
Distilling Trustworthy Knowledge from Crowdsourced Data

BY

Sihong Xie
B.E., Software Engineering, Sun Yat-Sen University, 2008
M.E., Software Engineering, Sun Yat-Sen University, 2010

DOCTORAL THESIS
submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy in Computer Science
in the Graduate College of the

University of Illinois at Chicago, 2016

Chicago, Illinois

Defense Committee:
Philip S. Yu, Chair and Advisor
Bing Liu
Brian Ziebart
Wei Fan, Big Data Lab, Baidu Research
Yuheng Hu, Information and Decision Sciences, UIC

This thesis is dedicated to my family.

ii

ACKNOWLEDGMENTS

First I would like to thank my PhD advisor Professor Philip Yu, who is extremely supportive

in all aspects. I learned from him about how to conduct cutting-edge research, and his experi-

ence and insights that are priceless in my future career for many years to come. I am grateful

to Dr. Wei Fan, who led me into the field of data mining and has been a wonderful mentor and

collaborator for many years. Professor Bing Liu is always full of novel ideas, which inspired

many of my research works. I would like to thank Professor Brian Ziebart for introducing me

to the fanscinating area of machine learning. Professor Yuheng Hu has been very encouraging,

and provided valuable advice for my academic job search.

My life at UIC has become very memorable through my interactions with the following

co-workers, faculties, staffs and friends: Yan Xie, Yuchen Zhao, Xiangnan Kong, Xiaoxiao Shi,

Fengjiao Wang, Shuyang Lin, Guan Wang, Xiaokai Wei, Weixiang Shao, Qingbo Hu, Chun-Ta

Lu, Jingyuan Zhang, Jiawei Zhang, Bowen Dong, Bokai Cao, Chenwei Zhang, Vahid Noroozi,

Hu Xu, Lei Zheng, Lifang He, Guoqiong Liao, Chuan Shi, Xi Zhang, Senzhang Wang, Guiling

Li, Xiangli Chen, Zhiyuan Chen and Huayi Li.

Last but not least, my family has been supportive in my pursue of the degree. I will not be

able to complete my degree without their supports and love. My deepest love goes to them.

SX

iii

CONTRIBUTION OF AUTHORS

Chapter 1 introduces various research problems in crowdsourcing, along with a short history

and examples. The organization of the thesis is also presented. Chapter 2 is a a published

manuscript (59) for which I am the primary author. Dr. Wei Fan and Prof. Philip S. Yu

helped with the revision of the paper.

Chapter 3 is a a published manuscript (62) for which I am the primary author. Xiangnan

and other co-authors shared with me their opinions and helped me proof-read the paper.

Chapter 4 presents a published paper (60) for which I formulated the problem, proved the

theorems and conducted the experiments. I started the research of this problem when I was

an intern at IBM T.J Watson research under the supervision of Dr.Wei Fan. Prof. Jing Gao

from University of Buffalo pointed me to the issue of overfitting in consensus maximization.

All co-authors helped me proof-read the paper.

Chapter 5 presents a paper (61) for which I was the primary author. The other authors

helped proof-reading the paper.

Chapter 6 presents a published paper (63) for which I was the primary author. The other

authors helped proof-reading the paper.

Chapter 7 presents a published paper (64). for which I was the primary author. The other

authors helped proof-reading the paper.

iv

TABLE OF CONTENTS

CHAPTER PAGE

1 INTRODUCTION . 1
1.1 What is crowdsourcing . 1
1.2 A short history of crowdsourcing research 3
1.3 Organization of the thesis . 4

2 CROWD COMPETENCE-BASED KNOWLEDGE DISCOVERY 6
2.1 Problem statement . 6
2.2 Consensus maximization . 8
2.3 Iterative Re-weighted Consensus Maximization 11
2.3.1 A probabilistic View of IRCM 16
2.4 Experiments . 19
2.4.1 Baseline Methods . 20
2.4.2 Overall Performance Study . 21
2.4.3 The effectiveness of filling up missing labels 23
2.4.4 Sensitivity Study . 25

3 KNOWLEDGE DISCOVERY FROM MULTI-LABELED CROWD-
SOURCED DATA . 27
3.1 Problem statement . 27
3.2 Preliminary . 28
3.3 Multilabeled Consensus Maximization for Ranking Loss . . . 30
3.3.1 Analysis of MLCM-r . 33
3.4 Multilabel Consensus Maximization for microAUC 37
3.4.1 microAUC and its properties . 37
3.4.2 MLCM-a . 38
3.5 Experiments . 42
3.5.1 Datasets . 42
3.5.2 Evaluation Metrics . 43
3.5.3 Baselines . 44
3.5.4 Experiment settings . 44
3.5.5 Results . 45

4 THEORETICAL ANALYSIS OF MULTI-CLASS CROWDSOURCED
DATA FUSION . 48
4.1 Introduction . 48
4.2 Overfitted Consensus Maximization 52
4.2.1 CM overfits . 52

v

TABLE OF CONTENTS (Continued)

CHAPTER PAGE

4.3 Class-Distribution Regularized Consensus Maximization . . . 54
4.3.1 Regularization over class distributions 54
4.3.2 Optimization of the Class-distribution Regularized Model . . 56
4.3.3 Projection to the Probabilistic Simplex 59
4.4 Generalization Error of RCM . 60
4.5 Experimental Results . 65
4.5.1 Experimental Settings . 65
4.5.2 Overfitting in Consensus Maximization 67
4.5.3 Accuracy . 70
4.5.4 Convergence Study . 71

5 DISTILLING TRUSTWORTHY CROWDSOURCED RATINGS
VIA SINGLETON SPAMMING ATTACK DETECTION 72
5.1 Background and Motivation . 72
5.2 Singleton Review/Rating Spam Detection Model 75
5.2.1 The Model of Reviewer Behavior 75
5.2.2 A Correlated Temporal Anomalies Discovery based Approach 77
5.2.2.1 Time Series Construction . 77
5.2.2.2 Correlated Abnormal Patterns Detection in Multidimensional

Time Series . 79
5.2.2.3 A Hierarchical Framework for Robust Singleton Review Spam

Detection . 84
5.3 Experiments . 86
5.3.1 Review Data Description . 86
5.3.2 Human Evaluation . 87
5.3.2.1 Suspicious Store Detection . 87
5.3.2.2 Singleton Reviews on a Detected Store 88
5.3.3 Spam Detection Case Study . 89
5.3.3.1 First Case Study . 89
5.3.3.2 Second Case Study . 93
5.3.3.3 Third Case Study . 94

6 DEBIASING CROWDSOURCED RATINGS VIA CONSENSUS
RANKING DUAL TRANSFER . 96
6.1 Introduction . 96
6.2 Preliminary . 98
6.2.1 Unsupervised bias correction . 99
6.2.2 Semi-supervised bias correction 101
6.3 Correcting crowd bias via transfer learning 101
6.3.1 Two product-centric single transfer strategies 102
6.3.1.1 Product rating single transfer 102
6.3.1.2 Product ranking single transfer 102

vi

TABLE OF CONTENTS (Continued)

CHAPTER PAGE

6.3.2 A robust dual transfer approach 104
6.3.2.1 Anchor reviewer reliability estimation and confident anchor

reviewer identification . 104
6.3.2.2 Incorporating reviewer reliability in the single transfer strategy 105
6.3.3 Computational complexity analysis and incremental model up-

date . 106
6.4 Experiments . 107
6.4.1 Datasets and Performance Metrics 107
6.4.2 Baselines and experimental protocol 108
6.4.3 Results . 109
6.4.3.1 Sensitivity study . 110

7 A CONTEXT-AWARE APPROACH TO DETECTION OF SHORT
IRRELEVANT TEXTS . 112
7.1 Introduction . 112
7.2 Irrelevant content detection . 115
7.3 Context-Agnostic Detection Models 119
7.3.1 Simple Language Model . 119
7.3.2 Probabilistic Topic Models . 120
7.3.3 Matrix Factorization based Models 121
7.3.4 Detection Signals based on Context-Agnostic Models 122
7.4 Context-Aware Detection Signals 123
7.4.1 Native Contexts . 123
7.4.2 Early Detection of Irrelevant Comments 126
7.5 Experiments . 129
7.5.1 Preparation of Datasets . 129
7.5.2 Experimental Settings and Results 130

COPYRIGHTS . 139

CITED LITERATURE . 147

VITA . 153

vii

LIST OF TABLES

TABLE PAGE

I UNCERTAIN AND INCOMPLETE ANSWERS IN CROWDSOURC-
ING . 7

II NOTATIONS FOR CONSENSUS MAXIMIZATION 9

III NOTATIONS FOR DATA . 12

IV SUMMARY OF DATASETS . 19

V Overall Performance . 21

VI NOTATIONS . 29

VII NOTATIONS FOR MLCM-R . 32

VIII DATASETS . 42

IX RESULTS ON ENRON DATASET . 46

X RESULTS ON MEDICAL DATASET 46

XI RESULTS ON RCV1 SUBSET 1 DATASET 46

XII RESULTS ON RCV1 SUBSET 2 DATASET 47

XIII RESULTS ON SLASHDOT DATASET 47

XIV RESULTS ON BIBTEX DATASET 47

XV RUNNING CM EXAMPLE . 51

XVI NOTATIONS . 51

XVII DATASETS AND BASE MODELS . 66

XVIII Overall Performance on Text Classification Tasks 68

viii

LIST OF TABLES (Continued)

TABLE PAGE

XIX HUMAN EVALUATION RESULTS ON STORES 88

XX HUMAN EVALUATION RESULTS ON REVIEWS 89

XXI NOTATIONS . 99

XXII CHARACTERISTICS OF RATING DATASETS 108

XXIII NOTATIONS . 120

XXIV CONTEXT-AGNOSTIC IRRELEVANT COMMENTDETECTION
SIGNALS . 123

XXV DATASET CHARACTERISTICS . 130

ix

LIST OF FIGURES

FIGURE PAGE

1 Bipartite graph used in CM . 10

2 Overall accuracy comparison . 21

3 Accuracies of EM-PMLA and EM-SLME with different percentage of
missing labels completed . 24

4 Accuracies of IRCM with varying number of iterations 26

5 Applying BGCM to multilabel prediction combination 30

6 Bipartite graph for MLCM-r and its collapse to group nodes 31

7 Comparison of ranking loss and microAUC 39

8 Hypothesis space of various methods: the tips of the triangles represent
the bases eℓ . 54

9 Consensus Loss . 68

10 Consensus loss and entropy of CM and RCM 69

11 Convergence of RCM . 70

12 Bursty Patterns Detected in Store 24779 82

13 Contributions of reviewers . 86

14 Anomaly detection on multi-scale multidimensional time series 90

15 Topic Hotness Trend . 90

16 Bursty Patterns Detected in Store 24938 94

17 Overall comparisons of the proposed method and the baselines 110

x

LIST OF FIGURES (Continued)

FIGURE PAGE

18 Sensitivity of CRDT (“best” indicates the baseline with the best perfor-
mance) . 110

19 Early detection as a real world problem 113

20 Distribution of length of comments . 119

21 Context-Agnostic vs. Context-Aware methods 125

22 Transferred Contexts . 128

23 Effectiveness of Native Context on the News dataset 131

24 Effectiveness of Native Context on the Blog dataset 132

25 Precision-Recall Curves for the context-agnostic and context-aware de-
tections . 137

26 Effectiveness of Transferred Contexts on the News dataset 138

xi

SUMMARY

Crowdsourcing, a technique referring to sourcing data from a large crowd of human workers,

has become an effective, efficient and scalable data collecting paradigm in domains like text

and image tagging, spam detection, product rating and ranking, etc., that are easier for human

beings than for computers. However, the crowdsourced data are usually noisy, incomplete,

errorous due to incompetence of crowdsourcing workers, malicious injection of false information,

etc., leading to trustworthiness issues in the crowdsourced data. In this thesis, I explore the

issues in two settings: 1) crowdsourcing with a panel and 2) crowdsourcing in the wild.

Under the first setting, in Chapter 2, I model, infer and exploit the crowdsourcing work-

ers’ competences to better sift out the less accurate workers and emphasize the input from

more reliable ones. The problem is modeled in a probabilistic way, with an EM (Expectation

Maximization) algorithm inferring the latent variables. In Chapter 3, I handle crowdsourced

multi-labeled annotations for images or texts. I propose two frameworks, one based on prop-

agation over graph and the other based on a probabilistic model, to jointly infer the label

correlations and the more trustworthy multi-labeled annotations. In Chapter 4, I explore the

theorectical aspect of distilling trustworthy information from crowdsourced data with a panel.

In particular, using the (SRM) Structural Risk Minimization framework, I show that previous

methods either under-fit or overfit the crowdsourced data in seeking for trustworthy informa-

tion. I then propose a large margin based framework to find the best parameter space for

distillation of trustworthy information from crowdsourced data.

xii

SUMMARY (Continued)

The situations are quite different when crowdsourcing information from a crowd in the wild,

such as rating and ranking systems where a large number of unknown workers contribute their

opinions. The challenges mainly come from malicious workers in the crowd and the goal is to

detect and remove such workers. In Chapter 5, I study singleton rating attacks to such systems.

Such attacks are widely adopted by attackers due to significant financial incentive and the well-

covered trails of attacks. I propose a time series pattern mining based approach to collectively

detect such attacks. Case studies show that the detected time windows do contain convincing

evidences of singleton rating attacks, which can be reviewed and removed by domain experts

to restore a more trustworthy ratings and ranking. In Chapter 6, I study various biases in the

crowdsourced ratings due to sample selection bias and subjectivity. Then I propose a transfer

learning based iterative bias correction method that is efficient in terms of human supervision.

The method is shown to be able to restore the relative rankings of more pairs of products,

and can converge in a few iterations. Lastly, in Chapter 7, I propose a framework based on

dimension reduction to detect the irrelevant text comments crowdsourced on social medias.

Such irrelevant comments usually carry untrustworthy information and can be harmful to the

visitors of the social medias. I propose a novel concept called “local language model” that is

effective in capturing the context-aware sementics of the terms, such that irrelevant comments

can be more effectively detected.

xiii

CHAPTER 1

INTRODUCTION

1.1 What is crowdsourcing

Traditionally, extracting knowledge from data is done by domain experts. For example,

botanists examine and recognize the pedals of iris (data) to determine the species of the spe-

cific plant, while editors read news articles (data) and put them under the suitable categories

(knowledge). With huge amounts of data being generated every second, it is becoming more

and more expensive to extract accurate knowledge in the speed and scale that the data are being

generated, simply because that the labors of the human experts are not scalable. Crowdsourcing

is a technique that uses a crowd of inexpensive non-experts to help alleviate such limitation in

knowledge extraction. Specifically, human beings are used as “sensors” to measure the unknown

information, a process called “crowdsourcing”, and the sensed (or crowdsourced) data are then

processed to distill the desirable information. Formally, a human being involved in crowdsourc-

ing is defined as a crowdsourcing worker, and the task of measuring a piece of information is

defined as a crowdsourcing tasks. Examples includes:

• in news categorization or image digitalization, multiple non-experts can provide tags to

the contents as they consume the contents. These tags become useful knowledge that

describes the contents that would be otherwise very time consuming to be labeled by

domain experts.

1

2

• in e-commerce and recommender systems, rating and textual comments are two types

of human knowledge about the entities such as products and online contents. Ratings

reflect the quality of the entities, while comments are free and unstructured texts that

can provide many properties of the entities.

• in online question answering websites like Yahoo Answer, Quora and Stackoverflow, the

crowd of users is driven by a reward system and answer a large number of questions in a

timely and accurate manner. The knowledge in such systems is embedded in the answers.

• machine translation systems are trained over a huge amount of labeled data, which can

take linguists many hours to label. With crowdsourcing techniques like Duolingo, large

number of language learners are enrolled to translate many documents as exercises and

later as training data for machine translation systems.

• in medicine, bioinformatics and molecular biology, it is important to understand how pro-

teins fold in the three-dimensional space. The task is used to be solved by computational

intensive bioinformatic algorithms, with less satisfactory results due to the complexity of

the problem. Foldit is a crowdsourcing project that involves human workers in the process

of protein folding, with gamification increasing the engagements of the workers in solving

the folding problems. The crowdsourcing technique has led to superior performance in

enzyme design, among other tasks.

• optical character recognition is important to many applications like book digitalization.

To train a recognizer, again large amount of labeled training data is required and can be

3

obtained using crowdsourcing. Examples include reCaptcha that integrates verification

and OCR.

Notice that since the human sensors are noisy and error-prone, it is desirable to have multiple

human beings to measure the same piece of information to cancel out the noises. Thus, after

the crowdsourcing process, an aggregation step is necessary to distill the final or conclusive

measurement of the piece of information that is of genuine interest. It is this aggregation step

that is the focus of this thesis.

1.2 A short history of crowdsourcing research

The research of crowdsourcing has been conducted over the past few decades and we can

view the technique from multiple aspects.

• Worker quality estimation: one basic question in crowdsourcing is how good the workers

in providing their input to the task. Depending on the formats of input data and the

crowdsourced data, there have been various metrics to quantify the worker quality.

• Budget allocation: the resources such as money and time used to crowdsource the desired

information are limited, therefore it is necessary to optimally allocate the resources to

obtain the most desirable piece of information from the crowd.

• Crowdsourced data aggregation: once data are crowdsourced, one needs to extract con-

clusive information. The process of distilling useful information from the crowdsourced

data is the focus of this thesis. Depending on the structures of the crowdsourced data,

different aggregation methods are required.

4

• Incentive and reward system: given the same amount of resources, the mechanisms that

can encourage more capable workers to provide high quality input in a shorter time is more

desirable. It is an important question how to design efficient and effective crowdsourcing

mechanisms.

1.3 Organization of the thesis

In this thesis, we study several challenges of the aggregation of crowdsourced data in the

pursue of trustworthy information. In Chapter 2, we address the issue of the varying worker

competence, and show that it is important and possible to extract and exploit worker compe-

tences to distill more reliable information from crowdsourced data. In Chapter 3, we investigate

the aggregation of multi-labeled crowdsourced data, which is a more challenging task than the

aggregation of binary or multi-class crowdsourced data. Chapter 4 is a short chapter that

touches the theoretical aspect of multi-class crowdsourced data aggregation problems from the

machine learning algorithmic perspective. These above three chapters assume a fixed panel of

workers for the crowdsourcing tasks, and in the following three chapters, I relax the assumption

and allow arbitrary number of workers to join in a task, and study the problem of trustworthy

information distillation from data such crowdsourced. In Chapter 5, I tackle ratings of products

crowdsourced from online reviewers on e-commerce websites, and propose a method that can

jointly infer the reliability of the reviewers and calibrate the crowdsourced ratings in order to

recover the underlying true ratings. In Chapter 6, I look at the extreme case, where a reviewer

can contribute very few (one or two) ratings. The challenge is the sparsity of information of

such reviewers, making it difficult to quantify the trustworthiness of the reviewers and thus

5

their ratings. I propose to address the challenge via a time series pattern mining approach

to identify groups of suspicious reviewers who might have been hired to post extreme ratings

to manipulate the rating systems. In Chapter 7, different from all previous problem settings

where structured data are assumed, I handle unstructured textual data crowdsourced arbitrary

number of workers. The goal is to quantify the relevance of each piece of text and leave only

the more relevant ones.

CHAPTER 2

CROWD COMPETENCE-BASED KNOWLEDGE DISCOVERY

(This chapter includes the paper published in Sihong Xie, Wei Fan and Philip S.Yu. “An

Iterative and Re-weighting Framework for Rejection and Uncertainty Resolution in Crowdsourc-

ing”. In SDM 2012. (DOI: http://epubs.siam.org/doi/abs/10.1137/1.9781611972825.

95).

2.1 Problem statement

Crowdsourcing has been a popular and inexpensive way to collect labels for such tasks.

However, these low price tag labels usually come with a couple of drawbacks. First, the labels

obtained could be noisy and uncertain due to the difficulty of the task, each labeler’s perception,

lack of interest and insufficient background knowledge. Second, it is not uncommon for labelers

to have different opinions. For example, given an article talking about Google’s acquisition of

Motorola Mobility, it could be labeled as an information tech or a business article. The collected

labels are usually inconsistent to some extent, such that one cannot simply treat these labels as

ground truths. Third, missing and uncertain labels are ubiquitous in these tasks, especially for

large scale data collected from real applications. In the example given above, a labeler might

not be confident enough to label that article, so he/she simply omits the example. Collecting

labels for all data is unrealistic for large datasets, or labelers are simply unable label all the

data. For example, most of the Amazon reviewers review only a couple of products. Therefore,

6

7

TABLE I

UNCERTAIN AND INCOMPLETE ANSWERS IN CROWDSOURCING
Data Ground truth label 1 label 2 label 3
x1 -1 1 1 -1
x2 1 na na 1
x3 1 1 -1 -1

it is highly unlikely that all available labelers are able to provide labels for all queries. Lastly,

labelers tend to have different but hidden competence for a task, depending on many factors

such as background knowledge. Giving the same weights to all labelers is unreasonable, or at

least suboptimal. As the labels provided by less competent labelers are more noisy and could

therefore contaminate the labels from more competent labelers. Weighting labels from different

labelers should perform better, yet how to learn the weights and exploit them effectively are

nontrivial. Interestingly, it is hard to pre-assign a weight vector for labelers as their performance

varies from task to task.

To summarize the challenges, we are given a set of uncertain, incomplete and inconsistent

labels from which we wish to draw the ground truth while taking labelers’ competencies into

account. We use a toy example to demonstrate the challenges. In Table I, the third label of x1

contradicts the other two labels, which are incorrect, causing majority voting to fail. For x2,

the first two labels are missing, so there is not enough information to infer the true label. Note

that given an instance, not all labelers necessarily provide a label. This is different from the

semi-supervised setting (69)

8

2.2 Consensus maximization

We briefly introduce the Consensus Maximization (CM) framework (24). Quite different

from traditional Bayesian model averaging approaches, CM combines the outputs of multiple

models by considering their cross-example correlation and consistencies. Essentially, CM can

resolve conflicts among labelers’ opinions and infer the best posisslbe ground truth in crowd-

sourcing. In the proposed, we improve CM in order to infer each labeler’s competence.

In CM, classification results of multiple labelers can be represented by a bipartite graph

with two types of nodes: object and group nodes. xi is represented by an object node oi. For

model k, k = 1, . . . , ℓ, there are 2 group nodes h2×k−1 and h2×k associated with it, representing

class -1 and 1, respectively. Object node oi is connected to group node h2×k−1 (or h2×k) if

instance xi is classified to -1 (or 1) by the k-th model. Object node oi is associated with a

random vector ui = [ui1, ui2] for i = 1, . . . , n, ui1 + ui2 = 1, where ui1 and ui2 represent the

probability that node oi belongs to class -1 and 1, respectively. Similarly, group node hj is

associated with a random vector qj = [qj1, qj2], qj1 + qj2 = 1 for j = 1, . . . , v, v = 2ℓ where

qj1 and qj2 are the probabilities that hj belongs to class -1 and 1, respectively. These random

vectors can be organized into two matrices Un×2 = [u1, · · · ,un]
⊤ and Qv×2 = [q1, · · · ,qv]

⊤.

The meanings of U and Q will be clear in Equation 2.3 and Equation 2.4. The connections

between object and group nodes are given by matrix An×v = [a1, . . . ,av], where aij = 1 if oi

is connected to hj and 0 otherwise. Each group node has an initial class prediction ȳj = [1, 0]

if node hj represents class -1 and ȳj = [0, 1] otherwise. Note that ȳj are fixed and should

9

TABLE II

NOTATIONS FOR CONSENSUS MAXIMIZATION
oi Object node for xi

hj Group node for the ⌈j/2⌉-th model
ui Probability distribution over oi
qj Probability distribution over hj

ȳj Initial probability distribution over hj

aj Indicates the oi that hj connects to

be distinguished from the label vector yi = [y1i , . . . , y
ℓ
i] of instance xi given by ℓ labelers. Let

Ȳv×2 = [ȳ1, . . . , ȳv]
⊤. Table II summarizes these notations.

Figure 1 demonstrates how to construct a bipartite graph in CM. Assume the missing labels

in Table I are filled up and the resulting labels are shown in 1(a). The corresponding bipartite

graph is shown in 1(b). Here we have 3 models (f1, f2 and f3) and two classes, so we need

6 group nodes sitting on the right of the bipartite graph. On the left hand side there are 3

object nodes {o1, o2, o3} representing x1, x2 and x3. x1 is classified to 1, 1 and −1 by models

f1, f2 and f3 (row 1 in 1(a)). Therefore, o1 is connected to h2×1−1, h2×2−1 and h2×3. Similarly,

o2 is connected to h2×1, h2×2−1 and h2×3−1, since it is classified to −1, 1, 1 by three models,

respectively (row 2). Lastly, row 3 gives connections between o3 and h1, h4 and h6.

10

(a) Three instances with
their labels given by three
models

(b) The bipartite graph rep-
resenting the labeling

Figure 1. Bipartite graph used in CM

The objective of CM can be expressed as follows:

min
Q,U

∑n
i=1

∑v
j=1 aij‖ui − qj‖2 + α

∑v
j=1 ‖qj − ȳj‖2 (2.1)

s.t. ui1, ui2 ≥ 0, ui1 + ui2 = 1, i = 1, . . . , n (2.2)

qj1, qj2 ≥ 0, qj1 + qj2 = 1, j = 1, . . . , v

The term
∑v

j=1 aij‖ui − qj‖2 enforces the probability distribution of the object node oi to

be close to those of the group nodes it connects to and respect the original class predictions to

some extent. Parameter α controls how much the consensus results qj to be consistent with the

initial classification models’ outputs ȳj : a larger α encourages each qj to be closer to ȳj . The

optimization problem is solved via block-wise gradient descent, where Q and U are updated

using:

11

Qt = (Dv + αI)−1(A⊤U t−1 + αȲ) (2.3)

U t = D−1
n AQt (2.4)

where Dn = diag{∑v
j=1 aij , i = 1, . . . , n}, and Dv = diag{∑n

i=1 aij , j = 1, . . . , v}, Ȳv×2 =

[ȳ1, · · · , ȳv]
⊤ and the superscript t on U and Q denotes the number of iterations. It is easy to

see that the probability distribution ui is the average of the qj ’s that are ui’s neighbors defined

by A. Similarly, qj is defined by the average of probability distributions of the object nodes ui

it connects to, plus αȳj .

2.3 Iterative Re-weighted Consensus Maximization

We propose an IRCM framework (Iterative Re-weighed Consensus Maximization) to address

the above challenges. Unlike previous methods (70; 45; 69), which ignore missing labels, IRCM

first fills up the missing labels by building classifiers (f1, . . . , fℓ in the chart) from the available

labels (Y in the chart) and data (not shown), and then predicting missing labels. By doing

so, one obtain a completed label matrix (“Yc” in the chart). This step is shown in red dotted

lines. Next, as shown in green solid lines in the chart, we infer ground truth (“y” in the chart),

by feeding weights of labelers (initially uniform distributed) and the completed label matrix to

the proposed reweighted consensus maximization algorithm (RCM for short in the sequel). As

the third step (blue dashed lines), the estimated ground truth and the completed label matrix

are further used to update each labeler’s competence (w in the chart). IRCM goes back to the

second step, and the iteration continues until it converges.

12

TABLE III

NOTATIONS FOR DATA
xi ∈ R

d An instance of data
D = {x1, . . . ,xn} Collection of instances
Z = [z1, . . . , zn]

⊤ Ground truth labels of D
yi = [y1i , . . . , y

ℓ
i] Labels for xi given by labelers

Y = [y1, . . . ,yℓ]
⊤ Label matrix

Yc ∈ {−1, 1}n×ℓ Completed label matrix
w = [w1, . . . , wℓ] Competencies of labelers
f : Rd → {−1, 1} Classification model

Assume that we are given a sample D = {xi, i = 1, . . . , n}, xi ∈ R
d, with labels provided

by ℓ labelers. These labels are denoted by Y = [y1, . . . ,yn]
⊤ with yi = [y1i , . . . , y

ℓ
i], which are

the labels (probably missing) provided by ℓ labelers for xi. If an entry in yi is missing, it has

value 0, otherwise, it is either -1 or 1. The completed label matrix is denoted by Yc with entries

taking value -1 or 1. The objective is to model labelers’ competencies w = [w1, . . . , wℓ] and

infer the ground truth labels Z = [z1, . . . , zn]
⊤ of D. Each labeler can be seen as a mapping

from R
d to {−1, 1}, denoted by fk(x), k = 1, . . . , ℓ. The k-th column in Y is the output when

fk evaluated on a subset of D, while the k-th column in Yc is fk evaluated on all data in D.

These notations are summarized in Table Table III.

It is natural that different labelers have different competencies in labeling data. Treating

all labelers equally when aggregating their decisions is not optimal. Instead, one should pick up

the outputs of the best ones to make final decisions, or weigh their outputs using competencies.

Nonetheless, the original CM does not take competence or accuracy of base classifiers into

13

account and therefore, is not optimal. To incorporate weights of base classifiers in CM, there

are two questions to be addressed. First, without any ground truth or supervision, how can

one estimate the competence of each labeler? Second, even if the weights are available, how to

use this information effectively in CM?

For the first question, instead of requiring accurate computation of competencies, we ask

only for a rough estimation, such that the relative order is preserved. For example, if labeler

Bob is doing better than labeler Alice, we only need an estimation of competencies which weighs

Bob higher than Alice, instead of an estimation close to the real competence of the labelers.

Assume that CM outputs a reasonable estimation of ground truth, we use this information to

estimate the competencies of labelers, denoted by wj , j = 1, . . . , ℓ.

The second problem is more difficult to solve. A straightforward solution is to put the

weights in the original CM algorithm by weighting ‖qj − ȳj‖2 using wj , j = 1, . . . , v. The

higher the wj , the more penalty will be incurred when qj deviates more from ȳj , while a lower

weight allows the final model qj to go relatively far away from its original distribution ȳj .

However, we experimentally find out that this seemingly reasonable and simple method does

not work as expected.

We propose to weight the base models in CM via functional space sampling. Specifically,

we emphasize “good” functions by sampling them more frequently. We generate a sample of

functions by adding new columns to the completed label matrix Yc. The resulting matrix is

called the extended label matrix, also denoted by Yc, but with new columns added. The new

columns are generated entry-wise. That is, for each entry of a new column in Yc, we randomly

14

Algorithm 1 IRCM with Missing Labels
1: Input:Data D, incomplete label matrix Y
2: Output:Inferred ground truths Z
3: for all labeler j ∈ {1, . . . , ℓ} do
4: Build a classifier using Y (:, j) and D.
5: Complete Y (:, j) using this classifier to get Yc(:, j).
6: end for
7: Infer Z using CM from Yc.
8: Estimate competencies of labelers w.
9: while Not converge do
10: Infer Z from Yc and w using Algorithm 2.
11: Re-estimate w.
12: end while

pick the entries in the same row in the first ℓ columns of Yc, where the probability that an entry

being picked is proportional to the weight on that column. More formally, suppose we need to

add C new columns,

Yc(i, j
′) = Yc(i, j) with probability wj/K (2.5)

where j′ = ℓ+1, . . . , ℓ+C, j = 1, . . . , ℓ and K =
∑v

j=1wj . In this way, the new columns can be

seen as a weighted sample of the original ones. The IRCM algorithm is given in Algorithms 1

and 2. Note that Yc in line 10 of Algorithm 1 refers to the completed label matrix without

extension. The extension of Yc is done in Algorithm 2 with a new estimation of w.

The idea of column generation is similar to importance sampling (52), which emphasizes

on certain instances by sampling them more frequently. Instead of sampling instances in the

usual sample space, we are sampling functions in functional space. Suppose we have a space of

functions F = {f : Rd → {−1, 1}}. Each column in the label matrix can be seen as a function

15

Algorithm 2 RCM: Reweighted CM

Input: Yc (the completed label matrix), w (weights on each column), C (number of columns to
generate)
Output: Inferred ground truths Z.
for j = ℓ+ 1 → ℓ+ C and i = 1 → n do

Assign value to Yc(i, j) according to Eq.(Equation 2.5).
end for
Estimate Z by applying to Yc.

f ∈ F evaluated on data points in D. Though we have no access to the entire functional

space F , existing columns can be seen as a finite sample of functions from F . We denote this

sample of functions by F0. Assume that the other good functions outside F0 are similar to the

good ones in F0, we would like to uncover more good functions in F . Since the “goodness”

and “badness” of a function in F0 are only estimated on a finite number of data, there are

some uncertainties associated with them. There is no reason to assert that a good function

in F0 can be generalized well to all instances. We also cannot simply reject “bad” functions

from F0, as they might be doing well on some unseen samples. A good function should be a

mixture of functions in F0 with the constraint that they are closer to good functions than to

bad functions in F0. Therefore, we do not take one of the existing columns as a whole to form

a new column, but sample at the entry-wise level (see Eq.(Equation 2.5)). We show in the

next section that this functional space sampling method might also be viewed as finding a good

similarity measure between instances. We denote the newly generated functions together with

the original functions F0 as σ(F0), which can be seen as equivalent to Yc.

16

2.3.1 A probabilistic View of IRCM

We formulate IRCM using EM framework to interpret the functional space sampling method.

Using this formulation we compare IRCM to the state-of-the-art crowdsourcing methods (70; 45)

and bring out the distinction of IRCM. Given sample D and the extended and completed label

matrix Yc, we need to infer two groups of parameters: competencies w and ground truths Z.

Let Z be the latent random variables, the goal is to maximize the log-likelihood

Pr[Y |D,w] =
n
∑

i=1

ln Pr[yi|w,xi] (2.6)

In the following, all probabilities depend on D, but to keep the formula uncluttered, we only

write down this dependency explicitly when necessary. Take the latent variables into account

and use the total probability formula, Pr[yi|w] = E{Pr[yi|w, zi]} where the expectation is

taken over Pr[Z]. It is difficult to maximize Eq.(Equation 2.6) directly, we instead maximize its

lower bound
∑n

i=1 E{ln Pr[yi|w, zi]} by the concavity of the logarithmic function ln and Jensen

inequality.

Assume either Pr[z = 1] = 1 or Pr[z = −1] = 1 and consider the competence as a labeler’s

accuracy, namely, wj = Pr[yji = zi] for any i = 1, . . . , n. Then we model Pr[yi|w, zi] using

Bernoulli model as in (70)

Pr[yi|w, zi] =
ℓ
∏

j=1

w
1−|yji−zi|/2
j (1− wj)

|yji−zi|/2

17

and the lower bound of Eq.(Equation 2.6) can be written as

n
∑

i=1

ln

ℓ
∏

j=1

w
1−|yji−zi|/2
j (1− wj)

|yji−zi|/2

 (2.7)

M-step Maximize Take the derivative of Eq.(Equation 2.7) with respect to wj and let it equal

to 0 we get

wj =

∑n
i=1(1− |y

j
i − zi|/2)

n
(2.8)

E-step Compute Eq.(2.3.1) To compute Eq.(Equation 2.7), we need to know a particular

assignment of labels to Z, which can be obtained via Pr[Z|D]. We propose a unique way to

derive this probability. Similar to the work in (69) (refer to related work for more details), we

impose a graph prior over the labels Z, namely, we construct a similarity graph of instances

where nearby instances are assigned similar labels. Unlike their work, we incorporate labelers’

competencies in the graph construction such that the inferred labels directly depend on the

competencies.

In particular, given the competencies w and original functions F0, we can generate a sample

of functions σ(F0) (represented by the extended complete label matrix Yc, see Eq.(Equation 2.5)).

These generated functions can be seen as “virtual” labelers whose classification decisions are

weighted combinations of real labelers. Next, based on σ(F0), we derive a bipartite graph where

functions (instances) are represented by group (object respectively) nodes and classification re-

18

sults are represented by the connections between group nodes and object nodes. This graph

can be represented by a connection matrix A with ℓ+C columns. Re-write Eq.(Equation 2.3)

and Eq.(Equation 2.4) in the form of random walk iterations,

Zt = P̃Zt−1 + αD−1
n A(Dv + αI)−1Ȳ

where we restrict the soft cluster membership U to hard partition indicators Z. This formula

is the same as the random walk with probability transition matrix P̃ = D−1
n A(Dv + αI)−1A⊤,

encoding similarity between instances by the number of group nodes two instances share, nor-

malized by some factors. The iteration converges to the solution maximizing the posterior:

Pr[Z|D] ∝ exp{−Z⊤LZ} (2.9)

where L = I−P̃ is the graph Laplacian matrix. We can see that Z is inferred using the function

sample σ(F0).

The conjecture is that, with a better estimation of the competencies and sufficient sampling

of the functional space F , we would be able to recover the underlying cluster structure of

the data. In this way, IRCM assigns a label to an instance by considering its neighbors’

labels and consensus among labelers. Note that the methods in (45; 69; 70) assume that the

labelers are independent given the sample D. They also simply use labelers’ competencies for

weighted majority voting. In contrast, we are the first to introduce CM to model consensus

among labelers in crowdsourcing. We are also the first to exploit labelers’ competencies in the

19

TABLE IV

SUMMARY OF DATASETS
Tasks # Features # Instances

pltcs vs bsnss 1389 596
pltcs vs tech 1409 597
bsnss vs tech 1326 597

consensus maximization framework. As we shall in Sections 2.4, CM outperforms weighted

majority voting.

2.4 Experiments

To create datasets with instances labeled by multiple labelers, we ask 5 human annotators

to label articles crawled from the Yahoo! news website1. We choose 3 categories of news

for experiments (politics (pltcs), business (bsnss) and technologies (tech)). The gold standard

labels are provided according to the classification of Yahoo! news. The reason of using these

3 classes is that the selected articles can usually be classified into more than one categories,

therefore, it is more confusing for human to label, introducing more noise in the labels. For

each category, we fetched roughly 300 articles from the website (900 articles in total). Then we

mix them together and select 5 subsets of 90 articles randomly. Each labeler labels a subset

of articles. Different labelers could label the same article and their opinions might contradict

those of others. The resulting label matrix has 90% missing labels. We then create 3 binary

classification problems by combining articles from any 2 out of all 3 categories. After text

1http://news.yahoo.com/

20

preprocessing such as stop words elimination, TF-IDF transformation, we vectorize the articles

in each problem, the properties of the data of 3 problems are summarized in Table Table IV.

2.4.1 Baseline Methods

In the experiments, we compare the proposed algorithm with two state-of-the-art methods

dealing with crowdsourcing data in (70) (EM-PMLA) and (45) (EM-SLME). We refer the

readers to the related work for more details. In EM-PMLA, we use LBFGS1 in the M-step. In

EM-SLME, we use the L1-regularized logistic regression provided by Liblinear package (20). To

compare these methods with the proposed method, we feed label matrices with different levels

of completeness (see Section 2.4.2 and 2.4.3). Besides these sophisticated methods, we consider

simplified versions of IRCM. The simplest version is just to use the first step of IRCM to fill up

the missing labels and then apply majority voting (MV). Next, after the first round of IRCM, an

initial set of competence estimates is obtained. Even without the iteration, we can apply these

rough estimates to perform weighted majority voting (WMV). We also consider a degenerated

case of IRCM which performs CM alone after filling up the missing labels without taking

competence into consideration, we called this fCM. As we shall see, while filling up missing

labels can help, introducing rough competence estimate has only marginal effect. Although fCM

is more effective than majority voting, the iteration step to refine the competence estimates is

1http://users.eecs.northwestern.edu/~nocedal/lbfgs.html

21

TABLE V. Overall Performance

3 Labelers 4 Labelers 5 Labelers

Tasks p vs b p vs t b vs t avg p vs b p vs t b vs t avg p vs b p vs t b vs t avg
EM PMLA 0.5899 0.5876 0.5429 0.5735 0.6120 0.6138 0.5572 0.5943 0.6312 0.6439 0.5662 0.6138
EM SLME 0.8780 0.5618 0.5224 0.6541 0.8923 0.6070 0.3786 0.6260 0.8792 0.5059 0.5611 0.6487

MV 0.8664 0.6576 0.5578 0.6939 0.8101 0.5983 0.5307 0.6464 0.8826 0.6566 0.5477 0.6956
WMV 0.8664 0.6576 0.5578 0.6939 0.9027 0.6941 0.5568 0.7179 0.8826 0.6566 0.5477 0.6956
fCM 0.8693 0.8154 0.6240 0.7696 0.9107 0.7374 0.6144 0.7542 0.8876 0.7605 0.6248 0.7576
IRCM 0.8809 0.8068 0.6513 0.7797 0.9082 0.8028 0.6683 0.7931 0.9107 0.7859 0.6654 0.7873

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

p_vs_b p_vs_t b_vs_t

A
cc

ur
ac

y

Tasks

Accuracy with 3 annotators

EM-PMLA
EM-SLME

MV
WMV

fCM
IRCM

(a) pltcs vs bsnss with 3 labelers

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

p_vs_b p_vs_t b_vs_t

A
cc

ur
ac

y

Tasks

Accuracy with 4 annotators

EM-PMLA
EM-SLME

MV
WMV

fCM
IRCM

(b) pltcs vs bsnss with 4 labelers

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

p_vs_b p_vs_t b_vs_t

A
cc

ur
ac

y
Tasks

Accuracy with 5 annotators

EM_PMLA
EM-SLME

MV
WMV

fCM
IRCM

(c) pltcs vs bsnss with 5 labelers

Figure 2. Overall accuracy comparison

indeed critical to boost up the performance in IRCM. We adopt libsvm1 to fill up the missing

labels.

2.4.2 Overall Performance Study

We show the overall accuracy of the proposed method and the baseline methods in Ta-

ble Table V and Figure Figure 2. The number of columns generated in IRCM is fixed to 60 and

the number of iterations is set to 15 (see next section for sensitivity study). For a given binary

1http://www.csie.ntu.edu.tw/~cjlin/libsvm/

22

classification problem and a number of labelers (corresponding to one column in the table),

we run IRCM 100 times and EM-PMLA 20 times using different combinations of labelers on

all three classification problems. The average accuracy and standard variance are recorded for

each of such combination. Then these statistics are averaged over all combinations of labelers.

For example, when there are 3 labelers, then we have
(

5
3

)

= 10 combinations of labelers. All

algorithms run on these 10 combinations and each gets 10 copies of accuracies and standard

deviations. The accuracies under the header “3 Labelers” in Table Table V are the averages of

these 10 copies. For EM-SLME, there is no randomness associated with it, so we do not need

to repeatedly run it as other algorithms. If the standard variance is greater than 0.02 (0.01,

respectively), then the corresponding accuracy is underlined (in italics font, respectively). For

a given number of labelers, we also average performance of each algorithm over 3 classification

problems, as shown in the columns with header “avg”.

From the table and the bar charts, we have the following observations. First, IRCM has the

best performance 7 out of 9 tasks, with the exceptions that fCM slightly better than IRCM.

Second, EM-PMLA and EM-SLME can sometimes perform even worse than weighted majority

voting. Third, EM-PMLA is unstable, as it has the highest standard deviation in all methods

across tasks. In contrast, the performance of IRCM are stable as none of the standard variance

is higher than 0.01. Lastly, though sometimes EM-PMLA and EM-SLME have performance

close to the proposed method, their accuracy can go down to a very low level. For example, in

task b vs t with 4 labelers, EM-SLME is worse than random guess with only 37.86% accuracy.

23

The following conclusions can be drawn out of these observations, First, even using the

first step of IRCM to fill up missing labels can be helpful for simple strategy like MV. In

contrast, the weights learned by these EM-based methods are not effective when the labels

are sparse. As we have seen, even the simple MV and WMV (using our weights) work better

than weighted voting in EM-PMLA and EM-SLME. Second, The weights learned from IRCM

are good indicators to pick up labelers. When there is a tie in majority voting with an even

number of labelers, the weights can be helpful to decide which labelers to trust more. Third,

As we show in formal analysis, CM is able to find a consensus results among labelers such that

the generalization error bound is minimized. This is confirmed by the improved performance of

fCM compared to MV and WMV. Lastly, IRCM iteratively refines and exploits competencies of

labelers. The iterative re-weighted method achieves even better results than fCM, which does

not consider labelers’ competencies. This demonstrates that, in situations with multiple labelers

such as crowdsourcing, competence is a critical factor to improving classification performance.

This also shows that the functional space sampling method is an effective way to incorporate

weights in the original CM.

2.4.3 The effectiveness of filling up missing labels

The proposed framework first predicts the missing labels before estimating competencies of

labelers. Here, we demonstrate the effectiveness of this missing label filling up step. Different

percentage of missing labels are filled up, and accuracies are obtained in the same way as we

do in the last section. The number of EM iterations in EM-PMLA and EM-SLME is set to 15.

From Figure Figure 3, we can see that in most of the cases, the performance of EM-PLMA (7

24

out of 9 cases) and EM-SLME (6 out of 9 cases) go up as missing label are filled up, therefore,

the proposed framework does help existing state-of-the-art methods gain performance.

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100

A
cc

ur
ac

y

Percentage of Missing Labels Filled up

IRCM
EM_PMLA
EM_SLME

(a) pltcs vs bsnss with 3 labelers

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 0 20 40 60 80 100

A
cc

ur
ac

y

Percentage of Missing Labels Filled up

IRCM
EM_PMLA
EM_SLME

(b) pltcs vs bsnss with 4 labelers

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 0 20 40 60 80 100

A
cc

ur
ac

y

Percentage of Missing Labels Filled up

IRCM
EM_PMLA
EM_SLME

(c) pltcs vs bsnss with 5 labelers

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100

A
cc

ur
ac

y

Percentage of Missing Labels Filled up

IRCM
EM_PMLA
EM_SLME

(d) pltcs vs tech with 3 labelers

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0 20 40 60 80 100

A
cc

ur
ac

y

Percentage of Missing Labels Filled up

IRCM
EM_PMLA
EM_SLME

(e) pltcs vs tech with 4 labelers

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0 20 40 60 80 100

A
cc

ur
ac

y

Percentage of Missing Labels Filled up

IRCM
EM_PMLA
EM_SLME

(f) pltcs vs tech with 5 labelers

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0 20 40 60 80 100

A
cc

ur
ac

y

Percentage of Missing Labels Filled up

IRCM
EM_PMLA
EM_SLME

(g) bsnss vs tech with 3 labelers

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0 20 40 60 80 100

A
cc

ur
ac

y

Percentage of Missing Labels Filled up

IRCM
EM_PMLA
EM_SLME

(h) bsnss vs tech with 4 labelers

 0.5
 0.52
 0.54
 0.56
 0.58

 0.6
 0.62
 0.64
 0.66
 0.68

 0.7

 0 20 40 60 80 100

A
cc

ur
ac

y

Percentage of Missing Labels Filled up

IRCM
EM_PMLA
EM_SLME

(i) bsnss vs tech with 5 labelers

Figure 3. Accuracies of EM-PMLA and EM-SLME with different percentage of missing labels
completed

25

2.4.4 Sensitivity Study

We study how the performance of IRCM varies with the number of iterations with different

number of labelers. IRCM in the first iteration is equivalent to fCM with uniform weights on

labelers. In Figure Figure 4, we plot the average accuracy with standard variance over 100

trials as error bars. From these figures, we can see that the accuracy of IRCM becomes better

and better in 7 out of 9 cases, with two exceptions in Figure 4(b) and Figure 4(d), where

the accuracies of IRCM go down slightly, but still better than those of the baseline methods.

Therefore, we demonstrated the effectiveness of incorporating weights in CM in an iterative

manner. The number of iterations required to converge is generally quite small (< 5).

26

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0 2 4 6 8 10 12 14 16

ac
cu

ra
cy

number of iterations

EM-PMLA
EM-SLME

MV
WMV
IRCM

(a) pltcs vs bsnss with 3 labelers

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0 2 4 6 8 10 12 14 16

ac
cu

ra
cy

number of iterations

EM-PMLA
EM-SLME

MV
WMV
IRCM

(b) pltcs vs bsnss with 4 labelers

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0 2 4 6 8 10 12 14 16

ac
cu

ra
cy

number of iterations

EM-PMLA
EM-SLME

MV
WMV
IRCM

(c) pltcs vs bsnss with 5 labelers

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0 2 4 6 8 10 12 14 16

ac
cu

ra
cy

number of iterations

EM-PMLA
EM-SLME

MV
WMV
IRCM

(d) pltcs vs tech with 3 labelers

 0.6

 0.65

 0.7

 0.75

 0.8

 0 2 4 6 8 10 12 14 16

ac
cu

ra
cy

number of iterations

EM-PMLA
EM-SLME

MV
WMV
IRCM

(e) pltcs vs tech with 4 labelers

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0 2 4 6 8 10 12 14 16

ac
cu

ra
cy

number of iterations

EM-PMLA
EM-SLME

MV
WMV
IRCM

(f) pltcs vs tech with 5 labelers

 0.5
 0.52
 0.54
 0.56
 0.58
 0.6

 0.62
 0.64
 0.66
 0.68

 0 2 4 6 8 10 12 14 16

ac
cu

ra
cy

number of iterations

EM-PMLA
EM-SLME

MV
WMV
IRCM

(g) bsnss vs tech with 3 labelers

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0 2 4 6 8 10 12 14 16

ac
cu

ra
cy

number of iterations

EM-PMLA
EM-SLME

MV
WMV
IRCM

(h) bsnss vs tech with 4 labelers

 0.54

 0.56

 0.58

 0.6

 0.62

 0.64

 0.66

 0 2 4 6 8 10 12 14 16

ac
cu

ra
cy

number of iterations

EM-PMLA
EM-SLME

MV
WMV
IRCM

(i) bsnss vs tech with 5 labelers

Figure 4. Accuracies of IRCM with varying number of iterations

CHAPTER 3

KNOWLEDGE DISCOVERY FROM MULTI-LABELED

CROWDSOURCED DATA

(This chapter includes the paper published in Sihong Xie, Xiangnan Kong, Jing Gao,

Wei Fan, Philip Yu. “Multilabel Consensus Classification”. In ICDM 2013. c©2013 IEEE.

Reprinted, with permission. (DOI: http://ieeexplore.ieee.org/xpl/articleDetails.jsp?

arnumber=6729628)).

3.1 Problem statement

Given the practical needs to combine multilabel predictions from multiple workers, we iden-

tify the following challenges. First, although state-of-the-art multilabeled classification methods

show that label correlations can help improving classification performances, how to exploit label

correlations solely using crowdsourced data has not been addressed before. Second, there are

various evaluation metrics for multilabeled classification, such as microAUC, ranking loss, one

error, etc. (14; 19), it is more desirable to design algorithms that can be proved to be optimal for

a specific metric, as different applications require different quality measures. Although, in (14),

they pointed out that optimizing different metrics translates into the modeling of different label

correlations, it is non-trivial to align prediction combination methods with the modeling of label

correlation in order to optimize a specific metric. There is no existing work that addresses the

above issues.

27

28

In this chapter, we propose two algorithms that can model label correlations given only the

crowdsourced multilabeled annotations. The algorithms are designed and proved to optimize

two widely used but fundamentally different evaluation metrics, respectively. The first algorithm

MLCM-r consolidates the annotations via maximizing model consensus and exploiting label

correlations using random walk in the label space. The algorithm is proved to optimize ranking

loss, which measures the quality of the predictions on a per instance basis (e.g. find relevant

labels for a query in image search engine). Another important multilabel performance metric

is microAUC, which treats all instances combined as a single prediction task (e.g. find tags to

describe a set of images). Since a model that optimizes ranking loss might not be optimal for

microAUC, it is necessary to develop an alternative model to distill knowledge from annotations

to optimize microAUC. We propose a second algorithm called MLCM-a (MultiLabel Consensus

Maximization for microAUC) for this purpose. MLCM-a is formulated as an optimization

problem that regularizes annotation aggregation using partial correlations between labels, and

we show that the objective optimizes microAUC.

3.2 Preliminary

In multilabel-label classification problems, the data are in the form of (x, z), where x is the

feature vector of an instance and z is the label vector. Suppose L is the set of all l possible

labels, then z is a vector of length |L| = l and zℓ ∈ {0, 1} denotes the value of the ℓ-th label.

Multilabel classification is different from multiclass classification. In multiclass classification,

an instance have one and only one label, which can take more than two values (or classes).

However, in multilabel classification, an instance can have more than one label, each of which

29

TABLE VI

NOTATIONS
Symbol Meaning

m Number of multilabel classifiers
n Number of instances
l Number of labels
x An instance
z Ground truth labels of x
Y k output of the kth model
Ȳ Average of Y k, k = 1, . . . ,m
yk
i prediction of the kth model for the ith instance
Y Consolidated prediction of Y k, k = 1, . . . ,m
〈·, ·〉 inner product of two vectors
| · | Determinant of a matrix
‖ · ‖ Frobenius norm of a matrix
1[·] indicator of a predicate

card(A) cardinality of the set A

can take one and only one of the multiple values (classes). For example, an account on a social

network (LinkedIn, Facebook, etc.) can have multiple labels such as “sex” and “is employed”,

while there can be only one specific value for the label “is employed”. Multilabeled classification

introduces various unique challenges, such as sparsity and imbalance of labels. Among these

challenges, how to model and exploit label relationships to improve accuracy has been studied

intensively in (13; 43; 46; 53; 74). There are various types of label relationships, and the simplest

one is pair-wise correlation, which specifies how often two labels co-occur. There are also some

more complicated label relationships, such as hierarchical organizations of labels or high order

relationships. Recently, certain types of label relationship are shown to be connected to certain

corresponding evaluation metrics. For example, it is shown in (14) that if one can compute the

30

Figure 5. Applying BGCM to multilabel prediction combination

relevance score of each individual label given an instance, the ranking according to the scores

would yield the minimum ranking loss. Conventional multilabeled classification algorithms

mainly focus on how to exploit label correlations from training data. These methods cannot

directly address the challenge of aggregating crowdsourced multilabeled annotations without

access to training or test data.

3.3 Multilabeled Consensus Maximization for Ranking Loss

We propose MLCM-r that adopts BGCM (see the appendix) to aggregate crowdsourced

multi-labeled annotations to minimize ranking loss. For simplicity, we assume that each label

consists of two classes. In particular, we let the n by v (v = m × l) connection matrix A

encode the multilabeled predictions, where the (i, (k−1)× l+ j)-th entry is 1 if the k-th worker

predicts that the i-th instance takes class 1 on the j-th label, otherwise the entry is 0. Viewing

A as a connection matrix between instances and labels, a bipartite graph can be constructed

for MLCM-r. An example of the bipartite graph of MLCM-r for 2 instances, 3 classes and two

31

(a) MLCM-r (b) Graph of group nodes encoding label rela-
tionships

Figure 6. Bipartite graph for MLCM-r and its collapse to group nodes

workers is shown in Figure 6(a). Similar to the bipartite graph used by BGCM, the bipartite

graph for MLCM-r has both group nodes and instance nodes, annotated by the letters g and x.

However, there are some differences between two bipartite graphs. Surrounded by a rectangle

with dashed line are the group nodes from a worker (e.g. the rectangle M1 includes the group

nodes from the first worker). A group node in Figure 6(a) represents a label instead of a class

in Figure 5. An instance node in Figure 6(a) can be connected to more than one group nodes

from a worker, naturally representing a multilabeled prediction. These differences between

Figure 6(a) and Figure 5 bring more expressive power, as summarized below:

• The connections between an instance and all labels are fully given by a single graph in

MLCM-r, instead of being broken down into multiple bipartite graphs in BGCM.

32

TABLE VII

NOTATIONS FOR MLCM-R
Symbol Meaning

A ai,j is the prediction of label (j mod l) on xi by the ⌊j/l⌋
B Label node class distribution
U uiℓ is the probability that label ℓ is relevant to xi

Q qjℓ is the probability of seeing label ℓ given label j
Ik k dimensional identity matrix

• most importantly, the relationship between labels can be derived in MLCM-r using Fig-

ure 6(a), as shown in the graph of group nodes in Figure 6(b). We give more details of

this property of MLCM-r in Section 3.3.1.

According to the newly defined A, we re-define the distributions associated with the nodes.

uiℓ (the ℓ-th entry of ui) is now defined to be the probability of the i-th instance taking class

1 on the ℓ-th label. Similarly qjℓ is defined as the probability of seeing the ℓ-th label given the

j-th label (the reason of this definition is explained in the next section). If the j-th group node

represents the ℓ-th label, it is connected to a label node with distribution bj , which has 1 on

its ℓ-th entry and 0 for the other entries, let B = [b′
1, . . . ,b

′
v]
′ similarly as in BGCM. With

the re-defined variables and constants (see Table VII), MLCM-r maximizes model consensus

by solving a similar optimization problem in Equation 2.1. The closed form optimal solution is

given in Equation 3.1 and Equation 3.2, which infer and exploit label correlations to minimize

ranking loss, as analyzed in the next section.

33

3.3.1 Analysis of MLCM-r

In this section, we first analyze the property of MLCM-r, which is shown to perform a

random walk in label space and thus infer label correlations. Then we introduce ranking loss,

which is connected to MLCM-r to show that MLCM-r indeed optimizes ranking loss.

According to (24), a closed form solution for the optimization problem is

Q∗ = (Iv −DλD
−1
v A′D−1

n A)−1D1−λB (3.1)

where Dv = diag(1′A), Dn = diag(1′A′), 1 is a column vector with all entries being 1. Dλ =

Dv(αI +Dv)
−1 and D1−λ = α(αI +Dv)

−1. After Q∗ is obtained, U∗ is obtained using

U∗ = D−1
n AQ∗ (3.2)

Equation 3.1 actually solves a problem similar to personalized pagerank over the graph in Fig-

ure 6(b). The graph consists of group nodes from Figure 6(a), with edges indicating strength of

connection between group nodes. In particular, the graph expresses the chances of co-occurrence

of two labels in terms of the proportion of instances that have both labels simultaneously. The

results of the random walk is simply the probabilities that one node hits another node dur-

ing a specific random walk. Since the nodes represent labels, the solution can be seen as the

probabilities of seeing one label when starting from another label. We analyze this intuition

more formally. We wish to establish the solution of the random walk Q∗
ℓj as the probability of

34

seeing the j-th label given the ℓ-th label. Fixing j and looking at Equation 3.1 in a column-wise

perspective, for j = 1, . . . , v, we obtain

Q∗
·j = (Iv −DλD

−1
v A′D−1

n A)−1D1−λB·j (3.3)

where Q·j and B·j are the j-th column of Q and B, λj is the j-th diagonal entry of Dλ. Let

S = D−1
v A′D−1

n A, which is the transition matrix. Each row of S is a probability distribution

where Sij is the transition probability from group node i to group node j. By the identity

(I − S)−1 =
∑∞

t=0 S
t, we can re-write Equation 3.3 as

Q∗
·j =

(

∞
∑

t=0

(DλS)
t

)

D1−λB·j (3.4)

Out of Equation 3.4, we can construct a random walk where a walker takes from 0 to in-

finitely many steps to eventually settle down at any one of the group nodes for label j (note

that there can be multiple group nodes for label j given multiple workers, e.g. both group

nodes g1 and g4 represent label j). At each step, the walker can choose to settle down with

probability 1 − λi at group node i, or to take one more transition with probability λi, given

the current position being the i-th group node. (DλS)
t can be interpreted similar to tra-

ditional random walk. For the base case, (DλS)
0 = I gives the probability that one starts

from any one of the group nodes and reaches any nodes in zero step. Assume ((DλS)
t−1)ij

is the probability that the person reaches node j starting from node i in t − 1 steps. Then

((DλS)
t)ij = λi

∑v
k=1 Sik((DλS)

t−1)kj , which can be interpreted as the walker chooses to con-

35

tinue walking with probability λi, and ends up at node j with probability
∑v

k=1 Sik((DλS)
t−1)kj .

By induction, (DλS)
t gives the probabilities of moving from one node to another in t steps with-

out settling down.

Given the above interpretation and fixing j = 1, we obtain

((DλS)
tD1−λB)i1 =

∑

k

((DλS)
t)ik(1− λk)Bk1

=
∑

k

((DλS)
t)ik(1− λk)1(Bk1 = 1)

Note that B is a matrix with 0 or 1 entries and Bk1 = 1 iff the k-th group node for label 1.

Also note that (1 − λk) is the probability of settling down at the k-th group node. Then a

summand in the above summation is the probability of starting from group node i and settling

down after t steps of transition at the k-th group node belonging to label 1. The sum of

these probabilities is the probability that settling down at any of the group nodes for label 1.

Q∗
·1 = (

∑∞
t=0(DλS)

t)D1−λB·1, and Q∗
ℓ1 gives the probability that, starting from the ℓ-th group

node, one reaches any group nodes of class 1.

According to Equation 3.2, the (i, ℓ)-th entry of U is

Uiℓ =
1

di

v
∑

j=1

aijQ
∗
jℓ

=
c
∑

k=1

nk

di

v
∑

j=1

1[Bjk = 1]
aij
nk

Q∗
jℓ

=
c
∑

k=1

p(k|xi)p(ℓ|k,xi)

36

where nk =
∑

j aij1[Bjk = 1], which is the total number of group nodes of label k that xi

connects to. p(k|xi) = nk/di is the probability that xi has label k according to m base models.

p(ℓ|k,xi) =
∑v

j=1 1[Bjk = 1](aij/nk)Q
∗
jℓ is simply the average of Q∗

jℓ1[Bjk = 1], which is

probability of going from label k to label ℓ. These two probabilities depend on xi due to the

term di and nk, which depend on the connectivity between xi and the group nodes. Therefore,

MLCM-r computes the probabilities p(yℓ = 1|xi).

The above results connects MLCM-r to ranking loss, which is defined below. between pairs

of labels. Let Pi be the set of relevant labels for xi, and Ni the set of irrelevant labels. Pi ×Ni

is the set of all pairs of relevant and irrelevant labels. Given the relevance scores f(ℓ,xi) of

label ℓ of xi, ℓ = 1, . . . , l, i = 1, . . . , n, ranking loss is defined as

ranking loss =
n
∑

i=1

∑

ℓ∈Pi,ℓ′∈Ni

1[f(ℓ,xi) ≤ f(ℓ′,xi)]

card(Pi ×Ni)
(3.5)

In (14), it was proved that the expected ranking loss is minimized by the ranks of the relevance

scores, which is defined as the posterior probability p(yiℓ = 1|xi). In other words, so long as

the probability p(yiℓ = 1|xi) can be estimated accurately, one should be able to achieve a low

ranking loss. But this is what exactly MLCM-r does, as we show above. Therefore we conclude

that MLCM-r minimizes ranking loss.

37

3.4 Multilabel Consensus Maximization for microAUC

In this section, we propose another algorithm for multilabeled annotation aggregation. This

algorithm differs from the first one in that it optimizes microAUC, which is both theoretically

and practically different from ranking loss.

3.4.1 microAUC and its properties

AUC (Area Under the Curve) is a binary classification metric for situations where one class

greatly out-numbers the other class. In multilabeled classification, an instance usually has only

a small number of all labels. For example, in text tagging, there can be thousands of tags, yet

an article usually has only a couple of tags. Since there can be much more irrelevant label than

relevant labels, AUC can be adopted in the multilabeled setting, where the metric is called

microAUC. Formally, the label matrix Z = [z′1, . . . , z
′
n]

′ for n instances has a total of n × l

entries. Let P be the set of positive (relevant) entries and N the set of negative (irrelevant)

entries, card(P) ≪ card(N). Given a list of relevance scores of all entries, microAUC (11; 26)

is defined as

microAUC =
∑

i∈P

∑

j∈N

1[f(i) > f(j)]

card(P)× card(N)
(3.6)

where f(i) is the relevance score of entry i. Observe that microAUC is the ratio between the

number of correctly ordered pairs and that of the total pairs. A fundamental difference between

two metrics is that, ranking loss does not compare the ranks between labels of two different

instances, while microAUC compares the ranks of all possible pairs of labels, no matter they

38

are from the same instance or not. In this sense, approaches that optimize ranking loss does

not necessarily optimize microAUC.

3.4.2 MLCM-a

We examine microAUC more closely to motivate the method to be proposed. In Figure 7,

we graphically demonstrate the differences between ranking loss and microAUC. Assume we

have 3 labels and 3 instances {x1, . . . ,x3}. The ground truth labels of the 3 instances are layed

out as in the 3 × 3 label matrix Z = [z′1, . . . , z
′
3]
′ where zi is a row vector of the values of all

labels for xi. The values of the entries for a label are grouped in a rectangle, while each row

represents the labels of an instance. Ranking loss accounts the pairwise relationship between

the labels within an instance. Therefore, in Figure 7(a), 3 pairs of relative ranks of entries will

contribute to the ranking loss, as indicated by arrows pointing from relevant labels to irrelevant

ones within each instance. However, there are more pairs of entries that microAUC accounts

for. Given a relevant label for an instance, microAUC pairs it with all other irrelevant labels

of all instances, including itself. In Figure 7(b), example pairs of relevant and irrelevant entries

are indicated by arrows labeled by letters. We do not draw all pairs in Figure 7(b) to avoid

untidiness. Note that arrow a indicates the sort of pairs of entries considered by ranking loss.

Arrow b indicates pairs of entries within a label for different instances, and arrow c points from

a label of an instance to a different label of a different instance.

Pairs of entries indicated by arrow b or d must have been handled by reasonable workers,

who can assign a label to relevant instances. Pairs of entries indicated by arrow a consist of

only a small portion of all pairs if n is large, due to the sparsity of relevant labels. Therefore,

39

(a) Ranking loss (b) microAUC

Figure 7. Comparison of ranking loss and microAUC

the major challenge in optimizing microAUC is how to enforce preference of one label over

other labels across different instances, such as the pairs indicated by arrow c. Without loss of

generality, take Figure 7(b) as an example, given two instances x2 and x3, we need to estimate

the posteriors p(yj = 1|xi) for i ∈ {2, 3}, j ∈ {1, 3}, in order to derive preferences between

relevant and irrelevant labels. Suppose with high probability that p(y1 = 1|x3) > p(y1 = 1|x2)

(arrow b). If label 1 and 3 are correlated, we would like the estimations of p(y3 = 1|x2)

and p(y3 = 1|x3) (arrow d) to reflect such correlations to certain extent according to how

much these two labels are correlated. This can be achieved by enforcing p(y3 = 1|x2) and

p(y3 = 1|x3) to satisfy similar label preference, namely, p(y3 = 1|x3) > p(y3 = 1|x2) with

certain high probability according to the correlation between two labels. As a by-product, we

have p(y3 = 1|x3) > p(y1 = 1|x2) (arrow c) and therefore enforce label preference across labels

and instances to follow the correlation between labels. In summary, we can tackle the challenge

in two steps:

40

• estimate the correlations between labels accurately

• optimize microAUC by estimating label relevance according to the label correlations es-

timated above.

We describe the second step first. A representation of label correlation is needed. Here we

model all pairs of label correlation using the partial correlation matrix of labels.

Definition 1 (Partial Correlations). Partial correlation between labels ℓ and ℓ′ is the correlation

between two labels given the other labels.

The partial correlations can be captured by an l× l symmetric matrix Ω−1, which is called

precision matrix in multivariate statistics. To estimate the relevance scores of the labels Y

following the estimated Ω−1, we set up an optimization objective that combines two goals. The

first goal is to minimize certain loss function employed in model combination algorithms. The

second goal is to maximize the correlation between the label partial correlation (matrix Ω−1)

and the empirical label correlation (given by Y ′Y). The latter goal can be formulated by the

inner product of two matrices: tr(Y ′Y Ω−1) = tr(Y Ω−1Y ′). The optimization problem is

min
Y

J = ‖Ȳ − Y ‖2 + tr(Y Ω−1Y ′) (3.7)

where Y is the final aggregated labels, and Ȳ is the simple average of the crowdsourced multi-

labeled annotations. Taking the derivative of J with respect to the ith row of Y , yi, we obtain

∂J

∂yi
= −2(ȳi − yi)

′ + 2Ω−1y′
i (3.8)

41

Equating the above derivative to 0, we get

yi =
m
∑

k=1

yk
i (Ω

−1 +mIl)
−1 = mȳi(Ω

−1 +mIl)
−1 (3.9)

The label correlation Ω is now taken into account when producing the consolidated predictions.

Note that we assume Ω is given in the above optimization problem. In reality, Ω is usually

unknown and has to be estimated from data. Below we show how to estimate Ω using MLE.

In order to set up an MLE problem, one needs to assume density functions for the observed

data given the parameter. Here we treat Y = {y1, . . . ,yn} as the data independently generated

from the normal density

yi ∼ N (0,Ω) =
1

C
exp{−1

2
y′
iΩ

−1yi} (3.10)

where C = (2π)l/2|Ω|1/2 is the normalization constant. The likelihood of Y given Ω is

p(Y |Ω) =
n
∏

i=1

p(yi|Ω) =
1

Cn
exp{−1

2

n
∑

i=1

y′
iΩ

−1yi} (3.11)

According to the MLE of the covariance matrix of multivariate Gaussian distributions, Ω is

estimated as

Ω̂MLE =
1

n
Y ′Y

Now we can put the above two steps together to build the MLCM-a algorithm (Algorithm 3).

42

Algorithm 3 MLCM-a

1: Input: Predictions from base models {Y 1, . . . , Y m}
2: Output: Consolidated predictions Y .
3: Estimate Y = Ȳ
4: for t = 1→ T do
5: Estimate covariance Ω = 1

nY
′Y

6: Estimate Y using Eq.(Equation 3.9)
7: end for

TABLE VIII

DATASETS
datasets # of instances # of features # of labels
enron 1702 1054 53
medical 978 1449 45

rcv1 subset 1 2997 47337 101
rcv1 subset 2 2951 47337 101

slashdot 3782 1101 22
bibtex 3701 1995 159

3.5 Experiments

3.5.1 Datasets

With 6 datasets widely used in multilabel classification community, we demonstrate the

effectiveness of the proposed methods.Their properties are summarized in Table Table VIII.

Note that these datasets have a relatively large number of labels, it can be very time-consuming

for multilabel classification models to account for complex label correlations during training.

43

3.5.2 Evaluation Metrics

We further include certain popular metrics to give some empirical observations as guidance

for the use of the proposed methods in practice. For a multilabel classifier f , the ranking of

the labels of an instance x is given by {ℓ′1, . . . , ℓ′c} where f(ℓ′1,x) ≥ f(ℓ′2,x) ≥ · · · ≥ f(ℓ′c,x)

and f(ℓ,x) is the relevance score of the label ℓ to x according to f .

• one error: an error occurs when the top-ranked label is not a relevant one, otherwise

there is no error, regardless of how the other labels are ranked.

one error =
1

n

n
∑

i=1

1[ℓ′1 6∈ zi] (3.12)

where ℓ′1 is the most relevant label to xi according to f and zi is the set of relevant labels of

xi. 1[·] is 1 if and only if the statement in the brackets is true. The lower the one error, the

better an algorithm performs.

• average precision: evaluates the precision averaged over all instances and all possible

numbers of retrieved labels.

average precision =
1

n

n
∑

i=1

1

c

c
∑

s=1

{ℓ′1, . . . , ℓ′s} ∩ zi
s

(3.13)

where {ℓ′1, . . . , ℓ′s} is the top s labels retrieved for instance xi (the subscript i is ignored in the

retrieved labels). The higher the average precision, the better an algorithm performs.

44

3.5.3 Baselines

We compare the proposed methods to two baselines. First, evaluation metrics are computed

for each base model, the averaged performance of base models (denoted by BM in the sequel)

are obtained as one of the baselines. Second, we also report the performance of majority voting

method (MV in the sequel). The predictions of all base models are averaged and evaluation

metrics are computed using the averaged predictions. By comparison of these two methods,

we would be able to see how model averaging improves the performance in the multilabel

setting. This confirm the effectiveness of ensemble method used in multilabel classification (46;

53). Since we do not assume the base models have considered label correlation in training or

testing phase, while majority voting cannot discover and exploit label correlations, the proposed

methods should be able to outperform the base models and majority voting.

3.5.4 Experiment settings

A base model is obtained by first randomly shuffling the dataset, followed by 10-fold CV.

For each dataset, we training 10 such base models. For each base model, one can calculate its

performance using the metrics mentioned above. The predictions of these base models are used

as input to MV, MLCM-r and MLCM-a, each of which produces consolidated predictions. Based

on the consolidated predictions, we can evaluate the performance of MV, MLCM-r and MLCM-

a. This experiment is repeated for 10 times for each dataset and the averaged performance is

reported next.

45

3.5.5 Results

We show the performance of the proposed algorithms and baselines in Table Table IX-

Table XIV. We have a couple of observations. First, by comparing results in the rows for

BM and MV, one can see that combining model can boost the performance of multilabel

classification, even only using the simplest way of combination (simple averaging here). The

maximum improvements of MV over BM are 41% and 12.8% for ranking loss and microAUC,

respectively. This is not surprising, as this method is widely used in ensemble multilabel

classification methods like (46; 53; 66; 48; 73; 49; 75). Second, by comparing the results of the

proposed methods and simple averaging, we observe that simple averaging is not sufficient to

fully exploit label correlations, especially when the base models do not take the correlations

into account. The maximum improvement of either the proposed algorithms over MV is 45%

in ranking loss and 20% in microAUC. Third, out of 6 tasks, MLCM-r wins MLCM-a 5 times

in ranking loss, with a maximum of 12% improvement, and MLCM-a wins MLCM-r 4 times in

microAUC, with a maximum of 5.8% improvement. The above comparisons show the superiority

of the proposed methods over the baselines for multilabel predictions combination tasks, and

also how to choose from the proposed methods when different metrics are considered. Lastly,

besides ranking loss and microAUC, the proposed methods also outperform the baselines with

the other two metrics, and this shows the wide applicability of the proposed methods.

46

TABLE IX

RESULTS ON ENRON DATASET

Methods
Metrics

microAUC one error ranking loss avg precision
BM 0.7342 0.5024 0.2967 0.4592
MV 0.8289 0.3398 0.1848 0.6020

MLCM-r 0.8759 0.6233 0.1003 0.5252
MLCM-a 0.8931 0.2675 0.1070 0.6556

TABLE X

RESULTS ON MEDICAL DATASET

Methods
Metrics

microAUC one error ranking loss avg precision
BM 0.8887 0.2041 0.0989 0.7953
MV 0.9321 0.1410 0.0582 0.8639

MLCM-r 0.9536 0.1327 0.0494 0.8750
MLCM-a 0.9556 0.1322 0.0530 0.8649

TABLE XI

RESULTS ON RCV1 SUBSET 1 DATASET

Methods
Metrics

microAUC one error ranking loss avg precision
BM 0.6194 0.6036 0.3373 0.3218
MV 0.6787 0.4792 0.2838 0.4164

MLCM-r 0.7867 0.3554 0.2316 0.5017
MLCM-a 0.8069 0.3120 0.2605 0.4967

47

TABLE XII

RESULTS ON RCV1 SUBSET 2 DATASET

Methods
Metrics

microAUC one error ranking loss avg precision
BM 0.6220 0.5652 0.5652 0.3659
MV 0.6678 0.4730 0.4730 0.4389

MLCM-r 0.7581 0.2955 0.2955 0.5146
MLCM-a 0.8020 0.2830 0.2830 0.5073

TABLE XIII

RESULTS ON SLASHDOT DATASET

Methods
Metrics

microAUC one error ranking loss avg precision
BM 0.7377 0.4875 0.2062 0.5856
MV 0.8210 0.4085 0.1482 0.6689

MLCM-r 0.8782 0.4123 0.1203 0.6736
MLCM-a 0.8702 0.3887 0.1289 0.6800

TABLE XIV

RESULTS ON BIBTEX DATASET

Methods
Metrics

microAUC one error ranking loss avg precision
BM 0.6620 0.5469 0.3095 0.3575
MV 0.7266 0.4329 0.2508 0.4567

MLCM-r 0.8668 0.4713 0.1599 0.4828
MLCM-a 0.8645 0.3790 0.1755 0.4937

CHAPTER 4

THEORETICAL ANALYSIS OF MULTI-CLASS CROWDSOURCED

DATA FUSION

(This chapter includes the paper published in Sihong Xie, Jing Gao, Deepak Turaga, Wei

Fan, Philip Yu. “Class-Distribution Regularized Consensus Maximization for Alleviating Over-

fitting in Model Combination”. In KDD 2014. (DOI: http://dl.acm.org/citation.cfm?

doid=2623330.2623676)).

4.1 Introduction

Combining multiple supervised and unsupervised models can be desirable and beneficial,

or sometimes even a must. For example, in crowdsourcing, privacy-preserving data mining

or big data applications, there could be only predictions from multiple models available, with

raw features of the data being withheld or discarded. One has to merge the output of these

models to obtain the final classification or clustering results. On the one hand, there are

various new consensus-based solutions, such as those proposed in (24; 59; 57; 21; 34; 50; 71).

One common idea that these algorithms share is to learn a model that has highest prediction

consensus among base models. On the other hand, simple model combination algorithms, such

as majority voting (23), that do not pursue model consensus are portrayed as baselines inferior to

the algorithms seeking consensus. These comparisons give the illusion that the more consensus

one can achieve, the more likely the consolidated predictions will be accurate. One might

48

49

ask: are the consolidated predictions that achieve maximal consensus the best choice? Could

these consensus-based methods overfit the noisy and limited observed data, leading to results

inconsistent with the true data distribution? After all, the goal of classification/clustering is to

produce discriminative predictions (4; 55).

In this paper, we study the above questions based on the Consensus Maximization frame-

work (24) (CM for short in the sequel), due to its generality and effectiveness. We first present a

running example of CM in Table Table XV to demonstrate that solely maximizing the consensus

can lead to undesirable results. Suppose we have 5 instances in 2 classes, whose ground truth

labels are shown in the first column of the table. There are 2 supervised models (M1 and M2)

and 2 unsupervised model (M3 and M4). A supervised (resp. unsupervised) model predicts the

class (resp. cluster) labels of all instances. The predictions from a model are shown under the

header with the model’s name. Note that neither the correspondence between class labels and

cluster labels, nor the correspondence between cluster labels from different clustering models

is known. We describe the details of CM later and for the moment, one can think of CM as

a black box that consolidates the predictions of base models and outputs predictive posteriors

p(y = 1|x) that achieve maximal consensus among base models. For majority voting (MV for

short in the sequel), it simply averages the predictions from supervised models (predictions of

unsupervised models cannot be used by MV because the correspondence between classes and

cluster labels is unknown). The consolidated predictions produced by CM and MV are shown

in the last two columns of the table.

50

From this running example, one can see that CM makes more correct predictions than MV

does. However, the posteriors p(y = 1|x) produced by CM tend to be closer to the decision

boundary and the margins between p(y = 1|x) and p(y = 0|x) are quite small. We have two

observations. First, according to the margin-based generalization error analysis (42), a smaller

margin of posterior class distributions between different classes leads to a higher empirical mar-

gin risk, which contributes to the overall generalization error. If one can produce consolidated

predictions with a large posterior margin, a tighter upper bound on the generalization error

can be obtained. Second, if the hypothesis space for a model combination algorithm has large

capacity (measured by VC-dimension, growth function or covering number, etc.), then the up-

per bound of generalization error is also higher. One may incorporate certain relevant prior

knowledge of the data to shrink the size of the hypothesis space. For example, for multi-class

single-label classification, desirable consensus predictions should be discriminative in the sense

that an instance belongs to one and only one class. Our goal is to reduce empirical margin

risk and the capacity of the hypothesis space of model combination methods such as CM, and

obtain a smaller upper bound on the generalization error.

We propose a family of regularization objectives over class distribution to reduce generaliza-

tion errors. As a solid instance, we add regularization objectives to CM to obtain Regularized

Consensus Maximization (RCM). In terms of algorithmic effectiveness, though the regular-

ization introduces many tuning parameters and makes the optimization problem not jointly

convex, we develop a simple yet efficient approximation to the regularization term without in-

troducing additional parameters. An alternative optimization procedure is developed to find

51

TABLE XV

RUNNING CM EXAMPLE

y
Predictions MV Results CM Results

M1 M2 M3 M4 P (y = +|x) P (y = +|x)
+ + + C1 R0 1 0.5073
+ + + C0 R0 1 0.5097
+ − + C0 R0 .5 0.5024
− + − C1 R1 .5 0.4946
− − − C1 R1 0 0.4873

TABLE XVI

NOTATIONS

xi ∈ X = R
d An instance of data

D = {x1, . . . ,xn} Collection of instances
Y = [y1, . . . , yn]

⊤ Ground truth labels of D
Un×c Membership indicators of data
Qv×c Membership indicators of groups
An×v Affinity matrix
c Number of classes
ui The i-th row of matrix U
uj The j-th column of matrix U

a local minimum with reasonably good empirical results. In terms of theoretical effectiveness

of learning, we give a detailed analysis of the algorithm and formally prove that, comparing to

the original version, RCM achieves a smaller upper bound on generalization error.

52

4.2 Overfitted Consensus Maximization

In this section, we recapitulate some basic concepts used in the CM framework, which is

followed by an analysis of why it tends to overfit the data.

4.2.1 CM overfits

The hypothesis space of a learning algorithm is the set of all feasible solutions of the al-

gorithm. A larger hypothesis space has more expressive power comparing to a smaller one,

leading to less training errors. However, models with a larger hypothesis space is more compli-

cated and can lead to less generalization ability and more predicting errors (55). Therefore, one

needs to trade-off between minimizing training error and model complexity. We compare the

hypothesis spaces of two model combination methods, MV and CM, leading to some insights

into the overfitting issue of CM.

Suppose there are m base models (for ease of presentation, assume all models are supervised

models). For each instance and each class, a model outputs 1 (a vote) or 0 (no vote). A

model combination method is a function f that maps predictions of base models to posterior

distributions on the probabilistic simplex:

f : X → S (4.1)

S = {p ⊂ R
ℓ|p =

c
∑

ℓ=1

θℓeℓ = [θ1, . . . , θℓ],
c
∑

ℓ=1

θℓ = 1, θℓ ≥ 0}

where we abuse the notation X, such that X is the collection of base model predictions. eℓ is the

standard basis having 1 in its ℓ-th position and 0 anywhere else, representing the distribution

53

of class ℓ, θℓ is the probability that an instance belongs to class ℓ. When c = 3, an example

of 2-simplex is shown in Figure 8(a). Various model combination methods can be seen as

ways of searching a suitable mapping f in the hypothesis space F of all such mappings, to

optimize certain objectives. Existing methods differ in their hypothesis spaces F and the way

they searches, but the capacity of the hypothesis space is directly related to the generalization

ability of a method. Note that the domain of all model combination methods are the same, so

the capacities of their hypothesis spaces are completely determined by the images of the maps

f(X) ⊂ S.

Majority voting simply sums up the number of votes for each class and assigns an instance

to the class having the most votes. Formally, given the output of r models for an instance, say,

[ŷ1, . . . , ŷr], ŷk ∈ {1, . . . , c}, the decision of majority voting is made based on the the vector:

1

r

[

r
∑

k=1

1[ŷk = 1], . . . ,
r
∑

k=1

1[ŷk = c]

]

∈ S (4.2)

Note that majority voting maps the predictions of base models to rational vectors on the

simplex, with denominators equal to the number of models. For example, if an instance receives

two votes for class 1, one votes for class 2 and 0 vote for class 3, from a total of three classifiers,

then the output of f is [2/3, 1/3, 0], shown as the square with an arrow in Figure 8(b).

CM maps predictions of base models of an instance to a posterior distribution in S, and

the image of the map is the whole simplex S. The relaxation from rational vectors to real

vectors allows a larger hypothesis space such that CM can find an f to attain low consensus

54

(a) 2-Simplex (b) Hypothesis spaces of
MV (only part of the out-
put space is shown)

(c) Hypothesis space of
CM

(d) Hypothesis space of
RCM

Figure 8. Hypothesis space of various methods: the tips of the triangles represent the bases eℓ

loss (see Section 4.5.2). However, it also allows CM to pick an f that outputs predictions close

to uniform distribution with small margin (like the diamond in Figure 8(c)), leading to higher

empirical margin risk (see Section 4.4) It is verified in Section 4.5 that CM does tend to output

predictions that have small consensus losses and small margins. Here we define “overfitting” in

model combination in a vague sense, and defer the formal analysis to Section 4.4.

Definition 2 (Overfitting in model combination). A model combination method consolidates

predictions of base models to achieve a high degree of model consensus but with higher general-

ization error upper bound.

4.3 Class-Distribution Regularized Consensus Maximization

4.3.1 Regularization over class distributions

According to the above analysis, if we adopt a reasonably small but rich enough hypothesis

space for CM, then we could avoid over-fitting and achieve better performance. How can we

specify a suitable hypothesis space for CM? Note that the predictions lying near the corners

55

of the simplex (shadows in Figure 8(d)) have a more dominating component θℓ0 for some class

ℓ0. On the one hand, when the difference between p(y = ℓ0|x) and any other p(y = ℓ|x) is

larger, the prediction is more discriminative to reflect the true class distribution. On the other

hand, if the number of dominating entries in p(y|x) is greater than 1, then those dominating

classes are correlated since they co-occur, conflicting the multi-class distribution assumption.

This observation indicates that when searching for solutions in the hypothesis space, CM should

penalize solutions that lie too far away from any corner of the simplex and encourage solutions

that lie close to the corners. For CM to reduce the penalized consensus loss L(U,Q), it must

move its predictions towards one of the corners on the simplex, as shown by the arrows in

Figure 8(d). The above intuition suggests that the consolidated predictions should exhibit some

sort of independence between classes, given the problem is a multi-class single label problem.

Specifically, recall that U is the consolidated prediction, with the ℓ−th column being the

posterior probabilities p(y = ℓ|x), we can compute the empirical class correlation matrix Σ =

U⊤U . We want the matrix Σ to be close to a c× c matrix D, which represents the ideal class

correlations. For example, to enforce independence between classes in multi-class classification

problems, we can set the diagonal elements of D to a positive number whose scale is comparable

to the empirical correlations, and set the off-diagonal elements to a positive number much

smaller than the diagonal elements.

By adopting the Frobenius norm, we obtain the following regularization term

∆F =
1

2
‖Σ−D‖F (4.3)

56

or by adopting the relative entropy (8)

∆E =
1

2

c
∑

i,j=1

Σij log
Σij

Dij
(4.4)

Adding any of the above regularization terms to the objective of CM, we obtain the following

optimization problem:

min
U,Q

n
∑

i=1

v
∑

j=1

aij‖ui − qj‖2 + α
v
∑

j=1

bj‖qj − ȳj‖2 + λ∆

s.t. uiℓ ≥ 0, ‖ui‖1 = 1, i = 1, . . . , n

qjℓ ≥ 0, ‖qj‖1 = 1, j = 1, . . . , v

where ∆ = ∆F or ∆E . The parameter λ controls the trade-off between model consensus and

class independence. We will see that the regularization helps reduce the capacity of hypothesis

space and also the empirical margin risk.

4.3.2 Optimization of the Class-distribution Regularized Model

Our plan for solving the optimization problem Eq.(Equation 4.5) is to first ignore the con-

straints that ui and qj are probability distributions and solve the unconstrained optimization

problem using gradient descent, then we address the probabilistic constraints on ui and qj in

the next section. The gradient descent steps for the first two terms in the above objective func-

57

tion are given in Eq.(Equation 2.3) and Eq.(Equation 2.4), the gradients of the regularization

term ∆ with respect to column uj are as follows:

∂∆F

∂uj
=

c
∑

i=1

(Σij −Dij)ui

∂∆E

∂uj
=

c
∑

i=1

(1 + log
Σij

Dij
)ui

Thus a gradient descent step for the regularization term with respect to column uj are:

uj ← uj − ηt

c
∑

i=1

(Σij −Dij)ui (4.5)

uj ← uj − ηt

c
∑

i=1

(1 + log
Σij

Dij
)ui (4.6)

where ← indicates the assignment of an updated uj to itself. ηt is the learning rate in the t-th

iteration with ηt = η0/
√
t and η0 is the initial learning rate. We let the trade-off parameter λ

in the RCM objective be absorbed in η0. Eq.(Equation 4.5) and Eq.(Equation 4.6) have a quite

intuitive meaning: for each column ui representing the i-th class, depending on whether the

empirical class correlation Σij exceeds the ideal class correlation Dij , uj is moved away from

(Σij > Dij) or towards (Σij < Dij) ui, and the amount of displacement is proportional to the

distance between the empirical and ideal class correlation. In practice, it is not easy to specify

the ideal class correlation matrix D, and the scaling parameters βij = Σij −Dij (or 1+ log
Σij

Dij
)

may be sensitive to the choice of D. Simply setting all the βij to be 1 will actually hurt the

performance, as we ignore the information about the class correlations.

58

We propose an approximation of Eq.(Equation 4.5) and Eq.(Equation 4.6) to avoid specify-

ing the parameters D and to maintain the effect of the regularization, namely, a large margin

between class distributions. Note that in Eq.(Equation 4.6), for i 6= j, Dij should be some small

number and if Σij ≫ Dij , the scaling parameter 1 + log
Σij

Dij
will be large; on the other hand,

if Σij is about the same as Dij , 1 + log
Σij

Dij
will be close to 1. According to this observation,

when computing the gradient for the column uj , we can set βij as follows:

βij =

1 if i = argmink 6=j ‖uk − uj‖2

−1 if i = j

0 otherwise

(4.7)

The resulting regularization term is

∆A =
1

2

c
∑

j=1

‖uj − ud(j)‖22 (4.8)

where

d(j) = argmin
k 6=j

‖uj − uk‖2 (4.9)

Eq.(Equation 4.5) and Eq.(Equation 4.6) become

uj ← uj − ηt(ud(j) − uj) (4.10)

59

So far we have specified all necessary gradient descent steps for RCM. Nonetheless, the original

CM gradient descent steps involve the rows of the matrices U and Q, while to minimize the reg-

ularization term ∆, one has to work with the columns of U . It is non-trivial to derive gradient

descent steps involving both rows and columns of a matrix. We adopt an alternative opti-

mization procedure that first minimizes the consensus loss L(U,Q) through Eq.(Equation 2.3)

and Eq.(Equation 2.4), then minimizes ∆A through Eq.(Equation 4.10). These two steps are

alternatively repeated until it converges.

4.3.3 Projection to the Probabilistic Simplex

The converted unconstrained optimization problem ignores the constraints:

uiℓ ≥ 0, ‖ui‖1 = 1, i = 1, . . . , n

qjℓ ≥ 0, ‖qj‖1 = 1, j = 1, . . . , v

(4.11)

Although Eq.(Equation 2.3) and (Equation 2.4) maintain rows of U and Q as probability

distributions, Eq.(Equation 4.10) might bring any entry of U to be greater than 1 or less than

0, and a row in U or Q might not sum up to 1. We propose to perform probabilistic projection for

all ui after all gradient descent steps in each iteration. More formally, the following optimization

problem finds v, the projection of ui onto the probabilistic simplex

min
v
‖v − ui‖2

s.t. ‖v‖1 = 1, vℓ ≥ 0, ℓ = 1, . . . , c

60

The optimal solution v∗ serves as the new ui for the next iteration, with the probabilistic

constraints satisfied. An efficient algorithm (in O(cn)) with implementation to solve the above

problem can be found in (17). The complete algorithm is described in Algorithm 4.

Algorithm 4 Regularized Consensus Maximization (RCM)

1: Input: Affinity matrix A, initial learning rate η0
2: Set uj to uniform distribution.
3: for t = 1→ MaxIterNum do
4: Q = (Dv + αKv)

−1(A⊤U + αKvY)
5: U = D−1

n AQ
6: ηt = η0/

√
t

7: for j = 1→ c do
8: d(j) = argmink 6=j ‖uk − uj‖
9: uj ← uj − ηt(ud(j) − uj)
10: end for
11: Project ui to the probabilistic simplex.
12: end for

4.4 Generalization Error of RCM

In this section, we prove that, compared to CM, the proposed regularization leads to a

smaller upper bound on generalization error. The generalization error bound consists of two

terms: the empirical margin risk on training data and a term measuring the capacity of the

hypothesis space explored by a learning algorithm. Regarding the empirical margin risk, we

first define the multi-class margin (42).

Definition 3 (Canonical Function). Given a function f ∈ F that maps predictions of base mod-

els to posterior distribution (see Section 4.2.1). For the instance x, f(x) = [f1(x), . . . , fc(x)] ∈

61

S where fℓ(x) is the probability that x belongs to class ℓ, according to f . Let M1 be the

smallest index ℓ such that fℓ(x) = maxk fk(x), and M2 be the smallest index ℓ such that

fℓ(x) = maxk 6=M1
fk(x). The canonical function ∆f : X → [−1, 1]c, with the ℓ-th component

being:

∆fℓ(x) =

fℓ(x)− fM2
(x) if ℓ = M1

fℓ(x)− fM1
(x) otherwise

(4.12)

M1 is the label selected by Bayes decision rule andM2 is the closest runner-up. ∆fℓ measures

how far away the selected label is from the other competitors. Based on the canonical function,

we define the multi-class empirical margin risk

Definition 4 (Empirical Margin Risk). For γ > 0 and training set s = {xi,yi}mi=1, the empirical

margin risk Rγ
s (f) of the function f is

Rγ
s (f) =

1

m
|{xi|∃ℓ ∈ {1, . . . , c}, yiℓ ·∆fℓ(xi) < γ}| (4.13)

where yiℓ is the ℓ-th component of the true label vector yi.

Next we define necessary concepts to measure the capacity of hypothesis spaces.

Definition 5 (SupremumMetric for functions). (42; 3) Suppose F is the collection of functions

mapping from X to S, and s = {xi}mi=1 ⊂ X is a given set of instances. Define the metric

(distance measure) for functions d(·, ·) : F × F → [0,+∞) on s by

ds(f, f̃) = max
xi∈s

c
∑

ℓ=1

|fℓ(xi)− f̃ℓ(xi)| (4.14)

62

Note that the metric such defined depends on the set of instances s.

Definition 6 (Covering number). Let (F , ds) be the space of functions equipped with the supre-

mum metric, where s ⊂ X a finite set of instances. Define Bs(f, r) the closed ball centered at f

with radius r:

Bs(f, r) = {g ∈ F|ds(f, g) ≤ r} (4.15)

The covering number N (ǫ,H, ds) of a set H ⊂ F is defined as

N (ǫ,H, ds) = inf
T
{|T |} s.t. H ⊂ ∪f∈TBs(f, ǫ) (4.16)

The set T is called an ǫ-cover of the subset H.

The following bound on generalization error for multi-class classification is given in (42):

Theorem 1. Let F be a set of functions from X to S and ∆F be the set of canonical functions

∆f . Let s be a learning set of size m drawn iid. from a probability distribution P . Let 0 < γ < 1.

With probability 1− δ, ∀f ∈ F ,

R(f) ≤ Rγ
s (f) +

√

1

2m
ln

(

2N∞(γ/2,∆Fγ)

δ

)

(4.17)

where

N∞(γ,F) = sup
s:|s|=2m

N (γ,F , ds) (4.18)

63

∆Fγ = {πγ ◦ ∆f : ∆f ∈ ∆F} where πγ is the truncation function applied to each of the c

components of ∆f

πγ(fℓ(x)) =

γ · sign(fℓ(x)) if |fℓ(x)| ≥ γ

fℓ(x) otherwise

(4.19)

Given the bound in Eq.(Equation 4.17), we want to prove that both terms in the bound

for the regularized CM are smaller than those for the original CM, and obtain the following

theorem:

Theorem 2. RCM has a smaller upper bound on generalization error compared with that of

CM.

The above theorem is proved in two steps in the following two lemmas.

Lemma 1. RCM achieves a lower empirical margin risk if we use ∆E as our regularization

term and the matrix D is such set that the scaling parameters βij = βji and βii = 1.

Proof. Given training data s, 0 < γ < 1, 1 − Rγ
s (f) is the proportion of correctly classified

instances with margin greater than γ. Suppose f is the prediction function found by CM and f̃

is that found by RCM. In other words, f̃ is obtained by applying Eq.(Equation 4.6) to f . Note

that Rγ
s (f̃) ≤ Rγ

s (f) ⇐⇒ 1−Rγ
s (f̃) ≥ 1−Rγ

s (f), we need to prove, for any correctly classified

instance with margin greater than γ, its margin under f̃ is not smaller than that under f .

Let u = [f1, . . . , fc] and ũ = [f̃1, . . . , f̃c] be the evaluations of f and f̃ at some point x that

is correctly classified with margin larger than γ (we ignore the arguments of f and f̃). Assume

64

1 = argmaxℓ fℓ and 2 = argmaxℓ6=1 fℓ. Then y1 ·∆f1 ≥ γ. But y1 = 1, so ∆f1 = f1 − f2 ≥ γ.

The gradients Eq.(Equation 4.6) at x be

gj = ηt

c
∑

i=1

(1 + log
Σij

Dij
)fi > 0, j = 1, 2 (4.20)

Assume that proper values are set to matrix D, such that Σii = Dii but Σij ≫ Dij for i 6= j.

Then the gradients are

gj = ηt

c
∑

i=1

βijfi, j = 1, 2 (4.21)

where βii ≪ βij , i 6= j. That is, for a given j, fi has a much larger weight than fj in gj for

i 6= j. If βij = βji, then by f1 > f2, we have g2 > g1,

∆f̃1 = f̃1 − f̃2 = (f1 − g1)− (f2 − g2) = ∆f1 − (g1 − g2) > ∆f1 (4.22)

Lemma 2. The hypothesis space of RCM has smaller covering number than the hypothesis

space of CM.

Proof. Let ∆Fγ = {πγ ◦ ∆f : ∆f ∈ ∆F} and ∆F̃γ = {πγ ◦ ∆f̃ : ∆f ∈ ∆F̃} where F is

the collection of functions f : X → S and F̃ are their large margin version as defined in

Lemma 1, ∆f is the canonical function and πγ is the truncation function Eq.(Equation 4.19).

Then ∆F̃γ ⊂ ∆F since for any f ∈ F , its large margin version f̃ ∈ F , thus we have ∆F̃ ⊂ ∆F .

After truncation, ∆F̃γ ⊂ ∆Fγ .

65

Given any training data s of size 2m, any γ/2-cover of ∆Fγ is also a γ/2-cover of ∆F̃γ .

Therefore by definition Eq.(Equation 4.16),

N (γ/2,∆Fγ , s) = inf{|T |} ≥ inf{|T ′|} = N (γ/2,∆F̃γ , s) (4.23)

where T ∈ {γ/2-covers of ∆Fγ} and T ′ ∈ {γ/2-covers of ∆F̃γ}. By the definition Eq.(Equation 4.18),

we conclude that

N∞(γ/2,∆Fγ) = sup
s
N (γ/2,∆Fγ)

≥ sup
s
N (γ/2,∆F̃γ) = N∞(γ/2,∆F̃γ)

4.5 Experimental Results

In this section, we first summarize the experimental settings, including evaluation bench-

marks and model combination baselines. Then we demonstrate how CM overfits the data and

how the proposed RCM resolves the issue.

4.5.1 Experimental Settings

Benchmarks A model consolidation method consolidates the predictions of multiple

supervised and/or unsupervised models to come up with improved predictive performance.

Therefore, to evaluate the performance, we need the predictions from multiple base models for

66

TABLE XVII

DATASETS AND BASE MODELS

Datasets # Instances # Classes Predictors

20NG

1 1568 4
Apply SVM, Logis-
tic Regression, K-
means and mini-cut
to texts. 4 Predic-
tors in total.

2 1588 4

3 1573 4

4 1484 4

5 1584 4

6 1512 4

Cora

1 663 3 Apply Logis-
tic Regression
K-means to cita-
tion/publication
network and texts.
4 Predictors in
total.

2 977 4

3 1468 5

4 975 5

DBLP 4236 4

the datasets, whose information are summarized in Table Table XVII. The dataset1 contains

11 text classification tasks. Each task contains the predictions given by the output of 2 classifi-

cation and 2 clustering models. For details of how they processed the data, please refer to (24).

We compare RCM with CM in order to verify the effectiveness of the large margin con-

straint. CM and RCM share most of the parameters such as number of iterations, importance

of supervised models, etc.. For the shared parameters, we adopt the parameter settings of

CM (24). In addition, we set the initial learning rate η0 to be 0.1. We also compare RCM

with other state-of-the-art cluster ensemble methods: MCLA (50), HBGF (50), SNNMF (34),

BCE (57) ECMC (71). MCLA and HBGF are graph partition based approaches, which use

1available at http://www.cse.buffalo.edu/~jing/

67

spectral clustering (41; 16) to partition the bipartite or hyper graph constructed from the pre-

dictions of base models. There is no parameter to tune for these two methods. SNNMF is a

matrix factorization based method, which derives clustering of instances using the similarity

matrix constructed from base models’ predictions. We run SNNMF to its convergence to obtain

the final predictions. BCE is a Bayesian approach to consensus maximization. We set its pa-

rameters as follows: LDA parameters α = 0.5, β = 0.1, number of iterations for Gibbs sampling

is set to 50,000, the topic distributions of the words in documents are randomly initialized. We

observe that performance the Gibbs sampling for BCE is sensitive to the initialization of the

parameters and unstable, we run the BCE for 10 times and report its best performance. We also

implemented BCE using variational inference, but the procedure did not converge after long

runs, so we do not report the corresponding results. ECMC is a matrix factorization method

with a de-noising step, we adopt the implementations of robust PCA and matrix completion

packages1, with d0 = 0.4, d1 = 0.6 and other parameters being the default values (see (71) for

details).

4.5.2 Overfitting in Consensus Maximization

In Section 2.2 and 4.2.1 we theoretically showed that, CM produces predictions that min-

imize the consensus loss but overfit the data, and therefore might not generalize well, and in

Section 4.3.1, we proposed RCM to solve the issues. By comparing CM and RCM in con-

1http://perception.csl.illinois.edu/matrix-rank/sample_code.html

68

TABLE XVIII. Overall Performance on Text Classification Tasks

Methods
Newsgroups Cora DBLP

1 2 3 4 5 6 1 2 3 4 1
MCLA 0.7574 0.8345 0.7816 0.8225 0.8039 0.8332 0.8522 0.8009 0.8442 0.8262 0.8604
HBGF 0.721 0.636 0.7677 0.6885 0.6421 0.7482 0.7966 0.6574 0.7655 0.7912 0.8146
SNNMF 0.5980 0.6904 0.6384 0.5733 0.6245 0.6753 0.7407 0.6492 0.7051 0.6989 0.6307
BCE 0.6639 0.2544 0.7082 0.7230 0.7247 0.7474 0.6546 0.8915 0.5565 0.2482 0.2887
ECMC 0.5599 0.6215 0.6294 0.6759 0.6338 0.4530 0.5973 0.6428 0.5252 0.8513 0.7771
CM 0.8131 0.9106 0.8608 0.9117 0.8857 0.9094 0.8688 0.9151 0.8951 0.9036 0.9412
RCM 0.8131 0.9030 0.8735 0.9232 0.8927 0.9134 0.8703 0.9222 0.9203 0.9128 0.9429

15 20 25 30 35 40

dblp
cora4
cora3
cora2
cora1

news6
news5
news4
news3
news2
news1

Consensus Loss

CM
RCM

Figure 9. Consensus Loss

69

news1 news2 news3 news4
1.998

1.9985

1.999

1.9995

2

E
n

tr
o

p
y

CM
RCM

(a) Prediction Entropy

news5 news6 cora2 dblp
1.997

1.9975

1.998

1.9985

1.999

1.9995

2

E
n

tr
o

p
y

CM
RCM

(b) Prediction Entropy

cora3 cora4
2.31

2.312

2.314

2.316

2.318

2.32

E
n

tr
o

p
y

CM
RCM

(c) Prediction Entropy

Figure 10. Consensus loss and entropy of CM and RCM

sensus loss, prediction margins and accuracy (next section), we verify that CM does have the

overfitting issue and RCM can effectively mitigate overfitting.

On the one hand, one can see from Figure Figure 9 that CM has a lower consensus loss

than RCM does across all datasets. This is because CM solely minimizes the consensus loss

while RCM minimizes a regularized consensus loss and has a smaller hypothesis space. On the

other hand, we use entropy of ui (hi = −∑c
ℓ=1 u

i
ℓ log u

i
ℓ) as a measure of prediction margin: the

higher the entropy, the smaller the margin ui has and the less discriminative ui is. We show

the averaged entropy 1
n

∑n
i=1 h

i for each dataset in Figure 10(a), 10(b), 10(c). From the figures,

we can see that the entropy is higher in the predictions of CM across all datasets except on

the dblp dataset. (the result on the cora1 dataset is not shown due to the scale). Therefore on

average, the predictions of CM have smaller margins than those of RCM. Since margin is used

as an indicator of generalization performance of a learning algorithm (4), CM might overfit the

data while RCM should improve the generalization ability and accuracy of CM.

70

0 5 10 15 20 25 30

0.8

0.85

0.9

Iterations

A
cc

u
ra

cy

news2
news4
news5
news6

(a)

0 5 10 15 20 25 30
0.7

0.75

0.8

0.85

0.9

Iterations

A
cc

u
ra

cy

news1
news3
cora1
cora3

(b)

0 5 10 15 20 25 30
0.8

0.85

0.9

Iterations

A
cc

u
ra

cy

cora2
cora4
dblp

(c)

Figure 11. Convergence of RCM

4.5.3 Accuracy

In Table Table XVIII, we compare the accuracies of RCM and the baselines on 11 text

classification tasks. From the table, we can see that BCE is very unstable and there are two

main reasons for this. First, similar to LDA, BCE needs a lot of observed data to infer the

consolidated labels, yet usually we have only a couple of base models. Second, Gibbs sampling

is too sensitive to initial conditions while variational inference does not converge given only a

handful of data. ECMC and SNNMF sometimes give reasonable performance, such as ECMC

on the cora4 task. However, their optimization are also sensitive to initialization, and their

solutions are unstable. Both MCLA and HBGF in general have better performance than ECMC

and SNNMF, though they are still outperformed by both CM and RCM.

The comparison between CM and RCM is more interesting. Using the proposed regulariza-

tion over the class distributions, RCM controls the size of its hypothesis space and focuses on

the more discriminative predictions. As we can see from the table, RCM outperforms CM on

71

10 out of 11 datasets. These evidences, together with the comparisons of consensus loss and

entropy in Section 4.5.2, clearly demonstrate that CM overfits the data to produce highly con-

sensus predictions, while RCM is able to trade-off between two objectives and achieves better

accuracy.

Statistical significance of the results We verify that the improvements brought by the

proposed method is statistically significant. According to (15), one can compare the effective-

ness of different algorithms based on their performance on multiple datasets. Since among all

baselines, CM has the closest performance to RCM, we compare these two methods using the

Wilcoxon signed-ranks test. For the details of how to carry out the test, please refer to (15).

The test shows that RCM is statistically significantly superior to CM with α = 0.05, where α

is the probability that RCM is not better than CM.

4.5.4 Convergence Study

For each of the text classification tasks, we record the accuracy at the end of each iteration

of RCM. In Figure Figure 11, we plot the accuracies against the number of iterations. From

the figure, we can see that, except for the news3 and dblp tasks, RCM converges to some fixed

accuracies. Even for those two exceptions where there are some zigzag’s at the tails of the

curves, we notice that the lowest accuracies obtained after the 25th iteration are at least the

same as the best baseline (CM in both cases). Therefore, we conclude that given a big enough

number of iterations, the algorithm performs better than or comparable with the baselines.

CHAPTER 5

DISTILLING TRUSTWORTHY CROWDSOURCED RATINGS VIA

SINGLETON SPAMMING ATTACK DETECTION

(This chapter includes the paper published in Sihong Xie, Guan Wang, Shuyang Lin, Philip

S.Yu. “Review Spam Detection via Temporal Pattern Discovery”. In KDD 2012.. (DOI:http:

//dl.acm.org/citation.cfm?doid=2339530.2339662))

5.1 Background and Motivation

In this chapter, we will address the problem of distilling trustworthy ratings from crowd-

sourced ratings for products or stores on online commerce websites. Online ratings about

products and stores are essential parts in today’s electronic commerce where they provide help-

ful information for potential customers. A product or store with a decent rating and a high

proportion of positive reviews will attract more customers and larger amount of business, while

a couple of negative reviews/ratings could substantially harm the reputation, leading to finan-

cial losses. Since there is no rule governing online reviews and ratings, some product providers

or retailers are leveraging such public media to defame competitors and promote themselves

unfairly, or even to cover the truth disclosed by genuine reviews. For example, suppose a cus-

tomer finds the delivery service of a certain store unacceptably slow, she then writes a review

about the fact and gives it a low rating on a review website. This review and rating present

a unfavourable impression of the store to potential customers, who might choose other stores

72

73

after reading that review. In order to avoid the drainage of business caused by this negative yet

truthful review, the store could employ or entice a group of people to post undeserving positive

ratings about the delivery service. Similarly, the store could also ask these people to post un-

favorable ratings about its competitors, from which the store would like to distract customers.

These hired reviewers are called spammers and the fake ratings they post are called spamming

ratings. In order to protect customers, honest online stores and the whole electronic commerce

environment, it is desirable to detect the spamming ratings to distill a set of more trustworthy

ratings of the products.

Previous works proposed to use features of posted review contents and reviewers’ behav-

iors (18; 39; 40; 1) or graph connecting reviewers, stores and reviews (22), to detect spamming

reviews or ratings. These methods work best in the situations where spammers post many

reviews or ratings (see the related work). In reality, however, most reviewers post only one re-

view or rating. For example, 68% of the reviewers post a single review or rating in the Amazon

review dataset studied in (39), and this percentage is 90% in the dataset we study here. If a

review/rating is the only review/rating a reviewer has post, we call it a singleton review/rating

(SR for short). In fact, as we shall see later, the SR definition can be generalized to cover

reviewers with a few reviews/ratings, not necessarily just one. One question is: are most of

these SRs honest ones? The answer is probably not, due to the nature of spam attacks. For a

store to rapidly raise its fame and rating (resp. defame others) it is desirable to have spammers

post plenty of favorable (resp. unfavorable) reviews/ratings about it (resp. its competitors)

in a short time. Usually a spammer would not post many reviews with similar ratings for a

74

store under the same name. Instead, he would rather post fake reviews/ratings under different

names to avoid being caught. This spamming strategy brings a large number of SR. Most of

the statistics adopted by previous works would not work on such singleton reviews/ratings. For

example, the mean and standard deviation of ratings given by a reviewer (18) become mean-

ingless if this reviewer has post only one rating; in the rule or frequent pattern based detection

method (40), singleton reviews are also ignored due to their low significance.

Indeed, detecting SR spams can be challenging. If a reviewer has post only one review/rating,

simply looking at this SR reveals little information about the true intention behind it, so it is

hard for machines or even human beings to draw a conclusion. For example, in the experiment,

we find that one reviewer said “For the few times that I’ve contacted customer service via

phone, email, or chat, the person has always been helpful and gone out of his/her way.” At a

first glance, this is a normal review talking about customer service. Since it is the only review

the reviewer has written, existing spam detection algorithms will simply ignore this review.

Even for human beings, it is extremely difficult to tell if this is a spam review or not. However,

if we look at the aggregate reviewers’ behaviors in a temporal way, we can find that this review

was written in a period when there was a burst of SRs and the rating of the store went up

dramatically. It is abnormal for the number of reviews, the ratio of SR and the store rating to

be temporally correlated, this review is pretty suspicious.

In particular, spammers have to post many positive (or negative) reviews/ratings in a short

time, otherwise, the spammers are not effective in promoting or defaming a store or product.

However, if a spammer posts his reviews/ratings quickly under the same name, he can be easily

75

detected by checking the duration between two consecutive reviews with similar rating from a

single person. So posting spam reviews/ratings under different names is a safer way. Based on

the above reasoning, we make the following conjectures on SR spam attacks. When such an

attack occurs in a certain period, there tends to be a sharp increase in the number of reviews

and the ratio of SRs, together with an increase (or decrease) in the average rating. Therefore,

we can transform the SR spam detection problem to an abnormally correlated temporal pattern

detection problem in multidimensional time series consisting of the above three indices. Note

that spammers may want to evade the proposed method by writing more than one but not too

many reviews. For these spammers, we can easily modify the algorithm to catch them (see

Section 5.2.2.1) and we focus on the detecting SR spams. In the next section, we make several

assumptions about reviewers’ arrival patterns, which define a necessary condition of SR spam

attacks.

5.2 Singleton Review/Rating Spam Detection Model

5.2.1 The Model of Reviewer Behavior

We make certain assumptions of reviewers’ behaviors, divided into two phases: the arriving

and posting phase. In the arriving phase, a customer buys something from a store or a spammer

is hired or enticed by a store to post fake reviews/ratings. The posting phase is when a reviewer

post a review/rating. There are mainly three patterns of arriving phase behaviors: normal

arrival, promotion/sale event arrival, and spam attack pattern. First, the normal arrival pattern

can be modeled by a homogeneous Poisson process with a fixed rate λ. A Poisson process is a

set of random variables {N(t) : t ≥ 0} satisfying the following properties (30):

76

• Pr{N(t+ h)−N(t) = 1|N(t) = n} = λh+ o(h) as h→ 0, for n = 0, 1, . . .

• Pr{N(t+ h)−N(t) = 0|N(t) = n} = 1− λh+ o(h) as h→ 0

• N(0) = 0

where N(t) is the number of arrivals up to time t. λ is a constant controlling the intensity of

arrivals, with a larger λ indicating more arrivals in a unit of time. Second, it is possible for

a store to promote their products over a period and therefore increase the traffic of customers

and reviews. We model this arrival pattern using a non-homogeneous Poisson process, with the

rate parameter being a function of time λ(t). Third, the spam attack arrival pattern is pretty

much like that in the promotion mode, since a large number of spammers would be hired or

enticed by the store.

In the writing phase, we model the writing behaviors of normal reviewers and spammers.

First, in order to get the rewards offered by the store that tries to commit SR spam attacks,

spammers tend to post spam reviews or ratings in a hurry, and there is seldom a delay. There-

fore, we assume that the time when a spammer posts something is the same as the time she

arrives, and the spamming reviews/ratings’ arriving pattern is the same as spammers’ arriving

pattern, a bursty one. Second, for genuine reviewers, we claim that there are some random

factors associated with the delays in posting their reviews or ratings after their shopping expe-

riences, by the following reasons. A genuine reviewer seldom post a review/rating right after

she shops with a store. Instead, most of them would do so after receiving and trying out the

products for some time. Therefore, one random factor is the time spent on delivery, this fac-

tor depends on how a customer and a store choose the way of delivery, the traffic and logistic

77

conditions and so on. Another random factor is the time spent on tryouts, which depends on in-

dividual customer behaviors. The randomness associated with the delay in a genuine reviewer’s

posting activities smooth out the arrival intensity of reviews, even in a promotion event. In

other words, their postings are less likely to concentrate in a short period and causing bursty

peaks.

According to the above analysis, a spam attack tends to create a burst in the review arriving

process, which is distinct from the normal and even promotion review arrivals. Nonetheless, as

fluctuations in the volume of reviews do exist, bursty patterns in review arrival do not necessarily

imply SR spam attacks. Observe that spammers are brought together to bring up or down the

rating of a store, the spamming ratings are more likely to correlate with these reviews’ arrivals.

In contrast, because the opinions of genuine reviewers about a store can vary wildly, depending

on their satisfaction with speed of delivery, quality of products and customer services, etc. If

we average the ratings of genuine reviews in a certain period of reasonable length, the positive

and negative ratings will cancel out each other, therefore, the average ratings should be stable

over time and independent of genuine reviews’ arrivals. In summary, we should look at the joint

abnormal patterns in review arrival and averaged rating to detect such attacks more robustly.

5.2.2 A Correlated Temporal Anomalies Discovery based Approach

5.2.2.1 Time Series Construction

The detection approach is based on time series of the number of reviews, average ratings and

the ratio of singleton reviews. The data we study here is a set of reviews with texts and ratings

posted for different stores on a review website in a certain time period. To construct these time

78

series, we discard text information and keep the posting time and ratings of the reviews. This

is reasonable as there exist other spam detection algorithms utilizing text information, so they

are complementary methods to the proposed algorithm. The resulting data can be seen in this

way: each store s has a series of ratings sorted in ascending order of posting time.

R(s) = {r1, . . . , rns}, TS(s) = {ts1, . . . , tsns},

where ns is the number of reviews for store s, and tsi is the time stamp when ri is written,

tsi ≤ tsj for all 1 ≤ i < j ≤ ns. After choosing the time windows size (denoted by ∆t), the

time interval under investigation (denoted by I = [t0, t0 + T]) can be divided into N = T/∆t

consecutive time windows or sub-intervals. Each time window is of length ∆t and contains

reviews posted during that time window. Let In denote the n-th time window, so

In = [t0 + (n− 1)∆t, t0 + n∆t], I =
N
⋃

n=1

In

Given a time window In, we compute the average rating f1, the number of reviews f2, and the

ratio of singleton reviews f3. Formally,

f1(In) =
∑

tsj∈In

rj/f2(In)

f2(In) = |{rj : tsj ∈ In}|

f3(In) = |{rj : tsj ∈ In, rj is an SR}|/f2(In)

79

where |A| denotes the cardinality of the set A. Given a store s, time interval I = [t0, t0 + T]

and time window size ∆t, these aggregate functions represent a three dimensional time series

and can be collectively represented by

Fs(I,∆t) =

f1(1) . . . f1(N)

f2(1) . . . f2(N)

f3(1) . . . f3(N)

s

where fi(n) is a shorthand for fi(In), i = 1, 2, 3. In the following, we drop the index on stores

and let F (I,∆t) denote the time series constructed for a certain store. The way we construct

these time series can be generalized to handle spammers who write just a few reviews with

similar ratings. We can simply treat all the reviews as SR by ignoring reviewers’ ids, then the

way we construct these time series still makes sense and the proposed algorithm can detect SR

attacks (see next section).

5.2.2.2 Correlated Abnormal Patterns Detection in Multidimensional Time Series

Given the three time series of a store, we would like to find out correlated abnormal blocks

on all three series. In other words, these blocks should simultaneously present sudden increases

in rating, ratio of singleton reviews and the number of reviews. Here we focus on the singleton

review detection methodology based on burst detection algorithms. Instead of inventing a novel

burst detection algorithm, which is not the focus in this paper, we use a three-step approach

for the detection. First, on each dimension, we employ a Bayesian change point detection

80

algorithm (9) to fit curves using the time series (other curve fitting algorithms will do the job,

too). As an example, we plot the time series along with the fitted curves in Figure 12. We

then apply a simple template matching algorithm to the fitted curves to detect bursty patterns.

Lastly, a sliding window finds out the blocks in time series corresponding to a joint burst in all

dimensions of the time series. In the above example, a joint burst is highlighted by the red box

in Figure 12.

Assuming that we have obtained the fitted curves, we describe in what follows the last two

steps in details. For the curve fitting algorithm, please refer to (9). Let C = {c1, c2, c3} be

the fitted curves of the three dimensions of a time series. All curves have the same length

(number of samples), which is also defined as the length of C. First, we want to detect sudden

increases in each of the three curves separately. Based on the description of the arrival process

in Section 5.2.1, this can be transformed to the problem of template matching. We use a step

function-like template to represent a sudden rise in values

v = {−0.5,−0.5, 0.5, 0.5, 0.5}

Note that one can use other values for v so long as it represents a sharp increase temporally. If

a block on a fitted curve c = {c1, . . . , cn} ∈ C is found to “match” this template well, then we

find an anomaly of interest on the curve. One can obtain all blocks of c by sliding a window

81

through c, and all consecutive points on c falling into the window form a block, which is denoted

by

b = {ci1 , . . . , ci5}

where 1 ≤ ik ≤ n for k = 1, . . . , 5 and ik + 1 = ik+1 for k = 1, . . . , 4. Note that the length of a

block is chosen to have the same length as the template. We use a modified longest common

substring (LCS) for matching (54) between v and b. In general, suppose we want to find the

degree of match between two sequences z1 = {z11 , . . . , z1n} and z2 = {z21 , . . . , z2n}. Without loss

of generality, one can think of z1 as v and z2 as b. In the modified LCS, how well two sequences

match each other is measured by the number of points in one sequence matching those in the

other sequence. By a “match” between two points, we mean the absolute difference between

the values of two points is less than a given threshold ǫ. The modified LCS algorithm uses the

following dynamic programming formula to find out how many matches occur between z1 and

z2, for 0 ≤ i, j ≤ n and |i− j| ≤ 1:

M(i, j) =

0, if i or j = 0

1 +M(i− 1, j − 1), if |z1i − z2j | < ǫ

max{M(i− 1, j),M(i, j − 1)}, otherwise

whereM(i, j) records the number of matches between subsequences {z11 , . . . , z1i } and {z21 , . . . , z2j }.

The constraint |i− j| ≤ 1 makes sure that, z1i ∈ z1 is not matched to a point z2j ∈ z2 far away

from the position of z1i .

82

1
2

3
4

5

ra
tin

g
0

10
0

20
0

30
0

40
0

50
0

nu
m

be
r

of
 r

ev
ie

w
s

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

time

ra
tio

 o
f S

R

Figure 12. Bursty Patterns Detected in Store 24779

Algorithm 5 Bursts Detection in Single Time Series (BD-STS)

Input: fitted curve c, template v
Output: top k ranked periods with bursty pattern
m = length of c.
n = length of v.
for i = 1→ m− n+ 1 do
Normalize c[i : i+ n− 1].
factor = range(c[i : i+ n− 1]).
s[i]=LCS(c[i : i+ n− 1], v) × factor.

end for
return Periods corresponding to top k values in s.

Algorithm 5 describes bursty pattern detection in a single time series. We first normalize

each block b on a fitted curve c. Then the modified LCS procedure described above finds out

the number of matches between the template and the normalized block b. By this step, we can

find out, in the time series, the locations corresponding to bursty patterns. Taking the degree

of burst into account, the number of matches in each block is multiplied by the range of values

83

in that block (the one before normalization), such that bursts that change more dramatically

will be ranked higher.

Algorithm 6 Correlated Abnormal Patterns Detection in Multidimensional Time Series
(CAPD-MDTS)

Input:Multidimensional curves C
Output: Periods when correlated anomalies appear
for each dimension ci do
Time points of burst Li=BD-STS(ci)

end for
n = length of C, w = time frame length (set to 5)
S = ∅ // set of periods to return
for b = 1→ n− w + 1 do
S = S ∪ {[b, b+ w − 1]} if |{x ∈ Li : i = 1, 2, 3, x ∈ [b, b+ w − 1]}| == 3

end for
return S

After we obtain a list of time points corresponding to the top k bursts in each of the

dimensions, we need to find out the time windows corresponding to joint bursts in all three

dimensions. By the first step, we know in each dimension the time when the bursty patterns

appear, along with their intensities of burst. In the experiments, we take the top 5 time points.

Then we slide a window of a certain size over the time axis. At each point, we find out how

many top ranked locations in all dimensions are in the time frame specified by the current time

window. A time window is reported if all three dimensions have bursty patterns falling into the

window. These steps are formally described in Algorithm 6.

84

A running example based on the review data is shown in Figure 12. The length of the time

window in time series construction is chosen to be 60 days. This example is also discussed in

more detail in the experiment section. Each dimension of the time series is plotted in dark

points (upper box - rating, middle box - number of reviews, lower box - ratio of singleton

review). The solid lines are the fitted curves (to be discussed in the next subsection). We use

red vertical dash lines to highlight one of the suspicious blocks detected in the time series by

the proposed approach. The significant joint bursty pattern locates in {19 → 24} (from Oct

13, 2005 to Sep 12, 2006), as enclosed by the pair of vertical lines. The three curves all go up

in this interval.

5.2.2.3 A Hierarchical Framework for Robust Singleton Review Spam Detection

Given the review records of a store, one can construct multiple time series using different

time window sizes (resolutions). If the window size is set too small, the general trend of a

time series would be buried in a large number of fluctuations, which might cause high false

positive rate. Therefore, we propose a hierarchical framework, which incorporates Algorithm 6

to robustly detect SR spam attacks. We summarize this hierarchical SR spam detection algo-

rithm in Algorithm 7. We first smooth out short-term fluctuations using a larger window (lower

resolution). Then we fit curves using these time series and use Algorithm 6 (CAPD-MDTS)

to detect any suspicious periods with correlated abnormal patterns, which indicate the high

likelihood of SR spam attacks. A smaller window size (higher resolution) can be used to reveal

more details (e.g. the exact time of the burst). This is accomplished by constructing new

85

time series with a higher resolution on the detected periods, and detecting any finer suspicious

period. This process continues until one reaches the desired resolution such that the time of

SR spam attacks can be easily pinpointed.

Algorithm 7 Multi-Scale Spam Detection Algorithm

1: Input: Reviews data of a store, initial window size ∆t, time span I when all reviews are
collected.

2: Output: Detected time intervals of spam activities.
3: Initialize time interval set S0 = {I}. Scale ℓ = 0.
4: while ∆t not small enough do
5: ℓ = ℓ+ 1, Sℓ = ∅.
6: for Each time interval I ∈ Sℓ−1 do
7: Construct time series F (I,∆t).
8: Fit a curve for each dimension of F (I,∆t).
9: Sample the curves to obtain clean time series C.
10: Sℓ = Sℓ∪ CAPD-MDTS(C).
11: end for
12: Decrease window size ∆t,
13: end while
14: return Sℓ

86

100

101

102

103

104

105

106

1 10 100 1000

N
um

be
r

of
 r

ev
ie

w
er

s

Contribution of one reviewer

Figure 13. Contributions of reviewers

5.3 Experiments

In this section, we first describe the dataset we use, then we give a couple of case studies to

provide evidences of spamming activities caught by the proposed method.

5.3.1 Review Data Description

The review data we use is a snapshot of a review website (www.resellerratings.com) on

Oct 6th, 2010 1. It contains 408,469 reviews written by 343,629 reviewers (identified by their IDs

on the website) for 25,034 stores. 310,499 reviewers (> 90%) wrote only one reviews and about

76% (310,499/408,469) of the reviews are SRs. The distribution of the number of reviewers

writing a certain number of reviews is plotted in logarithm scale in Figure 13. As we can see,

the relation between these two quantities roughly follows the power distribution. This is also

observed in (39). The main body of the data consists of reviews, along with information about

1Thanks to Keith Nowicki

87

stores and reviewers. For each review we keep the following information: its rating (ranging

from 1 to 5), the posting date and whether it is an SR.

5.3.2 Human Evaluation

In this section, we report the experimental results of human evaluation of the detected

suspicious stores and reviews. We employ three human evaluators in this experiment.

5.3.2.1 Suspicious Store Detection

One way to use the algorithm is to run it against the reviews for a store to detect any

singleton spam attack. We focus on stores with large number of SRs, so in the evaluation we

select top 53 stores, each of which has more than 1,000 reviews. We ask human evaluators to

read the reviews from all 53 stores and make decisions regarding the suspiciousness of these

stores. If two or more evaluators vote a store as being likely to have committed an SR spam

attack, we tag it to be a likely dishonest store. According to the human evaluation, there are

a total of 29 stores having at least two votes. Out of the 53 stores, the proposed algorithm

labels 36 ones as suspicious stores and the rest as normal ones. Out of the 36 detected ones, 22

stores have at least two votes for being suspicious. The proposed algorithm misses 7 suspicious

ones. The recall is 75.86% (22/29), indicating that the proposed algorithm can catch most of

the stores involved in SR spam attack. The precision is 61.11% (22/36). Though this precision

looks a bit low, since our goal is to identify suspicious stores for human experts to investigate

further, the proposed approach only enlarges the suspicious set moderately with a decent recall.

Table XIX shows the agreement between evaluators when evaluating the detected stores.

The numbers on the diagonal show how many stores each evaluator considers as dishonest. For

88

TABLE XIX

HUMAN EVALUATION RESULTS ON STORES
Evaluator 1 Evaluator 2 Evaluator 3

Evaluator 1 17 14 16
Evaluator 2 - 20 19
Evaluator 3 - - 24

example, evaluator 1 regards 17 out of 53 stores as suspicious ones. The off-diagonal numbers

give how many stores that both evaluators in that row and column identify as dishonest stores.

For example, the number on the intersection of Evaluator 1 and Evaluator 2 means that both

evaluators 1 and 2 agree upon 14 stores that are suspicious stores. In any case, there are 26

stores at least one of the evaluators regarding it to be suspicious. Comparing the off-diagonal

numbers with the diagonal numbers shows the limitation of the content-based approaches. Even

human evaluators examining the contents cannot reach agreement a lot of the times as these

cases are often very subtle.

5.3.2.2 Singleton Reviews on a Detected Store

We also ask three human evaluators to examine 147 reviews contained in the detected time

window of burst given in the first case study (see next section). Each review is given a score

(0-negative, 0.5-possibly, 1-positive) indicating the degree of being regarded as a spam review

by each evaluator. Lastly, for each review, the scores from three evaluators are added up to get

the final score. Among the 147 reviews, 43 reviews (38 are SR) have final score at least 2, and

12 reviews (11 are SR) have final score equal to 3. This indicates that many reviews identified

89

TABLE XX

HUMAN EVALUATION RESULTS ON REVIEWS
Evaluator 1 Evaluator 2 Evaluator 3

Evaluator 1 59 20 28
Evaluator 2 - 41 38
Evaluator 3 - - 72

are indeed SR and the proposed algorithm can locate the period when SR are more likely to

happen.

Table XX shows the results of human evaluation on spam reviews. Evaluator 1 tags 59 out

of 147 reviews as spam reviews, while the other two regard 41 and 72 reviews as spam reviews,

respectively. There are 98 reviews that at least one of the evaluators regard as spam. Similarly,

the numbers off the diagonal show the agreement between evaluators. Again, this table shows

that it is not easy for human beings to reach agreements on whether a review is an SR spam,

and content-based methods will be less effective in the detection of this kind of spams.

5.3.3 Spam Detection Case Study

In this section, we closely study the evidences of SR attacks committed by several stores.

5.3.3.1 First Case Study

The results of running the proposed multidimensional multi-scale detection algorithm on

the reviews of a store (id=24811) are shown in Figure 14. The multidimensional time series in

the first subfigure (Figure 14(a)) is produced using a larger time window (30 days) with review

data from Apr 2002 and to Aug 2010. The format of this figure is the same as that of Figure 12.

90

4.
4

4.
6

4.
8

5.
0

ra
tin

g
20

0
40

0
60

0
80

0
10

00

nu
m

be
r

of
 r

ev
ie

w
s

0 20 40 60 80 100

0.
4

0.
6

0.
8

time

ra
tio

 o
f S

R

(a) Scale 1

4.
2

4.
4

4.
6

4.
8

ra
tin

g
50

10
0

15
0

20
0

25
0

nu
m

be
r

of
 r

ev
ie

w
s

0 10 20 30 40

0.
4

0.
5

0.
6

0.
7

0.
8

time

ra
tio

 o
f S

R

(b) Scale 2

Figure 14. Anomaly detection on multi-scale multidimensional time series

 0

 0.2

 0.4

 0.6

 0.8

 1

 20 40 60 80 100 120 140 160 180

topic hotness
ratio of positive SR

ratio of HR

Figure 15. Topic Hotness Trend

In this higher level of detection, we find a sharp increase in {45 → 50}, which corresponds to

the time interval from Oct 30, 2005 to Mar 30, 2006. Notice the burst occurs in a two-month

period. We construct another 3-dimensional time series from the review data in the detected

time window to find more details of the burst. With the window size set to 15 days, we run

91

the detection algorithm again. The block {14→ 19} (from Dec 17, 2005 to Mar 3, 2006) with

suspicious activities are found and highlighted in 14(b). Note that this detected time window is

smaller than the previous one. In this time interval, the number of singleton reviews increases

from 57 to 154, the rating goes up from 4.56 to 4.79, and the ratio of singleton reviews goes

up from 61% to 83%. These all happen in a two-weeks period. It looks like the ratings were

bolstered by the sudden increase of singleton reviews.

However, one might still not be convinced that there are probably spams activities in the

detected time intervals. We provide further evidences by analyzing the review contents. Note

that looking for these evidences is not part of the proposed algorithm, which only uses the

reviewers’ behaviors for detection. This is only for the purpose of validation. We find out that

around the time when the bursts in all three dimensions are detected, the phrases “customer

service” and “customer support” are unusually frequent among the SRs. Such correlation

indicates that there could be spammers giving undeserving high ratings to “customer service”

of that store. Next we study this correlation quantitatively.

When constructing multidimensional time series, we divide the time from Apr 2002 to Aug

2010 into intervals of two weeks. For each interval, we calculate the “hotness” of the topic

“customer service”. The “hotness” of a topic is the ratio of reviews about that topic to all

reviews in a certain period. If a review contains one of the phrases “customer service” and

“customer support”, we consider it to be related to that topic. In Figure 15, we show the

trend of the hotness of the topic in the blue curve with solid squares. One can see that there

is a burst of topic hotness occurs at time 90 (Feb 06, 2006, indicated by the dashed line).

92

Note that this burst occurs in a two-week long period with the hotness goes up from 35% to

46%. Also, note that the time of this burst coincides with that of the burst detected in the

multidimensional time series by the proposed algorithm. This makes the detected time interval

look suspicious. The black horizontal solid line shows the topic hotness calculated from all

reviews except those from the store being investigated. We can see that, on average, less than

16% of the reviews mentions the phrases. This number is calculated using 376,758 reviews out

of the total 408,470 reviews, so it well represents the general interests of the reviewers about

this topic. By comparison, we can see that the hotness within this store is twice as high as the

average level. This is unlikely in normal business, since it is quite hard to gain the recognition

of “customer service” from real customers in two weeks. After that time, the topic hotness

keeps going up and is far higher than the average level. In particular, one out of two reviews is

talking about “customer service” on average.

Besides “topic hotness”, we consider two other reviewer behaviors. The green curve with

solid circles shows the ratio of singleton 5 star reviews to the topic-related reviews. We can

see that from the time Feb 06, 2006 on, this ratio is rather high, namely, more than 80% of

the singleton reviews are related to “customer service”. We can conclude that the burst and

hotness of the topic is supported by the burst and high volume of singleton reviews. Lastly,

the red curve with stars gives the ratio of reviews which are written by “hurry reviewers” (HR)

to the singleton 5 star reviews. We define an HR to be a reviewer who writes a review on the

same day she registers her id. From the figure, one can tell that, from Feb 06, 2006 on, a high

percentage (over 90%) of 5 star singleton reviews about “customer service” are produced by

93

“hurry reviewers”. Since at least for those who registered in 2005 never write another review

in the following 5 years, this is quite dubious. As a way of validation, we read reviews of the

store in the period of topic hotness burst. We found a reviewer once disclosed the fact that the

store emailed her for a favorable rating. The reviewer had an unpleasant experience with that

store and got customer service only after she low-rated it on the review website.

5.3.3.2 Second Case Study

When we try to investigate a store meritline with high SR spams identified by the proposed

algorithm, we find out it also operates under another name cdrdvdrmedia. Hence this case of

spamming is quite interesting. The following facts support this observation: first, the addresses

of the two companies are the same12. Second, on the review website we are studying, meritline

is an alien of cdrdvdrmedia. Third, according to a domain analysis website, these two stores

have the same Google analytics account3. Lastly, one reviewer says the package and receipt she

received were from meritline though she shopped with cdrdvdrmedia4. We perform the proposed

multidimensional times series analysis on the reviews for meritline. Figure 12 (Section 5.2.2)

shows the time interval when an SR spam attack is likely to have happened. cdrdvdrmedia sells

the same set of products as meritline does, but with a much lower rating. There are only 48

1www.cdrdvdrmedia.com/contact-us.html

2www.la.bbb.org/business-reviews/General-Merchandise-Retail-By-Internet/

Meritline-in-City-of-Industry-CA-13135057

3domaintraker.com/meritline.com

4www.resellerratings.com/store/view/CDRDVDRMEDIA_17/page/1, see username “sableman”

94

2.
5

3.
0

3.
5

4.
0

4.
5

ra
tin

g
0

20
0

40
0

60
0

80
0

nu
m

be
r

of
 r

ev
ie

w
s

0 10 20 30 40

0.
5

0.
6

0.
7

0.
8

0.
9

time

ra
tio

 o
f S

R

Figure 16. Bursty Patterns Detected in Store 24938

reviews in near 8 years (from Aug-2002 to Jan-2010). The average rating of the store is only 3.06

and people are talking about credit card problems, low-quality products and customer service.

Therefore, the high volume of reviews and good rating for meritline are quite suspicious.

5.3.3.3 Third Case Study

We find another store (supermediastore) which is likely involved in singleton review spam-

ming. The multidimensional time series for the store and the detected bursty patterns are shown

in Figure 16. This store is probably owned by the same owner as meritline and cdrdvdrmedia.

This is supported by at least two forum posts1. We also find an interesting review2 telling that

the reviewer was cheated by supermediastore when it tried to entice her into spamming. The

1forum.doom9.org/archive/index.php/t-36023.html and forum.videohelp.com/threads/

143262-Meritline-Very-Disappointed

2www.resellerratings.com/store/view/Supermediastore/page/895, see the review from the ID
“defile”/

95

reviewer once received an email from the store about writing a review for it. In return, the

reviewer would receive a “gift”, which she never receive. This is a direct evidence that this

store is hiring/enticing people to write favorable reviews. This review is written during the

time when there is a burst of singleton reviews.

CHAPTER 6

DEBIASING CROWDSOURCED RATINGS VIA CONSENSUS

RANKING DUAL TRANSFER

(This chapter includes the paper published in Sihong Xie, Qingbo Hu, Jingyuan Zhang, Jing

Gao, Wei Fan, Philip S.Yu. “Robust Crowd Bias Correction via Dual Knowledge Transfer from

Multiple Overlapping Sources”. In BigData 2015. c©2015 IEEE. Reprinted, with permission.

(DOI: http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7363827)).

6.1 Introduction

Crowdsourced and user-generated data are an important part of the big data being accumu-

lated, such as the prevalent product rating and review data: hotels worldwide are reviewed and

rated on Tripadvisor; several hundred million products are rated and reviewed by customers

on Amazon. By hosting such comprehensive and opinionated data, these systems are not only

vital to customers, but also to business owners. However, bias and noises are inevitable in these

crowdsourced data, and to make sense of the data, it is important to infer objective and fair

product quality measurements, such that customers can make informed decisions and business

owners are not hurt by undeserved negative ratings.

The task is non-trivial since the crowdsourced data are biased for several reasons. First,

although most of these rating systems employ state-of-the-art quality control mechanisms such

as ReCaptcha (56), spammers can still infiltrate the systems and give arbitrary ratings to entice

96

97

customers into purchasing of low quality products. Second, affected by uncontrollable factors,

regular users may rate products subjectively or spontaneously. For example, the perceptions of

the quality and the ratings of a product can vary dramatically among reviewers.

There are existing works trying to address these issues in the pursue of objective product

quality measurements. In (33; 32), they proposed an unsupervised method to jointly infer

reviewer bias and product quality. These methods did not exploit supervision information and

can possibly be misled by the inherent rating bias. In (38), they proposed to incorporate ground

truth ratings to achieve better results. They further adopt active learning to further reduce

the cost of expert supervisions. In (51), the authors proposed a supervised matrix factorization

model to infer multiple latent factors, based on which expert ratings can be predicted using

crowdsourced ratings. However, their method also require a significant amount of supervisions.

In general, supervised methods are more effective in recovering unbiased information, but can

incur expensive expert efforts.

Fortunately, big data provide a rich set of data sources, which we exploit via transfer learning

to avoid the expensive expert efforts. The basic assumption is that multiple data sources contain

information of the same subset of products. When expert ratings are too expensive to collect,

weak supervisions transferred from auxiliary sources can be used to substitute expert input.

For example, IMDB and Netflix can provide useful information about movies to infer a less

biased movie ranking on Amazon.

We identify the following challenges in trading domain experts for multiple auxiliary sources.

First, being user-generated, it is common for product ratings/rankings from multiple auxiliary

98

domains to be inconsistent or conflicting. For instance, IMDB might give 5 stars to a movie

while Netflix gave the same product 3 stars. The challenge is to resolve such conflicts across

domains. Second, due to the difference among domains, it is likely that the auxiliary domains

only partially overlap with the target domain, and thus are not directly helpful to those non-

overlapping products. Lastly, the auxiliary sources can be biased themselves, and are not

immediately useful to the target domain.

We address the above challenges by a two-step pipeline. The first step is to resolve inter-

source conflicts. It cancels out the bias in individual auxiliary sources, and extracts a single

consensus product rating/ranking as transferable knowledge. The second step is to trans-

fer knowledge from auxiliary source to the target domain. After exploring two product-centric

transfer learning strategies, which are less effective in the presence of non-overlapping products,

we propose a dual transfer approach, which applies the transferred knowledge to both products

and reviewers (thus the name “dual”). Both the reliability of anchor reviewers and product

ranking are estimated using auxiliary sources to regulate the bias correction procedure. Exper-

iments on three real-world datasets show that the dual transfer approach outperforms previous

approaches and the two single transfer approaches. Furthermore, we show that the inferred

bias can be used as a signal for suspicious reviewer identification.

6.2 Preliminary

Suppose we have n products V = {v1, . . . , vn} which are rated by m reviewers U =

{u1, . . . , um}. Let rij denote the rating given by user ui to product vj , and R denote the

99

TABLE XXI

NOTATIONS
Symbol Meaning

U Set of users/reviewers, or the crowd
V Set of products to be rated
R Ratings of products from the users/reviewers

n = |V| Number of products
m = |U| Number of users

qj Quality of the j-th product
bi Bias of the i-th user

π1, . . . , πK Partial orderings of V
π0 Ground truth ranking of V
σ Score function of V

τ(·, ·) Kendall-τ ranking correlation coefficient
ρ(·, ·) Spearman-ρ ranking correlation coefficient
L Set of pairwise ranking constraints on products
S Set of score constraints on products

collection of all ratings. R can be seen as the union of Rj (ratings dedicated to the j-th

product): R = ∪jRj , or the union of Ri (ratings given by the i-th reviewer): R = ∪iRi.

A ranking of the products is a function π : V → {1, . . . , n}, and π(vi) < π(vj) (or vi �π vj)

means that product vi ranks higher (is better) than vj . Let π0 denote the unknown ground

truth product ranking, the querying of which is expensive. Our goal is to correct bias in R,

such that the estimated ranking π̂ is as close to π0 as possible. The notations are summarized

in Table XXI.

6.2.1 Unsupervised bias correction

A representative method is proposed in (38), which tries to infer unbiased product quality

solely from crowdsourced ratings. Associate the product vj with a quality score qj and reviewer

100

ui with bias bi. We impose a reinforcement relationship between the product quality and

reviewer bias:

qj =
1

|Rj |
∑

i→j

rij(1− bi) (6.1)

bi =
1

|Ri|
∑

i→j

|rij − qj | (6.2)

The quality of a product is the averaged ratings dedicated to that product, adjusted by indi-

vidual user bias, and the bias of a user is the averaged distance from his/her ratings to the

estimated quality of the products he/she has rated.

Unfortunately, as pointed out in (38), without expert guidance, the above unsupervised

algorithm is not very effective in inferring the true product quality. Suppose that the majority

of the ratings for a product are fake ratings and biased toward the highest score, say 5-star,

then during the first iteration, the estimated rating of the product is the average of the biased

ratings and will be seriously biased towards 5-star. When a dishonest reviewer has only give

a 5-star rating to that product, then the bias of this reviewer will be low, since his/her only

rating agrees with the dominating fake 5-star ratings of the product.

101

6.2.2 Semi-supervised bias correction

In (38), the authors proposed to clip the scores of a subset of the products to expert

evaluations, and infer the remaining product scores using the following equation:

qj =

S(j) if j ∈ S

1
|Rj |

∑

i→j rij(1− bi) otherwise

(6.3)

where S is the set of products whose scores that are fixed at their ground truth scores (denoted

by S(j), j ∈ S), and the reviewer bias is estimated as in Equation 6.2. The above equations

propagate the supervision information in S to the remaining reviewers and products. By in-

corporating expert ratings, the method can better correct the rating bias, and the restored

product scores are closer to editorial ratings. However, this semi-supervised algorithm requires

large amount of input from experts ((38) labeled 50% of the products) to counteract the sensi-

tivity of the graph-based propagation algorithm to the labeled set S.

6.3 Correcting crowd bias via transfer learning

We assume that there is no expert input to guide the bias correction, and seek for help from

related external domains. We first explored two product-centric single transfer strategies, and

then we point out their drawbacks and propose a dual transfer strategy.

102

6.3.1 Two product-centric single transfer strategies

6.3.1.1 Product rating single transfer

One can alter the semi-supervision bias correction algorithm in Section 6.2.2, and choose

the overlapping products that are rated in both target and auxiliary domains as the set S.

The ratings in S are fixed to the averaged scores computed from multiple auxiliary domains,

while the ratings of the non-overlapping products are estimated as in Equation 6.1. Compared

to the unsupervised bias correction, the transferred ratings are the average of several auxil-

iary domains. The underlying assumption is that the aggregated information from multiple

data sources can be potentially less biased and be further propagated to the non-overlapping

products, thereby overcoming the dominance of the biased ratings in the target domain. How-

ever, different domains typically have different rating scales. It is not clear how to optimally

normalize the ratings from different domains to the same scale.

6.3.1.2 Product ranking single transfer

To handle the different rating scales, we can adopt product rankings from auxiliary domains

as supervision, and enforce the relative rankings of the overlapping products to be the same as

the transferred ranking. We first convert ratings (if any) from auxiliary domains to product

rankings to eliminate difference in rating scales. After that, we let all auxiliary rankings be

denoted by π1, . . . , πK , and define the indicator function on the pairs of products: 1[v1 �πk
v2].

To estimate a consensus product ranking out of the auxiliary rankings, define the following

consensus score function: χ(v1, v2) = 1
K

∑K
k=1 1[v1 �πk

v2]. χ serves as a ranking agreement

measurement, and the higher χ is, the more the auxiliary rankings agree upon the ordering of

103

the two products. The weights of individual sources are chosen to be uniform since without

expert input, it can be hard to determine which source is more reliable than the other. In

the experiments, we only retrieve the product pairs with their orderings agreed upon by all

auxiliary rankings.

v1 �π̄ v2 ⇐⇒ χ(v1, v2) = 1 (6.4)

Essentially, we have extracted a partial ordering of the overlapping products, denoted by π̄.

We incorporate π̄ in the unsupervised bias correction procedure as follows. After calculating

the product quality using Equation 6.1, we solve the following optimization problem:

q∗ = argmin
q

∑n
j=1 ‖qj − q̄j‖ (6.5)

s.t. qj ≥ qℓ if vj �π̄ vℓ

where q̄ = [q̄1, . . . , q̄n] is the product quality scores found by Equation 6.1. This optimization

problem models two objectives. First, the inferred scores of all products should be close to the

averaged ratings obtained from the ratings, with reviewer bias taken into account. Second, the

inferred scores of the overlapping products qi, i = 1, . . . , n are forced to follow the consensus

ranking π̄. Equation 6.2 then takes the solution of the above optimization problem as input

to estimate reviewer bias, and the iterations go on until convergence. The algorithm is called

CRST (Consensus Ranking Single Transfer).

104

6.3.2 A robust dual transfer approach

In product-centric single transfer approaches, the transferred rating/ranking is only used to

correct possible rating/ranking bias in the target domain. We want to utilize the transferred

rating/ranking in a more effective way by adding a “reviewer-centric” perspective and propose a

novel dual transfer approach, which robustly applies the transferred knowledge to both products

and reviewers. In the following, we first introduce the concept of “anchor reviewer reliability”

that can facilitate reviewer-centric transfer learning.

6.3.2.1 Anchor reviewer reliability estimation and confident anchor reviewer identification

Anchor reviewers have reviewed both overlapping and non-overlapping products in the target

domain, and serve as a bridge between the overlapping and non-overlapping products. If we can

robustly estimate their reliability using their ratings/rankings on the overlapping products, and

incorporate these reliability in bias correction, then one can expect a better ranking of the non-

overlapping products. Assume that the transferred ranking of the overlapping products is of

reasonable quality (though may not be perfect), the similarity between the transferred ranking

and the product ranking provided by an anchor reviewer can be indicative of the reliability of

the reviewer. We adopt Kendall-τ ranking correlation coefficient (31) to measure the reliability

of anchor reviewers. Formally, reliability of an anchor reviewer is defined as

τ(π1, π2) =
2(C −D)

n(n− 1)
(6.6)

105

where C (D, resp.) is the number of concordant (discordant, resp.) pairs of products in the two

rankings π1 (the transferred ranking) and π2 (product ranking provided by an anchor reviewer).

The function τ takes values in [−1, 1], and a higher τ indicates the anchor reviewer is more

reliable, and vice versa.

Note that if the denominator in Equation 6.6 is small, then there the sample for computing

the correlation is small and the estimated reliability of the anchor reviewer is less confident.

We require there is a sufficiently large number of overlapping products between the transferred

ranking and the product ranking provided by an anchor reviewer. However, if one requires a

large number of overlapping products, too many anchor reviewers may be dropped off and bias

correction may be affected. We will investigate this trade-off empirically later.

6.3.2.2 Incorporating reviewer reliability in the single transfer strategy

Now we need to use the anchor reviewers to help correct the bias. The bias of a reviewer

is computed as in Eq. (Equation 6.2), but when computing the quality of a product (be it an

overlapping one or not), we use the following equation:

qj =
1

|R·j |
∑

i→j

rij(1− bi)× (1 + rel(i)) (6.7)

The meaning of this equation is that, for an anchor reviewer, his/her rating for the j-th product

should be amplified or discounted by his/her reliability, while for a regular reviewer, there is no

effect of reliability and Equation 6.7 is just the same as Equation 6.1. The algorithm is called

CRDT (Consensus Ranking Dual Transfer) and summarized in Algorithm 8. Compared with

106

CRST, CRDT has an additional step of anchor reviewer reliability estimation, and uses a

different formula to estimate product scores, with anchor reviewer reliability taken into account.

CRDT applies the transferred consensus ranking to both products (ranking constraint) and

reviewers (reliability estimation) in the target domain.

Algorithm 8 Robust Bias Correction via Consensus Ranking Dual Transfer (CRDT)

Input: anchor reviewers {u1, . . . , us}, product ratings R in target domain, multiple external
rankings πi, i = 1, . . . , k
Output: qj for the products.
Compute the consensus product ranking π̄ from πi, i = 1, . . . ,K, using Equation 6.4.
for i = 1→ s do
compute anchor reviewer reliability for ui.

end for
while not convergent do
Estimate reviewer bias using Equation 6.2.
Estimate unbiased product rating using Equation 6.7.
Enforce ranking of the overlapping products to agree with π̂ by solving Equation 6.5.

end while

6.3.3 Computational complexity analysis and incremental model update

We first consider the time complexity of building CRDT from scratches. The time com-

plexity to compute a consensus ranking is linear in the number of ratings from all auxiliary

sources. These computations can be distributed to multiple machines as there is no information

sharing among sources. The space complexity O(n) to store the averaged ratings of the prod-

ucts (instead of O(n2) to store the pairwise rank comparisons). Regarding calculating anchor

107

reviewer reliabilities, a rather loose upper bound of the time complexity is O(|R|), namely the

time complexity to go through all ratings. However, only a small portion of the reviewers are

anchor reviewers, and only their ratings need to be visited during reliability calculation. The

time complexity of estimating product quality and reviewer bias using Equation 6.1 and Equa-

tion 6.2 is O(T ∗ |R|) where T is the number of iterations needed for Algorithm 8 to converge.

We show in the experiments that T is usually quite small and can be considered as a constant.

Overall, both the time and space complexity of the proposed method is linear in |R|.

Since the ratings keep accumulating, it is also important to consider incremental updates.

It is trivial to update the product ratings for each auxiliary source. To update the reliabilities

of the anchor reviewers, only their updated ratings will get involved, and that’s a small number

since normal reviewers don’t usually add new ratings in a short period. Lastly, we only need

to re-run Equation 6.1 and Equation 6.2 once to update the solutions, using the qi and bj from

previous iterations, since the bipartite graph and the reliabilities do not change significantly

from previous iterations.

6.4 Experiments

6.4.1 Datasets and Performance Metrics

We employ a rating dataset collected from multiple rating websites as our testbed. Ta-

ble XXII describes the rating data of three cities, New York City (NYC), Phoenix (PHX) and

San Francisco (SF) from tripadvisor.com, which is our target domain. As external domain

rankings, we collect ratings of the same set of restaurants from foursquare.com and yelp.com.

Similar to (51), ratings from Zagat.com are treated as ground truths. We use the number of

108

TABLE XXII

CHARACTERISTICS OF RATING DATASETS

NYC PHX SF

of restaurants 79 77 85
of users 9829 5804 8183
of ratings 12415 8050 10186

concordant pairs of products that are ordered consistently between the ground truth ranking

and the ranking derived by various bias correction algorithms. A good rating bias correction

algorithm should produce more concordant pairs.

6.4.2 Baselines and experimental protocol

One can simply average the ratings of each product and derive a product ranking. We

denote this method by “MEAN”. This baseline does not take care of reviewer bias explic-

itly. We consider three more sophisticated baselines that explicitly consider rating bias. The

unsupervised model proposed in (38) (denoted by “UN-SUP”) iteratively and alternatively ap-

plies Equation 6.1 and Equation 6.2 until it converges. There are two baselines that exploit

transferred knowledge, either by clipping the ratings of the overlapping products to the trans-

ferred ratings (called “S-SUP”), or by enforcing the ranking of the overlapping products to be

the same as the transferred ranking (CRST). These two baselines do not consider and model

reviewer reliability.

We randomly and uniformly select half of the products as overlapping products. The per-

formance metric is computed on the non-overlapping parts, in order to check if the transfer

109

knowledge can be propagated to the non-overlapping products and improve their ranking. We

repeat the experiment 100 times and report the averaged performance. The proposed algo-

rithm have a parameter (n in Equation 6.6) to cut off the reviewers who have less confident

estimation of their reliability. We fix this parameter to be 3 in the following results, and study

the sensitivity of this parameter in Section 6.4.3.1.

6.4.3 Results

Figure 17 compares the number of concordant pairs of products according to various rating

debias methods on 3 datasets. From the figure, we can observe the followings. First, MEAN

(yellow bar) has significant lower performance than other methods among 2 out of 3 tasks

(NYC and SF), and is slightly better than UN-SUP (black bar) and CRST (red bar) on the

other task (PHX). One possible explanation of such mixed performance is that the average

rating can sometimes remove the rating bias of individual reviewers, but can also fail to do so

if a product is only rated by a few biased reviewers. Second, CRST and UN-SUP have similar

performance across all 3 datasets. This surprising fact indicates that the transferred ranking

may be too difficult to be propagated to the non-overlapping products. The reason is that

the transferred rankings are used to enforce the orderings of the overlapping products, while

bias of reviewers is inferred indirectly, which is not very effective. Third, the performance of

S-SUP (pink bar) is generally worse than that of UN-SUP and CRST, which is caused by the

heterogeneity among different rating systems. Indeed, if the difference between rating scales is

not handled carefully, simply normalizing and averaging ratings from different systems can be

harmful. Lastly, we see that the proposed method (blue bar) performs the best. We conclude

110

CRD
T

CRS
T

S-SU
P

MEA
N

UNS
UP

180

200

220

240

260

280

300

n
u
m
b
e
r
o
f
co
n
co
rd
a
n
t
p
a
ir
s
(N
YC

)

(a) # concordant pairs (NYC)

CRD
T

CRS
T

S-SU
P

MEA
N

UNS
UP

280

285

290

295

300

305

n
u
m
b
e
r
o
f
co
n
co
rd
a
n
t
p
a
ir
s
(P
H
X
)

(b) # concordant pairs (PHX)

CRD
T

CRS
T

S-SU
P

MEA
N

UNS
UP

310

320

330

340

350

360

370

n
u
m
b
e
r
o
f
co
n
co
rd
a
n
t
p
a
ir
s
(S
F)

(c) # concordant pairs (SF)

Figure 17. Overall comparisons of the proposed method and the baselines

th=2 th=3 th=4 best

290

295

300

305

310

315

n
u
m
b
e
r
o
f
co
n
co
rd
a
n
t
p
a
ir
s
(N
YC

)

702

238

21

(a) NYC

th=2 th=3 th=4 best

285

290

295

300

305

n
u
m
b
e
r
o
f
co
n
co
rd
a
n
t
p
a
ir
s
(P
H
X
)

513

149 57

(b) PHX

th=2 th=3 th=4 best

345

350

355

360

365

370

n
u
m
b
e
r
o
f
co

n
co

rd
a
n
t
p
a
ir
s
(S
F)

388

87

23

(c) SF

Figure 18. Sensitivity of CRDT (“best” indicates the baseline with the best performance)

that the transferred rankings can indeed be used to find out the reliability of reviewers, which

can effectively adjust the ratings on the non-overlapping products to more objective ratings,

leading to a better ranking of the products.

6.4.3.1 Sensitivity study

An anchor reviewer has to rate more than a certain number of overlapping products to be

qualified as a confident anchor reviewer. We set this threshold to be 2, 3 and 4, and report

111

the performances of the proposed method, along with the performance of the best baseline,

in Figure 18. We also indicate the number of anchor reviewers under each threshold on top

of the bars in the figure. In general, we see that the proposed algorithm works best when

the threshold is set to 2. The only setting our method is not as good as the best baseline is

when the threshold is set to 3 on the NYC dataset. We have following conclusions. First, the

performance of the proposed reviewer-centric approach is not that sensitive to the threshold.

Even we set the threshold to as high as 5 and there are only tens of anchor reviewers, the CRDT

method still outperforms the best baseline. Second, when the threshold is set to 2, and the

reliability of an anchor reviewer is evaluated using the ordering of only 3 products. The resulting

reliability estimation might not be very confident based on such a small sample. However, we

can obtain a larger number of anchor reviewers to cover more non-overlapping products. The

superior performance when the threshold is 2 indicates that the coverage of product by the

anchor reviewers is more important than confidence of the reliability estimation. In practice,

one can leave out a validation set to pick up the best threshold. The readers are referred to

the full version1 for more details, including the convergence of the proposed algorithm and its

potential for suspicious reviewer detection.

1http://www.cs.uic.edu/~sxie/papers.html

CHAPTER 7

A CONTEXT-AWARE APPROACH TO DETECTION OF SHORT

IRRELEVANT TEXTS

(This chapter includes the paper published in Sihong Xie, Jing Wang, Mohammad S.Amin,

Baoshi Yan, Anmol Bhasin, Clement Yu, Philip Yu. “A Context-Aware Approach to Detection

of Short Irrelevant Texts”. In DSAA 2015. c©2015 IEEE. Reprinted, with permission. (DOI:

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7344831)).

7.1 Introduction

Popular online content providers such as LinkedIn.com and CNN.com are attracting mil-

lions of visitors per day. Meanwhile, spammers and irresponsible visitors are leaving irrelevant

comments after the major contents, making the websites less attractive to visitors and reducing

the websites’ traffic and revenue. It is critical to detect these irrelevant contents accurately as

soon as possible. However, this is not an easy task due to the following reasons. First, com-

ments are usually very short, and given such limited information, it is difficult to capture the

semantics and relevance of the comments. Second, under different contexts, the same word can

have quite different meanings. For example, given two news articles on real estate and NASA’s

mars exploration plan, respectively, the term “space” used in the comments of these articles can

refer either to “an area rented or sold as business premises” or “the physical universe beyond

the earth’s atmosphere”, two completely different concepts. The key observation is that the

112

113

10 20 30 40 50 60

nu
m

ne
r

of
 a

rt
ic

le
s

% of irrelevant comments in the first 10 comments

number of articles

1703

333
100 34 12 13

5 10 15 20 25 30 35 40 45 50

nu
m

ne
r

of
 a

rt
ic

le
s

% of irrelevant comments in the first 20 comments

number of articles2117

640

192 78 28 12 8 5 10 4

Figure 19. Early detection as a real world problem

“context” of a comment plays an important role in defining the semantics and relevance of the

comment. Third, in real world applications, there are situations where irrelevant comments are

posted soon after the release of an article, with only a small number of comments. In Figure 19,

we plot the number of articles on LinkedIn’s news channel having various percentage of irrele-

vant comments at early stages. For instance, in 19(a), we count the number of articles having

10%, 20%, etc. of irrelevant comments among the first 10 posted comments. It is obvious that

a large number of articles have at least one irrelevant comment among the first 10 comments.

The earlier one can remove these irrelevant contents, the less the visitors will be distracted.

We call this task “early detection” of irrelevant contents, where irrelevant comments have to

be spotted when there are only a handful of comments following the same article. It is much

more difficult to measure the context-aware semantics and relevance of a comment at an early

stage, since there is less information about the context of the comment.

Previous works failed to address the above challenges in a single framework. Regarding

short text mining, there are two traditional ways: topic modeling and transferring of external

114

data sources. (44) proposes to enhance the bag-of-word model using LDA (7). In (67; 68),

the authors propose novel topic models for short texts, and yet they did not address early

detection. Exploiting external corpora are also proposed to address the short text challenge,

such as the works in (72; 47; 35; 27). However, under the specific setting of the paper, how to

define and transfer from external sources have not been investigated. Furthermore, these works

focus on handling the sparseness of individual documents, instead of mitigating the sparseness

of corpus that arises in early detection. The works (58; 28; 6; 29; 37; 36) try to characterize and

catch irrelevant comments via bag-of-word model, sequence mining or information theoretical

approach, but they also fail to address all the above challenges. On the one hand, the above

methods derive the semantics of comments in a context-agnostic way, leading to more confusing

semantics and degraded irrelevant content detection performance. On the other hand, early

detection of irrelevant comments, though being critical in real applications, has been overlooked

so far, to the best of our knowledge.

We propose to resolve the above three challenges in a unified framework. We want to

derive context-dependent (i.e. context-aware) semantics of short texts regardless of the stages

of commenting activities, such that it is more accurate in relevance measurement than those

derived without considering contexts (context-agnostic). The context-dependent semantics of

a comment is determined by the semantic environment (surrounding texts) where the comment

sits in (such as the varying meaning of the word “space” in the above example). It is essential

to select proper texts that are semantically meaningful and comparable to a comment as its

context. We construct the “native context” of a comment as the set of the comments posted for

115

the same article, since these comments are more likely to be similar to each other in terms of

language, topics, etc.. The constructed native contexts can be coupled with any topic models to

derive context-dependent semantics from short comments. Specifically, one can treat a native

context as a corpus and employ any topic models such as LDA or SVD to find the context-

dependent latent topics of the comments.

The native context constructed above assumes that there are sufficient comments posted

for one article to serve as the context of a comment. However, regarding the early detection

of irrelevant comments, one needs to tell irrelevant comments from only a handful of other

comments. In other words, there are only a small number of comments in a native context

at an early stage, posing difficulties to most topic models, which usually require a moderate

number of documents for reliable topic inference. A key observation is that comments posted

for articles on similar topics are more likely to have similar usages of language. For example,

the comments following articles on “real estate” are more likely to use the term “space” in the

sense of “residential/commercial space” rather than “space exploration”. We propose to transfer

similar short texts from other articles of similar topics to construct “transferred contexts”, which

inherit the strength of native contexts but avoid the sparseness of contextual information. Then

similar topic models can derive context-dependent semantics for relevance measurement.

7.2 Irrelevant content detection

Nowadays, popular websites allow users to post their opinions, mostly in the form of text

comments following articles published by the websites. For example, on news websites such

as CNN.com, a visitor can express his/her opinions after reading the news about Obama’s

116

promotion of a new healthcare plan. Digg.com, wordpress.com and other social networks try

to improve user engagements by deploying news and article sharing platforms, where their

members can read the shared articles and post their opinions as responses. Due to the high

visibility of the news and social network websites, spammers are joining the community to

produce junk comments. Also, there are readers who are exploiting the traffic to these websites

and distracting other visitors to irrelevant topics. These irrelevant comments can be detrimental

to user experience of the websites, whose traffic and revenue will be affected. It is therefore an

emergency task for the operators of these popular websites to detect undesirable comments and

take appropriate actions. Intuitively, a normal comment should either respond to the contents

of the article it follows, or sound similar to other comments following the same article (we

called these comments the “surrounding comments”). Therefore, the irrelevant comments can

be detected by measuring the similarity between a comment and the article it follows, and also

between the comment and its surrounding comments. If either of the similarities is too low,

then the comment is likely to be an irrelevant one (36; 58; 10). Indeed, content similarity is the

most natural definition of relevance, as it is the way human interpret contents.

More formally, assume an article wd ∈W = {w1, . . . ,wD} is followed by a set of Cd com-

ments Qd = {qd
1, . . . ,q

d
Cd
} (see Table XXIII for a summary of notations). wd = {wdn}Nd

n=1 and

qd
k = {qdkn}

Nd
k

n=1 are the vectors of words of the d-th article and the k-th comment for the article,

respectively. Nd and Nd
k are the lengths of the article and the comment, respectively. Assume

f(·) is a language model, which is a transformation from the bag-of-word vector representation

of a document to anther vector representation. For example, LDA (Latent Dirichlet Allocation)

117

maps a document to a vector of topic distribution, while an identity transformation is simply

the bag-of-word vector of a document (see Section 7.3 for more details). Such a transformation

might be necessary for text mining since it can potentially capture the high-level meanings of

the documents, especially when the documents are short. Given a transformation f(·), the

signals for irrelevant comment detection based on text can be calculated as the cosine similarity

between f(qd
k) (the comment) and f(wd) (the article the comment follows) and the mean of

{f(qd
1), . . . , f(q

d
Cd
)} (10):

cos(f(wd), f(q
d
k)) =

〈

f(wd), f(q
d
k)
〉

‖f(wd)‖ · ‖f(qd
k)‖

(7.1)

cos(md, f(q
d
k)) =

〈

md, f(q
d
k)
〉

‖md‖ · ‖f(qd
k)‖

(7.2)

where md is the center of all transformed vectors of comments following wd

md =

∑

q∈Qd f(q)

Cd
(7.3)

We call Equation 7.1 the “comment-to-article” irrelevance signal and Equation 7.2 the “comment-

to-center” irrelevance signal.

From the above formula, one can see that similarity measurement requires a vector represen-

tation of texts, namely the transformation f(·). Ideally, f(·) should capture the meaning of the

texts well for the detection signals to make sense. However, this is not an easy task and there are

three challenges. First, comments are usually very short, compared to the documents processed

in traditional text mining. In general, the articles published by the websites are of medium

118

length such that they are easy for the readers to follow. In contrast, the comments that follow

are usually short, since readers are less serious and therefore unable or unwilling to produce long

and organized texts. Figure 20 shows the distribution of the length of comments from a social

network website, and one can see that most of the comments have less than 150 words. Due

to the sparsity of the comment texts, the information provided by individual comment is very

limited, and dimension reductions are usually required for this situation (44; 7; 67; 68), though

it is unclear from the previous work that how effective these methods are in the irrelevant short

text detection task.

Second, the semantics of comments are context-dependent. Specifically, a word in the

comments might mean two different things under articles on two different topics, as the above-

mentioned example shows. This variety of the semantics of words can not be fully captured by

the bag-of-words representation or any other dimension reduction methods such as LDA (7),

pLSA, SVD, etc., since these models ignore the contexts where a piece of text is generated.

These methods are “context-agnostic”. As a result, given a comment, these models will give

the same vector representation for the comment, no matter where the comment is posted. This

is undesirable since under different contexts, an ideal language model should be able to capture

subtle semantic difference.

Third, in real world applications, real time actions to irrelevant contents are of high priority.

Spammers or promoters are more likely to post junk comments soon after an article is posted,

such that a larger amount of audience can see the undesirable comments (as shown in Figure 19).

Meanwhile, if too many visitors read the undesirable comments, they can have an unpleasant

119

0 200 400 600 800 1000 1200 1400 1600
Comment length

0.0%

1.0%

2.0%

3.0%

4.0%

5.0%

6.0%

7.0%

Pe
rc
en

ta
ge

 o
f c

om
m
en

ts
 w

ith
 a
 s
pe

ci
fic

 le
ng

th

Distribution of comment length

cumulative distribution
(not normalized)

Figure 20. Distribution of length of comments

experience, leading to a lower user engagement. Therefore, it is necessary for website operators

to detect irrelevant comments as soon as they show up. However, the lack of surrounding

comments makes it difficult to define context for an early comment, and one might have to

resort to the less effective context-agnostic approaches. To sum up, it is an important yet

difficult problem to detect irrelevant short texts, with context-dependent semantics and lack of

contexts. Before we address the above challenges, we first briefly review some existing context-

agnostic methods.

7.3 Context-Agnostic Detection Models

7.3.1 Simple Language Model

The simplest language model is perhaps the bag-of-words representation of documents.

Using this model, a document w is given by a vector describing the number of occurrences

of words (or the TF-IDF processed version) in the document. Then the bag-of-word vector

120

TABLE XXIII

NOTATIONS

Symbol Meaning
W the collection of major posts
wd the d-th post
Qd the comments following the d-th post
qd
k the k-th comment following the d-th post

Cd the number of comments following post wd

Nd the length of the d-th post
D the size of the corpus
‖ · ‖F Frobenius norm of a matrix
〈·, ·〉 inner product
f(·) a transformation defining a language model

transformation function fbow(·) is simply an identity function. (36) adopts this language model

and use the comment-to-article similarity (Equation 7.1) to detect irrelevant comments. A

drawback of bag-of-words vector representation is that the vectors are usually sparse, given a

large vocabulary. Indeed, in (44), it is shown that LDA (introduced next) can greatly improve

the classification performance based on cosine similarity on short texts.

7.3.2 Probabilistic Topic Models

Probabilistic topic models assign a distribution of topics to a document. A popular one is

the LDA (Latent Dirichlet Allocation) model. The success of LDA relies on its ability to learn

topic distributions of terms and documents simultaneously. LDA assumes that a document

is a mixture of topics and each word in the document is generated according to the topic of

121

the document and the distribution of words over topics. More formally, given a document

wd = {wdn}Nd

n=1,

θd ∼ Dir(α)

zdn ∼ Multi(θd) ∀n = 1, . . . , Nd

wdn ∼ Multi(Φzdn) ∀n = 1, . . . , Nd

where θd is the K dimensional topic distribution of document wd, and zdn is the topic of

the word wdn. Dir(α) is the Dirichlet distribution with parameter α and Multi(θ) is the

multinomial distribution with parameter θ. Given a corpus W, LDA infers the quantities θd,

zdn and Φ. Monte Carlo Markov Chain (MCMC) and variational methods are widely used for

model inference and learning. Let flda(wd) = θd be the vector transformation function derived

from LDA.

7.3.3 Matrix Factorization based Models

Besides LDA, matrix factorization based methods are also employed to find topics of doc-

uments. Usually, the observed corpus is modeled as a term-document matrix W (here we

abuse the notation), which is further factorized into the product of two or three matrices. For

example, in LSI (Latent Semantic Indexing (12)) or SVD (25),

W = UΣV ⊤ (7.4)

122

where U (V) is the left (right) matrix of singular vectors and Σ is the diagonal singular value

matrix. Here U gives the topic distributions of words and V gives the topic distributions of

documents. Therefore, the vector transformation function is given by fsvd(wd) = Vd, where

Vd is the d-th row of V . In a similar form, non-negative matrix factorization (NMF) has also

been shown to be effective in finding latent topic of documents in information retrieval (65).

Formally, NMF solves the following optimization problem

min
U,V

‖W − UV ⊤‖F (7.5)

s.t. Uij ≥ 0, Vij ≥ 0 ∀i, j (7.6)

Similar to SVD, a row vector in the factor matrix V gives the topic distribution of a document

and fnmf (wd) = Vd.

7.3.4 Detection Signals based on Context-Agnostic Models

Based on the above models and Equation 7.1 and Equation 7.2, we define several irrelevant

comment detection signals, which are summarized in Table XXIV. In the table, each row

specifies a signal (e.g. σ1), and the signals in the rows “Native” and “Transferred” will be

defined in the next section. A check mark under the column “Mean” (“Article”) indicates

that Equation 7.2 (Equation 7.1, respectively) is used to compute the signal. Note that each

of σi, i = 1, . . . , 4 includes two similarities. These models cannot handle context-dependent

semantics: none of them takes the contexts of a comment into account when computing the

123

TABLE XXIV

CONTEXT-AGNOSTIC IRRELEVANT COMMENT DETECTION SIGNALS
Signal Context Transformation Mean Article

σ1 Agnostic fbow (36) X X

σ2 Agnostic flda (44) X X

σ3 Agnostic fsvd X X

σ4 Agnostic fnmf (65) X X

σ5 Native fN
svd X

σ6 Transferred fG
svd X

transformations f(·), thus the derived signals σ1, . . . , σ4 fail to capture the context-dependent

semantics when used for irrelevant comment detection.

7.4 Context-Aware Detection Signals

Below we first introduce “native context” to derive context-dependent semantics of short

comments. Then we point out a practical situation where this native construction may fail,

and propose a “transferred context” to handle the difficulty.

7.4.1 Native Contexts

The vector transformation function f(·) used in Equation 7.1 and Equation 7.2 should

depend on the contexts of a comment. We observe that an article sets up the topics that are

to be discussed by the comments that follow, which should have similar usages of language.

Therefore, the articles naturally separate all comments into groups, each of which defines a

context for the comments within. If one can learn a language model (a transformation) using

such contexts for the comments, then context-dependent semantics of the comments are more

likely to be well-captured.

124

Formally, we define the native context (NC) of a comment, say qd
k, to be the neighboring

comments following the same article as qd
k, namely, all the comments in Qd:

NC(qd
k) = Qd

To learn a context-aware language model for qd
k using Qd, matrix factorizations, such as SVD,

can be applied to the term-document matrix constructed from Qd:

Qd = UdΣd(V d)⊤ (7.7)

Here we abuse the notation by using Qd for both the set of comments and the term-document

matrix constructed from the set. We use superscript d to emphasize that the decomposition

depends only on the neighboring comments, instead of all comments in the corpus. The resulting

factor matrix V d gives a context-aware topic distribution of the comments:

fN
svd(q

d
k) = V d

k (7.8)

where V d
k is the k-th row of V d and fN

svd(·) is the vector-to-vector transformation obtained by

decomposing the native context using SVD. Lastly, we compute a signal (σ5 in Table XXIV)

for irrelevant comment detection by plugging fN
svd(·) in Equation 7.2 and Equation 7.3:

cos(md, f
N
svd(q

d
k)), md =

∑

q∈Qd fN
svd(q)

Cd
(7.9)

125

Figure 21. Context-Agnostic vs. Context-Aware methods

Note that we do not include the corresponding article wd in the decomposition in Equation 7.7,

since the length of an article and a comment can differ dramatically such that the decomposition

will be biased to favor the article. Indeed, we observed in the experiments, that including the

article in the native context of a comment actually hurts the performance (not reported). As

a result, we do not use comment-to-article similarity for detection. Nonetheless, one will soon

see that the articles play a critical role in addressing the sparsity issue in early detection.

In summary, the difference between context-agnostic and context-aware language models is

demonstrated in Figure 21. On the left we pool all articles and comments together and apply

SVD to the corresponding term-document matrix, and on the right we perform multiple SVDs

on the term-document matrices derived from native contexts.

126

7.4.2 Early Detection of Irrelevant Comments

Although the proposed native context can define and measure context-dependent semantics

and relevance in normal settings, it is insufficient for the early detection task. In particular,

when there are only a small number of comments following one article, the term-document ma-

trix (Qd in Equation 7.7) fails to provide enough information for SVD to infer meaningful topic

distributions for the comments. Even if one could manage to estimate the topic distributions

of the comments, the comment-to-center similarity signal would not make much sense. This is

because the center md in Equation 7.9 is the mean of a small sample and thus the variance

of this estimation can be rather high according to large sample theory (2), making the signal

too noisy for reliable detection. However, if one totally ignores contextual information, the

context-dependent semantics cannot be sharply defined. As shown in the experiments, the lack

of context leads to degenerated performance.

We propose to generalize the native contexts and add more information. The native context

for a comment is defined based on the “comment-follows-article” relationship, as shown in the

right panel of Figure 21. The essence of native context is to exploit the topical coherence among

comments following the same article. We adopt the same idea to include more comments

to define a useful context that can mitigate the sparseness of comments in early detection.

The intuition is that articles of similar topics are likely to be followed by comments of the

same topics, with similar usage of language. For example, the term “space” in the comments

following multiple articles on “real estate” is likely to unambiguously refer to “a continuous area

for human daily activities”, instead of “the physical universe around the earth”. Therefore,

127

we can transfer the comments from articles with similar topics to define a context for the

comments under investigation. Such transfer is possible since popular websites store past articles

and the associated comments in their databases. However, there are drifts in concepts and

distributions in the comments in different articles, not all historic comments are useful for the

current detection tasks. To address this issue, among the comments from similar articles, we

only transfer comments that are most similar to the current ones. We define these transferred

comments, together with the current comments, as the “transferred context”.

Algorithm 9 Constructing Early Detection Signal using Transferred Context

1: Input: An article w with its comments Q = {q1, . . . ,qC}, a collection of past articles {wd}Dd=1 and
associated comments {Qd}Dd=1.

2: Output: Irrelevance detection signal σ6 for qk ∈ Q.

3: Derive LDA topics for {w} and Q using trained LDA model.
4: Retrieve top ℓ most similar articles to w from {wd}Dd=1 using LDA topics. The retrieved articles are

R = {w′
1, . . . ,w

′
ℓ}.

5: for qi ∈ Q do
6: Retrieve top 50% most similar comments to qi from the comments associated with articles in R.
7: end for
8: Define transferred context for Q as the union of the retrieved comments and Q.
9: Apply SVD to the transferred context to find context-dependent semantics of Q.
10: Return σ6 calculated using Equation 7.2 and Equation 7.3.

The idea of constructing transferred contexts and the corresponding detection signal is

described in Algorithm 9, and is demonstrated in Figure 22. In summary, transferred contexts

128

Figure 22. Transferred Contexts

address the sparsity of neighboring comments that native contexts suffer, and allow topic models

to define context-aware semantics that is not available in context-agnostic methods.

Since we are focusing on early detection, efficiency becomes an issue. Here we claim that

the run-time of Algorithm 9 allow the algorithm to be practically useful. First, there is no

intensive computation involved in deriving topics using a trained LDA model. The retrieval of

articles (step 4) can be done in parallel frameworks like MapReduce. Similarly, step 5 to 7 can

be done in parallel, where each qi can be processed independently. Lastly, though in general

SVD requires cubic time complexity, the matrix to be decomposed here is small and sparse.

There are fast algorithms that can exploit the sparsity of the matrix. If this really becomes an

bottleneck, one may resort to parallelized SVD (5).

129

7.5 Experiments

7.5.1 Preparation of Datasets

We obtained two real world datasets from the news channel of LinkedIn.com (News in the

sequel) and the blog service Digg.com (Blog in the sequel). For the News data, we obtain a

snapshot of the news channel in May, 2013, containing a total of 200,000 comments and 5,000

articles. Since labeling a comment as relevant or irrelevant requires reading and comparing the

comment and the followed article, it is very time-consuming and costly to label all comments

collected, therefore we randomly sample 20,000 article-comment pairs and send them to the

crowdsourcing service crowdflower.com. The crowdsourcing tasks are such designed that one

task consists of an article and 10 comments, randomly picked from the pool of all following

comments. A worker is instructed to first read the original article and then the comments,

if he/she finds a comment is irrelevant to the article, he/she should label the comment as

positive, otherwise negative. The workers are required to label all the comments to get the

credit. We take several measures to ensure a certain level of label quality. Firstly, we inject an

editor-labeled golds in each task, and the crowdflower platform has a mechanism to prevent a

worker from further labeling the tasks if his/her competence based on the golds is lower than a

pre-defined threshold. Secondly, we require that each comment is labeled by 3 workers in order

to derive a confidence level of the majority voting. After harvesting the labels, we discard those

comments with the lowest confidence level and keep only 6952 of them. Lastly, human experts

in our corporation looked into a small amount of randomly picked labeled comments to check

that the crowdsourced labels are consistent with our definition of “irrelevance”. The details of

130

TABLE XXV

DATASET CHARACTERISTICS
News Blog

articles 363 20
comment-article pairs 6,952 2,109
% positive instances 4.54% 28.2%

the blog dataset can be found in (58). The characteristics of these two datasets are summarized

in Table XXV, from which we observe that negative instances significantly outnumber positive

ones, presenting an imbalance class distribution (note that this is also true for early detection

tasks, see Figure 19).

7.5.2 Experimental Settings and Results

Baselines

Note that the method proposed in (36) is basically σ1 without smoothing (which requires a larger

corpus retrieved from the web). σ2 corresponds to the approach in (44) and σ4 corresponds

to that in (65). We demonstrate the effectiveness of the context-aware signals by comparing

them to several enhanced baselines proposed in (44; 36; 65). Each enhanced baseline consists

of two parts of features: the basic features and one of the baseline context-agnostic signals

σ1, . . . , σ4. For the News dataset, a comment can be characterized by basic features based

on the author’s social network connections and certain text features that are not derived from

semantic relevance, such as the lengths of the comments, containment of any sensitive keywords,

131

1 2 3 4 5 6 7 8 9
positive instance weights

0.45

0.50

0.55

0.60

A
U
P
R
C

bow

lda

svd

nmf

all

basic

(a) Context-agnostic methods

1 2 3 4 5 6 7 8 9
positive instance weights

0.46

0.48

0.50

0.52

0.54

0.56

0.58

0.60

A
U
P
R
C

bow context-agnostic

context-aware

(b) BOW with native context

1 2 3 4 5 6 7 8 9
positive instance weights

0.46

0.48

0.50

0.52

0.54

0.56

0.58

0.60

A
U
P
R
C

lda context-agnostic

context-aware

(c) LDA with native context

1 2 3 4 5 6 7 8 9
positive instance weights

0.46

0.48

0.50

0.52

0.54

0.56

0.58

0.60

A
U
P
R
C

svd context-agnostic

context-aware

(d) SVD with native context

1 2 3 4 5 6 7 8 9
positive instance weights

0.46

0.48

0.50

0.52

0.54

0.56

0.58

0.60

A
U
P
R
C

nmf context-agnostic

context-aware

(e) NMF with native context

1 2 3 4 5 6 7 8 9
positive instance weights

0.46

0.48

0.50

0.52

0.54

0.56

0.58

0.60

A
U
P
R
C

all context-agnostic

context-aware

(f) All context-agnostic signals with na-
tive context

Figure 23. Effectiveness of Native Context on the News dataset

132

1 2 3 4 5 6 7 8 9
positive instance weights

0.4

0.5

0.6

0.7

0.8

0.9

A
U
P
R
C

bow

lda

svd

nmf

all

basic

(a) Context-agnostic methods

1 2 3 4 5 6 7 8 9
positive instance weights

0.66

0.68

0.70

0.72

0.74

A
U
P
R
C

bow context-agnostic

context-aware

(b) BOW with native context

1 2 3 4 5 6 7 8 9
positive instance weights

0.55

0.60

0.65

0.70

A
U
P
R
C

lda context-agnostic

context-aware

(c) LDA with native context

1 2 3 4 5 6 7 8 9
positive instance weights

0.55

0.60

0.65

0.70

0.75

A
U
P
R
C

svd context-agnostic

context-aware

(d) SVD with native context

1 2 3 4 5 6 7 8 9
positive instance weights

0.55

0.60

0.65

0.70

0.75

A
U
P
R
C

nmf context-agnostic

context-aware

(e) NMF with native context

1 2 3 4 5 6 7 8 9
positive instance weights

0.66

0.68

0.70

0.72

0.74

A
U
P
R
C

all context-agnostic

context-aware

(f) All context-agnostic signals with na-
tive context

Figure 24. Effectiveness of Native Context on the Blog dataset

133

etc..1 We also include the output of a maximum entropy text classifier as an additional basic

feature. For the Blog dataset, we withhold 50% of the comment-article pairs in the Blog dataset

as training data and train various classifiers (SVM, kNN, naive Bayes), whose predictions of

a comment being irrelevant are treated as basic features. To derive the signals σ1, . . . , σ4: 1)

we train an LDA2 model using all articles, then predict the topics of all comments. 2) we

construct a term-document matrix using all articles and comments, then use SVD and NMF to

decompose the resulting matrix and obtain topics of articles and comments. We fix the number

of topics in SVD, LDA and NMF at 50 without parameter searching.

Effectiveness of Native Contexts

Recall that the information in the constructed native contexts is given by the signal σ5 in Ta-

ble XXIV. To demonstrate that the proposed native context can enhance various context-

agnostic methods, we compare the classification performance of the basic features with and

without signal σ5. Without searching the parameter, we set the number of topics in Equa-

tion 7.7 to 20, as there are less documents in native contexts. Since there are several context-

agnostic methods (BOW, LDA, SVD and NMF), we add σ5 to each of the signals in {σ1, . . . , σ4}

corresponding to the above methods. For example, σ5 can be combined with σ1 and other basic

features. We also add σ5 to all of {σ1, . . . , σ4} and other basic features. In sum, we have 5

different combinations of σ5 with the other signals. If the combinations of features with σ5

1Due to corporation privacy, we are unable to discuss the details of these features

2use the implementation GibbsLDA++, with default parameters except the number of topics

134

outperform the same sets of features without σ5, then it is demonstrated that the native con-

text does capture context-dependent semantics, which would otherwise be unavailable through

context-agnostic methods.

We use the random forest implementation in sklearn1 to evaluate each set of features, since

random forest has been proven to be effective for imbalance two-class problems, as it is the

case in this paper. Regarding the forests, we use 100 random trees, each of which grows to

its full depth. The performance of random forest is evaluated using 10-fold cross validation.

We choose AUPRC (Area Under Precision-Recall Curve) as our performance metric, as in real

world applications like spam detection, one usually wants to achieve high precisions with low

recalls. Note that one can adjust the cost of false negatives in imbalance classification problems.

Therefore, with the weight of negative instances fixed at 1, we give different weights to positive

instances, ranging from 1 to 9 with stepsize 1. Random decision trees can gracefully take care

of the weights.

In Figure 23 (News dataset) and Figure 24 (Blog dataset), we demonstrate the performance

of various signal combinations. In 23(a) and 24(a), one can observe that the signals σi, i =

1, . . . , 4 improve the detection performance based on the rest of the basic features. This shows

that the similarity between the usage of words or topics of a comment and the proceeding

article or surrounding comments can significantly improve the performance. Surprisingly, on

both datasets, fbow outperforms any other single dimension reduction methods (flda, fsvd or

1scikit-learn.org

135

fnmf) that try to capture the topics of the comments. This is because comments are usually

too short to provide sufficient information for topic modeling. In 23(a), we observe that by

combining all context-agnostic signals, one can obtain a significant improvement on the News

dataset, though not so on the Blog dataset in 24(a). We improve the performance of context-

agnostic signals consistently by including a context-aware signal σ5, as shown in 23(b)-23(e),

and 24(b)-24(e). For example, on the News dataset, the native context maximally improves

LDA and NMF by 6.1%. On the Blog dataset, the improvements are even more significant,

where the native context improves LDA by 20% (24(c)). More importantly, the improvements

are consistent regardless of the cost of false negatives, eliminating the time-consuming process

of tuning the cost parameter in real world applications.

In 23(f) and 24(f), we show the improvements due to native contexts on the combination

of all context-agnostic signals. The improvements are 1.8% on the News dataset and 4.3% on

the Blog dataset. Note that using all 4 context-agnostic models gives the best performance on

the News dataset (23(a)), and the proposed native context brings the AUPRC even higher. In

real world applications, it is more important to locate certain points on the precision-recall-

curve where precisions are high. In 25(a) and 25(b), we plot the PRCs when bundling all

context-agnostic models with and without σ5 for both datasets. The areas where precisions are

at least 80% are annotated using arrows. It is clear that native contexts consistently improve

the performance over the combined context-agnostic models by achieving higher recalls in the

critical regions.

Effectiveness of Transferred Contexts

136

For each irrelevant comment, we randomly sample a certain number (2, 4, and 6) of relevant

comments following the same article, then we treat the irrelevant comment and the sampled

relevant comments as the only available comments for the article. We run Algorithm 1 to

construct transferred contexts and derive detection signal σ6 in Table XXIV. σ6 is then added

to the combination of all context-agnostic signals σ1, . . . , σ4, since the combined signals have the

best performance on this dataset (23(a)). We do not include the comment-to-center similarity

for σ1, . . . , σ4, since there are only a very small number of comments at an early stage and

the estimated center is inaccurate. The context-agnostic signals are generated as follows: SVD

and NMF are used to decompose the term-document matrices derived from articles and the

associated positive/sampled negative comments; LDA and BOW are the same as they were

in the last experiment. Since there is a source of randomness due to sampling, we repeat the

experiment 10 times for each parameter setting and report the mean AUPRC. We perform this

experiment only on the News dataset, since there are only 20 articles in the Blog dataset, based

on which the results might not be significant.

The mean of AUPRC of the methods with and without σ6 are compared in Figure 26. Each

of the figures (from left to right) is obtained using different number of sampled normal com-

ments. In 26(a), one can see that transferred contexts only slightly change the AUPRC, when

the detection task is relatively easy (smaller number of comments to distinguish). However,

when there are more negative samples but insufficient contexts, the detection tasks become

much more difficult. In such situations, the transferred contexts start to serve as a good source

137

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
re
ci
si
o
n

higher precision
 and recall

context-agnostic

context-aware

(a) PRC for all context-agnostic signals with and
without native context on the News dataset

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
re
ci
si
o
n

higher precision
 and recall

context-agnostic

context-aware

(b) PRC for all context-agnostic signals with and
without native context on the Blog dataset

Figure 25. Precision-Recall Curves for the context-agnostic and context-aware detections

for detection signal σ6. In 26(b) and 26(c), one can see that σ6 improves the AUPRC more

than it does in 26(a). In particular, in 26(c), the improvements are most obvious.

138

1 2 3 4 5 6 7 8 9
positive instance weights

0.74

0.75

0.76

0.77

0.78

0.79

0.80

0.81

A
U
P
R
C

context-agnostic

context-aware

(a) 2 relevant + 1 irrelevant com-
ments

1 2 3 4 5 6 7 8 9
positive instance weights

0.67

0.68

0.69

0.70

0.71

0.72

0.73

0.74

A
U
P
R
C

context-agnostic

context-aware

(b) 4 relevant + 1 irrelevant com-
ments

1 2 3 4 5 6 7 8 9
positive instance weights

0.61

0.62

0.63

0.64

0.65

0.66

0.67

0.68

A
U
P
R
C

context-agnostic

context-aware

(c) 6 relevant + 1 irrelevant com-
ments

Figure 26. Effectiveness of Transferred Contexts on the News dataset

COPYRIGHTS

139

140

141

142

143

144

145

146

CITED LITERATURE

1. A, M., B, L., J, W., N, G., and N, J. Detecting group review spam. WWW ’11.

2. Anderson, T. An Introduction to Multivariate Statistical Analysis, 3rd ed. Wiley, 2003.

3. Bartlett, P. L. The sample complexity of pattern classification with neural networks:
The size of the weights is more important than the size of the network. IEEE Trans.
Inf. Theor. (2006).

4. Ben-Hur, A., Horn, D., Siegelmann, H. T., and Vapnik, V. Support vector cluster-
ing. Journal of Machine Learning Research (2002).

5. Berry, M., Mezher, D., Philippe, B., and A, S. Parallel algorithms for the singular
value decomposition. 2006.

6. Bhattarai, A., Rus, V., and Dasgupta, D. Characterizing comment spam in the
blogosphere through content analysis. Computational Intelligence in Cyber Security.

7. Blei, D. M., Ng, A. Y., and Jordan, M. I. Latent dirichlet allocation.

8. Boyd, S., and Vandenberghe, L. Convex Optimization. Cambridge University Press,
2004.

9. C, E., and J, W. E. bcp: An r package for performing a bayesian analysis of change point
problems. Journal of Statistical Software (2007).

10. Chang, Y., Wang, X., Mei, Q., and Liu, Y. Towards twitter context summarization
with user influence models. WSDM.

11. Cortes, C., and Mohri, M. Auc optimization vs. error rate minimization. In NIPS
(2003).

12. Deerwester, S. Improving information retrieval with latent semantic indexing. In Pro-
ceedings of the 51st ASIS Annual Meeting (1988).

147

148

13. Dembczynski, K., Cheng, W., and Hüllermeier, E. Bayes optimal multilabel classi-
fication via probabilistic classifier chains. In ICML (2010).

14. Dembczyński, K., Waegeman, W., Cheng, W., and Hüllermeier, E. On label
dependence and loss minimization in multi-label classification.

15. Demšar, J. Statistical comparisons of classifiers over multiple data sets. Journal of
Machine Learning Research (2006).

16. Dhillon, I. S., Guan, Y., and Kulis, B. Kernel k-means: spectral clustering and
normalized cuts. In SIGKDD (2004).

17. Duchi, J., Shalev-Shwartz, S., Singer, Y., and Chandra, T. Efficient projections
onto the l1-ball for learning in high dimensions. ICML.

18. E-P, L., V-A, N., N, J., B, L., and H W, L. Detecting product review spammers using
rating behaviors. CIKM ’10.

19. Elisseeff, A., and Weston, J. A kernel method for multi-labelled classification. In
NIPS (2001).

20. Fan, R.-E., Chang, K.-W., Hsieh, C.-J., Wang, X.-R., and Lin, C.-J. LIBLINEAR:
A library for large linear classification. JMLR 9 (2008), 1871–1874.

21. Fei, W., Xin, W., and Tao, L. Generalized cluster aggregation. In IJCAI (2009).

22. G, W., S, X., B, L., and P, S. Identify online store review spammers via social review
graph. In ICDM’11.

23. Gao, J., Fan, W., Turaga, D., Verscheure, O., Meng, X., Su, L., and Han, J.

Consensus extraction from heterogeneous detectors to improve performance over
network traffic anomaly detection. In INFOCOM (2011).

24. Gao, J., Liang, F., Fan, W., Sun, Y., and Han, J. Graph-based consensus maximiza-
tion among multiple supervised and unsupervised models. NIPS ’09, pp. 585–593.

25. Golub, G., and Loan, C. Matrix Computions, 3rd ed. John Hopkins University Press,
1996.

149

26. Hanley, J. A., and McNeil, B. J. The meaning and use of the area under a receiver
operating characteristic (roc) curve.

27. Hu, X., Sun, N., Zhang, C., and Chua, T.-S. Exploiting internal and external seman-
tics for the clustering of short texts using world knowledge. CIKM.

28. Kant, R., Sengamedu, S. H., and Kumar, K. Comment spam detection by sequence
mining. WSDM.

29. Kantchelian, A., Ma, J., Huang, L., Afroz, S., Joseph, A., and Tygar, J. D.

Robust detection of comment spam using entropy rate. AISec.

30. Karlin, S., and Taylor, H. M. A First Course in Stochastic Processes, 2 ed. Academic
Press, 1975.

31. Kendall, M. G. A new measure of rank correlation. Biometrika (1938).

32. Lauw, H. W., Lim, E.-P., and Wang, K. Bias and controversy: Beyond the statistical
deviation. KDD.

33. Lauw, H. W., Lim, E.-P., and Wang, K. Summarizing review scores of unequal re-
viewers. SDM.

34. Li, T., and Ding, C. Weighted consensus clustering. SDM.

35. Long, G., Chen, L., Zhu, X., and Zhang, C. Tcsst: transfer classification of short &
sparse text using external data. CIKM.

36. Mishne, G., Carmel, D., and Lempel, R. Blocking blog spam with language model
disagreement. In AIRWeb (2005).

37. Mishne, G., and Glance, N. Leave a reply: An analysis of weblog comments. WWW.

38. Mishra, A., and Rastogi, R. Semi-supervised correction of biased comment ratings.
WWW.

39. N, J., and B, L. Opinion spam and analysis. WSDM ’08.

40. N, J., B, L., and E-P, L. Finding unusual review patterns using unexpected rules. CIKM
’10.

150

41. Ng, A. Y., Jordan, M. I., and Weiss, Y. On spectral clustering: Analysis and an
algorithm. In NIPS (2001).

42. Paugam-Moisy, H., Elisseeff, A., and Guermeur, Y. Generalization performance of
multiclass discriminant models. In Neural Networks, 2000. IJCNN 2000 (2000).

43. Petterson, J., and Caetano, T. Reverse multi-label learning. In NIPS (2010).

44. Phan, X.-H., Nguyen, L.-M., and Horiguchi, S. Learning to classify short and sparse
text & web with hidden topics from large-scale data collections. WWW.

45. Raykar, V. C., Yu, S., Zhao, L. H., Jerebko, A., Florin, C., Valadez, G. H.,

Bogoni, L., and Moy, L. Supervised learning from multiple experts: whom to
trust when everyone lies a bit. ICML, ACM.

46. Read, J., Pfahringer, B., Holmes, G., and Frank, E. Classifier chains for multi-label
classification. ECML PKDD.

47. Sahami, M., and D. Heilman, T. A web-based kernel function for measuring the simi-
larity of short text snippets. WWW.

48. Schapire, R. E., and Singer, Y. Boostexter: A boosting-based systemfor text catego-
rization.

49. Shi, C., Kong, X., Yu, P. S., and Wang, B. Multi-label ensemble learning.
ECML/PKDD.

50. Strehl, A., and Ghosh, J. Cluster ensembles - a knowledge reuse framework for com-
bining multiple partitions. Journal of Machine Learning Research (2003).

51. Tan, C., Chi, E. H., Huffaker, D., Kossinets, G., and Smola, A. J. Instant foodie:
Predicting expert ratings from grassroots. CIKM.

52. Tokdar, S. T., and Kass, R. E. Importance sampling: a review. Wiley Interdisciplinary
Reviews Computational Statistics 2, 1 (2010), 54–60.

53. Tsoumakas, G., Katakis, I., and Vlahavas, I. P. Random k-labelsets for multilabel
classification. IEEE Trans. Knowl. Data Eng. (2011).

151

54. V, M., H, M., G, D., and K, E. Indexing multi-dimensional time-series with support
for multiple distance measures. KDD ’03.

55. Vapnik, V. Statistical learning theory. Wiley, 1998.

56. Von Ahn, L., Maurer, B., McMillen, C., Abraham, D., and Blum, M. re-
CAPTCHA: Human-based character recognition via web security measures.

57. Wang, H., Shan, H., and Banerjee, A. Bayesian cluster ensembles. In SDM (2009).

58. Wang, J., Yu, C. T., Yu, P. S., Liu, B., and Meng, W. Diversionary comments
under political blog posts. CIKM.

59. Xie, S., Fan, W., and Yu, P. S. An iterative and re-weighting framework for rejection
and uncertainty resolution in crowdsourcing. In SDM (2012).

60. Xie, S., Gao, J., Fan, W., Turaga, D., and Yu, P. S. Class-distribution regular-
ized consensus maximization for alleviating overfitting in model combination. In
SIGKDD (2014).

61. Xie, S., Hu, Q., Zhang, J., Gao, J., Fan, W., and Yu, P. S. Robust crowd bias
correction via dual knowledge transfer from multiple overlapping sources. In Big
Data (Big Data), 2015 IEEE International Conference on (2015).

62. Xie, S., Kong, X., Gao, J., Fan, W., and Yu, P. Multilabel consensus classification.
In ICDM (2013).

63. Xie, S., Wang, G., Lin, S., and Yu, P. S. Review spam detection via temporal pattern
discovery. KDD, ACM, pp. 823–831.

64. Xie, S., Wang, J., Amin, M. S., Yan, B., Bhasin, A., Yu, C., and Yu, P. S. A
context-aware approach to detection of short irrelevant texts. In Data Science and
Advanced Analytics (DSAA), 2015. 36678 2015. IEEE International Conference on
(2015), pp. 1–10.

65. Xu, W., Liu, X., and Gong, Y. Document clustering based on non-negative matrix
factorization. SIGIR.

66. Yan, R., Tesic, J., and Smith, J. R. Model-shared subspace boosting for multi-label
classification. KDD.

152

67. Yan, X., Guo, J., Lan, Y., and Cheng, X. A biterm topic model for short texts.
WWW.

68. Yan, X., Guo, J., Liu, S., Cheng, X., and Wang, Y. Learning topics in short texts
by non-negative matrix factorization on term correlation matrix. SDM.

69. Yan, Y., Rosales, R., Fung, G., and Dy, J. Modeling multiple annotator expertise in
the semi-supervised learning scenario.

70. Yan, Y., Rosales, R., Fung, G., Schmidt, M. W., Valadez, G. H., Bogoni, L.,

Moy, L., and Dy, J. G. Modeling annotator expertise: Learning when everybody
knows a bit of something.

71. Yi, J., Yang, T., Jin, R., Jain, A., and Mahdavi, M. Robust ensemble clustering by
matrix completion. ICDM.

72. Yih, W.-T., and Meek, C. Improving similarity measures for short segments of text.
AAAI.

73. Yu, G., Domeniconi, C., Rangwala, H., Zhang, G., and Yu, Z. Transductive
multi-label ensemble classification for protein function prediction. KDD.

74. Zhang, M.-L., and Zhang, K. Multi-label learning by exploiting label dependency.
KDD.

75. Zhang, X., Yuan, Q., Zhao, S., Fan, W., Zheng, W., and Wang, Z. Multi-label
Classification without the Multi-label cost. In SDM (2010).

VITA

Sihong Xie

Education

Ph.D., Computer Science, University of Illinois at Chicago, Chicago, Illinois 2016

M.E., Software Engineering, Sun Yat-Sen University 2010

B.E., Software Engineering, Sun Yat-Sen University 2008

Honors

SIAM SDM 2012 Student Travel Award 05/2012

ACM SIGKDD 2012 Student Travel Award 08/2012

IEEE ICDM 2008 Data Mining Contest Crown Award (highest award) 2008

Outstanding Graduate Student Scholarship, Sun Yat-Sen University 2008 - 2009

Outstanding Student Scholarship First Prize, Sun Yat-Sen University 2006 - 2007

Working Experience

Research Intern, Exploratory Stream Analytics Group, IBM Research, Hawthorne, NY.

05/2012 - 08/2012

Applied Researcher, Search and Network Analysis Group,LinkedIn Corporation, Mountain

View, CA. 05/2013 - 08/2013

Research Assistant, Department of Computer Science, University of Illinois at Chicago,

Chicago, IL. 08/2012 - 07/2016

Selected Publications

153

154

• Sihong Xie, Wei Fan, Jing Peng, Olivier Verscheure, and Jiangtao Ren. Latent space domain

transfer between high dimensional overlapping distributions. In: WWW. ACM, 2009.

• Sihong Xie, Wei Fan, Olivier Verscheure, and Jiangtao Ren. Efficient and numerically stable

sparse learning. In: ECML/PKDD. 2010.

• Sihong Xie, Guan Wang, Shuyang Lin, and Philip S.Yu. Review spam detection via temporal

pattern discovery. In: KDD. ACM, 2012.

• Sihong Xie, Xiangnan Kong, Jing Gao, Wei Fan, and Philip S Yu. Multilabel consensus

classification. In: ICDM. IEEE, 2013.

• Sihong Xie, Wei Fan, and Philip S.Yu. An iterative and re-weighting framework for rejection

and uncertainty resolution in crowdsourcing. In: SDM. SIAM, 2012.

• Sihong Xie, Jing Gao, Deepak Turaga, Wei Fan, and Philip S. Yu. Class- distribution regu-

larized consensus maximization for alleviating overfitting in model combination. In: KDD.

ACM, 2014.

• Sihong Xie, Qingbo Hu, Weixiang Shao, Jingyuan Zhang, Jing Gao, Wei Fan, and Philip

S. Yu. Effective Crowd Expertise Modeling via Cross Domain Sparsity and Uncertainty

Reduction. In: SDM. SIAM, 2016.

