We have (h,w, c) as the original image’s height, width, and number of channels.
Subsequently, we have Ph, Pw, Pc as a patch’s height, width, and number of channels.

the kernel matrix K to avoid calculating on the entire 18506880 rows. Let us say we choose

n = 128 landmark points. The Nyström approximation module gives us an approximated matrix

through SVD. Now, if we pass Nt samples for feature generation, we receive (Nt, nlandmarks).

Thus, in our example, it would be (Nt, 128).

Now, we can pass our dataset D and get a tensor of shape (18506880, 128). We can now

reshape this back into (32640, 7, 9, 9, 128). We now take average over the r = 7 transformations

(including the original image) to result in (32640, 9, 9, 128). We now have enough dimensions

for input to any convolutional layer with (9, 9) being our height and width and 128 being the

number of channels.

5.3 Relation Network

We can now use our transformed m-dimensional feature tensors as input to our modified

Relation Network. We perform episodic training where in each episode, we randomly sample

48

C-classes and K-samples from those classes as our support set. In this way, we can ensure

generality in learning from few examples across different episodes.

Our modified Relation Network still consists of two modules: embedding module and relation

module. However, our input to our embedding module is now a p × p ×m tensor where p is

the number of patches in each orientation of the image and m is the number of landmarks we

sampled in our Nyström approximation.

One important modification to the original embedding module is we removed the max-

pooling layer due to the limited number of patches. We do not need to summarize the patch

information as frequently as if it was an image. This is due to the fact that we assume our

patches already are tensors with summarized information from the original patches.

5.4 Mini Relation Network (MRN)

In this section, we describe our main modification to the original Relation Network. Our

new architecture is called the Mini Relation Network or MRN. MRN contains only one

convolution block instead of four. We also remove a convolution block from the relation module.

Finally, we introduce a 4× 4 max-pooling operation before the fully-connected layers.

The Mini Relation Network reduces the number of trainable parameters from our bigger

Relation Network from 148, 224 to 37, 056 for the embedding module and 111, 505 to 74, 449 for

the relation module. As we observe, the drop in accuracy is not that significant and this network

can be considered a decent trade-off between complexity and accuracy. We shall explore the

various results in Chapter 6.

49

Figure 12. Modified Relation Network architecture for few-shot learning. The overall
architecture is inspired by the original Relation Network. Here, our input feature vectors are

not images but our transformed features with shape (P, P,m) where P is the number of
patches.

50

Figure 13. Small Relation Network architecture for few-shot learning. This is our smaller
model with one conv block in both the embedding module and relation module.

5.5 Evaluation

In our learning procedure, we calculate the training loss based on the MSE (mean squared

error) loss between the predicted class and actual class. We also use gradient clipping to prevent

vanishing gradients. We validate our model on 1000 episodes by accumulating rewards for each

episode. The final reward is then divided by the number of classes C in our support set, number

of samples per class K in each class C, and number of test episode T . If our accuracy is greater

than the best accuracy, we save the model at that iteration. The testing is also done on 10-fold

validation and determining the average test accuracy on those results.

51

Layer Input Output

Input - [64, 9, 9]
conv block [64, 9, 9] [64, 7, 7]
conv block [64, 7, 7] [64, 5, 5]
conv block [64, 5, 5] [64, 5, 5]
conv block [64, 5, 5] [64, 5, 5]

Layer Input Output

Input - [128, 5, 5]
conv block [128] [128, 2, 2]
conv block [128, 2, 2] [128, 1, 1]

FC [128, 1, 1] [8]
FC [8] [1]

TABLE I

MODIFIED RELATION NETWORK: EMBEDDING MODULE AND RELATION
MODULE OUTPUT

Layer Input Output

Input - [64, 9, 9]
conv block [64, 9, 9] [64, 7, 7]

Layer Input Output

Input - [128, 7, 7]
conv block [128, 7, 7] [128, 1, 1]

FC [128, 1, 1] [8]
FC [8] [1]

TABLE II

MINI RELATION NETWORK: EMBEDDING MODULE AND RELATION MODULE
OUTPUT

CHAPTER 6

EXPERIMENTAL RESULTS

In this chapter, we observe and analyze the various experimental results obtained from our

formulation of few-shot learning problem. We first define our experiment settings including the

model hyper-parameters, number of landmarks to sample for our Nyström’s approximation, σ

for our Gaussian kernel, and more. We then move on to formulate different challenging scenarios

that we can test our model on. Finally, we explore the results and find relationships between

various learning hyper-parameters and overall accuracy.

6.1 Experiment Settings

In this section, we first define certain hyper-parameters considered in our experiments. We

also define certain pre-processing steps we perform on the images as necessary.

Our input images are assumed to be sized in multiples of 3. This is because we use 3 × 3

sized kernels and we wish to not introduce any zero-padding. Thus, for datasets with images of

size 28×28, we remove the last dimensions and only keep 27×27 size images. For datasets with

84× 84 images (Miniimagenet), we truncate the last three dimensions to end up with 81× 81

sized images.

For our Gaussian kernel, we define our σ or the standard deviation of the model to be 2.

This can vary depending on our dataset D and is an empirical parameter. Increasing the σ

value blurs pixels on a wider radius and keeping it small minimizes this effect. We wish to blur

52

53

over the patches in small portions instead of blurring the entire patch. The latter would reduce

the amount of useful information.

For our Nyström approximation, the major component to specify is the number of landmarks

or rows we sample from our original kernel matrix. Increasing the number of landmarks gives

us a better estimate of the original kernel matrix. However, the trade-off is the computational

complexity and storage requirements. We choose the number of landmarks to be in the range

of {64, 128, 256, 512, 1024} (For Miniimagenet dataset, we exclude 64). This is also an empirical

parameter which can be set based on the number of samples n in the dataset as well as the size

of the image [h,w, c].

Finally, we determine the data transformation function g(I) we wish to perform on image

I. We choose the rotation function in the range of [−15,−10,−5, 0, 5, 10, 15]. Any range

can be selected and more experiments can be performed to see the effect of increasing image

transformation on the final accuracy.

6.2 Experiment Scenarios

In this section, we describe the various scenarios we can use to test our approach. There

are many different tweaks we can make to our learning setting to challenge the model. This

includes changing the number of samples in our support set classes Csupport, changing the

number of landmarks m, changing the image transformation function g(I), changing the range

or parameters of function G(I), changing the kernel, and finally changing the approximation

method.

54

Firstly, let us explore the two different versions of few-shot learning. One version is the

5-way, 5-shot learning scenario where in every episode, we choose 5 random classes and sample

5 examples from each class. In this scenario, our support set is Ssupport = {C1, ..., C5} and each

Ci has 5 examples each. The other scenario we explore is the 5-way, 1-shot learning scenario

where in each class Ci, we only have one sample. This problem is significantly more difficult

due to the availability of only one image per class.

Secondly, we can change the number of landmarks to sample for our kernel approximation.

This number m signifies how many rows we have available for a m-rank matrix approximation.

Intuitively, increasing m should give us a better approximation. Empirically, this might not

always be the case as we shall see in later sections.

Thirdly, we can change the transformation function g(I). In our main results, we use the

rotation function. However, some other examples may include horizontal-flip, random-

affine, and color-jitter among other possible transformations. Horizontal flip means we can

randomly flip the image and change the horizontal orientation of objects in the images. Random

affine applies an affine transformation on the image keeping it center invariant. Color jitter

randomly changes the saturation, contrast, and brightness of the image given the required

ranges of parameters.

Fourthly, we can change the kernel we apply to the images. Some popular kernel functions for

images include log kernel, histogram intersection kernel, and the generalized histogram

intersection.

55

Finally, we can change the kernel approximation method. Some alternatives include en-

sembled Nyström’s approximation, Random Fourier Features, and Circulant RFF.

6.3 Results

In this section, we present empirical results that show the effectiveness of extending orbit

embeddings to convolutional neural networks in heavy test-time data augmentation scenarios.

In all scenarios, we compare our baseline method (original Relation Network) with our Modified

Relation Network and Mini Relation Network.

We run our experiments for both 5-way, 5-shot and 5-way, 1-shot classification on Omniglot,

MNIST, and MiniImagenet datasets. We also run each experiment by varying the number of

landmarks in the range of {64, 128, 256, 512, 1024}.

6.3.1 Baseline Method

We call the original Relation Network as our baseline method. In this, we introduce heavy

data augmentation in both training and testing of the model. In our case, we introduced

rotation in the degrees of [−15,−10,−5, 0,+5,+10,+15]. We do not change the original

model structure in anyway. From Table III, we can see how the model performed on Omniglot,

MNIST, and MiniImagenet. The results in [7] do not consider such rotation invariance. Our

results show the decline in performance when subjected to training and testing with data

augmentation versus the original results with minimal augmentation.

6.3.2 Modified Relation Network

Here, we explore our results for the Modified Relation Network. As a recap, the modified

Relation Network accepts input of tensor shaped p× p×m where p is the number of patches in

56

each dimension and m is the size of the feature vector. The original Relation Network accepted

images of shape h × w × c where h,w, c are the height, width, and channel respectively. The

other change we have in our Modified Relation Network is that we remove max-pool layers

from the embedding module to avoid reducing the tensor size. We also do it because we do not

want to introduce any more spatial invariance to the model.

On the Omniglot dataset, our model performs on average, approximately 3% higher than

the baseline for 5-way, 5-shot learning and 7% higher for 5-way, 1-shot learning. On the MNIST

dataset, our model performs approximately 14% higher than baseline on 5-way, 5-shot setting

and 10% higher for 5-way, 1-shot. Finally, on the MiniImagenet dataset, the Modified Relation

Network performs 6% higher for 5-way, 1-shot while it only performs comparably for 5-way,

1-shot.

6.3.3 Mini Relation Network

Our Mini Relation Network is our more aggressive modification of the Relation Network

where we only have one convolution block in both our embedding module and our relation

module. We also introduce 4 × 4 max-pooling in our relation module to summarize global

information from our convolution block.

On the Omniglot dataset, our model performs on average, approximately 2% higher than

the baseline for 5-way, 5-shot learning and 4% higher for 5-way, 1-shot learning. On the MNIST

dataset, our model performs approximately 13% higher than baseline on 5-way, 5-shot setting

and 7% higher for 5-way, 1-shot. On the MiniImagenet dataset, MRN performs 2% higher for

5-way, 1-shot while it only performs worse by about 1.5% for 5-way, 1-shot.

57

Figure 14. Accuracies for Modified Relation Network and Mini Relation Network versus the
Baseline method on Omniglot.

Figure 15. Accuracies for Modified Relation Network and Mini Relation Network versus the
Baseline method on MNIST.

58

Figure 16. Accuracies for Modified Relation Network and Mini Relation Network versus the
Baseline method on MiniImagenet.

6.4 Observations

There are a few observations we can make here. Firstly, the final accuracy of the model is

not very sensitive to the number of landmarks we sample. A clearer explanation as to why this

is the case can be provided empirically if we experiment by choosing larger number of rows.

However, we decided not to do that as it would remove the computational advantage we have

by approximating our kernel matrix with a small number of rows.

Secondly, we notice that the accuracy is worse for Mini Relation Network. This is expected

as we are reducing our model complexity with respect to the input distribution. Our model

basically underfits the data. One can make this trade-off based on their requirements.

59

Lastly, we can observe that the 5-way, 5-shot classification has the most advantage in this

learning setting with respect to the average percent increase in the final accuracy. 5-way, 1-shot

learning setting does not gain a comparable advantage.

60

Relation Network (Baseline)
Omniglot MNIST MiniImagenet

5-way, 5-shot 95.05 66.56 54.40

5-way, 1-shot 88.54 57.24 43.22

TABLE III

BASELINE RESULTS

Omniglot

Few-shot Setting 5-way, 5-shot 5-way, 1-shot

Method Modified RN Mini RN Modified RN Mini RN

Number of landmarks

64 98.72 97.72 96.73 93.18
128 98.73 97.73 93.19 92.97
256 98.56 97.46 94.48 92.94
512 98.16 97.32 93.38 92.01

TABLE IV

ACCURACIES FOR MODIFIED RN AND MINI RN ON OMNIGLOT

MNIST

Few-shot Setting 5-way, 5-shot 5-way, 1-shot

Method Modified RN Mini RN Modified RN Mini RN

Number of landmarks

64 81.38 79.49 67.67 64.51
128 82.05 80.71 67.34 64.52
256 80.84 78.80 67.49 64.39
512 80.93 80.17 67.01 64.31

TABLE V

ACCURACIES FOR MODIFIED RN AND MINI RN FOR MNIST

61

MiniImagenet

Few-shot Setting 5-way, 5-shot 5-way, 1-shot

Method Modified RN Mini RN Modified RN Mini RN

Number of landmarks

64 60.62 56.41 43.82 40.09
128 60.64 56.53 42.67 41.52
256 59.46 56.61 42.25 42.10
512 60.14 56.56 42.87 41.98

TABLE VI

ACCURACIES FOR MODIFIED RN AND MINI RN ON MINIIMAGENET

CHAPTER 7

CONCLUSION AND FUTURE WORK

In this thesis, we analyzed the problem of few-shot learning and the lack of effort placed into

introducing data invariance. Much of the previous work focused on maximizing the performance

while not placing emphasis on robusntess to transformations in input data. We motivated the

need to introduce a framework that can efficiently introduce data invariance in a few-shot

learning setting.

We extended the idea of orbit embeddings to patch-wise representations to introduce invari-

ance learning and fed our input data to convolutional neural networks for few-shot classification.

We can use any kernel function as our base kernel.

Due to the large number of samples (based on patching images) in our kernel matrix, we

needed a way to approximate the kernel matrix to avoid expensive computational cost. Thus,

we utilized Nyström’s approximation to approximate our kernel matrix via a low-rank matrix.

We then used that approximation to transform our input images into m-dimensional vectors

for each patch where m is the number of examples we sample.

Subsequently, we used these feature vectors as our input to our Modified Relation Network.

We also reduced the size of the Modified Relation Network and created a Mini Relation Network

that reduced our model parameters by more than 50%.

62

63

We compared results based on different parameters such as the number of landmarks we

sampled, size of our Relation Network, and different K-shot learning problems. This illustrates

the effectiveness of our approach in modeling invariance in few-shot learning.

For future work, we plan to expand this approach to experiment on more types of kernels

to see the effect of changing our base kernel (log kernel, Laplacian kernel, etc). We also plan

to experiment with different approximation methods (Random Fourier Features) to empirically

judge which one works best. Finally, we wish to explore the results of changing image domains,

sizes, and number of channels. Increasing the search space for approximation would lead to

more computation. However, we wish to explore methods which could possibly minimize this

cost.

CITED LITERATURE

1. Goodfellow, I., Bengio, Y., Courville, A., and Bengio, Y.: Deep learning, volume 1. MIT
press Cambridge, 2016.

2. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville,
A., and Bengio, Y.: Generative adversarial nets. In Advances in neural information
processing systems, pages 2672–2680, 2014.

3. Zhang, R., Che, T., Ghahramani, Z., Bengio, Y., and Song, Y.: Metagan: An adversar-
ial approach to few-shot learning. In Advances in Neural Information Processing
Systems, pages 2371–2380, 2018.

4. Finn, C., Abbeel, P., and Levine, S.: Model-agnostic meta-learning for fast adaptation of
deep networks. arXiv preprint arXiv:1703.03400, 2017.

5. Snell, J., Swersky, K., and Zemel, R.: Prototypical networks for few-shot learning. In
Advances in Neural Information Processing Systems, pages 4077–4087, 2017.

6. Gidaris, S. and Komodakis, N.: Dynamic few-shot visual learning without forget-
ting. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 4367–4375, 2018.

7. Sung, F., Yang, Y., Zhang, L., Xiang, T., Torr, P. H., and Hospedales, T. M.: Learning
to compare: Relation network for few-shot learning. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 1199–1208, 2018.

8. Vinyals, O., Blundell, C., Lillicrap, T., Wierstra, D., et al.: Matching networks for one shot
learning. In Advances in neural information processing systems, pages 3630–3638,
2016.

9. Santoro, A., Bartunov, S., Botvinick, M., Wierstra, D., and Lillicrap, T.: Meta-learning
with memory-augmented neural networks. In International conference on machine
learning, pages 1842–1850, 2016.

10. Rahimi, A. and Recht, B.: Random features for large-scale kernel machines. In Advances
in neural information processing systems, pages 1177–1184, 2008.

64

65

11. Wang, Y.-X., Girshick, R., Hebert, M., and Hariharan, B.: Low-shot learning from imagi-
nary data. arXiv preprint arXiv:1801.05401, 2018.

12. Antoniou, A., Storkey, A., and Edwards, H.: Data augmentation generative adversarial
networks. arXiv preprint arXiv:1711.04340, 2017.

13. Ravi, S. and Larochelle, H.: Optimization as a model for few-shot learning. ICLR 2017,
2016.

14. Lake, B. M., Salakhutdinov, R., and Tenenbaum, J. B.: Human-level concept learning
through probabilistic program induction. Science, 350(6266):1332–1338, 2015.

15. LeCun, Y. and Cortes, C.: MNIST handwritten digit database. 2010.

16. Vinyals, O., Blundell, C., Lillicrap, T., Wierstra, D., et al.: Matching networks for one shot
learning. In Advances in neural information processing systems, pages 3630–3638,
2016.

17. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A.,
Khosla, A., Bernstein, M., et al.: Imagenet large scale visual recognition challenge.
International journal of computer vision, 115(3):211–252, 2015.

18. Mitchell, T. M.: Machine Learning. New York, NY, USA, McGraw-Hill, Inc., 1 edition,
1997.

19. Kingma, D. P. and Ba, J.: Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

20. LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W., and
Jackel, L. D.: Backpropagation applied to handwritten zip code recognition. Neural
computation, 1(4):541–551, 1989.

21. Zhou, Y.-T. and Chellappa, R.: Computation of optical flow using a neural network.
In IEEE International Conference on Neural Networks, volume 1998, pages 71–78,
1988.

22. Decoste, D. and Schölkopf, B.: Training invariant support vector machines. Machine
learning, 46(1-3):161–190, 2002.

66

23. Bruna, J. and Mallat, S.: Invariant scattering convolution networks. IEEE transactions on
pattern analysis and machine intelligence, 35(8):1872–1886, 2013.

24. Raj, A., Kumar, A., Mroueh, Y., Fletcher, P. T., and Schölkopf, B.: Local group invariant
representations via orbit embeddings. arXiv preprint arXiv:1612.01988, 2016.

25. Ma, Y., Ganapathiraman, V., and Zhang, X.: Learning invariant representations with
kernel warping. 2019.

26. Williams, C. K. and Seeger, M.: Using the nyström method to speed up kernel machines.
In Advances in neural information processing systems, pages 682–688, 2001.

27. Mairal, J., Koniusz, P., Harchaoui, Z., and Schmid, C.: Convolutional kernel networks. In
Advances in neural information processing systems, pages 2627–2635, 2014.

28. Drineas, P. and Mahoney, M. W.: On the nyström method for approximating a gram
matrix for improved kernel-based learning. journal of machine learning research,
6(Dec):2153–2175, 2005.

29. Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison,
A., Antiga, L., and Lerer, A.: Automatic differentiation in pytorch. 2017.

30. Kumar, S., Mohri, M., and Talwalkar, A.: Sampling methods for the nyström method.
Journal of Machine Learning Research, 13(Apr):981–1006, 2012.

31. Belabbas, M.-A. and Wolfe, P. J.: On landmark selection and sampling in high-dimensional
data analysis. Philosophical Transactions of the Royal Society A: Mathematical,
Physical and Engineering Sciences, 367(1906):4295–4312, 2009.

32. Bochner, S.: Monotone funktionen, stieltjessche integrale und harmonische analyse.
Mathematische Annalen, 108(1):378–410, 1933.

33. Roughgarden, T. and Valiant, G.: Lecture notes in the modern algorithmic toolbox, April
2015.

34. Mensink, T., Verbeek, J., Perronnin, F., and Csurka, G.: Distance-based image classifica-
tion: Generalizing to new classes at near-zero cost. IEEE transactions on pattern
analysis and machine intelligence, 35(11):2624–2637, 2013.

VITA

Amlaan Bhoi
Personal Data

Address: 1720 S Michigan Ave, Chicago IL 60616
Email: amlaanb@gmail.com
Phone: +1 (630) 362-5747

Citizenship: India

Education

May 2019 Master of Science in Computer Science
Aug 2017 University of Illinois at Chicago

GPA: 3.83/4

May 2017 Bachelor of Technology in Computer Science & Engineering
Aug 2013 Amity University

GPA: 3.32/4

Experience

Present R&D Engineer Intern (Machine Learning)
May 2018 CCC Information Services

Research and develop computer vision applications for automobiles
Manager: Neda Hantehzadeh

Aug 2016 Software Engineer Intern
May 2016 Reliance Communications

Implemented shortest path-finding algorithms for large-scale graphs
Manager: Vishwanathan Iyer

Aug 2015 Software Engineer Intern
May 2015 OSSCube

Developed user-centric mobile applications with custom user interface
Manager: Bratin Chakravorty

67

68

Projects

Spring 2018 OCR using Conditional Random Fields
A probabilistic graphical model for sequential character recognition
Advanced Machine Learning, Spring 2018

Spring 2018 Aspect-based Sentiment Analysis
Deep memory networks for aspect-based sentiment analysis
Data Mining and Text Mining, Spring 2018

Fall 2017 AI Lifeguard
A 3D CNN model for action localization to detect drowning people
in swimming pools
HackHarvard 2017

Fall 2017 ARYouThereYet
An augmented reality mobile application for dynamic routing and
location visualization
Virtual and Augmented Reality, Fall 2017

Achievements

Jun 2018 Presented poster on Tiramisu DenseNet Architecture for Precise Segmentation
for Intel AI at CVPR 2018

Apr 2018 Selected as Intel AI Student Ambassador to research and publish work on
machine learning

Oct 2017 Best Microsoft Hack award at HackHarvard 2017
Sep 2017 Placed 16/50 at Google Games: Campus Edition 2017 (UIC)
May 2017 Best Technical Innovation award at Amity University Convocation 2017
Jan 2016 Elected as Vice-Chair for ACM Amity Student Chapter

Skills

Languages: Python, C++, SQL, Java, Swift
Technologies: GCP, AWS, GitHub, GitLab, Docker, Apache Beam, Apache Spark,

Apache AirFlow
Libraries: TensorFlow, PyTorch, Keras, Scikit-Learn, Numpy, Pandas, Jupyter,

OpenCV, OpenCL, OpenGL, PIL, CUDA

