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SUMMARY

In this thesis, we will examine some Ramsey type problems for graphs and hypergraphs.

Our starting point, and motivating question, is to determine the minimum number of colors

required to color the edge set of a hypergraph G subject to the constraint that the edges of

every copy of the hypergraph H ⊂ G receive at least q colors. This problem was introduced in

such generality by Erdős and Gyárfás.

We study this question in a variety of contexts for both graphs and hypergraphs. For

the graph case, we focus on the situation where G is the n-dimensional hypercube and H is

a hypercube, path or cycle. For the hypergraph case we consider the situation when G is a

complete hypergraph and H is a complete hypergraph, path or cycle.

v



CHAPTER 1

INTRODUCTION

1.1 History and past results

Ramsey Theory encompasses an extensive body of work in mathematics which can be sum-

marized by the statement “Complete chaos is not possible”. The basic premise of the subject

is that every large system contains a sufficiently large subsystem which is not chaotic. The

subject is most often studied through the lens of combinatorial structures such as graphs and

hypergraphs, though the paradigm appears in other branches of mathematics including geom-

etry [26] and number theory [20]. We will define a graph and several basic examples of graphs

before proceeding.

A graph G is a pair (V (G), E(G)) where V (G) is the vertex set of G and E(G) ⊂
(
V (G)
2

)
. An

edge {u, v} ∈ E(G) is also written as uv. The complete graph Kt (also referred to as a clique)

is the graph on t vertices whose edge set is the set of all possible
(
t
2

)
edges. The path on q edges

Pq is the graph with vertex sex V (Pq) = {v1, . . . , vq+1} and edge set E(G) = {v1v2, . . . , vqvq+1}.

The cycle on q edges Cq is the graph with vertex sex V (Cq) = {v1, . . . , vq} and edge set E(G) =

{v1v2, . . . , vq−1vq, vqv1}. The complete bipartite graph Ks,t is the graph with V (Ks,t) = A ∪B

where A and B are disjoint with |A| = s, |B| = t and with E(Ks,t) = {uv | u ∈ A, v ∈ B}.

1
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In many problems we will study, it is necessary to assign colors to the edges of a graph. A

k-edge-coloring of a graph G is a function χ : E(G) 7→ {1, . . . , k}. An edge-colored graph is

monochromatic if all of its edges received the same color.

The basic problem of Ramsey Theory is to find monochromatic complete subgraphs within

a larger edge-colored complete graph. The fact that such subgraphs exist in sufficiently large

complete edge-colored graphs is the basic result of Ramsey Theory.

Theorem 1 (Ramsey [46]). For every pair of fixed positive integers s, t > 0, there exists an n0

such that if n > n0 and Kn is edge-colored with red and blue then there is either monochromatic

Ks in red or a monochromatic Kt in blue as a subgraph of a Kn.

Definition. For integers s, t > 0, let r(s, t) be the minimum value of n0 in Theorem 1.

Ramsey’s initial motivation for Theorem 1 came from problems related to the decidability

of logical systems. Determining r(s, t) for fixed s and t is an extremely difficult problem. For

example, despite only requiring a very elementary proof to show that r(3, 3) = 6, there are very

few exact results known for the diagonal cases where s = t. In fact, the only other diagonal

case for which we know the exact answer is r(4, 4) = 18.

Determining the values of R(k, k) for k ≥ 5 seems to be an extraordinarily difficult problem.

While the bounds 43 ≤ r(5, 5) ≤ 49 are known [9], it would take a vast amount of computing

power to simply resolve whether or not r(5, 5) = 43. In a brute force calculation approach, we

would need to consider all of the of the 2-edge-colorings of a K43 and check for monochromatic

copies K5 in each color. A K43 has
(
43
2

)
= 903 edges and each edge may receive one of

two possible colors, so there are 2903 colorings to check. As this basic example illustrates,
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determining Ramsey numbers exactly often appears hopeless and therefore asymptotic bounds

are desirable. The probabilistic method, pioneered by Erdős, gave the following bound on the

diagonal Ramsey number r(t, t).

Theorem 2 (Erdős [4]). For t ≥ 2, we have r(t, t) > 2t/2.

Erdős and Szekeres determined the following upper bound.

Theorem 3 (Erdős-Szekeres [26]). For t ≥ 2, we have r(t, t) < 4t.

There have been slight improvements made to the above Theorems [14, 51], however they

essentially represent the current state of progress on the problem. There are many natural

extensions to r(s, t). Perhaps the most obvious direction to go in would be to use more than

two colors. These are referred to as multicolor Ramsey numbers. We may generalize even

further by asking for monochromatic copies of a given subgraph H instead of just cliques.

Definition. Given an integer k ≥ 1 and graphs H1, . . . ,Hk, let rk(H1, . . . ,Hk) be the minimum

n0 such that, for n > n0, any k-edge-coloring of Kn contains a monochromatic copy Hi in the

i-th color for some i. If H = H1 = H2 = . . . Hk, then rk(H) = rk(H1, . . . ,Hk).

As one would expect, determining rk(H) for various H is an extremely difficult problem.

Greenwood and Gleason [35] showed that r3(K3) = 17 and at present this is the only non-trivial

value which is known for cliques when k ≥ 3. They also provided the following upper bound

for the general problem for cliques.
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Theorem 4 (Greenwood-Gleason [35]).

rk(Ki1 ,Ki2 , . . . ,Kik) ≤ (i1 + . . .+ ik − k)!

i1! . . . ik!
.

The problem of determining rk(H) has been investigated when H is a cycle. Among the only

results are R3(C4) = 11 due to Clapham [13] and R3(C6) = 12 due to Rowlison and Yang [47].

Returning to cliques, Erdős and Gyárfás [23] considered an extension of the classical Ramsey

problem by requiring the subclique to have more than two colors.

Definition. Given positive integers p and q, an edge-coloring of Kn is a called a (p, q)-coloring

if every copy of Kp ⊂ Kn contains at least q distinct colors on its edges. The minimum number

of colors required for a (p, q)-coloring of Kn is denoted as f(n, p, q).

Under this definition, a (p, 2)-coloring avoids monochromatic cliques. The statement f(n, p, 2) ≤

k is equivalent to the two statements rk(p) > n and rk−1(p) ≤ n, hence determining f(n, p, 2)

is equivalent to determining rk(p). The problem of determining f(n, p, q) is extremely difficult.

Several small cases have received considerable attention, including the case of (4, 3)-colorings

first studied by Erdős and Gyárfás.

Theorem 5 (Erdős-Gyárfás [23]).

f(n, 4, 3) = O(
√
n)

Mubayi [41] proved the following result for f(n, 4, 3).
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Theorem 6 (Mubayi [41]).

f(n, 4, 3) ≤ eO(
√
logn)

Kostochka and Mubayi [37] later improved the trivial lower bound of f(n, 4, 3) ≥ f(n, 4, 2) =

Ω( logn
log logn) to Ω( logn

log log logn) and their methods were refined by Fox and Sudakov [29] to give the

current best bound f(n, 4, 3) = Ω(log n). Since obtaining exact results for generalized Ramsey

type problems is very hard it is often desirable to determine the asymptotic behavior of these

functions, though this still is a very difficult problem. Erdős and Gyárfás [23] answered the

following question: for fixed p, for which values of q is f(n, p, q) linear or quadratic in n. Recent

progress was made on this problem by Conlon, Fox, Lee and Sudakov [17]; they determined the

largest value of q for which f(n, p, q) is subpolynomial.

Theorem 7 (Conlon et. al. [17]). For fixed positive integers p and q with 2 ≤ q ≤
(
p
2

)
, the

maximum value of q for which f(n, p, q) is subpolynomial in n is p− 1.

Ramsey’s Theorem has been generalized to consider subgraphs other than cliques and to

change the restriction on the number of colors that a subgraph may have. Another way is

to take the large graph to be something other than Kn. The complete bipartite graph, Kn,n

has been studied at some length. Axenovich, Fúredi and Mubayi [5] studied this problem and

defined the following generalized version of f(n, p, q):

Definition. Given graphs G and H, an edge-coloring of G is an (H, q)-coloring if every copy of

H in G receives at least q distinct colors on its edges. The minimum number of colors required

in an (H, q)-coloring is f(G,H, q).
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Among other problems, they studied the function f(G,H, q) for G = Kn,n and H = Kp,p.

Motivated by the work of Erdős and Gyárfás on cliques, they proved various thresholds for

f(Kn,n,Kp,p, q) [5].

1.2 New results on Hypercubes

In this thesis, we will obtain results for the n-dimensional hypercube and for hypergraphs.

The hypercube will be studied in chapters 2-4.

Definition. The n-dimensional hypercube Qn is the graph with vertex set V (Qn) = 2[n]; if we

view two vertices u and v as their corresponding subsets of [n], then uv is an edge if |v| = |u|+1

and u ⊂ v.

Given a subgraph H ⊂ Qn, we will study the function f(Qn, H, q) as defined earlier. Recall

that Pq is the path with q edges. We will begin in Chapter 2 by giving some simple results on

f(Qn, Pq, q). We will focus specifically on the cases where all the edge of Pq receive different

colors.

Definition. An edge-colored graph G is rainbow if no two edges receive the same color.

We will prove the following bounds on rainbow coloring small paths in Qn.
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Theorem 8. The following lower and upper bounds hold for f(Qn, Pq, q):

q lower bound upper bound

2 n n

3 2n− 1 2n

4 n2 3n2

In the Chapter 3, we will study f(Qn, Q3, q) and for various values of q. This appears to be

a difficult problem for most of the values of k. We will give upper and lower bounds, some of

which will require the use of the probabilistic techniques. The primary motivation for this is a

result of Faudree, Gyárfás, Lesniak and Schlep [27].

Theorem 9 (Faudree et. al. [27]). Let n = 4 or n ≥ 6. Then f(Qn, Q2, 4) = n.

Our result follows.
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Theorem 10. The following upper and lower bounds hold for f(Qn, Q3, q):

q lower bound upper bound

4 4 4

5 5 8

6 6 12

7 Ω( logn
log logn) O(n1/3)

8 Ω( logn
log logn) O(n2/5)

9 n1/3 O(
√
n)

10
√
n O(n2/3)

11 n/2 O(n)

12 3n− 2 n1+o(1)

In Chapter 4, we consider f(Qn, H, q) when H = Cq and q is even (there are no odd cycles

in Qn). Since C4 = Q2, we have f(Qm, C4, 4) = f(Qn, Q2, 4); it is also an easy exercise to show

that f(Qm, C6, 6) = f(Qn, Q6, 12). Since we will focus on rainbow colorings in Chapter 4, we

will introduce the following definition for convenience.

Definition. For q even and n ≥ q, let f(n, q) = f(Qn, Qq, q).

Theorem 11. There a positive integers c1, c
′
1, c2, c

′
2 such that the following hold. If q ≡

0 (mod 4), then
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c1n
k/4 < f(n, k) < c2n

k/4.

If q ≡ 2 (mod 4), then

c′1n
dk/4e < f(n, k) < c′2n

dk/4e.

We will also prove a better result for the particular case k = 6.

Theorem 12. For every ε > 0 there exists n0 such that for n > n0 we have f(n, 6) ≤ n1+ε.

Although this parameter has been introduced more recently, the study of f(Qn, Ck, q) has

received considerable attention. Alon, Radoičić, Sudakov and Vondrák [3] studied the problem

of avoiding monochromatic cycles and proved the following result.

Theorem 13 (Alon et. al. [3]). Fix k ≥ 1 and l ≥ 5. For sufficiently large n, every

k-edge-coloring of Qn contains a monochromatic cycle of length 2l.

Alternatively, we may rephrase this as saying that f(Qn, Cl, 2) is not bounded by a function

of l. Even more recently, at the end of 2013, a result similar to Theorem 11 was obtained by

Balogh, Delcourt, Lidický and Palmer [7]. They asked the following closely related question:

if Qd is colored with a fixed number of colors k, then what is the largest possible number of

rainbow cycles of a particular length that there can be? They proved the following result:

Theorem 14 (Balogh et. al. [7]). Let k and d be fixed integers such that 4 ≤ k < d and

k 6= 5 and write d = ka+ b where a and b are integers such that a ≥ 0 and 0 ≤ b < k, then the

maximum number of rainbow copies of C4 in a k-edge-coloring of Qd is 2d−2 [
(
d
2

)
− k
(
c
2

)
− ba].

They also conjectured for a 5-edge-coloring of Qd, that limd→∞
q5(d)

(d2) 2d−2
= 4/5 where qk(d)

is the maximum number of rainbow copies of C4 in a k edge coloring of Qd.
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1.3 Hypergraphs: Cliques

All of the types of questions we have looked at so far can be naturally extended to hy-

pergraphs. Our attention will be limited to l-uniform hypergraphs, which may also refer to

as simply l-graphs. Let X be set; we denote collection of subsets of size l of X by
(
X
l

)
. An

l-uniform hypergraph H (l-graph for short) is a pair (V (H), E(H)) with E(H) ⊂
(V (H)

l

)
. The

complete l-graph on n vertices K l
n has vertex set V (K l

n) and edge set E(K l
n) =

(V (Kl
n)

l

)
. Given

an l-graph G and S ∈
(V (G)
l−1
)
, the codegree of (S), written codeg(S), is the number of edges in

G which contain S.

Definition. Fix integers s, t ≥ l ≥ 2. Let rl(s, t) be the minimum n such that every 2-edge-

coloring of K l
n yields either a monochromatic copy K l

s in the first color or a monochromatic

copy of K l
t in the second color.

Definition. Fix k, l ≥ 2 and l-graphs H1, . . . Hk. Then rl(H1, . . . ,Hk) is the minimum n such

that every k-edge-coloring of K l
n results in a monochromatic subgraph Hi in color i for some

i ∈ [k]. When H1 = · · · = Hk = H, we write rlk(H).

The classical Ramsey numbers seem even more difficult to determine for hypergraphs. The

smallest non-trivial case is r3(4, 4) and this is in fact the only classical Ramsey number for

hypergraphs where the exact value is known. The upper bound r3(4, 4) ≤ 13 was first proved

by Giraud in 1969 [31]. Much later, McKay and Radziszowski [39] showed (with a computer

aided proof) that Giraud’s result was optimal.
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Theorem 15 (McKay-Radziszowski [39]).

r3(4, 4) = 13.

A result of Erdős and Rado [24] provides upper and lower bounds for r3(t, t).

Theorem 16 (Erdős-Rado [24]). For all t ≥ 3, there are positive constants c and c′ such

that

2ct
2
< r3(t, t) < 22

c′t
.

Recently Conlon, Fox and Sudakov made significant progress on the problem of determining

r3(s, t) [18]. They improved the upper bounds in Theorem 16 and also improved the previous

lower bounds for this problem. They provided a new lower bound for the diagonal multicolor

Ramsey number r3(t, t, t) improving the previous bound of Erdős and Hajnal.

Theorem 17 (Conlon et. al. [18]). For integers t ≥ s ≥ 4, there is a positive constant c

such that

r3(s, t) ≥ 2c st log(t/s+1).

For fixed s ≥ 4 and sufficiently large t

r3(s, t) ≤ 2t
s−2 log t.
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Theorem 18 (Conlon et. al. [18]). There is a positive constant c such that

r3(t, t, t) ≥ 2t
c log t

.

Conlon, Fox and Sudakov used a classical technique known as the Stepping-Up Lemma

which was introduced by Erdős and Hajnal [33], which they also improved in an earlier result

[19]. Axenovich, Gyárfás, Liu and Mubayi investigated the problem of determining r3k(H). One

of the smallest non-trivial cases is G = K3
4 − e, the unique 3-graph with four vertices and three

edges.

Definition. Let rlk(H) be the minimum n such that every k-edge-coloring of the edges of K l
n

contains a monochromatic copy of H.

Theorem 19 (Axenovich et. al. [6]).

r3k(K3) ≤ r34k(K3
4 − e) ≤ r34k(K3) + 1

We will introduce another definition which is similar to one we gave earlier for graphs.

Definition. Fix l ≥ 2 and l-graphs G,H with H ⊂ G. Let fl(G,H, q) be the minimum number

of colors in an (H, q)-coloring of G. In the special case where G = K l
n and H = K l

p, we let

fl(G,H, q) = fl(n, p, q).

A natural extension to Theorem 19 is to ask for the minimum p such that f(n, p, 3) is (log n)o(1).

Recently, Conlon and Fox observed that this minimum at most 13. We improve this below.
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Theorem 20.

f3(n, 7, 3) ≤ eO(
√
log logn)

We will also prove a more general theorem.

Theorem 21. Given positive integers n, l,m with l > 2 and l + 5 < m < n. Then

fl+1(K
l+1
2n ,K l+1

m+1, 3) ≤ 2 fl(K
l
n,K

l
m, 3) + 2l.

1.4 Hypergraphs: Paths, Cycles and other subgraphs

Hypergraph Ramsey type problems where we seek monochromatic subgraphs other than

cliques have received some attention. Many of the commonly studied subgraphs in the case of

standard graphs are also studied in hypergraphs. Two particular examples are paths and cycles;

however, in hypergraphs, paths and cycles may be constructed in multiple ways depending on

the number of vertices in the intersection of two adjacent edges.

Definition. Given l, q > 0, the l-uniform loose cycle on q edges C lq is the l-graph with |V (C lq(t))| =

ql− (q − 1) and edge set E(C lq(t)) = {e1, . . . , eq} where |ei ∩ ej | = 1 if j = i+ 1 or i = 1, j = k

and |ei ∩ ej | = 0 otherwise.

Definition. Given l, q, t > 0 with t < bl/2c, the t-intersecting, l-uniform path on q edges

P lq(t) is the l-graph with |V (P lq(t))| = ql − (q − 1)t and edge set E(P lq(t)) = {e1, . . . , eq} where

|ei ∩ ej | = t if j = i+ 1 and |ei ∩ ej | = 0 otherwise. Such a path is called loose if t = 1.

One may also study paths where |ei ∩ ei+1| > bl/2c or cycles where |ei ∩ ei+1| > 1, however,

in this thesis we will restrict our attention to loose cycles and paths with t < bl/2c. When
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specifically studying loose paths, the parameter t = 1 may be omitted for simplification of

notation. An important result by Haxell et. al. [36] provided bounds the Ramsey problem for

loose cycles in K3
n . Recall that rl(s, t) is the minimum n such that every 2-edge coloring of the

K l
n yields either a monochromatic K l

s in the first color or a monochromatic K l
t in the second

color. They recently proved the following result on loose cycles:

Theorem 22 (Haxell et. al. [36]).

r3(C3
q , C

3
q ) ∼ 5q/4

Theorem [36] is the best possible asymptotic result. Even more recently, the following result

on loose paths and cycles was proven [44].

Theorem 23 (Omidi-Shahsiah [44]). For every n ≥ m ≥ 3, r(P 3
n , P

3
m) = 2n+ bm+1

2 c holds

and for n > m ≥ 3, r(P 3
n , C

3
m) = 2n+ bm−12 c holds.

In Chapter 5 we will focus on rainbow coloring small subgraphs of K3
n. Our first result is the

following.

Theorem 24. Let n ≥ 4. Then

f3(K
3
n, P

3
3 , 3) ≤

(
n

2

)
− bn2/4c =


n2/4− n/2, if n is even

n2/4− n/2 + 1, if n is odd.
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If n ≥ 12, then f3(K
3
n, P

3
3 , 3) ≥ n2/4− n/2.

One notable aspect of studying Ramsey type problems for hypergraphs is the increased number

of subgraphs that are possible due the edges being able to intersect in multiple ways. We will

prove a result on a unique 3-graph known as the Pasch Configuration.

Definition. The Pasch Configuration P is the unique 3-graph on six vertices such that any

two of its edges have exactly one vertex in common.

Our original goal was to prove that f3(n, P, 3) = n1+o(1), however we were only able to prove

the slightly weaker result below where we color most of the edges.

Theorem 25. There is an edge-coloring of H ⊂ K3
n with n1+o(1) colors such that every copy

of P ⊂ H contains at least three distinct colors on its edges and |E(H)| >
(
n
3

)
− o(n3).

Proving Ramsey results for higher uniformity or larger subgraphs is often much more difficult.

We will require Turán type results to prove our remaining theorems. The focus of Turán

problems is to determine the minimum number of edges in a large graph or hypergraph G

required in order to force the appearance of particular subgraph H.

Definition. Given an l-graph H, let exl(n,H) be the maximum number of edges that an

l-graph on n vertices can have without containing a copy of H.

Turán and Ramsey problems sometimes turn out to very closely related. When proving a

Ramsey result, one will often require that a particular subgraph does not appear in a color

class. Recall that P lq(t) is the l-uniform, t-intersecting path on q edges. We will prove the

following result.
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Theorem 26. Let l, t be fixed positive integers with t < l and l ≤ 2t + 1. If there is an

S(n, 2l − t− 1, l) on [n], then

fl(K
l
n, P

l
2(t), 2) ≤ (1 + o(1)) (n−l)! (l−t−1)!

(n−t)! (2l−2t−1)! .

If it is possible to partition S(n, 2l− t−1, l) into copies of S(n, 2l− t−1, t) and l− t is a prime,

then

fl(K
l
n, P

l
2(t), 2) = (n−l)! (l−t−1)!

(n−t)! (2l−2t−1)! .

The Turán number for P lq(t) has been studied at some length, particularly when t = 1. It often

turns that Turán numbers are useful in graph coloring problems. Some previous results on

exl(n, P
l
q(t)) are given below.

Theorem 27 (Füredi-Jiang-Seiver [30]). For all fixed q ≥ 1, l ≥ 4, and sufficiently large n

we have

exl(n, P
l
2t+1) =

(
n−1
l−1
)

+ · · ·+
(
n−t
l−1
)
,

exl(n, P
l
2t+2) =

(
n−1
l−1
)

+ · · ·+
(
n−t
l−1
)

+
(
n−t−2
l−2

)
.

Theorem 28 (Kostochka-Mubayi-Verstraëte [38]). Fix l ≥ 3, q ≥ 4 with (q, l) 6= (4, 3).

For large enough n, we have

exl(n, P
l
q) =

(
n
l

)
−
(n−b q−1

2
c

l

)
+


0, if q is even

(n−b q−1
2
c−2

l−2
)
, if q is odd.

We will study exl(n, P
l
q(t)) when t > 1. The following is our final result of this thesis.

Theorem 29. Fix k, r ≥ 2, 1 < t ≤ b r2c and l = bk−12 c. Then exl(n, P
r
k (t)) ∼ l

(
n
r−1
)
.
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Throughout the thesis we will make use of asymptotic notation. Let f, g : R+ → R. Then

f = O(g) if there exists a constant c such that |f | < c|g|. We say f = Ω(g) if g = O(f). If

limx→∞f(x)/g(x) = 0, we say f(x) = o(g(x)) .



CHAPTER 2

COLORING QN WITH RAINBOW PATHS.

In this chapter, we will prove a few basic results on coloring the hypercube with rainbow

paths. In the subsequent chapters, we will prove more difficult results on coloring the hypercube

with rainbow cycles, so this chapter will introduce some of the basic methods. Recall that the

n-dimensional hypercube Qn is the graph with vertex set V (Qn) = 2[n]; if we view two vertices

u and v as their corresponding subsets of [n], then uv is an edge if |v| = |u|+ 1 and u ⊂ v. The

vertex set V (Qn) may be also be regarded as the 2n binary vectors of length n with vertices

u and v being joined by an edge if and only if they differ in precisely one coordinate. We will

restate an earlier definition and give a new definition which we will use throughout the sections

of the thesis pertaining to Qn.

Definition. Given graphs G and H, an edge-coloring of G is an (H, q)-coloring if every copy

of H in G receives at least q distinct colors. The minimum number of colors required in an

(H, q)-coloring is f(G,H, q).

Definition. Let uv ∈ Qn and let u and v represent their corresponding subsets of [n] with

|u| = l and |v| = l + 1. We then say that uv is on level l of Qn.

18
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We will prove the following upper and lower bounds for f(Qn, Pq, q) for q = 2, 3, 4:

Theorem 8. The following lower and upper bounds hold for f(Qn, Pq, q):

q lower bound upper bound

2 n n

3 2n− 1 2n

4 n2 3n2

We will prove Theorem 8 in three separate cases. Before proceeding, we will make an

observation about Qn that will be used in the proof and the subsequent chapters. The graph

Qn is obtained by joining each pair of corresponding vertices from two copies of Qn−1 with an

edge; these edges which join the two copies of Qn together will be referred to as crossing edges.

Proof. Case 1: q = 2.

An edge-coloring of a graph is called proper if no two incident edges receive the same color. An

edge-coloring with only rainbow copies of P2 is equivalent to a proper edge-coloring. The lower

bound follows from the simple observation that each vertex in Qn has degree n and therefore

at least n colors are required.

For the upper bound, we will use induction to exhibit a proper edge-coloring of Qn which

uses n colors. For the base case, it is trivial to color Q2 with 2 colors so that every copy P2

two is rainbow. Now, suppose that n > 2 and we have shown that Qn−1 may be properly

edge-colored with n − 1 colors. To properly edge-color Qn with n colors, join together two
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properly edge-colored copies of Qn−1, each colored the with the same set of n − 1 colors, and

then color all of the crossing edges with the same new color. A P2 is either contained in one of

the properly edge-colored copies of Qn−1 or it contains one crossing edge and one edge from a

Qn−1; the crossing edges form a perfect matching, so a P2 cannot be made up of two crossing

edges. In either case, the P2 is rainbow and we establish the upper bound of n.

Case 2: q = 3.

The lower bound of 2n−1 is realized by a simple observation. Given an edge e = uv, then e

and the set of edges which are either incident with u or incident with v must all receive distinct

colors. This is a set of 1 + 2(n− 1) = 2n− 1 edges.

We will now give an edge-coloring function χ which proves the upper bound. As previously

stated, a vertex v ∈ V (Qn) is associated to a subset of [n]; given a vertex v, we will also use v to

refer to its associated set. Let e = uv be an edge with u = {m1, . . . ,mi} ⊂ {m1, . . . ,mi+1} = v

and let p(e) denote the parity of i. Our coloring is χ(e) = (mi+1, p(e)). There are n possibilities

for the first coordinate of χ and 2 possibilities for its second coordinate, so χ uses at most 2n

colors.

A P3 can span one, two or three levels of Qn and we will consider each case separately.

First, suppose that a P3 spans three levels of Qn. Let P = e1e2e3 with e1 = v1v2, e2 = v2v3

and e3 = v3v4 with v2 ⊂ v3 ⊂ v4 and let v2 = {m1, . . . ,mi}, v3 = {m1, . . . ,mi+1} and

v4 = {m1, . . . ,mi+2}. Then χ(e1) = (mi, p(e1)), χ(e2) = (mi+1, p(e3)) and χ(e3) = (mi+2, p(e2))

are all distinct colors.
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Next, suppose that P = e1e2e3 spans two levels of Qn. Without loss of generality, let e1, e2

lie on level i of Qn and let e3 lie on level i + 1. We observe that χ(e3) 6= χ(e1), χ(e2) because

p(e3) 6= p(e1), p(e2). Now we will show that χ(e1) 6= χ(e2). Let e1 = vx with v ⊂ x and e2 = vy

with v ⊂ y and let v = {m1, . . .mi}, x = {m1, . . .mi,m
′} and y = {m1, . . .mi,m

′′}. Because e1

and e2 are distinct edges, we have m′ 6= m′′ and so χ(e1) = (m′, p(e1)) 6= (m′′, p(e2)) = χ(e2).

Finally, suppose that P = e1e2e3 lies entirely on level i of Qn for some i. Let e1 = ux,

e2 = uy and e3 = wy with u ⊂ x, y and w ⊂ y. If u = {m1, . . . ,mi}, x = {m1, . . . ,mi,m
′} and

y = {m1, . . . ,mi,m
′′}, then w = y − {m′′′} for some m′′′ ∈ y. Since e1 6= e2, we have m′ 6= m′′

and similarly since e2 6= e3, we have m′′ 6= m′′′. We see that m′ 6= m′′′ by contradiction, for if

m′ = m′′′ then u = w. Therefore, χ(e1), χ(e2), χ(e3) are all distinct in their first coordinates.

Case 3: q = 4

We will first prove the lower bound. If two edges e and f lie on levels 0 or 1 of Qn, then

they must receive distinct colors. If e and f lie on level 0 then they are incident. If e = zx

where z = ∅ lies on level 0 and f = vw with v ⊂ w, then the edges h = zv, e and f form a P3.

If both e = xy and f = vw lie on level 1 (and are not incident), then we use the edges h = zx

and h′ = zv with z = ∅ to obtain ehh′f which is a P4. Therefore, any two edges on levels 0 or

1 of Qn must receive distinct colors and we obtain the lower bound of n+ n(n− 1) = n2. For

a vertex v, the incidence vector ~v is a binary vector of length n where its i-th position ~vi = 1

if i ∈ v ⊂ [n] and ~vi = 0 otherwise.

For an edge e = uv with u ⊂ v, recall that le is the level of e. Let

a(e) = (
∑

1≤i≤n
~vi i)modn.
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Let p(e) be the position i where ~u and ~v differ and let b(e) = lemod 3. We color the edge e with

χ(e) = (a(e), p(e), b(e)).

Since there are n possibilities for a(e), n possibilities for the p(e) and three possibilities for b(e),

χ uses at most 3n2 colors as desired. We will now show that χ edge colors Qn is a (P4, 4)-coloring

of Qn.

First, suppose that P = e1e2e3e4 spans four levels of Qn and e1 = v1v2, e2 = v2v3, e3 = v3v4

and e4 = v4v5 with v2 ⊂ v3 ⊂ v4 ⊂ v5. Then p(e1), p(e2), p(e3), p(e4) are all distinct and

therefore χ(e1), χ(e2), χ(e3), χ(e4) are all distinct.

Second, suppose that P4 = e1e2e3e4 spans three levels of Qn. Without loss of generality,

suppose that e1,e2 are on level i, e3 is on level i + 1 and e4 is on level i + 2. We observe that

b(e3) 6= b(e4) and b(e1) = b(e2) 6= b(e3), b(e4) and we also see that χ(e1) 6= χ(e2) because e1

and e2 are incident.

Next, suppose that P = e1e2e3e4 spans two levels of Qn. There are two ways that this

can occur. The first possibility is that e1, e2 are on level i and e3, e4 are on level i + 1. Then

b(e1) = b(e2) 6= b(e3) = b(e4). Furthermore, since e1 and e2 are incident, p(e1) 6= p(e2) and

likewise p(e3) 6= p(e4). So, χ(e1), χ(e2), χ(e3), χ(e4) are all distinct. The second possibility is

that, without loss of generality, e1, e2, e3 lie on level i and e4 lies on level i + 1. In this case,

b(e4) 6= b(e1) = b(e2) = b(e3) so we just need to show that χ(e1), χ(e2), χ(e3) are all distinct.

This is showing that a P3 contained on a single level of Qn is rainbow under our coloring χ.

For such a path P = e1e2e3, the edges differ in their second coordinate. It’s trivial to see that

this is the case for incident edges, so we will show that p(e1) 6= p(e3). Let e1 = xy with x ⊂ y
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and e3 = uv with u ⊂ v; consequently, e2 = xv. If p(e1) = p(e3), then for some w ∈ V (Qn), we

must have y = x∪{w} and v = u∪{w}. But we must also have that v = x∪{w′} were w′ 6= w

which is a contradiction.

Finally, suppose that P = e1e2e3e4 is entirely on level i of Qn for some i. By the previous

case, we know that P ′ = e1e2e3 and P ′′ = e2e3e4 are rainbow paths. Therefore, it suffices to

show that χ(e1) 6= χ(e4). Let e1 = xy with x ⊂ y and e4 = uv with u ⊂ v. We will look at the

symmetric difference |y4w|. Since y 6= v we know that |y4w| 6= 0 and since |y| = |w| we know

that |y4w| must be even. If |y4w| = 6, then it is not possible for e1 and e4 to lie on the same

P4, so |y4w| = 2 or 4. If |y4w| = 2, then x = u = {m1, . . . ,mi}, y = {m1, . . . ,mi,m
′} and

w = {m1, . . . ,mi,m
′′} with m′ 6= m′′. In this case we have m′ = a(e1) 6= a(e4) = m′′ and we

have χ(e1) 6= χ(e4). If |y4w| = 4, then x = {m1, . . . ,mi−1,m
′}, y = {m1, . . . ,mi−1,m

′,m′′},

u = {m1, . . . ,mi−1,m
′′′} and w = {m1, . . . ,mi−1,m

′′′,m′′′′} with m′,m′′,m′′′,m′′′′ all distinct.

In this case m′′ = p(e1) 6= p(e4) = m′′′′ and so χ(e1) 6= χ(e4).



CHAPTER 3

COLORING SUBCUBES OF QN

Our goal in this chapter is to study f(Qn, Q3, q), however we will first determine the upper

and lower bounds for f(Qn, Q2, 3). Let us recall the definition provided earlier:

Definition. Fix graphs G and H and and integer 1 ≤ q ≤ |E(H)|. Then f(G,H, q) is the

minimum number of colors required to edge color G so that the edges in every copy of H in G

receive at least q distinct colors.

One of the motivations for studying f(Qn, Q3, q) was the following result of Faudree, Gyárfás,

Lesniak and Schelp [27].

Theorem 9. Let n = 4 or n ≥ 6. Then f(Qn, Q2, 4) = n.

Any two incident edges of Qn lie in a copy of C4 = Q2 and this implies that f(Qn, Q2, 4) ≥ n

since any (Q2, 4)-coloring is a proper coloring of Qn. The content of Theorem 9, therefore, is

an explicit coloring which demonstrates that the upper bound is also n. For f(Qn, Q3, q) we

will not be able to provide explicit colorings for the upper bounds for several values of q. We

will rely on a probabilistic technique know as the Local Lemma.

Theorem 30 (Local Lemma, Lovás [4]). Let A1, A2, . . . An be events in an arbitrary prob-

ability space. Suppose that each Ai is mutually independent of all but at most d of the other

events and Pr[Ai] ≤ p for all i. If ep(d+ 1) ≤ 1 then Pr[
∧n
i=1Āi] > 0.

24
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Specifically, we will use Theorem 30 to obtain upper bounds for f(Qn, Q3, q) for 7 ≤ q ≤ 11.

In the following section, we will study f(Qn, Q2, q) and in the section after we will study

f(Qn, Q3, q).

3.1 Many colors on the 2-dimensional subcubes

The goal of this section is to obtain bounds for f(Qn, Q2, 3). It trivial to show that

f(Qn, Q2, 1) = 1 and f(Qn, Q2, 2) = 2. It was also shown in [27] that f(Qn, Q2, 4) = n.

We will prove the following:

Theorem 31. There exists an n0 such that for n > n0 we have f(Qn, Q2, 3) = 4.

We will require a result of Offner [43] for the lower bound:

Definition. A d-polychromatic coloring of Qn with p colors is an edge coloring of Qn such that

all copies of Qd have all p colors on their edges. The maximum number of colors with which it

is possible to d-polychromatically color any Qn is pd.

Theorem 32 (Offner [43]).

pd =


(d+1)2

4 if d is odd

d(d+2)
4 if d is even.

We will now to prove Theorem 31.

Proof. First we will prove the upper bound with an explicit coloring where our palette of colors

is the elements of Z4. Let a, b, c ∈ Z4 be distinct. We will proceed by induction on n. For our

base case, Q2 is colored as shown in the following figure:
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a a

b c

Now, in order to color Qn, we consider two copies of Qn−1 with identical colorings such that

every Q2 receives three distinct colors. In one of the copies, if i is the color which an edge e

initially received, then we recolor e with the color i + 1. Now we will color the crossing edges

going between the two copies. We use the fact the Qn−1 is a bipartite graph and partition the

vertices of one of the copies into two independent sets A and B. Fix any x ∈ Z4. If a crossing

edge e is incident to a vertex in A we color it with x and if e incident to a vertex in B we color

it with x+ 2. Explicitly, Q3 would be colored as shown in the following figure:

a a

b c

a+ 1 a+ 1

b+ 1 c+ 1

x

x+ 2

x+ 2

x

We know that any Q2 entirely contained in either copy of Qn−1 receives three colors on its

edges, so we need only worry about those copies of Q2 with edges contained in each copy of

Qn−1. Such a Q2 is colored as follows where d, x ∈ Z4 are not necessarily distinct.
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d

x

d+ 1

x+ 2

There must be at least three distinct elements among {d, d + 1, x, x + 2} ⊂ Z4 and therefore

f(Qn, Q2, 3) ≤ 4.

The trivial lower bound is f(Qn, Q2, 3) ≥ 3. However, by Theorem 32 we know that

f(Qn, Q2, 3) 6= 3. If it were possible to color Qn with 3 colors so that every copy of Q2

contains 3 colors on its edges, then such a coloring of Qn would be a 2-polychromatic coloring

of with 3 colors, but Theorem 32 tells us that a 2-polychromatic coloring of Qn can use at most

2 colors. Consequently, f(Qn, Q2, 3) ≥ 4.
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3.2 many colors on the 3-dimensional subcubes

Now we consider f(Qn, Q3, q). Let us state our main result here.

Theorem 10. The following upper and lower bounds hold for f(Qn, Q3, q):

q lower bound upper bound

4 4 4

5 5 8

6 6 12

7 Ω( logn
log logn) O(n1/3)

8 Ω( logn
log logn) O(n2/5)

9 n1/3 O(
√
n)

10
√
n O(n2/3)

11 n/2 O(n)

12 3n− 2 n1+o(1)

Determining f(Qn, Q3, q) is trivial when q ∈ {1, 2, 3}. Indeed, it is easy to see that

f(Qn, Q3, q) = q for these cases by coloring alternating levels of Qn with colors 1 through

q.

We will first prove a lemma which gives a general upper bound for f(Qn, Q3, q).

Lemma 33. Fix 1 ≤ q ≤ 12. Then f(Qn, Q3, q) = O(n
2

13−q ).
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Proof. Color Qn randomly with c colors where each color appears with probability 1/c on a

given edge, independently of all other colors. Each copy of Q3 has an associated bad event Ai

which represents that copy of Q3 receiving less than q colors on its edges. For some constant α

not depending on n, there is α
(
c

q−1
)

ways to color a Q3 with less than q colors and there are c12

edge colorings of Q3 in total from a palette of c colors. Therefore, Pr[Ai] = O( c
q−1

c12
). A copy

of Q3 shares an edge with O(n2) other copies of Q3; we observe that a C6 is determined by 3

edges and that every copy of Q3 contains a fixed number of copies of C6. So, if we pick an edge

e in a Q3, there are at most (n− 1)2 copies of C6 which contain e. Therefore, there are O(n2)

copies of C6 and similarly O(n2) copies of Q3 which share an edge with a Q3. Consequently, we

may apply the Local Lemma with parameters p = O(cq−13) and d = O(n2). Then ep(d+1) < 1

as long as c = O(n
2

13−q ).

We will use the upper bound from Lemma 33 for f(Qn, Q3, q) when 7 ≤ q ≤ 11. In the

remaining cases we will use other techniques to provide better upper bounds. We will now

prove Theorem 10. The case q = 12 will be addressed in the next chapter, so we proceed with

all other values of q below.

Case 1: q = 4

Proof. The lower bound is trivial. We obtain the upper bound by using the same coloring we

used to prove Theorem 31. A Q3 is two copies of Q2 joined by crossing edges. Each copy of

Q2 contains at least 3 colors on its edges. Using our coloring, one copy of Q2 will have the

colors {a, b, c} on its edges and the other copy will have {a+ 1, b+ 1, c+ 1} on its edges where
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a, b, c ∈ Z4 are distinct. The subset {a, b, c, a+ 1, b+ 1, c+ 1} ∈ Z4 contains 4 distinct elements

and therefore f(Qn, Q3, 4) ≤ 4

Case 2: q = 5

Proof. The lower bound is trivial. For the upper bound, we will use the edge coloring we used

in Theorem 31 with a few modifications. Our palette of colors will now be Z8 instead of Z4 and

when we adjoin two copies of Qn−1 we will color the crossing edges with x and x+4 (instead of x

and x+2). These modifications still guarantee that a copy of Q2 receives three distinct colors on

its edges and so a copy of Q3 will contain the set S = {a, b, c, a+1, b+1, c+1, x, x+4} of colors

on its edges where a, b, c are distinct. Now, we consider the subset S′ = {a, b, c, a+1, b+1, c+1}.

If |S′| > 5 then we are done. If |S′| < 5, then because a, b, c ∈ Z8 are distinct, it must be the

case, without loss of generality, that b = a+1 and c = a+2. Then S′ is a set of four consecutive

elements and so either x /∈ S′ or x+ 4 /∈ S′. Therefore, |S| ≥ 5 and f(Qn, Q3, 5) ≤ 8.

Before proceeding to the next case, notice that this would not work if we used Zp where

p ≤ 7 as our palette of colors. For if in the set S we had a = 1, b = 2, c = 3 and x = 4 then

|S| ≤ 4. Thus, if a better upper bound is possible, we would need to use a different strategy

for coloring the edges.

Case 3: q = 6

Proof. The lower bound is trivial. For the upper bound we will use a modified version of the

coloring used in Theorem 31. We now color the edge e with the tuple (i, r) where i is the color

which e originally received in the proof of Theorem 31 and r is the congruence class modulo 3
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of the level of Qn that e lies. We are now using 12 colors in total and we have two cases to

examine. Since we are using the coloring from Theorem 31 for our first coordinate, we know

that a Q3 is made up of two joined copies of Q2 which each have at least three distinct colors

in their first coordinates and the first coordinates of the second copy of Q2 match those of the

first copy of Q2 but shifted up by one. We will assume that the two copies of Q2 each receive

only three distinct colors in their first coordinates. Furthermore, the coloring in Theorem 31

guarantees that if two edges f and f ′ in a Q2 receive the same color, then f and f ′ are incident.

Without loss of generality, there are two cases we must consider. The first case is shown below:

(a, 1) (b, 1)

(a, 2) (c, 2)

(a+ 1, 2) (b+ 1, 2)

(a+ 1, 3) (c+ 1, 3)

(x+ 2, 1)

(x, 2)

(x, 2)

(x+ 2, 3)

Since a, b and c are distinct, we immediately see that (a, 1), (b, 1), (a, 2), (b, 2), (a+ 1, 3) and

(c+ 1, 3) are all distinct. In the second case, a Q3 would appear as follows:
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(a, 1) (a, 1)

(b, 2) (c, 2)

(a+ 1, 2) (a+ 1, 2)

(b+ 1, 3) (c+ 1, 3)

(x+ 2, 1)

(x, 2)

(x, 2)

(x+ 2, 3)

We are done if a and x+2 are distinct, as (a, 1), (x+2, 1), (b, 2), (c, 2), (b+1, 3) and (c+1, 3)

are all distinct. However, suppose that a = x + 2. If level one of the above Q3 contains three

distinct colors then we are done. Suppose this does not happen. Without loss of generality,

assume that b = a+ 1 and c = x (note that x 6= a+ 1 since a = x+ 2). Then b+ 1 and c+ 1

are two consecutive numbers and neither is equal to x + 2, so we have at least one color from

level zero, two colors from level 1 and three colors from level 2 and so f(Qn, Q3, 6) ≤ 12.

Case 4: q = 7, 8

Proof. The upper bounds for f(Qn, Q3, 7) and f(Qn, Q3, 8) are obtained by applying Lemma

33. We will prove the lower bound for f(Qn, Q3, 7) and also use it as the lower bound for

f(Qn, Q3, 8). We will prove the lower bound by contradiction when we assume that it is finite.

Our proof will use rk(3); recall that rk(3) is the smallest n such that every edge coloring of Kn

with k colors contains a monochromatic triangle. We proceed with our proof.

Suppose that χ is a (Q3, 7)-coloring with s colors and let n be sufficiently large. On level 0

of Qn, we can, by the Pigeonhole Principle, find a set of E of edges of size n/s which all receive



33

the same color x. Any two edges e, e′ on level 0 of Qn are incident and therefore are contained

in a C4. There are
(
s
2

)
+ s possible pairs colors other two edges f, f ′ of the C4 may receive.

Given such a copy of a C4 with edges e, e′, f, f ′, let g :
(
E
2

)
→ {1, · · · ,

(
s
2

)
+ s} where g({e, e′})

is mapped to corresponding pair of colors which f and f ′ received. If there are e1, e2, e3 ∈ E

such that g({e1, e2}) = g({e2, e3}) = g({e1, e3}) then we may extend e1, e2, e3 to a Q3 with at

most six colors; the edges on level 0 will all receive the same color, the edges on level 1 will

receive at most two distinct colors and the edges on level 2 will receive at most three distinct

colors. Avoiding this is equivalent to avoiding a monochromatic triangle on Kn
s
. Since rk(3)

is finite for all k ∈ N, for large enough n we will find a monochromatic triangle in Kn
s
. So we

must have |E| < rk(3), where k =
(
s
2

)
+ s < s2. We use the upper bound rk(3) < 3k! [10] to

obtain

|E| = n/s < 3 s2! < 3 s2s.

Solving for s in terms of n gives s = Ω( logn
log logn).

Case 5: q = 9

Proof. The upper bound is from Lemma 33. The lower bound is from the following counting

argument. Suppose that we have a (Q3, 9)-coloring of Qn with n1−ε colors. On the level 0 of

Qn, we can find a set of edges of size nε which all receive the same color. Since any two edges

on level 0 of Qn can be extended to a Q2, we have nε − 1 copies of Q2 which all intersect in

an edge e and whose bottoms edges all receive the same color. The top two edges in each such

Q2 receives one of the available
(
n1−ε

2

)
available pairs of colors. If any two of these copies of Q2
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which intersect in edge e are assigned the same pair of colors to their top edges, then we can

extend them to a Q3 with at most eight colors on its edges. The bottom edges of the Q3 all

receive the same color, the middle edges receive at most four distinct colors and the top edges

receive at most three colors. Therefore
(
n1−ε

2

)
≥ nε− 1 must hold which implies ε ≤ 2/3. So we

require at least n1−2/3 colors.

Case 6: q = 10

Proof. The upper bound is from Lemma 33. For the lower bound, we use a similar argument

to the one we used in the previous case when q = 9. Suppose that we have a (Q3, 10)-coloring

of Qn with n1−ε colors. On the level 0 of Qn, we can find a set of edges of size nε which all

receive the same color. Since any two edges on level 0 of Qn can be extended to a Q2, we have

nε−1 copies of Q2 which all intersect in an edge e and whose bottoms edges all receive the same

color. The top two edges in each such Q2 receives one of the available
(
n1−ε

2

)
available pairs of

colors. If any two of these copies of Q2 which intersect in edge e have a common color on their

top edges, then we can extend them to a Q3 with at most nine colors on its edges; the bottom

edges of the Q3 all receive the same color, the middle edges receive at most four distinct colors

and the top edges receive at most three colors. Therefore the inequality is n1−ε ≥ 2(nε − 1)

which implies ε ≤ 1/2. So we require at least n1−1/2 colors.

Case 7: q = 11

Proof. The upper bound is from Lemma 33. For the lower bound, notice that if we use fewer

than n/2 colors, we will be able to find three edges on level 0 of Qn which all receive the same
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color; these three edges can be extended to a Q3 which contains at most ten distinct colors on

its edges.



CHAPTER 4

COLORING QN WITH RAINBOW CYCLES

In the previous section, we determined upper and lower bounds for f(Qn, Q3, q). Now we

study rainbow colorings of cycles where we are able to obtain more precise results. Rainbow

cycles have also been well studied as subgraphs ofKn. Erdős, Simonovits and Sós [25] introduced

AR(n,H), the maximum number of colors in an edge coloring of Kn such that it contains

no rainbow copy of H, and provided a conjecture when H is a cycle and showed that their

conjecture was true when H = C3. Alon [1] proved their conjecture for cycles of length four

and Montellano-Ballesteros and Neumann-Lara [40] proved the conjecture for all cycles. More

recently, Choi [12] gave a shorter proof of the conjecture. We will now present our results which

first appeared in [42].

4.1 Our results

Since we will consider only rainbow colorings in this chapter, we will use the following

notations as a matter of convenience. A Cq-rainbow coloring of Qn is an edge coloring of Qn

such that every copy of Cq is rainbow.

Definition. For 4 ≤ q ≤ 2n, let f(n, q) be the minimum number of colors in a Cq-rainbow

coloring of Qn.

Definition. For 4 ≤ q ≤ n, let g(n, q) be the minimum number of colors in a Qq-rainbow

coloring of Qn.

36
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As stated in the previous sections, the smallest case f(n, 4) was studied by Faudree, Gyárfás,

Lesniak and Schelp [27] who proved that the trivial lower bound of n is tight by providing, for

all n ≥ 6, a C4-rainbow coloring with n colors. We consider larger q. Our first result determines

the order of magnitude of f(n, q) for q ≡ 0 (mod 4).

Theorem 11 . Fix a positive q ≡ 0 (mod 4). There are constants c1, c2 > 0 depending only on

q such that

c1n
q/4 < f(n, q) < c2n

q/4.

The case q ≡ 2 (mod 4) seems more complicated. Our results imply that for such fixed q

there are positive constants c′1, c
′
2 with

c′1n
bq/4c < f(n, q) < c′2n

dq/4e.

We believe that the lower bound is closer to the truth. As evidence for this, we tackle the

smallest case in this range, q = 6. As we will observe later, the lower bound f(n, 6) ≥ n is

trivial for n ≥ 3, and we obtain the following upper bound.

Theorem 12. For every ε > 0 there exists n0 such that for n > n0 we have f(n, 6) ≤ n1+ε.

Theorem 12 will also prove the case q = 12 of Theorem 10.

Observation. In Qn, any C6 can be extended to a Q3. Therefore, if Qn is colored so that every

Q3 is rainbow then every C6 is also rainbow so f(Qn, Q3, 12) ≥ f(Qn, C6, 6). Furthermore, any

two edges of a Q3 are contained in a C6 (which is also contained in that Q3). If Qn is edge colored
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so that every C6 is rainbow then every Q3 must also be rainbow. So f(Qn, Q3, 12) ≤ f(Qn, C6, 6)

and therefore f(Qn, Q3, 12) = f(Qn, C6, 6).

Recall the observation that g(n, 3) = f(n, 6). Since C4 = Q2, the following corollary can

also be considered an analogue of the result in [27] to subcubes.

Corollary. As n→∞, we have g(n, 3) = n1+o(1).

We will consider the vertices of Qn as binary vectors of length n or as subsets of [n] =

{1, . . . , n}, depending on the context (with the natural bijection ~v ↔ v where ~v is the incidence

vector for v ⊂ [n], i.e. ~vi = 1 iff i ∈ v). In particular, whenever we write v − w we mean set

theoretic difference, v∪w or v∩w we mean set union/intersection and when we write ~v± ~w we

mean vector addition/subtraction modulo 2. We write ei for the standard basis vector, so ei is

one in the ith coordinate and zero in all other coordinates. Given an edge f = uv of Qn where

~v = ~u+ es for some s, we say that v is the top vertex of f and u is the bottom vertex. We will

say the an edge is on level i of Qn if its bottom vertex corresponds to a vector with i− 1 ones

and the top vertex to a vector with i ones.

4.2 Proof of Theorem 11

The lower bound in Theorem 11 follows from the easy observation that in a Cq-rainbow

coloring all edges at level q/4 must receive distinct colors. Indeed, given any two such edges

f1 = vw and f2 = xy, where ~w = ~v+ei and ~y = ~x+ej , it suffices to find a copy of Cq containing

f1 and f2. If f1 and f2 are incident then it is clear that we can find a Cq containing them as long

as n > q which we may clearly assume. The two cases are illustrated below where r = q/2− 2

and si /∈ w ∪ y for all i ∈ {1, ..., r}.
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x = v

y = v ∪ {j} w = v ∪ {i}

v ∪ {j, s1} v ∪ {i, s1}

v ∪ {j, s1, ..., sr} v ∪ {i, s1, ..., sr}

v ∪ {i, j, s1, ..., sr}

y = w

x = y − {j} v = w − {i}

x ∪ {s1} v ∪ {s1}

x ∪ {s1, ..., sr} v ∪ {s1, ..., sr}

w ∪ {s1, ..., sr}

Now, suppose f1 and f2 are not incident. We know that |x4v| ≤ q/2 − 2 since x and v are

each sets of size q/4− 1. By successively deleting elements of v and x in the appropriate order,

we can obtain a v, x-path of length q/2 − 2. Then, since w and y are sets of size q/4, we may

find a w, y-path of length q/2 between them by successively adding the elements of y to w and

vice versa along with extra elements as needed. The two paths along with the edges vw and

xy form a cycle of length q. This is shown in the following diagram. Let y − w = {y1, ..., ym},

w − y = {w1, ..., wm} and w ∩ y = {z1, ..., zl} where m+ l = q/4. Let {s1, ..., sr} again be a set

such that si /∈ y ∪ w with r = q/4−m.
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0

{y1} {w1}

x = {y1, ..., ym, z1, ..., zl} − {j} v = {w1, ..., wm, z1, ..., zl} − {i}

y = x ∪ {j} w = v ∪ {i}

y ∪ {s1, ..., sr} w ∪ {s1, ..., sr}

y ∪ {s1, ..., sr, w1, ..., wm−1} w ∪ {s1, ..., sr, y1, ..., ym−1}

w ∪ y ∪ {s1, ..., sr}

For the upper bound we need a classical construction of generalized Sidon sets by Bose and

Chowla. A Bt-set S = {s1, . . . , sn} is a set of integers such that if 1 ≤ i1 ≤ i2 ≤ · · · ≤ it ≤ n

and 1 ≤ j1 ≤ j2 ≤ · · · ≤ jt ≤ n, then

si1 + · · ·+ sit 6= sj1 + · · ·+ sjt

unless (i1, . . . , it) = (j1, . . . , jt). A consequence of this is that if P,Q are non empty disjoint

subsets of [n] with |P | = |Q| ≤ t, then

∑
i∈P

si 6=
∑
j∈Q

sj . (4.1)
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The result below is phrased in a form that is suitable for our use later.

Theorem 34 ( Bose-Chowla [11]). For each fixed t ≥ 2, there is a constant A > 1 such that

for all n, there is a Bt-set S = {s1, . . . , sn} ⊂ {1, 2, . . . , bAntc}.

Now we provide the upper bound construction for Theorem 11.

Construction 1. Let t = q/4 − 1 and S = {s1, . . . , sn} ⊂ {1, 2, . . . , bAntc} be a Bt-set as

above. For each v ∈ V (Qn), let

a(v) =
n∑
i=1

~visi =
∑
i:~vi=1

si.

Given vw ∈ E(Qn) with ~w = ~v + ej , let M = dqAnte, and let

d(vw) = a(v) +Mj.

Suppose further that vw is at level p and p′ is the congruence class of p modulo q/2. Then the

color of the edge vw is

χ(vw) = (d(vw), p′).

Let us now argue that this construction yields the upper bound in Theorem 11.

Proof. First, the number of colors is at most

max
vw

d(vw)× q

2
≤ (n ·max si +Mn)

q

2
≤ nq

2
Ant +

nq

2
M < q2Ant+1 = q2Anq/4
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as desired. Now we show that this is a Cq-rainbow coloring. Suppose for contradiction that

H is a copy of Cq in Qn and f1 = vw, f2 = xy are distinct edges of H with χ(f1) = χ(f2).

Since H spans at most q/2 levels, f1 and f2 cannot lie in levels that differ by more than q/2, so

χ(f1) 6= χ(f2) unless f1 and f2 are in the same level which we may henceforth assume. Let v, x

be the bottom vertices of f1, f2, and ~w = ~v + ei, ~y = ~x+ ej . Assume without loss of generality

that i ≤ j. If v = x, then

a(v) +Mi = d(vw) = d(xy) = a(x) +Mj = a(v) +Mj.

This implies that i = j and contradicts the fact that f1 6= f2. We may therefore assume that

v 6= x. Similarly, if w = y, then i < j and

a(w)−si+Mi = a(v)+Mi = d(vw) = d(xy) = a(x)+Mj = a(y)−sj +Mj = a(w)−sj +Mj.

This implies the contradiction sj − si = M(j − i) ≥M > Ant > sj − si. Consequently, we may

assume that vw and xy share no vertex. If |v4x| > q/2, then any v, x-path in Qn has length

more than q/2 so there can be no cycle of length q containing both v and x, contradiction. So

we may assume that |v4x| ≤ q/2. Now χ(vw) = χ(xy) implies that

a(v) +Mi = d(vw) = d(xy) = a(x) +Mj
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and this yields

M(j − i) = Mj −Mi = a(v)− a(x) = a(v − x)− a(x− v) ≤ |v4x|
2

Ant ≤ q

4
Ant < M.

Consequently, we may assume that i = j, a(v) = a(x), a(v−x) = a(x− v) and |v4x| = |w4y|.

If |v − x| = |x− v| ≤ q/4− 1, then

a(v − x) =
∑
i∈v−x

si 6=
∑
j∈x−v

sj = a(x− v)

due to (4.1), the definition of S and t = q/4−1. So we may assume that |v−x| = |x− v| = q/4

and |w4y| = |v4x| = q/2. This implies that distQn(w, y) = distQn(v, x) = q/2. Together with

edges f1, f2, we conclude that C must have at least q + 2 edges, contradiction.

4.3 Proof of Theorem 12

We will first show the lower bound f(n, 6) ≥ 3n− 2 for n ≥ 3 by providing a set F of edges

of size 3n− 2 which must all receive distinct colors. Fix an edge f on the first level of Qn. Our

set F contains the edges of all the C4 which contain f . There are n − 1 such C4 and any two

distinct C4 may not share more than one edge, so |F | = 4(n− 1)− (n− 2) = 3n− 2.

Now, suppose f1, f2 ∈ F receive the same color. If f1 and f2 lie on a single C4, then let

h be one of the two remaining edges and take another C4 which contains h. Delete h and the

remaining edges of the two C4 form a C6. If f1, f2 lie on different C4, then they lie on C4 which
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share the edge f . As before, delete f and the remaining six edges form a C6. So all the edges

in F must receive distinct colors.

To obtain the upper bound, we will give an explicit coloring that makes use of a classical

construction of Behrend on sets of integers with no arithmetic progression of size three. Let

r3(N) denote the maximum size of a subset of {1, . . . , N} that contains no 3-term arithmetic

progression.

Theorem 35 (Behrend [8]). There is a c > 0 such that if N is sufficiently large, then

r3(N) > N
1− c√

logN .

Behrend’s result clearly implies that for ε > 0 and sufficiently large N we have r3(N) >

N1−ε. The error term ε was improved recently by Elkin [21] (see [34] for a simpler proof) and

using Elkin’s result would give corresponding improvements in our result.

Construction 2. Let ε > 0 and n be sufficiently large. Put N = dn1+εe and let S =

{s1, . . . , sn} ⊂ {1, . . . , N} contain no 3-term arithmetic progression. Such a set exists by

Behrend’s Theorem since

n > n1−ε
2

= n(1−ε)(1+ε) > N1−2ε.

Let

a(v) =
n∑
i=1

~vi si.
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Consider the edge vw, where ~w = ~v + ek. Let

d(vw) = a(v) + 2sk ∈ Z2N .

We emphasize here that we are computing d(vw) modulo 2N . Suppose further that vw is at

level p and p′ is the congruence class of p modulo 3. Then the color of the edge vw is

χ(vw) = (d(vw), p′).

The number of colors used is at most 6N < n1+2ε as required.

Proof of the upperbound in Theorem 12

Proof. We will now show that this is a C6-rainbow coloring. Due to the second coordinate, it

suffices to show that any two edges f1, f2 of a C6 which are on the same of level of Qn receive

different colors. If f1 and f2 are incident, then they meet either at their top vertices or bottom

vertices. If incident at their bottom vertices, the edges are colored as follows and thus are

distinctly colored:

v

a(v) + 2si a(v) + 2sj

If incident at their top vertices, the edges lie on a C4 and are therefore distinctly colored
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v

a(v) + 2si a(v) + 2sj

a(v) + sj + 2sia(v) + si + 2sj

If f1 and f2 are not incident, then there must be a path of length two between their bottom

vertices. For if not, then they could not lie on a C6 as the shortest path between their top vertices

has length at least two. Moreover, the top vertices of f1 and f2 have symmetric difference

precisely two since there is a path of length two between them. With these conditions, there

are three ways the edges may be colored.

a(v) + 2si

a(v) + si + 2sj

a(v) + 2sk

a(v) + sk + 2sj

v
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a(v) + 2si

a(v) + si + 2sj

a(v) + 2sk

a(v) + sk + 2si

v

a(v) + 2si

a(v) + si + 2sj

a(v) + 2sj

a(v) + sj + 2sk

v

In the first coloring, si + 2sj 6= sk + 2sj holds due to i and k being distinct. In the second and

third colorings, si + 2sj 6= sk + 2si and si + 2sj 6= sj + 2sk hold due to our set S being free of

three term arithmetic progressions.

Our results imply a tight connection between Cq-rainbow colorings in the cube and con-

structions of large generalized Sidon sets. When q ≡ 0 (mod 4) Construction 1 gives the correct

order of magnitude, however for q ≡ 2 (mod 4) the same method does not work. In this case

an approach similar to Construction 2 would work provided we can construct large sets that

do not contains solutions to certain equations.

Conjecture. Fix 4 ≤ q ≡ 2 (mod 4). Then f(n, q) = nbq/4c+o(1).
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For the first open case q = 10, we can show that f(n, 10) = n2+o(1) provided one can construct

a set S ⊂ [N ] with |S| > N1/2−o(1) that contains no nontrivial solution to any of the following

equations:

x1 + x2 = x3 + x4

x1 + x2 + x3 = x4 + 2x5

x1 + 2x2 = x3 + 2x4.

Ruzsa [48, 49] defined the genus g(E) of an equation

E : a1x1 + · · ·+ akxk = 0

as the largest m such that there is a partition S1 ∪ . . . ∪ Sm of [k] where the Si are disjoint,

non-empty and for all j, ∑
i∈Sj

ai = 0. (4.2)

A solution (x1, . . . , xk) of E is trivial if there are l distinct numbers among {x1, . . . , xk} and

(Equation 4.2) holds for a partition S1 ∪ . . . ∪ Sl of [k] into disjoint, non-empty parts such

that xi = xj if and only if i, j ∈ Sv for some v. Ruzsa showed that if S ⊂ [n] has no

nontrivial solutions to E then |S| ≤ O(n1/g(E)). The question of whether there exists S with

|S| = n1/g(E)−o(1) remains open for most equations E. The set of equations above has genus

two so it is plausible that one can prove the conjecture for k = 10 using this approach. For the
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general case, we can provide a rainbow coloring if our set S contains no nontrivial solutions to

any of the three equations below with m = bk/4c.

x1 + · · ·+ xm = xm+1 + · · ·+ x2m

x1 + · · ·+ xm + xm+1 = xm+2 + · · ·+ x2m + 2x2m+1

x1 + · · ·+ xm−1 + 2xm = xm+1 + · · ·+ x2m−1 + 2x2m.

The set of equations above has genus m = bk/4c, so if Ruzsa’s question has a positive answer,

then we would be able to construct a set of the desired size.

4.3.1 The necessary equations

In the previous section, we gave a set of equations such that if we could find a set of integers

which did not contain any solutions to any of the equations then we could use it to obtain a

rainbow coloring. This section will show that such a set is indeed sufficient.

Let K = {q ∈ N : q ≥ 6 and q ≡ 2 (mod 4)}. For q ∈ K, let Eq be the set of the following

three equations where m = bq/4c and xi 6= yj :

x1 + · · ·+ xm = y1 + · · ·+ ym

x1 + · · ·+ xm + xm+1 = y1 + · · ·+ ym−1 + 2ym

x1 + · · ·+ xm−1 + 2xm = y1 + · · ·+ ym−1 + 2ym

Suppose we have colored the edges of Qn using the set of colors C ⊂ N so that the edge

vw, where w is the top vertex (i.e. ~w = ~v + ej), receives the color χ(vw) = (d(vw), p) where

d(vw) = a(v) + 2j and p is the level of Qn that vw is on modulo q/2. We will show that if
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C does not satisfy any of the equations in Eq ∪ Eq−4 ∪ · · · ∪ E6 then all cycles of length q are

rainbow.

We will proceed by induction. For our base case q = 6, we want to show that if our set

of colors C contains no solutions to x1 = y1 or x1 + x2 = 2y1 then all cycles of length 6 are

rainbow.

Sine a Cq spans at most q/2 levels of Qn, two edges in a C6 which are on different levels of

Qn cannot receive the same color. So, let vw and v′w′ (where v and v′ are the bottom vertices)

be two edges of a C6 which are on the same level of Qn.

First, we see that |v4v′| = 0 or 2. For if |v4v′| ≥ 4, then the shortest possible path

connecting v and v′ has length 4. Since |v4v′| ≥ 4, then |w4w′| ≥ 2 so the shortest path

connecting v and v′ has length 2 which means that the shortest cycle that vw and v′w′ could

lie on has length 8 which is a contradiction.

If |v4v′| = 0, then v = v′. Then we must have w 6= w′ since vw and v′w′ are distinct

edges, so χ(vw) = a(v) + 2ei and χ(v′w′) = a(v) + 2ej where i 6= j. Since x1 6= y1, we have

χ(vw) 6= χ(v′w′)

If |v4v′| = 2, then |w4w′| = 0 or 2. If |w4w′| = 0, then vw and u′w′ lie on a C4 and

clearly receive different colors. If |w4w′| = 2, then let the path of v,b,v′ be a path of length 2

connecting v and v′ where v = b ∪ {x1}, w = b ∪ {x1, x2}, v′ = b ∪ {y1} and w′ = b ∪ {y1, y2}

as shown below:
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b

v = b ∪ {x1}

w = b ∪ {x1, x2}

v′ = b ∪ {y1}

w′ = b ∪ {y1, y2}

Since |w4w′| = 2, we know that xi = yj for some pair (i, j). If x1 6= y1, but if x2 = y2 then

χ(vw) 6= χ(v′w′) since C does not satisfy x1 = y1. If x1 = y2 or x2 = y1, then χ(vw) 6= χ(v′w′)

since c does not satisfy x1 + x2 = 2y1. Therefore, if our set of colors C does not satisfy any of

the equations in E6 then all C6 are rainbow.

Now, we will show by induction that if Qn is colored with a set C which does not satisfy

any equations in Eq ∪ Eq−4 ∪ . . . ∪ E6 then then all Cq are rainbow. As in our base case, two

edges of Cq which are on different levels of Qn will receive different colors so we will look at

edges which are on the same level.

Again, let vw and v′w′ be two such edges of a Cq. Then |v4v′| ≤ 2bq/4c. Suppose not

and that |v4v′| ≥ 2bq/4c + 2. Then |w4w′| ≥ 2bq/4c. Then the smallest possible path P1

from v to v′ contains at least 2bq/4c+ 2 edges and the smallest possible path P2 from w to w′

contains at least 2bq/4c edges. So the smallest possible cycle containing vw and v′w′ has at

least |P1| + |P2| + 2 ≥ (|2bq/4c + 2) + (2bq/4c) + 2 = 2(q − 2)/4 + 2 + 2(q − 2)/4 + 2 = q + 2

edges which is a contradiction.

Now, suppose that |v4v′| = 2m where m = bq/4c. Then there is a path of length 2m from

v to v′ where xi 6= yj for i, j ≤ m as shown below:



52

b

b ∪ {x1}

v = b ∪ {x1, . . . , xm}

w = b ∪ {x1, . . . , xm, xm+1}

b ∪ {y1}

v′ = b ∪ {y1, . . . , ym}

w′ = b ∪ {y1, . . . , ym, ym+1}

Since |v4v′| = 2m, either |w4w′| = 2m or |w4w′| = 2m− 2. If |w4w′| = 2m+ 2, then uv

and u′v′ do not lie on a cycle of length q. Therefore |w ∩ w′| = 1 or 2 and this gives us three

cases to check:

• xm+1 = yi for some i ∈ {1, . . . ,m}

• xm+1 = yi for some i ∈ {1, . . . ,m} and ym+1 = xi for some i ∈ {1, ...,m}

• xm+1 = ym+1

In the first case, χ(vw) 6= χ(v′w′) provided that x1 + · · · + xm + xm+1 6= y1 + · · · + yi−1 +

yi+1 + cdots + ym + 2ym+1. In the second case, χ(vw) 6= χ(v′w′) provided that x1 + cdots +

xi−1 + xi+1 + ldots+ xm + 2xm+1 6= y1 + · · ·+ yi−1 + yi+1 + +ym + 2ym+1. Finally, in the third

case, χ(vw) 6= χ(v′w′) provided that x1 + · · · + xm + 2xm+1 6= y1 + · · · + ym + 2ym+1. The

equation for each case is an element in our set Eq of forbidden equations.

Now, suppose that |v4v′| ≤ 2m. Then there is path from v to v′ of length at most 2m− 2

where m′ < m and xi 6= yj for i, j ≤ m′ as follows:
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b

b ∪ {x1}

v = b ∪ {x1, . . . , xm′}

w = b ∪ {x1, . . . , xm′ , xm′+1}

b ∪ {y1}

v′ = b ∪ {y1, . . . , ym′}

w′ = b ∪ {y1, . . . , ym′ , ym′+1}

The three cases to check are identical to the ones for |v4v′| = 2m but with m replaced with

m′. So now the three forbidden equations lie in Eq−4 ∪ . . . ∪ E6. And so by our inductive

hypothesis χ(vw) 6= χ(v′w′) since vw and v′w′ lie on a smaller cycle and our C does not contain

any solutions to Eq−4 ∪ . . . ∪ E6.
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HYPERGRAPH PROBLEMS

We will now turn our attention to hypergraph problems. As previously stated, the classic

Ramsey problems on hypergraphs have received considerable attention, particularly the case of

3-uniform hypergraphs [18, 24, 31, 39]. Just as in the case of 2-graphs, Ramsey type problems on

hypergraphs have been considered for hypergraphs other than cliques. Various small 3-graphs

including K3
4 − e were studied in [6]. Extensions of paths and cycles were studied in [36, 44].

A typical technique is to color a l-graph G which satisfies certain conditions and use it to color

an (l+ 1)-graph H which also satisfies certain conditions. We will use this technique in several

of the following sections.

5.1 Rainbow coloring paths of length three

A loose path of length three, denoted P 3
3 , is the 3-graph with edges e1, e2, e3 such that

|e1 ∩ e2| = |e2 ∩ e3| = 1 and e1 ∩ e3 = ∅. In this section, we will determine the number of colors

required to color the edges of K3
n so that all copies of P 3

3 have three colors on their edges.

Definition. Let k3(G) denote the number of triangles in the graph G.

We will use the following theorem and corollary to prove Theorem 24.

Theorem 36 (McKay [28]). Let G be a graph with n vertices. If |E(G)| = m ≥ n2/4, then

k3(G) ≥ (4m−n2)(m)
3n .

54
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Consequently, if |E(G)| ≥ n2/4 + c for some positive integer c then k3(G) ≥ cn/3.

Our main result in this section is stated below.

Theorem 24. Let n ≥ 4. Then

f3(K
3
n, P

3
3 , 3) ≤

(
n

2

)
− bn2/4c =


n2/4− n/2, if n is even

n2/4− n/2 + 1, if n is odd.

If n ≥ 12, then f3(K
3
n, P

3
3 , 3) ≥ n2/4− n/2.

Proof. We will first prove the upper bound. Partition V (K3
n) into X ∪ Y where |X| = bn/2c

and |Y | = dn/2e. Color all the pairs {u, v} where {u, v} ⊂ X or {u, v} ⊂ Y with distinct colors.

This requires
(
n
2

)
− bn2/4c colors. Now, color the triple e = uvw with the color that one of

the pairs in e received. Since |e ∩ X| ≥ 2 or |e ∩ Y | ≥ 2, at least one of the pairs in e was

colored and therefore all triples are colored. We see that a P 3
3 is rainbow under this coloring; if

two distinct triples e, e′ receive the same color then |e ∩ e′| = 2, but if e and e′ lie in a copy of

P 3
3 then |e ∩ e′| = 0 or |e ∩ e′| = 1 and so they received their colors from different pairs. This

establishes the upper bound.

We will now prove the lower bound. Suppose thatK3
n has been edge-colored so that all copies

of P 3
3 ⊂ K3

n are rainbow. There are two configurations within a color class which are forbidden.

The first is two edges having no vertices in common and the second is two edges intersecting in

a single vertex. If one of these configurations appear within a color class, it may be extended

to a P 3
3 with at most two colors on its edges. We will separate the color classes into two types:
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small color classes which contain at most four edges and large color classes which contain five

or more edges. If a color class is large, then all of its edges must intersect in a common pair of

vertices. If a color class is small, then it may have the same structure as a large color class or

it may be a subgraph of K3
4 . Let C1, . . . , Ct, Ct+1, . . . , Ck be the color classes where C1, . . . , Ct

are the small color classes and Ct+1, . . . , Ck are the large color classes. Let H ⊂ K3
n be the

set of edges which were colored by one of the large color classes. Let us also define a graph

G ⊂ Kn. As we previously stated, in a large color class all of the edges contain a fixed pair of

vertices. For a large color class Cj , let ej denote this pair of vertices. Let E(G) = {et+1, . . . , ek}.

Furthermore, since k is the total number of colors used we may assume that k < n2/4 − n/2,

otherwise we are done. We see that |E(Ḡ)| =
(
n
2

)
− k + t = n2/4 + (n2/4 − n/2 − k + t) and

that |H| ≥
(
n
3

)
− 4t.

Now, we will show that k3(Ḡ)+|H| ≤
(
n
3

)
. Suppose this were not true and that k3(Ḡ)+|H| >(

n
3

)
. Then some triangle T in Ḡ is a triple of H. Because T ∈ H, it was not colored by one of

the small color classes. However, since T is a triangle in Ḡ, it was not colored by one of the

large color classes either. This gives the contradiction that T is uncolored. By Theorem 36,

since |E(Ḡ)| = n2/4 + (n2/4 − n/2 − k + t) we have that k3(Ḡ) ≥ (n/3)(n2/4 − n/2 − k + t)

and so

(n/3)(n2/4− n/2− k + t) +
(
n
3

)
− 4t ≤ k3(Ḡ) + |H| ≤

(
n
3

)
This simplifies to

n3/12− n2/6− 4t+ tn/3 ≤ kn/3
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which yields

k ≥ n2/4− n/2− 12t/n+ t.

Therefore f(K3
n, P

3
3 , 3) ≥ n2/4− n/2 for n ≥ 12.

5.2 Rainbow coloring P l2(t) in K l
n

In this section we attempt to the generalize the results on f(K3
3 , P

3
3 ,m) to higher unifor-

mity. We will determine upper and lower bounds for f(K l
n, P

l
2(t), 2) where P l2(t) is the l-graph

consisting of two edges e1, e2 with |e1 ∩ e2| = t. Also, recall that given an l-graph H, exl(n,H)

is the maximum number of edges that an l-graph on n vertices can have without containing a

copy of H. We will require the following definitions:

Definition. Let S(n, l, t) denote a collection of l-element subsets of [n] such that every t-

element subset is contained in exactly one l-element subset. An element S(n, l, t) is referred to

as a block.

Definition. Let m(n, l, t̄) denote the maximum size of a collection of l-element subsets of [n]

such that no two intersect in exactly t elements.

Our result on fl(K
l
n, P

l
2(t), 2) is the following.

Theorem 26. Let l, t be fixed positive integers with t < l ≤ 2t+1. If there is an S(n, 2l−t−1, l)

on [n], then

fl(K
l
n, P

l
2(t), 2) ≤ (1 + o(1)) (n−l)! (l−t−1)!

(n−t)! (2l−2t−1)! .
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If it is possible to partition S(n, 2l− t−1, l) into copies of S(n, 2l− t−1, t) and l− t is a prime,

then

fl(K
l
n, P

l
2(t), 2) = (n−l)! (l−t−1)!

(n−t)! (2l−2t−1)! .

The proof of Theorem 26 will require the following results.

Theorem 37 (Frankl [32]). If l ≤ 2t+ 1 and l − t is a prime power then

m(n, l, t̄) ≤
(
2l−t−1

l

)(
n
t

)
/
(
2l−t−1

t

)
.

If l − t is a prime, then equality is achieved only for an S(n, 2l − t− 1, t).

It is conjectured that Theorem 37 holds even when l − t is not a prime power.

Theorem 38 (Pippenger-Spencer [45]). Let r ≥ 2 be fixed and D → ∞. Let H be an

r-graph with d(v) = (1 + o(1))D for every v ∈ V (H) and codeg(u, v) = o(D) for any two

u, v ∈ (V (H). Then E(H) can be partitioned into (1 + o(1))D matchings.

Proof of Theorem 26

We start by proving the first part of the theorem. Let G = K l
n and S be an S(n, 2l− t−1, l) on

V (G). Every t-element subset is contained in at most D =
(
n−t
l−t
)
/
(
2l−2t−1
l−t

)
blocks of S. Let H be

the
(
2l−t−1

t

)
-graph with |V (H)| =

(
n
t

)
where each v ∈ V (H) corresponds to some A ⊂ V (G) with

|A| = t. In H,
(
2l−t−1

t

)
vertices form an edge of H if and only if their corresponding t-element

subsets make up a block of S. The degree of a vertex inH is at mostD. Given u, v ∈ V (H), their

codegree is maximal when then their corresponding t-element subsets in V (G) have intersection

size t − 1 and thus codeg(u, v) ≤
(

n
l−t−1

)
/
(
2l−t−1
l−t−1

)
= O(nl−t−1) = o(D). We apply Theorem
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38 and decompose the edges of H into m = (1 + o(1))D matchings M1, . . . ,Mm. Every Mi

corresponds to a collection of blocks M ′i = {A1, . . . , Aw} ⊂ S in G with Ai ∩ Aj ≤ |t − 1| for

1 ≤ i, j ≤ m. An l-element subset X is colored with χ(X) = i where X ⊂ s ∈Mi. Therefore,

f(K l
n, P

l
2(t), 2) ≤ (1 + o(1))D = (1 + o(1)) (n−t)!/((n−l)!(l−t)!)

(2l−2t−1)!/((l−t−1!)(l−t)!) = (1 + o(1)) (n−l)! (l−t−1)!
(n−t)! (2l−2t−1)! .

We now prove the second part of Theorem 26. The lower bound is clearly(
n
l

)
/exl(n, P

l
2(t)) =

(
n
l

)
/m(n, l, t̄). If the conditions of Theorem 37 are satisfied and equality

holds, we obtain:

f(K l
n, P

l
2(t), 2) ≥ (nl)(

2l−t−1
t )

(nt)(
2l−t−1

l )
= (n!)/((n−l)! l!) (2l−2t−1)!/((l−t−1)! t!)

(n!)/((n−t)! t!) (l−t−1)!/((2l−2t−1)! l!) = (n−l)! (l−t−1)!
(n−t)! (2l−2t−1)! .

We now show the upper bound. If it is possible to partition S(n, 2l − t− 1, l) into A1, . . . , Am

where each Ai is a copy of S(n, 2l− t−1, t), then any two l-element subsets which are contained

in the blocks of some Aj may receive the same color. This gives us an upper bound of |S(n, 2l−

t− 1, l)|/|S(n, 2l− t− 1, t)|. It is easy to see that |S(n,m, t)| =
(
n
t

)
/
(
m
t

)
. Indeed, an S(n,m, t)

requires one m-element subset for every t-element subset, but every m-element subset contains(
m
t

)
t-element subsets and so we have overcounted each m-element subset that many times. We

obtain the upper bound

f(K l
n, B, 2) ≤ (nl)(

2l−t−1
t )

(nt)(
2l−t−1

l )
= (n−l)! (l−t−1)!

(n−t)! (2l−2t−1)! .

�

5.3 Turán number for r-uniform t-linear paths.

In the previous section, we saw that f(n, P r2 (t), 2) ≥ (nr)
exr(n,P r2 (t))

. It is often the case that

results on Turán numbers are useful in graph coloring problems.
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Definition. Let P rk (t) be the r-uniform path e1, e2, . . . , ek such that:

i) |ei ∩ ei+1| = t for i = 1, . . . , k − 1

ii) |ei ∩ ej | = ∅ if |i− j| 6= 1

In this section, we will consider the problem of determining exr(n, P
r
k (t)). We will require the

following definitions. When t = 1, this problem has been solved [38] so we will consider t > 1.

Definition. The complete r-partite r-graph with parts of size t is the r-graph with vertex set

X1 ∪ · · · ∪Xr, |Xi| = t and edge set X1 × · · · ×Xr. We denote this graph by Kr
t,··· ,t.

Definition. Given an r-graph H on n vertices, let

∂H = {f : |f | = r − 1 and ∃ e ∈ E(H) with f ⊂ e}.

The following theorem is the main result of this section.

Theorem 29. Fix k, r ≥ 2, t ≤ b r2c and l = bk−12 c. Then exr(n, P
r
k (t)) ∼ l

(
n
r−1
)
.

We will first prove the lower the bound.

Proof of lower bound of Theorem 29. Fix S ⊂ V (Kr
n) with |S| = l. Let H ⊂ Kr

n where

e ∈ E(H) iff e ∩ S 6= ∅. Suppose H were to contain a copy P of P rk (t). Since every edge of

P must contain at least one vertex in S, then there must be at least one vertex of S which is

contained in k
l > 3 edges of P which is a contradiction. Therefore, exr(n, P

r
k (t)) ≥ |H| > l

(
n−l
r−1
)
.

Before proceeding with the proof of the upper bound and its prerequisites, we will observe

that we can easily find a P rk (t) if the (r − 1)-element subsets of vertices of an r-graph H have

sufficiently large codegree. When such is the case, we are able to start with an edge e and,
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given any subset T of its vertices, find a second edge e′ which intersects e in precisely the set

T . We can use the following simple lemma to chain edges together to build the desired path.

Lemma 39. Let r ≥ 2, a ≥ 1 and H be an r-graph such that every set of r − 1 vertices has

codegree at least r+a. Given an edge e along with sets T ⊂ e and A∩ e = ∅ with |A| = a, there

is an edge e′ such that the e′ ∩ e = T and e′ ∩A = ∅.

Proof. Let B = A ∪ e and e′ ∈ E(H) such that T ⊂ e′. Suppose that |e ∩ e′| > |T | and that

there does not exist an f such that |e∩ f | < |e∩ e′| . Since |e∩ e′| > T , there exists x ∈ B such

that x /∈ T and x ∈ e′. Let f ′ = e′ − x. Since every set of r − 1 vertices has codegree at least

r + a, there exists a y /∈ B such that f ′ ∪ y = e′′ is an edge with |e ∩ e′′| < |e ∩ e′| which is a

contradiction.

Definition. Let H be a k-graph on [n] and S ⊂ [k]. An edge-coloring χ : E(H) → N is

S-canonical if for any two edges a = a1a2 · · · ak, b = b1b2 · · · bk with a1 ≤ a2 ≤ · · · ≤ ak and

b1 ≤ b2 ≤ · · · ≤ bk, we have χ(a) = χ(b) if and only if for all i, ai = bi when i ∈ S and ai 6= bi

when i /∈ S.

Theorem 40 (Erdős-Rado [24]). For every p ≥ k ≥ 2, there exists an n such that if

ψ :
([n]
k

)
→ N, then there are subsets S ⊂ [k] and Y ⊂ [n] with |Y | = p such that ψ restricted to(

Y
k

)
is an S-canonical coloring.

We also define an S-canonical coloring for Kr
t,...,t and an l-multicoloring.
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Definition. Let χ be an edge-coloring of Kr
t,··· ,t with parts X1, . . . , Xr and S ⊂ [r]. The edge-

coloring χ is S-canonical if for any two edges a = a1a2 · · · ar and b = b1b2 · · · br where ai, bi ∈ Xi,

we have χ(a) = χ(b) if and only if for all i, ai = bi when i ∈ S and ai 6= bi when i /∈ S.

Definition. Fix r ≥ 2, l > 1 and an r-graph H. An l-multicoloring is a function χ which

assigns to each e ∈ E(H) a set of colors of size l.

Finally, we will require the following lemmas.

Lemma 41. For all p, there is an n such that if Xi ∩ Xj = ∅, |Xi| = n for 1 ≤ i ≤ k and

χ : X1 × · · · × Xk → N, then there exist X ′1, . . . , X
′
k with |X ′i| = p for 1 ≤ i ≤ k and S ⊂ [k]

such that χ restricted to X ′1, . . . , X
′
k is S-canonical.

Proof. We apply Theorem 40 with inputs k and kp and obtain the necessary value n. Let

χ : X1 × · · · ×Xk → N with |Xi| = n and Xi = {xia1 , . . . , xian} where xiaα < xiaβ when α < β.

Let Y = {y1, · · · , yn} with yα < yβ when α < β. We define ψ :
(
Y
k

)
→ N below:

ψ(yj1 , . . . , yjk) = χ(x1aj1 , . . . , xkajk ).

By Theorem 40, there is a Y ′ ⊂ Y with |Y ′| = kp such that ψ restricted to Y ′ is S-canonical.

We relabel the elements as Y ′ = {b1, · · · , bkp}. Now, let X ′i = {xib1 , . . . , xibkp} and

X ′′i = {xibi* , · · · , xibip} where i* = (i−1)p+ 1. We will show that χ restricted to X ′′1 ×· · ·×X ′′k
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is S-canonical. Let e = {e1, . . . , ek} and f = {f1, . . . , fk} be edges of Y such that ei, fi ∈

{yi*, . . . , yip}. If ψ(e) = ψ(f), then ei = fi for all i ∈ S and we have

ψ(e1 . . . ek) = χ(x1e1 . . . xkek) , ψ(f1 . . . fk) = χ(x1f1 . . . xkfk).

The edges e′ = {x1e1 , . . . , xkek} and f ′ = {x1f1 , . . . , xkfk} also have xiei = xifi for i ∈ S.

Similarly, if ψ(e) 6= ψ(f) then ei 6= fi for some i ∈ S and χ(e′) = ψ(e) 6= ψ(f) = χ(f ′).

Therefore, χ restricted to X ′′1 × · · · ×X ′′k is S-canonical.

Lemma 42. For every p > 1, there exists a t such that if X1, · · ·Xr are pairwise disjoint of

size t and the edges of Kr
t,...,t are l-multicolored, then there are X ′i ⊂ Xi with |X ′i| = p for all i

and there are colorings χ1, · · · , χl such that some χj restricted to H ′ = H(X ′1, · · · , X ′r) is either

rainbow, or χi restricted to H ′ is S-canonical where S ( [r] for 1 ≤ i ≤ r. Furthermore, if all

χi are S-canonical with S ( [r] then a color which appears in a monochromatic coloring χα will

not be present in χβ for α 6= β.

Proof. Pick a color from each edge and call this coloring χ1. Applying Lemma 41 allows us to

restrict to subsets of each Xi so that χ1 is canonical. Now, pick among the remaining colors for

each edge to obtain χ2 and repeat so that we obtain subsets X ′′i ⊂ Xi and H ′′ = H(X ′′1 , · · · , X ′′r ).

If any coloring χi is rainbow, then we are done so assume they are all S-canonical. We see that

the condition of the lemma is satisfied; we removed a color from the list on each edge to obtain

a coloring, so if χi is monochromatic for some i, then its color cannot used by χj for j 6= i.

We will require one more result of Erdős on the Turán number for Kr
t,...,t.
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Theorem 43 (Erdős [22]). Fix r ≥ 2, t ≥ 1. Then, as n→∞, exr(n,K
r
t,...,t) ≤ O(nr−

1
tr−1 ).

Proof of upper bound of Theorem 29. For ε > 0, let H be an r-graph with

|E(H)| = l
(
n
r−1
)

+ εnr−1. Let H ′ be the graph obtained by deleting every edge which contains

an (r − 1)-element subset with codegree less than l + 1. We deleted at most l
(
n
r−1
)

edges and

so |E(H ′)| > εnr−1.

If |∂H ′| < ε′nr−1 where ε′ = ε
rk , then successively delete edges that contain an (r−1)-element

subset with codegree at most rk. The number of edges deleted is less than |∂H ′|rk < εnr−1.

We denote the r-graph that remains as H ′′. We may build a P rk (t) by using Lemma 39 a total

of k−1 times with the parameter a = kr to increase the path by one edge with each application

of the lemma until we obtain a P rk (t).

If |∂H ′| > ε′nr−1, partition V (H ′) = X ∪ Y where v ∈ V (H ′) is in X with probability 1/2.

We say that e ∈ ∂H ′ is good if e ⊂ X and if for e1, . . . el+1 ∈ E(H ′) where e ⊂ ei, we have

ei − e ∈ Y . The probability that an e ∈ ∂H ′ is good is (1/2)r+l. Let B be the number of

good (r − 1)-element subsets in ∂H ′. Then E(B) = (1/2)r+lε′nr−1 and by Theorem 43, when

n is sufficiently large we can find an H ′′ ∼= Kr−1
t,...,t. Any e ∈ E(H ′′′) may be extended to l + 1

different edges in H ′. Thus, we consider H ′′′ to be (l + 1)-multicolored. We apply Lemma 42

to H ′′′ to obtain an H ′′′′ ∼= Kr−1
k,...,k with colorings χ1, · · · , χm with m = l+ 1 as specified in the

lemma. There are several cases to consider. We will proceed by constructing a pseudo paths

whose edges are sets of size r − 1 and then use the colorings χ1, . . . χm to add a vertex to each

(r− 1)-element subset and extend the pseudo path to a proper P rk (t) in H. Let X1, . . . Xr−1 be

the parts of H ′′′′.
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Case 1. If some coloring χi is rainbow, then take a pseudo path P = e1 · · · ek such that

|ei ∩ ei+1| = t for 1 ≤ i < k− 1. We extend each edge with the coloring χi. Since χi is rainbow,

when i 6= j ei and ej will be extended with different colors and we obtain a P rk (t).

Case 2. Suppose that none of the colorings are rainbow. Let χ1, · · ·χp be monochromatic

and let χp+1, · · · , χm be canonical colorings. We will extend the first 2p edges of the pseudo

path using χ1, · · · , χp. For e1, . . . , e2p, if i is odd then |ei ∩ ei+1| = t − 1 and if i is even then

|ei∩ei+1| = t−1. For 1 ≤ j ≤ p, use χj to extend e2p−1 and e2p. Coloring e2p+1, . . . , ek reduces

to the final remaining case where all χi are canonical.

Case 3. Suppose χ1, . . . , χm are canonical and let P = e1e2 . . . ek be our pseudo path. We

will require one of the available S-canonical colorings which we will refer to as χ and we let

|S| = s. Our pseudo path is constructed as follows: if s > 1, then ei ∩ ei+1 = t for all i and

if i is even then ei and ei+1 intersect in parts X1, · · · , Xt otherwise ei and ei+1 intersect in

parts Xr−1−t, · · · , Xr−1. We may reorder the parts to ensure that there are i, i′ ∈ S such that

i ∈ {1, . . . , t} and i′ ∈ {r − 1− t, . . . , r − 1}. No two edges of P intersect in precisely the parts

corresponding to S, so every ej receives its own color and we obtain P rk (t). If s = 1, then, since

t > 1, no two edges ei and ei+1 will intersect precisely one part so each edge is extended with

a different color.

5.4 Pasch Configurations in K3
n

In this section, we will prove a Ramsey-type result on one of the simplest examples of a

3-graph with four edges.
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Definition. The Pasch configuration P is the 3-graph on six vertices with four edges such that

any two edges of P contain exactly one vertex in their intersection.

Our goal was to prove that f(K3
n, P, 3) = n1+o(1), however we were only able to prove the

following weaker result:

Theorem 25. There is an edge-coloring of H ⊂ K3
n with n1+o(1) colors such that every copy

of P ⊂ H receives at least three distinct colors and |E(H)| >
(
n
3

)
− o(n3).

Our proof of Theorem 25 will require the following result on decomposing a graph G into

induced matchings. An induced matching is a set E′ ⊂ E(G) such that no two e, f ∈ E′ are

incident or joined by a third edge h ∈ E(G).

Theorem 44 (Alon-Moitra-Sudakov [2]). There is a graph G on N vertices with

|E(G)| =
(
N
2

)
− o(N2) that can be decomposed into induced matchings, each of size N1−o(1).

We now prove Theorem 25.

Proof of Theorem 25

Let V (Kn) = [n]. By Theorem 44, there is graph G ⊂ Kn with |E(G)| =
(
n
2

)
− o(n2) such that

G can be decomposed into induced matchings M1, . . . ,Ml each of size n1−o(1) where l ≤ n1+o(1).

Now we color the edges of K3
n. Let e = xyz ∈ E(K3

n) and assume that x < y < z. If xy ∈ Mi

for some i, then assign color i to e, otherwise e remains uncolored. Because each edge of Kn

lies in n − 2 triples, this leaves at most o(n3) edges of K3
n uncolored. We will now show that

every P ⊂ G contains at least three colors on its edges. Let V (P ) = {v1, v2, v3, v4, v5, v6} with
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the ordering of the vertices to be specified in each case. We will proceed by contradiction with

two cases to consider.

Case 1. Suppose P ⊂ G only receives two colors on its edges and three of its edges e, f, h

receive the same color. Assume that e = v1v2v3, f = v3v4v5 and h = v5v6v1 with v1 < v2 < v3.

It must be the case the v5, v6 < v1 otherwise e and h would receive distinct colors. Now, we

must also have the v3, v4 < v5 otherwise f and h would receive distinct colors. But this is not

possible since v5 < v1 < v3. So, it is not possible for three edges in P to receive the same color.

Case 2. Suppose P ⊂ G only receives two colors on its edges and two edges receive one color

and the other two edges receive a second color. Let E(P ) = {e, e′, f, f ′} and assume that e, e′

receive color i and f, f ′ receive color j. Let e = v1v2v3 with v1 < v2 < v3. Let e′ = v3v4v5,

f = v5v6v1 and f ′ = v2v4v6. There are two subcases to consider. First, suppose that v4, v5 < v3.

Then, because G has been partitioned into induced matchings, f ′ must receive its color from

v6v2 or v6v4. Since f and f ′ receive the same color, f must receive its color from v1v5, but this

contradicts the matchings being induced. In the second subcase we may assume, without loss

of generality, that v3, v4 < v5. If v6, v4 < v2 and v5, v1 < v6 then we obtain the contradiction

v5 < v6 < v2 < v3 < v5. If v6, v2 < v4, then we obtain v6 < v4 < v5 < v6. Therefore, P must

receive at lease three colors on its edges.

5.5 Stepping up type problems

At he beginning of this thesis, we introduced Ramsey Theory with the classic problem of

monochromatic cliques in a larger two colored clique. We will now conclude this chapter and

this thesis with a hypergraph problem on cliques. We will prove two results where we color a
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clique on n vertices so that certain conditions are satisfied and then use it to color a clique on

2n vertices which also satisfies certain conditions without using too many more colors. Recall

the following definition and the following theorem. The ideas of the proofs, in particular the

edge-coloring functions, in this section will closely follow those given in [6].

Definition. Fix integers l ≥ 2 and p, q ≥ l. An edge-coloring of K l
n is a (p, q)-coloring if

every subgraph Kp contains at least q distinct colors its edges. The minimum number of colors

required for a (p, q)-coloring of K l
n is denoted as fl(n, p, q).

We will also use the following previously stated theorem.

Theorem 6 (Mubayi [41]).

f(n, 4, 3) ≤ eO(
√
logn)

In analogy with the of Erdős and Gyárfás for graphs, we consider the problem of determining

the smallest p such that f3(n, p, 3) = (log n)o(1). As mentioned in the introduction, r3(4, 4) = 13

and a result of Axenovich et. al. [6] implies that f3(n, 4, 2) = O(log log n). The (4,2)-coloring

given by this bound is also a (13,3)-coloring, for if a K3
13 receives at most two colors, then,

since r3(4, 4) = 13, it contains a monochromatic K3
4 contradicting the fact that we have a

(4,2)-coloring. Consequently, f3(n, 13, 3) = O(log log n). Hence, the minimum p such that

f3(n, p, 3) = (logn)o(1) is at most 13. We obtain the following result for p = 7.

Theorem 20.

f3(n, 7, 3) ≤ eO(
√
log logn)
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Proof. Let H = K3
2n with V (H) = {0, 1}n and let G = Kn with V (G) = [n]. Given x, y ∈

V (K3
2n) , we say that x < y if the integer given by the binary representation of x is less than

the integer given by the binary representation of y. In other words, x < y if at the first position

i that x and y differ, we have xi = 0 and yi = 1. For x, y ∈ V (H) with x < y, let p(x, y) be the

first position in the binary sequences where x and y differ. Given x, y, z with x < y < z, it is

easy to see that p(x, y) 6= p(y, z). Furthermore, if p(x, y) < p(y, z) then p(x, z) = p(x, y) and if

p(x, y) > p(y, z), then p(x, z) = p(y, z). For integers m,n let

s(m,n) =


1, if n ≥ m

2, if n < m

Let g be an edge-coloring function of Kn which produces no monochromatic copies of K3 or

two-colored copies of K4. Let xyz ∈ E(H) with x < y < z; then p(x, y)p(y, z) ∈ E(G). Let

h(xyz) = (g(p(x, y)p(y, z)), s(p(x, y), p(y, z))).

Now, suppose we have colored the edges of H with h and let K be a copy of K3
7 with

V (K) = {v1, . . . , v7} where v1 < v2 < · · · < v7. Let v′ = vi, v
′′ = vi+1 where p(vi, vi+1)

is minimized for 1 ≤ i ≤ 6. We have a set of five vertices X = {x1, x2, x3, x4, x5} with

x1 < x2 < x3 < x4 < x5 such that p(xi, xi+ 1) is minimized for either i = 1 or i = 4. Let

E = E(X) ⊂ E(H).

Case 1. Suppose that all edges in E receive the same value for the second coordinates of their

colors. If p(xi, xi+ 1) is minimized at i = 1 then p(x1, x2) < p(x2, x3) < p(x3, x4) < p(x4, x5)
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and if p(xi, xi+ 1) is minimized at i = 4 then p(x1, x2) > p(x2, x3) > p(x3, x4) > p(x4, x5). In

either case, the first coordinates of their colors received by E contain all the colors spanned by

the edges of a copy of K4 in G. Therefore, there are at least three distinct colors on the edges

in E.

Case 2. Suppose the edges in E do not all have identical second coordinates in their colors.

The first subcase is when p(vi, vi+1) is minimized at i = 1. We know that p(x1, x2) < p(x2, x3).

If p(x2, x3) < p(x3, x4), then consider X ′ = {x1, x2, x3, x4}. All the edges in E(X ′) receive

2 for the second coordinates of their colors and at least two distinct values among the first

coordinates of the colors since G contains no monochromatic triangles. Some edge in E receives

1 for the second coordinate of its color by our initial assumption and therefore we have at

least three colors on E(X ′). If p(x2, x3) > p(x3, x4) > p(x4, x5) then the same argument

applies for X ′′ = {x2, x3, x4, x5}. If p(x3, x4) < p(x4, x5), then we apply the argument to

X ′′′ = {x1, x3, x4, x5}. The second subcase is when p(vi, vi+1) is minimized at i = 4 and the

argument identical to the case i = 1.

We started with a Kn which contained no monochromatic copies of K3 or 2-edge-colored

copies of K4 and obtained, using only twice as many colors, a K3
2n containing no 2-edge-colored

copies of K3
7 . We used eO(

√
logn) colors on E(K3

2n), yielding

f3(n, 7, 3) ≤ eO(
√
log logn).
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We will now show that, given a k-edge-coloring of G = K l
n which contains no 2-edge-colored

copies of K l
m where l+ 5 < m, it is possible to edge-color H = K l+1

2n with 2k+ 2l colors so that

it contains no 2-edge-colored copies K l+1
m+1.

Theorem 21. Let n, l,m be positive integers with l > 2 and l + 5 < m < n. Then

fl+1(K
l+1
2n ,K l+1

m+1, 3) ≤ 2 fl(K
l
n,K

l
m, 3) + 2l.

Proof. Let g :
([n]
l

)
7→ [k] be an edge-coloring of K l

n which contains no 2-edge-colored K l
m. We

use g to construct an edge-coloring h :
([2n]
l+1

)
7→ [2k + 2l] on H = K l+1

2n which contains no

2-edge-colored copies of K l+1
m+1. Let V (H) = {0, 1}n. Let v1v2 · · · vl+1 ∈ E(H) and

v1 < v2 < · · · < vl+1. Let fi denote the index of the coordinate where vi and vi+1 first differ.

Let

h(v1v2 · · · vl+1) =



(g(f1f2 · · · fl), 1) if (f1, f2, · · · , fl) is an increasing sequence

(g(f1f2 · · · fl), 2) if (f1, f2, · · · , fl) is a decreasing sequence

(i, 3) if f1 < f2 < · · · fi > fi+1

(i, 4) if f1 > f2 > · · · fi < fi+1

Now, let K ′ = K l+1
m+2 with V (K ′) = {v1, v2, . . . vm+2} and v1 < v2 < · · · vm+1. There are

several cases to consider:

Case 1. Suppose that f1 < f2 < · · · < fm or f1 > f2 > · · · > fm. Then all of the colors of

used to color some copy of K l
m in G are present in the colors received by E(K ′). Every copy
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of K l
m in G receives at least three distinct colors on its edges and therefore there are at least

three distinct colors on E(K ′) as well.

Case 2. Suppose that f1 < f2 < f3 > f4 or that f1 > f2 > f3 < f4. In the first case

h(v1v2 · · · vl+1) = (3, 3), h(v2v3 · · · vl+2) = (2, 3) and h(v3v4 · · · vl+3) = (t, 4) for some t. In the

second case, the three distinct colors are (3, 4), (2, 4) and (t, 3) for some t.

Case 3. Now, assume that f1 < f2 > f3. Suppose that f3 > · · · > fi < fi+1. If 4 ≤ i ≤ m,

then, for some j > 2 where i ∈ {j, . . . , j + l}, the edges v1 . . . vl+1, v2 . . . vl+2 and vj · · · vj+l

receive three distinct colors. If i = m + 1, then we have f2 > · · · > fm+1 which yields three

distinct colors by Case 1. So, assume that f1 < f2 > f3 < f4. If f3 < f4 < f5, then the

edges v1 · · · vl+1, v2 · · · vl+2 and v3 · · · vl+3 all receive distinct colors. So, we will assume that

f1 < f2 > f3 < f4 > f5. If f1 < f3 and f ′ is the position where v1 and v3 first differ, then we

have f ′ < f3 < f4 and we have three distinct colors by an argument similar to Case 2. Suppose

that f1 > f3. We will examine the cases f3 < f5 and f3 > f5 separately. First, suppose that

f3 < f5. We see that if f5 > f6, then we have f4 > f5 > f6 and we are in Case 1 or Case 2.

But, if f5 < f6 and f ′′ is the position where v3 and v5 differ, then we have f ′′ < f5 < f6 and

we again follow the argument of one of the previous cases. Our final case is when f3 > f5. We

then have f1 > f3 > f5. If f ′′′ is the position where v1 and v3 differ and f ′′′′ is the position

where v3 and v5 differ, then we have f ′′′ > f ′′′′ > f5 and once again use the arguments from

either Case 1 or Case 2 to find three distinct colors. If f1 > f2 < f3, then the argument is very

similar.
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Appendix A

COPYRIGHT INFORMATION FOR CHAPTER 4

The contents of Chapter 4 first appeared in The Electronic Journal of Combinatorics: Vol-

ume 20, Issue 2. The journal’s copyright policy states that the copyrights of published papers

remain with the authors and may be viewed at

http://www.combinatorics.org/ojs/index.php/eljc/about/submission.
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