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I present statistical methods for analyzing positively skewed data, which commonly arise in 

environmental monitoring and assessment. Specifically, I develop relevant methods to estimate the 

underlying calibration curve and construct the confidence and prediction intervals based on the gamma 

distribution. Environmental data are subject to measurement errors, and the variance of measurement 

errors usually depend upon the true concentration level. In addition, when multiple laboratories are 

involved in analyzing monitoring samples, additional variation at the laboratory level should be 

incorporated in the analysis. In this dissertation, I propose a mixed-effects gamma regression model to 

account for the non-constant variability as well as the between-laboratory variability to estimate a 

calibration curve. I also explore the two-component mixed model to fit environmental data and discuss 

its applications.  The proposed methods borrow strength from all laboratories to estimate the model 

parameters. I discuss how to estimate unknown true concentrations using the estimated calibration 

curve when an independent set of samples are obtained. I also derive the global calibration confidence 

interval that does not require new data from the same set of laboratories, from which background 

samples were collected. The performances of the estimation procedures, the calibration confidence 

regions, and their robustness are studied via simulation. I observe that the global calibration 

confidence intervals based on the gamma mixed model perform robustly in all situations considered. 

To illustrate the results, a real data set of amosite asbestos fibers is used. 
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1. INTRODUCTION 

1.1 Motivation 

Over the last decade, generalized linear mixed models (GLMMs) have been widely used in 

health sciences and social sciences. In these areas clustered observations commonly arise, for example 

in a multicenter randomized trial where patients are nested in clinics, and in a longitudinal study where 

measurements of the same subject are taken repeatedly over time. Research in analyzing clustered data 

has involved the development of efficient estimation methods based on maximum marginal likelihood 

(MML) and empirical Bayes (EB) estimation, nonparametric maximum likelihood, generalized 

estimating equation (GEE), or fully Bayesian approaches, etc. Since Laird and Ware (1982) developed 

a linear random-effects model for normally distributed data, generalization of a mixed-effects model 

for categorical outcomes (binary, nominal, ordinal, Poisson, etc.) has been an active area of statistical 

research. Furthermore, statistical packages that implement these generalized models have been 

developed and they are now commercially available. In spite of this fast growth and active research, 

surprisingly little research has been conducted for modeling non-negative skewed continuous data 

where clustering naturally occurs. When the data in hand are skewed, the usual approaches for 

analyzing continuous outcomes assuming normality, such as the linear mixed model (LMM), are 

questionable. In the LMM, conditional on random effects, the outcome is assumed to be normally 

distributed with a constant variance. For minimally skewed data, the LMM may be used, but for 

moderately to highly skewed data, using the LMM reduces statistical power and may result in biased 

parameter estimates. Further, when the sample size is small, use of the LMM, which was developed 

based on large sample theory, to skewed data is more problematic. With skewed data, the variance is 

likely to be dependent upon the mean. Using the GLMM frame, we can model skewed data more 

properly and allow the variance to depend on any known function of the mean outcome as well.  

My interest in the mixed-effects model for skewed data stems from analysis of asbestos fiber 

data. In asbestos data, more broadly environmental monitoring data, the distribution of measurements 
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is usually right skewed. In environmental monitoring problems, an instrument response is easily 

known but the true concentration must be estimated based on the instrument responses, which are 

subject to measurement errors. Using training samples, the instrument response is regressed on a true 

concentration, and this regression equation is then inverted to estimate the unknown true concentration 

of an independent data set. This regression equation is called the calibration curve.  An important 

characteristic of environmental data is that heterogeneous variation commonly arises due to 

measurement errors, which makes fitting a regression model (i.e. calibration curve) more complicated. 

The magnitude of the measurement errors usually increases with the concentration levels. A plot of 

instrument responses versus true concentrations often has a wedge shape, indicating that the variance 

of the measurements increases with increasing true concentrations. For zero or near-zero 

concentrations, on the other hand, the measurement errors do not vanish; but the variation of errors 

remains approximately constant. In the context of environmental monitoring, multiple samples are 

taken at a site (or one sample is split into subsamples) and they are sent to several laboratories to 

measure concentrations. This provides a way of cross-validation of anomalous results. In this process, 

another type of measurement errors happens due to different protocols by different laboratories. In 

other words, it is expected that measurements within the same laboratory are more alike than those 

from different laboratories. The main issue is that the mixed-effects model assuming normality and a 

constant variance cannot be used for such environmental data. When analyzing this type of data, 

heteroscedasticity and between-laboratory variability should be incorporated as well as the skewness.  

The next section describes a data set of airborne asbestos fibers to illustrate the methodological 

challenges mentioned above. This data set will be used throughout this dissertation, to illustrate the 

statistical ideas and developments.  
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1.2 Example: Airborne Asbestos Fibers 

It is well known that inhalation of asbestos fibers increases the risk of life-threatening diseases, 

such as mesothelioma, asbestosis, and lung cancer (WHO-IARC, 1998; Stayner et al., 1996; Hein et al. 

2007; Stayner et al., 2008; Christensen et al., 2008). In epidemiologic studies that evaluate asbestos 

related health hazards, the amount of exposure should be properly quantified. The amount of asbestos 

exposure is defined as a product of the intensity and the duration of exposure (Camus et al.,1998). The 

intensity is usually measured as the number of asbestos fiber counts in a unit volume (for example, 

fibers/  , fibers/  ). Recently, the size of asbestos fibers is getting attention because thinner and 

longer fibers appear to be more strongly associated with health hazard than shorter and thicker fibers 

(Stayner et al., 2008; Loomis et al., 2010). A common standard analytical technique for testing 

airborne fiber concentrations is Phase-Contrast light Microscopy (PCM). The standard procedure of 

counting fibers using PCM includes only fibers longer than 5  , and excludes fibers smaller than 

0.25   in diameter. In addition, a ratio of the length to the diameter should be at least 3 (Loomis et al., 

2010).  PCM is not recommended for exposure assessment of elongated mineral particles because it 

does not provide the detailed exposure characterization and may not detect significant quantities of 

asbestos fibers (Institute of Medicine, 2006). A more advanced technique, Transmission Electron 

Microscopy (TEM) enables all fibers, including very fine fibers, to be counted and characterized 

(Loomis et al., 2010); as a result, the intensity of asbestos exposure is quantified more accurately.  

In spite of advanced technologies for analyzing asbestos fibers, there are still substantial 

measurement errors in instrument responses. The New York State Department of Health uses various 

types of airborne asbestos data measured by TEM for testing and laboratory assessment. The asbestos 

data were collected as part of the New York State Environmental Laboratory Approval Program based 

on the proficiency testing of laboratories analyzing airborne asbestos. The Asbestos Hazard 

Emergency Response Act (AHERA) criteria were used. All data are de-identified and expressed in 

structures     of filter. Amosite fibers among several fibrous types are used in this dissertation. 
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Amosite is one of the types in amphibole group, and was often used as an insulating material 

(www.asbestos.com). Although the use of amosite asbestos has decreased for recent decades, they are 

still found in residential and commercial settings. 

Asbestos samples were taken from 14 contaminated sites, and were sent to 35 laboratories to 

measure the concentration. Multiple samples were collected from each site, 24 to 29 samples, and each 

laboratory analyzed a sample from a particular site only once. Table I shows averages, standard 

deviations (SDs), and coefficient of variations (CVs) of amosite fiber counts by sites. Sites are 

organized in the order of their average concentrations. The SD of measurements increases with the 

average fiber count, indicating non-constant variability. The CV is the largest at the lowest mean 

concentration (site 2778) and roughly constant at higher mean concentrations. This shows non-

vanishing measurement error at low concentrations. 

 

 

 

 

 

TABLE I 

DESCRIPTIVE STATISTICS OF AMOSITE ASBESTOS DATA 

Sites N Mean SD CV 

2778 26 159.00 83.61 0.53 

6001 27 387.85 108.65 0.28 

3739 27 768.26 227.94 0.30 

187Q 25 788.20 226.57 0.29 

4915 27 802.56 253.70 0.32 

7420 28 849.93 221.72 0.26 

5284 25 951.80 206.69 0.22 

8306 27 1217.52 405.08 0.33 

6482 27 1325.22 519.62 0.39 

5099 25 1648.16 390.66 0.24 

8214 27 1731.93 392.66 0.23 

879Q 25 2137.72 489.56 0.23 

5209 24 6910.17 2695.92 0.39 

1987 29 8133.00 2630.82 0.32 
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Figure 1 displays the raw amosite asbestos counts on the vertical axis and the average counts by 

sites on the horizontal axis. The data exhibit considerable non-constant variability: variation increases 

with the average count. The mean concentrations by sites can be considered as naturally occurring 

concentration levels of the sites (i.e., best available estimate of the true count). I revisit these data in 

Chapter 2 and Chapter 5 for illustration. 

 

 

 

 

 

 
 

Figure 1. Heteroscedasticity in Amosite Asbestos Fibers from New York State Department of Health. 

 

 

 

 

 

1.3 Background 

Estimation of the calibration curve is an important subject in the environmental monitoring and 

assessment as well as in analytical chemistry. In this section, I begin with reviewing methodologies for 
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calibration curve estimation. Rocke and Lorenzato (1995) proposed a two-component error model 

using a mixture of lognormal and normal distributed errors to describe the general calibration curve in 

analytical chemistry. The basic ideas were that the lognormal distribution was used to explain the 

skewness of data, and the normal distribution was used for the constant error variance at near-zero 

concentration. Gibbons and Bhaumik (2001) generalized the two-component error model for a single 

laboratory to the random-effects model for inter-laboratory problem, and estimated parameters using 

generalized least squares and maximum marginal likelihood estimation combined. They estimated the 

calibration function relating instrument responses to the known true concentrations for copper data 

(presented in Appendix) using the model. Later, Bhaumik and Gibbons (2005) estimated parameters of 

the extended model by using the method of moments, which was more robust and stable. To estimate 

the calibration curve of cadmium data, they assumed that zero (or near-zero) concentrations are 

available. The authors also took advantage of replicated measurements (per concentration within a 

laboratory). In practice, however, the environmental monitoring samples occasionally do not have 

such replicates, and observations at near-zero concentrations may also not be available. This is the 

situation occurring in the asbestos data from NYSDOH described in Section 1.2. Therefore, the 

estimation method of Bhaumik and Gibbons (2005) may not be applied in some situations. 

The calibration curve can be estimated when a large set of background data is available, for 

instance when measurements are routinely obtained (often from multiple instruments and/or multiple 

laboratories). We can then estimate a true unknown concentration of a new measurement using all 

information we obtained from the background data (Bhaumik and Gibbons, 2005). Sometimes, interest 

is in examining a potentially contaminated area to determine if the area is contaminated or not by 

comparing a measurement to a regulatory standard, i.e. permissible limit. In this case, confidence and 

prediction limits are particularly useful. The confidence interval can be used to determine whether the 

data are either consistent with or higher than the standard. The U.S. EPA recommends and often 

requires reporting the mean concentration and its upper confidence limit (UCL) (Singh et al., 1997; 
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Singh et al., 2002). For example, if the UCL of asbestos measurements taken from a textile plant 

exceeds a permissible exposure limit, the plant may need to be remedied. The calibration confidence 

interval for an unknown concentration can be used in this sense. The prediction interval is useful for 

testing individual new samples when a large set of background samples are available. In this case 

interest is in determining the probability that the new sample was drawn from the distribution of the 

background data, which have been collected from areas considered not contaminated. A single new 

sample (or an average of a few new samples) from a potentially contaminated site is compared to an 

upper prediction limit (UPL) computed based on the background data (Bhaumik and Gibbons, 2004; 

Gibbons and Bhaumik, 2006). If the measured concentration exceeds the UPL, further investigation 

may be required to find out whether the area is an environmental concern.  

Determining the distribution of data is a fundamental step in estimating the calibration curve 

and constructing the confidence and prediction intervals. The lognormal distribution has been widely 

used to analyze environmental data (Ott, 1995; Oehlert et al., 1995; Cheng, 1986; Bhaumik and 

Gibbons, 2004; Cheng et al., 2006). Land (1973, 1975) developed the H-statistic to compute the UCL 

of the lognormal mean. The U.S. EPA had recommended using the H-statistic in their guidance 

document in 1992. However, they recommended against its use in 1997 due to the work of Gilbert 

(1993), which indicates that the H-statistic is upwardly biased (Singh et al., 1997). Bhaumik and 

Gibbons (2004) summarized several methods for computing the UPL of a lognormal distribution and 

compared them via simulation. The lognormal distribution is convenient to use because one can apply 

the normal distribution-based approaches on log-transformed data (Finkelstein, 2008). The normal 

distribution-based approaches usually have good asymptotic properties. However, environmental 

monitoring data are typically not large enough to provide adequate power for an asymptotic test of 

hypothesis and interval estimation.  

The gamma distribution has also been used to analyze right-skewed data in various 

environmental monitoring applications. For example, Bhaumik and Gibbons (2006) developed 
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simultaneous prediction limits for gamma-distributed random variables and applied to groundwater 

monitoring problems. Krishnamoorthy et al. (2008) and Aryal et al. (2008) developed prediction and 

tolerance intervals to analyze alkalinity concentration of groundwater assuming the gamma 

distribution: the former used a normal approximation for the cube root of a gamma random variable, 

and the latter used a normal approximation for a log-transformed gamma random variable. In addition, 

the U.S. EPA (Singh, et al., 2002) suggested using the gamma distribution, arguing against using a 

lognormal distribution, as the mean (and its UCL) may be overestimated with the lognormal-based 

approach. Beyond environmental monitoring applications, the gamma distribution can be used to 

analyze insurance claims data, daily rainfall data, etc (McCullagh and Nelder, 1989). Despite the fact 

that asbestos data show positive skewness, it is surprising that the gamma distribution has been rarely 

used to characterize asbestos fiber count data.  

It should be noted that a gamma distribution is more flexible than a lognormal distribution 

under certain conditions. The useful features of a gamma distribution are (i) as the shape parameter 

increases, it approaches a normal distribution, (ii) the variance is proportional to the mean which is 

often observed with environmental monitoring data, (iii) the cube root of a gamma distributed variable 

has an approximate normal distribution, and (iv) similar to the lognormal distribution, the log-

transformed gamma distributed variables have an approximate normal distribution unless the shape 

parameter is small. It is known that the exponential distribution and chi-square distribution are special 

cases of the gamma distribution, and the gamma distribution looks similar to the lognormal 

distribution (Casella and Berger, 2002). 

For both lognormal and gamma distributions, their means are functions of parameters of the 

distribution, which makes the construction of a confidence interval rather complicated. 

Krishnamoorthy and Mathew (2003) developed a test statistic using the concept of generalized 

confidence intervals and generalized p-values to estimate a confidence interval for the lognormal mean. 

The generalized confidence interval is applicable to small sample sizes. Bhaumik, Kapur, and Gibbons 
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(2009) used a normal approximation to the cube root of a gamma distributed variable in order to 

develop tests for the gamma mean. Their tests perform very well for small sample sizes.  

 

1.4 Purpose of the Study 

In this dissertation, I explore the use of gamma distributions for right skewed data; specifically, 

I introduce the mixed-effects model for a gamma distributed random variable to analyze 

environmental data, and also construct confidence and prediction intervals based on the gamma 

distribution model. 

A calibration curve is estimated based on a large set of background samples. The challenge of 

estimating the parameters of the calibration curve is that skewness, heteroscedasticity, and between-

laboratory variability should be incorporated. I propose a gamma mixed-effects model to explain those 

features of environmental data. Laboratories can be considered to be random samples from a bigger 

pool of laboratories; therefore, laboratory effects are treated as random. That allows estimation of the 

between-laboratory variation as well as laboratory-specific calibration curves. Figure 2 shows 

laboratory-specific calibration curves of hypothetical data. The thick solid line in Figure 2 indicates 

the perfect calibration line, i.e. it is obtained if laboratories provided correct concentration 

measurements in all circumstances. In fact, some laboratories may almost always provide higher 

measurements and others provide lower measurements than the true concentrations. Some laboratories 

may perform poorly when concentration is low; on the other hand, others give poor measurements for 

high concentrations. The next question is how to estimate the model parameters and use them to make 

inferences. Moreover, using the estimated calibration curve, how do we estimate unknown 

concentrations when new samples are obtained? I discuss how to address these questions in this 

dissertation. Since the calibration function is estimated using all laboratories from which background 

data are obtained, my method is borrowing strength from those laboratories to estimate unknown 
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concentrations even if only a subset of the laboratories analyzes new samples. With these problems in 

mind, I organize this dissertation as follows. 

 

 

 

 

 

 

Figure 2. Laboratory-specific calibration curves of hypothetical data. 

 

 

 

 

 

1.5 Organization of the Dissertation 

In Chapter 2, using the amosite asbestos data from NYSDOH, I compute the confidence interval 

for the mean fiber count and the prediction interval for a single new observation assuming a lognormal 

distribution and a gamma distribution. I explore the generalized confidence interval method developed 

by Krishnamoorthy and Mathew (2003) to estimate a confidence interval of the lognormal mean. A 

confidence interval for the gamma mean is constructed following the approach developed by Bhaumik, 
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Kapur, and Gibbons (2009). For a prediction interval, I use the methods proposed by Krishnamoorthy 

et al. (2008) and Aryal et al. (2008).  I describe each method in detail and discuss their advantages and 

disadvantages. The Bayesian approach of calculating an interval estimate for the mean and for a single 

new observation is also considered. 

In Chapter 3, I propose regression models to estimate the calibration function incorporating 

heteroscedasticity and between-laboratory variability, and explore how to estimate true concentrations. 

I use nonlinear regression models, in which measured concentrations are regressed on true 

concentrations. A two-component error model with random laboratory effects is suggested to 

incorporate heteroscedasticity and between-laboratories variability simultaneously. To estimate the 

model parameters and variance components, I modify the iteratively reweighted maximum marginal 

likelihood (IWMML) method, developed by Gibbons and Bhaumik (2001), to analyze data with no 

replicate for a particular concentration within a laboratory. I propose a gamma mixed-effects 

regression model that integrates both non-constant variability and between-laboratory variability. For 

parameter estimation, maximum marginal likelihood (MML) and empirical Bayes (EB) estimation are 

used. In addition, I derive the point and interval estimates for an unknown true concentration of new 

samples based on both of the fitted regression models, two-component mixed model and gamma 

mixed model, borrowing strength from all laboratories.  

In Chapter 4, I evaluate the performance of estimation procedures, point estimates, and 

calibration confidence intervals via simulation. In Chapter 5, I illustrate the methodology by analyzing 

the amosite asbestos data and the experimental copper data. 
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2. CONFIDENCE AND PREDICTION INTERVALS 

In this chapter, I examine statistical methods for computing confidence and prediction intervals 

that are useful in the context of environmental monitoring problem. The environmental monitoring 

data are often positively skewed as described in Chapter 1. I explore several methods relevant to 

computing confidence and prediction intervals, assuming a lognormal distribution or a gamma 

distribution. The distributional assumptions on the asbestos data from NYSDOH are checked, and I 

use these methods to compute confidence intervals for the average fiber count and prediction intervals 

for a single measurement. Finally, I compare the results obtained using these methods. I begin with 

methods relevant to a lognormal distribution. 

 

2.1 The Lognormal Distribution 

Denote a concentration measurement by  . Suppose it has a lognormal distribution with 

parameters   and   , i.e.               The pdf of   is 

           
 

    

 

 
     

        

   
                  (2.1) 

The mean and variance of    are 

          
               

 
   

 
      

Let    and     be the maximum likelihood estimates (MLEs) of   and   . These are jointly 

sufficient and asymptotically consistent estimators. The MLE is asymptotically normally distributed, 

thus it is common to construct the confidence interval for      based on a Wald type statistic, 

provided the sample size is large; otherwise we cannot obtain the correct coverage probability. In 

order to provide results applicable to small samples as well as large samples, I explore the idea of 

generalized confidence intervals introduced by Weerahandi (1993). Krishnamoorthy and Mathew 

(2003), and Krishnamoorthy et al. (2006) developed confidence intervals for a lognormal mean using 

Weerahandi’s (1993) concept of generalized confidence intervals. 



13 
 

 
 

2.1.1 Generalized Confidence Interval for the Mean of a Lognormal Distribution 

We can obtain the interval estimator of the mean of a lognormal distribution,     , by 

computing the confidence interval for           and then taking exponents of the lower and 

upper bounds of   . Krishnamoorthy and Mathew (2003) applied the generalized confidence intervals 

and generalized p-values in order to compute the confidence interval for  . Their method is useful in 

this context as it does not require large sample size, it provides an exact confidence interval, and it is 

easy to compute. Let           for        ,    and   
  be the sample mean and sample variance of 

  respectively. The observed realized values of    and   
  are denoted by    and   

 . Krishnamoorthy 

and Mathew (2003) defined the generalized pivot statistic for obtaining the confidence interval of   as 

follows: 

 

      
    

     
 
   

  
  
 

 
 
  

  
    

  

                        
 

      

  

  
 
 

 

  
 

        
   

(2.2) 

where   is a standard normal random variable and    is a chi-square random variable with degrees of 

freedom    . When       and   
    

 ,    reduces to  . More details about how to construct a test 

for the lognormal mean can be found in Krishnamoorthy et al. (2006). The following algorithm 

describes how to construct the           generalized confidence interval for  . Suppose 

          are log-transformed observed concentrations for a given site. 

 

Algorithm 1. 

1. Compute    and   
  for a given site. 

2. Generate          and        
 . 

3. Compute    in equation (2.2). 
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4. Repeat steps 2 and 3   times to obtain            . The two sided equal-tailed 

confidence interval is obtained by computing          and            percentiles of 

  . Denote these percentile points by      and          The interval                 is the 

generalized confidence interval for  . 

 

Once the confidence interval for   is obtained, the confidence interval for      is computed by 

                        . Generally   is a very large number (I used   =100,000). This interval 

has a property that after a large number of independent situations of setting           confidence 

intervals for  , the true value of   will be included in the corresponding intervals           of the 

time (Weerahandi 1993). The coverage probability of the confidence interval may be smaller than the 

pre-specified confidence level because the type I error and the power of this test may depend on 

unknown parameters. For this reason, Krishnamoorthy and Mathew (2006) conducted the simulation 

study assuming various combinations of   and   . Their simulation study shows that the coverage 

probabilities are very close to the pre-specified confidence level. They also compared their generalized 

confidence interval method to Augus’s parametric bootstrap method (1994) and Land’s method (1973) 

by estimating the upper confidence limits (UCL) of   when      and                with various 

sample sizes,                         . It turns out that the UCL of Krishnamoorthy and 

Mathew (2006) are very close to Land’s limit, but the parametric bootstrap results are unsatisfactory in 

this context (because it gives lower UCL than the other two methods) for small sample sizes, i.e. 

            and large values of   . They also observed that their coverage probabilities obtained 

by Algorithm 1 are better than those obtained by the parametric bootstrap method in all scenarios 

considered.  

I applied the generalized confidence interval to the amosite asbestos data from NYSDOH. The 

distributional assumption was checked using the normal probability plots (Figure 3) and Anderson-
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Darling goodness-of-fit tests for log-transformed asbestos data: normal distributions fit moderately 

well to 9 sites (p-values>0.09) among a total of 14 sites. This result suggests moderately good fit of 

the data to a lognormal distribution. For each site, I simulated the coverage probability of the 

generalized confidence interval assuming the true value of           , where    and     are MLEs 

of   and    for a given site. The coverage probabilities were simulated as follows: generate   

lognormal random variates with parameter values equal to    and     (  is the number of observations 

in a particular site), compute the confidence interval following Algorithm 1, and repeat this process 

5,000 times. For the     repetition, denote the limits by     
  and       

  . If the interval 

     
          

   contains the true value of  ,  then assign the value 1, otherwise assign 0. The 

proportion of  s is the simulated coverage probability. The results are presented in Section 2.1.3. 
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Figure 3. Normal probability plots of log-transformed data for all sites. 
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2.1.2 Bayesian Interval for the Mean of a Lognormal Distribution 

This section explores how to obtain a Bayesian credible interval for the lognormal mean 

and for a single new observation. The Bayesian approach specifies prior knowledge about parameters 

or the quantity of interest as a prior density. The joint posterior density of        with a non-

informative prior distribution              is expressed as  

                                
       

          

   
   (2.3) 

We need the posterior density of     
    because the interest is the lognormal mean. However, it 

needs not to derive a functional form of the posterior density of this quantity. Instead, random draws 

from the joint posterior density of        are used to obtain random draws from the posterior density 

of      
   . In fact, the posterior density of any functions of   and   can be obtained from random 

draws from the posterior density of        (Gelman et al., 2003). The steps for computing a Bayesian 

interval for the mean of a lognormal distribution is described in Algorithm 2. 

 

Algorithm 2. 

1. Simulate 100,000 draws from the posterior density                 in (2.3) and denote 

them by               100,000. 

2. Compute            
 
    for all drawn values of (        Those values are treated as 

random draws from the posterior density of the lognormal mean. 

3. Compute the highest posterior density (HPD) interval based on the draws from step 2. 
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For step 1, a plausible region of   and    can be divided into many small grids and         are 

randomly sampled from each grid. I use the R package LearnBayes (Albert, 2007) to do step 1, and the 

R package boa (Smith, 2007) to do step 3.   

The HPD interval is calculated in a way that values within the HPD interval have higher 

probabilities than values outside the interval. The HPD interval       satisfies the following equations,  

 

and 

                             

             
 

  

              
 

  

       

(2.4) 

provided a mode of the posterior density is not in the boundary of domain. When the density has more 

than one mode, the HPD interval may consist of two distinct regions. Smith (2007) implemented Chen 

and Shao's algorithm (1999) in his R package boa to compute an HPD interval based on random draws. 

The equal-tailed interval, called the central posterior density (CPD) interval, can also be computed 

instead of the HPD interval. However, the length of the HPD interval is shorter than the CPD interval 

when the density is asymmetric (Casella and Berger, 2002).  

Figure 4A shows a contour plot with random draws from the posterior density (2.3), given the 

asbestos data from the site 2778. The marginal distribution of    is symmetric around the mode 4.9, 

but the distribution of    is right skewed as expected. The posterior distribution of the mean is shown 

in Figure 4B, which is slightly right skewed. The posterior median is 159.77 and the posterior mean is 

161.32, so the skewness is trivial. Although the skewness in Figure 4B is small, the HPD interval for 

the mean (131.14, 194.71) is a little shorter and located to the left of the CPD interval (133.67, 198.51). 

This CPD interval of the site 2778 is very close to the corresponding generalized confidence equal-

tailed interval (see Table II). 

Using the asbestos data from NYSDOH, I computed the Bayesian HPD intervals for the 

lognormal mean over all sites. I also computed the coverage probability, although this is not exactly 

the Bayesian idea, to compare the performance of the Bayesian interval with the generalized 
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confidence interval. To simulate the coverage probability, I generated   lognormal random variates 

with parameters fixed at      and       , and computed the interval following Algorithm 2. This 

process was repeated 5,000 times, and the proportion of times when the true mean falls in the interval 

was calculated. The results are presented in Table II (see Section 2.1.3).  

 

 

 

 

 

 

 

Figure 4.  Posterior distributions relating to the lognormal distribution for site 2778. (A) Contour plot 

of the posterior density,          , and random draws from the density. (B) Histogram of the 

posterior density of the lognormal mean. (C) Histogram of the posterior predictive density for a 
new lognormal random variable given the random draws in (A). 
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2.1.3 Comparison of Intervals for the Lognormal Mean 

In this section, using the amosite asbestos data for NYSDOH, I compare the generalized 

confidence interval and the HPD interval for the mean of lognormal variables with respect to their 

lengths, locations, and coverage probabilities. As mentioned in the previous section, the highest 

density interval gives generally shorter length than the equal-tailed interval when the distribution is 

skewed. It should be noted that the distribution of        , where    is a simulated value by 

Algorithm 1, is right skewed (Figure 5). Therefore, its highest density interval would be shorter than 

the equal-tailed interval. Following this idea, I compute the lower and upper bounds of the confidence 

interval which satisfy conditions in (2.4), using simulated values of        , and call this interval the 

generalized confidence highest density interval. 

Table II shows the generalized confidence equal-tailed intervals, the generalized confidence 

highest density intervals, and the Bayesian HPD intervals for the average counts of amosite fibers. Let 

me first compare two types of generalized confidence intervals; equal-tailed (A) and highest density 

intervals (B). The coverage probabilities are close to 0.95 for all sites. As expected, the generalized 

confidence highest density intervals (B) are shorter and located to the left of the corresponding equal-

tailed intervals (A). Next, the Bayesian HPD interval (C) is compared with the generalized confidence 

highest density interval (B). These intervals are quite similar in terms of their locations and lengths 

(although the generalized confidence highest density intervals are never wider than the corresponding 

Bayesian HPD intervals, except for the site 5209). In addition, all coverage probabilities are close to 

0.95. It appears that when the distribution of         is skewed, the generalized confidence highest 

density interval can be a good alternative to the equal-tailed interval if a shorter interval is desired. 
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Figure 5. Distribution of         for site 2778:             are simulated based on Algorithm 1. 

The median is 159.8, mean is 161.4, and maximum value is 297.1. 
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TABLE II  

95% GENERALIZED CONFIDENCE INTERVALS AND BAYESIAN HPD INTERVALS FOR THE LOGNORMAL MEAN 

a 
  Lognormal distributions do not fit measurements from these sites (p<0.05). 

b 
  Coverage Probabilities.  

  A  B  C 

 

 

 

Generalized Confidence 

Equal-Tailed Intervals 

 

 

Generalized Confidence 

Highest Density Intervals 
 Bayesian HPD Intervals 

Sites  2.5% 97.5% Length C.P.
b
  Lower Upper Length C.P.

b
  Lower Upper Length C.P.

b
 

2778  133.81 198.42 64.61 0.946   131.59   194.87   63.28 0.955   131.14   194.71   63.57 0.952 

6001  347.09 446.87 99.78 0.950   344.24   443.20   98.96 0.952   344.63   443.78   99.15 0.949 

3739  685.52 886.42 200.90 0.957   679.00   877.93  198.93 0.964   679.28   879.25  199.97 0.949 

187Q
a
  696.02 937.03 241.01 0.943   687.09   925.04  237.95 0.941   687.00   926.78  239.78 0.952 

4915  718.35 913.32 194.97 0.955   713.63   907.16  193.53 0.953   714.25   909.24  194.99 0.952 

7420
a
  752.73 1038.39 285.66 0.945   743.42  1025.08  281.66 0.947   741.16  1024.09  282.93 0.949 

5284  874.88 1048.48 173.60 0.947   870.35  1043.17  172.82 0.942   869.34  1042.36  173.02 0.950 

8306
a
  1059.76 1515.30 455.55 0.943  1044.57  1492.47  447.90 0.957  1044.13  1495.14  451.01 0.952 

6482
a
  1140.64 1675.97 535.33 0.956  1117.99  1642.82  524.83 0.957  1119.88  1645.80  525.92 0.955 

5099  1505.40 1829.94 324.54 0.946  1497.51  1820.00  322.49 0.952  1496.95  1821.01  324.06 0.954 

8214  1594.49 1902.15 307.66 0.949  1588.72  1894.67  305.95 0.955  1589.24  1896.28  307.04 0.951 

879Q  1968.74 2342.95 374.21 0.954  1960.54  2332.62  372.08 0.954  1957.94  2332.69  374.75 0.957 

5209
a
  5814.95 14488.37 8673.42 0.944  5312.41 13279.67 7967.26 0.950  5340.01 13296.39 7956.38 0.952 

1987  7211.36 9521.92 2310.56 0.945  7149.33  9437.32 2287.99 0.951  7145.83  9456.30 2310.47 0.947 
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2.1.4 Prediction Interval for a Single Lognormal Observation 

The Bayesian prediction interval for a new single observation is obtained based on the 

posterior predictive distribution.  Denote the posterior predictive density of a new observation    as 

             , which is given by 

                        
 

  

 

 
                       

 . (2.5) 

Dahiya and Guttman (1982) derived the functional form of               and described how to 

compute the shortest prediction interval based on  , which is  

               
      

  
   
    

 
  

           
    

 

 
 

  
    

            

       
      

 

    

   
(2.6) 

where            and   
  is the sample variance of     . According to Dahiya and Guttman (1982), 

the density function (2.6) is  

(i) a strictly decreasing function of    if   
                  , or  

(ii) possesses two stationary points if   
                  . 

If the data satisfy condition (i), a one-sided interval      
   has the shortest length. If condition (ii) is 

satisfied, the shortest prediction interval could be either one-sided or two-sided depending on the value 

of     
          , where   

  is the smaller of the two stationary points. That is, if 

    
               

           then the one-sided interval      
   gives the shortest length, but if 

    
               

           then the shortest interval consists of two distinct regions 

      
   and    

     
  , which satisfy 

 

 

    
                

               
             

                      
       

       
    

(2.7) 

However, the amosite asbestos data satisfy neither (i) nor (ii). The density   for asbestos data has one 

stationary point equal to its mode (see Figure 4C). Therefore, Dahiya and Guttman’s method does not 
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apply to the amosite asbestos data. In addition, their prediction limits under condition (ii) and 

equations (2.7) are both mathematically and computationally intensive.  

Following an approach discussed in Gelman et al. (2003), I simulate 100,000 random draws 

   from the posterior predictive density               given all drawn values of (       in step 1 of 

Algorithm 2. Then the HPD interval based on the simulated random draws of    is the prediction 

interval. For the amosite data, the posterior predictive distribution of     is positively skewed and 

unimodal (Figure 4C).  

The prediction interval for a single asbestos fiber count and its coverage probability for all sites 

are presented in Table III. The coverage probabilities were computed as follows: generate   lognormal 

random variables with parameters fixed at      and       , and obtain random draws from the 

joint posterior density                , then simulate draws from the posterior predictive density 

              given the draws of        and compute an HPD interval based on these draws, finally 

generate one lognormal random variable with parameters fixed at    and     and determine whether this 

random variate is included within the prediction interval. This process was repeated 5,000 times. The 

coverage probability is the proportion of times when the prediction interval includes a new lognormal 

variate. As shown in Table III, all coverage probabilities of the Bayesian prediction intervals are close 

to 0.95. 

 

 

 

 

 

 

 



25 
 

 
 

 

 

 

 

TABLE III 

95% HIGHEST POSTERIOR PREDICTIVE DENSITY INTERVALS  

OF A LOGNORMAL RANDOM VARIABLE 

Site Lower Upper Length C.P.
b
 

2778   38.81    324.55   285.74 0.953 

6001  168.36    658.33   489.97 0.948 

3739  323.72   1308.97   985.25 0.951 

187Q
a
  302.14   1419.33 1117.19 0.947 

4915  368.21   1337.21   969.00 0.949 

7420
a
  267.13   1624.98  1357.85 0.949 

5284  562.34   1412.74   850.40 0.945 

8306
a
  332.18   2419.42  2087.24 0.951 

6482
a
  326.34   2738.58  2412.24 0.944 

5099  900.90   2480.27  1579.37 0.946 

8214  993.65   2563.59  1569.94 0.950 

879Q 1260.94   3097.85  1836.91 0.950 

5209
a
  153.38  26121.67 25968.29 0.950 

1987 3115.42  14659.96 11544.54 0.947 
 

a
  Lognormal distributions do not fit data from these sites (p<0.05). 

b 
 Coverage Probabilities.  
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2.2 The Gamma Distribution 

Let   be a gamma distributed random variable with parameters   and  , i.e.             . 

The pdf of   is given by 

          
 

      
                              (2.8) 

where   is the shape parameter and   is the scale parameter. The mean and variance of   are 

                     

The gamma distribution has a few important features that make it convenient to apply in various 

situations. First, its variance is proportional to the mean and it has constant coefficient of variation. 

We can find a gamma distribution that looks very similar to the lognormal distribution (Casella and 

Berger, 2002). The cube root of a gamma distributed random variable is approximately normally 

distributed. The log-transformed gamma random variable has also an approximate normal distribution, 

provided its shape parameter   is not small. Finally, the gamma distribution converges to the normal 

distribution as    . I use a few of these features in this section to derive confidence and prediction 

intervals. 

 

2.2.1 Confidence Interval for the Mean of the Gamma Distribution 

Denote the maximum likelihood estimates of   and   by     and   . Then, the gamma 

mean and variance estimators are            and            . Bhaumik et al. (2009) proposed a test 

statistic for            . Let    be an arithmetic mean,    a geometric mean, and      , then the 

test statistic proposed is  

    
      

                   
     

              
    

   has an approximate  -distribution with degrees of freedoms 1 and      . According to the 

simulation study conducted by Bhaumik et al. (2009),    controls the type I error rate better than the 
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test developed by Grice and Bain (1980) for testing   . One drawback they mention is that it is 

slightly conservative when the true shape parameter   is less than 0.5. However, for the amosite 

asbestos data, the estimated    is larger than 2 for all sites. Another advantage of    is that it does not 

depend on any unknown parameters under the null hypothesis.  The corresponding confidence interval 

is obtained by inverting the test statistic    as follows. 

                         

    
           

      
     

           
     

     
   

 
           

      
         

      
           

     

     
   

     

                        

where              
       If    , then               and               

satisfy the equation and lead to two separate regions. If    , the equation reduces to 

                      

    
 

        
    

 

        
    (2.9) 

    as    . I also observed     in all sites of the amosite asbestos data. Therefore, the  

          confidence interval for the mean by (2.9) is 

  
   

        
  

   

        
    where        

  

  
 
       

      
      (2.10) 

I applied this confidence interval (2.10) to the amosite asbestos data. I first checked the 

distributional assumption based on the gamma quantile-quantile plots (Figure 6) and Anderson-

Darling goodness-of-fit tests: gamma distributions fit 13 out of 14 sites (p-values≥0.15). The only site 
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that the gamma distribution does not fit is 5209 which does not follow the lognormal distribution as 

well. These results indicate that the gamma distribution fits better to the amosite asbestos data than the 

routinely used lognormal distribution. I computed 95% confidence intervals (2.10) for the mean fiber 

counts and their coverage probabilities by sites (Table IV). 

The coverage probabilities were computed as follows: generate   gamma random variables with 

parameters fixed at      and     , i.e. the true mean is set to        , and then compute        

and see whether this        falls between      and        . This process was repeated 5,000 times. 

The proportion of times when    falls in                 is the simulated coverage probability. 

Results are presented in Table IV (see Section 2.2.3). 

  

2.2.2 Bayesian Interval for the Mean of the Gamma Distribution 

This section explores a Bayesian approach to calculate an interval estimate for the 

gamma mean. The Bayesian approach specifies prior knowledge about parameters or the quantity of 

interest as a prior density. Miller (1980) proposed a conjugate prior density for the gamma parameters. 

Let   be a gamma distributed variable with the shape parameter   and the inverse scale parameter  , 

denoted by               following Miller's notation. Note that   is the reciprocal of    in (2.8).  

The joint conjugate prior density for (   ) with hyperparameters           proposed by Miller is  

       
 

 

     

     
                 

for        , and   is a normalizing constant. This prior density implies past data or a 

hypothetical experiment with a sample size      , a sum of observations  , and a product of 

observations  . Incorporating this prior density into analysis is the same as adding   more data points.   
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Figure 6. Gamma quantile-quantile plots for all sites. 
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The joint posterior density of (   ) with this prior is 

               
         

       
         

                 

If we set         and     in       , we obtain a non-informative prior density        

   . Although it is an improper density, the corresponding posterior density is proper. Another non-

informative prior density Miller (1980) suggested is              . The HPD interval for the 

gamma mean,   , can be obtained in a similar way described in Section 2.1.2. Once the joint posterior 

density                is obtained using the specified prior density (I specified            ), 

random draws (       are simulated from the posterior distribution for   1, …, 100,000. The 

contour plot of                and simulated draws of (       of the site 2778 are given in Figure 

7A. As the Figure shows,   and   are positively correlated; the marginal posterior density of   is right 

skewed as is the marginal posterior density of  . The draws from the posterior density of a gamma 

mean, which is the quantity of interest, can be easily obtained by computing       for all  . Figure 7B 

shows the posterior distribution of the mean for the site 2778. The 95% HPD interval for the mean is 

(131.56, 189.53). The posterior mean is the average of simulated values      , which is 160.34.  This 

posterior mean should be close to the MLE,     , because a non-informative prior was used.   

I computed 95% HPD intervals for all sites, assuming the non-informative prior           . 

The results along with the coverage probability are presented in the next section. 

 

 

 

 

 



31 
 

 
 

 

 

 

 

 

 

Figure 7. Posterior distributions relating to the gamma distribution for site 2778: (A) Contour plot of 

the joint posterior density,               , and random draws from the density. (B) Histogram 

of the posterior density of the gamma mean. (C) Histogram of the posterior predictive density for 

a new gamma random variable given the random draws in (A). 
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2.2.3 Comparison of Intervals for the Gamma Mean 

In this section, using the amosite asbestos data, I compare the confidence interval 

developed by Bhaumik et al. (2009) and the HPD interval for the mean of gamma variables in terms of 

the lengths, locations, and coverage probabilities. 

Table IV shows the two confidence intervals for all sites. The lengths of the Bayesian HPD 

intervals are shorter than those of the confidence interval (2.10) based on the test    over all sites. The 

coverage probabilities of the HPD intervals are close to 0.95 (though slightly larger than 0.95 for a few 

sites). It is interesting that the HPD intervals have shorter length with similar coverage probabilities 

compared to the corresponding interval (2.10). The coverage probability of the interval (2.10) was 

simulated by counting the number of times that the interval               included the true value of 

       , while the coverage probability of the Bayesian interval was simulated by counting the 

number of times that the HPD interval included the true value of the gamma mean,   .  

I re-computed the coverage probability of (2.10) by checking whether the true mean    fell 

within the confidence interval (2.10), instead of comparing         to the interval              . I 

obtained somewhat higher coverage probabilities close to 0.97 for all sites. This happened because a 

highly nonlinear function         was inverted to construct the confidence interval and the 

approximation of     was used. 
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TABLE IV 

95% CONFIDENCE INTERVALS FOR THE MEAN OF A GAMMA DISTRIBUTION 

 Confidence Intervals (2.10)  Bayesian HPD intervals 

Sites 2.5% 97.5% Length C.P. 
b
  Lower Upper Length C.P. 

b
 

2778  128.96  199.15   70.19 0.949   131.56  189.53   57.97 0.949 

6001  339.48  445.86  106.37 0.953   343.81  437.29   93.48 0.948 

3739  669.63  887.25  217.62 0.949   676.98  868.05  191.06 0.960 

187Q  678.22  923.30  245.07 0.955   688.74  901.49  212.75 0.956 

4915  701.56  923.90  222.34 0.954   709.60  905.91  196.31 0.957 

7420  733.62  992.19  258.57 0.950   742.55  969.27  226.71 0.958 

5284  859.90 1057.27  197.36 0.950   861.08 1043.96  182.88 0.966 

8306 1026.72 1458.67  431.94 0.951  1044.58 1418.15  373.57 0.948 

6482 1100.81 1615.01  514.20 0.952  1120.53 1555.33  434.80 0.954 

5099 1476.98 1846.85  369.87 0.953  1484.86 1824.87  340.02 0.963 

8214 1567.77 1919.82  352.06 0.948  1573.40 1898.67  325.27 0.963 

879Q 1933.66 2371.54  437.88 0.952  1941.71 2350.66  408.95 0.963 

5209
a
 5118.76 9645.21 4526.45 0.954  5268.75 8913.36 3644.61 0.948 

1987 7031.48 9477.14 2445.66 0.948  7126.94 9254.15 2127.21 0.956 

a
   Gamma distribution does not fit the measurements from the site (   0.05). 

b
   Coverage probabilities. 
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2.2.4 Prediction Interval for a Single New Gamma Observation 

In this section I explore three methods for constructing prediction intervals for a single 

new observation as the following: (i) the normal distribution-based method suggested by 

Krishnamoorthy et al. (2008), (ii) another normal-based method by Aryal et al. (2008), and (iii) an 

HPD interval based on the posterior predictive distribution. These prediction intervals are applied to 

the amosite asbestos data.  

Wilson and Hilferty (1931) provided a normal approximation to the cube root of a chi-squared 

variable. Krishnamoorthy et al. (2008) extended the cube root transformation technique of a chi-

squared variable to a gamma variable. Let   be a gamma random variable, i.e.               . An 

approximate distribution of      is a normal distribution with mean and variance, 

   
            

    
  

    
            

    
      

Krishnamoorthy et al. (2008) compared the Wilson-Hilferty normal approximation with another 

normal approximation technique based on the quartic root, suggested by Hawkins and Wixley (1986). 

The two techniques were compared based on quantiles of gamma distributions with various shape 

parameters and a scale parameter of 1. Overall, the Wilson-Hilferty method is more accurate, but when 

the shape parameter is small       the Hawkins and Wixley method provides more accurate values 

for low quantiles of gamma distributions.  

Krishnamoorthy et al. (2008) developed prediction limits using this cube root transformation. 

Suppose the pdf of   is (2.8) and        . The           prediction interval for   is 

                     
 

 
 

 

   (2.11) 
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where    is the standard deviation of  ,    is the sample mean of  , and            is the           

percentile of a t-distribution with degrees of freedom    . This interval is easily computed and the 

two gamma parameters need not be estimated. A drawback of this method is that the lower limit can 

be negative. In that case, it is commonly set to zero.  

Instead of the cube root transformation, the log transformation can be used to construct the 

prediction interval for a gamma distributed variable (Aryal et al., 2008). When the shape parameter   

is large, say      a log-transformed gamma random variable has approximately a normal distribution 

with mean               and variance         , where      is a digamma function and       

is a trigamma function.   and   are substituted by their MLEs to estimate   and   . The prediction 

interval for a gamma random variable using this approximation according to Aryal et al. (2008) is  

                       
 

 
       (2.12) 

This interval can be used when the shape parameter estimate    is larger than 7. Although   and   need 

be estimated to obtain the interval (2.12), it is not difficult to compute. An advantage of this interval 

(2.12) over interval (2.11) is that its lower limit is never negative.  

The third method, Bayesian HPD interval based on the posterior predictive distribution of    

given       can be obtained in a similar way described in Section 2.1.3. Again, it is not necessary to 

derive the mathematical expression of the prediction interval, nor the posterior predictive density. 

Figure 7C shows the posterior predictive density for the site 2778, of which the 95% HPD interval is 

(31.38, 307.14).  

The 95% prediction intervals (2.11), (2.12), and Bayesian HPD interval for each site and the 

corresponding coverage probabilities are presented in Table V. The coverage probabilities are 

computed by checking a newly simulated gamma variate with the prediction interval. Although    is 

smaller than 7 for three sites (the sites 2778, 6482, 5209), coverage probabilities are close to 0.95, 

indicating that the interval (2.12) performs well even when   is small. The Bayesian HPD interval for 
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prediction has the shortest length among the three intervals, but it also has slightly lower coverage 

probabilities than 0.95. In addition, the Bayesian HPD prediction interval is located to the left of the 

others due to asymmetry. The prediction interval (2.12) is the longest among the three methods.  

 

In summary, the gamma distribution fits the amosite asbestos data from NYSDOH better than 

the lognormal distribution. For the sites where both distributions fit the data, the confidence intervals 

relevant to the lognormal distribution give shorter length, but the gain is not substantial. For the sites 

where the gamma distributions fit, but the lognormal distributions do not, the gamma distribution-

based approaches tend to have shorter intervals.



 
 

   

3
7
 

TABLE V 

95% PREDICTION INTERVALS OF A GAMMA RANDOM VARIABLE 

  

A  B  C 

Prediction Interval (2.11)
b
  Prediction Interval (2.12)

c
  Bayesian HPD interval 

Sites  2.5%  97.5% Length C.P.  2.5%   97.5% Length C.P.  Lower    Upper Length C.P. 

2778    45.51   345.30 299.79 0.948  53.39 385.04 331.64 0.949    34.64   309.06   274.42 0.945 

6001   187.44   665.01 477.57 0.950  199.97 690.80 490.83 0.949   174.62   623.35   448.73 0.944 

3739   360.88  1337.18 976.30 0.949  386.93 1392.96 1006.03 0.946   326.94  1247.08   920.14 0.944 

187Q   353.85  1408.01 1054.16 0.956  381.53 1473.81 1092.28 0.947   316.09  1302.81   986.72 0.939 

4915   383.95  1381.44  997.48 0.943  410.81 1437.32 1026.51 0.946   357.18  1298.95   941.77 0.941 

7420   372.84  1538.78 1165.94 0.949  398.79 1624.28 1225.49 0.945   332.41  1437.48  1105.07 0.941 

5284   572.30  1432.67  860.37 0.954  594.23 1457.78 863.55 0.945   561.92  1382.22   820.30 0.944 

8306   459.98  2367.62 1907.63 0.952  506.89 2539.02 2032.14 0.951   396.13  2180.31  1784.18 0.944 

6482   448.02  2704.22 2256.20 0.955  503.75 2946.28 2442.53 0.946   359.78  2448.77  2088.98 0.941 

5099   945.54  2555.55 1610.00 0.951  987.66 2610.04 1622.38 0.946   930.01  2453.73  1523.73 0.945 

8214  1030.17  2623.78 1593.61 0.947  1070.14 2674.00 1603.86 0.950  1006.87  2536.36  1529.49 0.944 

879Q  1294.39  3201.67 1907.28 0.950  1342.70 3257.94 1915.23 0.947  1258.25  3067.03  1808.78 0.946 

5209
a
  1095.37 18640.20 17544.83 0.946  1364.46 23495.11 22130.64 0.945   356.44 15699.85 15343.41 0.945 

1987  3498.03 14814.55 11316.52 0.951  3793.84 15603.38 11809.54 0.952  3173.50 13823.13 10649.63 0.944 

a
 Gamma distribution does not fit the data (   0.05). 

b
 Derived by Krishnamoorthy et al. (2008). 

c
 Derived by Aryal et al. (2008).
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3. MIXED-EFFECTS MODELS AND CALIBRATION 

In this chapter, I propose two mixed-effects regression models to estimate the calibration 

function for environmental monitoring samples incorporating heteroscedasticity and between-

laboratory variation. I describe each model and show how to estimate parameters. Then I derive a 

point estimate and the corresponding confidence interval for a true unknown concentration of new data 

analyzed by a subset of laboratories. I start with a two-component mixed model. 

 

3.1 A Two-Component Mixed Model 

3.1.1 The Model 

Rocke and Lorenzato (1995) proposed a two-component error model to incorporate 

both constant variation at near-zero concentrations and inflated variation at larger concentrations. The 

proposed model is  

             
          (3.1) 

where     is the     observed response at the     concentration, and    is the true concentration. There 

are two independent error terms in the model; a multiplicative error   and an additive error  . The 

distributional assumptions of error terms are           
   and           

  . Therefore, the 

distribution of   is a mixture of a normal and a lognormal; it is approximately a normal distribution at 

very low concentrations (   ), and the lognormal component,   , becomes predominant at higher 

concentrations, compared to the normal component. The constant variability at low concentrations is 

explained by   and the increasing variability at higher levels is explained by    . In terms of CV, this 

model explains larger CVs at very low concentrations and approximately constant CVs at higher 

concentrations. Application and examples of model (3.1) is described by Rocke et al. (2003). 
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The mean and variance of the response are 

 

and 

                    
         

             
 
   

 
    

 
      

  . 

(3.2) 

The variance is a quadratic function of the true concentration. At near-zero concentrations         

  
  , while at large concentrations       

   
 is roughly proportional to       . 

Although model (3.1) explains well the non-constant variability inherent in environmental 

monitoring samples, it does not capture the between-laboratory variability. Gibbons and Bhaumik 

(2001) and Bhaumik and Gibbons (2005) extended model (3.1) to the model suitable for inter-

laboratory data. When multiple laboratories are involved, it is expected that the intercept and slope of 

the model would vary across laboratories due to different protocols. Generally a bivariate normal 

distribution is assumed on          to explain additional variability at the laboratory level. The 

random-effects model is 

 

                         
            

where             
       

 
 
       

  
    

     
       

(3.3) 

     is the     replicated measurement of the     concentration within the     laboratory            

                    . Laboratories often do not provide replicates, i.e.      ; in that case, we 

can leave out the index  .    and    are the overall intercept and slope parameters respectively, and 

    and      are the random intercept and slope deviations for a laboratory  . The components of    

explain the between-laboratory variability.   
  and   

  contribute to the within-laboratory variability.  

The conditional mean and variance given a laboratory   are 
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where              
 . The marginal mean is the same as in (3.2) and the marginal variance of an 

observation is 

               
  
           

     
 
   

    
 
    

 
      

    
    

 . (3.4) 

The marginal variance in (3.4) consists of two parts: a between-laboratory variance               and 

a within-laboratory variance              , each of which are 

 

and 

                   
  
         

    
 
  
    

    

                      
    

      
 
    

 
      

    
    

 

If      , the between-laboratory variance monotonically increases with    in a quadratic manner. 

For near-zero concentrations       , the between- and within-laboratory variances are close to the 

constant values   
  and   

  respectively.  

Note that the true concentration    is assumed to be known in model (3.3); however, it is 

sometimes unknown as we saw with the NYSDOH asbestos data. When it is not known, I suggest 

substituting the sample mean     for    in model equation (3.3) and in mean and variance expressions 

as well. In addition, the total variance (3.4) should be adjusted to reflect the additional uncertainty 

owing to estimating   .   

 

3.1.2 Parameter Estimation 

Rocke and Lorenzato (1995) estimated parameters of model (3.1) by the MML 

estimation. Since the multiplicative error and additive error have normal distributions with their own 

variances, the likelihood function using the distributional assumption is expressed as 
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A numerical integration or an approximation is necessary to solve the integration over   because it 

cannot be analytically solved.  

To estimate parameters of extended model (3.3), we can use the same strategy. Let    be a 

vector of observations nested in laboratory  ,          
 , and             

 . We need to 

construct the marginal likelihood function of laboratory  , which is 

                                               

 

 

    
 

      
     

                
     

 

   
  

    
 

   
       

   

 

    
    

  
      

  
   

    
 

      

(3.5) 

 

where          is a bivariate normal distribution with mean 0 and variance-covariance matrix   , 

          , and           . As expressed in (3.5), another numerical integration over the 

random effects is required; thus, it is mathematically and computationally very complex to solve.  

Gibbons and Bhaumik (2001) proposed a more feasible estimation procedure, iteratively re-

weighted maximum marginal likelihood (IWMML), to estimate the parameters in model (3.3). The 

IWMML is a combination of the weighted least squares and the MML with updated weights at each 

iteration. Gibbons and Bhaumik (2001) showed that the IWMML gives satisfactory results when 

replicates are available, i.e.      . Here, I propose a modified version of the IWMML for the 

situation of no replicate (      ; therefore, the index   is omitted here. Note that there are no 

replicates in the NYSDOH asbestos data. The estimation procedure is as follows. 

 

First, we estimate   
  and   

  by iteratively re-weighted least squares (IWLS).     is substituted 

for    when it is unknown. 

1. Compute weight       
        

 
   

 
    

 
    

  

 with the following initial values. 
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 from fitting the linear model                 using ordinary least squares, 

  
   

    of observations at the lowest concentration, 

  
       of log-transformed observations at the largest concentration. 

2. Estimate    and    by weighted linear regression with    as weights. 

3. Compute a mean of squared residuals and denote 

       
                 

 

  
   

where     the number of laboratories that analyzed samples of concentration level  . 

4. Fit a variance function model 

            
       

where the slope     
    

 
    

 
    using weights     

     . 

5. Update   
    and   

                
     . 

6. Iterate steps 1-5 until convergence. Obtain    
  and    

 . 

 

Second, the    and    are updated by the MML method, given    
  and    

 . 

7. For each laboratory separately, estimate     and     using ordinary least squares. 

8. Construct weights        
          

 
    

 
     

 
    

  

. 

9. Denote    
          ,   

          , and     
          . Estimate   ,   ,   , and the 

laboratory-specific parameters           by fitting the linear mixed model with initial 

values obtained in Step 7. 

10. Update    
  and    

  by fitting the variance function model in step 4. 
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The IWLS and MML are alternated until all parameters converge. In order to study the 

performance of this modified version of the IWMML, a simulation study was conducted. The 

scenarios and results of the simulation study are described in Chapter 4.  

When there are replicates per concentration level within a laboratory, the first 6 steps are carried 

out separately for each laboratory. Thus,     
  and     

  are estimated for all   and averaged to obtain 

     
     and      

    , which are then passed to step 7.  

The following sections describe how to estimate    of new environmental samples and its 

confidence interval for the purpose of calibration. 

 

3.1.3 Point Estimation 

Consider that we have collected another set of samples that exhibit similar 

characteristics to background data, but the true concentration is unknown. Denote the vector of these 

samples by  . Also, suppose    samples were collected for the     level of concentration (or one 

sample was split into    subsamples) and they were sent to different laboratories to measure 

concentrations, and we now wish to estimate the true concentration   . The estimate of    inverting 

the model equation (Bhaumik and Gibbons, 2005) is  

     
 

  
 

        

           
    

 

  

   

  (3.6) 

     and      are the     laboratory-specific estimates of intercepts and slopes obtained by using the 

IWMML from the background data. This point estimate in (3.6) is asymptotically unbiased. Rocke et 

al. (2003) suggested a point estimate,              , based on model equation (3.1). This estimate is 

positively biased because its expected value is    
  
      . 
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3.1.4 Interval Estimation 

The confidence interval for   of new data is called a calibration confidence interval. 

Carroll and Ruppert (1988) define the calibration confidence interval as follows. Suppose         

    Given the values of the response   , the usual estimate of     is the set of all values   for which 

          . I borrow this concept to derive the calibration confidence interval for  .  

An approximate confidence interval can be constructed depending upon the level of 

concentrations, by properly using distributions of the corresponding observations. For example, if the 

concentration level is very low (    ),     is approximately normally distributed with mean    and 

variance   
    

 . I use this normal distribution to construct the confidence interval for near-zero 

concentrations. Let         
  
       be an average of near-zero observations and    is the number 

of the observations (i.e. the number of laboratories that analyzed the near-zero concentration). A 

plausible estimate of    is 

    
       

          
    

   

    is an asymptotically unbiased estimate of    because of the asymptotic properties of    ,    , and    
 . 

By the central limit theorem, the distribution of     is 

                
     

      

  
    

where        is the expression in (3.4) with    . By Slutsky’s theorem the limiting distribution of     

is a normal with mean    and variance 

       
      

    
       

  
   

Therefore, the           calibration confidence interval for an unknown near-zero concentration 

is 
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    (3.7) 

where       is the              percentile of a standard normal distribution. 

For a larger concentration, the magnitude of    becomes dominant compared to the additive 

error,  . Therefore, we can use a lognormal distribution to derive a confidence interval. First, denote 

       
       

      
    

The distribution of     is approximately normal (approximately because we ignore  ) with mean zero 

and unknown variance       . The variance is estimated as follows.  

The approximate distribution of      is a lognormal with mean and variance 

 

                   

     and                               

 

        is also the same as  

   
       

      
  

      

        
      

where        is expression (3.4). Denote this equation by     and            . We can obtain     by 

solving    
           , which is 

    
         

 
   

       is obtained by taking the     on    . As a result, after substituting estimates for the parameters, 

           
 

 
      

        

    
    

 
 

   

    (3.8) 

Note that        varies across laboratories   and levels of concentration  . Because of        , variance 

of     partially adjusts for variability at the laboratory level. 
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A pivot statistic for constructing the confidence region of    is  

       
 

   

 
    

        

  

   

     

Note that     and        are functions of   . An approximate distribution of       is a standard 

normal distribution because     follows approximately            . Hence the           

calibration confidence region for a large concentration consists of all  ’s that satisfy the following. 

                               . (3.9) 

The performance of the point and interval estimates derived in this section is examined via simulation 

in Chapter 4. 

 

 

3.2 A Gamma Mixed Model 

3.2.1 The Model 

In this section, I propose a mixed-effects regression model with gamma–distributed 

errors to estimate the calibration curve and present how to obtain the calibration confidence interval 

for unknown concentrations. 

First, consider a multiplicative regression model for a gamma distributed random variable,  

                    (3.10) 

where    is the known true concentration and     is the     observation at the     concentration level. 

I assume that     is independently and identically distributed as             . Note that there is 

restriction in the scale parameter; this makes the mean of errors to be 1. As a result, the mean and 

variance of     are  
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                      and           
         

 

 
    

Note that        is a quadratic function of   . This property was also shown in (3.2) for the two-

component error model. Let    denote  

    
       

 
   (3.11) 

Then,     has a gamma distribution with the shape parameter   and the scale parameter   , i.e.  

        
 

      
     

                                        

I extend model (3.10) to a mixed-effects model by including random laboratory effects to 

account for the between-laboratory variability. The model is  

                                  (3.12) 

Model (3.12) can be expressed as 

                                  

     is the      replicate of the     concentration nested in the     laboratory             

                  . When there is no replicate the index   is omitted. I assume that      is 

independently and identically distributed as              within a given lab. Therefore, the 

distribution of      conditional on laboratory   is             , where  

     
                   

 
   (3.13) 

   is replaced with     when it is unknown. The assumption of a common shape parameter   should be 

justified by checking the distribution of    within each laboratory; this assumption appears to be 

reasonable with the amosite asbestos data from NYSDOH (more detail is described in the Illustration). 

I also assume a bivariate normal distribution with mean 0 and variance matrix    for   . 
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Note that the scale parameter in (3.13) is varied across laboratories and concentrations.     is 

normally distributed with mean             and variance    
           

   
      because of 

the bivariate normal assumption on   . The normality assumption on    can produce negative     

whereas it should be positive being the scale parameter. The numerator of (3.13) could be negative 

especially when     . A bivariate gamma distribution or a bivariate lognormal distribution would be 

an alternative to normality assumption, while the normality assumption makes estimation procedure 

more feasible. 

The marginal mean and variance of      are 

   
                ,   

and          
  
    

 

 
   

      
        

 
        (3.14) 

 
                 

  
    

 

 
   

    
     

The marginal variance in (3.14) consists of two parts: the between-laboratory variance               

and the within-laboratory variance              , each of which are  

                 
           

   
      

 

                    
                    

    
    

                   
    

    
       

 

Similar to the two-component mixed model described in Section 3.1.1, the between- and within-

laboratory variances are quadratic functions of    and they monotonically increase with the 

concentration levels if      . 
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3.2.2 Parameter Estimation 

I propose to estimate the parameters in model (3.12) by MML. Here focus is on the 

situation when there is no replicate per concentration level within a laboratory. The observations 

within laboratory   are assumed to be conditionally independent. Let    be a vector of observations 

nested in laboratory  ,          
 , and             

 . The conditional density of    given    is 

               
   
   

       
 

 

     
   

   
    

Note that     is a function of  ,  , and   . The marginal likelihood function of laboratory   is 

           

 

 

                            

  
 

  
 

  
   
   

       
     

         
   

   
 
  
   

    
 

     , 

(3.15) 

where          is a bivariate normal distribution with mean 0 and variance-covariance matrix   . 

The full marginal likelihood from all laboratories is formed by multiplying the marginal likelihood 

functions (3.15) of all laboratories. Parameter estimates of          are obtained by maximizing this 

full marginal likelihood function (or its logarithm). However, equation (3.15) cannot be evaluated in a 

closed-form, so numerical integration or an approximation is required. 

Several methods for evaluating the integral over the random effects distribution have been 

developed. Among those, adaptive Gauss-Hermite quadrature (AGQ) and Laplace approximation are 

widely used. AGQ computes the integral by direct numerical evaluation. The area under the curve 

(3.15) is calculated by summing over small areas; therefore, the accuracy of approximation depends on 

the number of these small areas represented by quadrature points and weights. The precision of AGQ 

increases as the number of quadrature points increases (Lessaffre and Spiessens, 2001); however, 

computational burden increases exponentially as well (Hedeker and Gibbons, 2006). The Laplace 

method can also be used to approximate the marginal likelihood function. Different from AGQ, the 
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Laplace method is not a direct numerical integration; but it expands the integrand around the mode     

by using Taylor series expansion, and then evaluates the integral by Laplace’s method (Raudenbush et 

al., 2000). The accuracy of Laplace approximation depends on how far you want to expand the 

integrand. The magnitude of higher-order terms diminishes as    increases; therefore, its accuracy 

depends on the sample size as well. It is known that the Laplace method is computationally less 

intensive than AGQ; however, it may produce less accurate estimates for small    (Clarkson et al., 

2002; Diaz, 2007).  

In the context of environmental monitoring, it is often not available for a laboratory to analyze a 

large number of samples. In the NYSDOH amosite data, there are less than 15 observations within a 

laboratory, i.e.      . Therefore, AGQ appears to be more appropriate for my purpose to calculate 

(3.15). Then, in order to find parameter estimates that maximize               , I use Newton-

Raphson method. 

Once the MLEs of     and    are obtained, we “predict” the random effects. The laboratory-

specific random deviation from the overall intercept and slope,   , is predicted by the EB estimation. 

The best prediction of a random effect is its conditional mean, given the available data    (and 

therefore,    as well): i.e.                 . This is called the Best Linear Unbiased Predictor (BLUP). 

Since   and    are unknown, we replace them by their maximum likelihood estimates,    and    . 

Therefore, the predicted random effects for the     laboratory are  

                         

This equation requires integration over the random-effects distribution. Analytic evaluation for     is 

not available, so another numerical integration is involved (Fitzmaurice et al., 2004).  

Given starting values of parameters, the solution alternates between maximizing the marginal 

likelihood function and the EB estimation until all parameters converge. I use AGQ technique 

implemented in SAS NLMIXED procedure (Pinheiro and Bates, 1995) to calculate               . 
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Between 10 and 20 quadrature points are usually suggested, but one should monitor whether 

parameter estimates change as the number of quadrature points increases. The quadrature points are 

adaptively chosen to be centered around the EB estimates     at each iteration. The Hessian matrix is 

involved in Newton-Raphson method, and it is also used to compute standard errors of parameter 

estimates upon the convergence.  

 

3.2.3 Point Estimation 

In this section I propose a point estimate for the unknown true concentration using the 

gamma mixed model (3.12). Suppose we collected an independent set of environmental monitoring 

samples that exhibit similar characteristics, and the true concentration is unknown. Denote the vector 

of these samples by  . Again, consider that    samples were collected for the     level of 

concentration and those were sent to    laboratories to measure concentrations. We are interested in 

estimating the true concentration    for these new data.  

The point estimate for the true concentration level   that I propose is 

     
 

  
 

        

    

  

   

    (3.16) 

              and               are laboratory-specific intercept and slope estimates obtained by 

the MML and the empirical Bayes estimation from the background data. 

 

3.2.4 Interval Estimation 

I use the normal approximation to the cube root transformed gamma variable 

(Krishnamoorthy et al., 2008), described in Section 2.2.3, to construct the calibration confidence 

region for   . By the cube root approximation,    
   

 given    has an approximate normal distribution 

with mean     and variance    
 , where 
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and 

    
   
           

    
 ,  

   
  

   
   

        

    
    

   

 

We can construct a pivot statistic using this approximate normal distribution of    
   

 given   . The 

pivot statistic is   

       
 

   

  
   
        

    
 

  

   

   

which has an approximate standard normal distribution.      and      depend on parameter estimates and 

EB estimates,    , obtained by fitting model (3.12) to the background data.    is a nonlinear function of 

  , for     is a function of   . Therefore, the           calibration confidence region of the true 

concentration    is constructed by collecting of all   ’s satisfying 

                                 . (3.17) 

Note that to construct       , laboratory-specific estimates      and      are used. This implies that the 

laboratories analyzing the new data are the same set (or a subset) of the laboratories that participated in 

collecting the background data. If some of new environmental samples were sent to brand new 

laboratories, this interval (3.17) is not relevant. 

With that in mind, I also derive interval estimates that do not depend on the laboratory-specific 

parameters, so that participation of the same set of laboratories is not required in collecting new data. I 

still assume that the new data exhibit similar characteristics to the existing data. The approximate 

distribution of   
   

 given    is a   –variate normal owing to the cube root transformation technique, 

and    is assumed to have a bivariate normal distribution. Hence, the distribution of (  
   

      is 

jointly normal (Gelman et al., 2004). As a result, the marginal distribution of   
   

 is a    variate 
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normal (Rohatgi and Saleh, 2001). Using this result, an approximate marginal distribution of    
   

 can 

be obtained: a normal distribution with mean   
  and variance   

   given as follows. 

 

 and 

  
  

        

    
  
       

 
 

   

,  

  
    

       

 
 

   

 
        

    
  

        

    
 

 

  

         
        

    
 

 
  
           

   
 

              
   

 
     

(3.18) 

The derivation of expressions in (3.18) is given in Appendix. Now define a pivot statistic to construct 

the calibration confidence interval using this result:  

       
 

   

  
   
       

 

   
  

  

   

   

The statistic        follows approximately a standard normal distribution. As a result, the       

    calibration confidence region of the true concentration level   consists of all   ’s satisfying 

                                 . (3.19) 

It should be noted that        does not depend on the laboratory-specific estimates. I call this region 

the global calibration confidence region.  

 The statistic        is a complicated nonlinear function of   . Here I propose another global 

calibration confidence interval and yet simpler approach.     has an unknown marginal distribution 

with the mean and variance derived in (3.14). By the central limit theorem, 

    
    
  

   

  
                

      

  
  

 Using this result, I define a pivot statistic        by 
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which also follows approximately a standard normal distribution. The possible drawback of this 

statistic is that    should not be small because it is based on the central limit theorem. The       

    calibration confidence region of    consists of all values satisfying 

                                 . (3.20) 

The performance of the point estimate (3.16) and calibration confidence regions (3.17), (3.19), and 

(3.20) are studied via simulation in Chapter 4. 

 

3.2.5 Other Parameterizations for a Gamma Mixed Model 

I used the identity link function to define model (3.12). It appears that the log link 

function has been more commonly chosen in a regression model for a gamma distributed random 

variable. For instance, a fixed-effects gamma model with the log link is 

                         

The inverse link has also been suggested (McCullagh and Nelder, 1989). This section reviews other 

parameterizations with the log and inverse link functions for the mixed-effects regression model for a 

gamma distributed outcome. 

The proposed model (3.12) can be re-written as the following general expression,  

                      .  

    is the      observation nested in the     group (                 ).  Here, the “group” can be 

a geographical area in which individuals are nested or a subject whose repeated measurements over 

time are observed.     is the      design matrix of explanatory variables,   is the  -dimensional 
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vector of regression coefficients,     is the      design matrix of random effects variables, and    is 

the  -dimensional vector of random effects. 

 Using a similar notation, a gamma mixed-effects regression model with the log link function is 

                         . (3.21) 

Let     denote  

                              .  

Note that     here does not indicate the true concentration; only in this section,     indicates the 

conditional mean of    . Conditional on a random effects vector,   , the distribution of     is a gamma 

with parameters   and    , expressed by 

           
 

         
 
   

    
 

   

     
   

    
     for            

This notation is the same to that of McCullagh and Nelder (1989), provided      . The parameter 

  determines the shape of distribution, and the limiting distribution of     is a normal as    .     

and       correspond to   and     respectively, in the notation used in Sections 3.2.1 to 3.2.4. Thus, 

the conditional variance of     is               
 , and the coefficient of variation is   . According 

to McCullagh and Nelder (1989), when   is small, the variance of log-transformed     is close to  ; 

therefore, the log link is the variance-stabilizing transformation for a gamma distributed variable. 

Model (3.21) has been implemented in SAS PROC GLIMMIX and SuperMix. 

To estimate parameters, the MML is used in SAS PROC GLIMMIX
1
. SuperMix also uses the 

MML to estimate most of the parameters; but for  , the method of moment estimator is used, which is 

the Pearson chi-square statistic divided by the degrees of freedom. 

 

                                                           
1
 Either Laplace approximation or AGQ can be selected to construct the marginal likelihood function. SAS 

PROC GLIMMIX also provides quasi-likelihood estimation. 
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Another possible gamma mixed-effects model is 

 
 

   
 

 

         
              (3.22) 

The reciprocal transformation used in this model is the canonical link. Bailey and Alimdhi (2007) 

implemented model (3.22) in R package Zelig with the following gamma density. 

           
 

       
   
  
  

          
   

 
   

Note that in their model, the shape parameters vary with indices   and  , but the scale parameter is held 

constant.  
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4. SIMULATION 

In this chapter I examine performance of the estimation procedures for the two-component 

mixed model and the gamma mixed model. The performance of point estimates and confidence 

intervals proposed in Chapter 3 is also studied via simulation. Robustness of two methods is compared 

as well. 

 

4.1 Two-Component Mixed Model 

4.1.1 Parameter Estimation 

I generated data sets based on the two-component mixed model in (3.3) with parameter 

values             
           

          
                     and   

       . 

These parameter values were chosen to make simulated data have similar properties to the real 

asbestos data from NYSDOH. The true concentration levels of   were fixed at (0.06, 0.15, 0.30, 0.40, 

0.50, 0.60, 0.80, 1.2, 2.8, 4.0). The number of laboratories was set to            and the number of 

replicates for each concentration level within a laboratory was set to           . I generated 

laboratory random effects,          , from the bivariate normal distribution with mean 0 and variance-

covariance matrix    with components     
        

                        . The random errors 

     and      were generated from independent normal distributions with mean 0 and variances, 

  
        and   

        , respectively. Then      was simulated based on model equation (3.3). A 

negative value of      was possible due to normality assumption on           and predetermined 

parameter values. However, it is usually not realistic to have negative concentrations although 

theoretically model (3.3) can handle negative observations, and thus such      was replaced with 0. 

I estimated parameters by the IWMML described in Section 3.1.2. Since there is no standard 

package for this estimation procedure, I programmed it using R 2.10. The whole process was 

replicated 1,000 times with data sets generated by different random numbers. I conducted this 

simulation for each combination of   and  . 
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For each parameter, I computed the average and the root mean square error (RMSE) over 1,000 

replications to study accuracy and precision of estimates. Two scenarios were considered: (a) the true 

concentration   is known, and (b)   is unknown. For scenario (b), I substituted the sample mean     for 

   for concentration level  . This scenario was intended for exploring how the sample mean 

substitution would affect estimation of parameters and calibration confidence intervals. 

There was no non-convergence in all combinations of   and   for both scenarios. Simulation 

results are presented in Table VI. The overall intercept    and slope    are well estimated in all cases. 

When there is no replicate (   ), estimated variance components and error variances are less 

accurate as expected; however, the bias and RMSE decrease as the number of replicates increases.  
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TABLE VI 

PARAMETER ESTIMATION OF THE TWO-COMPONENT MIXED MODEL:  

AVERAGE (RMSE) OVER 1,000 REPLICATIONS. 

 True          

Parameters Values 30/10 30/5 30/1 20/10 20/5 20/1 

(a)   is known. 

   0 
0.0040 

(0.0087) 

0.0036 

(0.0086) 

0.0035 

(0.0102) 

0.0037 

(0.0098) 

0.0032 

(0.0102) 

0.0034 

(0.0126) 

   1 
1.0188 

(0.0356) 

1.0180 

(0.0357) 

1.0206 

(0.0412) 

1.0178 

(0.0407) 

1.0180 

(0.0417) 

1.0217 

(0.0492) 

  
  0.002 

0.0017 

(0.0005) 

0.0018 

(0.0005) 

0.0027 

(0.0010) 

0.0016 

(0.0006) 

0.0018 

(0.0006) 

0.0027 

(0.0011) 

  
  0.025 

0.0262 

(0.0070) 

0.0274 

(0.0077) 

0.0357 

(0.0145) 

0.0258 

(0.0084) 

0.0276 

(0.0093) 

0.0356 

(0.0158) 

    -0.0015 
-0.0014 

(0.0013) 

-0.0016 

(0.0014) 

-0.0032 

(0.0026) 

-0.0014 

(0.0015) 

-0.0017 

(0.0016) 

-0.0034 

(0.0030) 

  
  0.0015 

0.0009 

(0.0007) 

0.0008 

(0.0009) 

0.0011 

(0.0009) 

0.0009 

(0.0007) 

0.0008 

(0.0008) 

0.0013 

(0.0010) 

  
  0.050 

0.0460 

(0.0049) 

0.0443 

(0.0067) 

0.0400 

(0.0133) 

0.0460 

(0.0052) 

0.0448 

(0.0070) 

0.0394 

(0.0148) 

(b)   is unknown. 

   0 
0.0006 

(0.0009) 

0.0006 

(0.0013) 

0.0001 

(0.0007) 

0.0006 

(0.0010) 

0.0006 

(0.0016) 

 0.0001 

(0.0009) 

   1 
0.9988 

(0.0019) 

0.9988 

(0.0026) 

0.9999 

(0.0014) 

0.9988 

(0.0021) 

0.9989 

(0.0031) 

0.9998 

(0.0018) 

  
  0.002 

0.0017 

(0.0005) 

0.0018 

(0.0005) 

0.0027 

(0.0010) 

0.0017 

(0.0006) 

0.0018 

(0.0006) 

0.0027 

(0.0012) 

  
  0.025 

0.0253 

(0.0067) 

0.0265 

(0.0073) 

0.0344 

(0.0132) 

0.0249 

(0.0082) 

0.0267 

(0.0089) 

0.0342 

(0.0145) 

    -0.0015 
-0.0015 

(0.0013) 

-0.0017 

(0.0014) 

-0.0033 

(0.0027) 

-0.0015 

(0.0015) 

-0.0018 

(0.0017) 

-0.0035 

(0.0031) 

  
  0.0015 

0.0009 

(0.0007) 

0.0008 

(0.0009) 

0.0011 

(0.0009) 

0.0009 

(0.0007) 

0.0008 

(0.0008) 

0.0012 

(0.0010) 

  
  0.050 

0.0454 

(0.0053) 

0.0438 

(0.0072) 

0.0384 

(0.0142) 

0.0455 

(0.0055) 

0.0441 

(0.0074) 

0.0369 

(0.0162) 
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4.1.2 Point and Interval Estimation 

In this section, I study the point and interval estimation proposed in Section 3.1.3 and 

3.1.4, focusing on the situation when there is no replicate and the number of laboratories is 20 (i.e., 

        ). Again, two scenarios are considered; (a) the true concentration   is known, and (b)   is 

unknown in background data.  

For each of 1,000 replications with          described in Section 4.1.1, another data set 

was generated assuming the same set of parameter values and true concentrations. I used 

predetermined laboratory-specific intercepts and slopes (simulated from a bivariate normal distribution 

in the process of background data generation) to simulate    ’s. This assumes that the entire set (or a 

subset) of laboratories participate in collecting new samples. This newly generated data set serves as 

“new” data, compared to the “existing” or “background” data. Using    ’s from the new data, and 

parameter estimates and predicted random effects from the background data, I computed the point 

estimate    using equation (3.6) and constructed 95% calibration confidence intervals following 

equations (3.7) and (3.9). Equation (3.7) was used for low concentrations                   , and 

(3.9) for higher concentrations. This process was repeated 1,000 times, and I computed the average of 

   , denoted by    , and the coverage probability of calibration confidence intervals. I considered the 

situation when 5 out of 20 laboratories analyzed new samples: this reflects the AHERA criteria in 

which at least five samples are required to be collected. When    was considered to be unknown in the 

background data, it was substituted by the sample mean     and parameters were estimated accordingly. 

Simulation results are presented in Table VII. Overall, the point estimates are very accurate on 

average, and the coverage probabilities are close to 0.95. For the low concentration levels (       

     , the coverage probabilities are a bit higher than the pre-specified confidence level. The 

calibration confidence intervals in (b) cover more large values and fewer small values, compared to 

those in (a). Similarly,    ’s in (b) are higher than those in (a). 
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TABLE VII 

CALIBRATION CONFIDENCE INTERVALS USING THE TWO-COMPONENT MIXED MODEL. 

   (a)    is known.    (b)    is unknown.  

       CCI
a
 C.P.

b
      CCI

a
 C.P.

b
 

0.06  0.059 (0.014, 0.111) 0.982  0.064 (0.016,  0.116) 0.971 

0.15  0.145 (0.088, 0.203) 0.965  0.152 (0.094,  0.210) 0.971 

0.30  0.294 (0.214, 0.374) 0.944  0.304 (0.224,  0.385) 0.942 

0.40  0.394 (0.300, 0.493) 0.936  0.406 (0.312,  0.505) 0.940 

0.50  0.494 (0.383, 0.616) 0.958  0.508 (0.396,  0.631) 0.945 

0.60  0.596 (0.465, 0.742) 0.962  0.613 (0.480,  0.758) 0.955 

0.80  0.793 (0.623, 0.988) 0.943  0.814 (0.643,  1.008) 0.940 

1.20  1.193 (0.939, 1.483) 0.951  1.223 (0.966,  1.513) 0.954 

2.80  2.764 (2.176, 3.445) 0.946  2.831 (2.234,  3.509) 0.943 

4.00  3.977 (3.123, 4.949) 0.955  4.071 (3.206,  5.040) 0.948 

a
 Calibration confidence intervals (3.7) and (3.9). 

b
 Coverage probability. 

 

 

 

 

 

4.2 Gamma Mixed Model 

4.2.1 Parameter Estimation 

I generated data based on the gamma mixed model in (3.12) with parameter values 

    ,                
                      and   

       . These parameter values 

were chosen to simulate data similar to the real asbestos data from NYSDOH. The true concentration 

levels were fixed at   = (0.06, 0.15, 0.30, 0.40, 0.50, 0.60, 0.80, 1.2, 2.8, 4.0). The number of 

laboratories was set to            and the number of replicates for a concentration level within a 

laboratory was set to           . I generated laboratory random effects,          , from the 

bivariate normal distribution with mean 0 and variance-covariance matrix    with components  

   
         

    (0.0005, -0.0002, 0.01). Given predetermined values of parameters, true 
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concentrations, and simulated values of          ,     was determined by equation (3.13) for 

laboratory   and concentration level  . Then I generated a gamma random variate      with the shape 

parameter   and the scale parameter     (using built-in R function rgamma; Ahrens and Dieter, 1982). 

Negative random variates of           were possible; as a consequence,     could be negative as well. 

Whenever this happened, the corresponding random variate      was not generated, and as a result 

some data sets became slightly unbalanced.     was negative in about 0.04% of simulated data mostly 

when the true concentration is close to zero. It may happen more or less than that depending on 

parameter values and true concentrations. 

I estimated parameters by the MML and EB estimation as described in Section 3.2.2. The initial 

values were set to parameter estimates from fitting a gamma regression model without random effects. 

I used the adaptive Gauss-Hermite quadrature with 15 quadrature points for numerical integration and 

Newton-Raphon for maximization. All estimation was done using SAS PROC NLMIXED. The 

process was replicated 1,000 times with data sets generated by different random numbers. The 

simulations were conducted for each combination of   and  .  

For each parameter, I computed the average and the RMSE over 1,000 replications to examine 

accuracy and precision of estimates. Again two scenarios were assumed; (a) the true concentration   is 

known, and (b)   is not known in background data. For scenario (b), the sample mean     was 

substituted for    for concentration level  .  

Simulation results are presented in Table VIII. The overall intercept    and slope    estimates 

are excellent in all combinations of   and  . The accuracy and precision of estimated variance 

components tend to increase (i.e. less bias and smaller RMSE) as the number of replicates and/or the 

number of laboratories increase. In addition, the bias and RMSE of shape parameter decrease with the 

number of replicates as well. It should be noted that even when there is no replicate (         and 

    ), the simulation results are satisfactory. 
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TABLE VIII 

PARAMETER ESTIMATION OF THE GAMMA MIXED MODEL:  

AVERAGE (RMSE) OVER 1,000 REPLICATIONS. 

 True          

Parameters Values 30/10 30/5 30/1 20/10 20/5 20/1 

(a)   is known. 

   0 
0.0003 

(0.0042) 

-0.0006 

(0.0232) 

0.0000 

(0.0039) 

0.0002 

(0.0052) 

-0.0001 

(0.0050) 

-0.0005 

(0.0056) 

   1 
1.0007 

(0.0195) 

0.9982 

(0.0443) 

0.9982 

(0.0194) 

1.0009 

(0.0240) 

0.9992 

(0.0236) 

0.9995 

(0.0263) 

  
  0.0005 

0.0005 

(0.0002) 

0.0005 

(0.0002) 

0.0005 

(0.0003) 

0.0005 

(0.0002) 

0.0005 

(0.0002) 

0.0005 

(0.0003) 

    -0.0002 
-0.0002 

(0.0008) 

-0.0003 

(0.0010) 

-0.0006 

(0.0018) 

-0.0003 

(0.0010) 

-0.0003 

(0.0012) 

-0.0008 

(0.0023) 

  
  0.0100 

0.0096 

(0.0034) 

0.0097 

(0.0045) 

0.0102 

(0.0110) 

0.0099 

(0.0042) 

0.0095 

(0.0049) 

0.0140 

(0.0132) 

  13.0 
12.9424 

(0.9905) 

12.6762 

(1.1027) 

12.3645 

(2.6870) 

13.0008 

(0.4654) 

12.8254 

(0.8462) 

13.6421 

(2.9425) 

Convergence  99.9% 97.0% 98.9% 100% 97.7% 99.5% 

(b)   is unknown. 

   0 
-0.0002 

(0.0007) 

-0.0002 

(0.0007) 

-0.0002 

(0.0007) 

-0.0003 

(0.0009) 

-0.0002 

(0.0009) 

-0.0002 

(0.0011) 

   1 
1.0004 

(0.0015) 

1.0004 

(0.0016) 

1.0003 

(0.0018) 

0.9987 

(0.0408) 

1.0005 

(0.0019) 

0.9993  

(0.0331) 

  
  0.0005 

0.0005 

(0.0001) 

0.0005 

(0.0001) 

0.0004 

(0.0002) 

0.0005 

(0.0002) 

0.0005 

(0.0002) 

0.0004 

(0.0003) 

    -0.0002 
-0.0002 

(0.0005) 

-0.0002 

(0.0005) 

-0.0002 

(0.0008) 

-0.0002 

(0.0006) 

-0.0002 

(0.0006) 

-0.0002 

(0.0010) 

  
  0.0100 

0.0097 

(0.0028) 

0.0097 

(0.0033) 

0.0101 

(0.0055) 

0.0097 

(0.0035) 

0.0094 

(0.0038) 

0.0094 

(0.0063) 

  13.0 
13.0505 

(0.3507) 

13.0725 

(0.5028) 

13.0010 

(1.7629) 

13.0858 

(0.4326) 

13.1660 

(0.6343) 

13.4874 

(1.6917) 

Convergence  99.4% 100% 98.1% 100% 100% 99.7% 
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4.2.2 Point and Interval Estimation 

Next I study the point and interval estimation of the gamma mixed-effects model 

proposed in Section 3.2.3 and 3.2.4, focusing on the situation when there is no replicate and the 

number of laboratories is 20 (i.e.,         ). Similar to previous sections, two scenarios are 

considered; (a) the true concentration   is known, and (b)   is unknown in background data.  

For each of 1,000 replications with          described in Section 4.2.1, another data set 

was generated assuming the same parameter values and true concentrations.  I used predetermined 

laboratory-specific random deviations of intercept and slope (simulated in the process of background 

data generation) to simulate new    ’s. This assumes that new samples are collected from the entire set 

(or a subset) of laboratories that analyzed background data. This newly generated data set serves as 

“new” data compared to the “background” data. Using    ’s from the new data and parameter 

estimates and predicted random effects from the background data, I computed the point estimate    

using equation (3.16) and constructed 95% calibration confidence intervals (3.17), (3.19), and (3.20). 

This process was repeated 1,000 times, and I computed the average of    and the coverage probabilities 

of calibration confidence intervals. I assumed that 5 out of 20 laboratories analyzed new samples. 

When    was assumed to be unknown in background data, it was substituted by the sample mean     

and model parameters were estimated accordingly. 

During the simulation, I experienced unusual behaviors of the interval (3.19) for the lowest 

concentration,       . The lower bound of interval (3.19) was not able to be obtained on several 

occasions because the pivot statistic        never reached the quantile value           within the 

plausible range of  . When that happened, the lower bound was set to zero. As a result, the average 

lower bound is lower than those of the other intervals. 

Table IX shows the simulation results for the point and interval estimates of the true 

concentration using the gamma mixed model.    ’s are very close to the true values in both (a) and (b).  

The coverage probabilities of intervals (3.17), which depend on laboratory-specific parameters, for 
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low concentrations,              , are unsatisfactorily low. The global calibration confidence 

intervals (3.19) and (3.20) tend to give better coverage probabilities than the interval (3.17) although 

its superiority is not remarkably substantial. The global confidence intervals appear to perform better 

as they are based on the average calibration curve instead of laboratory-specific curves. I compare 

these calibration confidence intervals with respect to their robustness in the next section. 

 

 

4.3 Robustness of Calibration Confidence Regions 

4.3.1 Model Misspecification 

There are situations when we do not know the correct model and use the best plausible 

model we can think of. In this section I examine whether the calibration confidence regions based on 

both regression models perform well even though a model is misspecified or an alternative model is 

chosen. To study the robustness property of the confidence regions, six scenarios are considered as 

displayed in Table X. Data were generated according to “true models” and analyzed by both models. 

Scenarios A and D were already examined in Sections 4.1.2 and 4.2.2 respectively. I focus on 

scenarios B and C in this section, and E and F in next section. 

For scenario B, I used the data generated according to the gamma mixed model with parameter 

values                    
                      and   

       , and with      

and     . This is the same data set used for examining scenario A in Section 4.2.2. Then I fit a two-

component mixed model and estimated parameters by the IWMML. Another data set was generated 

according to the same gamma mixed model, and I computed    and constructed 95% calibration 

confidence regions (3.7) and (3.9) for these new data. I assumed that 5 out of 20 laboratories that 

analyzed background data also analyzed new samples. This process was replicated 1,000 times with 

different random numbers. 

 



 

 

6
6
 

TABLE IX 

CALIBRATION CONFIDENCE INTERVALS USING THE GAMMA MIXED MODEL 

(a)    is known. 
a
 

       CCI (3.17) C.P.   CCI (3.19) C.P.   CCI (3.20) C.P.  

0.06 0.062  (0.047, 0.076) 0.748  (0.021, 0.084) 0.942  (0.039, 0.090) 0.949 

0.15 0.151  (0.120, 0.194) 0.903  (0.112, 0.199) 0.948  (0.116, 0.206) 0.945 

0.30 0.306  (0.243, 0.395) 0.918  (0.236, 0.402) 0.938  (0.240, 0.413) 0.930 

0.40 0.410  (0.326, 0.529) 0.927  (0.317, 0.538) 0.948  (0.323, 0.552) 0.943 

0.50 0.503  (0.400, 0.649) 0.930  (0.390, 0.660) 0.957  (0.397, 0.678) 0.959 

0.60 0.603  (0.479, 0.778) 0.931  (0.467, 0.792) 0.948  (0.476, 0.813) 0.952 

0.80 0.807  (0.641, 1.041) 0.930  (0.625, 1.059) 0.954  (0.636, 1.089) 0.949 

1.20 1.210  (0.961, 1.562) 0.935  (0.938, 1.591) 0.957  (0.955, 1.634) 0.957 

2.80 2.840  (2.257, 3.670) 0.923  (2.201, 3.739) 0.945  (2.240, 3.840) 0.948 

4.00 4.047  (3.211, 5.223) 0.932  (3.133, 5.322) 0.953  (3.192, 5.474) 0.960 

(b)    is unknown. 
b
 

       CCI (3.17) C.P.   CCI (3.19) C.P.   CCI (3.20)  C.P.  

0.06 0.062  (0.050, 0.078) 0.798  (0.025, 0.083) 0.924  (0.040,  0.090) 0.940 

0.15 0.152  (0.121, 0.195) 0.915  (0.112, 0.198) 0.931  (0.115,  0.205) 0.937 

0.30 0.306  (0.244, 0.395) 0.921  (0.236, 0.399) 0.928  (0.241,  0.410) 0.925 

0.40 0.409  (0.327, 0.528) 0.921  (0.318, 0.534) 0.940  (0.323,  0.548) 0.936 

0.50 0.502  (0.400, 0.648) 0.939  (0.391, 0.655) 0.952  (0.397,  0.672) 0.948 

0.60 0.602  (0.479, 0.776) 0.932  (0.469, 0.785) 0.942  (0.477,  0.805) 0.947 

0.80 0.805  (0.641, 1.038) 0.941  (0.628, 1.050) 0.954  (0.639,  1.077) 0.951 

1.20 1.208  (0.960, 1.557) 0.939  (0.943, 1.576) 0.943  (0.959,  1.616) 0.947 

2.80 2.833  (2.254, 3.658) 0.929  (2.216, 3.704) 0.939  (2.252,  3.796) 0.938 

4.00 4.037  (3.206,  5.204) 0.935  (3.154, 5.270) 0.948  (3.209,  5.408) 0.950 

a   
 based on 995 replications.   

b    
based on 997 replications. 
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TABLE X 

SIMULATION SCENARIOS FOR ROBUSTNESS COMPARISON 

Scenario    True Models Analysis and Calibration by Denoted by 

A 

Gamma mixed model 

Gamma mixed model Gamma/Gamma 

B Two-component mixed model Gamma/Two-component 

C 

Two-component mixed model 

Gamma mixed model Two-component/Gamma 

D Two-component mixed model 
Two-component/Two-

component 

E 
Gamma mixed model +  

Two-component mixed model 

Gamma mixed model Mixture/Gamma 

F Two-component mixed model Mixture/Two-component 

 

 

 

 

 

 

For scenario C, I used the data generated according to the two-component mixed model with 

parameter values             
           

          
                      

  

     , and with      and     . This is the same data set used for examining scenario D in 

Section 4.1.2. I discarded simulated     if it was negative. Then I fit a gamma mixed model to estimate 

parameters by the MML using SAS PROC NLMIXED. A new data set was generated according to the 

same two-component mixed model, and I computed    and constructed 95% calibration confidence 

regions (3.17), (3.19), and (3.20) for this new data set. This process was replicated 1,000 times. 

The simulation results for comparing robustness of models are given in Table XI. The averages 

of point estimates are close to the true values of concentration even though models are misspecified. 

For the scenario B (gamma/two-component), the convergence rate was 100%. The coverage 

probability is too high at       , and approximately 0.90 at most higher concentrations. For the 

scenario C (two-component/gamma), the convergence rate was 98.3%. The confidence interval (3.17) 

has unacceptably low coverage probabilities at small concentrations,              , but at larger 
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concentrations, the coverage probabilities are higher than 0.90. The global calibration confidence 

intervals (3.19)-(3.20) appear to perform better in terms of the coverage probability and have longer 

lengths than the intervals (3.17) at all concentration levels. Overall, the performance of gamma mixed 

models when the true model is the two-component mixed model is moderately better than the 

performance of two-component mixed models when the gamma mixed model is the true model. 

 

4.3.2 Mixture of Two Distributions  

In this section, I examine the robustness of two regression models when data are 

distributed as a mixture of gamma and lognormal distributions. More specifically, I generated data of 

which the true model was 50-50% mixture of the gamma mixed model and the two-component mixed 

model (scenarios E and F). In the data generating process, for a given laboratory, one of the models 

was chosen with 50% of chance to generate     at each concentration level. Namely, the true model 

changes depending on concentration levels. I analyze the data using both models and compare their 

robustness. 

The true parameter values and simulation results for parameter estimates are shown in Table XII. 

The convergence rates are excellent; 99.7% and 100 % in scenarios E and F respectively. The overall 

intercept and slope estimates are accurate on average in both scenarios; this may be because the same 

true parameter values were used in both models. Variance component estimates are less accurate. This 

was expected because the two regression models have different amounts of variability.  
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TABLE XI  

SIMULATION RESULTS FOR ROBUSTNESS COMPARISON: MODEL MISSPECIFICATION 

B: Gamma/Two-component 
a
   

       CCI (3.7) (3.9) C.P.          

0.06  0.057 (0.024, 0.090) 0.987       

0.15  0.146 (0.101, 0.191) 0.966       

0.30  0.292 (0.216, 0.369) 0.927       

0.40  0.388 (0.298, 0.490) 0.902       

0.50  0.488 (0.377, 0.615) 0.899       

0.60  0.587 (0.454, 0.738) 0.914       

0.80  0.790 (0.611, 0.993) 0.917       

1.20  1.189 (0.920, 1.495) 0.905       

2.80  2.733 (2.114, 3.441) 0.906       

4.00  3.949 (3.045, 4.961) 0.884       

C: Two-component/Gamma 
b
   

       CCI (3.17) C.P.   CCI (3.19) C.P.   CCI (3.20) C.P. 

0.06  0.070 (0.048,0.084) 0.494  (0.007, 0.108) 0.904  (0.020, 0.101) 0.837 

0.15  0.150 (0.115,0.185) 0.728  (0.083, 0.203) 0.860  (0.098, 0.216) 0.914 

0.30  0.301 (0.240,0.381) 0.884  (0.219, 0.397) 0.931  (0.227, 0.413) 0.942 

0.40  0.403 (0.323,0.512) 0.907  (0.303, 0.529) 0.949  (0.310, 0.546) 0.959 

0.50  0.503 (0.404,0.640) 0.917  (0.383, 0.658) 0.953  (0.391, 0.677) 0.962 

0.60  0.607 (0.489,0.772) 0.938  (0.466, 0.792) 0.954  (0.475, 0.814) 0.957 

0.80  0.811 (0.654,1.032) 0.926  (0.628, 1.056) 0.953  (0.638, 1.083) 0.955 

1.20  1.223 (0.987,1.556) 0.927  (0.953, 1.590) 0.946  (0.967, 1.628) 0.942 

2.80  2.850 (2.301,3.624) 0.933  (2.230, 3.697) 0.952  (2.265, 3.786) 0.944 

4.00  4.108 (3.317,5.224) 0.934  (3.219, 5.329) 0.943  (3.267, 5.454) 0.941 

a
 based on 1000 replications.      

b
 based on 983 replications.     
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TABLE XII 

SIMULATION RESULTS FOR ROBUSTNESS COMPARISON: WHEN DATA ARE A MIXTURE 

OF TWO MODELS, AVERAGE (RMSE) OF PARAMETER ESTIMATES. 

Parameters True Values  Scenario F
a
  Scenario E

b
 

   0.001  0.0037 (0.0118)  0.0064 (0.0118) 

   1.0  1.0088 (0.0411)  1.0031 (0.0341) 

  
  0.002  0.0026 (0.0011)  0.0016 (0.0014) 

  
  0.020  0.0312 (0.0155)  0.0138 (0.0168) 

    -0.001  -0.0028 (0.0027)  0.0005 (0.0032) 

  
  0.0015  0.0011 (0.0010)  – 

  
  0.050  0.0479 (0.0120)  – 

  13.0  –  15.2071 (6.7023) 

 
a
 Analyzed by the two-component mixed model; based on 1000 replications. 

b
 Analyzed by the gamma mixed model; based on 997 replications. 

 

 

 

 

 

I simulated another set of data according to the same 50-50% mixture of two models for the 

purpose of calibration. The simulation results for point estimate and calibration confidence intervals 

are presented in Table XIII. In general, the calibration intervals in both scenarios perform well, and 

point estimates are reasonably close to the true values on average. For scenario F, the coverage 

probabilities of the interval (3.7) are somewhat high; and similar results were observed in Table VII. 

For scenario E, the two global calibration intervals are wider and their coverage probabilities are better 

than the interval (3.17). The coverage probabilities of the interval (3.17) are unacceptably low when 

the true concentration is small (            . When the lower bound of interval (3.19) could not be 

obtained, it was set to zero. That’s why the average of lower bounds of the interval for        is 

much lower than that of other two intervals. 
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TABLE XIII 

SIMULATION RESULTS FOR ROBUSTNESS COMPARISON: WHEN DATA ARE MIXTURE OF TWO MODELS,  

CALIBRATION CONFIDENCE INTERVALS. 

F: Mixture/Two-component 
a
        

       CCI (3.7) (3.9) C.P.       

0.06  0.057 (0.012,  0.108) 0.983       

0.15  0.143 (0.086,  0.201) 0.967       

0.30  0.293 (0.211,  0.375) 0.947       

0.40  0.393 (0.296,  0.496) 0.917       

0.50  0.492 (0.377,  0.620) 0.937       

0.60  0.592 (0.456,  0.743) 0.936       

0.80  0.788 (0.610,  0.988) 0.937       

1.20  1.188 (0.922,  1.488) 0.926       

2.80  2.776 (2.153,  3.479) 0.936       

4.00  3.951 (3.066,  4.957) 0.921       

E: Mixture/Gamma 
b
        

       CCI (3.17) C.P.  CCI (3.19) C.P.  CCI (3.20) C.P. 

0.06  0.069 (0.047, 0.082) 0.559  (0.006, 0.102) 0.920  (0.031, 0.108) 0.915 

0.15  0.149 (0.114, 0.186) 0.778  (0.086, 0.200) 0.902  (0.081, 0.214) 0.937 

0.30  0.301 (0.239, 0.385) 0.904  (0.219, 0.397) 0.945  (0.226, 0.412) 0.958 

0.40  0.403 (0.321, 0.516) 0.899  (0.301, 0.529) 0.945  (0.309, 0.547) 0.946 

0.50  0.505 (0.403, 0.647) 0.921  (0.382, 0.661) 0.958  (0.390, 0.681) 0.963 

0.60  0.607 (0.484, 0.778) 0.922  (0.462, 0.793) 0.956  (0.472, 0.817) 0.951 

0.80  0.807 (0.644, 1.034) 0.928  (0.619, 1.052) 0.960  (0.631, 1.083) 0.964 

1.20  1.217 (0.972, 1.558) 0.922  (0.938, 1.584) 0.952  (0.956, 1.629) 0.958 

2.80  2.838 (2.271, 3.638) 0.928  (2.200, 3.696) 0.957  (2.237, 3.792) 0.955 

4.00  4.041 (3.234, 5.179) 0.911  (3.135, 5.260) 0.949  (3.187, 5.398) 0.941 

a
 based on 1000 replications.  

b
 based on 997 replications. 
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5. ILLUSTRATION  

5.1 Amosite asbestos fibers from New York State Department of Health 

To illustrate the mixed-effects models proposed in Chapter 3, I return to the asbestos data from 

NYSDOH. As briefly described in Chapter 1, amosite asbestos samples were taken from 14 sites, and 

they were sent to a total of 35 laboratories to measure the fiber counts. Multiple samples were 

collected from each site, and each laboratory analyzed a sample from a particular site only once. That 

is, laboratories did not provide repeated measurements (   ). Several laboratories analyzed only a 

few asbestos samples (3 to 5 observations within a laboratory). I excluded the observations from these 

laboratories so that between- and within-laboratory variances are estimated more reliably. As a result, 

a total of 27 laboratories and 21 to 27 samples remained at each site. The data retain the same 

characteristics as shown in Section 1.2. The number of total observations is 339.  

In order to illustrate the calibration curve analysis, I treat observations from site 5099 as the 

new independent asbestos fiber counts, and all other sites as the background data. Table I shows that 

the variation in measurements increases with the average fiber counts, indicating heteroscedasticity. 

The CV is the largest at the lowest mean fiber count and approximately constant at higher mean counts. 

These are the characteristics suitable for fitting a two-component error model and a gamma regression 

model. Average fiber counts over sites can be considered as naturally occurring concentration levels. 

Since the true asbestos concentrations are not known, I substitute the average fiber counts for   in 

regression models. 

I first analyze these data using the two-component mixed model (3.3). Based on our experience 

with the two-component error model, existence of near-zero measurements in the data helps us 

estimate the constant variance at low level concentrations,   
 . This is because the two-component 

error model is designed to explain the constant variance at near-zero concentrations as well as the 

inflated variances at larger concentrations (Rocke and Lorenzato, 1995; Rocke et al., 2003).  
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The minimum observed count in the data is 62     from the site 2778 that has the lowest 

average count, 164    , among all sites (after excluding the laboratories with only a few 

observations, the average count of the site 2778 changed from 159 to 164; this is presented in 

Appendix). Therefore, I transformed the data by dividing observations by       . After such 

transformation, the average fiber counts range from 0.078 to 3.985, and SDs range from 0.040 to 1.205. 

Using the transformed data, I estimated parameters by the IWMML; these estimates are    

                                          
                       

  

         
             

        . For the new asbestos counts of the site 5099, the point 

estimate of the true fiber count and its 95% calibration confidence interval is 1630.87 (1446.09, 

1779.44) after back-transformation. Therefore, with 95% confidence we can say that the true amosite 

count of the site 5099 is between 1446     and 1779    . 

Before fitting the gamma mixed model (3.12), the distributional assumption needs to be 

checked. For observations nested within each laboratory, Anderson-Darling and Kruskal-Wallis 

goodness-of-fit tests of gamma distributions were conducted; all p-values are     . MLEs of shape 

parameters are approximately close to 1.0 for all laboratories; therefore, the assumption of a common 

shape parameter appears to be reasonable. Again, I transformed the data by dividing observations by 

      . Then I estimated parameters by the MML; estimates are 

                                                  
                        

  
                               . For new observations of the site 5099, the point 

estimate of the true fiber count is 1658.78 after back-transformation. The 95% calibration confidence 

intervals are (1494.73, 1904.15) by expression (3.17), (1469.23, 1894.99) by expression (3.19), and 

(1456.76, 1878.82) by expression (3.20).  

Based on parameter estimates from mixed-effects models, we can estimate means and standard 

deviations of asbestos fiber counts (Figure 8). For a two-component mixed model, expressions (3.2) 

and (3.4) are used, and for a gamma mixed model, expressions (3.14) is used. Note that values are in 
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transformed scale. Both model-based means and standard deviations are in good agreement with their 

corresponding observed means and standard deviations (if they tallied, circles and triangles would be 

on top of each other on the 45 degree line). In addition, we can compute the between- and within-

laboratory variances derived in Section 3.1.1 and Section 3.2.1; these are displayed in Figure 9. Both 

between- and within-laboratory variances increase with the mean fiber counts, indicating that 

measurement errors of the amosite asbestos fibers increase with concentrations within and across 

laboratories. 

Next, I compare the confidence intervals obtained by using the mixed-effects models to those 

obtained by the methods described in Chapter 2. Note that both lognormal and gamma distributions fit 

well to the site 5099 data.  First, using the lognormal distribution-based methods, the 95% generalized 

confidence highest density interval is (1497.51, 1820.00) and the Bayesian HPD interval is (1496.95, 

1821.01). Second, using the gamma distribution-based methods, the 95% confidence interval 

developed by Bhaumik et al. (2009) is (1476.98, 1846.85), and the Bayesian HPD interval is (1484.86, 

1824.87). All confidence intervals are displayed in Figure 10. All intervals include the average 

amosite fiber count (solid circle). The confidence intervals obtained by the gamma mixed model are 

generally wider than other intervals.  
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Figure 8. Model-based means and standard deviations from the two-component mixed model (●) and 

the gamma mixed model (▲) versus observed means and standard deviations across sites (in 

transformed scales). 
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Figure 9. Between- and within-laboratory variances estimated from the two-component mixed model 

(●) and the gamma mixed model (▲) versus observed means across sites (in transformed scales). 
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Figure 10. Confidence intervals by various methods for site 5099 

●  = Average amosite fiber count. 

A = Two-component mixed model. 

B = Interval (3.20) based on the gamma mixed model. 

C = Interval (3.19) based on the gamma mixed model.  

D = Interval (3.17) based on the gamma mixed model.  

E = Bayesian HPD interval for the gamma mean. 

F = Confidence interval  (2.10) for the gamma mean.  

G = Bayesian HPD interval for the lognormal mean.  

H = Generalized confidence highest density interval for the lognormal mean. 
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5.2 Copper Data from Ford Motor Company 

As another illustration, I analyze experimental data of copper concentrations. The Ford Motor 

Company conducted a blind inter-laboratory study of laboratories that hold Michigan State Drinking 

Water Certifications. This experimental data set was published in Gibbons and Bhaumik (2001) to 

illustrate the two-component mixed model. Copper (    ) samples were prepared by an independent 

source and weekly submitted for five weeks. In this data set, the true concentrations are known. There 

are five concentration levels, and five replicates per concentration within each of seven laboratories 

(i.e.           and    ). The data are presented in Appendix A. I exclude zero and negative 

measurements in the data because the gamma mixed model assumes positive dependent variables. 

These copper data exhibit non-constant variability as displayed in Figure 11.  

 

 

 

Figure 11. Copper concentration measurements versus true concentrations: variability in the 

measurements increases with the concentrations. 
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The distributional assumption about a constant shape parameter was checked: for each 

laboratory, the shape parameter estimates were all close to 0.20. By fitting the gamma mixed model to 

these data, parameter estimates are as follows:                                      

           
                       

                             . There is 

substantial between-laboratory variation, especially in the random intercepts; this was also shown in 

the results obtained by fitting the two-component mixed model (Gibbons and Bhaumik, 2001).



 

 

80 

 

6. DISCUSSION  

In this dissertation, I explored the use of the gamma distribution in environmental data analysis. 

I reviewed relevant methodologies for constructing the confidence interval for the mean concentration 

and the prediction interval for a single measurement, based on lognormal and gamma distributions. 

Each method can be chosen according to their advantages and disadvantages to make environmental 

impact decisions. For right skewed data, I observed that highest density intervals were shorter than 

equal-tailed intervals, and included more small values and fewer large values than equal-tailed 

intervals do. The generalized confidence highest density interval was proposed for the lognormal mean; 

it can be a good alternative to the generalized confidence equal-tailed interval if a shorter interval is 

desired.   

For constructing the Bayesian interval for the mean concentration, I used non-informative 

conjugate priors on the unknown parameters. In environmental monitoring problems where the 

samples are routinely measured, a new sample is compared with past data to determine whether there 

has been any change. The past data can provide prior knowledge about the population mean and can 

be incorporated via setting prior density accordingly. For example, Miller’s conjugate prior for a 

gamma distribution has hyperparameters          : the past mean concentration can be expressed as 

   . 

For analysis of environmental data obtained from multiple laboratories, I proposed the gamma 

mixed-effects model and studied the two-component mixed model. Both regression models were 

designed to explain heteroscedasticity and between-laboratory variability inherent in the 

environmental data. I explored the use of a two-component mixed model when replicated 

measurements per concentration within a laboratory were not available. As expected, the parameter 

estimates obtained by the IWMML were less accurate in such situations. However, the calibration 

confidence interval for a true unknown concentration still performed well.  I developed the mixed-

effects model for gamma distributed random variables with the identity link function. The parameter 
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estimates obtained by the MML and EB estimation were excellent, even when replicated 

measurements were not available. I proposed two types of calibration confidence intervals to estimate 

unknown true concentrations of new data; the interval (3.17) based on laboratory-specific calibration 

curves, and the global calibration intervals (3.19) and (3.20) based on the average calibration curve. 

The interval (3.17) seems to be inappropriate for near-zero concentrations having very low coverage 

probability, but the global intervals performed well at all concentration levels. When only part (or 

none) of the laboratories analyzing new data participated in collection of background data, the global 

calibration intervals can be useful for estimating unknown true concentrations. The interval (3.20) 

would be simpler to apply in practice than the interval (3.19), but it is not recommended to use when 

the number of laboratories analyzing a particular concentration level of new data is just a few. On the 

other hand, the interval (3.19) sometimes does not provide the lower limit at near-zero concentrations.  

I compared robustness of the gamma mixed model with the two-component mixed model via 

simulation studies. I considered situations where the alternative model was chosen (a certain kind of 

model misspecification) and the data were distributed as a mixture of two models. In the simulation 

studies, the performance of the intervals relevant to the gamma mixed model was satisfactory in both 

situations.  For low concentrations (near-zero), the length of calibration confidence interval of the two-

component mixed model tend to be somewhat longer than it should be. On the contrary, the length of 

interval (3.17) of the gamma mixed model tends to be shorter than it should be.  Therefore, the 

confidence intervals obtained by the two-component mixed model appear to be more appropriate for 

examining near-zero concentration measurements. The global calibration confidence intervals of the 

gamma mixed model have better coverage probabilities than the interval (3.17) at near-zero 

concentrations, but they are still slightly lower than the desired level of confidence. Further study is 

necessary about the behavior of both of the global calibration intervals. As long as the level of 

concentration is not very low, the calibration confidence interval based on the gamma mixed model 
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enables us to make more strict environmental decision than the two-component mixed model because 

of higher upper bound. This was shown in Illustration as well (Figure 10). 

There are limitations of this study. First, I substituted the sample mean for the true 

concentration when it was assumed to be unknown. Additional uncertainty due to estimating the true 

concentration was not incorporated. The simulation study shows that the substitution of the sample 

mean does not seriously affect the estimation of calibration confidence intervals. Therefore, the gain 

by adjusting the additional uncertainty will not be substantial. Second, the calibration confidence 

intervals proposed in this dissertation are approximate, and uncertainty due to estimating parameters is 

not incorporated. However, I observed via simulation that their performance was still excellent. Lastly, 

the point estimates proposed in Chapter 3 assume that new data are collected from the same set (or a 

subset) of laboratories from which background data were collected. If the laboratories in new data 

include different laboratories, the current point estimate should be modified. An estimate combining 

laboratory-specific estimates and overall parameter estimates may be considered. 

The proposed gamma mixed-effects model is different from previously developed models in the 

sense that the identity link function is used, while the log and inverse link functions have been used in 

previously developed gamma regression models. The identity link allows for easy and direct 

interpretation of regression coefficients. The disadvantage is that it restricts the possible range of 

regression coefficients due to the positive dependent variable.  

Normality assumption on the random effects in the gamma mixed model may not be realistic in 

some situations because it can produce negative scale parameter, which is not allowed in a gamma 

distribution. Therefore, a distribution that supports non-negative values may be more appropriate to 

prevent this situation. A bivariate gamma distribution would be a good candidate for the random 

effects distribution, but mixed-effects models for continuous responses developed so far usually 

assume a multivariate normal distribution for random effects. There have been some studies regarding 

the use of gamma distribution for random effects in the analysis of correlated failure times (Hougaard, 
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2000). The popular prior in Bayesian approach, Dirichlet process, could be a good candidate as well 

because it provides very flexible distribution for random effects that is adaptively chosen by data. 

Further study on this area is necessary.  

In addition, distributional assumptions about the random effects are difficult to assess from the 

data at hand, and EB estimates are sensitive to the normality assumption. However, it is known that 

the estimates of the fixed-effects are much less sensitive to misspecification of the random-effects 

distribution (Fitzmaurice et al., 2004). Hence, the “global” calibration confidence region of the gamma 

mixed model could be useful when the random-effects distribution is misspecified because it does not 

rely on the EB estimates.  

Regulatory agencies can use the proposed gamma mixed model and the corresponding 

calibration confidence intervals to determine whether the area of interest is an environmental concern. 

U.S. EPA uses the UCL for the mean concentration of environmental samples to make remediation 

decisions, for instance at Superfund sites
2
. Usually the lognormal or gamma distribution is used to 

compute the UCL, and variation at the laboratory level (or at the instrument level when multiple 

instruments are used) is overlooked. The approach proposed in this dissertation incorporates the 

between-laboratory variation in obtaining the UCL. In order to obtain the calibration UCL, 

background data is needed. Therefore, my approach is relevant in examining the area where 

environmental samples are routinely collected. We can compute the           UCL using      in 

the derivation of calibration confidence intervals.  If the area of concern is not crucial with respect to 

public health or environmental perspective, the decision can be made based on the LCL. Even if the 

mean of samples exceeds a regulatory standard, if the LCL is lower than the standard, then we may 

conclude that the area is not environmental concern. The       LCL can be computed using    in 

the derivation of calibration confidence intervals. 

                                                           
2
 A Superfund site is an uncontrolled or abandoned place where hazardous waste is located, possibly affecting 

local ecosystems or people. More details about Superfund can be found at http://www.epa.gov/superfund/sites/. 

http://www.epa.gov/superfund/sites/
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The application of the gamma mixed model proposed is not limited to calibration curve 

estimation. The gamma mixed model can be used when clustering arises in right skewed data. For 

example, the model can be useful for analyzing length of hospitalizations across different hospitals, or 

for evaluating the effect of a smoking cessation program on change of the amount of smoking over 

time, etc. Poisson mixed-effects models have been commonly used in these fields; but only integer 

values are available as a dependent variable in the Poisson regression model, and the variance of the 

response is forced to be equal to the mean response. The gamma mixed-effects model would be a good 

alternative approach to analyzing these types of data. 

The development of TEM technique has allowed for detailed characterization of mineral 

particles (Institute of Medicine and National Research Council, 2009; Loomis et al., 2010). All 

asbestos fibers are classified into their sizes by TEM method. Dement et al. (2007, 2011) categorized 

the length and diameter of asbestos fibers collected at asbestos textile plants in South Carolina and 

North Carolina, and counted the number of fibers for each category. Thinner and longer fibers are 

more strongly associated with health hazard than shorter and thicker fibers (Stayner et al., 2008; 

Loomis et al., 2010). Therefore, it is suggested to adjust the size category in the analysis of asbestos 

fibers. The plausible mixed-effects model with a multiplicative gamma random error would be, 

                                

where      is a fiber count in the     category of lengths and the     category of diameters within the 

    cluster.    is an indicator of the     category of lengths and    is an indicator of the     category 

of diameters, and     and     are the related fixed-effects. Data may be clustered in the sense that 

airborne asbestos fibers are collected at more than one textile plants or at various zones within a textile 

plant.  

There are areas that I would like to study further. First, I would like to investigate why the 

calibration confidence intervals (3.19) and (3.20) have somewhat lower coverage probabilities than 
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desired confidence level, and suitably adjust the intervals. Second, SAS NLMIXED procedure is a 

convenient tool to fit the gamma mixed model. However, I observed in the simulation studies that it 

was somewhat sensitive to initial values for parameters. One could benefit from a package that is more 

robust to the choice of initial values. SuperMix uses the hierarchical likelihood estimation (Lee and 

Nelder, 2001) to calculate initial values. This appears to be a very efficient way to find good initial 

values that help reduce the number of iterations (Kim, Y. et al., unpublished paper). Development of a 

more robust package for the proposed model will be my future work. Third, as discussed previously, 

the normality assumption on the random effects in the gamma mixed model may not be practical in 

some situations. A multivariate gamma distribution is an alternative assumption for random effects; 

therefore, my future work is to develop a gamma regression model with multivariate gamma-

distributed random effects as well as the package to fit the model.  Finally, I proposed the point and 

interval estimates for an unknown true concentration adjusting for heteroscedasticity and between-

laboratory variation. Using an accurate exposure measurement is important when evaluating health 

hazard and excessive exposure to, for example, airborne asbestos fibers. Measurement errors may 

result in attenuated effects or biased results. I would like to extend the scope of my study by assessing 

the impact of using the proposed estimates for true concentrations in such epidemiologic studies. 
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Appendix A 

Copper Data 

The Ford Motor Company conducted a blind inter-laboratory study of laboratories that hold 

Michigan State Drinking Water Certifications. This experimental data set was published in Gibbons 

and Bhaumik (2001) to illustrate analysis using the two-component mixed model. Copper (    ) 

samples were prepared by an independent source and weekly submitted for five weeks. There are five 

concentration levels, and five replicates per concentration within each of seven laboratories (i.e. 

balanced data with           and    ). The analysis results of this data set using the gamma 

mixed-effects model are presented in Chapter 5 of this dissertation. 

  
Concentration in      

Lab Replicate 0 2 10 50 200 

1 1 3 3 14 54 205 

1 2 2 3 10 51 206 

1 3 -1 5 11 52 208 

1 4 1 2 12 54 211 

1 5 -1 2 13 38 195 

2 1 2.1 8 10 53 188.6 

2 2 0.3 1.8 12.4 54.6 210 

2 3 2 0.7 10.6 50 210 

2 4 1.3 4 12 50.1 214 

2 5 2 3 11 50 200 

3 1 0.8 2.495 10.5 47.66 181.33 

3 2 -0.185 2.695 10.335 45.39 173.205 

3 3 0.99 2.41 9.735 44.27 180.56 

3 4 0.905 1.84 10.245 46.91 183.65 

3 5 0.365 2.84 10.325 47.24 181.585 

4 1 1.661 3.243 12.25 48.14 205.4 

4 2 1.996 3.432 13.51 54.45 200.4 

4 3 0 9.246 11.16 51.01 199.7 

4 4 2.993 3.39 13.44 52.86 189.6 

4 5 2.042 4.109 10.47 48.72 187.7 

5 1 0.09 0.86 10.03 50.06 193.4 

5 2 -2.51 2.68 12.94 50.35 193.47 

5 3 7.27 -0.4 8.97 49.32 203.16 

5 4 7.14 4.73 9.61 49.93 190.02 

5 5 0.28 5.2 9.12 48.08 191.05 

6 1 7.226 4.964 4.713 48.242 191.02 

6 2 -1 2 10 65 205 

6 3 0 3 8 45 183 

6 4 10.244 6.716 11.101 43 185 

6 5 -2.177 8.844 8.249 47 182 

7 1 0.018 1.323 6 45.5 162 

7 2 -3 4.9 9.088 44 181 

7 3 0 0 14.1 40 187 

7 4 -2 0 6 43 178.3 

7 5 -2 0 7 45.986 188.932 
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Appendix B 

Derivation of Expressions in (3.18) 

We derive mean and variance expressions of the approximate normal distribution of     
   

. The 

scale parameter is normally distributed with mean             and variance 

   
           

   
      because of the bivariate normal assumption for   . Assuming that 

replicated measurements per concentration level within a laboratory is available, the relevant replicates 

of     can be averaged and we denote the average by     . By using the delta method,     
   

and     
   

  are 

asymptotically normally distributed, given known parameters. When    , we drop the bar and 

denote them by    
   

and    
   

. We can obtain the following expressions when    . Given known 

parameter values, 

      
      

       

 
 

   

    

      
      

       

 
 

   

  

      
     

 

 
  
  
           

   
 

             
   

    

      
     

   
   

        

    
 

 

  
       

 
 

   

 
        

    
 

 

  

As a result, the approximate mean and variance of the marginal distribution of    
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The above expressions were derived under the assumption of replicates and applied to the situation 

where there is no replicate. We observed via simulation in Chapter 4 that these expressions still 

perform well when there is no replicate.  
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Appendix C 

SAS PROC NLMIXED 

Presented below is an example SAS code to fit the gamma mixed-effects model. The parameters 

are estimated by using adaptive Gauss-Hermite quadrature (method=Gauss) with 15 quadrature 

points (qpoints=15), and Newton-Raphson (tech=newrap). The maximum number of iterations 

is set to 500 (maxiter=500). Starting values are specified in parms statement. a and b indicate 

the shape and scale parameters of a gamma distribution respectively. u0 and u1 represent random 

deviations from the intercept b0 and the slope b1. lab is an ID variable that identifies which 

laboratory (or cluster) an observation is nested in, i.e. the input data set must be clustered according to 

the subject= variable. Upon convergence, a SAS data set named newEB is created, and it contains 

empirical Bayes estimates of u0 and u1 by lab. The output data parmest contains MLEs of 

parameters and their standard errors. Gconv and fconv control the convergence criteria. 

 

 

proc nlmixed data=asbestos method=Gauss qpoints=15 maxiter=500  

  tech=newrap gconv=1E-8 fconv=1E-8; 

 

/* starting values */ 

parms b0 0 b1 1 v00 0.001 v11 0.01 v01 0 a 10 ;  

 

/* restriction on parameters */ 

bounds a>0 ,v11>=0, v00>=0; 

 

/* model specification */ 

mu=(u0+b0)+(u1+b1)*x; 

b= mu/a; 

model y~gamma(a,b);  

 

random u0 u1~ normal([0,0],[v00,v01,v11]) subject=lab 

out=newEB; 

 

ods output parameterestimates=parmest; 

run; 
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Appendix D 

Asbestos data from New York State Department of Health 

 

TABLE XIV. THE AMOSITE ASBESTOS DATA: EXCLUDING LABORATORIES WITH ONLY 

A FEW OBSERVATIONS. 

  Original  Transformed
d
 

Sites N
a
     Mean SD

b
 CV

c
  Mean SD

b
 

2778 24  164.25   83.86 0.51  0.078 0.040 

6001 24  377.46  104.86 0.28  0.180 0.050 

3739 24  758.71  219.60 0.29  0.361 0.105 

187Q 24  790.38  241.16 0.31  0.376 0.115 

4915 22  800.91  227.17 0.28  0.381 0.108 

7420 27  841.63  221.47 0.26  0.401 0.105 

5284 24  936.04  195.20 0.21  0.446 0.093 

8306 24 1187.17  362.90 0.31  0.565 0.173 

6482 25 1347.68  533.37 0.40  0.642 0.254 

5099 25 1648.16  390.66 0.24  0.785 0.186 

8214 26 1733.15  400.38 0.23  0.825 0.191 

879Q 22 2134.73  487.50 0.23  1.016 0.232 

5209 21 7065.00 2430.86 0.34  3.364 1.157 

1987 27 8368.37 2531.52 0.30  3.985 1.205 

a
 number of laboratories. 

b
 standard deviation. 

c
 coefficient of variation; same in the original and transformed scales. 

d
 transformed by dividing by       . 
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