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SUMMARY

When negotiations fail, arbitration is often an effective means by which a binding res-

olution can be found. To address the many shortcomings of conventional arbitration,

many industries have been using a variation called Final-Offer Arbitration since the

1970s. The mechanics are simple - rather than crafting a compromise, the judge must

choose one of the two final offers proposed by the parties. Variants of the single-issue

arbitration scenario, modeled as a two-player game, have been studied, but very little

has been said about the game theoretic properties of the multi-issue case. In this work

we define various game models for two or more issues under arbitration, study the

conditions under which optimal pure strategies exist, derive these strategies, and in

some cases prove that they are the unique globally optimal strategies. In particular,

we look at modeling the uncertainty of arbitrator behavior with either a normal or

uniform distribution, and consider a number of metrics the judge may use to make

his ruling (pun intended).

vi



CHAPTER 1

Introduction

Should negotiating parties fail to arrive at an agreeable solution, arbitration serves as a

mechanism whereby a binding resolution may be reached. In conventional arbitration

(CA), the disputing parties submit their cases to an agreed upon arbiter who has full

power to craft whatever fair and just settlement he sees fit. It is widely accepted,

however, that CA has a number of undesirable properties, in particular what has

been called the “chilling effect”: since both parties know the arbiter will craft a

compromise, they tend to take extreme positions. Since it is commonly held that a

settlement reached through negotiation is preferable to a settlement reached through

arbitration, one can view the purpose of a compulsory arbitration as motivating the

parties to reach an agreement during negotiations. This is the paradox of arbitration:

the best arbitration mechanism is that which is used least often.

It was Stevens (1966) who suggested a simple arbitration mechanism now known as

Final-Offer Arbitration (FOA). In FOA, the arbiter must select one of the final offers

submitted by the parties and has no prerogative to craft a compromise settlement.

The theory was that such uncertainty in the final outcome would combat this chilling

effect driving the two parties to make final offers that are “close” to one another, or

better still motivate them to reach agreement during negotiations.

Since 1975 when FOA was adopted by Major League Baseball for salary disputes,

variants of FOA have been used in various states in public sectors where labor does

not have the right to strike (e.g. police, firefighters). A growing body of literature

has been developed by legal scholars, economists and game theorists studying both

the theoretical and empirical properties of FOA.

1



1. INTRODUCTION 2

The first theoretical model of FOA was introduced by Crawford (1979). With the

assumption that both parties know with certainty the arbiter’s opinion of a “fair”

settlement, he showed that FOA would inevitably lead to the same outcome as con-

ventional arbitration. Farber (1980), Chatterjee (1981), and Brams and Merrill (1983)

independently developed game theoretic models of single-issue FOA for which play-

ers are uncertain of the arbiter’s behavior. Farber studied the effect of risk aversion

by one of the parties, and derived the strategy pair which in many cases is a Nash

equilibrium. Chatterjee and Brams and Merrill model the game as zero-sum and con-

sequently assumed both parties are risk-neutral. Brams and Merrill provide sufficient

conditions for the existence of a pure equilibrium. In all three models, the arbiter

is assumed by the players to choose a “fair” settlement from a probability distribu-

tion commonly known to both players and select whichever player’s offer is closest in

absolute value.

The basic model has been extended and analyzed in a number of ways in the literature.

Samuelson (1991) developed a model of single-issue FOA where parties’ knowledge of

a fair settlement is asymmetric. Kilgour (1994) studied the game theoretic properties

of FOA and extended the Brams-Merrill model to allow for risk-aversion on the part of

the players. Dickinson (2006) further showed that optimism on the part of the players,

in the form of a biased prior distribution, drives the final-offers apart. Armstrong

and Hurley (2002) generalized FOA and CA into a single model and showed that

optimal offers under CA will always diverge more than those under FOA. Mazalov

and Tokareva (2012) considered an extension where the decision is made by multiple

arbitrators.

If multiple issues are in dispute, FOA has been primarily implemented in two ways

(Stern, 1975). Under Issue-by-Issue FOA (IBIFOA), the arbiter may craft a compro-

mise of sorts from the two parties’ offers by choosing some components from one and

some from the other. Alternatively, Whole Package FOA (WPFOA) requires that the

arbiter select one offer in its entirety. A multi-issue model of FOA was first discussed
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by Crawford (1979) and further developed by Wittman (1986). Here the main con-

cern was the existence of a Nash equilibrium under various assumptions. Wittman

was also able to show in his model that increased risk-aversion leads a player to make

a less extreme final-offer. Olson (1992) discussed how the single-issue model does not

accurately reflect arbiter behavior when more than one issue is in dispute.

In his initial paper introducing FOA, Stevens cautions against the use of the “Whole

Package” variant, stating that “such a system would run the danger of generating

unworkable awards...the arbitration authority might be forced to choose between two

extreme positions, each of which was unworkable”(Stevens, 1966). Tulis (2013) elab-

orates: “One common criticism of package final-offer arbitration is that parties may

be tempted to include outrageous offers.” He further claims that “issue-by-issue final

offers...are more aligned with the objectives of final-offer arbitration.” We argue the

opposite - that both players’ optimal strategy in a multiple-issue FOA is to make

all final-offer components reasonable. Furthermore, the additional variance in the

awards from WP, as opposed to IBI, acts as a greater motivator for the parties to

reach agreement during negotiations. We show this by extending the model of Brams

and Merrill to multiple-issues and proceed to explicitly construct a pure strategy pair,

proving it is the unique optimal strategy pair in many cases.

The outline of this work is as follows: In Chapter 2 we review the single-issue FOA

model as it appears in the work of Brams and Merrill, and in particular highlight

the theorem which explicitly gives the globally optimal pure strategy solution to the

game. In Chapter 3 we define the game model for a multi-issue version of the zero-sum

game. Chapter 4 explores the two issue case in great detail. Where the uncertainty is

modeled by a normal distribution, we look at six decision criteria which may be used

by the judge to determine which offer is more reasonable, deriving the only possible

optimal pure strategies in each case. In the case of the L2 metric, the strategies are

further shown to be locally optimal under certain conditions of the covariance ma-

trix, and globally optimal under slightly more restrictive conditions. The chapter is
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concluded by considering uncertainty modeled by a uniform distribution on a rectan-

gular region. In Chapter 5 we consider the game extended to arbitrary dimensional

final-offer vectors, and derive the possible optimal pure strategies.



CHAPTER 2

Single-Issue Final-Offer Arbitration

For context, suppose an employer and worker’s union are in negotiations for a wage

increase. Negotiations stall and the parties are contractually obligated to resolve the

impass via FOA. Across the industry, let us assume that the population of wages

follow a normal distribution. We will also assume that the offer of the employer

(Player I, the minimizer) is no greater than the demand of the workers (Player II, the

maximizer).

The judge has his clerks perform a sampling of the industry to compute and average

salary, which the judge takes to be a ‘fair’ standard for comparison to the parties’

final-offers. Let ξ be the random value chosen by the judge, drawn from N (µ, σ2). Let

x1 be the company offer and x2 the demand from the workers’ union. The expected

ruling of the judge is thus

x1P (|x1 − ξ| < |x2 − ξ|) + x2P (|x1 − ξ| > |x2 − ξ|)

or expressed another way,

x1P

(
ξ <

x1 + x2

2

)
+ x2P

(
ξ >

x1 + x2

2

)
.

Letting F (x) = P (ξ < x), we may write this as

x1F

(
x1 + x2

2

)
+ x2

(
1− F

(
x1 + x2

2

))
= (x1 − x2)F

(
x1 + x2

2

)
+ x2.

Call this K(x1, x2). Suppose pure optimal strategies x∗
1, x

∗
2 exist. Because the ex-

pected payoff is a continuous differentiable function of x1 and x2, it must be the case

5



2. SINGLE-ISSUE FINAL-OFFER ARBITRATION 6

that
d

dx1

K(x∗
1, x

∗
2) = 0, that is

(1)
x∗
1 − x∗

2

2
f

(
x∗
1 + x∗

2

2

)
+ F

(
x∗
1 + x∗

2

2

)
= 0.

Similarly,
d

dx2

K(x∗
1, x

∗
2) = 0, that is

(2)
x∗
1 − x∗

2

2
f

(
x∗
1 + x∗

2

2

)
− F

(
x∗
1 + x∗

2

2

)
+ 1 = 0.

Subtracting (2) from (1), we get

(3) F

(
x∗
1 + x∗

2

2

)
=

1

2

Thus,
x∗
1 + x∗

2

2
= µ. If we instead add (1) and (2) we get

(4) f(µ) =
1

σ
√
2π

=
1

x∗
2 − x∗

1

So we arrive at the solution; if pure optimal strategies x∗
1, x

∗
2 exist, they are given by

x∗
1 = µ− σ

√
2π

2
x∗
2 = µ+

σ
√
2π

2
.

If we consider more generally any density function f with median 0, Brams and

Merrill (1983) provide the following results:

THEOREM 2.1. Suppose the arbitrator’s notion of a fair settlement has a contin-

uous distribution with density function f and distribution function F where F ′ = f .

Assume, without loss of generality that the median of F is 0.

(1) If f ′(0) exists and f(0) > 0 then if |f ′(0)| < 4f(0)2, locally optimal strategies

for the minimizer and maximizer respectively are

a∗ = − 1

2f(0)
, b∗ =

1

2f(0)
.
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(2) If f(0) > 0, then the strategies given above are globally optimal if and only if

the following conditions hold:∫ x

0

f(t)dt ≤ x

2b∗ − 2x
for 0 < x ≤ 1

4f(0)
,

∫ x

0

f(t)dt ≥ x

2b∗ + 2x
for x > 0,

and the same inequalities hold for
∫ 0

−x
f(t)dt in place of

∫ x

0
f(t)dt.

It is worth noting that among the distributions which satisfy the conditions for global

optimality are the normal distribution and the uniform distribution. This theorem

will be instrumental throughout the rest of this work.



CHAPTER 3

General Multi-Issue Final-Offer Arbitration

Our model extends the model defined by Brams and Merrill (1983). Let us consider

the case where each player makes not a single valued offer, but an d-tuple xi =

(xi
1, . . . , x

i
d), i = 1, 2. We will assume that the issues in dispute are quantitative

in nature, with both players restricted to a strategy space S which is an arbitrarily

large, but compact, subset of Rd. Let v1(x) be the valuation of a settlement vector

x by Player I and v2(x) the valuation function for Player II. (consequently, Player II

values this settlement as −v(x, y)). Suppose the arbiter has in mind a fair settlement

ξ ∈ Rd, and measures the “reasonable-ness” of a final-offer demand by a function

R : Rd × Rd → R. Then the payoff of the game to Player i is given by

(5) Ki

(
x1,x2

)
=


vi(x1) R(x1, ξ) > R(x2, ξ)

vi(x2) R(x1, ξ) < R(x2, ξ)

1

2
vi(x1) +

1

2
vi(x2) R(x1, ξ) = R(x2, ξ)

where the arbiter chooses either offer with equal probability if, in his opinion, they

are equally reasonable. This raises three important questions: How do players value

settlement bundles, how do they model the uncertainty of the arbiter’s opinion of

fairness, and how do we define the function R?

1. Valuation of Settlements

For the rest of this work we will assume the valuation is additive. An example of such

a situation is one in which wage and workers compensation amounts are in dispute;

workers’ compensation may be valued at the expected compensation amount (in the

probabilistic sense). Even issues which are not monetary, such as number of sick

8



3. DECISION CRITERIA 9

days, may have a straightforward monetary valuation by the parties. Furthermore,

we will assume that the game is zero-sum; giving Player I the role of the Minimizer

(e.g. employer) and Player II the role of the Maximizer (e.g. workers’ union) we have

v1(x1, . . . , xd) = −
d∑

j=1

xj = −v2(x1, . . . , xd).

While it has been noted assumptions of additivity in valuation “suppress multi-

dimensionality and, in fact, degenerate it into a univariate case” (David Levhari,

1975), even with this simple assumption the model produces interesting results.

2. Models of Uncertainty

Both players are uncertain of the arbiter’s opinion of a fair settlement ξ. We will

assume that the players share a prior assumption that ξ is drawn from a probability

distribution with density f , and it is common knowledge (Aumann). We will specifi-

cally consider two special cases in the analysis which follows: the normal and uniform

distributions.

Normal Distribution

Suppose the arbiter (or a fact-finder) is sampling from relevant industry data to

form an opinion. Thus, by the Central Limit Theorem, we may suppose that their

common prior distribution for ξ is a multivariate normal distribution, N (µ,Σ) and

let us assume without loss of generality that µ = 0.

Uniform Distribution

In this case we will suppose the players assume only that the arbiter will choose

ξ ∈
d×

j=1

[−αj, αj] with uniform probability density, where αj > 0.

3. Decision Criteria

Under WPFOA the arbiter must rule in favor of one final-offer vector in its entirety.

It is in this variant that the choice of a distance criterion needs to be chosen by



3. DECISION CRITERIA 10

the arbiter. The “distance” from a final-offer vector x to ξ may be determined in

a number of ways. The following decision metrics will be considered in the sections

which follow

3.1. Net Offer Absolute Difference. In perhaps the simplest case, the arbiter

may take the net offer from each player and side with whichever is closer to
∑

j ξj.

(6) RNO(x, ξ) = −

∣∣∣∣∣
d∑

j=1

xj − ξj

∣∣∣∣∣
3.2. L2 Distance. If the arbiter uses L2 (Euclidean) distance, we may equiva-

lently let

(7) RL2(x, ξ) = −
d∑

j=1

(xj − ξj)
2

3.3. L1 Distance. Suppose, for example, the arbiter wishes to measure devia-

tion from fair component-wise; an L1 distance is appropriate in this case.

(8) RL1(x, ξ) = −
d∑

j=1

|xj − ξj|

3.4. L Infinity Distance. If instead he finds a large component deviation par-

ticularly disagreeable, an L∞ (Chebychev) distance may be used.

(9) RL∞(x, ξ) = −max
j

{|xj − ξj|}

3.5. Lp Metric. We will generalize the three previous metrics with an Lp metric

(i.e. p ≥ 1)

(10) RLp(x, ξ) = −
d∑

j=1

|xj − ξj|p

3.6. Mahalanobis Distance. In the case where ξ follows a normal distribution

with covariance matrix Σ, a Mahalanobis distance (Mahalanobis (1936)) may be
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appropriate to consider

(11) RM(x, ξ) = −(x− ξ)′Σ−1(x− ξ)



CHAPTER 4

Dual-Issue Final-Offer Arbitration

Let Player I be the minimizer and Player II the maximizer in this zero-sum game.

Let us consider the case where each player makes not a single valued offer, but an

ordered pair (xi, yi), i = 1, 2. Let v(x, y) be the valuation of a settlement vector (x, y)

by Player I (consequently, Player II values this settlement as −v(x, y)). If the arbiter

measures the “reasonable-ness” of a final-offer by a function R, then the payoff of the

game is given by

(12) K
(
(x1, y1), (x2, y2)

)
=


v(x1, y1) R(x1, y1) > R(x2, y2)

v(x2, y2) R(x1, y1) < R(x2, y2)

1

2
v(x1, y1) +

1

2
v(x2, y2) R(x1, y1) = R(x2, y2)

where the arbiter chooses either offer with equal probability if they are equally rea-

sonable (in his opinion). This raises three important questions: How do players value

settlement bundles, how do we model the function R and how to model the uncer-

tainty of the arbiter’s opinion of fairness.

We will assume that the two issues in dispute are quantitative in nature, with both

players restricted to a strategy space S which is an arbitrarily large, but compact,

subset of R21. Furthermore, we will assume the valuation is additive, namely v(x, y) =

x+ y.

1. Normal Distribution

Both players are uncertain of the arbiter’s opinion of a fair settlement (ξ, η), but

assume that the arbiter (or a fact-finder) is sampling from relevant industry data to

1Otherwise, the game may not even posses a value.

12
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form an opinion. Thus, by the Central Limit Theorem, we may suppose that their

common prior distribution for (ξ, η) is a bivariate normal distribution, N (µ,Σ) and

it is common knowledge (Aumann). Let us assume without loss of generality that

µ = 0. We will assume that these issues are positively correlated across the industry,

thus

Σ =

 σ2
x ρσxσy

ρσxσy σ2
y

 ,

where ρ > 0.

In the multi-issue case, FOA is typically handled in one of two ways: Issue-by-Issue

(IBI) or Whole-Package (WP). Under IBIFOA the arbiter rules independently on

each issue presented. A compromise of sorts may be crafted in this way. If the arbiter

uses the IBI mechanic, the players are engaged in two independently decided single-

issue FOA games. By the Brams-Merrill Theorem (1983), we know that the unique

optimal strategy pair of the players is given by

(13) (x∗
1, y

∗
1) =

(
−σx

√
2π

2
,−σy

√
2π

2

)
(x∗

2, y
∗
2) =

(
σx

√
2π

2
,
σy

√
2π

2

)
.

Under WPFOA the arbiter must rule in favor of one final-offer vector in its entirety.

It is in this variant that the choice of a distance criterion needs to be chosen by the

arbiter. The “distance” from a final-offer point (xi, yi) to (ξ, η) may be determined

in a number of ways.

1.1. Net Offer. In this model, 2NNO (Bivariate Normal, Net Offer), the judge

considers only the net final-offer from each player. The payoff is

K (x1,x2) =


x1 + y1 if |x1 − ξ + y1 − η| < |x2 − ξ + y2 − η|

x2 + y2 if |x1 − ξ + y1 − η| > |x2 − ξ + y2 − η|
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We notice that if we let Ω = ξ + η, and wi = xi + yi, this simplifies to

K(w1, w2) =


w1 if |w1 − Ω| < |w2 − Ω|

w2 if |w1 − Ω| > |w2 − Ω|

The random variable Ω follows a normal distribution N (0, σ2
Ω), where σ2

Ω = α + β

(α = σ2
x + ρσxσy, β = σ2

y + ρσxσy). This solution is reducible to the univariate case,

with global optimal strategies given by

w∗
1 = −

√
2π(α + β)

2
w∗

2 =

√
2π(α + β)

2
.

This however gives each player set of solution points. Thus we have the following

result:

THEOREM 4.1. In 2NNO, any pair of strategies x1 ∈ S1 and x2 ∈ S2 are optimal,

where

S∗
1 =

{(
x∗
1,−

√
2π(α+ β)

2
− x∗

1

)
: x∗

1 ∈ R

}

S∗
2 =

{(
x∗
2,

√
2π(α+ β)

2
− x∗

2

)
: x∗

2 ∈ R

}
.

1.2. L2 Distance. For our second model, 2NL2 (Bivariate Normal L2), we will

assume that the arbiter uses L2 (Euclidean) distance:

(14) DL2

(
(x, y), (ξ, η)

)
=
√
(ξ − x)2 + (η − y)2.

1.2.1. Properties of 2NL2. We now establish some properties of the game. Sup-

pose Player I chooses pure strategy a = (x1, x2) and Player II chooses pure strategy

b = (x2, y2), and the arbiter considers (ξ, η) a fair settlement. We define Ci(a,b), as

the set of points in R2 which are strictly closer to Player i’s final-offer than to the

other player’s, namely

(15) C1(a,b) :=
{
(x, y) : (x1 − x)2 + (y1 − y)2 < (x2 − x)2 + (y2 − y)2

}
,
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(16) C2(a,b) :=
{
(x, y) : (x1 − x)2 + (y1 − y)2 > (x2 − x)2 + (y2 − y)2

}
.

It is immediately apparent that C1(a,b) = C2(b, a). The midset is

(17) Mid(a,b) :=
{
(x, y) : (x1 − x)2 + (y1 − y)2 = (x2 − x)2 + (y2 − y)2

}
.

We observe that if a ̸= b thenMid(a,b) is a line so, because (ξ, η) follows a continuous

distribution, P
(
(ξ, η) ∈ Mid(a,b)

)
= 0. We can now define the expected payoff to

Player II from I

(18)

K(a,b) =


x1 + y1 a = b

(x1 + y1)P
(
(ξ, η) ∈ C1(a,b)

)
+ (x2 + y2)P

(
(ξ, η) ∈ C2(a,b)

)
a ̸= b

The following are some consequential properties of the game.

LEMMA 4.1. K(a,b) = K(b, a).

The first property concerns the anonymity of final-offers; the arbiter essentially

does not care which player submits which final-offer.

Proof. If a = b the proof is trivial. Assume a ̸= b.

K(a,b) = (x1 + y1)P
(
(ξ, η) ∈ C1(a,b)

)
+ (x2 + y2)P

(
(ξ, η) ∈ C2(a,b)

)
= (x1 + y1)P

(
(ξ, η) ∈ C2(b, a)

)
+ (x2 + y2)P

(
(ξ, η) ∈ C1(b, a)

)
= (x2 + y2)P

(
(ξ, η) ∈ C1(b, a)

)
+ (x1 + y1)P

(
(ξ, η) ∈ C2(b, a)

)
= K(b, a)

□

LEMMA 4.2. Let −a = (−x1,−y1) and −b = (−x2,−y2). Then K(−a,−b) =

−K(a,b).
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This is due to the symmetry of the bivariate normal distribution about (0, 0). If the

players negate their offers then they are effectively swapping roles.

Proof. This proof makes use of two facts: First, (ξ, η) ∈ Ci(a,b) ⇔ (−ξ,−η) ∈

Ci(−a,−b), i = 1, 2. Secondly, (ξ, η) and (−ξ,−η) follow the same probability

distribution.

K(−a,−b) = (−x1 − y1)P
(
(ξ, η) ∈ C1(−a,−b)

)
+ (−x2 +−y2)P

(
(ξ, η) ∈ C2(−a,−b)

)
= −

(
(x1 + y1)P

(
(ξ, η) ∈ C1(−a,−b)

)
+ (x2 + y2)P

(
(ξ, η) ∈ C2(−a,−b)

))
= −

(
(x1 + y1)P

(
(−ξ,−η) ∈ C1(a,b)

)
+ (x2 + y2)P

(
(−ξ,−η) ∈ C2(a,b)

))
= −

(
(x1 + y1)P

(
(ξ, η) ∈ C1(a,b)

)
+ (x2 + y2)P

(
(ξ, η) ∈ C2(a,b)

))
= −K(a,b)

□

LEMMA 4.3. Let −b = (−x2,−y2). Then K(−b,b) = 0.

In other words, because the probability distribution of (ξ, η) is symmetric, the arbiter

is unbiased with regards to negating offers.

Proof. This proof also relies on the fact that (ξ, η) and (−ξ,−η) follow the same

probability distribution.

K(−b,b) = (−x2,−y2)P
(
(ξ, η) ∈ C1(−b,b)

)
+ (x2 + y2)P

(
(ξ, η) ∈ C2(−b,b)

)
= (x2 + y2)

(
P
(
(ξ, η) ∈ C2(−b,b)

)
− P

(
(ξ, η) ∈ C1(−b,b)

))
= (x2 + y2)

(
P
(
(ξ, η) ∈ C2(−b,b)

)
− P

(
(−ξ,−η) ∈ C1(b,−b)

))
= (x2 + y2)

(
P
(
(ξ, η) ∈ C2(−b,b)

)
− P

(
(−ξ,−η) ∈ C2(−b,b)

))
= (x2 + y2)

(
P
(
(ξ, η) ∈ C2(−b,b)

)
− P

(
(ξ, η) ∈ C2(−b,b)

))
= 0
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□

LEMMA 4.4. The value of 2NL2 is zero.

It may seem deceptively obvious that a symmetric zero-sum game must have a value

of zero, but we have no guarantee that a value exists at all. For example, consider

a simple symmetric game where Player I and II choose x, y ∈ R, and I receives a

payment from II of x − y. The game has no value as supy infx(x − y) = −∞ while

infx supy(x− y) = ∞.

Proof. Because the strategy space S of each player is compact and the payoff

K is continuous, by the general minimax theorem of Ville the game has a value v in

mixed strategies (see Parthasarathy and Raghavan (1971)).

First suppose an optimal pure strategy pair a∗,b∗ exists. Suppose v > 0. Then for

any pure strategy a of Player I,K(a,b∗) ≥ v > 0. But by Lemma 4.3K(−b∗,b∗) = 0,

contradicting that v > 0. Similarly it cannot be the case that v < 0. Therefore v = 0.

Now suppose that optimal mixed strategies F ∗
1 , F

∗
2 exist. Suppose v > 0. Then for

any mixed strategy F1,

(19) K(F1, F
∗
2 ) ≥ v > 0.

Player II may approximate the optimal strategy F ∗
2 by F̂ ∗

2 where probability mass

is concentrated only on a finite symmetric subset T ⊂ S such that for ϵ > 0 small

enough and for any mixed strategy F1,

(20) K(F1, F̂
∗
2 ) ≥ v − ϵ > 0.2

2This claim follows from three arguments: First, by a well known theorem of Varadarajan the space
of all probability measures M(S) is a compact metric space in weak topology. Secondly, the set of
all probability measures under weak topology concentrated on finite subsets of a compact metric
space S are themselves dense in the space of all probability measures on S. Lastly, by a well known
theorem of Prohorov, any compact subset T of M(S) is characterized by the property that given δ
positive, there exists a compact subset of C of T such that µ(C) > 1− δ for all µ in the set S. (See
Parthasarathy (2014))
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Define

g∗1(x, y) = f̂ ∗
2 (−x,−y), ∀(x, y) ∈ T

and call the associated mixed strategy G∗
1.

K(G∗
1, F̂

∗
2 ) =

∑
(a,b)∈T×T

g∗1(a)f̂
∗
2 (b)K(a,b)

=
∑

(a,b)∈T×T

f̂ ∗
2 (−a)g∗1(−b)K(a,b)

=
∑

(a,b)∈T×T

f̂ ∗
2 (−a)g∗1(−b)K(b, a)

= −
∑

(a,b)∈T×T

g∗1(−b)f̂ ∗
2 (−a)K(−b,−a)

With a change of variables c = −b,d = −a,

= −
∑

(c,d)∈T×T

g∗1(c)f̂
∗
2 (d)K(c,d)

= −K(G∗
1, F̂

∗
2 )

Therefore K(G∗
1, F̂

∗
2 ) = 0, contradicting (19), so v ≤ 0. In a similar manner we can

show that v ≥ 0. □

Having established that the game has a value, we know the players must have optimal

mixed strategies. The key contribution of this paper is that in fact the players have

optimal pure strategies.

LEMMA 4.5. (x2, y2) is an optimal pure strategy for Player II if and only if (−x2,−y2)

is an optimal pure strategy for Player I.

This is to say, if optimal pure strategies do exist then they must be symmetric about

the origin.
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Proof. Suppose b∗ = (x∗
2, y

∗
2) is an optimal pure strategy for Player II. Because

the value of the game is zero,

(21) K(a,b∗) ≥ 0,∀a.

If −b∗ is not an optimal pure strategy for Player I then there exists b◦ such that

K(−b∗,b◦) > 0.

By Lemmas 4.1 and 4.2,

K(−b◦,b∗) = K(b∗,−b◦)

= −K(−b∗,b◦)

< 0

but this contradicts (21), so it must be the case that −b∗ is an optimal pure strategy

for Player I. The converse of the lemma is shown in an analogous way. □

Recall from (18), that if Player I chooses a = (x1, y1) and Player II chooses b =

(x2, y2), assuming a ̸= b,

K(a,b) = (x1 + y1)P
(
(ξ, η) ∈ C1(a,b)

)
+ (x2 + y2)P

(
(ξ, η) ∈ C2(a,b)

)
= (x1 + y1)P

(
(ξ, η) ∈ C1(a,b)

)
+ (x2 + y2)[1−

(
(ξ, η) ∈ C1(a,b)

)
]

= (x2 + y2) + (x1 + y1 − x2 − y2)P
(
(ξ, η) ∈ C1(a,b)

)
.

LEMMA 4.6. If a pure optimal strategy pair a∗ = (x∗
1, y

∗
1),b

∗ = (x∗
2, y

∗
2) exists, then

x∗
2 ≥ 0, y∗2 ≥ 0 and x∗

1 ≤ 0, y∗1 ≤ 0.

In other words, optimal pure strategies for Players I and II must be in quadrants III

and I respectively.
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Proof. We know that if both players are playing optimally then the expected

payoff is zero. Suppose only one of Player II’s offers is negative3; WLOG let x∗
2 < 0.

By playing (−x∗
2,−y∗2), Player I is guaranteeing a zero expected payoff. Suppose

Player I instead switches to (x∗
2,−y∗2). If y

∗
2 = 0 then the final offers are identical and

the net award is x∗
2. Therefore let us assume y∗2 > 0.

K
(
(x∗

2,−y∗2), (x
∗
2, y

∗
2)
)
= (x∗

2 + y∗2) + (x∗
2 − y∗2 − x∗

2 − y∗2)P
(
(ξ, η) ∈ C1((x

∗
2,−y∗2), (x

∗
2, y

∗
2))
)

= x∗
2 + y∗2

(
1− 2P

(
(ξ, η) ∈ C1((x

∗
2,−y∗2), (x

∗
2, y

∗
2))
))

Since C1 = {(x, y) : y < 0}, P ((ξ, η) ∈ C1) = P (η < 0) = 1
2
. Therefore,

K
(
(x∗

2,−y∗2), (x
∗
2, y

∗
2)
)
= x∗

2 < 0.

This contradicts that (x∗
2, y

∗
2) is an optimal pure strategy for Player II. Thus x∗

2 ≥ 0.

Because the choice of component is arbitrary, y∗2 ≥ 0 as well. The argument is the

same to show that Player I’s component offers must be non-positive in order to play

optimally. □

1.2.2. Local Optimality of Pure Strategies. Having established some of the prop-

erties of the game in question, we now derive a pure strategy pair for the players and

show that it is locally optimal. Recall that

(22) K(a,b) = (x2 + y2) + (x1 + y1 − x2 − y2)P (Player I wins).

The event that “Player I wins” occurs precisely when the arbiter picks a random fair

settlement (ξ, η) and

(23) (x1 − ξ)2 + (y1 − η)2 < (x2 − ξ)2 + (y2 − η)2

3Player II cannot possibly be playing optimally if both x∗
2 < 0 and y∗2 < 0, for in this case Player I

may simply agree to the Player II’s final offer and happily accept a negative net settlement.
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which is equivalent to

(24) (x2 − x1)ξ + (y2 − y1)η <
x2
2 + y22 − x2

1 − y21
2

= w.

Letting Ω = (x2 − x1)ξ + (y2 − y1)η, we have Ω ∼ N (0, σ2
Ω) where

(25) σ2
Ω = (x2 − x1)

2σ2
x + 2(x2 − x1)(y2 − y1)ρσxσy + (y2 − y1)

2σ2
y.

Thud Ω/σΩ follows a standard normal distribution. Thus we may express the expected

payoff as

(26) K(a,b) = (x2 + y2) + (x1 + y1 − x2 − y2)Φ(z)

where Φ(z) is the distribution function of a standard normal random variable and

(27) z =
w

σΩ

=
x2
2 + y22 − x2

1 − y21

2
√
(x2 − x1)2σ2

x + 2(x2 − x1)(y2 − y1)ρσxσy + (y2 − y1)2σ2
y

.

THEOREM 4.2. If ρ > max
{
−σ2

x+3σ2
y

4σxσy
,−3σ2

x+σ2
y

4σxσy

}
then the pure strategies given by

(28) (x∗
i , y

∗
i ) =

(−1)i

√
2π(σ2

x + 2ρσxσy + σ2
y)

4
, (−1)i

√
2π(σ2

x + 2ρσxσy + σ2
y)

4


for players i = 1, 2 constitute a locally optimal strategy pair4.

4Namely, ∃ϵ > 0 such that for pure strategies a∗ and b∗,

inf
a∈Nϵ(a∗)

K(a,b∗) = sup
b∈Nϵ(b∗)

K(a∗,b) = K(a∗,b∗),

where Nϵ(·) is an ϵ−neighborhood.
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Proof. If the players have locally optimal pure strategies a∗ and b∗ then we

must have all four first derivatives zero, namely

∂K

∂x1

= Φ(z) + (x1 + y1 − x2 − y2)ϕ(z)

(
− x1

σΩ

+
(x2 − x1)σ

2
x + (y2 − y1)ρσxσy

σ2
Ω

z

)
= 0

(29)

∂K

∂y1
= Φ(z) + (x1 + y1 − x2 − y2)ϕ(z)

(
− y1
σΩ

+
(x2 − x1)ρσxσy + (y2 − y1)σ

2
y

σ2
Ω

z

)
= 0

(30)

∂K

∂x2

= 1− Φ(z) + (x1 + y1 − x2 − y2)ϕ(z)

(
x2

σΩ

− (x2 − x1)σ
2
x + (y2 − y1)ρσxσy

σ2
Ω

z

)
= 0

(31)

∂K

∂y2
= 1− Φ(z) + (x1 + y1 − x2 − y2)ϕ(z)

(
y2
σΩ

−
(x2 − x1)ρσxσy + (y2 − y1)σ

2
y

σ2
Ω

z

)
= 0

(32)

Since 0 < Φ(z∗) < 1, x∗
1 + y∗1 − x∗

2 − y∗2 ̸= 0. By adding (29) and (31) we have

(33) 0 = 1 +
x∗
2 − x∗

1

σ∗
Ω

(x∗
1 + y∗1 − x∗

2 − y∗2)ϕ(z
∗)

and by adding (30) and (32) we have

(34) 0 = 1 +
y∗2 − y∗1
σ∗
Ω

(x∗
1 + y∗1 − x∗

2 − y∗2)ϕ(z
∗).

From (33) and (34) we know that

(35) x∗
2 − x∗

1 = y∗2 − y∗1 = d∗ ̸= 0.

Note also that

(36) σ∗2
Ω = d∗2(α + β),

where α = σ2
x + ρσxσy and β = ρσxσy + σ2

y. Furthermore, we now have that

(37) z∗ =
d∗((x∗

2 + x∗
1) + (y∗2 + y∗1))

2σ∗
Ω

=
x∗
2 + x∗

1 + y∗2 + y∗1
2
√
α + β

sgn(d∗).
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We may now simplify the four equations derived from (29)-(32) as

0 = Φ(z∗) + 2ϕ(z∗)

(
sgn(d∗)x∗

1√
α + β

− α

α + β
z∗
)

(38)

0 = Φ(z∗) + 2ϕ(z∗)

(
sgn(d∗)y∗1√

α + β
− β

α + β
z∗
)

(39)

0 = 1− Φ(z∗)− 2ϕ(z∗)

(
sgn(d∗)x∗

2√
α + β

− α

α+ β
z∗
)

(40)

0 = 1− Φ(z∗)− 2ϕ(z∗)

(
sgn(d∗)y∗2√

α + β
− β

α + β
z∗
)

(41)

By taking (38) + (39)− (40)− (41) and using (37) we get

0 = −2 + 4Φ(z∗) + 2ϕ(z∗)

(
x∗
1 + y∗1 + x∗

2 + y∗2√
α + β

sgn(d∗)− 2
α + β

α + β
z∗
)

1

2
= Φ(z∗) + 2ϕ(z∗)(2z∗ − 2z∗)

= Φ(z∗)

Thus z∗ = 0, and by simplifying the four equations (38)-(41) we get that x∗
1 = y∗1 =

−x∗
2 = −y∗2. We simplify σ∗2

Ω = 4x∗2
1 (α+β) and noting that ϕ(0) = 1√

2π
, equation (38)

becomes

(42) 0 =
1

2
+ 2ϕ(0)

(
sgn(d∗)x∗

1√
α + β

)
,

or equivalently

(43) x∗
1 = −

√
2π(σ2

x + 2ρσxσy + σ2
y)

4
sgn(d∗).

We have two solutions to the first order equations, namely d∗ > 0 and d∗ < 0. Let us

choose the solution given by d∗ > 0. To show that b∗ is a local maximum for Player

II and a∗ is a local minimum for Player I we look at the second partial derivatives
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evaluated at (a∗,b∗). It is straightforward to verify5 that

∂2K

∂x2
1

∣∣∣∣
(a∗,b∗)

=
ϕ(0)√
α+ β

(
3− 2α

α+ β

)
.

This is positive if and only if α+ 3β > 0, or equivalently, when

(44) ρ > −
σ2
x + 3σ2

y

4σxσy

.

Similarly,

∂2K

∂y21

∣∣∣∣
(a∗,b∗)

=
ϕ(0)√
α + β

(
3− 2β

α + β

)
which is positive if and only if

(45) ρ > −
3σ2

x + σ2
y

4σxσy

.

Note that it is impossible for both (44) and (45) to be unsatisfied, as this would imply

that α < 0 and β < 0 and thus α + β < 0. It is likewise easily shown that

∂2K

∂y1∂x1

∣∣∣∣
(a∗,b∗)

= 0,

thus Kx1x1Ky1y1 −K2
x1y1

> 0 as long as

ρ > max

{
−
σ2
x + 3σ2

y

4σxσy

,−
3σ2

x + σ2
y

4σxσy

}
.

It can be similarly verified that b∗ is a local maximum for Player II when Player I

plays a∗, with the same condition on ρ. Thus we have a locally optimal pair of pure

strategies. □

It is important to highlight that if the issues are too negatively correlated, pure

optimal strategies need not exist. For example, suppose σx = 1, σy =
√
3 and ρ = −.9.

If optimal pure strategies do exist, they must be

a∗ = (−0.588627,−0.588627),b∗ = (0.588627, 0.588627).

5See SageMath code in the Appendix.
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However,

K(a′,b∗) = −.003085 < 0 = K(a∗,b∗),

where a′ = (−0.572278,−1.029105). Because Player I has a strict incentive to deviate

to a new pure strategy, a∗ is not optimal (and consequently, neither is b∗).

1.2.3. Global Optimality of Pure Strategies. We now proceed to show that the

pure strategies found in the preceding section are indeed globally optimal and thus

represent the unique optimal strategy pair. We must first establish a few lemmas

which will motivate the geometric interpretation of the model which follows.

Figure 1. If Player II fixes his strategy b∗ = (x∗
2, x

∗
2), we show that

for all pure strategies a ̸= (−x∗
2,−x∗

2), K(a,b∗) > 0. In Lemma 4.8
we show this is true in the gray shaded region. We consider cases of z:
z = 0, the points on the blue circle, in Proposition 4.9; z > 0, points
outside the circle, in Proposition 4.12; z < 0 (points within the circle)
in Proposition 4.13.

LEMMA 4.7. Suppose Player II chooses strategy b∗ = (x∗
2, x

∗
2). If Player I selects

pure strategy a = (x1, y1) then z(a,b∗) = 0 iff (x1, y1) lies on the circle of radius
√
2x∗

2 centered at the origin. Furthermore, x2
1+y21 < 2x∗2

2 iff z > 0 and x2
1+y21 > 2x∗2

2

iff z < 0.
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The proof is trivial.

LEMMA 4.8. If another pure strategy a = (x1, y1) ̸= −b∗ = (−x∗
2,−x∗

2) exists such

that K(a,b∗) ≤ 0, then x1 + y1 < 0 and either

x2
1 + y21 < 2x∗2

2 or x1 + y1 ≤ −2x∗
2.

Proof. Suppose x1 + y1 ≥ 0. Because the net offer of Player II, 2x∗
2 > 0, and

Player II has a positive probability p of being chosen by the arbiter, the expected

payoff

K(a,b∗) = p(2x∗
2) + (1− p)(x1 + y1) > 0.

This contradicts our assumption.

Suppose x2
1 + y21 ≥ 2x∗2

2 . Then z ≤ 0 by Lemma 4.7 and Φ(z) ≤ 1
2
. Suppose also that

x1 + y1 > −2x∗
2. Then

x1 + y1 − 2x∗
2 = −4x∗

2 + ϵ

for some 0 < ϵ < 2x∗
2. But then

K(a,b∗) = 2x∗
2 + (x1 + y1 − 2x∗

2)Φ(z)

= 2x∗
2 − (4x∗

2 − ϵ)Φ(z)

≥ 2x∗
2 − (4x∗

2 − ϵ)
1

2

=
ϵ

2

> 0

and this contradicts our assumption. □

We now proceed to show that if Player II chooses pure strategy b∗ = (x∗
2, x

∗
2) and I

deviates from a∗ = (−x∗
2,−x∗

2) to any other pure strategy (x1, y1) then it will simply
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result in a positive expected payoff. For the remainder of the paper we will assume

ρ ≥ 06 and without loss of generality σx ≤ σy.

PROPOSITION 4.9. For all pure strategies a = (x1, x2) ̸= (−x∗
2,−x∗

2) such that

x2
1 + y21 = 2x∗2

2 , K(a,b∗) > 0.

Proof. If x2
1 + y21 = 2x∗2

2 , z(a,b∗) = 0, so

K(a,b∗) = 2x∗
2 + (x1 + y1 − 2x∗

2)Φ(0)

= 2x∗
2 + (x1 + y1 − 2x∗

2)
1

2

= x∗
2 +

x1 + y1
2

.

Geometrically we can see that x1 + y1 is minimized on the circle x2
1 + y21 = 2x∗2

2 at

(−x∗
2,−x∗

2). □

Against Player II’s strategy b∗ = (x∗
2, x

∗
2), any pure strategy a = (x1, y1) may be

represented in terms of r and θ as (x∗
2+r cos θ, x∗

2+r sin θ). This will greatly facilitate

the remaining proofs7. In this representation, with t(θ) = −(cos θ + sin θ), we can

rewrite

(46) K(a,b∗) = 2x∗
2 + r(cos θ + sin θ)Φ(z) = 2x∗

2 − rt(θ)Φ(z)

and

(47) z(r, θ) =
2x∗2

2 − (x∗
2 + r cos θ)2 − (x∗

2 + r sin θ)2

2r
√

σ2
x cos

2 θ + 2ρσxσy cos θ sin θ + σ2
y sin

2 θ
=

2x∗
2t(θ)− r

2
√

σ2
θ

The following two lemmas are needed for Proposition 4.12. See the Appendix for

proofs.

6It is the author’s conjecture that global optimality of pure strategies will hold with a weaker
condition on ρ, namely that of Theorem 4.2.
7For convenience we will define t(θ) := −(cos θ + sin θ) and σ2

θ := σ2
x cos

2 θ + 2ρσxσy cos θ sin θ +

σ2
y sin

2 θ. Note that t(θ) = −
√
2 sin(θ + π

4 ).
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Figure 2. This sketch shows the curves Φ and f defined below for a
fixed θ. To show that a∗ and b∗ are a globally optimal pure strategy
pair, we show that Φ and f intersect only at r0 when θ = 5π

4
(Proposi-

tion 4.9) and everywhere else f > Φ. To prove this, we show that for
r > r0, f > s > Φ, where s is a scaled logistic curve (Proposition 4.12),
while for r < r0, f > y, a line tangent to Φ (Proposition 4.13).

LEMMA 4.10. For z < 0, the scaled logistic function

s(z) :=
1

1 + exp
(
−
√

8
π
z
) > Φ(z).

Proof. Consider s(z)− Φ(z) and find the minimum:

s′(z)− ϕ(z) = s(z)(1− s(z))

√
8

π
− 1√

2π
e−z2/2 = 0

⇔ 4
e−

√
8
π
z

(1 + e−
√

8
π
z)2

− e−z2/2 = 0

⇔ 4
e−

√
8
π
z

1 + 2e−
√

8
π
z + e−2

√
8
π
z
− e−z2/2 = 0

⇔ 4
e−

√
8
π
z

1 + 2e−
√

8
π
z + e−2

√
8
π
z
= e−z2/2
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⇔ 1 + 2e−
√

8
π
z + e−2

√
8
π
z

e−
√

8
π
z

= 4ez
2/2

⇔ e
√

8
π
z + 2 + e−

√
8
π
z = 4ez

2/2

⇔ 1 + cosh

(√
8

π
z

)
= 2ez

2/2

⇔ 2 cosh2

(√
2

π
z

)
= 2ez

2/2

⇔ cosh2

(√
2

π
z

)
= ez

2/2

⇔ cosh

(√
2

π
z

)
= ez

2/4

The three roots are at z = 0 and z ≈ ±1.7318300869742718735. It is clear to see that

s(0) = Φ(0). Since s(−1.7318300869742718735) − Φ(−1.7318300869742718735) ≈

.017671, this point represents a local maximum, i.e. here the two curves are furthest

apart.

Next observe that

lim
z→−∞

s(z)

Φ(z)
= lim

z→−∞

cosh
(√

2
π
z
)

ez2/4
= lim

z→−∞

e
√

2/πz + e−
√

2/πz

ez2/4

= lim
z→−∞

e
√

2/πz−z2/4 + lim
z→−∞

e−
√

2/πz−z2/4 = ∞+ 0.

It cannot be the case that s(z)−Φ(z) < 0 at any point z < 0, as this would imply the

existence of a local minimum of s(z) − Φ(z), of which we know there is none. Thus

s(z) > Φ(z) for all z < 0. □
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LEMMA 4.11. The general exponential curve y = βeαx and line y = mx have:

1 intersection at x∗ < 0 if m < 0

No intersection if 0 ≤ m < αβe

1 intersection at x∗ = 1
a

if m = αβe

2 intersections if m > αβe

Proof. First let w = αx

y = βew y =
m

α
w

Now let let z = y
β

z = ew z =
m

αβ
w = γw

If γ = e then the two curves have a single intersection, and are tangent, at w = 1. If

0 ≤ γ < e then they cannot intersect. If γ > e they will intersect at two points. □

PROPOSITION 4.12. For all pure strategies a = (x1, x2) such that x2
1 + y21 > 2x∗2

2 ,

K(a,b∗) > 0.

Proof. The claim may be equivalently expressed as

(48) K(a,b∗) = 2x∗
2 − rt(θ)Φ(z) > 0 ⇔ Φ(z) <

2x∗
2

rt(θ)
= f(r, θ).

From Lemma 4.10, for z < 0, we note that a scaled logistic function

s(z) :=
1

1 + exp
(
−
√

8
π
z
) > Φ(z).

We will indeed prove a stronger claim, namely that for all points a in this region8,

s(z) < f(r, θ)

8Strictly speaking, for θ ∈ (π, 5π
4 ) (Case 4) the proof proceeds in a different way.
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⇔ 2x∗
2

(
1

s(z(r + r̂, θ))
− 1

)
> 2x∗

2

(
1

f(r + r̂, θ)
− 1

)
,

where r̂ =
2x∗

2

t(θ)
. Let us define the left and right side functions as ŝ(r, θ) and f̂(r, θ)

respectively. These may be explicitly written as

ŝ(r, θ) =

√
π(α+ β)

2
exp

(
−
√

8

π

2x∗
2t(θ)− r − 2x∗

2

t(θ)

2σθ

)
(49)

=

√
π(α+ β)

2
exp

((
1

t(θ)
− t(θ)

) √
α + β

σθ

)
exp

(√
2

πσ2
θ

r

)
,(50)

and

f̂(r, θ) = 2x∗
2

(
(r +

2x∗
2

t(θ)
)t(θ)

2x∗
2

− 1

)
= t(θ)r.(51)

We have simply translated and scaled s and f so that, for fixed θ, ŝ(r, θ) = bear and

f̂(r, θ) = mr. By Lemma 4.11, we need show that ∀θ ∈ [3π
4
, 7π

4
], t(θ) ≤ A(θ)e and

attains equality only at θ = 5π
4
, where

(52) A(θ) := a(θ)b(θ) =

√
α + β

σθ

exp

((
1

t(θ)
− t(θ)

) √
α + β

σθ

)
.

Case 1: θ ∈ [3π
4
, π] ∪ [3π

2
, 7π

4
]

In this case,

A(θ)e ≥ e > 1 ≥ t(θ).

Case 2: θ = 5π
4

A

(
5π

4

)
e =

√
α + β√

1
2
(α + β)

exp

 √
2
2
−
√
2√

1
2
(α + β)

√
α + β

 e =
√
2e−1+1 =

√
2 = t

(
5π

4

)
.

Case 3: θ ∈ (5π
4
, 3π

2
)

On this interval it is clear that t(θ) is decreasing. We will show that on this interval A
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is bounded below by an increasing function A and that A(5π
4
) = A(5π

4
). First consider

the partial derivatives with respect to ρ and σx:

dA

dσx

=
1

2
exp

((
1

t(θ)
− t(θ)

) √
α + β

σθ

)(
σθ√
α + β

+
1

t(θ)
− t(θ)

)(
d

dσx

α + β

σ2
θ

)
d

dσx

α + β

σ2
θ

= −
2σy(cos θ − sin θ)

(
(ρσ2

x + σxσy) cos θ + (ρσ2
y + σxσy) sin θ

)
σ4
θ

dA

dρ
=

1

2
exp

((
1

t(θ)
− t(θ)

) √
α + β

σθ

)(
σθ√
α+ β

+
1

t(θ)
− t(θ)

)(
d

dρ

α + β

σ2
θ

)

d

dρ

α + β

σ2
θ

=
2σxσy(cos θ − sin θ)(σ2

x cos θ − σ2
y sin θ)

σ4
θ

For θ ∈ (5π
4
, 3π

2
):

(53)
d

dρ

α+ β

σ2
θ

> 0,
d

dσx

α + β

σ2
θ

> 0,

and

(54) G(θ) :
σθ√
α+ β

+
1

t(θ)
− t(θ) > 0.

Inequalities of (53) are self-evident. To justify (54), note that (53) implies that

(55)
d

dρ

σ2
θ

α+ β
< 0,

d

dσx

σ2
θ

α + β
< 0.

Thus, for any fixed θ ∈ (5π
4
, 3π

2
),

σ2
θ

α + β
≥ σ2

θ

α + β ρ=1,σx=σy

=
t(θ)2

4
.

Because 1 < t(θ) <
√
2,

G(θ) =
t(θ)

2
− 1

t(θ)
+ t(θ) =

2− t(θ)2

2t(θ)
> 0.

Since A is an increasing function of ρ and σx,
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A(θ) ≥ A(θ) := A(θ)ρ=0,σx=0 = − 1

sin θ
exp

(
−2 cos θ

sin θ + cos θ

)
.

The derivative

dA(θ)

dθ
= exp

(
−2 cos θ

sin θ + cos θ

)
cos θ − 2 sin3 θ

sin2 θt(θ)2

is positive for any θ ∈ (5π
4
, 3π

2
). Since A(5π

4
) = A

(
5π
4

)
and A(θ) is increasing, we are

done.

Case 4: θ ∈ (π, 5π
4
)

Recall from (48) that K > 0 is equivalent to

Φ(z) < f(r, θ) =
2x∗

2

rt(θ)
.

Let us fix r∗ > 2
√
2x∗

2. The proof proceeds via three claims:

Claim 1: f(r∗, θ) is a decreasing function on this interval.

This claim follows immediately after noting that t(θ) is an increasing function on

(π, 5π
4
).

Claim 2: Φ(z(r∗, θ)) is an increasing function for θ ∈ (π, 5π
4
).

Recall that z =
2x∗

2t(θ)−r

2
√

σ2
θ

. For θ ∈ (π, 5π
4
), r0 = 2x∗

2t(θ) is increasing and attains its

maximum value of 2
√
2x∗

2 when θ = 5π
4
. Since r∗ > 2

√
2x∗

2 ≥ r0, z(r
∗, θ) < 0. Because

d

dθ
σ2
θ = 2ρσxσy(cos

2 θ − sin2 θ) + 2(σ2
y − σ2

x) cos θ sin θ > 0,

σ2
θ is increasing on (π, 5π

4
).

Consider

|z| = r∗ − 2x∗
2t(θ)

2
√
σ2
θ

.

For θ ∈ (π, 5π
4
), t(θ) increases so the numerator is decreasing. Meanwhile the denom-

inator is increasing. Thus Φ(z(r∗, θ)) is an increasing function in (π, 5π
4
).

Claim 3: Φ(z(r∗, 5π
4
)) < f(r∗, 5π

4
).

If we fix θ = 5π
4
, then the players are in the one-dimensional FOA game, and we

already know that a∗ = −b∗ (i.e. r = 2
√
2x∗

2) is the globally optimal strategy for
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Player I to play against b∗. Since we have fixed r∗ > 2
√
2x∗

2, Player I is not playing

optimally, so K > 0 which is equivalent to the claim.

From these three claims it follows that K > 0 for r > 2
√
2x∗

2 and θ ∈ (π, 5π
4
). □

Now that we have shown that against (x∗
2, x

∗
2) all pure strategies (x, y) for Player I

outside the circle x2 + y2 = 2x∗2
2 will give a positive expected payoff, we consider

strategies within the circle.

PROPOSITION 4.13. For all pure strategies a = (x1, x2) such that x2
1 + y21 < 2x∗2

2 ,

K(a,b∗) > 0.

The proof relies on the concavity of the normal distribution function for z > 0.

Proof. From Lemma 4.8, we need only show that K(a,b∗) > 0 for all a in the

semi-circle described by 
x+ y < 0,

x2 + y2 < 2x∗2
2 .

In terms of θ, we are restricting our attention to θ ∈ (π, 3π
2
). For the angles θ in

question,

(56) t(θ) > 1.

Recall from (46) that K(a,b∗) > 0 is equivalent to

Φ(z) < f(r, θ) =
2x∗

2

rt(θ)
.

First we fix θ̃ ∈ (π, 3π
2
). Let r0 = 2x∗

2t(θ̃). Note by definition that z(r0, θ̃) = 0. Since

z = r0−r

2
√

σ2
θ

, it is straightforward to show that

d

dr
Φ(z)

∣∣∣∣
z=0

= ϕ(z)
dz

dr

∣∣∣∣
z=0

=
1√
2π

−1

2
√

σ2
θ̃

=
−1

2
√

2πσ2
θ̃

.
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Define y as the line tangent to Φ at (r0,
1
2
), specifically,

y(r, θ̃) = − r − r0

2
√
2πσ2

θ̃

+
1

2
.

Note Φ is a concave function for r < r0. Therefore, Φ(z(r, θ̃)) ≤ y(r, θ̃). To demon-

strate that f > Φ for all r < r0, it suffices to show that f > y for all r. Since f and y

are both continuous functions and limr→0+ f(r, θ̃) = ∞ ≫ y(0, θ̃), it suffices to show

that f ̸= y for any r. If the two curves do intersect, then there is at least one solution

to the equation √
2π(α + β)

2rt(θ̃)
= − 1

2
√

2πσ2
θ̃

r +
t(θ̃)

√
α + β

4
√
σ2
θ̃

+
1

2
,

or equivalently

0 =
1

2
√

2πσ2
θ̃

r2 −

t(θ̃)
√
α + β

4
√

σ2
θ̃

+
1

2

 r +

√
2π(α + β)

2t(θ̃)

= r2 −

(
t(θ̃)

√
2π(α + β)

2
+
√

2πσ2
θ̃

)
r +

2π
√

(α + β)σ2
θ̃

t(θ̃)
.

We have a quadratic in r. Let the vertex be

r̂ =
t(θ̃)

√
2π(α + β)

4
+

√
2πσ2

θ̃

2

and the discriminant, ∆, for the quadratic is

∆ =

(
t(θ̃)

√
2π(α + β)

2
+
√
2πσ2

θ̃

)2

−
8π
√
(α + β)σ2

θ̃

t(θ̃)
.

If ∆ < 0 then we are done. Let us assume that ∆ ≥ 0. If f(r∗, θ̃) = y(r∗, θ̃), it must

that r∗ < r0; for r ≥ r0, f(r, θ̃) > Φ(z(r∗, θ̃)) > y(r∗, θ̃). This gives us a condition,
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namely r̂ +
√
∆
2

< r0.

r̂ +

√
∆

2
< r0

1√
2π

(
r̂ +

√
∆

2

)
<

r0√
2π

t(θ̃)
√
α + β

4
+

√
σ2
θ̃

2
+

√(
t(θ̃)

√
α+β
2

+
√
σ2
θ̃

)2
− 2

√
(α+β)σ2

θ̃

t(θ̃)

2
<

t(θ̃)
√
α + β

2

√
σ2
θ̃
+

√√√√√(t(θ̃)
√
α + β

2
+
√
σ2
θ̃

)2

−
2
√
(α + β)σ2

θ̃

t(θ̃)
<

t(θ̃)
√
α + β

2√√√√√(t(θ̃)
√
α + β

2
+
√
σ2
θ̃

)2

−
2
√
(α + β)σ2

θ̃

t(θ̃)
<

t(θ)
√
α + β

2
−
√

σ2
θ̃

(
t(θ̃)

√
α + β

2
+
√
σ2
θ̃

)2

−
2
√
(α + β)σ2

θ̃

t(θ̃)
<

(
t(θ̃)

√
α + β

2
−
√
σ2
θ̃

)2

(
t(θ̃)

√
α + β

2
+
√
σ2
θ̃

)2

−

(
t(θ̃)

√
α + β

2
−
√

σ2
θ̃

)2

<
2
√

(α + β)σ2
θ̃

t(θ̃)

2t(θ̃)
√

(α + β)σ2
θ̃
<

2
√

(α + β)σ2
θ

t(θ)

t(θ̃) <
1

t(θ̃)

in other words, t(θ̃) < 1. But recall from (56) that t(θ̃) > 1, which is a contradiction.

□

The following is the main result.

THEOREM 4.3. If ρ ≥ 0, then a∗ = (−x∗
2,−x∗

2),b
∗ = (x∗

2, x
∗
2) is the unique globally

optimal pure strategy pair.

Proof. This follows from Propositions 4.9, 4.12 and 4.13. Without any loss of

generality, assume σx ≤ σy. If Player II plays pure strategy b∗ then for any pure

strategy a = (x1, y1), K(a,b∗) ≥ 0, and equality is only achieved when a = a∗.
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Similarly, if Player I plays a∗, K(a∗,b) ≤ 0 and equality is only achieved when

b = b∗. □

1.2.4. Variability of Issue-by-Issue and Whole Package Outcomes. Having shown

that under an L2 distance criterion there is a unique pure optimal strategy pair, we

consider the question of whether the issue-by-issue or whole-package variant is more

in line with the aims of FOA. Since FOA makes arbitration a costly alternative by

its inherent uncertainty, we may compare the uncertainty (i.e. variance) between

optimal strategies under the two mechanisms. It may come as no surprise that the

arbitrated outcome in WPFOA has a higher variance.

PROPOSITION 4.14. The expected payoff is zero under both Issue-by-Issue and

Whole-Package variants. If both player play optimally then the variances of the awards

are π
2
(σ2

x + σ2
y) and

π
2
(σ2

x + 2ρσxσy + σ2
y) respectively.

Proof. Under IBIFOA, since the components are awarded independently. Let

Kx and Ky be the awards for the first and second issue in dispute respectively. The

variance is

V ar(K) = V ar(Kx +Ky)

= E(K2
x) + E(K2

y )

=
1

2

(
2
2πσ2

x

4

)
+

1

2

(
2
2πσ2

y

4

)
=

π

2
(σ2

x + σ2
y).
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Under WPFOA the variance is

V ar(K) = E(K2)

=
1

2
(2x∗

1)
2 +

1

2
(2x∗

2)
2

= 4x∗2
2

=
π

2
(σ2

x + 2ρσxσy + σ2
y).

□

Thus we argue that quantitative issues should be arbitrated by package rather than

independently to provide a stronger motivation to the parties to reach “security in

agreement” (Stevens, 1966).

1.3. L1 Distance. The L1 decision criterion sums the component-wise absolute

difference for each player. The judge rules in favor of whichever party has the lowest

total absolute difference from the ‘fair’ settlement. When Players play strategies

a = (x1, y1),b = (x2, y2), the judge’s ruling would be

K(a,b) =


x1 + y1 if |x1 − ξ|+ |y1 − η| < |x2 − ξ|+ |y2 − η|

x2 + y2 if |x1 − ξ|+ |y1 − η| > |x2 − ξ|+ |y2 − η|

This distance metric is known as the Manhattan distance, or taxicab distance,

since to a taxi driver the distance between two points in a city is the sum of the

east-west distance and the north-south distance. This model will be referred to as

2NL1 (Bivariate Normal L1).

The Manhattan distance is somewhat counter-intuitive, so it is worth discussing the

geometry involved. Consider two points in R2, a = (x1, y1) and b(x2, y2). Let

C1(a,b) = {(x, y) : |x1 − x|+ |y1 − y| < |x2 − x|+ |y2 − y|}



1. NORMAL DISTRIBUTION 39

Denote this set C1 where there is no ambiguity. Also, let C2 be defined similarly with

the inequality in the opposite direction.

LEMMA 4.15. Suppose a = (x1, y1) ̸= b = (x2, y2) with x1 ≤ x2 and y1 ≤ y2. Let

d = (x2 + y2)− (x1 + y1). If, y2 − y1 > x2 − x1,

C1(a,b) =


(x, y) :


y < y1 +

d
2

x < x1

y < y1 + x1 +
d
2
− x x1 ≤ x < x2

y < y2 − d
2

x2 ≤ x


Proof. This proof will consider various cases to show that the two sets are equal.

Figure 3. A graphical sketch of the proof of Lemma 4.15

Case 1: Let x < x1 and y < y1 +
d
2
.

Note that y < y2. This is because

y < y1 +
x2 + y2 − x1 − y1

2

= y2 +
(x2 − x1)− (y2 − y1)

2

< y2
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Let us assume that (x, y) ̸∈ C1. Thus

(57) |x1 − x|+ |y1 − y| ≥ |x2 − x|+ |y2 − y|

Case 1a: y ≥ y1.

In this case, Equation (57) becomes

x1 − x+ y − y1 ≥ x2 − x+ y2 − y

2y ≥ x2 + y2 − x1 + y1

y ≥ y1 +
x2 − x1 + y2 − y1

2

= y1 +
d

2

Which is a contradiction.

Case 1b: y < y1.

In this case, Equation (57) becomes

x1 − x+ y1 − y ≥ x2 − x+ y2 − y

x1 + y1 ≥ x2 + y2

But because x1 ≤ x2 and y1 ≤ y2 by assumption, this implies that x1 + y1 = x2 + y2,

and y2 − y1 = x2 − x1. This contradicts our assumption that x2 − x1 < y2 − y1.

Case 2: Let x1 ≤ x < x2 and y < y1 + x1 +
d
2
− x.

Note that in this case y < y2, as

y < y1 + x1 +
x2 + y2 − x1 − y1

2
− x

< y1 +
x2 + y2 − x1 − y1

2

= y2 +
x2 − y2 − x1 + y1

2

< y2



1. NORMAL DISTRIBUTION 41

Let us assume that (x, y) ̸∈ C1. Thus

(58) |x1 − x|+ |y1 − y| ≥ |x2 − x|+ |y2 − y|

Case 2a: y1 < y.

In this case, Equation (58) becomes

x− x1 + y − y1 ≥ x2 − x+ y2 − y

2y ≥ 2y1 + 2x1 + (x2 + y2 − x2 − x1)− 2x

y ≥ y1 + x1 +
d

2
− x,

which is a contradiction.

Case 2b: y1 ≥ y.

In this case, Equation (58) becomes

x− x1 + y1 − y ≥ x2 − x+ y2 − y

x2 − x1 + 2(x− x2) ≥ y2 − y1

Because x < x2, we have x2−x1+2(x−x2) < x2−x1. Consequently x2−x1 > y2−y1,

which is contradicts our assumption.

Case 3: x > x2 and y < y2 − d
2
.

Let us assume that (x, y) ̸∈ C1. Thus

(59) |x1 − x|+ |y1 − y| ≥ |x2 − x|+ |y2 − y|

Case 3a: y ≥ y1.
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In this case, Equation (59) becomes

x− x1 + y − y1 ≥ x− x2 + y2 − y

2y ≥ 2y2 + x1 − x2 + y1 − y2

y ≥ y2 −
d

2

Which is a contradiction of our assumption.

Case 3b: y < y1.

In this case, Equation (59) becomes

x− x1 + y1 − y ≥ x− x2 + y2 − y

x2 − x1 ≥ y2 − y1,

which contradicts an assumption of this Lemma. Now by symmetry we have that

(x, y) ∈ C2 in any of the following cases:
y > y1 +

d
2

x < x1

y > y1 + x1 +
d
2
− x x1 ≤ x < x2

y > y2 − d
2

x2 ≤ x

It remains to show that (x, y) ̸∈ C1 in the cases of equality, that is when
y = y1 +

d
2

x < x1

y = y1 + x2 +
d
2
− x x1 ≤ x < x2

y = y2 − d
2

x2 ≤ x

Case 1: x < x1, y = y1 +
d
2
.
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We show equality directly:

|x1 − x|+ |y1 − y| = x1 − x+

∣∣∣∣−d

2

∣∣∣∣
= x1 − x+

x2 − x1 + y2 − y1
2

= x2 − x+ y2 +
−x2 + x1 − y2 − y1

2

= |x2 − x|+ y2 − y1 −
x2 − x1 + y2 − y1

2

= |x2 − x|+ |y2 − y|

Case 2: x1 ≤ x < x2, y = y1 + x1 +
d
2
− x.

In this case, note that y1 < y < y2. First we justify that y < y2. As x ≥ x1

y = y1 + x1 +
x2 + y2 − x1 − y1

2
− x

≤ y1 +
x2 + y2 − x1 − y1

2

= y2 +
x2 − y2 − x1 + y1

2

< y2

And since x < x2,

y = y1 + x1 +
x2 + y2 − x1 − y1

2
− x

= y1 + x1 +
−x2 + y2 − x1 − y1

2
− x+ x2

> y1 +
−x2 + y2 + x1 − y1

2

> y1
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Now we can show equality directly:

|x1 − x|+ |y1 − y| = x− x1 + y − y1

= x− x1 +

(
y1 + x1 +

d

2
− x

)
− y1

= x− x1 +

(
y2 + x2 −

d

2
− x

)
− y1

= x2 − x+ y2 −
(
y1 +

d

2
− x

)
= |x2 − x|+ |y2 − y|

Case 3: x2 ≤ x, y = y2 − d
2
.

|x2 − x|+ |y2 − y| = x− x2 +

∣∣∣∣y2 − y2 +
d

2

∣∣∣∣
= x− x2 +

x2 + y2 − x1 − y1
2

= x− x1 + y2 − y1 +
−x2 + x1 − y2 + y1

2

= x− x1 + y2 −
d

2
− y1

= |x1 − x|+ |y1 − y|

By symmetry, this set of points cannot belong to C2 either. □

LEMMA 4.16. Suppose a = (x1, y1) ̸= b = (x2, y2) with x1 ≤ x2 and y1 ≤ y2. If

y2 − y1 = x2 − x1,

C1(a,b) =

(x, y) :


y < y2 x < x1

y < y2 − (x− x1) x1 ≤ x < x2



Proof. Case 1: x < x1 and y < y2.
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Figure 4. A graphical sketch of the proof of Lemma 4.16

Suppose (x, y) ̸∈ C1. Then

(60) |x1 − x|+ |y1 − y| ≥ |x2 − x|+ |y2 − y|.

Case 1a: y > y1.

Equation (60) becomes

x1 − x+ y − y1 ≥ x2 − x+ y2 − y

2y ≥ x2 − x1 + y2 + y1

2y ≥ y2 − y1 + y2 + y1

y ≥ y2.

Case 1b: y ≤ y1.

Equation (60) becomes

x1 − x+ y1 − y ≥ x2 − x+ y2 − y

x1 + y1 ≥ x2 + y2
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But since x1 ≤ x2 and y1 ≤ y2, this implies that x1 + y1 = x2 + y2. Thus x2 − x1 =

−(y2 − y1). With y2 − y1 = x2 − x1, We have that x2 = y2 and x1 = y1, another

contradiction.

Case 2: x1 ≤ x < x2 and y < y2 − (x− x1).

Note that in this case y < y2. Suppose (x, y) ̸∈ C1. Then

(61) |x1 − x|+ |y1 − y| ≥ |x2 − x|+ |y2 − y|

Case 2a: y > y1.

Equation (61) becomes

x− x1 + y − y1 ≥ x2 − x+ y2 − y

2x+ 2y ≥ x2 + x1 + y2 + y1

2(x+ y) ≥ 2(x1 + y2)

y ≥ y2 − (x− x1)

giving us a contradiction.

Case 2b: y ≤ y1.

Equation (61) becomes

x− x1 + y1 − y ≥ x2 − x+ y2 − y

2x ≥ x2 + x1 + y2 − y1

2x ≥ x2 + x1 + (x2 − x1)

x ≥ x2
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giving another contradiction.

If x1 ≤ x < x2 and y = y2 − (x− x1), (x2, y2) and (x1, y1) are equidistant from (x, y).

We can see this directly, noting that y1 ≤ y ≤ y2:

|x1 − x|+ |y1 − y| = x− x1 + y − y1

= x− x1 + y2 − (x− x1) + (x2 − x1 − y2)

= x2 − x+ y2 − (y2 − (x− x1))

= |x2 − x|+ |y2 − y|

To complete the proof, we show that if x ≤ x1 and y ≥ y2, then (x1, y1) and

(x2, y2) are equidistant from (x, y). By symmetry, this will imply the same for when

x ≥ x2, y ≤ y1. We show equidistance directly:

|x1 − x|+ |y1 − y| = x1 − x+ y − y1

= x2 − x+ y − y2

= |x2 − x|+ |y2 − y|

□

Hence we can picture the regions C1 and C2

LEMMA 4.17. In 2NL1, if optimal pure strategies exist, they must be points along

the line y = x.

The idea of the proof is that if either player is playing a pure strategy not along the

line y = x, the other player can always find a pure strategy on this line which gives

a nonzero payoff (in his favor). Thus neither player has any pure optimal strategies

off this line.
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Figure 5. L1 Distance: The region in blue is the set C1, points closer
to a than to b under L1 distance. A “circle” is shown around each
point

Proof. If optimal pure strategies exist, then the game has a value and by sym-

metry the value must be zero. Suppose player II, maximizer, is playing b∗ = (x∗
2, y

∗
2)

where x∗
2 ̸= y∗2, and suppose this is an optimal pure strategy. WLOG, assume y∗2 > x∗

2.

By responding by choosing strategy −b∗ = (−x∗
2,−y∗2), Player I guarantees a zero

expected payoff. Let ā = (x̄, ȳ) = (−x∗
2+y∗2
2

,−x∗
2+y∗2
2

). Let C∗
1 := C1(−b∗,b∗), the set

of points closer to (−x∗
2,−y∗2) than to (x∗

2, y
∗
2) under the L1 metric. Namely,

C∗
1 = {(x, y) : | − x∗

2 − x|+ | − y∗2 − y| < |x∗
2 − x|+ |y∗2 − y|}.

Define C̄1 := C1(ā,b
∗), the set of points closer to (x̄, ȳ) than to (x∗

2, y
∗
2), namely

C̄1 = {(x, y) : |x̄− x|+ |ȳ − y| < |x∗
2 − x|+ |y∗2 − y|}

Claim: C∗
1 ⊂ C̄1.

By Lemma 4.15, letting d = x∗
2 − (−x∗

2) + y∗2 − (−y∗2) = 2x∗
2 + 2y∗2, we have

C∗
1 =


(x, y) :


y < −y∗2 + y∗2 + x∗

2 = x∗
2 x < −x∗

2

y < −y∗2 − x∗
2 + x∗

2 + y∗2 − x = −x −x∗ ≤ x < x∗
2

y <2 y
∗ − x∗

2 − y∗2 = −x∗
2 x∗

2 ≤ x


.
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Let d̄ = x∗
2 − x̄ + y∗2 − ȳ = x∗ + y∗2 − 2

−x∗
2−y∗2
2

= 2x∗
2 + 2y∗2. Because y∗2 > x∗

2,

y∗2 − ȳ > x∗
2 − x̄. Thus by Lemma 4.15,

C̄1 =


(x, y) :


y < ȳ + y∗2 + x∗

2 =
y∗2+x∗

2

2
x < −x∗

2

y < ȳ + x̄+ x∗
2 + y∗2 − x = −x −x∗

2 ≤ x < x∗
2

y < y∗ − x∗
2 − y∗2 = −x∗

2 x∗
2 ≤ x


.

Because y∗2 > x∗
2, C

∗
1 ⊂ C̄1 and consequently P ((ξ, η) ∈ C̄1) > P ((ξ, η) ∈ C∗

1).

As −x∗
2 − y∗2 = x̄ + ȳ, K(ā,b∗) < K(−b∗,b∗) = v, so (x∗, y∗) is not an optimal

strategy for Player II. The argument is the same for Player I. □

THEOREM 4.4. In 2NL1, if pure optimal strategies exist for players i = 1, 2 then

they are given by

(x∗
i , y

∗
i ) =

(−1)i

√
2π(σ2

x + 2ρσxσy + σ2
y)

4
, (−1)i

√
2π(σ2

x + 2ρσxσy + σ2
y)

4

 .

Proof. Since all optimal pure strategy points must be on the line y = x for both

players, we may transform the distribution by rotating π
4
clockwise so that solutions

will be on the x-axis. The rotation matrix is

R =

 cos(−π/4) − sin(−π/4)

sin(−π/4) cos(−π/4)

 =

√
2

2

 1 1

−1 1

 .

And the transformed covariance matrix is

Σ̄ = RΣRT =
1

2

 1 1

−1 1

 σ2
x ρσxσy

ρσxσy σ2
y

 1 −1

1 1


=

1

2

 σ2
x + ρσxσy σ2

y + ρσxσy

−σ2
x + ρσxσy σ2

y − ρσxσy

 1 −1

1 1


=

1

2

 σ2
x + 2ρσxσy + σ2

y σ2
y − σ2

x

σ2
y − σ2

x σ2
x − 2ρσxσy + σ2

y

 .
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The marginal distribution along the x-axis has variance σ̄2
x = 1

2

(
σ2
x + 2ρσyσy + σ2

y

)
.

We now look at solving a modification of the univariate case. For any strategy x of

Player II (a strategy along the x-axis with the rotated distribution), the total of his

component demands in the original case would be
√
2
2
(x+ x) =

√
2x. This, however,

is true for Player I; we can think of this as simply a scaling of the payoffs so this will

not change the solution. Thus, we may safely disregard this point.

The univariate solution point for Player i is(
(−1)i

√
2πσ̄2

x

2
, 0

)
.

Rotated back to the original axes, the solution points are

(−1)i
√
2πσ̄2

x

2

(√
2

2
,

√
2

2

)
=

(
(−1)i

√
4πσ̄2

x

4
, (−1)i

√
4πσ̄2

x

4

)
.

□

1.4. L Infinity Distance. Now suppose the judge is offended by the single

largest absolute deviation (componentwise) from what he considers fair. For example,

the maximizer demands 50 units more than what the judge considers fair on every

issue, while the minimizer’s offer is precisely fair on all but one issue, and on that he

offers 51 units less than the fair amount. In this case the judge will be so offended

by the single deviation that he will side with the maximizer. This decision criterion

is achieved by the L∞ distance. We will call this game variant 2NL∞ (Bivariate

Normal, L∞ distance). The L∞ distance between two points (x1, y1), (x2, y2) is

DL∞ ((x1, y1), (x2, y2)) = max{|x1 − x2|, |y1 − y2|}.

Under and L∞ distance criterion, the judge makes a ruling in favor of whichever player

minimizes the maximum absolute componentwise difference. This is also known as
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the Chebychev distance, or chessboard distance, referencing the distance that

a King may travel in any number of moves. We will denote this model as 2NL∞.

Specifically, suppose players choose strategies a = (x1, y1),b = (x2, y2) and the judge

chooses random point ξ = (ξ, η). The ruling is

K (a,b) =


x1 + y1 if max{|x1 − ξ|, |y1 − η|} < max{|x2 − ξ|, |y2 − η|}

x2 + y2 if max{|x1 − ξ|, |y1 − η|} > max{|x2 − ξ|, |y2 − η|}

We first establish the geometry of the midset and sets C1, C2 as defined earlier in this

work. That is, Given any two points a = (x1, y1),b = (x2, y2),

C1(a,b) = {x|DL∞(x, a) < DL∞(x,b)} ,

C2(a,b) = {x|DL∞(x, a) > DL∞(x,b)} ,

Mid(a,b) = {x|DL∞(x, a) = DL∞(x,b)} .

Figure 6. 2NL∞: A graphical sketch of the Midset, C1 and C2 with
respect to points −b∗,b∗.
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LEMMA 4.18. Suppose y∗ > x∗ > 0. Let b∗ = (x∗, y∗),−b∗ = (−x∗,−y∗) and

x = (x, y). If x ≤ x∗ − y∗ then

(62) x ∈


C2(−b∗,b∗) if y > −x+ x∗ − y∗

Mid(−b∗,b∗) if y = −x+ x∗ − y∗

C1(−b∗,b∗) if y < −x+ x∗ − y∗

If x∗ − y∗ < x ≤ 0 then

(63) x ∈


C2(−b∗,b∗) if y > 0

Mid(−b∗,b∗) if y = 0

C1(−b∗,b∗) if y < 0

Proof. First suppose x ≤ x∗ − y∗. Thus x∗ − x ≥ y.

Case 1: y > −x+ x∗ − y∗.

Then y + y∗ > x∗ − x ≥ y∗. Therefore, y > 0. Obviously, y + y∗ > |y − y∗|, so

|y + y∗| > max{|x− x∗|, |y − y∗|},

that is, x ∈ C2.

Case 2: y = −x+ x∗ − y∗.

So y + y∗ = x∗ − x ≥ y∗. Thus, we have

|y + y∗| = y + y∗ = x∗ − x > |x∗ − (−x)|

and

|x− x∗| = x∗ − x = y∗ + y > |y − y∗|.

By these inequalities, we have DL∞(x,b∗) = x∗ − x = y + y∗ = DL∞(x,−b∗), so

x ∈ Mid(−b∗,b∗).
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Case 3: y < −x+ x∗ − y∗.

Note that in this case, |x∗ − x| = x∗ − x > |x∗ + x|. If y < 0, then clearly |y∗ − y| >

|y∗+y| so x ∈ C1. If on the other hand y ≥ 0, |x∗−x| = x∗−x > y+y∗ = |y−(−y∗)|,

so x ∈ C1.

Now suppose that x∗ − y∗ < x ≤ 0. If y > 0, It is clear to see that

|y∗ − y| > | − y∗ − y| > | − x∗ − x|

so x ∈ C2. If y = 0, by supposition y∗ > x∗−x so DL∞(x,b∗) = y∗. This also implies

that y∗ > x∗ + x and y∗ > −x∗ − x, so DL∞(x,−b∗) = y∗, so x ∈ Mid(−b∗,b∗). If

y < 0, then by Case 3 above, x ∈ C1. □

LEMMA 4.19. Let b = (x2, y2),−b = (−x2,−y2) where y2 > x2 > 0. If (x, y) ∈

C1(−b,b) then (x+ α, y − α) ∈ C1(−b,b) for all α > 0.

Proof. This is a direct consequence of Lemma 4.18 and the fact that C1 is the

symmetric reflection of C2 about (0, 0). □

LEMMA 4.20. In 2NL∞, if pure optimal strategies exist, they must be on the line

y = x.

Figure 7. 2NL∞: A graphical sketch of the proof of Lemma 4.20
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Proof. Suppose Player II, maximizer, is playing b∗ = (x∗
2, y

∗
2) where x∗

2 ̸= y∗2,

and suppose this is an optimal pure strategy. WLOG, assume y∗2 > x∗
2. Also x∗

2 > 0.

By responding by choosing strategy −b∗ = (−x∗
2,−y∗2), Player I guarantees a zero

payoff. Let ā = (x̄, ȳ) = (−x∗
2+y∗2
2

,−x∗
2+y∗2
2

). Let C∗
1 := C1(−b∗,b∗), the set of points

closer to (−x∗
2,−y∗2) than to (x∗

2, y
∗
2) under the L∞ metric, namely

C∗
1 = {(x, y)|DL∞((x, y), (−x∗

2,−y∗2)) < DL∞((x, y), (x∗
2, y

∗
2))}.

Define C̄1 = C1(ā,b
∗), namely

C̄1 = {(x, y)|DL∞((x, y), (x̄, ȳ)) < DL∞((x, y), (x∗
2, y

∗
2))}.

Let C∗
2 and C̄1 be defined similarly with the opposite inequality.

Claim 1: If (x, y) ∈ C̄2 then (−x,−y) ∈ C̄1.

Suppose (x, y) ∈ C̄2. By the symmetry of the L∞ midset, (x, y) reflected over the mid-

point of b∗ and ā,
(

x∗
2−y∗2
4

,
−x∗

2+y∗2
4

)
, will be in C̄1. Namely,

(
x∗
2−y∗2
2

− x,
y∗2−x∗

2

2
− y
)
∈

C̄1.

By Lemma 4.19,
(

x∗
2−y∗2
2

− x+
−y∗2+x∗

2

2
,
y∗2−x∗

2

2
− y − −y∗2+x∗

2

2

)
∈ C̄1. This point is (−x,−y).

Claim 2: (0, 0) ∈ C̄1. This is clear because DL∞(0,b∗) = y∗ while DL∞(0, ā) =

x∗
2+y∗2
2

< y∗

By Claims 1 and 2, P (C̄1) >
1
2
, so

K(ā,b∗) < 0 = K(−b∗,b∗).

This contradicts that b∗ is an optimal strategy.

□
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THEOREM 4.5. In 2NL∞, if pure optimal strategies exist for players i = 1, 2 then

they are given by

(x∗
i , y

∗
i ) =

(−1)i

√
2π(σ2

x + 2ρσxσy + σ2
y)

4
, (−1)i

√
2π(σ2

x + 2ρσxσy + σ2
y)

4

 .

Proof. Since for either player, a pure optimal strategy must be on the line y = x

by Lemma 4.20, the argument is the same as in Theorem 4.4. □

1.5. Lp Metric.

1.5.1. A note on the Lp Midset in R2. The Lp distance (or Minkowski(p) distance)

between two points (x1, y1) and (x2, y2) is defined as

(64) DLp

(
(x1, y1), (x2, y2)

)
= (|x2 − x1|p + |y2 − y1|p)1/p .

When p = 1 we have the Manhattan distance. When p = 2 this is Euclidean distance.

The limit as p → ∞ is the Chebychev distance. For any two points (x1, y1), (x2, y2)

we define the midset under Minkowski(p) distance as the set of points equidistant

from both. We will denote the midset as Midp[(x1, y1), (x2, y2)].

Figure 8. Minkowski Distance Midset: The midset between the two
points is shown as a black line for p = 1, 1.4, 2, 3, and 64 respectively.
Two curves of constant Minkowski distance are shown around each
point.

LEMMA 4.21. For any p ≥ 1, Midp[(x1, y1), (x2, y2)] is symmetric about the mid-

point (x1+x2

2
, y1+y2

2
).
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Proof. WLOG, assume the midpoint is (0, 0), thus (x1, y1) = (−x2,−y2). Sup-

pose point (x, y) is equidistant from (x1, y1) and (x2, y2). Thus

|x1 − x|p + |y1 − y|p = |x2 − x|p + |y2 − y|p.

But this may be written

| − x2 − x|p + | − y2 − y|p = | − x1 − x|p + | − y1 − y|p

⇔ | − (x2 −−x)|p + | − (y2 −−y)|p = | − (x1 −−x)|p + | − (y1 −−y)|p

⇔ |x2 − (−x)|p + |y2 − (−y)|p = |x1 − (−x)|p + |y1 − (−y)|p.

So (−x,−y) is also equidistant from (x1, y1) and (x2, y2). □

LEMMA 4.22. For p > 1, α > 0,

Midp[(x
∗, y∗), (x∗ − α, y∗ − α)] =

{(
x∗ +

α

2
+ t, y∗ +

α

2
+ t
)
, t ∈ R

}
.

Proof. WLOG, assume (x∗, y∗) = (α/2, α/2) = b∗, and −b∗ = (−x∗,−y∗). So

the set in question is simplified to the line y = −x. Take some point (x, y) = (t,−t),

for t ∈ R.

(|x∗ − x|p + |y∗ − y|p)1/p =
(∣∣∣α

2
− t
∣∣∣p + ∣∣∣α

2
− (−t)

∣∣∣p)1/p
=
(∣∣∣α− α

2
− t
∣∣∣p + ∣∣∣α− α

2
− (−t)

∣∣∣p)1/p
=
(∣∣∣α

2
− α− (−t)

∣∣∣p + ∣∣∣α
2
− α− t

∣∣∣p)1/p
= (|(y∗ − α)− y|p + |(x∗ − α)− x|p)1/p .

Now consider a point outside of this set, where y > −x. For convenience, let β = α
2
.

Case 1: x = β + θ, y = −β − ϕ, 0 ≤ ϕ < θ.



1. NORMAL DISTRIBUTION 57

Figure 9. The four regions in the proof of Lemma 4.22.

Suppose (x, y) ∈ Midp[b
∗,−b∗]. Then

|x∗ − x|p + |y∗ − y|p = | − x∗ − x|p + | − y∗ − y|p

⇔ θp + (2β + ϕ)p = (2β + θ)p + ϕp.

For fixed β > 0, ϕ ≥ 0, take the derivative of each side with respect to θ.

pθp−1 = p(2β + θ)p−1

⇔ θ = 2β + θ.

Since p > 1. But β > 0 by assumption. This is impossible.

Case 2: x = β + θ, y = β − ϕ, 0 < θ, 0 ≤ ϕ ≤ 2β.

Suppose (x, y) ∈ Midp[b
∗,−b∗]. Then

|x∗ − x|p + |y − y|p = | − x∗ − x|p + | − y∗ − y|p

⇔ θp + ϕp = (2β + θ)p + (2β − ϕ)p.
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We can state the following inequality:

θp + ϕp ≤ θp + (2β)p ≤ (2β + θ)p ≤ (2β + θ)p + (2β − ϕ)p.

But θp + (2β)p = (θ + 2β)p only when θ = 0, β = 0, or p = 1, none of which is the

case by assumption.

Case 3: x = β + θ, y = β + ϕ, θ ≥ 0, ϕ ≥ 0.

Suppose (x, y) ∈ Midp[b
∗,−b∗]. Then

|x∗ − x|p + |y − y|p = | − x∗ − x|p + | − y∗ − y|p

⇔ θp + ϕp = (2β + θ)p + (2β + ϕ)p.

But because β > 0 this is not possible.

Case 4: x = β − θ, y = −β + ϕ, 0 ≤ θ ≤ 2β, θ < ϕ ≤ frm−eβ.

Suppose (x, y) ∈ Midp[b
∗,−b∗]. Then

|x∗ − x|p + |y∗ − y|p = | − x∗ − x|p + | − y∗ − y|p

⇔ θp + (2β − ϕ)p = (2β − θ)p + ϕp.

But since ϕp > θp and 2β − θ > 2β − ϕ, this is not possible. The remaining cases are

handled by symmetry. □

LEMMA 4.23. For p > 1, the curve Midp
[
(x∗, y∗), (−x∗,−y∗)

]
is differentiable ev-

erywhere.

Proof. WLOG, we will consider only the case where y∗ > x∗ ≥ 0, and x ≥ 0, y ≤

0. When 0 ≤ x ≤ x∗, 0 ≥ y ≥ −x∗,

(65)
dy

dx
= −(x∗ − x)p−1 + (x∗ + x)p−1

(y∗ − y)p−1 + (y∗ + y)p−1
.

When x ≥ x∗, 0 ≥ y ≥ −x∗, we have

(66)
dy

dx
= −(x+ x∗)p−1 − (x− x∗)p−1

(y∗ − y)p−1 + (y∗ + y)p−1
.
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Evaluated at x = x∗, they are equal. When −y∗ ≤ y ≤ −x∗, x > x∗, we have

(67)
dy

dx
= −(x+ x∗)p−1 − (x− x∗)p−1

(y∗ − y)p−1 + (y∗ + y)p−1
.

When y ≥ −y∗, x > x∗ we have

(68)
dy

dx
= − (x+ x∗)p−1 − (x− x∗)p−1

(−y + y∗)p−1 − (−y − y∗)p−1
.

Evaluated when y = −y∗ both are equal. Thus the curve is differentiable everywhere.

□

LEMMA 4.24. For p > 1, x∗, y∗ ≥ 0, x∗ ̸= y∗, Midp[(x
∗, y∗), (−x∗,−y∗)] and the

line y = −x intersect only at (0, 0).

Proof. Assume WLOG that y∗ > x∗. Let us assume that there does exist a

point (x̃,−x̃) ∈ Midp
[
(x∗, y∗), (−x∗,−y∗)

]
with x̃ ̸= 0 (WLOG, assume x̃ > 0).

Figure 10. The three regions in the proof of Lemma 4.24.
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Case 1: 0 < x̃ ≤ x∗ < y∗. The point (x̃,−x̃) satisfies

|x∗ − x̃|p + |y∗ − (−x̃)|p = | − x∗ − x̃|p + | − y∗ − (−x̃)|p.

Therefore

(69) (x∗ − x̃)p + (y∗ + x̃)p = (x∗ + x̃)p + (y∗ − x̃)p.

Let α = x∗ + x̃, β = x∗ − x̃, y∗ = x∗ + ϵ, so α > β ≥ 0. We may write

(70) (α + ϵ)p − αp = (β + ϵ)p − βp.

As f(x) = xp is convex for p > 1, the slope of a the secant line between (x, xp) and

(x+ ϵ, (x+ ϵ)p) increases as x increases. In other words,

(α + ϵ)p − αp

ϵ
>

(β + ϵ)p − βp

ϵ
,

but this contradicts the equality above.

Case 2: 0 < x∗ < x̃ ≤ y∗. The point (x̃,−x̃) satisfies

(71) (x̃− x∗)p + (y∗ + x̃)p = (x∗ + x̃)p + (y∗ − x̃)p.

Let β = y∗ − x̃, α = x̃− x∗, so y∗ = x∗ + α + β. We may substitute and write

(72) αp + (2x∗ + 2α+ β)p = (2x∗ + α)p + βp.

But since α > 0,

(2x∗ + α)p + βp ≤ (2x∗ + α+ β)p < (2x∗ + 2α+ β)p + αp

contradicting the equality.

Case 3: 0 < x∗ < y∗ < x̃. The point (x̃,−x̃) satisfies

(73) (x̃− x∗)p + (y∗ + x̃)p = (x∗ + x̃)p + (x̃− y∗)p.
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Note that since x̃− x∗ > x̃− y∗, then (x̃− x∗)p > (x̃− y∗)p, and as x̃+ y∗ > x̃+ x∗,

then (x̃+ y∗)p > (x̃+ x∗)p. But this contradicts the equality. □

As we are considering only the midset curve, subsequently in this section when re-

ferring to the derivative of the curve at point x̃ = (x̃, ỹ), we will simply say
dy

dx

∣∣∣∣
x̃

.

In the following lemmas we will establish an important fact about the midset curve,

that nowhere on the curve is the derivative equal to −1.

Figure 11. The regions in the proof of Lemmas 4.25, 4.27 and 4.28 .
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LEMMA 4.25. For p > 1, y∗ > x∗ > 0, let ϵ = y∗ − x∗. Suppose x̃ = (x̃, ỹ) ∈

Midp[(x
∗, y∗), (−x∗,−y∗)]. If 0 ≤ x̃ ≤ y∗ then max(−x̃,−x∗) ≤ ỹ ≤ min(0, ϵ − x̃),

and 0 >
dy

dx

∣∣∣∣
x̃

> −1. Furthermore, (0, 0), (y∗,−x∗) ∈ Midp.

Proof. By definition,

Midp[(x
∗, y∗), (−x∗,−y∗)] = {x | |x− x∗|p + |y − y∗|p = |x+ x∗|p + |y + y∗|p} .

Clearly both (0, 0) and (y∗,−x∗) satisfy this equation.

Figure 12. The regions in the proof of Lemma 4.25.

Case 1: First consider x̃ ∈ [0, x∗]× [−x∗, 0]. The following must be true:

(x∗ − x̃)p + (y∗ − ỹ)p = (x∗ + x̃)p + (y∗ + ỹ)p.

By implicit differentiation, we get

(74)
dy

dx

∣∣∣∣
x̃

= −
[
(x∗ − x̃)p−1 + (x∗ + x̃)p−1

(y∗ − ỹ)p−1 + (y∗ + ỹ)p−1

]
.
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Within the brackets, both numerator and denominator are positive on this region of

the curve, so
dy

dx

∣∣∣∣
x̃

< 0. Furthermore, evaluated at (0, 0) we get

dy

dx

∣∣∣∣
(0,0)

= −
(
x∗

y∗

)p−1

> −1.

Because of this and Lemma 4.24, it must be the case that ỹ > −x̃. Note that in this

case 0 < −ỹ < x̃ < x∗ < y∗. Let α = x∗ − x̃ > 0, δ = x̃ − (−ỹ) > 0. Suppose

dy

dx

∣∣∣∣
x̃

= −1. Then we have

(75) − 1 = −
[

αp−1 + (x∗ + x̃)p−1

(x∗ + x̃+ ϵ− δ)p−1 + (δ + α + ϵ)p−1

]
.

If ϵ ≥ δ that would be impossible, so that means ϵ < δ. But any point on the Midset

in this region must satisfy

(x∗ − x̃)p + (y∗ − ỹ)p = (x∗ + x̃)p + (y∗ + ỹ)p.

That may be written

αp + (x∗ + x̃+ ϵ− δ)p = (x∗ + x̃)p + (δ + α+ ϵ)p.

But as α < δ + α+ ϵ, αp < (δ + α+ ϵ)p. Also since ϵ < δ, x∗ + x̃+ ϵ− δ < x∗ + x̃ so

αp + (x∗ + x̃+ ϵ− δ)p < (x∗ + x̃)p + (δ + α+ ϵ)p,

Presenting a contradiction. Thus everywhere in this region
dy

dx

∣∣∣∣
x̃

> −1.

Case 2: Now we consider x̃ ∈ (x∗, y∗]× [−y∗, 0]. x̃ satisfies

(x̃− x∗)p + (y∗ − ỹ)p = (x∗ + x̃)p + (y∗ + ỹ)p.

By implicit differentiation, we get

(76)
dy

dx

∣∣∣∣
x̃

= −
[
(x̃+ x∗)p−1 − (x̃− x∗)p−1

(y∗ − ỹ)p−1 + (y∗ + ỹ)p−1

]
.
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Within the brackets, both numerator and denominator are positive on this region of

the curve, so
dy

dx

∣∣∣∣
x̃

< 0. And because the curve passes through (y∗,−x∗), it must be

the case that ỹ ≥ −x∗ in this region. Because x∗ > 0 and p > 1, the numerator is

never zero so ỹ = −x∗ only when x̃ = y∗. Suppose that
dy

dx

∣∣∣∣
x̃

= −1. Let β = −ỹ,

α = x̃− x∗, and ϵ = y∗ − x∗. We may write:

(77) − 1 = − (2x∗ + α)p−1 − αp−1

(x∗ + ϵ+ β)p−1 + (x∗ + ϵ− β)p−1
,

so

(78) (2x∗ + α)p−1 = (x∗ + ϵ+ β)p−1 + (x∗ + ϵ− β)p−1 + αp−1.

But we must also satisfy the equation of the curve

(79) αp + (x∗ + ϵ+ β)p = (2x∗ + α)p + (x∗ + ϵ− β)p.

Note that the restrictions of this region have α ≤ ϵ, and β ≤ x∗. If

x∗ + α ≥ ϵ+ β

then x∗ + ϵ+ β ≤ 2x∗ +α and the right hand side of the equation cannot be equal to

the left, so we must have that x∗+α < ϵ+β. But then (2x∗+α)p−1 < (x∗+ ϵ+β)p−1

contradicting (79). Therefore,
dy

dx

∣∣∣∣
x̃

̸= −1 in this region. When we evaluate the

derivative at (y∗,−x∗), i.e. (x∗ + ϵ,−x∗), we get

(80)
dy

dx

∣∣∣∣
(y∗,−x∗)

= −(2x∗ + ϵ)p−1 − ϵp−1

(2x∗ + ϵ)p−1 + ϵp−1
> −1.

Thus, in this region 0 >
dy

dx

∣∣∣∣
x̃

> −1.

By the extended mean value theorem, the slope of the secant line between any (x, y) on

the curve in this region and (y∗,−x∗) must be greater than −1, so y ≤ y∗−x∗−x. □
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LEMMA 4.26. Suppose p > 1, 0 < x∗ < y∗. Let x̃ = (x̃, ỹ) ∈ Midp[(x
∗, y∗), (−x∗,−y∗)].

If x̃ > y∗ then ỹ > y∗ − x∗ − x̃.

Proof. As before, let ϵ = y∗ − x∗ > 0.

Case 1: −y∗ < ỹ < 0.

In this region, x̃ must satisfy

(x̃− x∗)p + (−ỹ + y∗)p = (x̃+ x∗)p + (ỹ + y∗)p.

Suppose ỹ = ϵ− x̃. Then

(x̃− x∗)p + (x∗ + ϵ− ϵ+ x̃)p = (x̃+ x∗)p + (ϵ− x̃+ x∗ + ϵ)p,

which means

(x̃− x∗)p = (2ϵ− (x̃− x∗))p.

In this region x̃ > y∗ = x∗ + ϵ, so x̃ − x∗ > ϵ. But then 2ϵ − (x̃ − x∗) < ϵ, clearly a

contradiction. Therefore ỹ ̸= ϵ− x̃. Because (y∗,−x∗) ∈ Midp and
dy

dx

∣∣∣∣
(y∗,−x∗)

> −1,

ỹ > ϵ− x̃.

Case 2: ỹ ≤ −y∗

In this case, x̃ satisfies

(x̃− x∗)p + (y∗ − ỹ)p = (x̃+ x∗)p + (−ỹ − y∗)p.

Suppose ỹ = ϵ− x̃. Then

(x̃− x∗)p + (x∗ + ϵ− ϵ+ x̃)p = (x̃+ x∗)p + (−ϵ+ x̃− x∗ − ϵ)p,

which means

(x̃− x∗)p = (x̃− x∗ − 2ϵ)p.

This is clearly not true as ϵ > 0. From Case 1, we know that at the point (x̃(−y∗),−y∗)

in the Midset that −y∗ > ϵ − x̃(−y∗) and because the midset is continuous, it must
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be the case that ỹ > ϵ− x̃ everywhere in this region.

□

LEMMA 4.27. Suppose p > 1, 0 < x∗ < y∗. Let x̃ = (x̃, ỹ) ∈ Midp[(x
∗, y∗), (−x∗,−y∗)].

If x̃ ∈ (y∗,∞)× (−∞,−y∗] then 0 >
dy

dx

∣∣∣∣
x̃

̸= −1.

Proof. The proof for p = 2 is trivial, so we will assume p ̸= 2. Let ϵ = y∗−x∗ > 0.

The derivative is

(81)
dy

dx

∣∣∣∣
x̃

= −
[

(x̃+ x∗)p−1 − (x̃− x∗)p−1

(−ỹ + y∗)p−1 − (−ỹ − y∗)p−1
.

]
We can verify that within the brackets both numerator and denominator are positive,

so
dy

dx

∣∣∣∣
x̃

< 0.

Suppose
dy

dx

∣∣∣∣
x̃

= −1. Then x̃ satisfies

(x̃+ x∗)p−1 − (x̃− x∗)p−1 = (−ỹ + y∗)p−1 − (−ỹ − y∗)p−1

and because x̃ ∈ Midp,

(x̃+ x∗)p − (x̃− x∗)p = (−ỹ + y∗)p − (−ỹ − y∗)p,

but these are inconsistent. Thus
dy

dx

∣∣∣∣
x̃

̸= −1. □

LEMMA 4.28. Suppose p > 1, 0 < x∗ < y∗. Let x̃ = (x̃, ỹ) ∈ Midp[(x
∗, y∗), (−x∗,−y∗)].

If x̃ ∈ (y∗,∞)× (−y∗,−x∗) then 0 >
dy

dx

∣∣∣∣
x̃

̸= −1.

Proof. The derivative is

(82)
dy

dx

∣∣∣∣
x̃

= −
[

(x̃+ x∗)p−1 − (x̃− x∗)p−1

(−ỹ + y∗)p−1 − (−ỹ − y∗)p−1

]
.

We can verify that within the brackets both numerator and denominator are positive,

so
dy

dx

∣∣∣∣
x̃

< 0. From Lemma 4.26 we know that ỹ > ϵ− x̃.
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Suppose 1 < p < 2. If
dy

dx

∣∣∣∣
x̃

= −1 then x̃ satisfies

(83) (x̃+ x∗)p−1 − (x̃− x∗)p−1 = (−ỹ + y∗)p−1 + (−ỹ − y∗)p−1.

Because −ỹ < x̃− ϵ,

−ỹ + y∗ < x̃− ϵ+ y∗ = x̃+ x∗,

and

−ỹ − y∗ < x̃− ϵ− y∗ < x̃− x∗ − 2ϵ.

For δ > 0, the slope of the secant line on f(t) = tp−1 between t− δ and t increases as

t decreases or as δ increases. Therefore,

(x̃+ x∗)p−1 − (x̃− x∗)p−1

2x∗ <
(−ỹ + y∗)p−1 − (−ỹ − y∗)p−1

2x∗ + 2ϵ
<

(−ỹ + y∗)p−1 − (−ỹ − y∗)p−1

2x∗ .

This contradicts the equality of equation 83. Suppose instead that p > 2. The second

derivative is

(84)
d2y

dx2

∣∣∣∣
x̃

= −(p− 1)
((x̃+ x∗)p−2 − (x̃− x∗)p−2)((y∗ − ỹ)p−1 + (y∗ + ỹ)p−1)

((y∗ − ỹ)p−1 + (y∗ + ỹ)p−1)2

− (p− 1)

(
dy

dx

∣∣∣∣
x̃

)
((x̃+ x∗)p−1 − (x̃− x∗)p−1)(−(y∗ − ỹ)p−2 + (y∗ + ỹ)p−2)

((y∗ − ỹ)p−1 + (y∗ + ỹ)p−1)2

If x̃ is a point of inflection then this is equal to zero, i.e.

(x̃+ x∗)p−2 − (x̃− x∗)p−2 = −
(
dy

dx

∣∣∣∣
x̃

)
((x̃+ x∗)p−1 − (x̃− x∗)p−1)(−(y∗ − ỹ)p−2 + (y∗ + ỹ)p−2)

(y∗ − ỹ)p−1 + (y∗ + ỹ)p−1

(85)

⇔ (x̃+ x∗)p−2 − (x̃− x∗)p−2 =

(
dy

dx

∣∣∣∣
x̃

)2 (
(y∗ + ỹ)p−2 − (y∗ − ỹ)p−2

)(86)

⇔ (x̃+ x∗)p−2 − (x̃− x∗)p−2

(y∗ + ỹ)p−2 − (y∗ − ỹ)p−2
=

(
dy

dx

∣∣∣∣
x̃

)2

(87)
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But as x̃ > x∗ and y∗ − ỹ > y∗ + ỹ, the left hand side is negative so this cannot be

true. From Lemma 4.25, dy
dx

∣∣
x̃
> −1 when x̃ < y∗ and from Lemma 4.27 dy

dx

∣∣
x̃
> −1

when ỹ < −y∗. Therefore dy
dx

∣∣
x̃
> −1 in this region as well, otherwise there would be

a point of inflection. □

THEOREM 4.6. Suppose p > 1, y∗ > x∗ > 0. Let z∗ = x∗+y∗

2
, M1 = Midp((x

∗, y∗), (−z∗,−z∗)),

and M2 = Midp((−x∗,−y∗), (z∗, z∗)). M1 and M2 are disjoint.

Proof. Suppose there exists (x̃, ỹ) ∈ M1 ∩ M2. Let ϵ = y∗−x∗

2
. Note that the

two midsets are identical curves with M2 translated horizontally by ϵ and vertically

by −ϵ. If the two curves intersect at (x̃, ỹ) then that means (x̃− ϵ, ỹ + ϵ) ∈ M1. But

because the curve is differentiable everywhere, by the extended mean value theorem

this implies that
dy

dx

∣∣∣∣
x′
= −1 on the curve at some point x′, which is not the case by

the previous lemmas. □

1.5.2. Optimal Pure Strategies under Lp Metric. Now we shall consider what hap-

pens when the judge uses an Lp metric to measure distance. We will call this game

variant 2NLp (Bivariate Normal, Lp distance). Having shown that the midset curve

nowhere has a derivative of −1, we now can show that in fact for any p ≥ 1, if a

solution exists in pure optimal strategies it does not matter what value p is; it will

be the same solution as in the cases of L2, L1 and L∞. Suppose Player II chooses

b∗ = (x∗, y∗) with y∗ > x∗ > 0. Let a′ = (x′, y′) =
(
−x∗+y∗

2
,−x∗+y∗

2

)
. The midpoint

between b∗ and a′ is

a = (x, y) =

(
x∗ − y∗

4
,
y∗ − x∗

4

)
.

LEMMA 4.29. Let p > 1.

DLp(0, a
′) < DLp(0,b

∗).

Proof. By convexity of f(x) = xp, for p > 1,∣∣∣∣x∗ + y∗

2

∣∣∣∣p = ∣∣∣∣12x∗ +
1

2
y∗
∣∣∣∣p ≤ 1

2
x∗p +

1

2
y∗p,
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so

2

∣∣∣∣x∗ + y∗

2

∣∣∣∣p ≤ x∗p + y∗p

⇔ |x′ − 0|p + |y′ − 0|p ≤ |x∗ − 0|p + |y∗ − 0|p.

The above attains equality only when p = 1 or in the trivial case of x∗ = y∗ = 0, but

y∗ > x∗ ≥ 0 by assumption. □

Let us define

C̄1 =
{
x|DLp (x, a

′) < DLp (x,b
∗))
}

LEMMA 4.30. P ((ξ, η) ∈ C̄1) >
1

2
.

Proof. Assume WLOG that y∗ > x∗ ≥ 0. Let the strategy of Player II be b∗ =

(x∗, y∗) and Player I’s strategy be a′ = (x′, y′) =

(
−x∗ + y∗

2
,−x∗, y∗

/
2

)
as previously

defined. Let M1 = Midp(a
′,b∗). So M1 = ∂C̄1, and (0, 0) ∈ C̄1 as established by

Lemma 4.29. Let M2 = Midp(−a′−b∗), which is M1 reflected about the origin. Since

by Theorem 4.6 the two curves are disjoint, let us refer to the region of positive area

bounded by the two curves as C+. Because (0, 0) ∈ C+, P ((ξ, η) ∈ C+) > 0. Also

note that by symmetry that P ((ξ, η) ̸∈ C̄1) = P ((ξ, η) ∈ C̄1\C+). Thus the lemma is

proved. □

LEMMA 4.31. In 2NLp, if optimal pure strategies exist for either player, they must

lie on the line y = x.

Proof. Suppose Player II is playing optimally with the pure strategy b∗ =

(x∗, y∗) with y∗ > x∗ ≥ 0. Player I may respond strategy −b∗ = (−x∗,−y∗), re-

sulting in an expected payoff of 0. Player I may, however, switch to a′ = (x′, y′)

defined as above. Because his net demand remains unchanged but by Lemma 4.30
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the probability that the ruling is in his favor increases from 1
2
, Player II was not

playing optimally. □

THEOREM 4.7. In 2NLp, if pure optimal strategies exist for players i = 1, 2 then

they are given by

(x∗
i , y

∗
i ) =

(−1)i

√
2π(σ2

x + 2ρσxσy + σ2
y)

4
, (−1)i

√
2π(σ2

x + 2ρσxσy + σ2
y)

4

 .

Proof. Since for either player, a pure optimal strategy must be on the line y = x

by Lemma 4.31, the argument is the same as in Theorem 4.4. □

1.6. Mahalanobis Distance. The Mahalanobis distance (MD) between two

points x1,x2 with respect to a multivariate Normal distribution with covariance ma-

trix Σ is given by

DM(x1,x2) =
√

(x1 − x2)TΣ−1(x1 − x2).

In our case,

DM

(
(x1, y1), (x2, y2)

)
=

√√√√√ 1

|Σ|
(x1 − x2, y1 − y2)

 σ2
y −ρσxσy

−ρσxσy σ2
x

x1 − x2

y1 − y2



=|Σ|−1/2

√√√√√(σ2
y(x1 − x2)− ρσxσy(y1 − y2),−ρσxσy(x1 − x2) + σ2

x(y1 − y2))

x1 − x2

y1 − y2


=|Σ|−1/2

√
σ2
y(x1 − x2)2 − 2ρσxσy(x1 − x2)(y1 − y2) + σ2

x(y1 − y2)2.

We will call this game variant 2NMD (Bivariate Normal, Mahalanobis distance).

Again we will use the following lemma

LEMMA 4.32. In 2NMD, (x∗, y∗) is an optimal pure strategy for Player I if and

only if (−x∗,−y∗) is an optimal pure strategy for Player II.
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LEMMA 4.33. The Mahalanobis midset between x1 = (x1, y1) and x2 = (x2, y2) is

the line Ax+By = C where

A = 2σ2
y(x2 − x1)− 2ρσxσy(y2 − y1),

B = 2σ2
x(y2 − y1)− 2ρσxσy(x2 − x1), and

C = σ2
y(x

2
2 − x2

1)− 2ρσxσy(x2y2 − x1y1) + σ2
x(y

2
2 − y21).

Proof. By definition, the midset is

MidMD(x1,x2) = {x |DM(x,x1) = DM(x,x2)}(88)

= {x | (x− x1)
TΣ−1(x− x1) = (x− x2)

TΣ−1(x− x2)}.(89)

With xi = (xi, yi), the condition becomes

σ2
y(x− x1)

2 − 2ρσxσy(x− x1)(y − y1) + σ2
x(y − y1)

2(90)

=σ2
y(x− x2)

2 − 2ρσxσy(x− x2)(y − y2) + σ2
x(y − y2)

2(91)

or

σ2
y

[
(x− x1)

2 − (x− x2)
2
]
− 2ρσxσy [(x− x1)(y − y1)− (x− x2)(y − y2)]

+σ2
x

[
(y − y1)

2 − (y − y2)
2
]
= 0

σ2
y

[
−2x1x+ x2

1 + 2x2x− x2
2

]
− 2ρσxσy [−x1x− x1y + x1y1 + x2y + y2x− x2y2]

+σ2
x

[
−2y1y + y21 + 2y2y − y22

]
= 0

Ax+By − C = 0

□

THEOREM 4.8. In 2NMD, if pure optimal strategies exist for players i = 1, 2 then

they are given by

(x∗
i , y

∗
i ) =

(
(−1)iτα, (−1)iτβ

)
,
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where α = σ2
x + ρσxσy, β = σ2

y + ρσxσy, τ =
σX′

√
π/2√

α2+β2
and

σ2
X′ =

σ2
xα

2 + 2ρσxσyαβ + σ2
yβ

2

α2 + β2
.

Proof. Let

DM(x1,x2) := (|Σ|1/2DM(x1,x2)
2.

Suppose Player II plays pure strategy (x∗, y∗). Let t∗ = x∗ + y∗. If Player I responds

with strategy (−x∗,−y∗), the expected payoff is zero. If, however, Player I chooses a

new point (x, y) with x + y = −t∗ but with a higher probability of being chosen by

the judge, then he will have improved the expected payoff in his favor. Whichever

player’s MD to the origin is lesser will control the majority of the probability of the

distribution. Let Player I attempt to minimize

DM(x,0) subject to x+ y = −t∗.

DM(x,0) = σ2
yx

2 − 2ρσxσyxy + σ2
xy

2

= σ2
yx

2 − 2ρσxσyx(−t∗ − x) + σ2
x(−t∗ − x)2

= σ2
yx

2 + 2ρσxσy(x
2 + t∗x) + σ2

x(x
2 + 2t∗x+ t∗2)

= (σ2
y + 2ρσxσy + σ2

x)x
2 + (2t∗ρσxσy + 2t∗σ2

x)x+ σ2
xt

∗2.

The minimum occurs when

x = −t∗
α

α + β
,

where α = σ2
x + ρσxσy, β = σ2

y + ρσxσy. This gives

y = −t∗
β

α + β
.
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Hence any optimal point must lie on the line

y =
ρσxσy + σ2

y

ρσxσy + σ2
x

x.

As before, we apply a rotation to the distribution to align this line with the x-axis.

The angle of rotation is

θ = − arctan

(
ρσxσy + σ2

y

ρσxσy + σ2
x

)
.

The rotation matrix is

R =

 cos θ − sin θ

sin θ cos θ

 .

The new covariance matrix is

Σ′ = RΣRT

=

 σ2
x cos

2 θ − 2ρσxσy cos θ sin θ + σ2
y sin

2 θ (σ2
x − σ2

y) sin θ cos θ + ρσxσy(cos
2 θ − sin2 θ)

(σ2
x − σ2

y) sin θ cos θ + ρσxσy(cos
2 θ − sin2 θ) σ2

x cos
2 θ + 2ρσxσy cos θ sin θ + σ2

y sin
2 θ

 .

The variance along the x axis is

σ2
X′ =

σ2
x(ρσxσy + σ2

x)
2 + 2ρσxσy(ρσxσy + σ2

x)(ρσxσy + σ2
y) + σ2

y(ρσxσy + σ2
y)

2

(σ2
x + ρσxσy)2 + (ρσxσy + σ2

y)
2

.

By Theorem 2.1, the univariate solution points are

±(σX′

√
π/2, 0).

Rotating the point back counter-clockwise by θ we have

±σX′

√
π/2(cos θ, sin θ) = ±

σX′
√
π/2√

(σ2
x + ρσxσy)2 + (ρσxσy + σ2

y)
2

(
ρσxσy + σ2

x, ρσxσy + σ2
y

)
. □
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2. Uniform Distribution

Suppose instead that the players assume that the judge will choose some point ξ =

(ξ, η) with uniform probability within the rectangular region Ξ := [−α, α]× [−β, β],

where α, β > 0, and this is common knowledge among players. We will refer to the

interior of this set as Ξ◦. Thus, we may consider ξ ∼Uniform(Ξ). Without any loss

of generality, assume β ≥ α > 0. In fact, in the analysis which follows we will assume

without any loss of generality that the units have been scaled so that α = 1. The

players may present any final-offers a,b ∈ R2. We will call this game variant 2UL2

(Bivariate Uniform, L2 distance). Again let us use the notation Ci(a,b) (or simply Ci

where there is no ambiguity) to denote the set of points in R2 which are strictly closer

to Player i’s pure strategy than to the other player’s. Let the midset Mid(a,b) be

the set of points which are equidistant to a and b under the L2 metric. In general, if

players play respective strategies a = (x1, y1),b = (x2, y2), Mid(a,b) will be defined

as the line

(92) y =
x1 − x2

y2 − y1

(
x− x1 + x2

2

)
+

y1 + y2
2

We let P1 = P (ξ ∈ C1) for ease of notation.

LEMMA 4.34. In 2UL2, if optimal pure strategies a∗,b∗ exist, then they must lie on

the line y = x.

Proof. Suppose Player II plays b∗ = (x∗
2, y

∗
2) where x∗

2 ̸= y∗2 and is playing opti-

mally. Player I may play −b∗ = (−x∗
2,−y∗2) and achieve an expected payoff of zero,

with P1 = 1
2
. However, Player I may instead deviate to a′ =

(
−x∗

2 + y∗2
2

,−x∗
2, y

∗
2

2

)
.

Because this point is strictly closer to (0, 0) than b∗, P
(
ξ ∈ C1(a

′,b∗)
)
> 1

2
while his

net offer remains the same. Thus b∗ was not an optimal pure strategy. □

LEMMA 4.35. If pure optimal strategies a∗,b∗ exist, they are given by

a∗ =

(
−β

2
,−β

2

)
, b∗ =

(
β

2
,
β

2

)
.
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Proof. First note that if β = 1, then by restricting players to strategies along

the line y = x the players are effectively in a one-dimensional FOA game where the

distribution f is a triangular distribution. In this game, Players choose strategies

zi = 2xi. The distribution is symmetric with support [−2β, 2β], so optimal strategies

are symmetric with

z∗1 = − 1

2f(0)
=

1

2
2β = −β.

This corresponds to optimal pure strategies in the original game of x∗
1 = y∗1 = −β

2
.

Now suppose 1 < β. Suppose optimal pure strategies a∗ = (x∗
1, x

∗
1) and b∗ = (x∗

2, x
∗
2)

do exist. Mid(a∗,b∗) is the line

y = −x+ x∗
1 + x∗

2.

We have five cases:

Case 1: x∗
1 + x∗

2 < −β − α

In this case, because (−α,−β) ∈ C2, Ξ ∈ C2 so P1 = 0. Thus K(a∗,b∗) = 2x∗
2. If

x∗
2 > 0, K(−b∗,b∗) = 0 < 2x∗

2. If x∗
2 < 0, then K(a∗,−a∗) = 0 > 2x∗

2. If x∗
2 = 0,

this means x∗
1 < −β − 1. Player II may deviate to b′ = (1− β − x∗

1, 1− β − x∗
1).

P (ξ ∈ C1(a
∗,b′)) =

4

8β
=

1

2β
, so

K(x∗
1, x

′
2) = 2− 2β − 2x∗

1 +
(
2x∗

1 − (2− 2β − 2x∗
1)
) 1

2β

= 2− 2β − 2x∗
1 + (2x∗

1 − 1 + β)
1

β

= 2x∗
1

1− β

β
+ 3− 2β − 1

β
.

Since x∗
1 < −β − 1 and β > 1,

2x∗
1

1− β

β
> 2

(1− β)(−1− β)

β
= −2

1

β
+ 2β.
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Figure 13. The 5 cases in Lemma 4.35

Thus

K(x∗
1, x

′
2) > −2

1

β
+ 2β + 3− 2β − 1

β

= 3

(
1− 1

β

)
> 0.

In any of these three sub-cases, one of the players may improve his payoff by deviating

to a new strategy, so the players were not playing optimally.

Case 2: −β − 1 ≤ x∗
1 + x∗

2 < −β + 1

In this case P1 =
(x∗

1 + x∗
2 + 1 + β)2

8β
, so the expected payoff is

(93) K(x∗
1, x

∗
2) = 2x∗

2 + (2x∗
1 − 2x∗

2)
(x∗

1 + x∗
2 + 1 + β)2

8β
.
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Thus

Kx∗
1
=

(x∗
1 + x∗

2 + 1 + β)2

4β
+ (x∗

1 − x∗
2)
x∗
1 + x∗

2 + 1 + β

2β

Set equal to zero, and noting that P1 > 0 gives us

0 = x∗
1 + x∗

2 + 1 + β + 2x∗
1 − 2x∗

2

(94) ⇔ 2x∗
2 − 2x∗

1 = x∗
1 + x∗

2 + 1 + β.

Taking the derivative with respect to x∗
2, we have

Kx∗
2
= 2− (x∗

1 + x∗
2 + 1 + β)2

4β
+ (x∗

1 − x∗
2)
x∗
1 + x∗

2 + 1 + β

2β
.

Set equal to zero and using the substitution (94), we get

0 = 2− (2x∗
2 − 2x∗

1)
2

4β
+ (x∗

1 − x∗
2)
2x∗

2 − 2x∗
1

2β

⇔ 1

2
=

(x2 − x1)
2

2β
.

But by the same substitution, P1 =
(x∗

2 − x∗
1)

2

2β
. However, in this case P1 <

1

2β
<

1

2
;

from this contradiction we can conclude that optimal pure strategies will not exist in

this case.

Case 3: −β + 1 ≤ x∗
1 + x∗

2 ≤ β − 1

In this case, the probability that Player I is chosen by the arbitrator is

P1 =
x∗
1 + x∗

2 + β

2β
.

The expected payoff then is

(95) K(x∗
1, x

∗
2) = 2x∗

2 + (2x∗
1 − 2x∗

2)
x∗
1 + x∗

2 + β

2β
.

If the players are playing a locally optimal strategy pair, Kx∗
1
(x∗

1, x
∗
2) = 0. We derive

x∗
1 by this first order condition: Kx∗

1
=

2x∗
1

β
+ 1, so x∗

1 = −β

2
and similarly x∗

2 =
β

2
.
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Cases 4 and 5 are covered by cases 2 and 1 respectively by swapping the identities of

the players. □

THEOREM 4.9. In 2UL2, the strategy pair a∗ =
(
−β

2
,−β

2

)
,b∗ =

(
β
2
, β
2

)
is the

unique globally optimal strategy pair.

Proof. Let Player II fix his strategy as b∗ as given above. Consider all pure

strategies a = (x1, y1). We first make two observations:

1) If x1 + y1 > 0 then K(a,b∗) > 0.

Simply put, if the net demand of both players is positive then the expected payoff of

the game will certainly be positive.

2) If x1 + y1 = 0 then K(a,b∗) > 0.

This is evident because in this case, no matter the strategy of Player I, (1, β) is closer

to b∗ than to (x1,−x1) and thus P1 < 1. To see this, note that the minimum distance

to (1, β) of all points such that x1 + y1 = 0 is attained at ā = (−β−1
2
, β−1

2
).

DL2

(
b∗, (1, β)

)
=

√(
1− β

2

)2

+
β2

4
=

√
1− β +

β2

2

DL2

(
ā, (1, β)

)
=

√
2

(
1 + β

2

)2

=

√
1

2
+ β +

β2

2

Since (1, β) ̸∈ C1, P1 < 1.

We next make the following observations:

3) If x1 ≥
β

2
, then K ((β − x1, y1),b

∗) ≤ K(a,b∗)

Suppose x1 ≥ β

2
. If Player I deviates from a to a′ = (β − x1, y1), his net demand is

decreased. Note that Mid(a,b∗) is

y =
2x1 − β

β − 2y1

(
x− 2x1 + β

4

)
+

2y1 + β

4
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and intersects the y axis at
β2 − 2x2

1 − 2y21
2(β − 2y1)

. However, Mid(a′,b∗) intersects the y-

axis at
−β2 + 4βx1 − 2x2

1 − 2y21
2(β − 2y1)

. Since x1 ≥ β

2
⇒ β2 ≤ −β2 + 4βx1, so P1 is not

decreased by this deviation.

4) If y1 ≥
β

2
, then K ((x1, β − y1),b

∗) ≤ K(a,b∗)

Suppose y1 ≥ β

2
. If Player I deviates from a to a′ = (x1, β − y1), his net demand is

decreased. Note that Mid(a,b∗) is

x =
β − 2y1
2x1 − β

(
y − 2y1 + β

4

)
+

2x1 + β

4

and intersects the x-axis at
β2 − 2x2

1 − 2y21
2(β − 2x1)

. However, Mid(a′,b∗) intersects the y

axis at
−β2 + 4βy1 − 2x2

1 − 2y21
2(β − 2x1)

. Since y1 ≥ β

2
⇒ β2 ≤ −β2 + 4βy1, so P1 is not

decreased by this deviation.

Based on the previous two points, we will assume going forward that x1 <
β

2
and

y1 <
β

2
.

Let 4 circles be defined with centers at (1,−β), (−1,−β), (−1, β) and (1, β) all inter-

secting the point b∗. The regions within these circles are respectively given by:

( 1) x2 − 2x+ y2 + 2βy + β − 3

2
β2 ≤ 0

( 2) x2 + 2x+ y2 + 2βy − β − 3

2
β2 ≤ 0

( 3) x2 + 2x+ y2 − 2βy − β +
1

2
β2 ≤ 0

( 4) x2 − 2x+ y2 − 2βy + β +
1

2
β2 ≤ 0
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We will refer to the boundary of  k as #k, and the closure of its complements as

k. Observe first that if a ̸∈ Int
4∪

k=1

 k, then a ̸∈ Int k ∀k so (±α,±β) ̸∈ C1;in other

words, Ξ◦ ∈ C2, so P1 = 0. Thus to determine the globally optimal response to b∗

we will consider only points a ∈ Int
4∪

k=1

 k. However, observe that if a ∈  4 then by

the above, x1 + y1 > 0 and so K > 0. Furthermore, observe that if a ∈  3\ 2, then

y1 ≥
β

2
and if a ∈  1\ 2 that x1 ≥

β

2
. Neither of these are the case by assumption.

Thus we may assume a ∈  2 and a ̸∈  4. So we may restrict ourselves to the

remaining cases:

(1) a ∈R1:=  2 ∩ 1\( 3 ∪ 4)

(2) a ∈R2:=  2\( 3 ∪ 1 ∪ 4)

(3) a ∈R3:=  2 ∩ 3 ∩ 1\( 4)

(4) a ∈R4:=  2 ∩ 3\( 1 ∪ 4)

Case 1: a ∈R1

In this case, because (−1,−β), (1,−β) ∈ C1, Mid(a,b∗) intersects the left and right

sides of the rectangle. So, by geometric means we have

P (C1) =
1

2β

(
β +

β2 − 2x2
1 − 2y21

2β − 4y1

)
=

1

2
+

β2 − 2x2
1 − 2y21

4β(β − 2y1)
.

So

K(a,b∗) = β + (x1 + y1 − β)

(
1

2
+

β2 − 2x2
1 − 2y21

4β(β − 2y1)

)
The first partial derivatives are

Kx1 =
1

2
+

β2 − 2x2
1 − 2y21

4β(β − 2y1)
+

(β − x1 − y1)x1

β(β − 2y)

Ky1 =
1

2
+

β2 − 2x2
1 − 2y21

4β(β − 2y1)
− β − x1 − y1

2

(
β(β2 − 2x2

1 − 2y21)

(β2 − 2βy1)2
− 2y1

β2 − 2βy1

)
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Figure 14. The four cases considered in Theorem 4.9

If a is an optimal strategy, it must be a local minimum for Player I so both first

derivatives must be zero. Thus we can state:

x1 = −1

2

(
β(β2 − 2x2

1 − 2y21)

(β2 − 2βy1)
− 2y1

)
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After some algebraic manipulation we get

(96) (y1 − x1)(2β − 4y1) = β2 − 2x2
1 − 2y21

Setting Kx1 = 0 we arrive at

−3β2 − 4βx+ 6x2
1 + 4βy1 + 4x1y1 + 2y21 = 0

⇔ −3(β2 − 2x2 − 2y2) + (y − x)(4β − 4y1) = 0

Using the substitution from (96) we get

−3(y1 − x1)(2β − 4y1) + (y1 − x1)(4β − 4y1) = 0

⇔ (y1 − x1)(−2β + 8y1) = 0

So either y1 = x1 or y1 =
β

4
. In the former case, we have already shown that the

solution is x1 = y1 = −β

2
. We can indeed check that Kx1(a

∗) = Ky1(a
∗) = 0 and

Kx1x1Ky1y1 − K2
x1y1

=
3

4β2
> 0, so this represents a local minimum. If instead we

consider y1 =
β

4
, Kx1 = 0 gives us the quadratic

6x2
1 − 3βx1 −

15

8
β2 = 0

Which has solution x1 =
1±

√
6

4
β. We can ignore the positive solution since in that

case y1 + x1 > 0. We can verify, however, that

K

(
1−

√
6

4
β,

β

4

)
=

17−
√
6

16
β > 0.

Before proceeding to Case 2, consider points between R2 and R4

Case 2/4: a ∈ #3 ∩ 2\( 1 ∪ 4)

Let Player II choose point b∗, and let Player I determine to play a strategy on this

curve with probability
λ

2
of being chosen by the judge, where λ ∈ [0, 1). Mid(a,b∗)
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will intersect points (−1 + 2λ,−β) and (−1, β), and thus will be defined by

y = −β

λ
x+

λ− 1

λ
β.

The perpendicular line intersecting b∗ will be

y =
λ

β
x+

β − λ

2
.

The two intersect at

x̄ =
βλ(λ− β) + 2β2(λ− 1)

2λ2 + 2β2

The strategy of Player I, therefore, will be

x(λ) =
βλ(λ− β) + 2β2(λ− 1)

λ2 + β2
− β

2

with y(λ) =
λ

β
x(λ) +

β − λ

2
. The payoff will be given by

K(λ) = β + (x(λ) + y(λ)− β)
λ

2

Or after some simplification

K(λ) =
βλ3 − 2β2λ− β3λ+ 2β3

2λ2 + 2β2
=

β(β − λ)
(
β(1− λ) + (β − λ2)

)
2λ2 + 2β2

> 0

since β ≥ 1 > λ ≥ 0.

Case 2: a ∈R2

In this case, because of the extreme points of Ξ only (−1,−β) ∈ C1, Mid(a,b∗)

intersects the left and lower edges of Ξ. Fixing m > 0, consider Player I’s strategy

along the line

(97) y = m

(
x− β

2

)
+

β

2
.
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Case 2a: m ≥ 1
β

In this case, (97) will intersect #1 at a′ = (x′, y′), where

x′ =
βm2 − 6βm+ 4− β

2(m2 + 1)

and #2 at a′′ = (x′′, y′′), where

x′′ =
βm2 − 6βm− 4− β

2(m2 + 1)
.

Let y′ = y(x′) and y′′ = y(x′′). Note that (1,−β), (−1, 2
m

− β) ∈ Mid(a′,b∗) and

Mid(a′′,b∗) ∩ Ξ◦ = ∅. For any fixed m ≥ 1
β
, Player I may consider any strategy

γ ∈ [0, 1), where a(γ) = (1− γ)(x′′, y′′) + γ(x′, y′), the payoff will be

K = β +
(
x′′ + y′′ + γ(x′ + y′ − x′′ − y′′)− β

)(
γ2 1

2mβ

)

Kγ = (x′ + y′ − x′′ − y′′)γ2 1

2mβ
+ (x′′ + y′′ + γ(x′ + y′ − x′′ − y′′)− β)

(
γ

1

2mβ

)

Which has critical points at γ1 = 0 and

γ2 =
2(β − x′′ − y′′)

3(x′ + y′ − x′′ − y′′)
=

3βm+ 2 + β

6
.

Since m ≥ 1

β
, γ2 ≥ 5 + β

6
≥ 1, and from Case 1, we know that K(1) > 0. Thus for

for all points a in this case, K > 0.

Case 2b: 0 < m < 1
β

In this case (97) will intersect #3 at a′′′ = (x′′′, y′′′), where

x′′′ =
βm2 + 2βm− 4− β

2(m2 + 1)
.

Let y′′′ = y(x′′′). Note that (−1, β), (−1 + 2mβ,−β) ∈ Mid(a′′′,b∗). Player I may

consider any strategy γ ∈ [0, 1), where a(γ) = (1− γ)(x′′, y′′) + γ(x′′′, y′′′), the payoff
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will be

K(γ) = β +
(
x′′ + y′′ + γ(x′′′ + y′′′ − x′′ − y′′)− β

)(
γ2mβ

2

)

Kγ = (x′′′ + y′′′ − x′′ − y′′)γ2mβ

2α
+ (x′′ + y′′ + γ(x′′′ + y′′′ − x′′ − y′′)− β)

(
γ
mβ

2

)

Which has critical points at γ1 = 0 and

γ2 =
2(β − x′′ − y′′)

3(x′′′ + y′′′ − x′′ − y′′)
=

3βm+ 2 + β

6βm

Since m <
1

β
and 1 ≤ β,

γ2 =
1

2
+

2 + β

6βm
>

1

2
+

2 + β

6
=

5 + β

6
≥ 1.

From Case 2/4 we know that K(1) > 0.

Before proceeding to Case 3, we look at strategies between R3 and R4

Case 3/4: a ∈ #3 ∩ 2 ∩ 1\ 4

Let Player II choose point b, and let Player I determine to play a strategy on this

curve with probability
2− λ

2
of being chosen by the judge. Assuming (−1,−β) ∈ C1,

Mid(a,b∗) will intersect points (−1 + 2(1− λ), β) and (1,−β), namely:

y = −β

λ
x+

(1− λ)β

λ
.

The perpendicular line intersecting b will be

y =
λ

β
x+

β − λ

2
.

The two intersect at

x̄ =
βλ(λ− β) + 2β2(1− λ)

2λ2 + 2β2
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The strategy of Player I, therefore, will be

x(λ) =
βλ(λ− β) + 2β2(1− λ)

λ2 + β2
− β

2

with y(λ) = λ
β
x(λ) + β−λ

2
. K(x, y) will thus be

K(λ) = β + (x(λ) + y(λ)− β)
2− λ

2

Which can be expressed as

K(λ) = β

(
4(β + λ)(λ− 1)2 + (β − λ)2 + λ2(1− λ) + (3 + λ)β2

2λ2 + 2β2

)
.

From this, it is clear that K(λ) > 0 for all λ ∈ [0, 1].

Case 3: a ∈ R3

In this case, since Mid(a,b∗) intersects the top and right sides of the rectangle,

P1 ≥ 1
2
. Suppose Player I determines to be chosen with probability 1 − p, where

p ∈ [0, 1
2
], and wishesMid(a,b∗) to intersect the top-side of the rectangle at (1−x̄, β),

where x̄ ∈ [0, 2]. In this case, Mid(a,b∗) will intersect the right side of the rectangle

at

ȳ = β − 8βp

x̄2

and will have a slope of

m̄ = −8βp

x̄2
.

The strategy which will attain this for Player I (should it be possible) will be at

x(x̄) =
β
m̄
+ 2m̄x̄− 2β

m̄+ 1
m̄

− β

2
, y(x̄) = − 1

m̄

(
β
m̄
+ 2m̄x̄− 2β

m̄+ 1
m̄

− β

)
+

β

2

For a fixed p, this will determine a contour:

The payoff in this case will be

K(p, x̄|b∗) =
(4βp+ β)x̄4 − 32βp2x̄3 − 16(β2 − 2β)p2x̄2 + 64β3p2

64β2p2 + x̄4
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Figure 15. Parameterization of strategies in Case 3 of Theorem 4.9

If we let p̄ = 4p, and ignore the factor β, the numerator is

(98) (p̄+ 1)x̄4 + p̄2(−x̄2(2x̄+ β − 2) + 4β2)

Since we know that on the border of the subregion restricted by x+y < 0, K(a,b∗) >

0, if K(a,b∗) ≤ 0 in this sub-region then there must be a local minimum of this

expression on the interior of the region (i.e. x̄, p̄ ∈ (0, 2), β ≥ 1); at this point, since

the partial derivatives are all equal to zero the partial with respect to β,

p̄2(−x̄2 + 8β) = 0.

But clearly this is impossible. Thus ∀a ∈R3, K(a,b∗) > 0.

Case 4: a ∈ R4

In this case, the midset will intersect the top and bottom sides of the rectangle;

(−1, β), (−1,−β) ∈ C1. So

P1 =
1

2
+

β2 − 2x2 − 2y2

4(β − 2x)
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So

K(a,b∗) = β + (x+ y − β)

(
1

2
+

β2 − 2x2 − 2y2

4(β − 2x)

)
First derivative

Kx =
1

2
+

β2 − 2x2 − 2y2

4(β − 2x)
− β − x− y

2

(
β2 − 2x2 − 2y2

(β − 2x)2
− 2x

β − 2x

)

Ky =
1

2
+

β2 − 2x2 − 2y2

4(β − 2x)
+

(β − x− y)y

β − 2x

At an optimal strategy, a local minimum for Player I, both first derivatives must be

zero, thus we can state:

y =
1

2

(
2x− β2 − 2x2 − 2y2

β − 2x

)
After some algebraic manipulation

(99) y =
β

2
− x± 1

2

√
3β2 − 8βx+ 8x2

If y = β
2
−x+ 1

2

√
3β2 − 8βx+ 8x2, then x+y > 0, which is not the case. But we shall

show that the curve y = β
2
− x− 1

2

√
3β2 − 8βx+ 8x2 only intersects  3 at (−β

2
,−β

2
)

when β = 1.

Consider the line y = 1
3
x − 1

3
. The hyperbolic curve in question only intersects this

line at (−1
2
,−1

2
) when β = 1. To see this, set equal

y =
1

3
x− 1

3
=

β

2
− x− 1

2

√
3β2 − 8βx+ 8x2

⇔ −4x2 + (12β − 16)x− 9β2 + 6β + 2 = 0

The discriminant is 384(1− β).

The circle, #3 may be expressed

x2 + 2x+ (y − β)2 − β − 1

2
β2 = 0
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Substituting y = 1
3
x− 1

3
we get

x2 + 2x+ (
1

3
x− 1

3
− β)2 − β − 1

2
β2 = 0

⇔ 20x2 + (32− 12β)x+ 9β2 − 6β + 2 = 0

The discriminant is −8
9
(β−1)(2β+3), so we only have real solutions when β ∈ [−3

2
, 1],

but since β ≥ 1, we only have an intersection when β = 1.

We have thus shown that for all strategies a ∈ R2, K(a,b∗) ≥ 0, with equality only

when a = a∗ = −b∗. By symmetry of the game, a∗,b∗ are the unique globally optimal

pure strategies of Players I and II respectively. □



CHAPTER 5

d-Issue Final-Offer Arbitration

We will now generalize some of the previous results to higher dimension. Now let us

suppose Players I and II are to present final offers to the judge x,y ∈ Rd, respectively.

The judge chooses a fair settlement vector ξ from an d-variate Normal distribution

with mean µ and covariance matrix Σ = (σij)d×d. Also let us assume that players’

valuation of a settlement vector is additive, as before. Thus the payoff is

K (x,y) =



∑d
i=1 xi if R(x, ξ) > R(y, ξ)∑d
i=1 yi if R(x, ξ) < R(y, ξ)

1
2

∑d
i=1 xi + yi if R(x, ξ) = R(y, ξ)

with the judge choosing either offer with equal likelihood in the case that both offers

are equally reasonable. We shall consider only three reasonableness metrics in this

chapter: Net Offer, L1 Distance and L2 Distance.

1. Net Offer

We will call this game variant dNNO (d−Dimensional Normal, Net Offer). As with

the bivariate case, we shall show that optimal solution points, should they exist, must

lie on a particular d− 1 dimensional hyperplane for each player.

Ignoring the case when both players are equally reasonable (since it occurs with

probability zero) the payoff is

K (x,y) =


∑

i xi if |
∑

i(xi − ξi)| < |
∑

i(yi − ξi)|∑
i yi if |

∑
i(xi − ξi)| > |

∑
i(yi − ξi)|

.

90
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Again if we let ζ =
∑

i ξi, and wx =
∑

i xi, and wy =
∑

i yi this simplifies to

K(wx, wy) =


wx if |wx − ζ| < |wx − ζ|

wy if |wx − ζ| > |wy − ζ|

with the reasonable assumption that xi < 0, yi > 0. The random variable ζ follows

a normal distribution with mean 0 and variance σ2
ζ =

∑
i

∑
j σij. The optimal pure

strategies in this univariate case are

w∗
x = −σζ

√
π/2, w∗

y = σζ

√
π/2.

This however gives each player a set of optimal strategies which can be chosen inde-

pendently. Namely, the set of optimal strategies for Player I is

X∗ =
{
−σζ

√
π/2α : α ∈ ∆d

}
And the solution set for Player II is

Y ∗ =
{
σζ

√
π/2β : β ∈ ∆d

}
Where ∆d is the d-dimensional simplex.

2. L1 Distance

If the judge instead uses the L1 distance to measure reasonableness, the payoff will

be

K (x,y) =


∑

i xi if
∑

i |xi − ξi| <
∑

i |yi − ξi|∑
i yi if

∑
i |xi − ξi| >

∑
i |yi − ξi|

.

We will call this game variant dNL1 (d−Dimensional Normal, L1 distance). The

results from the 2-dimensional case generalize well to d dimensions. First a lemma:

LEMMA 5.1. In dNL1, both players’ optimal pure strategies, if they exist, must lie

on the line x1 = x2 = · · · = xd.
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Proof. First observe that if the players have optimal pure strategies, then by the

symmetry of the game, its value must be zero. Suppose Player II is playing optimally

with strategy y∗ = (y∗1, . . . , y
∗
d) not on the line y1 = · · · = yd. WLOG, assume

y∗1 ̸= y∗2. Player I may of course respond by choosing strategy x∗ = −y∗, giving an

expected payoff of zero. By switching to strategy x′ where x′
1 = x′

2 =
x∗
1+x∗

2

2
, Player

I increases the probability that he receives the judge’s ruling (by lemma 4.17), yet

net demand remains unchanged, thus the new expected payoff is negative. Therefore,

Player II could not have been playing optimally. The same is true for Player I by

symmetry. □

Given that any optimal pure strategies for either player must exist on the line x1 =

· · · = xd, we may apply a rotation to the distribution to align the vector 1d with e1.

LEMMA 5.2. The rotation matrix to align 1d to e1, where e1 = (1, 0, · · · , 0) is

Rd =



√
1
d

√
1
d

√
1
d

· · ·
√

1
d

−
√

1
2

√
1
2

0 · · · 0

−
√

1
6

−
√

1
6

√
2
3

· · · 0

...
...

...
. . .

...

−
√

1
d(d−1)

−
√

1
d(d−1)

−
√

1
d(d−1)

. . .
√

d−1
d


Specifically, in the first row each entry (Rd)1j =

√
1/d. For i = 2, . . . , d,

(Rd)ij =


0 i > j√

i−1
i

i = j

−
√

1
i(i−1)

i < j

Proof. That the matrix Rd is a rotation matrix is apparent from two facts, that

det(Rd) = 1 and RdR
T
d = I.

Claim 1: det(Rd) = 1

First note that det(R1) = 1. Let us assume that det(Rd−1) = 1. Let Rd(ij) be the
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matrix resulting by removing row i and column j.

det(Rd) =

√
d− 1

d
det(Rd(dd)) + (−1)d−1

√
1

d
det(Rd(1d))

=

√
d− 1

d

√
d− 1

d
det(Rd−1) + (−1)d−1

√
1

d
det(Rd(1d))

=
d− 1

d
+ (−1)d−1

√
1

d
det(Rd(1d)).

Claim 1a: det(Rd(1d)) = (−1)d−1
√

1
d

det(Rd(1d)) = det



−
√

1
2

√
1
2

0 · · · 0

−
√

1
6

−
√

1
6

√
2
3

· · · 0

...
...

...
. . .

...

−
√

1
(d−1)(d−2)

−
√

1
(d−1)(d−2)

−
√

1
(d−1)(d−2)

. . .
√

d−2
d−1

−
√

1
d(d−1)

−
√

1
d(d−1)

−
√

1
d(d−1)

. . . −
√

1
d(d−1)



=

√
1

2

√
2

3

√
3

4
· · ·
√

d− 2

d− 1

√
d− 1

d
det



−1 1 0 · · · 0

−1
2

−1
2

1 · · · 0

...
...

...
. . .

...

− 1
d−2

− 1
d−2

1
d−2

. . . 1

− 1
d−1

− 1
d−1

− 1
d−1

. . . − 1
d−1


=

√
1

d
det(R′

d−1).

Claim1b: det(R′
d) = (−1)d, where R′

d is defined as follows:

(R′
d)ij =


0 j > i+ 1

1 j = i+ 1

−1
i

j ≤ i
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Clearly det(R′
1) = (−1)1. Suppose det(R′

k) = (−1)k for k = 1, . . . , d− 1. Note that

R′
d =

 R′
d−1 ed−1

−1
d
1T −1

d

 ,

where ed−1 = (0, 0, · · · , 0, 1)T .

det(R′
d) =

−1

d
det(R′

d−1)− det



−1 1 0 · · · 0

−1
2

−1
2

1 · · · 0

...
...

...
. . .

...

− 1
d−2

− 1
d−2

1
d−2

. . . 1

−1
d

−1
d

−1
d

. . . −1
d


= −1

d
(−1)d−1 − d− 1

d
det(R′

d−1)

= −1

d
(−1)d−1 − d− 1

d
(−1)d−1

=

(
−1

d
− d− 1

d

)
(−1)d−1

= (−1)(−1)d−1

= (−1)d.

By Claim 1b and Claim 1a, Claim 1 is proven.

Claim 2: RdR
T
d = I

(RdR
T
d )11 =

∑d
i=1

1
d
= 1.

For i > 1, (RdR
T
d )ii = (i− 1) 1

i(i−1)
+ i−1

i
= 1.

For j > 1, (RdR
T
d )1j =

√
1
d

(∑j−1
k=1−

√
1

j(j−1)
+
√

j−1
j

)
=
√

1
d

(
−
√

j−1
j

+
√

j−1
j

)
= 0.

For i > 1, RdR
T
d )i1 = 0, as above.

Claim: the dot product of any two rows i and j,i > 1, j > 1, i ̸= j, is zero.

WLOG assume let i > j. All entries in row i where nonzero corresponding entries exist

in row j are identical, say α. The sum of the entries in row j is (j−1)
√

1
j(j−1)

+
√

j−1
j

=



3. L2 DISTANCE 95

0.

It suffices to verify that Rd1d =
√
de1, and this is easily seen to be true, since the

sum of each row j > 1 of R is zero. □

After rotation, the variance along the x1 axis is σ′
11 = RΣRT = 1

d

∑
i

∑
j σij. The

optimal strategies for Players I and II in the univariate case correspond, respectively,

to

x̃∗ = −

√
π
∑

i

∑
j σij

2d
e1, ỹ

∗ =

√
π
∑

i

∑
j σij

2d
e1

Rotated back to the original axis, we have the following result:

THEOREM 5.1. In dNL1, if optimal pure strategies x∗,y∗ exist for Players I and

II, they are given by

x∗ = −

√∑
i

∑
j σijπ/2

d
1d,y

∗ =

√∑
i

∑
j σijπ/2

d
1d.

3. L2 Distance

Now suppose the judge awards to whichever player is closer to his fair settlement

opinion under Euclidean distance. They payoff is

K (x,y) =


∑

i xi if
∑

i (xi − ξi)
2 <

∑
i (yi − ξi)

2

∑
i yi if

∑
i (xi − ξi)

2 >
∑

i (yi − ξi)
2

.

We will call this game variant dNL2 (d−Dimensional Normal, L2 distance).

LEMMA 5.3. In dNL2, if optimal pure strategies x∗,y∗ exist for Players I and II

respectively, they both must lie on the line x1 = x2 = · · · = xd.

Proof. First observe that if the players have optimal pure strategies, then by the

symmetry of the game, its value must be zero. Suppose Player II is playing optimally
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with strategy y∗ = (y∗1, . . . , y
∗
d) not on the line y1 = · · · = yd. WLOG, assume y∗1 ̸= y∗2.

Player I may of course respond by choosing strategy x∗ = −y∗, giving an expected

payoff of zero. Let w∗ =
∑

i xi. By deviating to any other strategy x′ such that∑
i x

′
i = −w∗, Player I’s net reward, should he be chosen by the judge, does not

change. The point on this plane that is closest to the origin is x′ = −w∗

d
1d, where

1d is the d-dimensional vector of all components 1. As this strategy minimizes the

distance to the origin for Player I, the half-space of points closer to x′ contains the

origin, so the expected value of the game is negative. Thus Player II was not playing

optimally. □

By Lemma 5.2 we have the same conclusion as in dNL1, namely

THEOREM 5.2. In dNL2, if optimal pure strategies x∗,y∗ exist for Players I and

II, they are given by

x∗ = −

√∑
i

∑
j σijπ/2

d
1d,y

∗ =

√∑
i

∑
j σijπ/2

d
1d.



CHAPTER 6

Conclusion

We have developed a model of multi-issue final-offer arbitration as a zero-sum game

where both players are risk-neutral, issues under dispute are quantitative and the

values are additive. In the bivariate case where the judge’s opinion is drawn from

a normal distribution, the players’ optimal pure strategies (should they exist) for

any Lp metric with p ∈ [1,∞] are identical irrespective of p. For p = 2, if the

two components are not too negatively correlated, these pure strategies are locally

optimal. If we further assume that the issues are positively correlated, these represent

the unique optimal strategy pair. Furthermore, it was observed that in this case

whole-package FOA leads to an outcome with greater variance than IBI, and would

act as a greater motivator to reach agreement in negotiations. The unique possible

pure optimal strategies for a variant where the judge uses Mahalanobis distance to

measure reasonableness of offers were derived. A game variant was studied where the

judge draws an opinion from a bivariate uniform distribution, and the only possible

pure optimal strategies were derived and proven to be globally optimal. Lastly, a

game variant was studied where the final offers are arbitrarily large vectors.

Even among the game variants considered in this work, there is work that may be

done to strengthen the results. It is our conjecture that the results of local and

global optimality in the L2 case apply also to the L1, L∞ and Lp cases, and a similar

result could be shown for the Mahalanobis distance. It is also our conjecture that

the restriction on ρ in Theorem 4.3 may be weakened to math that of Theorem 4.2.

It is also of interest how the proof of global optimality in the L2 case extend to the

d−dimensional game.
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This represents only an initial model of the multi-issue FOA game. As this is the

first attempt (to the authors’ knowledge) to formulate a detailed model of the higher-

dimensional FOA game, the intention here is not to create an exhaustively general

model. Instead we wish to delineate a tractable model from which we can glean some

insights, highlight the many interesting ways in which it can be extended and gen-

eralized, as well as discuss the challenges in doing so. Many variants are worthy of

consideration. It may be the case that the final-offer vectors must be standardized

before making the ruling so that components of differing units may be compared.

Certainly, the players’ valuation of a settlement may be more complicated than the

sum of the components. By weighting the components differently, the game imme-

diately becomes non-zero sum. Under what conditions will pure optimal strategies

exist? The level of analysis required for this variant is beyond that of this work, but

it may be that some of the techniques used could be modified to tackle this case.

Finally, it is worth considering an extension of final-offer arbitration to n-player

games, where based on the evidence provided by the parties, the judge draws a fair

settlement from a Dirichlet distribution. This would have applications for inheritance

splitting, for example, where the heirs cannot agree on a fair split and need to bring in

an arbiter. To our knowledge, final-offer arbitration has not been used in an n−player

scenario but we feel it would be an effective means to encourage agreement among

the participants.
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