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SUMMARY

The dissertation discusses about the understanding of the fairest semi-matching on bipartite graphs.

Let G = (R∪U,E) be a bipartite graph with two vertex sets, R (representing resources), U (representing

users), and E ⊆ R×U as the edge set representing allocating possibilities, where an edge ei j = {ri,u j} ∈

E indicates that resource ri ∈ R can be assigned to user u j ∈ U . A semi-matching M ⊆ E on G =

(R∪U,E) is defined as a set of edges such that each resource vertex in R is incident with exactly one

edge in M, formally M = {{ei j}|∀ri ∈ R,∃u j, such that ei j ∈ M, while ∀k 6= j,eik 6∈ M}. Intuitively,

a semi-matching represents one valid allocation where each resource is allocated to one user, among

all the users the resource is connected to in G. Consequently, a semi-matching specifies which and

how many resources are assigned to each user. For u j ∈U , let Q(M,u j) denotes the quota of u j under

M, defined as the number of edges in M that include u j. Then, let Q(M) denotes the quotas vector of a

semi-matching M, defined as Q(M) = (Q(M,u1),Q(M,u2), · · · ,Q(M,u j), · · · ,Q(M,un)), where u j ∈U ,

j ∈ [1,n]. A sorted quotas vector Q↑(M) is defined as Q(M) sorted in non-decreasing order. The fairness

of a semi-matching is usually considered based on its sorted quotas vector alone, under some fairness

measures.

Our three main contributions are presented in this dissertation:

1. We prove that there always exists one (or a set of equally fair) semi-matching(s), universally

agreed by all the existing fairness measures, to be the fairest among all the semi-matchings of

a given bipartite graph. In other words, given that fairness measures disagree on many compar-

isons between semi-matchings, they nonetheless are all in agreement on the (set of) fairest semi-

xii



SUMMARY (Continued)

matching(s) for a given bipartite graph. To prove this, we propose a preorder relationship (named

Transfer-based Comparison) among the semi-matchings, showing that the greatest elements al-

ways exist in such a preordered set. We then show that such greatest elements can guarantee to

be the fairest ones under the fairness measure of Majorization (Olkin and Marshall, 2016). This

further indicates that such fairest semi-matchings are agreed by all the fairness measures which

are compatible with Majorization. To the best knowledge of us, this is true for all existing fairness

measures.

2. It has been shown that, for any given bipartite graph, there always exists a set of fairest semi-

matchings which are considered equally fair by all the fairness indices. While achieving one of

the fairest semi-matchings is easy, it is not obvious how all of them are related, or what they have

in common. We concludes that a lot can be learned about the entire set of fairest semi-matchings

(which are usually hard to enumerate) from an arbitrary one (which is easy to achieve). The main

conclusions achieved are: given a bipartite graph, from one arbitrary fairest semi-matching (which

is easy to achieve), we can understand some important attributes for the entire set of fairest semi-

matchings: 1) the classification of the edges in the bipartite graph - whether each edge is used by

all, none, or some of the fairest semi-matchings; 2) the partition of user and resource vertices in

the bipartite graph - the allocating of all the fairest semi-matchings are all within the partitions,

and each user vertex has a very narrow quota range (at most differ by 1, and is predictable from

the knowledge gained from one fairest semi-matching) among all the fairest semi-matchings.

3. Under the scenario that the resources are divisible which indicates each resource can be split and

assigned to maybe more than one users, the fairest ones with regarding to one fairness measure
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are defined as fairest fractional allocations. We show that there always exists a (maybe infinite)

set of universally agreed fairest fractional allocations, based on the similar techniques for the

existence of universally agreed fairest semi-matchings. And this set of universally agreed fairest

fractional allocations are denoted as C. We study on the relationship between the set of fairest

semi-matchings (F) and the set of fairest fractional allocations (C), and conclude that: 1) the

constant vertices (resources and users) partition across the set F is also constant across both the

set F and the set C - the allocating of all M ∈ F and all W ∈ C are all within the partitions. 2) for

each user, the quota difference between one M ∈ F and one W ∈ C is either zero or bound by one,

and its specific quota ranges across the set F and C can be determined from one M ∈ F or W ∈ C.

xiv



CHAPTER 1

INTRODUCTION

1.1 Background and Motivation

One of the classical combinatorial optimization problem is bipartite matching problem which has

wide applications such as Network Routing (Bertsekas et al., 1992), Large Computing Clusters Frame-

works (Dean and Ghemawat, 2004), Google AdWords (Geddes, 2014), Data Warehousing (Thusoo et

al., 2010), Shape Matching (Belongie et al., 2002), Image Recognition (Cheng et al., 1996), VLSI De-

sign (Huang et al., 1991), Bioinformatics (Lin et al., 2004) etc. Many variants of this problem have

been studied widely in literature. The bipartite graph can be weighted or unweighted, and the matching

types include maximum matching, maximal matching and perfect matching. Some works focus on the

algorithms to finding a matching (Kuhn, 1955) (Hopcroft and Karp, 1973) (Gabow and Tarjan, 1989)

(Goel et al., 2010) (Bollobás, 2013), while some study on the enumeration of all matchings (Fukuda

and Matsui, 1994) (Uno, 1997) (Uno, 2001) (Boros et al., 2004), under the offline setting (Lenstra et al.,

1990) (Henzinger et al., 2011) or online setting (Karp et al., 1990) (Ghodsi et al., 2013).

This dissertation studies on a relaxation of the bipartite matching problem, which is called as the

fairest semi-matchings problem on bipartite graph. A semi-matching in a bipartite graph G = (R∪U,E)

where E ⊆ R×U , is defined as a set of edges M ⊆ E such that each vertex in R is incident with exactly

one edge in M, and a vertex in U can be incident with an arbitrary number of edges in M. In general,

valid semi-matchings can be easily obtained by matching each vertex r ∈ R with an arbitrary vertex

1
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u ∈ U for which (r,u) ∈ E. The problem of finding the fairest semi-matching is related to the fair

resource allocation problem in a system, where a set of discrete resources (R) need to be assigned to a

set of users (U) in the fairest way. Meanwhile, the given bipartite graph corresponds to the allocating

constraints, where the edge set E indicate the possible allocating options. This is representative for

a large-scale system, where resource allocation is constrained to a limited set of users (for instance,

in the local area). In such cases, the optimal solution of a resource allocation problem is given by a

fairest semi-matching indicating how the resources (of R-vertices) should be allocated to the users (of

U-vertices), under allocating constraints (of edge set E).

Given a semi-matching M, the quota of user u ∈U is defined as the number of R-vertices matched

with u according to M. The corresponding quotas vector of M denoted as Q(M), is the vector of which

each element Q(M,u) represents the quota of a user u ∈U . Based on the assumption that all vertices

and edges of the bipartite graph are unweighted, the fairness of a semi-matching is usually considered

based on its quotas vector, using some fairness measure to give an index.

In literature, some works focused on the bipartite graph with weighted resources which is NP-

hard problem. Some approximate algorithms have been proposed (Lenstra et al., 1990) (Shmoys and

Tardos, 1993) (Bezáková and Dani, 2005). And (Bezáková and Dani, 2005) showed that there is no

approximation algorithm for this problem with performance better then 2 unless P = NP. A special case

of so called “big goods/small goods” was studied by (Golovin, 2005).

Some works focused on the unweighted bipartite graph, and aim to achieve one fairest semi-matching

with regard to one fairest measure by polynomial algorithms. In the job scheduling field, some algo-

rithms have been proposed to achieve the fairest semi-matchings between jobs and computing nodes
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which minimize the total computation time (L2-norm) or the time the last machine finishes (Max-min

fairness). (Lee et al., 2011) proposed a O(m+ nlogn) algorithm for a special case called nested case1.

(Harvey et al., 2006) reduced the problem to the min-cost problem, and proposed a O(nm)− algorithm.

(Fakcharoenphol et al., 2014) presented a divide and conquer algorithm with O(
√

nmlogn) complexity.

Recently, some approximation of optimal semi-matching have been proposed based on the distributed

setting.

Many fairness measures in literature have been proposed to compare quotas vectors of semi-matchings,

such as Jain’s index (Jain et al., 1984), Entropy (Tse and Viswanath, 2005), α-fairness (Mo and Wal-

rand, 2000), Max-min fairness (Bansal and Sviridenko, 2006), Convex measure (Harvey et al., 2006),

Lp-norm (Harvey et al., 2006), Lexicographically order (Bokal et al., 2012), etc. Lan et al. (Lan et al.,

2010) constructed a family of fairness measures based on a set of axioms. Note that, for all the fairness

measures, any pair of semi-matchings with the same sorted quotas vector are considered equal in fair-

ness. Nonetheless, the existence of numerous fairness measures indicates that they do not agree on the

fairness comparison between many semi-matchings (or the sorted quotas vectors of them). Few work in

literature studies on the properties of the fairest semi-matchings with regard to the consistence among

fairness measures. (Harvey et al., 2006) proved the existence of a fairest semi-matching with regard to

both Max-min fairness and L2-norm, and showed the obtained semi-matching is also the fairest with

regard to any convex measures and any Lp-norm (where p ∈ R and p > 1). (Bokal et al., 2012) showed

1 where for any pair of jobs, the set of connected users for job should be the subset of another job if the two
sets are disjoint
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that, a semi-matching is the fairest with regard to L2-norm if and only if the sorted quotas vector of this

semi-matching is lexicographically minimum.

1.2 Main Conclusions and Techniques

This dissertation focuses on the properties of all fairest semi-matchings on bipartite graphs. Our

contributions include three parts:

1. We prove that for any given bipartite graph, there always exists a fairest (set of) semi-matching(s),

under the special case of partially ordered Majorization measure (Olkin and Marshall, 2016).

This result, combined with the previous knowledge (that all known fairness measures shown in

Table I are compatible with Majorization) indicates that in fact despite their disagreement on

some comparisons, those fairness measures always agree on the fairest semi-matching(s) for a

given bipartite graph.

To prove this, we define a preordered set (proset) of semi-matchings based on the way to transfer

one into another (Transfer-based Comparison). This proset is shown to always have the greatest

elements, as the fairest semi-matchings. Subsequently, we show that the proposed Transfer-based

Comparison can strictly imply the Majorization order. In other words, the fairest semi-matchings

under the proposed Transfer-based Comparison are always regarded as fairest under Majoriza-

tion. To our best knowledge, all existing fairness measures in literature are compatible with

Majorization. In conclusion, for any bipartite graph, there always exists a set of equally fair semi-

matchings, which are universally regarded as the fairest ones, by all existing fairness measures,

even though they may disagree on the comparisons among the ones that are not the fairest. As

a result, a number of previously proposed algorithms which claimed to achieve the fairest semi-
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matchings under some specific fairness measure, in fact achieves the universally agreed fairest

ones for all the known and listed fairness measures.

2. It has been shown that, for any given bipartite graph, there always exists a set of fairest semi-

matchings which are considered equally fair by all the fairness indices. While achieving one of

the fairest semi-matchings is easy, it is not obvious how all of them are related, or what they have

in common. We conclude that a lot can be learned about the entire set of fairest semi-matchings

(which are usually hard to enumerate) from an arbitrary one (which is easy to achieve). The

main conclusions achieved are: from one arbitrary fairest semi-matching, one can easily identify:

1) whether an edge in the bipartite graph is used by all, or none, or some of the fairest semi-

matchings; 2) a constant partition of user and resource vertices in the bipartite graph such that the

allocation of all the fairest semi-matchings are all within the partitions; 3) the quota range of each

user across all the fairest semi-matchings, which is very narrow and predictable.

The conclusions are achieved mainly based on the common attributes among all fairest semi-

matchings, specifically, edge usage and quota similarity for each user among all the fairest semi-

matchings. a) edge usage: we prove that all fairest semi-matchings have the same set of Neutral

Transfer Covered Edges (which constitute the paths which will not change the fairness, and will

be defined formally later), and this set is actually the set of all edges used by some but not all

fairest semi-matchings. b) quota similarity: we define a sequence of ranked user sets such that

each set contains all users with the same quota, or contains all users covered by Neutral Transfers

within same “quota-level”. Then it is proved that each user always belongs to the same ranked

user set across all the fairest semi-matchings.
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3. Motivated by the observation that the fairness of the fairest semi-matchings can be improved by

splitting the resources, we consider the scenario that the resources are divisible which indicates

each resource can be split and allocated to maybe more than one users, and then the fairest ones

with regard to one fairness measure under this scenario are called fairest fractional allocations.

We show that under a bipartite graph there always exists a (maybe infinite) set of universally

agreed fairest fractional allocations, and all of them have the same quotas vector. The set of

universally agreed fairest fractional allocations are denoted as C. We study on the relationship

between the set of fairest semi-matchings F and the set of fairest fractional allocations C, specifi-

cally, how the fairest semi-matchings be similar with the fairest fractional allocations.

The main conclusion achieved are: 1) the constant vertices (users and resources) partition across

all the fairest semi-matchings is also constant across all the fairest fractional allocations - the

allocating of all fairest semi-matchings and all the fairest fractional allocations are always within

the partitions. 2) for each user, the difference of its quotas between one fairest semi-matching

and one fairest fractional allocation is limited (either 0 or bound by 1). Furthermore, the special

quota range of each user across the sets F and C can be determined from one arbitrary fairest

semi-matching or fairest fractional allocation.

The proof is mainly based on the construction of a fairest fractional allocation. Under the constant

vertices partition across the set F, a bipartite sub-graph is constructed for each partition. Then

a fractional allocation W for the original bipartite graph G is constructed, by the combining the

fairest fractional allocations under the bipartite sub-graphs (one fairest fractional allocation from
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one bipartite sub-graph). This fractional allocation W is then proved to be one fairest fractional

allocation for the original bipartite graph G. Based on that, our main conclusions can be achieved.

1.3 Thesis Organization

This thesis is organized into 5 chapters. Chapter 1 present the overall introduction of this disserta-

tion. Our three main contributions regarding the property of the fairest semi-matchings are shown in

Chapter 2, Chapter 3, Chapter 4 respectively. A concluding summary of the thesis, and the discussion

of a few possible extensions of our work and related open problems, are presented in Chapter 5.

Chapter 1: This chapter provides the reader with the background and motivations for this work and

identifies the research questions that the work focuses on. A list of our contributions and main

techniques are included in this chapter, as well.

Chapter 2: This chapter presents the work on the existence of universally agreed fairest semi-matchings.

First an overall introduction of motivation, related works and main conclusions, is shown, fol-

lowed by the presentation of the lack of consensus among fairness measure. Then, the key tool

for the proof (the proposed Transfer-based Comparison) is introduced and analyzed. After that,

the main theorems are shown and proved. Finally, some discussion on the structure of all semi-

matchings and algorithms are present.

Chapter 3: This chapter presents the work on the understanding of all the fairest semi-matchings from

one. At first, an overall introduction of the problem, motivation and main conclusions is present.

Then some definitions and conclusions from Chapter 2 which serves as a preliminary in this

chapter are given. Following that, two main theorems about bipartite graph edge classification
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among fairest semi-matchings, and the user quota stability among all the fairest semi-matchings,

are present and proved.

Chapter 4: This chapter presents the work on the correspondence between fairest semi-matchings and

fairest fractional allocations. At first, an overall introduction of the fractional allocations def-

inition, motivation and main conclusions is present. Then, the existence of universally agreed

fairest fractional allocations is proved based on the similar techniques from Chapter 2. After that,

the main theorems about the correspondence between the fairest semi-matchings and the fairest

fractional allocations are shown and proved.

Chapter 5: The first part of this chapter concludes the main contributions of this dissertation. The

second part of this chapter discuss the possible extensions of this work, which include how does

the bipartite graph topology impact on the fairness of the fairest semi-matchings and the edge

classification profile, followed by that some hypothesis on the open question of the fairest semi-

matchings for weighted bipartite graph.



CHAPTER 2

THE EXISTENCE OF UNIVERSALLY AGREED FAIREST SEMI-MATCHINGS

FOR ANY BIPARTITE GRAPH

Parts of this chapter have been presented in (Xu et al., 2018), (Xu et al., 2017). Copyright c©
2018, Elsevier, 2017, Springer.

2.1 Introduction

This paper focuses on the problem of the Fairest Semi-matching. A semi-matching in a bipartite

graph G = (R∪U,E) where E ⊆ R×U , is defined as a set of edges M ⊆ E such that each vertex in R

is incident with exactly one edge in M, and a vertex in U can be incident with an arbitrary number of

edges in M. In general, valid semi-matchings can be easily obtained by matching each vertex r ∈ R with

an arbitrary vertex u ∈U for which (r,u) ∈ E.

Definition 2.1. (Semi-Matching) (Harvey et al., 2006) In a bipartite graph G = (R∪U,E) where E ⊆

R×U, A semi-matching M ⊆ E on G is defined as M = {{ei j}|∀ri ∈ R,∃ ei j = {ri,u j} ∈M,while ∀k 6=

j,eik = {ri,uk} /∈M}.

The problem of finding the fairest semi-matching is related to the fair resource allocation problem

in a system, where a set of discrete resources (R) need to be allocated to a set of users (U) in the fairest

way. Meanwhile, the given bipartite graph corresponds to the allocating constraints, where the edge set

E indicate the possible allocating options. This is representative for a large-scale system, where resource

allocation is constrained to a limited set of users (for instance, in the local area). In such cases, the

9
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optimal solution of a fair resource allocation problem is given by a fairest semi-matching indicating how

the resource (of R-vertices) should be allocated to the users (of U-vertices), under allocating constraints

(of edge set E).

Consequently, a semi-matching specifies which and how many resources are assigned to each user.

For u j ∈ U , let Q(M,u j) denotes the quota of u j under M, defined as the number of edges in M

that cover u j. Then, let Q(M) denotes the quotas vector of a semi-matching M, defined as Q(M) =

(Q(M,u1),Q(M,u2), · · · ,Q(M,un)), where u j ∈U, j ∈ [1,n].

Definition 2.2. (Quotas Vector) Given a semi-matching M, the quota of vertex u ∈U is defined as the

number of edges that cover u (or the number of resource vertices matched with u) according to M.

The corresponding quotas vector of M, denoted as Q(M), is the vector of which each element Q(M,u)

represents the quota of a vertex u ∈U.

A sorted quotas vector Q↑(M) is defined as Q(M) sorted in non-decreasing order. Assuming that

both edges and vertices in the bipartite graph are unweighted, the fairness of a semi-matching is usually

considered based on its sorted quotas vector alone, under some fairness measures. An example of the

fairest semi-matching according to Jain’s index (Jain et al., 1984) is shown in Fig. 1. The literature

shows that one fairest semi-matching regarding one fairest measure, can be achieved by polynomial

algorithms.

2.1.1 Motivation

Many fairness measures have been proposed to compare quotas vectors, such as Jain’s index (Jain

et al., 1984), Entropy (Tse and Viswanath, 2005), α-fairness (Mo and Walrand, 2000), Lexicographical

order (Bokal et al., 2012), Convex measure (Harvey et al., 2006), Lp-norm (Harvey et al., 2006), Max-
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min fairness (Bansal and Sviridenko, 2006), etc. (Lan et al., 2010) constructed a family of fairness

measures based on a set of axioms. A list of known fairest measures are given in Table I. Note that, for

all the fairness measures, any pair of semi-matchings with the same sorted quotas vector are considered

equal in fairness. Nonetheless, the existence of numerous fairness measures indicates that they do not

agree on the fairness comparison between many semi-matchings (or the sorted quotas vectors of them).

2.1.2 Related Works

Fairness in job scheduling: Some previous works in the area of job scheduling focus on the algo-

rithms to achieve one fairest semi-matching with regard to some specific fairness measures. Specifically,

the goal is to achieve the fairest semi-matching between jobs and computing nodes which minimize the

total computation time (L2-norm) or the time the last machine finishes (Max-min fairness). This problem

is one type of the general job scheduling problem with pi j ∈ {1,∞} where pi j represents the processing

time of job j on machine i. (Lee et al., 2011) proposed a O(m+n logn) algorithm for a special nested

case, where for any pair of jobs, the set of connected machines for one job should be the subset of the

set for another job if the two sets are not disjoint. (Harvey et al., 2006) reduced the problem to the

min-cost problem, and proposed a O(nm) algorithm. (Fakcharoenphol et al., 2014) presented a divide

and conquer algorithm with time complexity of O(
√

nm logn). Recently, some approximation of opti-

mal semi-matching were proposed based on the distributed setting (Czygrinow et al., 2012)(Konrad and

Rosén, 2016).

The properties of the fairest semi-matchings: (Harvey et al., 2006) showed that the existence of

semi-matchings which are the fairest with regard to both Max-min fairness and L2-norm, and showed

that the obtained semi-matching is also the fairest with regard to any convex measures and any Lp-norm
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TABLE I: A LIST OF KNOWN FAIREST MEASURES

Fairness measure Expression (function of Q = (q1,q2, · · · ,qm))
Argument for “Compatibility

with Majorization (Schur-convex)”

Jain’s fairness (Jain et al., 1984) f (Q) = (∑m
i=1 qi)

2/(m∑
m
i=1 qi

2) β =−1 in (Lan et al., 2010)

Entropy (Tse and Viswanath, 2005) f (Q) = ∑
m
i=1(

qi
∑ j q j

) log( qi
∑ j q j

) β → 0 in (Lan et al., 2010)

Max-min fairness (Bansal and Sviridenko, 2006) f (Q) = mini=1,··· ,m{qi} Similar to β → ∞ in (Lan et al., 2010)

Min-max fairness (Bansal and Sviridenko, 2006) f (Q) = maxi=1,··· ,m{qi} Similar to β →−∞ (Lan et al., 2010)

Lexicographical order (Bokal et al., 2012) Sorted Q↑a = (q1,q2, · · · ,qm), Easy to prove from its definition

Qb
↑ = (q′1,q

′
2, · · · ,q′m),

Q↑a > Q↑b, if qi > q′i, for

the first i where qi and q′i differ.

Lp-norm (Harvey et al., 2006) f (Q) = (∑m
i xp

i )
1/p (1 < p < ∞) Lp-norm is convex

and symmetric ,which is

sufficient for schur-convex function

Convex measure (Harvey et al., 2006) f (Q) = ∑
m
i f (qi) Convex measure is convex

where f is convex and symmetric ,which is

sufficient for schur-convex function

fairness family (Lan et al., 2010) fβ(Q) = sign(1−β ) · [∑n
i=1(

qi
∑ j q j

)1−β ]
1
β Proved in (Lan et al., 2010)

including:

Max ratio β → ∞ : fβ(Q) =−maxi{∑ j q j
qi
}

α-fair utility β ∈ (1,∞): fβ(Q) =−[(1−β )Uα=β(
Q

∑i qi
)]

1
β

α-fair utility β ∈ (0,1) : fβ(Q) = [(1−β )Uα=β(
Q

∑i qi
)]

1
β

Entropy β → 0 : fβ(Q) = eH( Q
∑i qi

)

Jain’s fairness β =−1 : fβ(Q) =−(∑m
i=1 qi)

2/(m∑
m
i=1 qi

2)

Min ratio β →−∞ : fβ(Q) = mini{∑ j q j
qi
}
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(where p ∈R and p > 1). (Bokal et al., 2012) showed that, a semi-matching is the fairest with regard to

L2-norm if and only if the sorted quotas vector of this semi-matching is lexicographical minimum.

2.1.3 Main Results

In this chapter, we prove that for any given bipartite graph, there always exists a fairest (set of) semi-

matching(s), under the special case of Majorization. This result, combined with the previous knowledge

(that all known fairness measures shown in Table I are compatible with Majorization) indicates that

in fact despite their disagreement on some comparisons, those fairness measures always agree on the

fairest semi-matching(s) for a given bipartite graph.

2.1.4 Organization

This chapter is organized as follows. Section 2.2 discusses the consensus among fairness measures

with regard to Majorization. Section 2.3 defines a Transfer-based Comparison between any pair of semi-

matchings, which is shown to be a preorder relationship more rigorous than Majorization. Section 2.4

proves there exists a set of the greatest semi-matchings in the proposed Transfer-based Comparison.

Section 2.5 provides a discussion on various issues related to the Transfer-based Comparison, and some

algorithms for achieving the fairest semi-matchings. This paper is concluded in Section 2.6.

2.2 The Lack of Consensus Among Fairness Measures

Most of the existing and widely used fairness measures are index-based, which is a mapping of

a sorted quotas vector into a real number. Using an index-based fairness measure, any arbitrary pair

of quotas vectors are comparable (either one is considered fairer, or both are considered equally fair).

However, different index-based fairness measures often disagree on the comparison of some pairs of
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M2 :

u3u2

r6

u1

r2 r3 r4 r5r1

Bipartite Graph u3u2 u3u2

u3u2 u3u2

r6

Q(M4) = (3,2,1)

u1

r2 r3 r4 r5r1

r6

u1

r2 r3 r4 r5r1 r6

u1

r2 r3 r4 r5r1

Q(M1) = (3,3,0) Q(M2) = (4,1,1)
f (Q(M1)) = 0.67 f (Q(M2)) = 0.67

f (Q(M3)) = 0.6 f (Q(M4)) = 0.86

r6

u1

r2 r3 r4 r5r1

Q(M3) = (4,2,0)

M1 :

M3 : M4:

Figure 1: An example of the fairest semi-matching, where f (Q(M)) =
(∑m

i=1 Q(M,i))2

m∑
m
i=1 Q(M,i)2 (m is the size of Q(M)) is

based on Jain’s index, and M4 is the fairest one with the highest index of 0.86.

quotas vectors. For example, for the comparison of two quotas vectors Q1 = (0,3,3) and Q2 = (4,1,1),

Table II illustrates the different comparison results from three fairness measures.

Majorization (Olkin and Marshall, 2016) is a preorder over quotas vectors, which allows some pairs

to be “incomparable”.

Definition 2.3. (Majorization)(Olkin and Marshall, 2016) For x,y ∈ Rn, x is majorized by y (denoted

as x �Ma j y), if ∑
n
i=1 xi = ∑

n
i=1 yi, and ∑

d
i=1 x↑i 6 ∑

d
i=1 y↑i for d = 1, . . . ,n, where x↑i and y↑i are the ith

elements of x↑ and y↑, which are sorted in ascending order.

For example, x = (0,3,3) is majorized by y = (3,1,2). The sorted vectors are x↑ = (0,3,3) and

y↑= (1,2,3) respectively. Let Sd
x =∑

d
i=1 x↑i for d = 1,2,3. Then we have Sx = (S1

x ,S
2
x ,S

3
x) = (0,0+3,0+
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TABLE II: DISAGREEMENT AMONG VARIOUS FAIRNESS MEASURES FOR QUOTAS VECTORS

Jain’s index Max-min index An index in (Lan et al., 2010) (β =−2)

Definition f (Q) :
(∑m

i=1 qi)
2

m∑
m
i=1 qi2

mini=1,··· ,m{qi} {∑m
i=1 (

qi
∑

m
j=1 q j

)
1−β}

1
β

(Q = (q1,q2, · · · ,qm))

Q1 = (0,3,3) 0.67 0 2

Q2 = (4,1,1) 0.67 1 1.809

Fairness Comparison Q1 = Q2 Q1 < Q2 Q1 > Q2

3+ 3) = (0,3,6) and Sy = (S1
y ,S

2
y ,S

3
y) = (1,1+ 2,1+ 2+ 3) = (1,3,6). Therefore, it meets x �Ma j y.

For the example pair shown in Table 1, where x = (0,3,3) and y = (4,1,1), they are incomparable

with regard to Majorization, because Sx = (S1
x ,S

2
x ,S

3
x) = (0,3,6) and Sy = (S1

y ,S
2
y ,S

3
y) = (1,2,6), where

S1
x < S1

y and S2
x > S2

y .

A fairness measure f is considered “compatible” with Majorization (or known as Schur-convex

function), if it satisfies that f (x)< f (y) when x�Ma j y. (Lan et al., 2010) studied various fairness mea-

sures and constructed a family of fairness measures satisfying five axioms (continuity, homogeneity,

saturation, partition, and starvation). The resulting family of fairness measures includes all the existing

popularly used fairness measures such as α-fairness, Jain’s index, Entropy function, etc. All the mem-

bers of this family has been proved to be compatible with Majorization. Furthermore, we have listed

all the fairness measures to our best knowledge and shown in Table I that they are all compatible with

Majorization.
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2.3 Transfer-based Comparison Among Semi-matchings

2.3.1 Definition of Transfer-based Comparison

For a given semi-matching M in a bipartite graph G = (R∪U,E), we define a Transfer T on M

to be a sequence of alternating edges ({u1,r1},{r1,u2},{u2,r2}, · · · ,{uk−1,rk−1},{rk−1,uk}) with ui ∈

U,ri ∈ R, {ui,ri} ∈M for each i ∈ [1,k−1].

Definition 2.4. (Transfer) Given a bipartite graph G = (R∪U,E), T = ({u1,r1},{r1,u2},{u2,r2},

· · · ,{uk−1,rk−1},{rk−1,uk}) is defined as a Transfer on a semi-matching M, if T is an alternating path

with regard to M, that is, for each i ∈ [1,k−1], {ui,ri} ∈M (thus all the {ri,ui+1} 6∈M according to the

definition of semi-matching).

Definition 2.5. (Source and destination users of a Transfer) For a Transfer T =({u1,r1}, · · · ,{rk−1,uk})

on bipartite graph G = (R∪U,E), u1 and uk are defined as the source and destination users of Transfer

T , denoted as us(T ) and ud(T ) respectively.

Essentially, a Transfer T on M is a path beginning and ending in U-vertices in M, consisting of

alternating edges in and out of M. The application of Transfer T to semi-matching M is defined as

switching the matching and non-matching edges in M along Transfer T .

Definition 2.6. (Application of a Transfer) The application of Transfer T on semi-matching M, denoted

as T (M) = M′, is defined as switching the matching and non-matching edges in M along Transfer T .

The result of the application of T on M will change M to a different semi-matching M′, which includes

all the {ri,ui+1} edges in T , but excludes all the {ui,ri} edges in T .
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For example, in Fig. 1, semi-matching M3 can be changed to M4 by applying a sequence of edges

({u1,r4},{r4,u2},{u2,r6},{r6,u3}) which constitute a valid Transfer T which will change M3 to M4.

Definition 2.7. (Transfer Types: Improving, Deteriorating, Neutral) Let T represents a Transfer on

a semi-matching M, with Q(M,us(T )) and Q(M,ud(T )) representing the quotas of the source user

us(T ) and destination user ud(T ) in M respectively. Apparently, when us(T ) 6= ud(T ), T (M) = M′

results in the change of quota in only two user: Q(M′,us(T )) = Q(M,us(T ))−1, and Q(M′,ud(T )) =

Q(M,ud(T ))+ 1. In other words, the source user’s quota decreases by 1, and the destination user’s

quota increases by 1 as the result of applying T . In the special case of us(T ) = ud(T ), M and M′ has

the same quotas vector.

As a result, the application of T on M will affect the fairness of M in only three possible ways:

• T could result in a fairer M′ over M, thus T is denoted as an Improving Transfer (IT ) if Q(M,us(T ))>

Q(M,ud(T ))+1;

• T could result in a more unfair M′ over M, thus T is denoted as a Deteriorating Transfer (DT ) if

Q(M,us(T ))< Q(M,ud(T ))+1 and us(T ) 6= ud(T );

• T could result in M′ with the same fairness as M, thus T is denoted as a Neutral Transfer (NT ),

where two cases exist:

– T is denoted as a Straight Neutral Transfer (NTS) if Q(M,us(T )) = Q(M,ud(T ))+ 1 and

obviously us(T ) 6= ud(T );

– T is denoted as a Cyclic Neutral Transfer (NTC) if us(T ) = ud(T ).

Obviously, if a transfer T is NT , M and T (M) have the same sorted quotas vector.
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Definition 2.8. (Transfer Sequence) A Transfer Sequence between two semi-matchings M1 and Mk,

denoted as Mk = Tk−1 ◦ · · · ◦T2 ◦T1(M1), is defined as a sequence of Transfers (T1,T2, · · · ,Tk−1) such

that ∀i ∈ [1,k−1],Ti(Mi) = Mi+1 holds.

A Transfer-based Comparison between semi-matchings is proposed, based on properties of the

Transfer Sequence between them, shown as in Definition 2.9.

Definition 2.9. (Transfer-based Comparison) For any two semi-matchings Mx and My, if there exists a

Transfer Sequence (T1,T2, · · · ,Tk−1) such that My = Tk−1 ◦ · · · ◦T2 ◦T1(Mx), and for each i ∈ [1,k− 1],

Ti is IT or NT , then My is defined as not less fair than Mx in terms of a Transfer-based Comparison,

denoted as Mx �T My. Specifically, if all Ti are NT , then Mx is defined as equally fair with My, denoted

as Mx ≈T My; if all Ti are either IT or NT , with at least one Ti being IT , then My is defined as fairer

than Mx, denoted as Mx ≺T My.

If for every possible sequences (T1,T2, · · · ,Tk−1) such that My = Tk−1 ◦· · ·◦T2 ◦T1(Mx), there always

exist some Ti, Tj with i, j ∈ [1,k− 1] such that Ti is IT and Tj is DT , then Mx and My are defined as

incomparable, denoted as Mx ≺�T My.

2.3.2 Attributes of Transfer-based Comparison

Such a Transfer-based Comparison aims at reserving the “strictly comparable” relationships be-

tween semi-matchings via identifiable Improving or Neutral Transfer Sequence, while leaving out the

“incomparable” ones with mixtures of both Improving and Deteriorating Transfers. It is easy to prove

this defined comparison meets the properties of Reflexivity, Transitivity. Thus it is a preorder on the set

of all semi-matchings in a given bipartite graph.
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Lemma 2.1. (Preordered Set (proset)) The set of all semi-matchings of a bipartite graph is a preordered

set with regard to the Transfer-based Comparison defined above.

Different from the preorder of Majorization, which is defined on the quotas vectors, the Transfer-

based Comparison is a preorder defined over the set of semi-matchings. We will prove that the Transfer-

based Comparison implies the Majorization relationship between the corresponding quotas vectors. In

other words, the Transfer-based Comparison is a “stricter” fairness measure than Majorization, by leav-

ing out some pairs that can be compared under Majorization as incomparable. An example of a pair of

semi-matchings comparable under Majorization but not comparable under Transfer-based Comparison,

is shown in Figure 2.

Lemma 2.2. (Improving Transfer⇒Majorization) If Mx �T My, then Q(Mx)�Ma j Q(My).

Proof. Let Q↑(Mx) = (qx
1,q

x
2, · · · ,qx

i , · · · ,qx
n) be the sorted quotas vectors of Mx in ascending order and

the partial sums Sd
x = ∑

d
i=1 qx

i for d = 1, · · · ,n. Assume the application of an Improving Transfer (IT)

T to Mx yields another semi-matching Mx′ , which decreases the quota of source user of T (suppose qx
j)

by 1, and increases the quota of destination vertex of T (suppose qx
i ) by 1. Note that Transfer T is IT ,

therefore the quota of its source user must be larger than the quota of its source user in Mx, thus i < j.

Let Q↑(Mx′) represents the quotas vector of Mx′ sorted in ascending order, and Sd
x′ represents the partial

sums of Q↑(Mx′) for d = 1, · · · ,n. It can be easily derived that Sd
x′ = Sd

x when d < i, that Sd
x′ > Sd

x when

i ≤ d < j, and that Sd
x′ = Sd

x when j ≤ d ≤ n. Likewise, if a Neutral Transfer is applied, then Sd
x′ = Sd

x

when 1 ≤ d ≤ n. Thus, it meets Q(Mx) �Ma j Q(Mx′) if Mx′ can be derived by the application of an

Improving or Neutral Transfer on Mx.
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(M1 ≺�T M2)

u2 u3 u4

u2 u3 u4

u2 u3 u4

Bipartite Graph

M1 M2

r2 r3 r4 r5r1

u1

r2 r3 r4 r5r1

u1

r2 r3 r4 r5r1

u1

Q(M2) = (2,1,0,2)Q(M1) = (3,0,1,1) (Q(M1)�ma j Q(M2))

Figure 2: An example of a pair of semi-matching M1 and M2 which are comparable under Majorization, but are

incomparable under Transfer-based Comparison, because any Transfer Sequence between M1 and M2 contains

one IT and one DT .

If Mx �T My, then My can be derived by the application of a sequence of Improving or Neutral

Transfers on Mx. Thus, it meets Q(Mx)�Ma j Q(My) due to the Transitivity of the preorder “�Ma j”.

Corollary 2.1. Any fairest semi-matching with regard to “�T ” is the fairest with regard to “�Ma j”.

Corollary 2.2. Any fairest semi-matching with regard to “�T ” is the fairest with regard to any fairness

measure compatible with Majorization.

2.4 The Existence of Universally Agreed Fairest Semi-matchings

In this section, we prove that the proset of semi-matchings under Transfer-based Comparison has the

greatest elements. In other words, there exists some fairest semi-matchings which are comparable to all
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semi-matchings and are fairer under Transfer-based Comparison. This is done by showing there always

exists a fairer semi-matching for any two incomparable ones. The proof is done in two steps. First, we

show that if one semi-matching Mx can be changed to another one My via a Bitonic Transfer Sequence

(essentially a Transfer Sequence where all IT ′s are before all DT ′s), then a fairer semi-matching than

both Mx and My can be (straightforwardly) found. Then, we show how to construct a Bitonic Trans-

fer Sequence between any two incomparable semi-matchings by modifying an arbitrary non-Bitonic

Transfer Sequence between them.

Definition 2.10. (Bitonic Transfer Sequence) For a Transfer Sequence (T1,T2, · · · ,Tk−1) such that My =

Tk−1 ◦ · · · ◦T2 ◦T1(Mx), if there exists p ∈ [1,k−1], such that all Ti (where i≤ p) are IT (or NT ) with at

least one Ti being IT , and all Tj (where p < j ≤ k−1) are DT (or NT ) with at least one Tj being DT ,

then (T1,T2, · · · ,Tk−1) is called a Bitonic Transfer Sequence.

Lemma 2.3. For a pair of semi-matchings Mx and My, if there exists a Bitonic Transfer Sequence

(T1,T2, · · · ,Tk−1) such that My = Tk−1 ◦ · · ·◦T2 ◦T1(Mx), then there exists a semi-matching Mk satisfying

that Mx �T Mk and My �T Mk.

Proof. A Bitonic Transfer Sequence (T1,T2, · · · ,Tk−1) can be divided into two Sub-Sequences Tf ront=

(T1,T2, · · · ,Tj) and Tback = (Tj+1,Tj+2, · · · ,Tk−1), where each Ti ∈ Tf ront is either IT or NT , and each

Tj ∈ Tback is either DT or NT .

Let M j be the semi-matching obtained by the application of Tf ront on Mx. Then M j is not less

fair than Mx (Mx �T Mk). Obviously, My can be derived by the application of Tback on M j, that is

My = Tj+1 ◦Tj+2 · · · ◦Tk−1(M j). Then it meets My �T M j.
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Note that, if one Transfer suppose Ti is a Cyclic Neutral Transfer (NTC), then if there exist at least

one user covered by both Ti and Tj, then it is regarded that Ti and Tj can be merged.

Note that, if one Transfer suppose Ti is a Cyclic Neutral Transfer (NTC), then if there exist at least

one user covered by both Ti and Tj, then it is regarded that Ti and Tj can be merged.

Lemma 2.4. For a pair of incomparable semi-matchings Mx and My (Mx ≺�T My), there always exists

a Bitonic Transfer Sequence which changes Mx to My.

Proof. We start with an arbitrary Prime Transfer Sequence (which is defined in Definition 2.11 ) chang-

ing Mx to My (Mx ≺�T My), . We will prove any such a Transfer Sequence can be re-organized to form

a Bitonic Transfer Sequence which also changes Mx to My.

Definition 2.11. (Prime Transfer Sequence) Let T S=(T1,T2, · · · ,Tk−1) represent one Transfer-Sequence

from one fairest semi-matching M1 to another one Mk. T S is defined as a Prime Transfer-Sequence, if

∀Ti,Tj ∈ T S, two conditions are met: 1) (Transfers can not be merged): us(Ti) 6= ud(Tj) and us(Tj) 6=

ud(Ti); 2) (Transfers are non-overlapping): Let E(Ti) and E(Tj) represent the set of all edges covered

by Ti and Tj respectively, then E(Ti)
⋂
E(Tj) = /0.

Obviously, for any two adjacent Transfers Ta and Tb in a Transfer Sequence (assume Ta precedes Tb)

such that Ta(Mi) = Ma, Tb(Ma) = M j (illustrated as Mi
Ta−→Ma

Tb−→M j), swapping the order of Ta and Tb

(such that Mi
Tb−→Mb

Ta−→M j) will not change the beginning and ending semi-matchings Mi and M j, but

will yield a different intermediate one Mb rather than Ma. The following proves that if Tb is Improving

Transfer before the swapping (i.e., Tb is IT in Ma
Tb−→ M j), then Tb remains to be Improving Transfer

after the swapping (i.e., Tb is IT in Mi
Tb−→Mb).
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Ta

b′a a′ b b′ b′

a(b)b

Case 2: Common source user

Case 3: Common destination user

Case 1: No common source(destination) users

Case 4: Common source(destination) users

a

Ta Tb

Ta

a′(b′)
Tb

a(b)

Tb

Ta

a′(b′)

Tb

Figure 3: An illustration of four relationship types between two Transfers.

Suppose the source and destination user of Ta are a and a′ respectively, and the source and destination

user of Tb are b and b′ respectively. If Tb is an Improving Transfer before the swapping, then Q(Ma,b)−

Q(Ma,b′)> 1. The following shows it is also true that Q(Mi,b)−Q(Mi,b′)> 1, by examining how the

application of Ta on Mi changes the quotas of b and b′. Since the Transfer Sequence guarantees a 6= b′

and a′ 6= b to begin with, then one of the following four cases (illustrated in Figure 3) should apply:

• Case 1: Ta and Tb have no common source user and no common destination user (a 6= b and a′ 6=

b′). The application of Ta on Mi will not change the quotas of b and b′, thus Q(Mi,b) = Q(Ma,b),

Q(Mi,b′) = Q(Ma,b′). It indicates Q(Mi,b)−Q(Mi,b′) = Q(Ma,b)−Q(Ma,b′)> 1.

• Case 2: Ta and Tb have common source user but no common destination user (a = b and a′ 6= b′).

The application of Ta on Mi will not change the quota of b′, but will decrease the quota of b
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by 1, thus Q(Mi,b) = Q(Ma,b)+ 1, Q(Mi,b′) = Q(Ma,b′). It indicates Q(Mi,b)−Q(Mi,b′) =

Q(Ma,b)−Q(Ma,b′)+1 > 1.

• Case 3: Ta and Tb have no common source user but common destination user (a 6= b and a′ = b′).

The application of Ta on Mi will not change the quota of b, but will increase the quota of b′

by 1, thus Q(Mi,b) = Q(Ma,b), Q(Mi,b′) = Q(Ma,b′)− 1. It indicates Q(Mi,b)−Q(Mi,b′) =

Q(Ma,b)−Q(Ma,b′)+1 > 1.

• Case 4: Ta and Tb have common source user and common destination user (a = b and a′ = b′).

The application of Ta on Mi will decrease the quota of b by 1 and increase the quota of b′ by

1, thus Q(Mi,b) = Q(Ma,b)+ 1, Q(Mi,b′) = Q(Ma,b′)− 1. It indicates Q(Mi,b)−Q(Mi,b′) =

Q(Ma,b)−Q(Ma,b′)+2 > 1.

It can be concluded that Tb will maintain being an IT when swapped ahead. Besides, by similar

deduction it can be shown that if Ta is a DT before the swap, then Ta will maintain being a DT when

swapped behind; if Ta is a NT before the swap, then Ta will maintain being a NT or become to a DT

when swapped behind. Thus, the above-proven property of “IT conservation when swapped ahead”

ensures that it is possible to re-organize any Prime Transfer Sequence with a mixture of IT ′s and DT ′s

(perhaps some NT ′s) into a Bitonic Transfer Sequence, by swapping all the IT ′s to be ahead of all the

DT ′s.

In fact, for any pair of semi-matchings, there might exist many Transfer Sequences between them.

And there always exists at least one sequence containing of a Prime Transfer Sequence and a sequence

of Cyclic Neutral Transfers, which changes one semi-matching to another. The construction process is

shown in the Lemma 2.5. For any pair of incomparable semi-matchings Mx and My, let SSimp and Scyclic
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represent the Prime Transfer Sequence and the sequence of Cyclic Neutral Transfers respectively, the

concatenation of which changes Mx to My. Obviously, SSimp contains both IT ′s and DT ′s, and can be

re-organized into a Bitonic Transfer Sequence. Then, adding Scyclic into the front or back of this Bitonic

Transfer Sequence, results in yet another Bitonic Transfer Sequence changing Mx to My.

Lemma 2.5. For any pair of semi-matchings Mx and My, there always exists a sequence containing of

a Prime Transfer Sequence and a sequence of Cyclic Neutral Transfer, which changes Mx to My.

Proof. The notion Mx⊕My denotes the symmetric difference of edges set Mx and My, that is, Mx⊕My =

(Mx \My)∪ (My \Mx). Let S represents the set of all Cyclic Neutral Transfers in Mx⊕My. Suppose Mx′

can be derived by the application of all Cyclic Neutral Transfers in S on Mx.

An illustration of the Transfers Construction is shown in Fig. 4. Let thin edges represent the edges

of Mx′ \My, and thick edges represent the edges of My \Mx′ . An observation on Mx′ ⊕My is that there

exist one or more users which are endpoints of only thin edges, but not thick edges. We call those users

as Starting Users. We build a Transfer which is an alternating thin-thick sequence of edges, as follows.

Starting with one Starting User and one thin edge, identity a path as long as possible, which includes

alternative resources and users, and alternative thin edges and thick edges. Then delete all chosen edges

from Mx′⊕My, and then repeat above procedure to build more Transfers until Mx′⊕My becomes empty.

Throughout this process, we maintain that among all the obtained Transfers, the source user of one

Transfer cannot be the destination user of another Transfer. Then, an arbitrarily ordered sequence of all

the obtained Transfers constructs a Prime Transfer Sequence from Mx′ to My.
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Mx′ ⊕My

u3u2 u4

r1 r2 r3 r4 r5 r6

u3u2

r3 r4 r5 r6
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u3u2 u4

r2 r3 r4 r5

u3u2

r2 r4

u3

r3

u2 u4

r5

r1 r2

u3u2 u4

r1 r2 r3 r4 r5 r6

u1

u1

u1

u1

u1 u1

Transfers Constrrction

Bipartite Graph

Mx′
My

T1 = ({u1,r2},{r2,u2},{u2,r4},{r4,u3}) T2 = ({u1,r3},{r3,u3}) T3 = ({u4,r5},{r5,u2})

Q(My) = (1,2,2,1)Q(Mx′) = (3,1,0,2)

Figure 4: An illustration of Transfers Construction.
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Corollary 2.3. Let prosetG represents a preordered set defined by “�T ” which contains all semi-

matchings of a bipartite Graph G. For any pair of semi-matchings Mx,My ∈ prosetG, if Mx ≺�T My,

then there exists at least one semi-matching Mz ∈ prosetG satisfying that Mx �T Mz and My �T Mz.

From Corollary 2.3 and the properties of a proset, Theorem 2.1 can be derived.

Theorem 2.1. (Existence of a set of fairest semi-matchings with regard to Transfer-based Compar-

ison for any bipartite graph) For any bipartite graph G, let prosetG represents the preordered set

defined by “�T ” which contains all semi-matchings of G. There always exists a set of equally fair

semi-matchings that constitute the greatest elements in prosetG, and all semi-matchings in this set have

the same sorted quotas vector.

Corollary 2.4. All greatest elements (semi-matchings) in prosetG have the same sorted quotas vector.

Proof. For any pair of greatest semi-matchings Mx,My ∈ prosetG, there always exists a Prime Transfer

Sequence containing of only Neutral Transfers. That can be derived from the following claims. If there

exists one Improving Transfer T , then T can be swapped ahead to the beginning while maintaining the

improving attribute, which indicates Mx is not a greatest semi-matching. Similarity, if there exists one

Deteriorating Transfer, then it contradicts with that My is a greatest semi-matching. Furthermore, the

application of a Neutral Transfer will not change the sorted quotas vector of a semi-matching. Therefore,

all greatest semi-matchings have the same sorted quotas vector.

Finally, the below theorem can be achieved.
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Theorem 2.2. For any bipartite graph, there always exists a set of equally fair semi-matchings (with

the same sorted quotas vector), which are uniformly considered the fairest by all the fairness measures

which are compatible with Majorization.

2.5 Discussions

A. The proset from Transfer-based Comparison might be a semi-lattice

The proset derived from Transfer-based comparison, is not proved to be a join-semilattice (defined

as the proset which has a least upper bound for any nonempty finite subset (Davey and Priestley, 2002)).

In other words, we proved that the proset itself has a greatest element which is the least upper bound,

but this might not be true for all of its subsets. There might exist a counter example, such as a pair of

semi-matchings M1, M2 having three common upper bounds M3, M4, M5 which meet M3 ≺�T M4 and

M3 ≺T M5, M4 ≺T M5. That being said, we did not find such counter examples for any given bipartite

graph setting. Consequently, whether the proset is a semi-lattice remains unknown.

B. The existence of the least elements with regard to Transfer-based Comparison is not always

true

This paper has proved the existence of the greatest elements in the preordered set with regard to

Transfer-based Comparison. However, the least elements in this preordered set do not always exist.

This means there does not exist a uniformly agreed upon “most unfair” semi-matching set among all the

fairness measures. For example, in Fig. 5, the two worst semi-matchings M1 and M2 are incomparable

with regard to Transfer-based Comparison. Fairness measures disagree on the comparison of their
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M1 ≺�T M2

u3u2

r6

u1

r2 r3 r4 r5r1

Q(M1) = (4,1,1)

u3u2

r6

u1

r2 r3 r4 r5r1

Q(M2) = (0,3,3)

u3u2

Bipartite Graph

r6

u1

r2 r3 r4 r5r1

M2M1

Figure 5: An example of two incomparable semi-matchings both as the most unfair ones regarding “�T ”.

quotas vectors Q(M1) = (4,1,1) and Q(M2) = (0,3,3). The details of conflicting comparisons between

Q(M1) and Q(M2) have been shown in Table II.

The insight behind the existence of the greatest elements but not the least elements in this preordered

set lies in the asymmetry of “swapping IT ” ahead: we have proved that an IT can be swapped ahead

without losing its attribute of being an Improving Transfer, but this is not true for a DT . A Deteriorating

Transfer, when swapped ahead, does not always maintain to be a DT . As a result, for any two incompa-

rable semi-matchings Mx and My, it is guaranteed that there always exists a fairer one Mz that Mx �T Mz,

Mx �T Mz, but not necessarily an “unfairer” one Mz′ that Mz′ �T Mx, Mz′ �T My.

C. The algorithms for achieving one fairest semi-matching



30

We shows that one fairest semi-matching under Transfer-based Comparison is also the fairest one

under all known existed fairness measures shown in Table I. Furthermore, it implies that the fairest

semi-matching(s) under any fairness measure, such as extensively studied lexicographically order, also

dominate other semi-matchings under the preorder Transfer based Comparison and Majorization. Thus,

it is true that any algorithm achieving some fairest semi-matchings under any fairness measure is in fact

achieving a fairest semi-matching under all fairness measures listed in Table I.

(Kleinberg et al., 1999) proposed an algorithm with respect to lexicographically order to achieve one

fairest semi-matching. Specially, they studied on the load balancing problem which is concerned with

assigning uniform jobs J to machine nodes N. For each job Ji, there is a set Si ⊆ N on which job Ji can

run. The aim is to assign each job Ji to a machine in Si in a way that the assignment has the fairest loads

among all machines. An iterative network flow algorithm was proposed by (Kleinberg et al., 1999) to

achieve an assignment of jobs to machines, which is the fairest one under lexicographically order. This

algorithm builds the assignment step by step starting with an empty assignment. In each step, it applies

a max-flow algorithm to find a “partial” assignment, until eventually a legitimate assignment is reached

which will turn out to be the fairest under lexicographically order. Actually, the claim that the achieved

fairest assignment also dominates other assignments under all other fairness measures, can be derived

from the conclusion achieved in this paper.

For the job assignment system described in (Kleinberg et al., 1999), (Harvey et al., 2006) also

proposed an algorithm to achieve one fairest assignment under both minimal make-span and minimal

flow time. Its essential idea is to iteratively improve an arbitrary assignment by executing one existed

“cost-reducing” path until no more found. In fact, the cost-reducing path is the same with the Improving
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Transfer proposed in this paper. Thus, the achieved fairest assignment in (Harvey et al., 2006) is the

fairest one under Transfer-based Comparison, as well as the fairest one under all fairness measures

shown in Table I. In addition, (Harvey et al., 2006) shows the runtime upper bound of the algorithm is

O(min{|R|3/2, |R||U |} · |E|) for a bipartite graph G = (R∪U,E).

Based on our conclusion and (Harvey et al., 2006), an online algorithm can be easily derived to

maintain an on-line job assignment system to be fairest. Assume initially a job assignment system is

the fairest, and new jobs are coming to this system sequentially, which needs to be assigned to some

machines. For each incoming job Ji, it will first be assigned to the least loaded machine node N∗ which

can run job Ji. Subsequently, a search is conducted for an Improving Transfer T , starting from N∗ as

a source vertex. We claim that, if T is not found, the system is then already the fairest; if T is found,

then by the application of T which is a chain of jobs re-assignments to the system, the system can be

successfully updated to be a fairest one with the new job.

2.6 Conclusion

We prove that there always exist the universally agreed fairest semi-matchings in any given bipar-

tite graph. To prove this, we define a preordered set (proset) of semi-matchings based on the way to

transfer one into another. This proset (Transfer-based Comparison) is shown to always have the great-

est elements, as the fairest semi-matchings. Subsequently, we show that the proposed Transfer-based

Comparison can strictly imply the Majorization order. In other words, the fairest semi-matchings un-

der the proposed Transfer-based Comparison are always regarded as fairest under Majorization. To our

best knowledge, all existing fairness measures in the literature are compatible with Majorization. In

conclusion, for any bipartite graph, there always exists a set of equally fair semi-matchings, which are
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universally regarded as the fairest ones, by all existing fairness measures, even though they may disagree

on the comparisons among the ones that are not the fairest. As a result, a number of previously proposed

algorithms which claimed to achieve the fairest semi-matchings under some specific fairness measure,

in fact achieves the universally fairest ones for all the known and listed fairness measures.



CHAPTER 3

UNDERSTANDING THE ATTRIBUTES OF ALL THE FAIREST

SEMI-MATCHINGS FROM AN ARBITRARY ONE

3.1 Introduction

In a bipartite graph G = (R∪U,E) with two sets of vertices (R for resources and U for users), an

allocating of the resources to the users along the edges E can be formally represented as a semi-matching

M ⊆ E (where each vertex in R is incident with exactly one edge in M). The fairest semi-matchings on

G, representing the fairest allocating of the resources to the users, are the main focus of this chapter. It

has been shown that, for any given bipartite graph, there always exists a set of fairest semi-matchings

which are considered equally fair by all the fairness measures. While achieving one of the fairest semi-

matchings is easy, it is not obvious how all of them are related, or what they have in common. This

chapter concludes that a lot can be learned about the entire set of fairest semi-matchings (which are

usually hard to enumerate) from an arbitrary one (which is easy to achieve). We shows that, besides

their common sorted quotas vector, one can draw further conclusions about all the members in this set

of fairest semi-matching (F). Specifically, by analyzing an arbitrary Mi ∈ F, we can: 1) learn about the

usage of edges for the bipartite graph G of all the M j ∈ F; and 2) learn about the quota of each user

Q(M j,uk) where M j ∈ F,uk ∈U .

33
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3.1.1 Motivational Example

An example is given with bipartite graph G containing 7 users and 14 resources, with its entire set

of four fairest semi-matchings F = {M1,M2,M3,M4} in Fig 6. In this example, with regard to the usage

of edges among the four fairest semi-matchings, we can observe that:

• some edges, denoted by the solid lines in Fig 7.a, are used by all four fairest semi-matchings in

F: such as {r1,u1}, {r8,u3};

• some edges, denoted by the dashed lines in Fig 7.a, are used by none of the fairest semi-matchings

in F: such as {r8,u2}, {r10,u3};

• the rest of the edges, denoted by the dotted lines in Fig 7.a, are used by some (but not all) of the

semi-matchings in F: such as {r2,u1}, {r2,u2}.

Moreover, among the four fairest semi-matchings in F, one can observe that a user’s final quota is

largely stable: some users (such as u3) always have the same quota of 2, for all M1,M2,M3, and M4,

while other users have different quotas but only differ by one (such as Q(M1,u7) = Q(M2,u7) = 1, and

Q(M3,u7) = Q(M3,u7) = 2). It turns out that a partition of the users and resources can be made, as

is illustrated in Fig 7.b, such that all the users in the same partition will always have the same fairest

quotas range (with the difference of at most 1), and the resources are always assigned to the users

within same partition. Such a partition of users and resources is invariant among all the possible fairest

semi-matchings in F, for any given bipartite graph G.
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M1 ∈ F

3 4 2 1 2 1 1Q(M1) : 4 3 2 1 2 1 1Q(M2) :

3 4 2 1 1 1 2Q(M3) : 4 3 2 1 1 1 2Q(M4) :

r14r5r4r3r2r1

u1 u2

r6

u3

r13r12r11r10

u5 u6 u7

r9r8r7

u4

Bipartite Graph G

M2 ∈ F

M4 ∈ FM3 ∈ F

Figure 6: An example bipartite graph with F = {M1,M2,M3,M4} as illustrated, and Q↑(Mi) = (1,1,1,2,2,3,4).
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b) The stable partition of users and resources among all the set F

r10 r13
u5 u7

r8 r9
u3

r12r11
u4 u6

r2 r3 r4r1 r5
u2

r6 r7

Q(Mi,u j) = 1 Q(Mi,u j) = 2 Q(Mi,u j) = 3 or 4

r14

Q(Mi,u j) = 1 or 2

u1 u2 u3 u4 u5 u6 u7

r14r13r12r11r10r9r8r7r6r5r4r3r2r1

a) Edge classification into the edges used by all/some/none of the set F

u1

Figure 7: a) Edge Classification example: solid edges are used by all M ∈ F; dotted edges are never used in any

M ∈ F; dashed edges are used by some but not all M ∈ F b) The stable partition of users and resources among all

the set F. All users in each partition have the same fairest quota range, and each partition has one quota option or

two quota options which differ by 1. The resources of each partition are always assigned to the users within same

partition among all the set F.
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3.1.2 Main Results

The main conclusions achieved in this paper are: given a bipartite graph, from one arbitrary fairest

semi-matching (which is easy to achieve), we can understand some important attributes for the entire set

of fairest semi-matchings: 1) the classification of the edges in the bipartite graph - whether each edge is

used by all, none, or some of the fairest semi-matchings; 2) the partition of user and resource vertices in

the bipartite graph - the allocating of all the fairest semi-matchings are all within the partitions, and each

user vertex has a very narrow quota range (at most differ by 1, and is predictable from the knowledge

gained from one fairest semi-matching) among all the fairest semi-matchings.

3.1.3 Organization

Some preliminary definitions and conclusions are shown in Section 3.2. Then, section 3.3 presents

the conclusions on the edge classification in the bipartite graph. Section 3.4 presents the user quota

stability among all the fairest semi-matching. After that, the property of the paths between any pair of

fairest semi-matchings is shown in Section 3.5, which provides the insight for the main conclusions.

3.2 Preliminary

This section shows some definitions and conclusions from Chapter 2, which will be used by this

chapter.

3.2.1 Definitions

Definition 3.1. (Semi-Matching) In a bipartite graph G = (R ∪U,E) where E ⊆ R×U, A semi-

matching M⊆E on G is defined as M = {{ei j}|∀ri ∈R,∃ ei j = {ri,u j}∈M,while ∀k 6= j,eik = {ri,uk} /∈

M}.
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In general, valid semi-matchings can be easily obtained by matching each vertex ri ∈ R with an

arbitrary vertex u j ∈U as long as {ri,u j} ∈ E.

Definition 3.2. (Quotas Vector) Given a semi-matching M, the quota of vertex u ∈U is defined as the

number of edges that cover u (or the number of resource vertices matched with u) according to M.

The corresponding quotas vector of M, denoted as Q(M), is the vector of which each element Q(M,u)

represents the quota of a vertex u ∈U.

Definition 3.3. (Transfer) Given a bipartite graph G = (R∪U,E), T = ({u1,r1},{r1,u2},{u2,r2},

· · · ,{uk−1,rk−1},{rk−1,uk}) is defined as a Transfer on a semi-matching M, if T is an alternating path

with regard to M, that is, for each i ∈ [1,k−1], {ui,ri} ∈M (thus all the {ri,ui+1} 6∈M according to the

definition of semi-matching).

Definition 3.4. (Source and destination users of a Transfer) For a Transfer T = ({u1,r1}, · · ·

,{rk−1,uk}) on bipartite graph G = (R∪U,E), u1 and uk are defined as the source and destination users

of Transfer T , denoted as us(T ) and ud(T ) respectively.

Definition 3.5. (Application of a Transfer) The application of Transfer T on semi-matching M, denoted

as T (M) = M′, is defined as switching the matching and non-matching edges in M along Transfer T .

The result of the application of T on M will change M to a different semi-matching M′, which includes

all the {ri,ui+1} edges in T , but excludes all the {ui,ri} edges in T .

Definition 3.6. (Transfer Types: Improving, Deteriorating, Neutral) Let T represents a Transfer on

a semi-matching M, with Q(M,us(T )) and Q(M,ud(T )) representing the quotas of the source user

us(T ) and destination user ud(T ) in M respectively. Apparently, when us(T ) 6= ud(T ), T (M) = M′
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results in the change of quota in only two user: Q(M′,us(T )) = Q(M,us(T ))−1, and Q(M′,ud(T )) =

Q(M,ud(T ))+ 1. In other words, the source user’s quota decreases by 1, and the destination user’s

quota increases by 1 as the result of applying T . In the special case of us(T ) = ud(T ), M and M′ has

the same quotas vector.

As a result, the application of T on M will affect the fairness of M in only three possible ways:

• T could result in a fairer M′ over M, thus T is denoted as an Improving Transfer (IT ) if Q(M,us(T ))>

Q(M,ud(T ))+1;

• T could result in a more unfair M′ over M, thus T is denoted as a Deteriorating Transfer (DT ) if

Q(M,us(T ))< Q(M,ud(T ))+1 and us(T ) 6= ud(T );

• T could result in M′ with the same fairness as M, thus T is denoted as a Neutral Transfer (NT ),

where two cases exist:

– T is denoted as a Straight Neutral Transfer (NTS) if Q(M,us(T )) = Q(M,ud(T ))+ 1 and

obviously us(T ) 6= ud(T );

– T is denoted as a Cyclic Neutral Transfer (NTC) if us(T ) = ud(T ).

Obviously, if a transfer T is NT , M and T (M) have the same sorted quotas vector.

Definition 3.7. (Transfer Sequence) A Transfer Sequence between two semi-matchings M1 and Mk,

denoted as Mk = Tk−1 ◦ · · · ◦T2 ◦T1(M1), is defined as a sequence of Transfers (T1,T2, · · · ,Tk−1) such

that ∀i ∈ [1,k−1],Ti(Mi) = Mi+1 holds.

Definition 3.8. (Prime Transfer Sequence) Let T S=(T1,T2, · · · ,Tk−1) represent one Transfer-Sequence

from one fairest semi-matching M1 to another one Mk. T S is defined as a Prime Transfer-Sequence, if
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∀Ti,Tj ∈ T S, two conditions are met: 1) (Transfers can not be merged): us(Ti) 6= ud(Tj) and us(Tj) 6=

ud(Ti); 2) (Transfers are non-overlapping): any pair of Transfers Ti,Tj ∈ T S do not have any common

edge.

Note that, if one Transfer suppose Ti is a Cyclic Neutral Transfer (NTC), then if there exist at least

one user covered by both Ti and Tj, then it is regarded that Ti and Tj can be merged.

3.2.2 Existence and Attributes of The Fairest Semi-matching Set F

Though the disagreement among numerous fairness measures on semi-matchings comparison, (Xu

et al., 2017) proved the existence of the set of universally agreed fairest semi-matchings, and all these

fairest semi-matchings have the same sorted quotas vector.

Theorem 3.1. (The existence of a fairest set of semi-matchings for any bipartite graph) (Xu et al.,

2017) For any bipartite graph, there always exist a set of the fairest semi-matchings denoted as F which

are universally agreed to be equal in fairness by all fairness measures. Furthermore, a semi-matching

belongs to the fairest set iff there exists no Improving Transfer to be applied.

Corollary 3.1. (The set of all the fairest semi-matchings have the same sorted quotas vector) (Xu et

al., 2017) For any bipartite graph, the semi-matchings in the fairest set F might have different quotas

vector, but they all have the same sorted quotas vector, that is, ∀Mi,M j ∈ F,Q↑(Mi) = Q↑(M j).

3.3 Bipartite Graph Edge Classification Among Fairest Semi-matchings

3.3.1 Definitions

Definition 3.9. (Edge Classification Sets) Let F represent the set of all the fairest semi-matchings on a

bipartite graph G = (R∪U,E). ∀e ∈ E, it belongs to one of the three mutually exclusive sets:
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• Eall =
⋂

Mi∈F Mi (used by all);

• Enone =
⋃

Mi∈F Mi (used by none);

• Esome =
⋃

Mi∈F Mi−
⋂

Mi∈F Mi (used by some).

Definition 3.10. (Covered Edge Set of a Transfer) The Covered Edge Set of a Transfer T = ({u1,r1},

{r1,u2},{u2,r2}, · · · ,{uk−1,rk−1},{rk−1,uk}) is defined as E(T ) = {{u1,r1},{r1,u2},{u2,r2}, · · · ,

{uk−1,rk−1},{rk−1,uk}}.

Definition 3.11. (Neutral Transfers Covered Edge Set) A Neutral Transfers Covered Edge Set on a

semi-matching M, denoted as ENT (M), is defined as the union of Covered Edges Sets of all Neutral

Transfer under M. That is, ENT (M) = ∪all NTi under ME(NTi), where NTi represents one Neutral Transfer

under M.

3.3.2 Edge Classification Can Be Derived From One Fairest Semi-matchings

Theorem 3.2. (The Neutral Transfers Covered Edge Set ENT (M) is constant among all the fairest

semi-matchings M ∈ F, and is furthermore equal to Esome) Under any given bipartite graph G =

(R∪U,E), it always has Esome = ENT (Mi) = ENT (M j) where ∀Mi,M j ∈ F.

Proof. Let Mk ∈ F represents one arbitrarily given fairest semi-matching under a bipartite graph G =

(R∪U,E), then from Lemma 3.1 it has Esome =
⋃

all Mi∈F Mk⊕Mi, where Mk⊕Mi = (Mk \Mi)∪ (Mi \

Mk). Then
⋃

all Mi∈F Mk⊕Mi = ENT (Mk) can be proved if the below two arguments are true.

1)
⋃

all Mi∈F Mk⊕Mi ⊆ ENT (Mk):

We prove it by showing ∀Mi ∈ F it has Mk ⊕Mi ⊆ ENT (Mk). Let T S represents an arbitrary Prime
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Transfer-Sequence from Mk to Mi. Then ∀e ∈Mk⊕Mi, there exists one Transfer T ∈ T S, s.t. e ∈ E(T ).

From Lemma 3.5, it has that Transfer T must be a Neutral Transfer on Mk which indicates e∈ ENT (Mk).

Therefore, ∀e ∈Mk⊕Mi, it has e ∈ ENT (Mk), in other words, Mk⊕Mi ⊆ ENT (Mk).

2) ENT (Mk)⊆
⋃

all Mi∈F Mk⊕Mi:

∀e ∈ ENT (Mk), there exists a Neutral Transfer T on Mk, such that e ∈ E(T ). By the application of T on

Mk, another fairest semi-matching, to say Mk′ will be obtained. Then, it is obvious that e ∈Mk⊕Mk′ ⊆⋃
all Mi∈F Mk⊕Mi. That indicates ENT (Mk)⊆

⋃
all Mi∈F Mk⊕Mi.

Therefore, it is true that Esome = ENT (Mk). Moreover, because Mk is an arbitrary given fairest semi-

matching, then straight-forwardly it can be deduced that Esome = ENT (Mi) = ENT (M j) where Mi,M j ∈

F.

Lemma 3.1. (Esome =
⋃

all Mi∈F Mk⊕Mi, ∀Mk ∈ F) Under a bipartite graph G = (R∪U,E), let Mk ∈ F

represents one arbitrarily given fairest semi-matching. Then it has Esome =
⋃

all Mi∈F Mk⊕Mi where

Mk⊕Mi = (Mk \Mi)∪ (Mi \Mk).

Proof. From the definition it has Esome =
⋃

all Mi,M j∈F M j⊕Mi, where M j⊕Mi = (M j \Mi)∪ (Mi \M j).

Then for an arbitrarily given fairest semi-matching Mk ∈ F, let E′some =
⋃

all Mi∈F Mk⊕Mi. Obviously,

E′some ⊆ Esome, the following will prove Esome ⊆ E′some, then it has Esome = E′some.

Assume there exists one edge e ∈ Mi⊕Mi′ ⊆ Esome and e 6∈ E′some. That indicates either Mi or Mi′

covers edge e. Suppose e ∈ Mi and e 6∈ Mi′ , then it can be obtained that if Mk does not cover e, then

e ∈Mk⊕Mi; if Mk covers e, then e ∈Mk⊕Mi′ , thus e ∈ E′some, which is a contradictory.
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Corollary 3.2. (Edge classification among Eall , Enone, and Esome can be performed efficiently from

an arbitrary M ∈ F ) Let M ∈ F represents one arbitrary fairest semi-matching on a bipartite graph

G = (R∪U,E). The set Esome can be identified by the finding of ENT (M). Then, for any remaining edge

e 6∈ Esome, if e ∈M, then e ∈ Eall , otherwise, e ∈ Enone.

3.4 User Quota Stability Among All The Fairest Semi-matchings

3.4.1 Definitions

Definition 3.12. (Users Partition) Given a fairest semi-matching M ∈ F, a sequence of ranked user

sets PU(M) = (U0(M),U1(M), . . . ,Ui(M), . . . ,U2m(M)), where each Ui(M) is a set of user and m is

the number of resources, is defined as: if a user u is covered by a Straight Neutral Transfer T , then

u ∈Ui(M) where i = Q(M,us(T ))+Q(M,ud(T )); otherwise, if u is not covered by any Straight Neutral

Transfer, then u ∈ Ui(M) where i = 2×Q(M,u).

Obviously, for any user u, there exists a set which covers u. And it can be shown that for any two sets

Ui(M) and U j(M) where i 6= j it has Ui(M)∩U j(M) = /0. If at least one of i and j is even, then from the

definition it has Ui(M)∩U j(M) = /0. If both i and j are odd, Ui(M)∩U j(M) = /0 can be proved based

on the following claim. One user can not be simultaneously covered by two Straight Neutral Transfers

NTS(q,q−1) and NTS(q′,q′−1) where q 6= q′, otherwise, one Improving Transfer can be formed on the

fairest semi-matching M ∈ F contradicts with Theorem 3.1.
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3.4.2 A User’s Quota Range Is Narrow in The Set F and Predictable from Any M ∈ F

Theorem 3.3. (The users partition is constant among all the fairest semi-matchings) Let Mx,My ∈ F

represent two arbitrary fairest semi-matchings in a bipartite graph G = (R∪U,E), then for any i ∈

[0,2m],Ui(Mx) = Ui(My). In other words, we can say PU(Mx) = PU(My).

Proof. The theorem can be derived from Lemma 3.2 and Lemma 3.3. Suppose there exists a user u such

that u ∈ Ui(Mx) and u ∈ U j(My) where i 6= j. Then both i and j must be odd otherwise it should has

i = j, which can be derived from Lemma 3.3 and the fact that the sets of a partition are pairwise disjoint.

Furthermore, from Lemma 3.2 it should has i = j. A contradictory is then obtained.

Lemma 3.2. ∀u ∈U, suppose both Ui(Mx) and U j(My) cover u where i 6= j, then i and j can not be

both odd.

Proof. Suppose both i and j are odd, and u is covered in Straight Neutral Transfer NTS(qs,qd) and

NTS(q′s,q
′
d) under Mx and My respectively. Then there exist two fairest semi-matchings Mx′ ,My′ ∈ F,

such that |Q(Mx′ ,u)−Q(My′ ,u)| ≥ 2. This contradicts with Lemma 3.4 that |Q(Mx′ ,u)−Q(My′ ,u)| ≤ 1.

The finding of Mx′ and My′ is based on the below two claims: 1) There exists another fairest semi-

matching Mx′ such that the quotas of u under Mx and Mx′ are qs and qd (or “qd and qs”) respectively.

That is because Q(Mx,u) is either qs or qd (otherwise one Improving Transfer can be formed), then if

Q(Mx,u) = qs, another fairest semi-matching Mx′ with Q(Mx′ ,u) = qd can be obtained by application

of one Straight Neutral Transfer NT ′S(qs,qd) on Mx, where NT ′S(qs,qd) is a sub-sequence of NTS(qs,qd)

which starts with u as the the source user. Similarity, if Q(Mx,u) = qd , another fairest semi-matching
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Mx′ with Q(Mx′ ,u) = qs can be obtained. And this claim can also be applied on My; 2) If q′s > qs, then it

has |q′s−qd | ≥ 2; else if qs > q′s, then it has |qs−q′d | ≥ 2.

Lemma 3.3. ∀u ∈U, if Ui(Mx) covers u where i is even, then Ui(My) also covers u.

Proof. i is even, indicates that under Mx either u is covered by a Cyclic Neutral Transfer and not covered

by all Straight Neutral Transfer, or u is not covered by any Neutral Transfer. Then this lemma can be

derived from the below two claims.

Claim 1. If under Mx, u is covered by a Cyclic Neutral Transfer and not covered by any Straight Neutral

Transfer, then under My, u can not be covered by any Straight Neutral Transfer.

Suppose under My, u is covered by one Straight Neutral Transfer NTS(q′s,q
′
d). Based on the proof

of Lemma 3.2, there exists another fairest semi-matching My′ such that the quotas of u under My and

My′ are q′s and q′d (or “q′d and q′s”) respectively. Thus, under at least one of My and My′ , the quota of

u is not equal to Q(My,u). In a word, there exists Mx and My (or My′) such that Q(Mx,u) 6= Q(My,u)

(or Q(Mx,u) 6= Q(My′ ,u)). Then u must be covered in at least one Straight Neutral Transfer under Mx,

otherwise, u should have the same quota among all fairest semi-matchings (which can be derived from

Lemma 3.5). Thus a contradictory is obtained.

Claim 2. If under Mx, u is not covered by any Neutral Transfer, then under My, u is also not covered by

any Neutral Transfer.

From Theorem 3.2, this claim can be easily derived.
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Lemma 3.4. (A user’s quota is either constant or differs by at most 1 across all the fairest semi-

matchings) Let Mx,My ∈ F represent two arbitrary fairest semi-matchings on a bipartite graph G =

(R∪U,E). ∀u ∈U, it has |Q(Mx,u)−Q(My,u)| ≤ 1.

Proof. From Lemma 3.5, in any Prime Transfer-Sequence T S from Mx to My, any pair of Transfers are

disjoint in both source and destination users. In addition, the application of a Transfer T only changes

the quotas of source and destination users by one (the quota of source user decreases by one, and the

quota of destination user increases by one) while all other users covered by T do not change. Therefore,

∀u, if u is covered by one Transfer T ∈ T S, and u is the source user of T , then Q(Mx,u)−Q(My,u) = 1; if

u is covered by one Transfer T ∈ T S, and u is the destination user of T , then Q(Mx,u)−Q(My,u) =−1;

else u is not covered by another Transfers in T S, then Q(Mx,u)−Q(My,u) = 0.

Corollary 3.3. (The quota variation of any user among all the fairest semi-matchings can be pre-

dicted from one arbitrary fairest semi-matching) Let M represents one arbitrary fairest semi-matching

in a bipartite graph G = (R∪U,E). ∀u ∈U, assume u ∈ Ui(M), if i is odd, its quota from any fairest

semi-matchings is either (i+1)/2 or (i−1)/2; if i is even, then its quota from any fairest semi-matchings

is exactly i/2.

Furthermore, it can be derived that each set of users always be assigned with the same set of re-

sources among all the possible fairest semi-matchings, which is formally shown in the below Theorem.

Theorem 3.4. (A constant partition of users and resources across the set F) Given a fairest semi-

matching M ∈ F, a sequence of ranked resource sets (R0(M),R1(M), · · ·Ri(M), · · · ,R2m(M)) where m

is the number of resources, is defined as: if under M a resource r is assigned to the user u∈Ui(M), then
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r ∈ Ri(M). We claim that for any i ∈ [0,2m], it has Ri(Mx) = Ri(My) where Mx,My ∈ F represent two

arbitrary fairest semi-matchings in a bipartite graph. In other words, the vertices (users and resources)

partition (V0(M),V1(M), · · ·Vi(M), · · · ,V2m(M)) where Vi(M) = {Ui(M),Ri(M)}, is constant across

the set F such that ∀i ∈ [0,2m], Vi(Mx) = Vi(My) where Mx,My ∈ F.

Proof. Suppose there exists a resource r such that r ∈ Ri(Mx) and r ∈ R j(My) where i 6= j, and specifi-

cally r is assigned to ui and u j under Mx and My respectively (that is, {r,ui} ∈Mx, {r,u j} ∈My). Then

it should has ui ∈ Ui, u j ∈ U j where i 6= j, which will be proved as a contradictory.

Let T S represents a Prime Transfer Sequence from Mx to My. Then the sequence ({ui,r},{r,u j})

should be a sub-sequence of a Transfer T ∈ T S, and T should be a Neutral Transfer based on Lemma 3.5.

Thus, ui and u j should be from the same user set based on the definition of the sequence of ranked user

set.

3.5 Property of The Transfer Sequences Between Any Two Fairest Semi-matching

Lemma 3.5. (In any Prime Transfer Sequence from one fairest semi-matching to another, all Trans-

fers are Neutral Transfers, and no two Transfers share source or destination users) Let Mx,My ∈ F

represent two arbitrary fairest semi-matchings on G= (R∪U,E). Let T S = (T1,T2, · · · ,Tk−1) represents

an arbitrary Prime Transfer Sequence from Mx to My (Tk−1 ◦ · · · ◦T2 ◦T1(Mx) = My). Then, 1) ∀Ti ∈ T S,

it is a Neutral Transfer on Mx, that is, Q(Mx,us(Ti))−Q(Mx,ud(Ti)) = 1 or us(Ti) = ud(Ti). 2) any

pair of Transfers in T S are disjoint in both source and destination users. That is, ∀Ti,Tj ∈ T S, it has

us(Ti) 6= us(Tj) and ud(Ti) 6= ud(Tj).

Proof. The two claims in the lemma are proved as below.
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1) ∀Ti ∈ T S, it is a Neutral Transfer, that is, Q(Mx,us(Ti))−Q(Mx,ud(Ti)) = 1 or us(Ti) = ud(Ti)

Proof. We prove by contradictory that Ti can not be an Improving or Deteriorating Transfer.

a) Any Ti ∈ T S is also a Transfer on Mx, because T S is a Prime Transfer Sequence between Mx

and My which indicates E(Ti)∩E(Tj) = /0 where Ti,Tj ∈ T S.

b) Ti can not be an Improving Transfer, otherwise, the fairest semi-matching Mx can be im-

proved by the application of Ti.

c) Suppose Ti is a Deteriorating Transfer, then it has Q(Mx,us(Ti))≤Q(Mx,ud(Ti)) and us(Ti) 6=

ud(Ti). We define a “reverse” order of Ti =(e1,e2, · · · ,ep−1,ep), that is T ′i =(ep,ep−1, · · · ,e2,e1).

Then it has ud(Ti) = us(T ′i ), us(Ti) = ud(T ′i ). We prove that actually T ′i is an Improving

Transfer on My. At first, it is easy to achieve that T ′i is a Transfer on My because of the edges

switching process from the application of a Transfer. Then, the inequality can be achieved

that Q(My,us(T ′i )−Q(My,ud(T ′i )) > 1 (or Q(My,ud(Ti)−Q(My,us(Ti)) > 1). That is be-

cause any pair of Transfers Ti,Tj ∈ T S can not be merged (us(Ti) 6= ud(Tj) and us(Tj) 6=

ud(Ti)), thus us(Ti) can not increase its quota and ud(Ti) can not decrease its quota, by the

application of any Transfer of T S. Then it can derived that Q(Mx,us(Ti))>Q(My,us(Ti)) and

Q(Mx,ud(Ti))<Q(My,ud(Ti)), which indicates Q(My,us(T ′i )−Q(My,ud(T ′i ))=Q(My,ud(Ti))−

Q(My,us(Ti))> Q(Mx,ud(Ti))−Q(Mx,us(Ti))+1 > 1.

2) Any pair of Transfers in T S are disjoint in both source and destination users. That is, ∀Ti,Tj ∈ T S,

it has us(Ti) 6= us(Tj) and ud(Ti) 6= ud(Tj).
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Proof. Suppose there exists a pair of adjacent Transfers in Ti,Ti+1 ∈ T S which are not disjoint.

That means Ti and Ti+1 have the same source user or destination user or both source and destina-

tion users. We will prove that the case of the same source user will induce a contradictory. Then

all other cases can be proved with the same idea.

a) Suppose Ti and Ti+1 have the same source user and different destination users (both of them

are not Cyclic Neutral Transfers, otherwise they can be merged, which conflicts with the

definition of Prime Transfer Sequence), that is, us(Ti) = us(Ti+1) and ud(Ti) 6= ud(Ti+1).

Let Mi+1 = Ti(Mi) where Ti ∈ T S, i ∈ [1,k−1] (note that, M1 = Mx, Mk = My). Based on the

first claim (any Ti ∈ T S is a Neutral Transfer on Mx), it can be concluded that ∀i ∈ [1,k−1],

Mi is a fairest semi-matching, and each Ti is a Neutral Transfer under Mi. Then we prove

that Q(Mi,us(Ti+1))−Q(Mi,ud(Ti+1))> 1 and it indicates there exists an Improving Trans-

fer Ti+1 on the fairest semi-matching Mi which is a contradictory. The application of Ti on

Mi (Ti(Mi) = Mi+1) decreases the quota of the common source user us(Ti) (or us(Ti+1)) and

does not change the quota of ud(Ti+1), then it has that Q(Mi,us(Ti+1))−Q(Mi,ud(Ti+1)) =

Q(Mi+1,us(Ti+1))−Q(Mi+1,ud(Ti+1))+1> 1, where Q(Mi+1,us(Ti+1))−Q(Mi+1,ud(Ti+1))=

1 (Ti+1 is a Neutral Transfer on Mi+1),

b) The other cases can be proved with similar idea. After that, any pair of Transfers Ti and Tj

(might not be adjacent) can be proved to be disjoint based on swapping of adjacent Transfers.
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3.6 Conclusion

This work focuses on the properties of the set of all the fairest semi-matching F under a given

bipartite graph. It is known that all the fairest semi-matchings have the same sorted quotas vector, but it

is not obvious how all of them are related, or what they have in common. This paper concludes that two

important properties can be derived from one arbitrary fairest semi-matching: 1) the edge classification

of the bipartite graph into Eall , Esome, Enone, and 2) precisely how much (either constant, or differ 1) a

user’s quota might vary, among all the fairest semi-matchings. Furthermore, given one arbitrary fairest

semi-matching, a partition of all the vertices (resources and users) in the bipartite graph can be achieved,

such that it is guaranteed among all the possible fairest semi-matchings that the allocating of resources

to users are strictly within the partitions.

To derive the above conclusions and prove their validity, we show that: a) all the fairest semi-

matchings have the same set of Neutral Transfers Covered Edge Set, which is equal to Esome; b) a

sequence of ranked user sets can be constructed, such that a user will always belong to the same ranked

set under all fairest semi-matchings. To achieve the proofs, we rely on the insight about the property of

paths between any two fairest semi-matchings, included in Section 3.5: in any Prime Transfer Sequence

between any pair of fairest semi-matchings, all the Transfers have to be Neutral and disjoint.



CHAPTER 4

UNDERSTANDING THE CORRESPONDENCE BETWEEN THE FAIREST

SEMI-MATCHINGS AND THE FAIREST FRACTIONAL ALLOCATIONS (BINARY

VS. FRACTIONAL WEIGHT)

4.1 Introduction

Obviously, under the relaxed constraint that a resource is no longer indivisible but can be split in any

fractional ways to be assigned to multiple users, one can achieve better fairness in even the fairest semi-

matchings. However, it is not straightforward whether similar conclusions (the existence of a fairest

set of semi-matchings) can be drawn as the case of indivisible resources. Furthermore, it is unclear

whether the two scenarios (indivisible vs. divisible resources) share any commonality. In this chapter,

we consider the generalized scenario where the resources are divisible which indicates each resource

can be split and assigned to maybe more than one users. Under this scenario, the fairest ones with

regard to one fairness measure is called fairest fractional allocations, which can be achieved by linear

programming techniques. However, it is not obvious that the fairest fractional allocation regarding one

fairness measure is always the fairest regarding all fairness measures. We show that, based on the

similar techniques used in Chapter 2, it can be proved that there always exists a set of fairest fractional

allocations, universally agreed by all fairness measures, denoted as C. We study on the relationship

between the fairest semi-matchings and the fairest fractional allocations, specifically, how the fairest

semi-matching be similar with the fairest fractional allocations. We prove that the constant vertices
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partition across all the fairest semi-matchings is also constant across all the fairest fractional allocations

- the allocating of all fairest semi-matchings and all the fairest fractional allocations are always within

the partitions. Moreover, for each user, the difference of its quotas between one fairest semi-matching

and one fairest fractional allocation is limited (either 0 or bound by 1) and predictable.

4.1.1 Definition of a Fractional Allocation

In a bipartite graph G = (R∪U,E) where R represents a set of resources, U represents the set of

users, E ⊆ R×U represents the set of edges, which are the possible allocations options from resources

to users. A fractional allocation under a bipartite graph, is defined as the assigning of weights for each

edge in E such that the weigh sum of all edges incident to the same resource should be equal to one.

Definition 4.1. (Fractional Allocation) In a bipartite graph G = (R∪U,E), a fractional allocation is

defined as a vector of weights for all edges in E, denoted as W = (w(ei j))|E| where ei j = {ri,u j}, such

that w(ei j) ∈ R, w(ei j) ∈ [0,1], and ∀i ∈ [1,m], ∑ j∈[1,n] w(ei j) = 1 where m and n represent the number

of resources and users respectively.

Given a fractional allocation W , for u j ∈U , the quota of u j denoted as Q(W,u j), is defined as the

sum of weights for all edges incident to u j. Formally, Q(W,u j) = ∑i∈[1,m] w(ei j) where ei j = {ri,u j}, m

represents the number of all resources. Let Q(W ) denotes the quotas vector of a fractional allocation

W , which is defined as Q(W ) = (Q(W,u1),Q(W,u2), · · · ,Q(W,un)), where u j ∈U, j ∈ [1,n].

Definition 4.2. (Quotas Vector) Given a fractional allocation W under a bipartite graph G=(R∪U,E),

the quota of user u j ∈U is defined as Q(W,u j) = ∑i∈[1,m] w(ei j) where ei j = {ri,u j}, m represents the

number of all resources. The corresponding quotas vector of W, denoted as Q(W ), is the vector of which

each element Q(W,u j) represents the quota of a user u j ∈U.



53

Assuming that both edges and vertices in the bipartite graph are unweighted, the fairness of a frac-

tional allocation is usually considered based on its quotas vector alone, under some fairness measures.

4.1.2 Main Results

The main conclusion achieved are:

• The property of the fairest fractional allocations.

1. For any bipartite graph, there always exist a set of fractional allocations which are univer-

sally agreed to be the fairest by all fairness measures. Furthermore, those fairest fractional

allocations have the same quotas vector.

• The correspondence between the fairest semi-matchings and fairest fractional allocation.

1. There exists a non-trivial constant vertices (users and resources) partition such that the al-

locating of all the fairest semi-matchings and fairest fractional allocations are all within

the partitions. And the vertices partition can be achieved from one arbitrary fairest semi-

matching or one arbitrary fairest fractional allocation.

2. For each user u ∈ U , its quota difference between one fairest semi-matching M and one

fairest fractional allocation W is either 0 or bound by 1. Furthermore, the specific quota

range for a user u across all fairest semi-matchings and all fairest fractional allocations

respectively can be determined from one arbitrary fairest semi-matching or fairest fractional

allocation.
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4.1.3 Organization

This chapter is organized as below. Section 4.2 shows the existence of universally agreed fairest

fractional allocations, which includes two subsections: one for the definitions, another one for the main

proof. Section 4.3 presents the correspondence between the fairest semi-matchings and the fairest frac-

tional allocations, which also includes two subsections: one for the preliminary work which shows the

related techniques/conclusions from Chapter 3, another for the proofs of the main conclusions. Then,

this chapter is concluded in Section 4.4.

4.2 The Existence of Universally Agreed Fairest Fractional Allocations

This section proves that, given a bipartite graph, there always exist a set of fractional allocations,

universally agreed by all fairness measures, to be the fairest among all fractional allocations. Further-

more, this set of fairest fractional allocations have the same quotas vector. The proof is mainly based

on the similar techniques used to prove the existence of universally agreed fairest semi-matchings in

Chapter 2, and the definitions of Transfer and Transfer-based Comparison are generalized to be applied

on fractional allocations.

4.2.1 Definitions

Definition 4.3. (Transfer on a fractional allocation) Under a fractional allocation W of a bipartite

graph G = (U ∪R,E), let an edge sequence S = ({u1,r1},{r1,u2},{u2,r2}, . . . ,{rk−1,uk}) represents

a path starting and ending with users, and containing alternative users and resources. A Transfer

of the amount δw along with the edges sequence S, denoted as T δw where δw ∈ R and ∀i ∈ [1,k],

δw≤ w({ui,ri}), is defined as a change of weights, such that ∀i ∈ [1,k−1], w({ui,ri}) has a decrease

of the amount δw, and w({ri,ui+1}) has an increase of the amount δw. The application of Transfer
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T δw on W is the execution of the weight changes defined from T δw, which results in another fractional

allocation W ′, denoted as T δw(W ) =W ′.

Remark. If the condition ∀i ∈ [1,k], δw ≤ w({ui,ri}) doesn’t meet, then the change of weights along

with the edge sequence S is not regarded as a Transfer.

Definition 4.4. (Source and Destination users of a Transfer on a fractional allocation) Let T δw rep-

resents the Transfer along the edges sequence ({u1,r1}, · · · ,{rk−1,uk}). u1 and uk are defined as the

source and destination users of Transfer T δw, denoted as us(T δw) and ud(T δw) respectively.

Definition 4.5. (Transfer Types: Improving, Deteriorating, Neutral) Let T δw represents a Transfer on

a fractional allocation W with Q(W,us(T δw)) and Q(W,ud(T δw)) representing the quotas of the source

user us(T δw) and destination user ud(T δw) in W respectively. Apparently, when us(T δw) 6= ud(T δw),

T δw(W ) =W ′ results in the change of quota in only two user: Q(W ′,us(T δw)) = Q(W,us(T δw))−δw,

and Q(W ′,ud(T δw)) = Q(W,ud(T δw))+δw. In other words, the source user’s quota decreases by δw,

and the destination user’s quota increases by δw as the result of the application of T δw. In the special

case of us(T δw) = ud(T δw), W and W ′ has the same quotas vector.

As a result, the application of T δw on W will affect the fairness of W in only three possible ways:

• T δw could result in a fairer W ′ over W, thus T δw is denoted as an Improving Transfer (IT δw) if

Q(W,us(T δw))> Q(W,ud(T δw))+δw;

• T δw could result in a more unfair W ′ over W, thus T δw is denoted as a Deteriorating Transfer

(DT δw) if Q(W,us(T δw))< Q(W,ud(T δw))+δw and us(T δw) 6= ud(T δw);
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• T δw could result in W ′ with the same fairness as W, thus T δw is denoted as a Neutral Transfer

(NT δw), where two cases exist:

– T δw is denoted as a Straight Neutral Transfer (NT δw
S ) if Q(A,us(T δw)) = Q(A,ud(T δw))+

δw and us(T δw) 6= ud(T δw);

– T δw is denoted as a Cyclic Neutral Transfer (NT δw
C ) if us(T δw) = ud(T δw).

Definition 4.6. (Transfer-based Comparison between fractional allocations) For any pair of fractional

allocations Wx and Wy, if there exists a Transfer Sequence (T δw1
1 ,T δw2

2 , · · · ,T δwk
k ) such that T δwk

k ◦ · · · ◦

T δw2
2 ◦ T δw1

1 (Wx) = Wy. ∀i ∈ [1,k], if T δwi
i is IT δw or NT δw, then Wy is defined as not less fair than

Wx in terms of a Transfer-based Comparison, denoted as Wx �T δw Wy. Specifically, if all T δw
i are either

NT δw, then Wx is defined as equally fair with Wy, denoted as Wx ≈T δw Wy; if at least one T δw
i is IT δw,

then Wy is defined as fairer than Wx, denoted as Wx ≺T δw Wy.

If for every Transfer Sequence (T δw1
1 ,T δw2

2 , · · · ,T δwk
k ) such that T δwk

k ◦ · · · ◦T δw2
2 ◦ T δw1

1 (Wx) =Wy,

there always exist some T δwi
i , T δw j

j where i, j ∈ [1,k] such that T δw
i is IT δw, T δw

j is DT δw, then Wx and

Wy are incomparable, denoted as Wx ≺�T δw Wy.

Remark. With the restriction that δw = 1, the above definitions: Transfer, Transfer Type, Transfer-

based Comparison, becomes to the corresponding definitions on semi-matchings, which are defined in

Chapter 2.

4.2.2 Existence and Attributes of The Fairest Fractional Allocations Set

In this subsection, the key lemmas/theorems are shown for the proof of the existence of the uni-

versally agreed fairest fractional allocations, which corresponds to the key lemmas/theorems for the
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existence of universally agreed fairest semi-matchings from Chapter 2. The proofs for these lem-

mas/theorems will be omitted here, which are similar with the corresponding proofs from Chapter 2,

except the generalization of δw = 1 (for semi-matchings) to δw ∈ R, δw ∈ [0,1] (for fractional alloca-

tions).

Lemma 4.1. (Existence of a greater element than both of incomparable fractional allocations with

regard to Transfer-based Comparison) For any pair of fractional allocations Wx,Wy, if Wx ≺�T δw Wy,

then there exists at least one fractional allocation Fz satisfying that Wx �T δw Fz and Wy �T δw Fz.

Theorem 4.1. (Existence of the fairest fractional allocations with regard to Transfer-based Compari-

son) For any bipartite graph, there always exist a (maybe infinite) set of the fairest fractional allocations

with regarding to the Transfer based Comparison.

Theorem 4.2. (Existence of universally agreed fairest fractional allocations, which has no Improving

and Straight Neutral Transfers to be applied) The set of all fairest fractional allocations with regarding

to the Transfer based Comparison is the set of fractional allocations which are universally considered

the fairest by all fairness measures. Furthermore, a fractional allocation belongs to the fairest set iff

there exists no Improving Transfer IT δw and Straight Neutral Transfer NT δw
S to be applied.

Remark. (No Improving Transfer IT δw=1 existed on a fairest semi-matching) One different attribute

of the fairest semi-matchings is that: a semi-matching belong to the fairest set iff there exists no Improv-

ing Transfer IT δw=1 to be applied.

Remark. (In a fractional allocation, the existence of a Straight Neutral Transfer NT δw
S , results in

the existence of an Improving Transfer IT δw) In a fractional allocation W, if there exists one Straight
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Neutral Transfer NT δw
S along an edge sequence s, then an Improving Transfer IT δw′ where δw′ < δw

along the same edge sequence s should exist on W.

Corollary 4.1. (A local search algorithm to achieve one fairest fractional allocation) Given a bipartite

graph, starting with one arbitrary fractional allocation, by an iterative application of existed Improving

Transfers IT δw until no more found, then one fairest fractional allocation can be achieved.

Corollary 4.2. (The set of all the fairest fractional allocations have the same quotas vector) In any

bipartite graph G, all the fractional allocations have the same quotas vector, that is, Q(Wi) = Q(Wj)

where Wi, Wj represents two arbitrary fairest fractional allocations.

Remark. (The set of all the fairest allocation have the same sorted quotas vector) One different at-

tribute of the fairest semi-matchings is that: all the fairest semi-matchings have the same sorted quotas

vector but possibly different quotas vector.

Under a fairest semi-matching, a Straight Neutral Transfer might exists, and the application of a

Straight Neutral Transfer will change its quota vector but keep the same sorted quota vector. However,

under a fairest fractional allocation, there do not exist any Straight Neutral Transfer, and only might

exist some Cyclic Neutral Transfers which do not change the quota vector.

4.3 The Correspondence Between Fairest Semi-matchings and Fairest Fractional Allocations

This subsection studies on the correspondence between the set of fairest semi-matchings (F) and

the fairest fractional allocations denoted as C. In Chapter 3, we show that the quota variation of any

user among all the fairest semi-matchings is very narrow (at most differ by one) and can be predicted

from one arbitrary fairest semi-matching. This is proved by defining a partition of users (a sequence of
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ranked user sets), and showing this partition is constant among all fairest semi-matchings. Furthermore,

each partition of users are always be allocated with same set of resources. In other words, there exists a

partition of all users and resources such that the allocating of all the fairest semi-matchings are all within

the partitions. In this chapter, based on above conclusions and techniques, we achieve that: 1) the quotas

difference of each user between one semi-matching M ∈ F and one fractional allocation W ∈ C is either

one or bound by one. Moreover, the specific quota range of each user across the set F and C can be

determined from one semi-matching M ∈ F or one fractional allocation W ∈ C. 2) the constant partition

of users and resources across the set F (allocating of all semi-matchings in the set F are all within the

partitions) is also constant across the set F and the set C (allocating of all semi-matchings in the set F

and all fractional allocations in the set C are all within the partitions).

4.3.1 Preliminary: Related Techniques/Conclusions From Chapter 3

Definition 4.7. (Users Partition) Given a semi-matching M ∈F, a sequence of ranked user sets PU(M)=

(U0(M),U1(M), · · ·Ui(M), · · · ,U2m(M)) etc, where each Ui is a set of user and m is the number of re-

sources, is defined as: if a user u is covered by a Straight Neutral Transfer NTS, then u ∈ Ui(M) where

i = Q(M,us(NTS))+Q(M,ud(NTS)); otherwise, if u is not covered by any Straight Neutral Transfer

NTS, then u ∈ Ui where i = 2×Q(M,u).

Theorem 4.3. (The users partition is constant among all the fairest semi-matchings) Let Mx,My ∈F

represent two arbitrary fairest semi-matchings in a bipartite graph G = (R∪U,E), then for any i ∈

[0,2m],Ui(Mx) = Ui(My). In other words, we can say PU(Mx) = PU(My).

Theorem 4.4. (A constant partition of users and resources across the set F) Given a fairest semi-

matching M ∈ F, a sequence of ranked resource sets (R0(M),R1(M), · · ·Ri(M), · · · ,R2m(M)) where m
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is the number of resources, is defined as: if under M a resource r is assigned to the user u ∈ Ui(M),

then r ∈ Ri(M). We claim that for any i ∈ [0,2m], it has Ri(Mx) = Ri(My) where Mx,My ∈ F represent

two arbitrary fairest semi-matchings in a bipartite graph. In other words, the vertices (users and re-

sources) partition P(M) = (V0(M),V1(M), · · ·Vi(M), · · · ,V2m(M)) where Vi(M) = {Ui(M),Ri(M)},

is constant across the set F such that ∀i ∈ [0,2m], Vi(Mx) = Vi(My) where Mx,My ∈ F.

Corollary 4.3. (The quota variation of any user among all the fairest semi-matchings can be pre-

dicted from one arbitrary fairest semi-matching) Let M represents one arbitrary fairest semi-matching

in a bipartite graph G = (R∪U,E). ∀u ∈U, assume u ∈ Ui(M), if i is odd, its quota from any fairest

semi-matchings is either (i+1)/2 or (i−1)/2; if i is even, then its quota from any fairest semi-matchings

is exactly i/2.

For the sake of clarification, we will omit the notation of a specific semi-matching, and let P =

(V0,V1, · · ·Vi, · · · ,V2m) where Vi = {Ui,Ri} represent the constant vertices (users and resources) parti-

tion among all the fairest semi-matchings.

4.3.2 Main Conclusions

Theorem 4.5. (For each user, its quota difference among one arbitrary M ∈ F and one arbitrary

W ∈ C is either 0 or bound by 1, and its specific quotas range across F and C can be determined from

the vertices partition P) In a bipartite graph G = (R∪U,E), ∀u ∈U, assume u ∈ Ui, then ∀M ∈ F,

W ∈ C, if i is odd, Q(M,u) = (i + 1)/2 or (i− 1)/2, Q(W,u) ∈ ((i− 1)/2,(i + 1)/2); if i is even,

Q(M,u) = Q(W,u) = i/2.

Proof. Let P = (V0,V1, · · ·Vi, · · · ,V2m) where Vi = {Ui,Ri} represent the constant vertices (users and

resources) partition among all the fairest semi-matchings.
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Construction of a bipartite sub-graph for each vertices set Vi: for each Vi = {Ui,Ri}, a bipartite

sub-graph can be constructed as Gi = (Ri∪Ui,E i) where E i =Ri×Ui ⊂ E, such that ∀e = {r,u} where

r ∈ Ri(M), u ∈ Ui, e ∈ E i if and only if e ∈ E.

Let W i represents one fairest fractional allocation for Gi. We show in Lemma 4.2 that ∀u ∈ Ui, if i

is even, then Q(W i,u) = i/2; if i is odd, then Q(W i,u) ∈ ((i− 1)/2,(i+ 1)/2). Furthermore, it can be

proved that the allocation Wcomb = {W 1,W 2, · · · ,W i, · · · ,W 2m} is a fairest fractional allocation for the

original bipartite graph G (that is, Wcomb ∈ C), which is shown in Lemma 4.3.

Therefore, ∀u ∈ Ui, if i is odd then it has ∀M ∈ F, Q(M,u) = (i+ 1)/2 or (i− 1)/2 (from Corol-

lary 4.3), and Q(Wcomb,u) ∈ ((i− 1)/2,(i + 1)/2); if i is even, then ∀M ∈ F, Q(M,u) = i/2 (from

Corollary 4.3) and Q(Wcomb,u) = i/2. Furthermore, because all the fairest fractional allocations W ∈ C

have the same quotas vector, thus under any W ∈ C it has, if i is odd, Q(W,u) ∈ ((i−1)/2,(i+1)/2); if

i is even, Q(W,u) = i/2.

Lemma 4.2. For each W i and u ∈Ui, if i is even, Q(W i,u) = i/2; if i is odd, Q(W i,u) ∈ ((i−1)/2,(i+

1)/2).

Proof. We prove it from the two cases: i is even and i is odd.

• (i is even) It indicates for any fairest semi-matching, all users in Ui get exactly the same quota i/2

and the set of all their allocated resources is Ri. Thus, in the bipartite sub-graph Gi = (Ri∪Ui,E i),

a fairest fractional allocation W i can not achieve a fairer allocation, then ∀u ∈Ui, Q(W i,u) = i/2.

• (i is odd) It indicates for any fairest semi-matching each user in Ui gets a quota of (i− 1)/2 or

(i+ 1)/2, and the set of all their allocated resources is Ri, then in the bipartite sub-graph Gi =
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(Ri∪Ui,E i), a fairest fractional allocation W i should meets ∀u ∈ Ui, Q(W i,u) ∈ [(i− 1)/2,(i+

1)/2].

Moreover, we can prove that ∀u ∈ Ui, Q(W i,u) can not be (i−1)/2 or (i+1)/2. In the bipartite

sub-graph Gi = (Ri ∪Ui,E i), an initial fractional allocation W i
init can be constructed as follows:

each user in Ui has the same resources allocation between W i
init and one arbitrary fairest semi-

matching under G. Then, starting with W i
init , one fairest fractional allocation W i under Gi can

be achieved by the iterative applications of Improving Transfers IT δw. We show that ∀u ∈ Ui,

Q(W i,u) can not be (i+ 1)/2, based on the following two claims: 1) if Q(W i
init ,u) 6= (i+ 1)/2,

then Q(W i,u) 6= (i+ 1)/2. The reason is that under W i
init each user in Ui has a quota of either

(i− 1)/2 or (i+ 1)/2, thus the iterative applications of Improving Transfers can not increase

the quota of one user up to (i+ 1)/2. 2) if Q(W i
init ,u) = (i+ 1)/2, then Q(W i,u) < (i+ 1)/2.

Suppose Q(W i
init ,u) = Q(W i,u) = (i+1)/2, then a contradictory will be shown. By the definition

of Ui where i is odd, under W i
init u should be covered by one Neutral Transfer NT δw=1 (assume

along the edge sequence S = ({u1,r1}, . . . ,{rk−1,uk})) with u1 = u and uk as the source and

destination users). We show that if Q(W i,u) = (i+ 1)/2, then under W i there should still exist

an Improving Transfer IT δw along the same edge sequence S. The reasons are: a) because under

W i
init = (w(e))|E i|, ∀ j ∈ [1,k− 1], w({u j,r j}) = 1, then under W i = (w(e))|E i|, it should have

∀ j ∈ [1,k− 1], w({u j,r j}) > 0. In other words, w({u j,r j}) can not be decreased from one to

zero by the applications of Improving Transfers on W i
init . Therefore, under W i the weight change

along the same edge sequence S can still form a Transfer. b) Assume Q(W i,u) = (i+1)/2. then

it should have Q(W i,u1)> Q(W i,uk) where u1 = u, which indicates an Improving Transfer IT δw
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along the edge sequence S can be found on W i. In conclusion, ∀u ∈ Ui, Q(W i,u) 6= (i+ 1)/2.

Furthermore, by similar deduction, it has ∀u ∈ Ui, Q(W i,u) 6= (i−1)/2.

Lemma 4.3. Wcomb = {W 1,W 2, · · · ,W 2m} is a fairest fractional allocation for the bipartite graph G.

Proof. Obviously, W is fractional allocation under G. Then we prove that W is a fairest fractional

allocation by showing there exists no Improving Transfer IT δw and no Straight Neutral Transfer NT δw
S

to be applied on W .

Assume there exists one Transfer T δw on the allocation W which is an Improving Transfer or Straight

Neutral Transfer. Obviously, all the edges included in T δw must be from at least two different bipartite

sub-graph, otherwise, it contradicts with that W i is a fairest fractional allocation under Gi =(Ri∪Ui,E i).

Suppose there exist two adjacent edges from T δw: ea = {ua,ra} and eb = {ra,ub} such that ua ∈ Ui and

ub ∈ U j. Then from Lemma 4.4 it should has i < j. Thus, it can be deduced that Q(W,ua)≤ Q(W,ub).

Then based on an iterative deduction, it can be achieved that Q(W,us) ≤ Q(W,ud) where us and ud

represent the source user and destination user of Transfer T δw. That indicates T δw can not be either an

Improving Transfer IT δw or a Straight Neutral Transfer NT δw
S . Therefore, W is one fairest fractional

allocation under G.

Lemma 4.4. If there exists an edge e = {r,u} such that r ∈ Vi, u ∈ V j where i 6= j, then i < j.

Proof. Suppose there exists an edge e= {r,u} such that r ∈Vi, u∈V j where i> j. Let M ∈F represents

one fairest semi-matching under bipartite graph G, and let u′ ∈ Vi represents the user such that {r,u′} ∈
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M. Then, the edge sequence T = ({u′,r},{r,u}) is a Transfer on M. And it has Q(M,u′) ≥ Q(M,u)

because of i > j.

• If Q(M,u′)> Q(M,u)+1, then T is an Improving Transfer on the fairest semi-matching M.

• If Q(M,u′) = Q(M,u)+ 1, then T is a Neutral Transfer, which means both u′ and u should be

from the same user set Uk where k = Q(M,u′)+Q(M,u).

• If Q(M,u′) = Q(M,u), then based on the definition of the sequence of user sets (Definition 4.7),

because users u′ and u are from difference user sets but have the same quota, then it is easy

to derive that either u′ is covered by a Straight Neutral Transfer with the destination user of u′,

or u is covered by a Straight Neutral Transfer with the source user of u. Any one of the two

Straight Neutral Transfers, combined with the Transfer T , can form a Straight Neutral Transfer

which covers both u′ and u. That indicates both u′ and u are from the same user set Uk where

k = 2×Q(M,u′)+1 or k = 2×Q(M,u)−1.

All the three cases lead to a contradictory. Thus it should meets i < j.

Theorem 4.6. (The vertices partition is also constant among all fairest fractional allocations) In a

bipartite graph G = (R∪U,E), let P = (V0,V1, · · ·Vi, · · · ,V2m) where Vi = {Ui,Ri} represent the

constant vertices (users and resources) partition among all the fairest semi-matchings. For any edge

ecross = {r,u} where r ∈ Vi, u ∈ V j and i 6= j, then ∀W ∈ C where W = (w(e))|E|, it has w(ecross) = 0.

Proof. It has been proved that Wcomb =(w(e))|E| is a fairest fractional allocation which meets w(ecross)=

0. The following shows that can be met for any fairest fractional allocation W ∈ C.
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Let Vh = {Rh,Uh} represents the “highest” vertices set such that ∀Vi ∈P , it has h ≥ i. From

Lemma 4.4, it can be derived that under Vh there do not exist any “outgoing edges” (edges e = {r,u}

such that r∈Vh, u∈Vi where i 6= h), and there might exist only some “incoming edges” (edges e= {r,u}

such that r∈Vi, u∈Vh where i 6= h). Then, those possible “incoming edges” will not be used (the weight

is 0) by any fairest fractional allocation W ∈ C. Otherwise, the total quotas of all users in Uh under W

will be more than that under Wcomb, and that indicates Q(W ) 6= Q(Wcomb) where W,Wcomb ∈ C which is

a contradictory. By the iterative deduction (on the remaining vertices sets), we can achieve that all the

ecross = {r,u} where r ∈ Vi, u ∈ V j and i 6= j, will not be used by any fairest fractional allocation, that is

∀W = (w(e))|E| ∈ C, it has w(ecross) = 0.

Corollary 4.4. (The vertices partition P can be obtained from one arbitrary fairest fractional allo-

cation) For one arbitrary fairest fractional allocation W ∈ C where W = (w(e))|E|, ∀u ∈U, if Q(W,u)

is an integer, then u ∈ Ui where i = 2×Q(W,u); else, u ∈ Ui where i = bQ(W,u)c+ dQ(W,u)e. After

that, ∀r ∈ R, if the edge e = {r,u} meets w(e) 6= 0 and u ∈ Ui, then r ∈ Ri.

Corollary 4.5. The specific quotas range for each user among all fairest semi-matchings and all

fairest fractional allocations, can be predicted from one arbitrary fairest semi-matching or one arbi-

trary fairest fractional allocation.

Under a bipartite graph, the vertices partition P can be obtained from one arbitrary fairest semi-

matching or one arbitrary fairest fractional allocation (achieved from Theorem 4.4 and Corollary 4.4).

Then the specific quotas range for each user among all fairest semi-matchings and all fairest fractional

allocations, can be predicted from the vertices partition P (achieved from Theorem 4.5).
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4.4 Conclusion

This chapter studies on the corresponding between the set of fairest semi-matchings (denoted as F)

and the set of fairest fractional allocations (denoted as C). The fairest fractional allocations are defined

as the fairest ones under the scenario of divisible resources. The main contributions of this chapter

include: 1) It is proved that there always exist a set of universally agreed fairest fractional allocations

under a bipartite graph, and they have the same quotas vector. 2) The constant vertices (resources and

users) partition across the set F is also constant across both the set F and the set C - the allocating of

all M ∈ F and all W ∈ C are all within the partitions. 3) for each user, the quota difference between one

M ∈ F and one W ∈ C is either zero or bound by one, and its specific quota ranges across the set F and

C can be determined from one M ∈ F or W ∈ C.



CHAPTER 5

CONCLUSION AND OPEN PROBLEMS

5.1 Conclusions

This dissertation focuses on the properties of the fairest semi-matchings in bipartite graphs. The

previous works related to the semi-matching problem, mainly focus on the algorithms design to achieve

one fairest semi-matching with respect to one fairness measure. One big concern about the fairest semi-

matchings is that whether they are always the fairest no matter which fairness measure is picked? This

dissertation addresses this concern and proves the existence of a set of fairest semi-matching(s) which

are universally agreed by all fairness measures, and moreover, all of them have the same sorted quotas

vector. This work is our first main contribution.

Then we explore deeper about this set of fairest semi-matchings F on how all of them are related

or what they have in common. The main contribution achieved are: given a bipartite graph, from one

arbitrary fairest semi-matching (which is easy to achieve), we can understand some important attributes

for the entire set of fairest semi-matchings: 1) the classification of the edges in the bipartite graph -

whether each edge is used by all, none, or some of the fairest semi-matchings; 2) the partition of user

and resource vertices in the bipartite graph - the allocating of all the fairest semi-matchings are all within

the partitions, and each user vertex has a very narrow quota range (at most differ by 1, and is predictable

from the knowledge gained from one fairest semi-matching) among all the fairest semi-matchings. This

work is our second main contribution.

67
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Furthermore, we consider the scenario that the resources are divisible which indicates each resource

can be split and allocated to maybe more than one users. In this work, we explore that the similarity

between the set of fairest semi-matching (F) and the set of fairest fractional allocations (C). And we

conclude that the constant vertices partition across all the fairest semi-matchings is also constant across

all the fairest fractional allocations - the allocating of all fairest semi-matchings and all the fairest frac-

tional allocations are always within the partitions. Moreover, for each user, the difference of its quotas

between one fairest semi-matching and one fairest fractional allocation is limited (either 0 or bound by

1) and predictable. This work is our third main contribution.

All our main contributions are formally concluded as below.

1. Though the disagreement among numerous fairness measures on semi-matchings comparison, we

prove that there always exist a set of the fairest semi-matchings F which are universally agreed

to be equal in fairness by all fairness measures. And a semi-matching belongs to the fairest set iff

there exists no Improving Transfer to be applied. Then it can be deduced that the semi-matchings

M in the fairest set F might have different quotas vector, but they all have the same sorted quotas

vector, that is, ∀Mi,M j ∈ F,Q↑(Mi) = Q↑(M j).

To prove that, a Transfer based Comparison among semi-matchings is defined, which induces a

preordered set of all semi-matchings. Then we prove that there always exist a greater element

than a pair of incomparable elements in this preordered set. Based on that, the existence of the

greatest elements can be proved, and on the greatest elements no Improving Transfer can be

applied. Subsequently, we show that the proposed Transfer-based Comparison can strictly imply

the Majorization order. In other words, the fairest semi-matchings under the proposed Transfer-
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based Comparison are always regarded as fairest under Majorization. To our best knowledge, all

existing fairness measures in literature are compatible with Majorization. In conclusion, for any

bipartite graph, there always exists a set of equally fair semi-matchings, which are universally

regarded as the fairest ones, by all existing fairness measures. Moreover, it can be derived that all

fairest semi-matchings have the same sorted quotas vector.

2. This piece of work focuses on the understanding of all fairest semi-matching from one. We prove

that from one arbitrary fairest semi-matching M, one can determine

• The classification of all edges into Eall , Esome, Enone. We prove that all fairest semi-matchings

have the same set of Neutral Transfer Covered Edges which is equal to Esome. Then an ap-

proach to identify the edge classification based on one fairest semi-matching can be derived.

• Each user has a very narrow quota range (at most differ by 1, and is predictable from the

knowledge gained from one fairest semi-matching) among all the fairest semi-matchings.

In order to achieve that, a sequence of ranked user sets under a fairest semi-matching M

is defined as P(M) = (U0(M),U1(M), · · ·Ui(M), · · · ,U2m(M)) where m is the number of

resources, which can be shown as a partition of all users. Then we prove that all fairest

semi-matching has the same user partition. Thus the following conclusion can be achieved:

∀u ∈U , assume u ∈ Ui(M), if i is odd, its quota from any fairest semi-matchings is either

(i+1)/2 or (i−1)/2; if i is even, then its quota from any fairest semi-matchings is exactly

i/2.

• A constant vertices (users and resources) partition across the set F - the allocating of all

the fairest semi-matchings are all within the partitions. In order to achieve that, a sequence
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of ranked resource sets, R0(M),R1(M), · · ·Ri(M), · · · ,R2m(M) where m is the number of

resources is defined as: if under M a resource r is assigned to the user u ∈ Ui(M), then

r ∈ Ri(M). We prove that for any i ∈ [0,2m], it has Ri(Mx) = Ri(My) where Mx,My ∈ F.

3. This piece of work focuses on the similarity between the fairest semi-matchings and the fairest

fractional allocations. The main theorems are shown as below. In a bipartite graph G= (R∪U,E),

let P = (V0,V1, · · ·Vi, · · · ,V2m) where Vi = {Ui,Ri} represent the constant vertices (users and

resources) partition across the set F.

• The constant vertices partition across the set F is also constant across the set C. For any edge

ecross = {r,u} where r ∈ Vi, u ∈ V j and i 6= j, then ∀W = (w(e))|E| ∈ C, it has w(ecross) = 0.

• ∀u ∈U , assume u ∈ Ui, then ∀M ∈ F, W ∈ C, if i is odd, Q(M,u) = (i+1)/2 or (i−1)/2,

Q(W,u) ∈ ((i−1)/2,(i+1)/2); if i is even, Q(M,u) = Q(W,u) = i/2.

5.2 Open Problems

This section discusses a few possible extensions of our work and also reviews related open problems.

1. How does the graph topology impact on the fairness of the fairest semi-matchings and the

number of all fairest semi-matchings?

Obviously, the bipartite graph topology such as dense/sparse, balanced/unbalance, etc. will deter-

mine some properties of the set of the fairest semi-matchings, such as the fairness of the fairest

ones, the size of the set, etc. One extension of our work could be the research on how they are

determined by the graph topology. Some possible benefits of this research includes but not limited
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to: the achievable optimal fairness (the fairness of the fairest semi-matchings) might be estimated,

before the achieving of one fairest semi-matching which could be expensive especially for large-

scale network; the estimated number of the optimal solutions could be one important factor for

some theoretical or practical applications.

Some insights of this work are shows as below. 1) With regarding to the optimal fairness, one

impact factor might be the skewness of the vertices degree where the degree of each user/resource

is defined as the number of connected resources/users in a bipartite graph. Another impact factor

might be connectivity of the bipartite graph, which can describe the “freedom” of the resource

re-allocating. For instance, under the full access where every resource can be accessed by every

user, then the evenly distributed allocations can be achieved. 2) With regarding to the number of

all fairest semi-matchings, the Neutral Transfers play a key role. As shown in this dissertation,

the application of one Neutral Transfer will generate one new fairest semi-matching. Thus, the

number of Neutral Transfers and how they overlapped with each other should be important factors

for the total numbers of the fairest semi-matchings. Furthermore, the similarity between the fairest

fractional allocations and the fairest semi-matching might be helpful for this number counting.

One fairest fractional allocation can be achieved by solving a linear programming problem, and

the rank of coefficient matrix related to the linear programming might be correspondent to the

number count of all fairest semi-matchings.

2. How does the graph topology impact on the edge classification profile?

As shown in this dissertation, from one arbitrary fairest semi-matching, all edges can be classified

into the edges used by all/some/none (Eall , Esome, Enone) of the fairest semi-matchings. The edge
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classification profile can be described as the size ratios of Eall , Esome, Enone over E. One hypothesis

is that a bipartite graph with dense edges will show a high ratio of Esome, because of the possible

large number of alternative allocating options. Moreover, whether a graph is balanced or unbal-

anced, might also affect the ratios, but it is not obvious about the relationship between them. The

exploration of how the edge classification profile affected by the graph topology, is value-able.

The edges utilization for achieving the optimal solution thus can be estimated, which provides a

guide on the construction of an “efficient” or “cheap” graph for achieving a fairest allocation.

3. The fairest semi-matching problem on weighted bipartite graph

One related open question in literature is the fairest semi-matching problem on weighted bipartite

graph. The settings of that problem are the same with that of the problem studied in this dis-

sertation except the resources are weighted, and the quota of a user is defined as the sum of all

weights from its allocated resources. Then the goal is for achieving a fairest semi-matching and

the fairness is considered based on the sorted quotas vector. This problem has been proved to be a

NP-hard problem, and many approximate algorithms have been proposed to improve the solution.

Some insights of this problem can be derived from the conclusions achieved in this paper. We

have concluded some on the relationship between the fairest semi-matchings (with unit indivisible

resources) and the fairest fractional allocations (with unit divisible resources), and shown the

fairest semi-matchings are similar with the fairest fractional allocations. Now for the weighted

bipartite graph, if we relax the resources as the ones which can be divided into unit resources,

then it actually becomes to the same problem (the fairest semi-matching on unweighted bipartite

graph) studied in this dissertation. We hypothesize that, the relationship between the optimal
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solutions under weighted resources and unweighted resources can be deduced from the same

idea for the relationship between the optimal solutions under unit indivisible resources and unit

divisible resources. If this hypothesis can be testified, it might be able to provide the foundation

for approximate algorithms, or the analysis of approximate ratio for some algorithms.
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