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SUMMARY 

 

Most broadly conceived this dissertation is concerned with the a priori in mathematics.  

Since mathematical knowledge seems to make no appeal to empirical circumstances and carries 

an air of necessity with it, philosophers have long taken it as a paradigm case of a priori 

knowledge.  I will argue against this claiming that mathematics at its foundations, that is, set 

theory, is exploratory and experimental, developed pragmatically along lines similar to the 

natural sciences.  More specifically this dissertation is concerned with the set theory New 

Foundations (NF), developed by W. V. Quine, and the philosophy surrounding it.  The argument 

will have both historical and philosophical components, and though they are often related, I have 

done my best not to mix the two, though no doubt my philosophical and historical inclinations 

have at times influenced each other. 

The dissertation consists of six chapters, some more closely linked than others, but all 

concerned with this general theme of set theory as a naturalistic endeavor.  In the first section of 

this dissertation, I present a brief history of set theory through the discovery of the paradoxes, 

and I consider the main proposals offered by Zermelo and Russell for resolving them.  Chapter 

one focuses on the work of Georg Cantor and his founding of set theory.  Here, I look at the 

motivations for set theory in giving an account of the infinite and review the major early results 

of set theory.  In chapter two, I turn to the crisis in set theory brought about the set-theoretic 

paradoxes, particularly in the work of Bertrand Russell.  Two important points arise here.  First, 

to the extent that there was any single shared conception of a set at the founding of the theory, it 

was the idea that a set is the extension of a predicate, i.e. is the collection of things that a 

predicate is true of.  Second, that after the paradoxes the success of a set theory was largely 

judged by its ability to explain the infinite and serve as a framework for reconstructing accepted  
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SUMMARY (continued) 

mathematics.  This is a central idea throughout the dissertation in arguing that set theory is 

largely shaped by pragmatic concerns of theory building.  In the final chapter of this section, I 

present Quine‘s NF as combining the insights of both Zermelo and Russell for resolving the 

paradoxes. 

The second section of the dissertation contains the philosophical core.  In chapter four, I 

argue first that by examining Quine‘s early technical logical work as a reaction to Russell, we 

gain great insight into the origins of Quine‘s more general naturalistic and broadly pragmatic 

outlook as exemplified in his later philosophical work.  In looking at Quine‘s publications from 

the 1930‘s into the early 1950‘s, it is striking how much of this work concerns technical issues in 

logic and set theory but neglects what might be thought as the major philosophical views he is 

now most remembered for.  I aim to bring out how these early technical endeavors are intimately 

intertwined with his later more obviously philosophical aims.  In chapter five, I then turn to 

consider some arguments in favor of the iterative conception of set so often exemplified by the 

axioms of ZF and perhaps most notably championed by George Boolos.  Currently, the iterative 

conception is preferred to the extent of its being taken as the single ―correct‖ conception of a set.  

Against this, I argue that this preference actually rests largely on pragmatic grounds that support 

NF equally well.  Thus, I aim to show that mathematics in its foundations develops in ways 

much more akin to the natural sciences and as such, is not the paradigm of a priori knowledge 

philosophers have often thought it to be. 

In the final chapter, I continue with the arguments of the previous two turning to consider 

some of the more technical details of NF, particularly its disproof of the axiom of choice, in 

order to show that it satisfies the criteria offered for judging a set theory successful, that is, that it  
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SUMMARY (continued) 

provides an account of the infinite and serves as a framework for reconstructing mathematics 

within it.  In fact, in these concluding chapters I aim to bring out that as set theory itself has 

developed as a subject for mathematical investigation—and is thus no longer limited to 

providing a foundation for other branches of mathematics—NF with its ―big sets‖ such as the 

universal set may be more consonant with current mathematical thought regarding set theory.  A 

general aim throughout this dissertation is to make the technical details of NF, and its place in 

set-theoretic research generally, more accessible to philosophers, as well as to mathematicians 

and computer scientists.  The theory has received a fair amount of attention by researchers in 

various fields, but so far much of this research remains isolated from the mainstream of 

philosophical and mathematical research—an unfortunate situation given its potential to 

elucidate very general issues in the philosophy and foundations of mathematics. 



 1 

I.  CANTOR AND THE ORIGINS OF SET THEORY 

 

 In the following chapter, I lay out the origins of set theory with a particular focus on the 

work of Georg Cantor (1845-1918) up to the discovery of the set theoretic paradoxes around 

1900.  I have not attempted to make any original contribution to the already existing literature on 

the history of set theory.  My aim here in only to provide context for the chapters that will follow.  

To this end I have relied heavily on the work of Akihiro Kanamori, Joseph Dauben, and José 

Ferreirós.
1
  Also, there are philosophically relevant issues here, but I will hold off explicit 

treatment of them until later chapters of this dissertation.  The primary discussion of the major 

trends in the philosophy of set theory will come in part II. 

 Set theory arose as a mathematical discipline, though often deeply connected to the 

metaphysical views of it founders, during the nineteenth century rigorization of analysis.  Since 

the beginnings of the calculus with Leibniz and Newton, the notion of a function had been 

gradually expanded from analytic expressions to arbitrary correspondences.  Euler made the first 

great expansion in the eighteenth century by introducing methods relating to infinite series.  In 

the following century, however, troubles arose surrounding such unrestricted use of functions 

and the related notions of convergence and continuity.
2
 

 Cauchy and Weierstrass eliminated these difficulties by further articulating convergence 

and continuity and replacing infinitesimals with the notion of a limit in terms of the now familiar 

epsilon-delta language.  The result of their work not only eliminated the apparent flaws in the 

calculus, but it also restored a deductive rigor to mathematics absent since Euclid.  Making sense 

                                                 
1
 Akihiro Kanamori, ―The Mathematical Development of Set Theory from Cantor to Cohen,‖ The Bulletin of 

Symbolic Logic, vol. 2, number 1, (March 1996), pp. 1-71; Joseph Warren Dauben, Georg Cantor:  His Mathematics 

and Philosophy of the Infinite, (Princeton:  Princeton University Press, 1979); José Ferreirós, Labyrinth of Thought:  

A History of Set Theory and its Role in Modern Mathematics, (Boston: Birkhäuser Verlag, 1999). 
2
 Kanamori, ―Development,‖ pp. 1-2.  For a brief account of such difficulties with the calculus see Joan Weiner, 

Frege in Perspective, (Ithaca:  Cornell University Press, 1990), pp. 23-6. 
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of these new functions in terms of an infinite series was only achieved through their careful 

specification by means of deductive methods.  Cantor emerged from this tradition that restored 

proof as the focal point of mathematics thus furthering its greater abstraction and generality.
3
   

 His first important result came in 1870 in proving a uniqueness theorem for trigonometric 

series:  if a trigonometric series converges everywhere to zero, then all of its coefficients are 

equal to zero.  He generalized this result in his ―On the Extension of a Theorem of the Theory of 

the Trigonometric Series‖ [1872]
4
 to obtain the result:  For a collection of real numbers P, let P 

be the collection of limit points for P, and let P
(n)

 be the result iterating this operation n times.  If 

a trigonometric series converges everywhere to zero except on a P where for some n, P
(n)

 is 

empty, then all of its coefficients are equal to zero.  In considering collections of real numbers 

specified by an operation—a variation on the idea that sets are the extensions of concepts—he 

put himself on the path to set theory.
5
 

 In addition to this work, Cantor made another important move now familiar in 

contemporary set theory; he built up the real numbers from collections of rationals.  While 

Dedekind‘s cuts are perhaps now the most familiar construction of the reals from rationals, 

Cantor construed the reals as what he called ―fundamental sequences‖ of rationals, or what are 

now often called ―Cauchy sequences.‖
6
  As Dauben explains, Cantor saw a logical error in 

previous attempts to construct the real numbers in that these constructions had in some sense 

presupposed the very objects they were supposed to define.  The common mistake was to equate 

                                                 
3
 Kanamori, ―Development,‖ p. 2. 

4
 Georg Cantor, Gesammelte Abhandlungen:  Mathematische und Philosophischen Inhalts, Ernst Zermelo, ed. 

(Hildesheim:  Georg Olms Verlagsbuchhandlung, 1962), pp. 92-102. 
5
 Kanamori, ―Development,‖ p. 2; On the relationship between sets as the extensions of concepts and the 

specification of a set by an operations see José Ferreirós, Labyrinth of Thought, p. 143; see also George Boolos, 

―The Iterative Conception of Set,‖ in Logic, Logic, and Logic, ed. Richard Jeffrey, (Cambridge:  Harvard University 

Press, 1998), pp. 13-4; I will return to this point in more detail in Part II. 
6
 The fundamental sequences are defined by the same property Cauchy used for his criterion of convergence; see 

Ferreiros, p. 128. 
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some arithmetic sum with a preexisting real.  Cantor‘s idea was to show that the sequences 

themselves could do the work of the reals.
7
 

Following Weierstrass, Cantor began with the collection of rationals A, and then 

provided a foundation for all further concepts of number in terms of an infinite sequence of 

rationals {an}.  He first defines a fundamental sequence as follows:  an infinite sequence of 

rationals  

(1) a1, a2, …, an, …  

is fundamental if there exists an integer N such that for any positive rational value of ε, |an+m - am| 

< ε, for any m and for all n > N.  He then observes that if {an} is a fundamental sequence then it 

has a definite limit b, though Dauben carefully points out that in saying this Cantor does not 

mean to presuppose an actual limit b of {an}.  At this point, he only says that b is a definite 

symbol associated with the sequence {an}.  Next, he defines the ordering relations between 

fundamental sequences:  if we associate {an} with b and {an} with b, then if for all n greater 

than some arbitrarily large N, an – an < ε, then b = b; if an – an > ε, then b > b; and if an – an < -

ε, then b < b.  Thus, a fundamental sequence with limit b can bear one of three relations to a 

rational number a, which can itself be construed as the constant fundamental sequence {a}; either 

b = a or b < a or b > a.  From this discussion, Cantor concludes, ―From these and the definitions 

immediately following it follows that if b is the limit of the sequence (1), then b - an becomes 

infinitely small as n increases, whereby, incidentally, the designation ‗limit of the sequence (1)‘ 

for b finds a certain justification.‖
8
 

                                                 
7
 Dauben, Cantor, p. 37. 

8
 Ibid., p. 38; Cantor, [1872], p. 93 (Dauben‘s translation). 



 

 

4 

 Finally, Cantor extends the arithmetic operations from the collection of rationals A to the 

collection B of new numbers b:  given the numbers b, b, and b in B respectively associated 

with the fundamental sequences {an}, {an}, and {an}, we define the following operations 

  b + b = b as lim(an + an - an) = 0 

  b  b = b as lim(an  an - an) = 0 

  b / b = b as lim(an / an - an) = 0. 

Having thus extended these arithmetic operations to the new objects of B, Cantor now refers to 

these objects b as numbers rather than symbols and as such completes his construction of the 

reals out of the rationals.
9
  Kanamori notes three particularly important aspects of Cantor‘s 

construction of the reals in influencing his development of set theory.  The construction in terms 

of fundamental sequences led him to more explicitly consider infinite collections, to view them 

as unitary objects, and to allow for arbitrary possibilities of such objects.  But it was Cantor‘s 

next move—to prove that the reals are uncountable—that led to his full-blown development of 

transfinite set theory.  ―Set theory was born on that December 1873 day when Cantor established 

that the collection of real numbers is uncountable,‖ Kanamori remarks, ―and in the next decades 

the subject was to blossom through the prodigious progress made by him in the theory of ordinal 

and cardinal numbers.‖
10

 

 During this period Cantor began considering infinite iterations of his operator P where 

P
(∞)

 = ∩n
∞
P

(n)
, P

(∞+1)
 = P

(∞)
 , P

(∞2)
, …, P

(∞^2)
, …, P

(∞^∞)
, …, P

(∞^∞^^∞)
, …. 

He also began to investigate infinite collections and real numbers and infinite enumerations as 

such.  Combined, these moves led him to the basic concepts used in the study of the continuum 

                                                 
9
 Ibid., pp. 38-9. 

10
 Kanamori, ―Development‖, p. 3. 
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and to the formulation of the transfinite numbers.
11

  His first major result in this direction was to 

prove that the set of reals is uncountable.  The proof first appeared in print in his 1874 ―On a 

Property of the Totality of All Real Algebraic Numbers‖.
12

  Cantor first establishes that the 

algebraic numbers are countable, where a real number ω is algebraic if there exists a positive 

integer n, and integers a0, a1, …, an, an  0, such that 

  anω
n
 + an-1ω

n-1
 +  + a1ω + a0 = 0. 

He then proceeds by reductio to show that for any countable sequence of reals, every interval 

contains a real not in the sequence: 

 Let the set of reals be countable.  Then each real ω can be sequenced by indexing them 

with natural numbers n: 

  ω1, ω2, ω3, …, ωn, …. 

Now, given an interval (α, β) a subset of reals, it is possible to find at least one real number η 

such that η fails to be listed as an element of the sequence.  To find such an η, let α < β and pick 

the first two numbers α, β of the above sequence in the interval (α, β).  These form another 

interval (α, β).  Then continue this procedure to yield a sequence of nested interval through (α
n
, 

β
n
) where α

n
, β

n
 are the first two numbers of the sequence in the interval (α

n-1
 … β

n-1
).  There are 

two possibilities to consider: 

 If the number of constructed intervals is finite, then at most only one additional element 

of the sequence could lie in the interval (α
n
, β

n
).  By choosing any real number η in the interval 

(α
n
, β

n
) not equal to the possible number from the sequence, we find a real not listed in the 

sequence. 

                                                 
11

 Ibid., p. 3. 
12

 Georg Cantor, ―On a Property of the Totality of All Real Algebraic Numbers,‖ in From Kant to Hilbert:  A Source 

Book in the Foundations of Mathematics, vol. II, ed. William Ewald, (Oxford:  Clarendon Press, 1996), pp. 840-43. 



 

 

6 

 If on the other hand the number of constructed intervals is not finite, since the sequence α, 

α, …, α
n
, … is bounded in (α, β), it has an upper limit α

∞
, and similarly, the sequence β, β, …, 

β
n
, … has a lower limit β

∞
.  There are two further cases to consider.  If α

∞
 < β

∞
, then as in the 

finite case any real number η in the interval (α
∞
, β

∞
) would be the real not listed in the above 

sequence.  If, however, α
∞
 = β

∞
, then η = α

∞
 = β

∞
 and η could not be listed as an element of the 

above sequence.  Let η = ωρ.  For n a sufficiently large index, ωρ would be excluded from all the 

intervals nested within (α
n
, β

n
).  But by virtue of the construction, η must lie within (α

n
, β

n
).  

Contradiction, and hence, the collection of real numbers is uncountable.
13

 

 In his next publication ―A Contribution to the Theory of Manifolds‖ [1878], Cantor 

began to focus more directly on bijective mappings between sets.
14

  He defined two sets as 

having the same power if and only if there is a bijective mapping between them.  Whereas his 

earlier result on the uncountability of the reals showed where such a mapping failed to hold, he 

now looked to see where these mappings did hold.  It was these investigations that led him to 

fully develop the mathematics of the transfinite.
15

  At the end of his investigations, however, he 

had only been able to find two powers of infinite sets and conjectured that every set of reals has 

the first power, that is, is countable, or has the power of the continuum.  His attempts to solve 

this early version of the Continuum Hypothesis pushed his work forward leading him to a more 

arithmetical approach in studying sets of real numbers as well to questions of set existence as 

such.  At least where Cantor is concerned, Kanamori observes that ―Set theory had its beginnings 

not as some abstract foundation for mathematics but rather as a setting for the articulation and 

                                                 
13

 I have followed Dauben pp. 51-2 in presenting Cantor‘s proof, but Kanamori p. 6 also sketches it but in less detail. 
14

 Cantor, GA, pp. 119-33. 
15

 Kanamori, ―Development‖, pp. 4-5. 
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solution of the Continuum Problem:  to determine whether there are more than two powers 

embedded in the continuum.‖
16

 

 Cantor‘s next major work, one of the most important in presenting his developed set 

theory, Foundations of a General Theory of Manifolds:  A Mathematico-Philosophical 

Investigation into the Theory of the Infinite [1883], commonly referred to as Grundlagen 

introduced his theory of ordinal numbers and the notion of well-ordering.
17

  His idea was to shift 

focus away from the infinitely indexed operator P used in his paper on the trigonometric series 

and to turn his attention to the indexes themselves, what became his ordinal numbers.  Here, he 

also made a notable notational change in moving from the symbol ‗∞‘ of the potential infinite to 

‗ω‘, the final letter of the Greek alphabet, to represent the infinite as a completed whole.  In 

another terminological shift representing his focus away from subsets of real numbers and to 

abstract set theory, Cantor stopped speaking of point-manifolds and instead talked of sets.  The 

major achievement of the Grundlagen, as these changes indicate, was to single out the transfinite 

numbers as both an autonomous and systematic extension of the finite numbers.  Without this 

move, Cantor would have had no way to progress beyond the finite, and as such, research in 

abstract set theory and on the continuum would have stopped.
18

 

 Traditionally, mathematicians had treated the infinite as a variable increasing beyond all 

limits or decreasing to arbitrary smallness.  In being arbitrarily large or small, however, the 

infinite was only potential, and the finite remained the primary notion.  The idea, in a way, was 

that there was always some finite number that would be large or small enough available for the 

task at hand.  Absolute, or completed, infinities were thought to be incoherent.  Cantor aimed to 

                                                 
16

 Ibid., p. 5. 
17

 Georg Cantor, Foundations of a General Theory of Manifolds:  A Mathematico-Philosophical Investigation into 

the Theory of the Infinite, in Ewald, vol. II, pp. 878-920. 
18

 Kanamori, ―Development‖, p. 5; Dauben, Cantor, p. 96. 
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show in the Grundlagen that this was in fact not the case.  A succession of actually infinite 

numbers could be developed with identifiable and determinate number theoretic properties 

making these transfinite numbers just as legitimate as any other number system.
19

 

 Prior to this work, Cantor had no simple definition of the powers beyond the 

denumerable infinite.  The least power among the infinite sets was the countable set of natural 

numbers.  His new transfinite number would allow for a natural definition of powers beyond this 

countable infinity.  To this end, he observed that the natural numbers resulted from the repeated 

addition of units to yield the sequence 1, 2, 3, ….  This he calls the first principle of generation, 

the successive generation of finite ordinal numbers by successive addition.  This class, the 

number class (I), had no largest element, but there was nothing to stop Cantor from introducing a 

new number ω expressing the natural order of the entire set (I).  This number is the first number 

following the entire sequence of finite numbers in the set of natural numbers; it is the first 

transfinite number.  But then there was also no reason not to apply the first principle of 

generation again to yield additional transfinite numbers ω, ω + 1, ω + 2, …, ω + n, ….  Again, 

this sequence had no largest element, but Cantor then introduced another new number 2ω to 

represent this entire sequence in its natural order.  And again he applied the first principle of 

generation to yield the new sequence 2ω, 2ω + 1, 2ω + 2, …, 2ω + n, ….   

This process then led him to characterize what he called the second principle of 

generation.  He explained that ω could be thought of as a limit approached by the sequence of 

natural numbers but never reached by it in the sense that ω is the first whole number after all the 

finite numbers in the set of natural numbers.  So his second principle of generation stated that if a 

sequence of numbers has no greatest element, then a new transfinite number can always be 

generated  as the least number greater than all those in the sequence.  And so the successive 

                                                 
19

 Ibid., p. 96. 
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application of the two principles of generation always allowed for the possibility of generating a 

new number in succession to those previously generated numbers.  Once he had this second 

principle, he was able to define his second number class (II) as the collection of all numbers α 

formed from the two generating principles in a definite increasing succession where all numbers 

proceeding α constitute a set with the same power as the first number class (I).  He also indicated 

a third principle, the principle of limitation, that was to allow him to proceed to even higher 

classes of numbers, though he did not do much to develop this idea.
20

 

In summarizing the significance of this work on the first and second number classes, 

Dauben notes the important difference mentioned above between the transfinite numbers and 

Cantor‘s earlier introduction of infinite symbols.  Previously he focused on derived sets of the 

second species and treated the transfinite symbols attached to his operator P as mere indices to 

identify and distinguish among the derived sets themselves.  The transfinite numbers, however, 

were themselves independent numbers, and this was necessarily so.  Cantor aimed to use these 

very numbers in his further investigations into the powers of sets and the continuum.  Hence, he 

could not define the transfinite numbers in terms of the very sets he wished to study.  They 

required an independent formulation so that they could be applied to the study of point sets and 

their powers.  The transfinite numbers were to be understood as having an independent claim on 

reality equal to that of any of the other numbers.
21

 

Another crucial aspect of the development of set theory introduced in Grundlagen was 

the well-ordering principle, which Cantor described as ―the law of thought that says that it is 

always possible to bring any well-defined set into the form of a well-ordered set—a law which 

seems to me fundamental and momentous and quite astonishing by reason of its general 

                                                 
20

 Ibid., pp. 97-8.  We will see in Chapter 2 how Cantor avoided the paradoxes, Burali-Forti being the relevant one 

in this case. 
21

 Ibid., pp. 97-8. 
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validity.‖
22

  As Kanamori points out, this principle can be understood as part of the unity Cantor 

saw between the finite and transfinite numbers; just as the finite numbers can be well-ordered so 

can the transfinite numbers.
23

 

Cantor introduces the notion of a well-ordered set early in Grundlagen stating that  

A well-ordered set is a well-defined set in which the elements are bound to one another by a determinate 

given succession such that (i) there is a first element of the set; (ii) every single element (provided it is not 

the last in the succession) is followed by another determinate element; and (iii) for any desired finite or 

infinite set of elements there exists a determinate element which is their immediate successor in the 

succession (unless there is absolutely nothing in the succession following all of them).
24

 

 

These well-ordered sets were essential to his investigations into the transfinite numbers and in 

particular, in distinguishing finite from infinite sets.  Here, he introduced the important concept 

of a numbering [Anzahl], where a numbering expressed the ordering of the elements of a given 

set.  Later, he would identify these numberings as the ordinal numbers.  In drawing this 

connection between well-ordered sets and their numberings, Cantor was also able to further the 

transfinite numbers‘ claim to having objective reality.  As Dauben explains the objective reality 

of the transfinite numbers came from the existence of well-ordered set whose order could be 

expressed by associating them with a number from the various transfinite number classes.  To 

this end, Cantor aimed to show that for any countably infinite well-ordered set, there was always 

a number of the second number class (II) that uniquely represented its ordering.
25

 

 To illustrate this he considered the denumerable set (αν), which can be well-ordered, for 

example, in any of the following ways: 

  (α1, α2, …, αν, αν+1, …) 

  (α2, α3, …, αν+1, αν+2, …, α1) 

  (α3, α4, …, αν+2, αν+3, …, α1, α2) 

                                                 
22

 Cantor, Foundations, p. 886. 
23

 Kanamori, ―Development‖, p. 6 
24

 Cantor, Foundations, p. 884. 
25

 Dauben, Cantor, p. 101. 
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  (α1, α3, …, α2, α4, …).   

Cantor states that two well-ordered sets have the same numbering, or are similar, if they can be 

put into a one-to-one correspondence in such a way that preserves their respective orderings.  So 

if αn comes before αm in the ordering of one set, then in the other set the respective 

corresponding elements αn and αm must be ordered so that αn comes before αm.  And such 

correspondences are always uniquely determined.  So he observed that given any two well-

ordered sets, he could use the succession of natural numbers plus the transfinite numbers to 

identify similar well-ordered sets.  Given any number α of the first or second number class, when 

taken together with all or its preceding elements, the numbering of all similar well-ordered sets is 

given by α uniquely.  For example, 

  (α1, α2, α3, …, αν, αν+1, …) 

  (α2, α1, α4, …, αν+1, αν, …) 

  (1, 2, 3, …, ν, …) 

all have the same numbering ω.  Similary, 

  (α2, α3, …, αν, …, α1) 

  (α3, α4, …, αν+1, …, α1, α2) 

  (α1, α3, …; α2, α4, …) 

have the distinct numberings ω + 1, ω + 2, and 2ω, respectively.
26

 

 Cantor also employed his distinction between number and numbering to bring out 

differences between finite and infinite sets.  For finite sets, their numbering remains the same 

regardless of their ordering, whereas for infinite sets, there are sets of the same power with 

different numberings and so with different well-orderings.  The numberings, then, are dependent 
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on the ordering of the elements so that, in general, different orderings produce different 

numberings, although they have the same number of elements.  In addition, there is also a 

correlation between the number of elements in a set and the number of numberings the set could 

yield depending upon its ordering.  For example, Cantor considered the sets of the first number 

class (I) given in a determinate order.  The numberings of these sets, so long as they are well-

ordered, always corresponded to numbers of the second number class (II).  Also, conversely, 

given any number α of (II), any set of (I) could be ordered so that its numbering would 

correspond to α.  Analogous results hold, as well, for sets of higher power.
27

 

 As indicated above, when focusing only on finite sets, the concepts of power and 

numbering coincided; different orderings of finite sets did not produce different powers.  Since 

for finite sets power was independent of ordering, a finite set of n elements just had power n.  

But for infinite sets the distinction between power and number was significant.  Every number α 

of (II) indicated a unique ordering of elements, but any such set with α as its numbering was 

always denumerable.  Here a connection remained between power and numbering in that any 

denumerable well-ordered set had a uniquely determined numbering α where α belonged to the 

second number class (II).  The properties of well-ordered sets had the result of joining these 

various notions of transfinite numbers, numberings, and number classes together into a unified 

theory.  The concept of numbering merely generalized the notion of counting.  For Cantor, this 

further supported his view that the transfinite numbers were just as legitimate as their finite 

counterparts.
28

 

 Kanamori claims that Cantor‘s interest in the well-ordering principle and the ordinal 

numbers, that is, the numberings, was directly linked to his attempts to solve the continuum 
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problem.  The transfinite ordinals provided him with a framework for his two primary 

approaches to the problem, one through power and the other through definable sets of real 

numbers.  His approach through power focused on the first and second number classes, the 

natural numbers and the set of countably infinite ordinals respectively, though he also gave some 

indication that these classes could be continued to a third number class and beyond.  His major 

result here was to prove that the number class (II) was uncountable, and that any subset of (II) is 

either countable or of the same power as (II).  As such, the second number class (II) had 

precisely the property Cantor sought for the real numbers reducing the continuum hypothesis to 

the assertion that the set of real numbers and the second number class were of the same power.  

He could not, however, seem to find a definable well-ordering of the real numbers and so could 

not find a correlation between these two sets. 

 Cantor had not yet developed his famous diagonal method of proof for showing (II) 

uncountable.  Instead, in section 12 of Grundlagen he presented an argument similar to that 

given earlier in his proof that the reals are uncountable.  Following Kanamori, we sketch the 

proof as follows.  Let s be a countable sequence of countable ordinals with a least element a.  Let 

a′ be a member of s, if any, such that a  a′; similarly for a′  a″, and so on.  No matter how long 

this process continues, the supremum of such elements is not a member of s.  Hence, the second 

number class (II) is uncountable.
29

 

 Although of less importance to my investigations in the following chapters, as Kanamori 

observes, Cantor also continued to pursue the continuum problem through definable sets of real 

numbers, an approach that evolved from his earlier work on the trigonometric series.  As noted 

his earlier ―symbols of infinity‖ used in the analysis of the P operator had become by the time of 
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the Grundlagen, the ordinals of the second number class.  Here, he studied P for uncountable P 

and defined the important concept of a perfect set of real numbers, a set of real numbers which is 

non-empty, closed, and contains no isolated points.  Then in his 1884 ―On Infinite Linear Point-

Manifolds‖ he proved that any uncountable closed set of real numbers is the union of a perfect 

set and an uncountable set.
30

  A set A of real numbers has the perfect set property if and only if A 

is countable or has a perfect subset.  So in particular, he established that closed sets have the 

perfect set property.  In showing that any perfect set has the power of the continuum he was able 

to establish that the continuum hypothesis held for closed sets, that is, every closed set is 

countable or has the power of the continuum.  This again reduced the continuum problem, here, 

to the question of whether there is a closed set of real numbers that has the power of the second 

number class (II).
31

 

 In the years following the Grundlagen, Cantor continued to be unable to solve the 

continuum problem by searching for direct correlations between the set of real numbers and the 

ordinals.  This led him to a more general approach to size and order that would take into account 

the continuum.  To this end, he introduced the notion of a cardinal number replacing the earlier 

terminology of ‗power‘.  He also went beyond the study of well-orderings to the more general 

notion of linear order types, and he took on a view of well-defined sets as being given together 

with a linear ordering of their members.  Order types and cardinal numbers resulted from the 

successive abstraction from a set M to its order type M-bar and then to its cardinal M-double-bar.  

As he describes the process relating to cardinal number of a set, it is ―the general concept which, 

by means of our active faculty of thought, arises from the aggregate M when we make 

abstraction of the nature of its various elements m and of the order in which they are given.‖  For 
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ordinals the process is similar, but we do not also abstract away the ordering of the set.  The 

process is hazy and carries with it mentalistic overtones to which we will return in chapter 2.
32

  It 

was in this context that Cantor put forward in his 1891 ―On an Elementary Question in the 

Theory of Manifolds‖ his famous diagonal argument establishing that for any set M the 

collection of functions from M into a two-element set is of higher power, or cardinality, than M 

itself.
33

 

 As we have seen, Cantor had already proved in 1874 the existence of uncountable sets.  

This proof however relied on the existence of irrational numbers.  His 1891 aimed to establish 

this result with much greater generality, though it would employ extremely powerful methods 

and would lead him to an ascending and limitless hierarchy of transfinite powers.  In particular, 

the proof relied upon full-impredicativity in its appeal to arbitrary functions, or equivalently, 

arbitrary subsets.
34

  Irrational numbers were themselves still controversial mathematical objects 

and so did not help to convince the wider mathematical community of the reality of his even 

more controversial transfinite set theory.  Cantor‘s diagonal method allowed him to avoid all talk 

of point-sets, irrational numbers, or any specific objects at all.  In this way, he could achieve a 

complete generality where the elements involved in the proof were themselves unquestionable. 

 The diagonalization proof relied on two elements m and w.  Cantor used these to consider 

a collection M made up of elements E = (x1, x2, …, xn, …), where each xn was either m or w.  So, 

for example, the elements E might look like any of the following: 

  E
I
 = (m, m, m, m, …), 

  E
II
 = (w, w, w, w, …), 

  E
III

= (m, w, m, w, …). 
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He then claimed that any such collection M was uncountable:  if E1, E2, …, Eν, … is any simply 

infinite sequence of elements of the set M, then there is an element E0 in M which is not equal to 

any Eν.  To prove his claim, he first gave a countable listing of elements Eμ where each aμ,ν was 

either m or w: 

  E1 = (a11, a12, …, a1ν, …), 

  E2 = (a21, a22, …, a2ν, …), 

  … 

  Eμ = (aμ1, aμ2, …, aμν, …) 

   …. 

This defined a new sequence b1, b2, …, bν, … where each bν was either m or w, but bν  aνν.  This 

sequence of bν yielded a new element E0 = (b1, b2, …, bν, …) in M, where E0  Eν for any index ν.  

No matter what element Eν was considered, E0 always differed from it at the ν-th coordinate.  

Therefore, there was always an element left off of a countable listing of elements of M, and 

hence, M was uncountable.
35

 

 Cantor the proceeded to show how his diagonal method could be applied to particular 

infinite sets by considering the set L of the linear continuum, the set of real numbers on (0, 1), 

and then showing that the set M of single-valued functions f(x) with only values 0 or 1 for any x 

in (0, 1) was of greater power than L.  M was clearly greater than or equal to L in power since it 

contained a subset equal in power to L.  For example, the set N of functions f(x) on (0, 1) equal 

to 0 everywhere except at a single point x0 where f(x0) = 1 was such a subset.  So Cantor just had 

to show that L and M were in fact not equal in power.  If M and L are equal in power, then it 

must be possible to establish a one-to-one mapping between them.  That is, there must be a 
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function φ(x, z), where for every value z there must be an element f(x) in M such that f(x) = φ(x, 

z).  And conversely, for every element f(x) in M given by φ(x, z), there must be a unique z such 

that f(x) = φ(x, z).  This is impossible as shown by the diagonalization method.  Consider the 

function g(x) having only values 0 or 1, but where g(x)  φ(x, x), for any given x.  Hence, g(x) is 

in M, but z could not be determined in such a way that would yield g(x) from φ(x, z) since φ(z0, 

z0) is never equal to g(z0).  Therefore, M is of greater power than L.
36

 

 From his new proof of the existence of uncountable sets, Cantor provided a simple way 

for showing that the ascending sequence of powers of well-defined sets had no maximum.  

Indeed, he took this to be the true significance of the proof:   

This proof is remarkable not only because of its great simplicity, but more importantly because the 

principle therein can be extended immediately to the general theorem that the powers of well-defined 

manifolds have no maximum, or what is the same thing, that for any given manifold L we can produce a 

manifold M whose power is greater than that of L.
37

 

 

Furthermore, Cantor took this infinite ascending sequence of higher and higher powers as a 

generalization of the notion of a finite cardinal and as such, having equal status as the finite 

numbers.  As he remarked, 

The ‗powers‘ represent the unique and necessary generalization of the finite ‗cardinal numbers‘.  They are 

none other than the actual-infinite cardinal numbers, and they have the same reality and determinateness as 

the others, except that the law-like relations among them—their ‗number theory‘—is in part of a different 

sort than in the domain of the finite.
38

 

 

For Cantor—looking at the history of mathematics—the rational, irrational, and complex 

numbers had been accepted because of their utility and consistency.  Each of these number 

systems was a consistent generalization of prior less comprehensive concepts.  The concept of 

power, then, was the most comprehensive and natural of all.
39
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 Cantor‘s final major work in set theory was his 1895/1897 Contributions to the Founding 

of the Theory of Transfinite Numbers, commonly known as the Beiträge.
40

  This work 

summarized his progress in set theory to this point, while also clearly revealing a gap left open 

by his inability to settle the continuum problem.  In part I, he presented his post-Grundlagen 

research on cardinal numbers and the continuum posing the question of cardinal comparability; 

whether for all cardinals a and b, either a = b, a < b, or b < a.  He promised a proof at some point 

later but never provided one.  It finally came as a consequence of Zermelo‘s 1904 Well-Ordering 

Theorem.  Putting comparability aside, Cantor first turned to defining the addition, multiplication, 

and exponentiation of cardinal numbers.  He also introduced the now standard aleph notation for 

infinite cardinals taking 0 as the cardinality of the set of natural numbers, the first infinite 

cardinal number.  He, then, further observed that 2
-nought

 is the cardinality of the set of real 

numbers and easily established, by way of his cardinal arithmetic, the one-to-one correspondence 

between R and R
n
 since (2

-nought
)
 -nought

 = 2
-nought  -nought

 = 2
-nought

.  Finally, he presented his 

theory of order types taking η as the order type of the rationals, a countable dense linear order 

without endpoints, and θ as the order type of the reals, a perfect linear order with a countable 

dense set.
41

 

 In part II of Grundlagen, Cantor further developed his views on well-orderings 

construing their order types as the ordinals and proving, by way of order comparisons of well-

ordered sets, that they are comparable.  He then presented ordinal arithmetic as just a special case 

of the arithmetic of order types.  He also paid some attention to the properties of the second 

number class (II) and defined its cardinal number as 1.  In his final sections, Cantor turned to 
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ordinal exponentiation in the second number class defining this operation by transfinite recursion 

and using it to establish his famous normal form theorem.  He concluded with a discussion of the 

numbers satisfying the condition ε = ω
ε
, the so-called epsilon numbers.

42
 

 With the first part of the Beiträge dealing primarily with cardinal numbers and the 

continuum and the second part focusing on ordinal numbers and well-orderings, the two parts 

remained distinct and lacking unity in their subject matter.  Kanamori states that this was not just 

an oversight but the indication of a serious split between the areas of Cantor‘s developing set 

theory.  For example, nowhere in part I does he state, even as a special case, his major 1891 

result that a < 2
a
.  Instead the succession of transfinite cardinals are taken as the alephs defined as 

the powers of the sets of their predecessor ordinals.  But then in part II, he never mentions any 

aleph beyond 1, nor that the continuum hypothesis can be stated as 2
-nought

 = 1.  Furthermore, 

he establishes ordinal comparability but is unable to reduce cardinal comparability to it.  

Kanamori concludes, ―Having ushered in arbitrary functions through cardinal exponentiation 

Cantor had introduced an irreconcilable tension into his view that all sets are well-ordered, and 

there was little point to developing the theory of higher alephs with the assurance of their 

gauging all the cardinal numbers.‖
43

 

 The 1904 International Congress of Mathematicians at Heidelberg, however, signaled a 

turning point.  Julius König presented a proof of the claim that 2
-nought

 was not an aleph, 

meaning that the continuum was in fact not well-orderable.  Although, by the next day, Zermelo 

had shown König‘s proof to be faulty, Cantor was shaken with worries that the continuum might 

escape the very number context he had built to analyze it.  This however was not the only 
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problem looming for Cantor‘s set theory.  By this time, the paradoxes of set theory were also 

threatening, and it is to this topic that I turn to next. 
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II.  TROUBLE IN PARADISE:  RUSSELL, ZERMELO, AND 

THE SET-THEORETIC PARADOXES 

 

 I now turn to consider the set-theoretic paradoxes primarily in their historical context, 

though as we will see, this cannot be done entirely in isolation from the philosophical context.  

There has been much recent scholarship in this area attempting to sort out the rather confusing 

history of how the paradoxes arose, when they were discovered, and by whom.  Much of what I 

aim to do in this chapter is to synthesize this work so as to present a unified history of the 

paradoxes and to make clear how much recent scholarship has overturned some of the traditional 

and widespread misconceptions concerning the history of the paradoxes.  But I also aim to bring 

out that construing the early history of set theory as being entirely mathematical or entirely 

philosophical presents a misleading view.  In a certain sense, I take it that either approach has 

philosophical motivations.  To give some illustration of this, I mention a recent trend in the 

history of set theory which emphasizes its mathematical development over and above its 

philosophical origins.  In some ways this emphasis has helped in presenting a more accurate 

view of set theory‘s development, especially where the paradoxes are concerned.  But in reading 

this literature we get the sense that some of this emphasis is being shaped by, perhaps 

unconscious, philosophical motivations reminiscent of a sort of positivism.   

To give some indication of this trend consider the following comment from the 

mathematical logician Gerald Sacks, a fairly early illustration of the sort of mathematical attitude 

I am suggesting as having philosophical consequences for how we are to think about set theory:   

[F]oundational activity is of interest in some limited spheres.  For example, when there were difficulties in 

set theory, a few small changes were needed to straighten things out.  There were difficulties, but not 

paradoxes; there was no need to write Principia Mathematica to straighten them out….  Since there have 

not yet been any substantial paradoxes, there has not yet been any need for a wider sphere of foundational 

activity.  For example, there were confusions, not paradoxes, in late nineteenth and early twentieth century 

mathematics, despite all claims to the contrary.‖
44
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As we will see something like this attitude is also implicit in much recent historical work 

surrounding the set-theoretic paradoxes, which leads to a historical account that privileges the 

mathematical approach to set theory and downplays the philosophical.  For example, Akihiro 

Kanamori often seems to disparage the likes of Russell for being overly troubled by the 

paradoxes, but praises the mathematicians for quickly moving past them, if they even 

acknowledge them at all:   

[F]rom a logical point of view Russell … became exercised with paradox.  He had arrived at Russell‘s 

Paradox in late 1901 by analyzing Cantor‘s diagonal argument applied to the class of all classes, a version 

of which is now known as Cantor‘s paradox of the largest cardinal number….  Russell‘s Paradox famously 

led to the tottering of Frege‘s mature formal system, the Grundgesetze….  The mathematicians did not 

imbue the paradoxes with such potency.  Unlike Russell who wanted to get at everything but found that he 

could not, they started with what could be got at and peered beyond.
45

 

 

Such emphasis has its place in correcting the historical record since the more standard 

interpretation has overemphasized the philosophical roots of set theory and the paradoxes.  But a 

danger arises in this revised interpretation as well.  Too much emphasis on the mathematical 

approach to set theory and with it the view that mathematical set theorists were not greatly 

troubled by the paradoxes leads to the misguided idea that there were always two notions of a set, 

the mathematical, and the philosophical or logical.  While I want to concede the point that 

mathematicians often reacted differently to the paradoxes than more philosophically minded 

logicians, I will stress that all researchers in set theory had to come to terms with the paradoxes 

and that it was only in doing so that the two conceptions of set emerged.  Both mathematical and 

philosophical logicians clarified the notion of a set in reaction to the paradoxes.  To the extent 

that there was any notion of a set prior this crisis, it was roughly the view that a set is the 

extension of a predicate or concept, a view with a long tradition in the realm of philosophy. 
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I 

 The history of set theory and the discovery of the paradoxes is not an easy one to unravel.  

On what has been called ―the standard account‖, Cesare Burali-Forti published the first of the 

set-theoretic paradoxes in 1897—that of the greatest ordinal, which has become known as the 

Burali-Forti Paradox.
46

  So Jean van Heijenoort writes in his introduction to Burali-Forti‘s paper, 

―The paper is the first published statement of a modern paradox.  It immediately aroused the 

interest of the mathematical world, and it provoked lively discussions in the years that followed 

its publication.  Dozens of papers dealt with it, and it gave a strong impulse to a reexamination of 

the foundations of set theory.‖
47

 However, more recent work from Gregory Moore and Alejandro 

Garciadiego on the history of the paradoxes raises doubts about van Heijenoort‘s claim.
48

  Indeed, 

they conclude that Russell was primarily responsible for discovering and disseminating the 

Burali-Forti paradox, as well most of the other set-theoretic paradoxes. 

 The first part of Cantor‘s ―Contributions to the Founding of the Theory of Transfinite 

Numbers‖ published in 1895 left open the question of the comparability of ordinals, that is 

whether for any two ordinals α and β either α < β, β < α, or α = β.
49

  Burali-Forti states the aim of 

his paper as answering this question negatively.  Nowhere in the paper does he give any 

prominence to the statement of the paradox that would later bear his name.  Where we do see 

some hint of this paradox, as Moore and Garciadiego note, is in the proof itself of his central 
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claim.
50

  To establish this claim, he first defines a set A as perfectly ordered if (1) it has a first 

element; (2) every element with a successor has an immediate successor; and (3) for x in A, 

either x has no immediate predecessor or x has a predecessor y with no immediate predecessor 

and there are only finitely many elements of A between x and y.  Furthermore, he took a set to be 

well-ordered if it satisfied only conditions (1) and (2), and so every well-ordered set was also 

perfectly ordered.  Next, he assumes the comparability of ordinals and proceeds to show by 

reductio that this fails to hold.  First, he defines ―No‖ as ―the order type for a perfectly ordered 

class‖, and then proves that if a is the order type of a perfectly ordered class then a + 1 > a.
51

  

And then by letting  be the order type of all perfectly ordered classes, he proves that if b is an 

order type of a perfectly ordered class, then b  .  Now this is enough for him to show that 

comparability fails.  Substituting  for ―a‖ and  + 1 for ―b‖, he obtains  + 1 >  and  + 1  

, a contradiction.  Hence, comparability does not hold for order types, or the ordinal numbers in 

particular. 

But as Moore and Garciadiego point out, Burali-Forti had confused Cantor‘s definition of 

a well-ordered set by omitting his third clause, which states that any finite or infinite set of 

elements of A which has a successor must also have an immediate successor.
52

  Burali-Forti 

recognized his mistake in reading the 1897 continuation of ―Contributions‖ where Cantor proved 

comparability for ordinals.  In response, Burali-Forti published the short note ―On Well-Ordered 

Classes‖ acknowledging that while every well-ordered class is perfectly ordered, the converse 

does not hold.  Hence, Burali-Forti thought there was no conflict between the two opposing 
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results that he and Cantor had obtained.
53

  But what is particularly interesting here with regard to 

the standard history of the paradoxes is that nowhere does Burali-Forti claim to have found a 

more general problem with Cantor‘s set theory.  The only contradiction he discovers is the sort 

one would expect to see in any reductio proof.
54

  He never made the further step often attributed 

to him that Cantor‘s theory itself somehow went astray collapsing into paradox.  Indeed, neither 

did anyone else it seems until 1902.  According to Moore and Garciadiego, Giulio Vivanti, who 

wrote the abstracts for Burali-Forti‘s papers, nowhere mentions the discovery of any sort of 

paradox.  Furthermore, again contrary to the standard account of the paradoxes, there was no 

general outpouring of interest in these papers.  In fact, until Russell, Vivanti‘s abstract appears to 

be the only reference to Burali-Forti‘s 1897 papers.
55

 

In tracing the emergence of the Burali-Forti paradox at the hands of Russell, Moore and 

Garciadiego point to Russell‘s early Hegelianism as its source writing, ―Russell began to search 

for paradoxes in mathematics much earlier than is usually recognized.  His predisposition to 

invent such paradoxes had its roots in the philosophical antinomies of Kant and Hegel, both of 

whom deeply influenced his early development as a philosopher.‖
56

 While it may indeed be true 

that Russell was more predisposed to or adept at finding paradoxes because of his philosophical 

background, it seems overly strong to say that he was intentionally searching for them.  Moore 

and Garciadiego offer only the following passage from an unpublished 1896 essay to support 

their claim:   

The present article lays no claim to originality.  From Zeno onwards, the difficulties of continua have been 

felt by philosophers, and evaded, with even subtler analysis, by mathematicians.  But is seemed worth 

while to collect and define … some contradictions in the relation of continuous quantity to number, and 
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also to show, what mathematicians are in danger of forgetting, that philosophical antinomies, in this sphere, 

find their counterpart in mathematical fallacies.‖
57

 

 

So while Russell was clearly sensitive to contradictions, we do not get the sense here that his aim 

in the philosophy of mathematics was to discover paradoxes.  Instead, I would like to emphasize 

that Russell came upon the set-theoretic paradoxes, including the one that would bear his name, 

by considering some fairly intuitive, but unfortunately contradictory, features we might think the 

notion of a set to have.  This aspect in the discovery of the paradoxes will be important 

throughout much of what follows in both this and later chapters.  For it brings out that the 

foundational crisis in mathematics was a battle of intuitions about sets and that its resolution 

ultimately came down to largely pragmatic considerations.  The paradoxes showed that a single 

notion of set incorporating all of the intuitive features both mathematical and philosophical 

logicians initially thought sets to have was impossible. 

 Russell‘s first published gesturing at paradox came from his explorations of Cantor‘s 

work rather than from Burali-Forti‘s.  In 1896 he published a review of a book by French 

philosopher Arthur Hannequin that had criticized as contradictory Cantor‘s view of the 

continuum.  Endorsing Hannequin‘s view, Russell wrote,  

For Cantor‘s second class of numbers, by which he hopes to exhaust continua, begins with the first number 

larger than any of the first class; but in the first class (the ordinary natural numbers) has no upper limit, it is 

hard to see how the second class is ever to begin.  Cantor‘s attempts, indeed, seem to have proved, more 

conclusively than ever, that no legitimate extension of number can suffice for the adequate treatment of 

continua. 

 

He then describes this difficulty as leading Hannequin to contradiction in the form of Kant‘s 

second antinomy that an indivisible element should necessarily be divisible, or every composite 

substance both is and is not divisible.  ―This is only our old friend, Kant‘s second antinomy,‖ he 
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concludes, ―but it acquires a new force by the proof of its inherence in mathematical method.‖58  

Cantor‘s set theory continued to weigh on Russell‘s mind, and by 1899 he had developed the 

antimony of the infinite number, described in an outline of Principles of Mathematics:   

Chapter VII.  Antinomy of Infinite Number.  This arises most simply from applying the idea of a totality to 

numbers.  There is, and is not, a number of numbers.  This [and] causality are the only antinomies known to 

me.  This one is more all-pervading…. No existing metaphysic avoids this antinomy.
59

 

 

He was now very close to discovering what would become Cantor‘s paradox of the largest 

cardinal, and it was in this context that he also came upon the Burali-Forti paradox. 

 Initially, Russell described what he thought to be errors in Cantor‘s work writing on 

December 8, 1900 to the French philosopher Louis Couturat, 

I have discovered a mistake in Cantor, who maintains that there is no largest cardinal number.  But the 

number of classes is the largest number.  The best of Cantor‘s proofs to the contrary can be found in 

Jahresb. D. deutschen Math. Ver‘g., I, 1892, pp. 75-8 [Cantor 1891].  In effect it amounts to showing that, 

if u is a class whose [cardinal] number is α, the number of classes included in u (which is 2
α
) is larger than 

α. The proof presupposes that there are classes included in u which are not individuals [members] of u; but 

if u=Class, that is false:  [for] every class of classes is a class.
60

 

 

Russell took ―Class‖ as denoting the class of all classes, so if u is the class of all classes, then 

there could not possibly be a class with a greater number of classes as members.  All classes are 

members of Class, and it was Cantor‘s mistake not to acknowledge this and see the 

consequences.
61

  As Moore and Garciadiego observe, Russell did not yet draw out the conclusion 

from the set of all sets that there was a contradiction in Cantor‘s theory but only that Cantor‘s 

theorem—that the cardinality of the set of all subsets of u is strictly greater than the cardinality 

of u itself—is not generally applicable, specifically in the case of the universal class.  It was not 
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until he discovered his own paradox of the class of all classes which are non-self-membered that 

he was led to the other paradoxes of set theory. 

 It was however in this context that Russell first became aware of Burali-Forti‘s argument 

against comparability of ordinals.  Included in his response to Russell‘s comments on Cantor, 

Couturat reported on Burali-Forti‘s result that comparability fails for ordinals, remarking that 

―[h]is reasoning is more specious than convincing.‖  But he did not stop here, going on also to 

question Russell‘s own class of all classes wondering ―whether one can consider the class of all 

possible classes without some sort of contradiction.‖
62

  Russell responded agreeing with Burali-

Forti‘s result adding that he suspected comparability also failed for cardinals, though he offered 

no reason for either claim.  In contrast he did not back away from his class of all classes arguing 

against Couturat,  

If you grant that there is a contradiction in this concept, then the infinite always remains contradictory, and 

your work as well as that of Cantor has not solved the philosophical problem.  For there is a concept Class 

and there are classes.  Hence Class is a class.  But one can prove (and this is essential to Cantor‘s theory) 

that every class has a cardinal number. 

 

But Russell added that no contradiction arose with regard to the largest cardinal since Cantor‘s 

theorem did not apply to the class of all classes.  He offered no further explanation of this claim, 

and Couturat continued to question the concept Class asking in his January 27, 1901 response, 

―Is the class Class determined, closed so to speak, in such a way as to possess a cardinal 

number?‖  Russell replied that it was well-defined since for any x it either belonged to Class or 

not.  He further remarked that he had now received and read Burali-Forti‘s papers.
63

 

 Russell arrived at his own paradox by May 1901, which he discovered, according to his 

account in Principles, ―in the endeavour to reconcile Cantor‘s proof that there can be no greatest 

cardinal number with the very plausible supposition that the class of all terms…has necessarily 
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the greatest possible number of members,‖ a term being ―[w]hatever may be an object of thought, 

or may occur in any true or false proposition, or can be counted as one….‖
64

  Moore puts forth 

this date for the discovery based upon an early manuscript of Principles where in Chapter III 

Russell composes the first extant account of his paradox:   

The axiom that all referents with respect to a given relation form a class seems, however, to require some 

limitation….  We saw that some predicates can be predicated of themselves.  Consider now those (and they 

are the vast majority) of which this is not the case.  These are the referents (and also the relata) in a certain 

complex relation, namely the combination of non-predicability with identity.  But there is no predicate 

which attaches to all of them and to no other terms.  If it is predicable of itself, it is one of those referents 

by relation to which it was defined, and therefore, in virtue of their definition, it is not predicable of itself.  

Conversely, if it is not predicable of itself, then again it is predicable, and therefore again it is predicable of 

itself.  This is a contradiction, which shows that all referents considered have no common predicate, and 

therefore do not form a class….  It follows from the above that not every definable collection of terms 

forms a class defined by a common predicate.
65

 

 

Here we see not only Russell‘s first statement of the paradox, but also, we get the first indication 

of where its resolution will ultimately rest.  In observing that ―the axiom that all referents with 

respect to a given relation form a class‖ needs limiting, Russell gives up the traditional 

conception of what a class is—that every predicate or concept determines a class.  As we will see, 

this idea of a set was found throughout the emerging discipline of set theory including that work 

of Cantor.  Locating the source of the paradox in the comprehension principle was to change the 

development of set theory in crucial ways and in particular was to give rise to the philosophical 

debates over set theory that we will primarily be concerned with in many of the following 

chapters.  Moore also notes that Russell surprisingly does not also state the paradox in terms of 

classes despite of his own later admission that he had discovered his paradox by considering 

Cantor‘s theorem and the cardinality of the class of all classes.
66

  But perhaps this omission is not 

quite so strange given Russell‘s preference for an intensional basis for his logic.  The paradox 
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stated in terms of predicates non-predicable of themselves would for him rock the entire 

foundation of everything else that he had constructed from it, including the theory of classes, and 

perhaps even more devastating, of mathematics in general. 

 Russell‘s reaction, however, was not immediately one of concern.  It seems that that he 

reported the paradox to no one else—except Peano, who never responded—until June of 1902 

when he communicated it to Frege.  Frege, in return, responded,   

Your discovery of the contradiction caused me the greatest surprise and, I would almost say, consternation, 

since it has shaken the basis on which I intended to build arithmetic.  It seems, then, that transforming the 

generalization of an equality into an equality of courses-of-values (§ 9 of my Grundgesetze) is not always 

permitted, that my Rule V (§ 20, p. 36) is false, and that my explanations in § 31 are not sufficient to ensure 

that my combinations of signs have a meaning in all cases.  I must reflect further on the matter.  It is all the 

more serious since, with the loss of my Rule V, not only the foundation of my arithmetic, but also the sole 

possible foundations of arithmetic, seem to vanish.
67

 

 

Moore reasonably suggests that Russell was not initially disturbed by his paradox because he 

thought there must be some simple solution to it.  To support this view, Moore turns again to 

Russell‘s correspondence with Couturat, quoting Russell from September 29, 1902, ―When my 

book began to be printed, I believed I could avoid these contradictions, but now I see that I was 

mistaken, a fact which greatly diminishes the value of my book.‖
68

  It was only in receiving 

Frege‘s pessimistic response that Russell came to see the devastating consequences of his 

discovery.  He looked upon Frege with extremely high regard, and when he could offer no 

simple resolution, Russell could no longer regard this as a minor difficulty to be solved only in 

time.  For Russell, the foundational crisis had arrived. 

 From this point, matters became worse.  Moore and Garciadiego point to Russell‘s 

recognition of the seriousness of his own paradox as the source of the other set-theoretic 

paradoxes.   Reconsidering the work of Burali-Forti and of Cantor yielded his discovery of the 

two paradoxes that would eventually bear each of their names.  In a 1902 article on well-ordering, 

                                                 
67

 Gottlob Frege, ―Letter to Russell‖, (1902), in van Heijenoort, pp. 127-8. 
68

 Moore, ―Russell‘s Paradox‖, p. 234-5; see also Moore and Garciadiego, pp. 328-9.  



 

 

31 

Russell began his attempts at reconciling both the work of Burali-Forti and Cantor, now 

accepting Cantor‘s proof of the comparability of ordinals but doubting his claim that every set 

can be well-ordered.  Russell‘s response at this point was to grant that every ordinal segment was 

well-orderable but not that the ordinals as a whole were.  In this way, he continued to avoid the 

conclusion that either of Burali-Forti or Cantor had landed themselves in contradiction.
69

 

 The 1903 publication of Principles of Mathematics saw this situation change.  Here, in 

addition to an entire chapter on his own paradox, Russell for the first time in print put forward 

both the Burali-Forti and Cantor paradoxes.
70

  As already mentioned above, Russell claims to 

have discovered his own paradox in considering Cantor‘s theorem.  In Chapter X of Principles 

entitled ―The Contradiction‖, he rehearses his paradox in three different forms.  He first states it 

in terms of predicates observing that if x is a predicate, then x may or may not be predicable of 

itself.  Now, assuming ―not predicable of itself‖ is a predicate, if this predicate is predicable of 

itself then it is not predicable of itself, and if this predicate is not predicable of itself then it is 

predicable of itself.  Since in either case the opposite follows, we have a contradiction.  Similarly, 

Russell says that a class-concept may or may not be a term of its own extension, and so 

considering the class-concept ―class-concept which is not a term of its own extension‖, again 

from either case, the opposite follows.  Finally, he states the contradiction in terms of classes 

remarking that here it ―appears even more extraordinary.‖  He begins by stating that a class as 

one, that is, a class treated as a single entity such as the human race, may be a term, or element, 

of itself as many, that is, a class treated as a plurality of object such as all humans.  On this view, 

then, the class of all classes is a class; similarly, the class of all terms that are not men is not a 
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man.  In both such cases, the class as one is not a member of itself as many.  He now poses the 

crucial question, ―Do all the classes that have this property [being a class, which as one, is not a 

member of itself as many] form a class? If so, is it as one a member of itself as many or not?‖  

Assume that it is as one a member of itself as many.  But then it would have to be a many to 

satisfy the requisite property, so it is not.  But then if it is not as one a member of itself as many, 

then it does satisfy the requisite property, so it is a member as one of itself as many.  Thus, in 

either case the opposite follows, and Russell has arrived at the first published version of his class 

paradox.
71

  His earlier version stated in his letter to Frege was the now more familiar version 

stated in terms of the class of all classes which are not members of themselves. 

 In diagnosing the paradox, he again turns to the comprehension principle, the axiom that 

any propositional function in one free variable determines a class.  He observes that either this 

principle or the principle that every class can be treated as a single term must be false but sees no 

fundamental objection to rejecting either.  ―But having dropped the former…,‖ Russell asks, 

―Which propositional functions define classes which are single terms as well as many, and which 

do not?  And with this question our real difficulties begin.‖
72

  This, as we will continue to see, is 

indeed the crucial issue to set theory in the early twentieth century and in a sense, remains to this 

day one of the crucial issue for set theory in its more philosophical aspects. 

 Having spelled out his own paradox, Russell now returned to the work of Burali-Forti 

and Cantor seeing for the first time that their views also lead him to paradox, though of a less 

general nature than his own.  Russell first turns to consider Burali-Forti remarking that there 

appears to be a problem with the order type of the whole series of ordinals.  We can easily prove 

that every segment of this series is well-ordered, and so it is natural to suppose that the whole 
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series is also well ordered.  The type of this series would be the greatest of all the ordinals since 

the ordinals less than a given ordinal form in order of increasing magnitude a series whose type 

is the given ordinal.  But every ordinal can be increased by the addition of one, so there can be 

no greatest ordinal.  From this contradiction, Russell correctly remarks, Burali-Forti concluded 

that for any two given ordinals, comparability does not in general hold.  Russell also observes—

though he does not indicate whether he takes the perfectly ordered and well-ordered set to 

coincide or whether he reapplied Burali-Forti‘s original argument for perfectly ordered sets to 

Cantor‘s well-ordered sets—that Cantor proved exactly the opposite.
73

  And here Burali-Forti‘s 

paradox was born. 

Russell finds no weakness in Cantor‘s proof, and instead questions a premise of Burali-

Forti that the whole series of ordinals is well-ordered.  From the well-ordering of every segment 

of ordinals, Russell claims that the well-ordering of the whole series does not follow.  Since this 

claim of the well-ordering of the entire series of ordinals appears incapable of proof, and 

rejecting it avoids Burali-Forti‘s paradox, Russell follows this path and at least for the moment 

takes this to be the successful resolution of the paradox of the largest ordinal.
74

  What Russell 

does not see is that Cantor nowhere explicitly admits a class of all ordinals, and without this 

there is no contradiction.  What drives Russell to the paradox is his perhaps commonplace view 

that the ordinals themselves should form a class.  Had there been no paradox, it seems no more 

surprising to have a class of all ordinals than it is to have a class of all naturals or reals.  After all, 

much of Cantor‘s urgings for the acceptance of the transfinite relied on that fact that these 

numbers behaved in ways very similar to the already familiar sorts of numbers. 
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In introducing his final set-theoretic paradox, Russell turns to the founder of set theory 

himself considering Cantor‘s investigations into the cardinal numbers.  He begins by remarking 

that the common objections to infinite numbers, classes, series, and the infinite in general as self-

contradictory are groundless, but more serious problems related to his own paradox of non-self-

membered classes remain.  This is not a problem with the infinite as such but only with certain 

large infinite classes.  The difficulty is as follows.  Cantor proved that there is no greatest 

cardinal number:  if u is a class, then the number of classes included in u is greater then the 

number of terms, or elements, in u.  Or, in other words, for any cardinal α, 2
α
 > α.  This, as we 

have seen, is Cantor‘s theorem.  But Russell observes that certain classes appear to have as many 

terms as possible, such as the class of all terms, the class of all classes, or the class of all 

propositions.  So it seems, to Russell, that Cantor‘s proof must make some assumption that does 

not hold for such cases since definite contradictions arise in applying Cantor‘s reasoning to such 

cases.  Indeed, such difficulties arise generally for any case that deals with the class of all entities 

or any equally numerous class.  Russell admits that in light of this problem we might be tempted 

to think that the totality of things, or the whole universe of existing entities, is an illegitimate 

totality, inherently contradictory to logic.  ―But it is undesirable to adopt so desperate a 

measure,‖ he counters, ―so long as hope remains of some less heroic solution.‖
75

 

Russell first presents versions of both Cantor‘s 1874 proof and of his 1897 proof that 

there is no greatest cardinal.  Although he finds the first proof specious, he remarks of the 

second—which includes the famous diagonal argument—that it ―appears to contain no dubitable 

assumption.  Yet there are certain cases in which the conclusion seems plainly false.‖
76

  First, he 

considers the class of all terms assuming that every constituent of a proposition is a term so that 
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the classes are only some among the terms.  And conversely, since there exists for every term, a 

class consisting only of that term, there is a one-to-one correlation of all terms with some classes.  

Then by the Schröder-Bernstein theorem, there is an equal number of classes and terms.  Now 

admitting the class of all objects of whatever kind, the classes of objects will be only some 

among the objects.  But according to Cantor‘s argument, there are more classes of objects than 

there are objects.  Hence, contradiction.  Russell then goes on to spell out the contradiction 

similarly in terms of the class of all propositions and then in terms of the class of all 

propositional functions.
77

  In all of these cases where we have a class of objects that is 

presumably the same size as the class of objects, we are able, by Cantor‘s argument, to produce a 

class of greater size.  And here we have for the first time in print Cantor‘s paradox. 

Russell closes his discussion of these paradoxical results by looking at some attempted 

correlations between such large classes and the class of all terms.  Russell claimed that he was 

led to the discovery of his own paradox by considering Cantor‘s argument.
78

  Taking a closer 

look at the attempted correlation between terms and classes helps to elucidate how this might 

have occurred.  Russell looks at all terms and says if x is not a class, we should correlate it with 

its singleton class x.  But if x is a class, we just correlate it with itself.  Then according to 

Cantor‘s argument, the class which should be omitted from the correlation is the class w of all 

non-self-membered classes.  This being a class, however, should mean that it correlates with 

itself.  But w is the contradictory class of Russell‘s paradox since it both is and is not a member 

of itself.  Hence, we see how Cantor‘s argument again leads to a contradiction and in particular 

how Russell was led from considering Cantor to the discovery of his own paradox.
79
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Russell concludes these investigations observing that though Cantor‘s argument leads to 

contradictions where such large classes are concerned, he can find no missteps in Cantor‘s 

original proof.  The only solution he sees at this point is to deny that there are any true 

propositions concerning all objects or propositions.  ―Yet the latter, at least, seems plainly false,‖ 

he thinks, ―since all propositions are at any rate true or false, even if they have no other common 

properties.  In this unsatisfactory state, I reluctantly leave the problem to the ingenuity of the 

reader.‖
80

  Though for Cantor, as we will see, it seemed plainly true that there is no universal 

class.  I turn now to consider how these difficulties were in fact dealt with by Russell and others. 

 

II 

I first turn to Cantor, who is interesting both as the founder of set theory and as someone 

who may in fact never have been confronted by such problems as Russell introduced.  For while 

Russell saw it as obvious that such large classes as the class of all classes and the class of all 

objects should exist, Cantor—for is own philosophico-theological reasons—saw this as equally 

implausible.  Much of this comes out in his correspondence with Dedekind, which has often been 

erroneously cited as the source of the Cantor paradox.  But as we will see, on Cantor‘s view of a 

class, we are unable to derive such paradoxes.  Instead, much like Burali-Forti, the only 

contradictions Cantor derives are the sorts one would ordinarily and unsurprisingly expect to find 

in reductio proofs.   

The first occurrence of Cantor‘s paradox has often been traced to his 1899 

correspondence with Dedekind, but this interpretation presents two problems—the one just 

mentioned in the previous paragraph and the other that Cantor‘s paradox was not publicly known 

before 1932 when the relevant pieces of the Cantor-Dedekind correspondence were published.  
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As we have seen, Russell was ultimately responsible for the contradiction that would bear 

Cantor‘s name.  There are, however, still interesting and relevant aspects of this correspondence 

for the set-theoretic paradoxes, and in particular, for understanding how they were resolved.   

Cantor initiated his 1899 correspondence with Dedekind the end of July writing that he 

would like them to be regular correspondents so that he may have Dedekind‘s views on certain 

fundamental questions of set theory.
81

  In particular, Cantor wrote on August 3 to Dedekind 

presenting his proof that every transfinite set has a definite cardinal and then concluding that the 

system  (tav) of all alephs is the system of all transfinite cardinal numbers, that is, all transfinite 

cardinals are alephs.  But before proving this result, Cantor introduces what he sees as a crucial 

distinction, that between consistent and inconsistent multiplicities.  He explains that he begins 

with the notion of a definite multiplicity (or system or totality) of things but then observes that 

the assumption that a multiplicity‘s elements ―are together‖ can lead to a contradiction in certain 

cases.  So contrary to our original thought, such a multiplicity cannot be conceived as a unity, or 

―one finished thing‖, and these multiplicities he says are the absolutely infinite or inconsistent 

multiplicities.  He observes ―[a]s we can readily see, the ‗totality of everything thinkable‘, for 

example, is such a multiplicity; later still other examples will turn up.‖
82

  We should note, briefly 

for now as it is a point I will often return to, that not everyone did readily see this.  Russell, of 

course, did not and thought it completely commonsense that there is a collection of all things 

thinkable and the desire to preserve such an intuition is what led him to the paradoxes.  What we 

will see is that the systemization of set theory has largely been and remains a battle of competing 

intuitions about what sets are like. 
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In contrast, Cantor also observes that there are collections where the elements can be 

thought as ―being together‖ without contradiction and so can be gathered into ―one thing‖.  

These he says are the consistent multiplicities or sets.  He then goes on to note that if two 

multiplicities are equivalent, then they are both either sets or inconsistent, and every 

submultiplicity of a set is also a set.  Also, for any set of sets, the elements of these sets also form 

a set.
83

 

Using this distinction between consistent and inconsistent multiplicities, Cantor now 

begins his proof that every transfinite cardinal is an aleph.  First he considers the system  of all 

ordinals noting that he had earlier proved that any two ordinals are comparable.
84

  This 

multiplicity when naturally ordered according to magnitude forms a well-ordered sequence 

0, 1, 2, 3, …, ω0, ω0 + 1, …, γ, … 

in which every number is the order type of the preceding sequence of elements.  Now he shows 

that  is not a consistent multiplicity.  Assume  is consistent.  Then since it is well-ordered, it 

corresponds to some ordinal δ greater than all the ordinals in .  But δ is also in  since  

contains all the ordinals.  So we have δ < δ, a contradiction.  Therefore,  is an inconsistent, or 

absolutely infinite, multiplicity. 

 Cantor then goes on to explain that since the similarity of well-ordered sets also yields 

their equivalence, that is, they have the same cardinality, to every ordinal γ there corresponds a 

definite cardinal c =γ, whereγ is the general notion applying to all ordered sets similar to γ.  

That is, c is the cardinal of any well-ordered set with typeγ.  As we saw in chapter one, he 

denotes the cardinals corresponding to the transfinite ordinals by ―n‖, aleph, the first letter of 
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the Hebrew alphabet.  He explains here to Dedekind that the system of ordinals γ corresponding 

to one and the same cardinal c forms ―a number class‖, Z(c).  In every such number class there is 

a least ordinal γ0, and there is also a first ordinal γ1 falling outside this number class Z(c) such 

that the condition γ0 < γ < γ1 is equivalent to the fact that γ belongs to Z(c).  Therefore, every 

number class is a definite segment of the sequence .  Finally, he notes that certain ordinals of 

the system  each by itself form a number class.  For example, to the finite ordinals  

0, 1, 2, 3, …, , …,  

there corresponds the finite cardinals 

0,1,2,3, …,, …. 

Now, let 0 be the least transfinite ordinal and let 0 be the cardinal corresponding to it, so that 

0 =0.  So 0 is the least aleph and determines the number class Z(0) = 0.  The ordinals  

of 0 satisfy the condition 0 <  < 1 and are characterized by it.  1, then, is the least 

transfinite ordinal whose cardinal does not equal 0.  So 1 = 1, and 0  1, the next greater 

aleph, and so on.  He concludes by observing that among the transfinite ordinals of , there is a 

least ordinal to which no  corresponds, where  is finite, which he denotes ―0‖.  This yields 

an aleph 0, which is the next greatest cardinal after all the .  This process of forming alephs 

and number classes of  ―that correspond to them is absolutely limitless.‖
85

  The system of all 

alephs he denotes by ― ‖, tav, the twenty-second letter of the Hebrew alphabet, and he can now 

show that it too is an inconsistent, or absolutely, infinite totality.  He observes that the system  

of all alephs ordered according to magnitude, 

 0, 1, …, 0, 0+1, …, 1, …, 
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forms a sequence similar to the system  and so, is also inconsistent.
86

 

 Cantor‘s final result in this letter answers the question ―are there transfinite cardinals not 

contained in the system ?‖  He answers negatively based upon the inconsistency of  and .  If 

we define a multiplicity V and assume no cardinal corresponds to it, then V must be inconsistent.  

By the assumption,  must be projectible into V, so there must be a submultiplicity V' of V 

equivalent to .  V', then, is inconsistent since  is, so the same must hold of V.  Therefore, he 

concludes, every consistent transfinite multiplicity must have a definite aleph as its cardinal, and 

so all transfinite cardinals are contained in the system .  And from this he also concludes that 

his 1895 assertion that comparability of cardinals was correct.
87

 

 In an editorial note to this letter, Zermelo observed a weakness in Cantor‘s proof, namely 

that he had not proved that  was in fact projectible into every V lacking an aleph as its cardinal.  

Something like an intuition of time seemed to be at play here with Cantor continuing a process of 

successively and arbitrarily matching elements of V with the ordinals of .  But this, however, 

assumes that the elements of V will each be used only once in the process, and such a process, 

Zermelo remarks, ―goes beyond all intuition‖.  What Cantor needed was Zermelo‘s axiom of 

choice, so that he could make a simultaneous choice of elements from V to define V'.
88

  It was 

this axiom that eventually allowed Zermelo to prove what Cantor had wanted.
89

 

 This weakness in Cantor‘s proof here, however, does not obscure my main concern.  

What is important to note is that, first, while something like Cantor‘s paradox does appear in this 

letter to Dedekind, it is all part of a reductio proof.  Cantor‘s paradox did not result in a 
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foundational crisis because this contradiction was what Cantor intended to prove for reductio so 

that he could obtain his results about the transfinite cardinals.  But then why did Russell react so 

differently to the paradoxes?  And this is the second important point in Cantor‘s letter.  In his 

distinction between consistent and inconsistent totalities, Cantor had a response to the paradoxes 

before any foundational crisis arose.  But what were the grounds for such a distinction?  It is not 

exactly clear when Cantor introduced it.  One possibility is that he did in fact first discover the 

set-theoretic paradoxes and then introduced it as an ad hoc solution to them.  If this is the case, 

Cantor‘s solution to the paradoxes was very much on par with the other solutions offered later.  

As we will see in the following chapters, they were all in a sense introduced on pragmatic 

grounds with the aim of preserving as much of Cantor‘s set theory as possible.  There does not, 

however, seem to be much evidence for this as an account of Cantor‘s thinking on the paradoxes.  

 Another possibility, and one that would be much more welcome to set theorists who think 

there is a single correct, or intended, notion of a set, is that Cantor in fact thought there was 

something inherent to what a set is, that called for such a distinction.  There does seem to be 

some evidence for this view.  But it again will not be especially satisfying to most set theorists.  

Joseph Dauben has shown that Cantor worried greatly over whether his views of the infinite 

were consistent with Catholic dogma—whether knowledge of the infinite was to claim the kind 

of knowledge that only God could have.  The acknowledgement of absolutely infinite totalities 

alleviated all such worries since their inconsistency showed that we did not in fact have 

knowledge of such infinities.  Human understanding was limited to infinities that fell short of  

or  or the system of all things thinkable.
90
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 While the possibly ad hoc nature of such a distinction between consistent and 

inconsistent totalities did not bother the likes of Hilbert and Dedekind (Cantor did not reveal the 

religious underpinnings to them), the unclarity of it did.  Cantor had introduced this distinction as 

early as September 26, 1897 in a letter to Hilbert communicating an early version of his proof 

that all transfinite cardinals are alephs.  Indeed, as mentioned above, while most scholars trace 

Cantor‘s paradox to the 1899 letter to Dedekind, this letter to Hilbert seems to be the earliest 

evidence of something like Cantor‘s paradox.  Here he wrote, we are first to observe that the 

totality of all alephs ―cannot be conceived as a determinate, well-defined, finished set.‖
91

  

Otherwise, this totality would be followed in size by a determinate aleph which would both 

belong and not belong to the totality hence yielding a contradiction.  Much as in his letter to 

Dedekind, he then uses this contradiction in a reductio proof to show that all transfinite cardinals 

are alephs.  While we do not have Hilbert‘s responses to Cantor, Cantor‘s October 2, 1897 

response suggests that Hilbert did not fully grasp the distinction Cantor wished to make.  He 

begins his letter by immediately observing that Hilbert overlooked the characteristic of being a 

finished set.  He then goes on to again explain his proof remarking: 

One must only understand the expression ‗finished‘ correctly.  I say of a set that it can be thought of as 

finished (and call such a set, if it contains infinitely many elements, ‗transfinite‘ or ‗super-finite‘) if it is 

possible without contradiction (as can be done with finite sets) to think of all its elements as existing 

together, and so to think of the set itself as a compounded thing for itself; or (in other words) if it is possible 

to imagine the set as actually existing with the totality of its elements. 

 

He then notes that ―the ‗transfinite‘ coincides with what has since antiquity been called the 

‗actual infinite‘.‖
92

  He explains that what he intends by a set is ―an ‗assembling together‘ 

[which] is only possible if an ‗existing together‘ is possible.‖  He concludes by contrasting this 

with the absolutely infinite sets: 
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Infinite sets such that the totality of their elements cannot be thought of as ‗existing together‘ or as a ‗thing 

for itself‘ … and that therefore also in this totality are absolutely not an object of further mathematical 

contemplation, I call ‗absolutely infinite sets‘, and to them belongs the ‗set of all alephs‘.
93

 

 

Whether Hilbert ever understood Cantor‘s distinction, we do not know, but we do know that 

Dedekind was equally puzzled by it. 

 In his response to Cantor‘s proof that every transfinite cardinal was an aleph, Dedekind 

wrote, 

You will certainly sympathize with me if I frankly confess that, although I have read through your letter of 

3 August many times, I am utterly unclear about your distinction into consistent and inconsistent; I do not 

know what you mean by the ‗coexistence of all elements of a multiplicity‘, and what you mean by its 

opposite.  I do not doubt that with a more thorough study of your letter a light will go on for me; for I have 

great trust in your deep and perceptive research.
94

 

 

As we saw in chapter one with regard to his views of cardinal numbers and abstraction, Cantor 

was not afraid to bring certain mentalistic elements into his set theory.  And much like Frege, the 

precise mathematical minds of Dedekind and Hilbert were unable to comprehend what exactly 

Cantor‘s analogy came to—how it was to yield objects precise enough for mathematical 

contemplation.
95

  There seem to be both physicalistic and mentalistic aspects of Cantor‘s view of 

a set.  He speaks of collecting together elements into a set as a sort of pseudo-physical process 

that works much like the collecting together of any other group of physical objects.  So long as 

we can imagine such a process, we have an existing together of element and so a consistent 

totality, or set.  However, a group of physical objects existing together is much easier to make 

sense of than say the cardinal or ordinal numbers.  For physical objects we might just stand them 

all together, and then we see that they can in fact exist simultaneously together.  Having actually 

done just such a thing many times, it is not much harder to imagine such a process when we 

literally cannot bring these objects all together to one place.  But then why would something 
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analogous fail for all of the cardinals?  It is not immediately obvious why we cannot imagine 

these objects existing together, as Cantor says we cannot.  The set of all cardinals turns out 

inconsistent on Cantor‘s view, and so in a sense maybe we cannot in fact think of these objects 

as existing together.  But it is unclear why the analogy with physical objects breaks down.  For 

those like Dedekind, Hilbert, and Russell, who were not already inclined towards Cantor‘s view, 

the analogy of collecting things together in the mind does not help. 

 Looking at Cantor‘s published views of what he considered a set yield no further 

information as to what principle decided between consistent and inconsistent totalities.  In his 

Contributions of 1895 he defines a set as ―any collection into a whole M of definite and separate 

objects m of our intuition or our thought.‖
96

  So here again, he relies on this apparently 

mentalistic collecting together.  Earlier, in a footnote to the Grundlagen of 1883, Cantor did 

elaborate some this idea of a collecting together: 

Theory of manifolds.  I use this word to designate a very broad theoretical concept which I have hitherto 

used only in the special form of a theory of geometric or arithmetical sets.  In general, by a ‗manifold‘ or 

‗set‘ I understand every multiplicity which can be thought of as one, i.e. every aggregate of determinate 

elements which can be united into a whole by some law. 

 

So here again he appeals to an ability of out thought as determining which sets exist.  But he 

does give us something further in this passage in stating that the sets are those aggregates whose 

―elements …can be united into a whole by some law.‖  Ferreirós suggests that Cantor has 

something like the comprehension principle in mind here, that sets are determined as the 

extensions of concepts or predicates.  In using ―Inbegriff‖ for a collection, Cantor draws the 

connection between a concept (Begriff) and a set.  The rule or law by which the set is determined 

is the property that must hold of an object for it to be an element of the set.  Indeed, Ferreirós 

convincingly argues that this notion of a set runs throughout the early history of set theory 
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resulting from the founders‘ shared philosophical education and provides a somewhat unified 

view of what constituted a set prior to the paradoxes.  For them the move to set theory from 

traditional logic was a natural one, having all been well-educated in Aristotle‘s logic with its 

distinction between concepts and their extension.  To the extent that there ever was an intended 

intuitive notion of a set it was as the extension of a concept.
97

 

 But this somewhat more precise account of what a set is does not make Cantor‘s 

distinction any clearer.  Comprehension alone does not determine which collections are 

consistent and which are not.  Indeed, it was precisely comprehension that led both Russell and 

Frege into contradiction.  So again we are left only with Cantor‘s mentalistic intuitions about 

which sets exist. 

Furthermore, even though Cantor did not provide the religious underpinnings of his 

distinction to Dedekind and Hilbert, it seems unlikely that this would have helped to clear up 

matters.  Certainly, Russell would not have accepted these grounds as the basis for a distinction 

between the transfinite and the absolutely infinite convinced as he was that the collection of all 

things thinkable was in fact thinkable.  What we see arising in all this is a dispute of intuitions 

over what sets are like.  What was needed was some definite criterion for set existence which did 

not lead to contradictions in the theory.  This is what Zermelo and Russell provided. 

In 1908 Zermelo presented an axiom system for set theory that was to retain everything 

of value in the theory while excluding the paradoxes.
98

  Moore has argued that Zermelo‘s real 

concern in this paper was to present rigorously the principles required for proving his famous but, 

at the time, controversial well-ordering theorem.
99

  Cantor had claimed it as a law of thought that 
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every set can be well-ordered, but such a claim did not appear self-evident to everyone.
100

  

Zermelo finally proved this claim in 1904 generating a great deal of controversy among 

mathematicians and mathematically informed philosophers by his explicit use of the axiom of 

choice, a principle which he rightly claimed was implicitly used throughout mathematics.  

Attempting to settle this dispute, he then reproved his theorem in 1908.
101

  He quickly followed 

this result with the publication of his axiom system for set theory.  Moore has argued that 

Zermelo‘s real purpose in this paper was to make explicit the principles used in his well-ordering 

proof and thus to further quell the debates over the axiom of choice.  While there does seem to be 

some truth to this claim, Moore‘s emphasis of it encourages the skewed view discussed at the 

outset of this chapter—that the paradoxes were purely the concern of philosophers and that 

mathematicians were not troubled by them.  This then further encourages the view that there 

were always two conceptions of a set, one mathematical and the other logical, or philosophical, 

where only the latter ended up in contradiction.  As we just saw in the case of Cantor, this issue 

was not so clear cut, and as we will soon see, the situation was similar for Zermelo.  Since its 

inception, set theory has been inextricably intertwined with philosophy throughout its history. 

While it is true, as Moore notes, that Zermelo does not spend nearly as much time 

considering the paradoxes as Russell does in his proposed solution, he does set out his paper with 

the aim of removing such difficulties from the theory.  What is in fact more striking in light of 

Moore‘s reinterpretation is that Zermelo nowhere mentions the proof of his well-ordering 

theorem.  In opening ―Investigations‖, he first indicates what set theory as a mathematical 

discipline is, stating: 

Set theory is that branch of mathematics whose task is to investigate mathematically the fundamental 

notions of ‗number‘, ‗order‘, and ‗function‘, taking them in their pristine, simple form, and to develop 
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thereby the logical foundations of all arithmetic and analysis; thus it constitutes an indispensable 

component of the science of mathematics.
102

 

 

He then immediately turns to the threat of the paradoxes: 

At present, however, the very existence of this discipline seems to be threatened by certain contradictions, 

or ‗antinomies‘, that can be derived from its principles—principles necessarily governing our thinking, it 

seems—and to which no entirely satisfactory solution has yet been found.
103

 

 

This passage raises some interesting points.  First, it runs clearly contrary to Moore‘s claim that 

the true purpose of Zermelo‘s axiom system was the exposition of the well-ordering theorem 

rather than a solution to the paradoxes. And more generally, it shows one of the leading 

mathematical set theorists of his day placing their resolution at the center of his concerns.  His 

use of the phrase ―seems to be threatened‖, however, may suggest that he thought this threat only 

an apparent one.  But it we can also read this as an indication of Zermelo‘s solution.  Given that 

he believes his axioms to now exclude the paradoxes, the threat is indeed now only a seeming 

one.  Yet, he then would also count his very own solution to be among others which have not 

been entirely satisfactory.  But this too can be explained by what he goes on to say about earlier 

notions of set. 

 From Russell‘s paradox especially, he explains, it seems no longer possible for each 

logically definable notion to have a set or class as its extension, as had been long thought in the 

philosophical tradition.  Furthermore, Cantor‘s original definition of a set as ―a collection, 

gathered into a whole of certain well-distinguished objects of our perception or our thought‖ 

must also be restricted.  What is unsatisfactory about other proposed solutions, including his own, 

is that they do not preserve these rather simple and intuitive notions of set.  These earlier 

definitions of sethood have not ―been successfully replaced by one that is just as simple and does 
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not give rise to such reservations.‖
104

  Accepting this situation that our intuitions about sets have 

led us astray, he concedes 

There is at this point nothing left for us to do but to proceed in the opposite direction and, starting from set 

theory as it is historically given, to seek out the principles required for establishing the foundations of this 

mathematical discipline.  In solving the problem we must, on the one hand, restrict these principles 

sufficiently to exclude all contradictions and, on the other, take them sufficiently wide to retain all that is 

valuable in this theory.
105

 

 

What Zermelo acknowledges, continuing our ongoing theme, is that after the paradoxes set 

theory has become a largely pragmatic endeavor.  The aim in light of the paradoxes is to restrict 

the notion of set sufficiently to exclude contradiction but to maintain enough of the theory so that 

it can continue its purpose as a foundation for all mathematics.  No solution to such paradoxes 

will be as intuitive as the notion of a set as the extension of a concept, but this is the situation we 

must accept if set theory is to go on at all.  And in this sense no solution will be entirely 

satisfactory; there will always be tradeoffs about what to save from our intuitions about sets. 

 Zermelo now goes on to present his axiom system attempting to show how he can reduce 

Cantor‘s set theory to a few definitions and seven axioms, which appear independent of each 

other.  To indicate that his axioms do in fact preserve a reasonable amount of Cantor‘s theory, he 

then develops the theory of cardinals and mentions that in a later paper he will do the same for 

the ordinals.  He admits, however, that he has not been able to give a rigorous proof of their 

consistency, ―though this is very essential.‖  Instead, he will merely indicate how his axioms 

resolve the known paradoxes in hopes that this will provide a useful beginning towards a 

consistency proof.
106

  His axioms are as follows: 

 I)  Axiom of Extensionality:  two sets are equal if they have the same elements. 
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 II)  Axiom of Elementary Sets:  there exists an empty set; for every set there exist a set 

with only that set as its member; and for all sets a and b, there exists a set with only these two 

members. 

  

III)  Separation Axiom:  if a propositional function (x) is definite for all elements of a 

set M, M has a subset M containing just the element for which (x) is true. 

  

IV) Power Set:  for any set M, there is a set P(M) containing all the subsets of M. 

  

V)  Union:  to every set M there corresponds a set union of M that contains exactly all the 

elements of the elements of M. 

  

VI) Choice:   if M is a set with elements all distinct from the empty set and are mutually 

disjoint, its union includes at least one subset having exactly one element in common with each 

element of M. 

 

 VII)  Infinity:  there exists an infinite set. 

 

It is the separation axiom, he explains, that resolves the paradoxes. Unlike the comprehension 

principle, sets can no longer be defined independently by an axiom.  Instead, they are always 

separated out as subsets of sets already given.  As such, contradictory notions such as ―the set of 

all sets‖ or ―the set of all ordinals‖ are excluded from the theory.  The defining condition of such 

subsets must always be definite if the fundamental relations of the domain, meaning the 

membership relation, by means of the axioms and the logical laws, determine whether or not  

holds or not for a given value x.  This last restriction banishes in addition to the set-theoretic 

paradoxes, the semantic paradoxes such as the Liar and Richard‘s paradox.
107

  It should be noted 

that the idea of a propositional function‘s being definite would continue to be refined over the 

next twenty years or so until it would come to mean ―definable by means of first-order logic‖. 

 Having explained separation, Zermelo next shows in his Theorem 10 how Russell‘s 

paradox now becomes the theorem that there is no set of all sets:  every set M possesses at least 

one subset M0 that is not an element of M.  First, observe ―x is a member of x‖ is a definite 
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property.  Now let M0 be a subset of M such that x is a member of M0 if and only if x is not a 

member of itself.  Then M0 is not a member of M.  Suppose M0 is a member of M0.  Then M0 is a 

member of M and M0 is not a member of M0 by the construction of M0.  This is equivalent to M0 

is a member of M0 if and only if M0 is not a member of M0.  Contradiction.  Hence, M0 is not a 

member of M.  So the domain itself is not a set thus excluding Russell‘s paradox and turning it 

into a theorem.
108

  I now turn to consider Russell‘s own solution to the paradoxes. 

 As early as the Principles Russell proposed solving the paradoxes with his theory of 

types, a sort hierarchy of propositional functions that would prevent such membership conditions 

as self-membership and hence excluding from the theory his own paradox, among others.
109

  His 

proposal of types in the Principles, however, was tentative and between 1903 and 1908 he 

explored a number of other approaches towards resolving the paradoxes before coming back to 

types in 1908.
110

 

 Russell begins his ―Mathematical Logic as Based on the Theory of Types‖ remarking that 

this system of logic recommended itself to him because of its ability to resolve certain paradoxes, 

in particular Burali-Forti‘s of the largest ordinal.  ―But the theory in question seems not wholly 

dependent on this indirect recommendation,‖ he argues, 

it has also, if I am not mistaken, a certain consonance with common sense which makes it inherently 

credible.  This, however, is not a merit upon which much stress should be laid; for common sense is far 

more fallible than it likes to believe.
111

 

 

It is striking how similar Russell‘s approach is to Zermelo‘s.  Both start from the paradoxes and 

motivate their proposed solutions by their success in resolving them, rather than on grounds of, 

say, capturing the notion of what a set really is.  They each recognize that it was our intuitions 
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about sets that led the theory astray and so, can no longer serve as the sole guide in developing 

the theory.  For both Russell and Zermelo what determines the success of their axiomatizations is 

their ability to avoid the paradoxes while still including enough of Cantor‘s original theory to 

serve as a foundation for mathematics.  Again, the theme of pragmatism continues to run strong 

in resolving the set-theoretic paradoxes. 

 Unlike Zermelo, Russell next gives a detailed account of the various paradoxes among 

them the liar, Burali-Forti, and his own.  Moore attaches much significance to this in his 

interpretation of Zermelo arguing that Zermelo‘s lack of such an extended discussion, leaving 

out in particular the ―philosophical but non-mathematical conundrum‖ of the liar paradox, 

indicates that his primary aim was not to solve the paradoxes.
112

  But as we have seen, Zermelo 

does take the paradoxes as his starting point.  He is explicit that he will not probe the more 

philosophical questions, but he does, however, ―hope to have done at least some useful 

spadework hereby for subsequent investigations in such deeper problems,‖ among these the 

origins of the axioms, their general validity, and their consistency.
113

  Russell does choose to 

probe such questions presenting the various paradoxes in some detail so as to show that they 

share ―a common characteristic‖.
114

  Perhaps, as Moore suggests, this difference is accounted for 

by Russell‘s philosophical background, but given Zermelo‘s self-professed interest in the 

paradoxes it does not seem we can say that his axiomatization is unconcerned with them.  The 

difference in presentation may just be a difference in the disciplines‘ writing styles with 

mathematical papers often written in a succinct style and judged on the mathematical results they 
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present, unlike philosophy papers, where presenting motivations is encouraged and often of 

primary importance. 

 The common feature Russell discerns in all of these paradoxes is ―self-reference, or 

reflexiveness.‖  So, for example, when Epimenides the Cretan asserts that all Cretans are liars 

and that all other statements made by them are lies, this assertion itself must fall within the scope 

of Epimenides‘ statement.  Similarly, for all classes x to belong to the class w if and only is x is 

non-self membered, this condition must apply to w itself.  Russell indicates, ―In each 

contradiction something is said about all cases of some kind, and from what is said a new case 

seems to be generated, which both is and is not of the same kind as the cases of which all were 

concerned in what said.‖
115

  He then proceeds through the paradoxes showing how this works in 

each case concluding, ―Thus all our contradictions have in common the assumption of a totality 

such that, if it were legitimate, it would at once be enlarged by new members defined in terms of 

itself.‖
116

  And thus he establishes the general principle, a version of his vicious circle principle, 

that  

―Whatever involves all of a collection must not be one of the collection‖, or conversely:  ―If, provided a 

certain collection had a total, it would have members only definable in terms of that total, then the said 

collection has no total.‖
117

 

 

The theory of types will be such a theory that excludes such collections so making such phrases 

as ―all propositions‖, ―all properties‖, or ―all classes‖ meaningless. 

 Russell defines a type as the range of significance of a propositional function, that is, the 

collection of arguments for which the function has values, or is true or false.  Otherwise, the 

resulting proposition is simply nonsense.  Whenever an apparent variable, that is, a bound 
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variable, occurs in a proposition, its range of values forms a type. The paradoxes then are 

avoided by the vicious circle principle as implemented by the theory of types:  ―no totality can 

contain members defined in terms of itself,‖ or more technically, ―whatever contains an apparent 

variable must not be a possible value of that variable.‖  Russell‘s typing of the objects of the 

universe forces it so that any expression containing an apparent variable must be of higher type 

than the possible values of that variable.  Thus the apparent variables in an expression determine 

the type of the expression.
118

 

 Russell elaborates his theory by explaining that any proposition containing an apparent 

variable is a ―generalized proposition‖, and any proposition with no apparent variables is an 

―elementary proposition‖.  A generalized proposition presupposes the other propositions from 

which it is obtained by the process of generalization.  Hence all generalized propositions 

presuppose elementary propositions.  In an elementary proposition we distinguish one or more 

terms from one or more concepts, where the terms are what we regard as the subject of the 

proposition and the concepts are the predicates or relations asserted of the terms.  The terms of 

an elementary proposition, Russell calls the ―individuals‖, and these form the lowest type.  In 

practice, however, he remarks that it is unnecessary to know which objects belong to the lowest 

type, or even to know, in a given context, whether the lowest type are individuals.  All that 

ultimately matters are the relative types of the objects in a given expression.  So the lowest type 

in any context may be taken as the individuals, and all that is essential to them is the way in 

which the other types are generated from them as follows.
119

   

 In generalizing the individuals in an elementary proposition, we generate a new 

proposition, and this will be a legitimate procedure so long as no individuals are propositions, 
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which is the case because propositions are essentially complex whereas individuals lack all 

complexity.  So for example, given the propositional function ―x is red‖, where ―x‖ is taken as an 

individual variable, we may generalize on ―x‖ to get the new proposition ―(x)(x is red)‖, or 

―Every individual is red‖.  And since the individuals cannot be propositions, generalizing on 

them in this way does not lead to reflexive paradoxes.  The elementary propositions along with 

the propositions containing only individual variables as apparent variables, Russell calls ―first-

order propositions‖, and these propositions form a new set of objects that can also be generalized 

so generating the second type.  Generalizing now on the variables of the second type, we 

generate the second-order propositions, which now also serve as quantifiable variables so 

forming the third type, and so on. 

 Now, we can see how the typing removes the reflexive paradoxes.  Epimenides‘ 

statement now becomes, for example, ―All first-order propositions asserted by me are false.‖  

Since this is a proposition about first-order propositions, it is itself a second-order proposition 

and in fact, true.  It does not assert any true first-order proposition, and so does not yield a 

paradox as before.  In general, the (n + 1)
th

 logical type consists of order n propositions, and 

these propositions contain as apparent variables propositions of order no higher than n  1.  

Since the types are mutually exclusive, it is impossible to generate the reflexive paradoxes.
120

 

 In practice, Russell explains that it is easier to work with a hierarchy of functions rather 

than propositions.
121

  So a function that takes only individuals as arguments, thus always yielding 

a first-order proposition, is a first-order function.  A function involving only first-order functions 

or propositions as apparent variables is a second-order function and so on.  Furthermore, he calls 

a function of one variable which is of order next above its argument a ―predicative function‖; this 
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is the same also for propositions of several variables.  Hence, the type of a function is determined 

by the type of its values and the types of its arguments.  He further explains this hierarchy by 

denoting first-order functions of an individual variable x as ―!x‖.  Since no first-order function 

contains a function as a variable hence forming a well-defined totality, we can generalize on .  

Then any proposition with  as apparent variable and no apparent variable of higher type is a 

second-order proposition.  If such a proposition contains and individual variable x, then this 

proposition is not a predicative function of x but it is of  written ―f!(!ŵ)‖.  So f is a predicative 

function and its values form a well-defined totality, and so we can also generalize on f.  This 

defines the third-order predicative functions, which are such that have third-order propositions as 

values and second-order predicative functions as arguments and so on.
122

 

 Although the type theory blocks the paradoxes, a new problem arises.  The success of the 

theory is to be judged on its capacity for providing a foundation to mathematics, but as it stands, 

it generates very little of mathematics.  As we have seen, the typing restrictions exclude such 

expressions as ―all propositions‖ or ―all properties of x‖.  We can only make such assertions 

when restricted to a particular order.  But if a finite number is defined as it usually is as a number 

that possesses all properties possessed by zero and by successors of all numbers possessing these 

properties, then the type theory says we must confine our talk to properties of a particular order.  

But if we confine this statement to all first-order properties of numbers, then we cannot infer that 

this definition holds for all second-order properties.  So for example, we cannot prove that if m 

and n are finite numbers, then m + n is a finite number since, by the above definition, ―m is a 

finite number‖ is a second-order property of m.  So from ―m + 0 is finite, and that if m + n is 
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finite, so is m + n + 1,‖ we cannot conclude by induction ―m + n is a finite number,‖ leaving 

much of mathematics impossible.
123

  Russell‘s solution is to introduce the axiom of reducibility. 

 What Russell needs for mathematics is a way of reducing the order of a propositional 

function without affecting the truth or falsity of its values, and so simulating talk of all properties.  

He solves this problem with what he takes as the ―common sense‖ reason for accepting classes.  

He explains, given any propositional function of any order x, we assume this to be equivalent 

for all arguments x to the statement ―x belongs to the class ‖.  This is a first-order statement, 

which makes no mention of all functions of such-and-such a type, with the only practical 

advantage of the original statement being that it is of first-order.  There is no other particular 

advantage in assuming outright the reality of classes (Russell instead defines classes contextually 

from his intensional propositional functions).  In fact, Russell states, 

I believe the chief purpose which classes serve, the chief reason which makes them linguistically 

convenient, is that they provide a method of reducing the order of a propositional function.  I shall, 

therefore, not assume anything of what may seem to be involved in the common-sense admission of classes, 

except this:  that every propositional function is equivalent, for all its values, to some predicative 

function.
124

 

 

Much as with Zermelo‘s system and the basic system of types, the axiom is introduced on 

pragmatic grounds.  Like Zermelo, Russell wants to preserve as much of set theory as 

mathematics requires while still excluding the paradoxes.  In neither case, are they motivated by 

something they see as some feature they see as the essence of sets or classes.  The paradoxes 

showed that commonsense and our intuitions about sets or classes were not a reliable guide in 

developing the theory. 

 Russell goes on to elaborate the new axiom explaining that it is to hold of any function 

regardless of the type of its argument.  So if we let x be a function of any order of an argument 
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x, which itself may be of any type, then by the axiom of reducibility, there is a predicative 

function !x equivalent to it.  This Russell thinks is weaker than the usual assumption of classes, 

and it retains as much of classes as needed for mathematics but not so much as to regenerate the 

paradoxes.  The axiom allows statements about ―all first-order functions‖ or ―all predicative 

functions‖ to do the work that statements about ―all functions‖ previously did.  ―The essential 

point,‖ he observes, ―is that such results are obtained in all cases where only the truth or 

falsehood of values of the functions concerned are relevant, as is invariably the case in 

mathematics.‖
125

  The axiom, as such, turns Russell‘s intensional theory of propositional 

functions into the extensional theory of classes.  Yet, there may be a worry that with the axiom, 

the paradoxes return.  Russell argues that this is not the case since in the case of the paradoxes 

either something beyond the truth or falsity of the values of the function is concerned or the 

expression occurs that remains unmeaningful even after the axiom is applied.
126

 

 Russell concludes the paper remarking more specifically on how his theory deals with 

some of the paradoxes.  With regard to his own he explains that since we can identify classes 

with functions, no class can be a member of itself due to the hierarchy of functions.  Members of 

the class, then, are the arguments of a function, and arguments of a function are of lower type 

than the function itself.  And this forces Russell to give up his strongly held earlier view that 

there must be a class of all classes, regardless of how intuitive it might have initially seemed.  

Instead, the theory of types gives him a class of all classes of type t.  Since this class is of the 

next higher type, it is not a member of itself.  ―Thus,‖ he concludes,  
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although the above primitive propositions [his basic laws of the system] apply equally to all types, they do 

not enable us to elicit contradictions.  Hence in the course of any deduction it is never necessary to consider 

the absolute type of a variable; it is only necessary to see that the different variables occurring in one 

proposition are of the proper relative types.
127

 

 

The idea encapsulated here is that of typical ambiguity.  It is an important one to which we will 

return in the next chapter on Quine‘s system, New Foundations (NF). 

 The type theory similarly eliminates Cantor‘s paradox of the largest cardinal.  Just as the 

typing restrictions now generate a class of all classes for each type, they also generate a largest 

cardinal for each type, the cardinal of the whole type.  But as is consistent with Cantor‘s theorem, 

such a cardinal is always surpassed in size by the cardinal of the next type since the type n + 1 

contains all subsets of the type n.  Furthermore, since there is no way to add classes of different 

type so as to get a cardinal of all objects of whatever type, there is no greatest cardinal.
128

 

 Finally, Russell examines Burali-Forti‘s paradox concluding much as with the other two 

that there is no totality of all ordinals.  Again, his theory yields an ordinal for any given type, but 

higher types will always have greater ordinals, which since they are of different types cannot be 

added together into a single all encompassing ordinal.  Only in a given type can all the ordinals 

be arranged by order of magnitude into a well-ordered series, and such a series will then have an 

ordinal that is of higher type than the ordinals in the series.  He concludes, much like Cantor had 

initially and then Zermelo, that  

It is impossible to complete the series of ordinal, since it rises to types above every assignable finite limit; 

thus although every segment of the series of ordinals is well-ordered, we cannot say that the whole series is 

well-ordered, because the ―whole series‖ is a fiction.  Hence Burali-Forti‘s contradiction disappears.
129

 

 

Surprisingly, in light of Moore‘s interpretation of the differences between Zermelo and Russell‘s 

approaches to the paradoxes, Russell closes his paper much as Zermelo began: 
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The theory of types raises a number of difficult philosophical questions concerning its interpretation.  Such 

questions are, however, essentially separable from the mathematical development of the theory and, like all 

philosophical questions, introduce elements of uncertainty which do not belong to the theory itself.  It 

seemed better, therefore, to state the theory without reference to philosophical questions, leaving these to 

be dealt with independently.
130

 

 

It seems then that where set theory is concerned the line between philosophy and mathematics 

remains a difficult one to draw as we will continue to see in the next chapter concerning Quine‘s 

approach to the paradoxes in the system of New Foundations. 
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III.  QUINE‘S NEW FOUNDATIONS 

 

 We now turn to consider the system of set theory put forward by W.V. Quine in his 1937 

paper ―New Foundations for Mathematical Logic‖.
131

  New Foundations (NF), as this system has 

become known, emerged from Quine‘s thinking through the systems of both Russell and 

Zermelo preserving something like the type restrictions of type theory along with the unrestricted 

variables of Zermelo‘s set theory.  The system is especially notable, and perhaps also 

controversial, in proving the existence of such ―big‖ sets as the set of ordinals, the set of 

cardinals, and even the universal set.  In this chapter, I lay out the system and discuss how it 

avoids the paradoxes.  I also begin to examine, from the perspective of his work in logic and 

foundations, the sort of philosophical mind Quine was, which will be the primary focus of the 

next chapter. 

 Quine opens his article observing that Russell and Whitehead‘s Principia Mathematica
132

 

provides substantial evidence that all of mathematics is translatable into logic.  In light of 

Gödel‘s incompleteness theorem, however, no axiom system is sufficient for deducing all of 

mathematics.  Still, the core of mathematics, as in Principia, serves as some reasonable standard 

for judging any system to be sufficient for mathematics, and so it is this standard Quine applies 

for judging NF.  For all of Zermelo, Russell, and Quine, the standard of success for any given 

formulation of set theory is simply whether the system captures some reasonable amount of 

mathematics.  As far as logic goes, Quine admits that the logic required for mathematics is a 

good deal stronger than traditional logic: 

It must be admitted that the logic which generates all this is a more powerful engine than the one provided 

by Aristotle.  The foundations of the Principia are obscured by the notion of propositional function, but, if 

we suppress these functions in favor of the classes and relations which they parallel, we find a three-fold 
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logic of propositions, classes, and relations.  The primitive notion in terms of which these calculi are 

ultimately expressed are not standard notions of traditional logic; still they are of a kind which one would 

not hesitate to classify as logical.
133

 

 

So we have Quine clarifying exactly what he will count as a logical foundation for mathematics; 

it is logic inclusive of set theory.  But in accepting such a position, he knowingly gives up much 

of the epistemological aims that the reduction of mathematics to logic was supposed to 

accomplish.  Quine‘s concern is not to somehow rest mathematics on a more certain foundation 

than mathematics itself.  Set theory, for him as we will later see, is foundational in that it unifies 

diverse bodies of mathematics into a single framework of logic and set theory.
134

  This theme 

will be important for understanding what Quine‘s philosophy of set theory is, which we will deal 

with more thoroughly in the following chapters.  For now, we merely observe that these 

departures from traditional aims are present in some of his earliest work in foundations.  This is 

not, however, the only point of interest here in beginning to flesh out Quine‘s philosophical 

stance.  We also see him in this passage quickly dismissing Russell‘s basic notion of a 

propositional function on grounds of its obscurity and instead accepting classes outright.  The 

central Quinean themes of clarity and simplicity are present already at this early stage, and in 

recognizing the obscurity of the notion of a propositional function, we can see already the 

beginnings of Quine‘s attack on philosophical accounts of meaning and so also on the analytic-

synthetic distinction.  We see here the core of Quine‘s philosophy as emerging from his logical 

concerns. 

 The system of NF itself contains a much smaller number of basic notions than that of  
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Principia Mathematica (PM) employing just membership, ―‖ (epsilon); alternate denial, ―‖ 

(not both); universal quantification, ―(x)‖, and an infinite number of variables ―x‖, ―y‖, ―z‖, 

―x'‖, ―y'‖, ―z'‖, ―x''‖ and so on.  The variables, unlike those of PM, range over all objects 

whatsoever; there is no stratification of the universe into different levels, or types.  From these 

basic notions, he then defines the usual logical connectives of negation, conjunction, disjunction, 

conditional, biconditional, and the existential quantifier, along with the various set-theoretic 

relations such as subset, ―‖; union, ―‖; and intersection ―‖.  In remarking that the formula 

―(x  y)‖, or ―x is a member of y‖, only makes sense where y is a class, he further simplifies the 

system by adopting the convention that, where y is an individual, we may interpret such formulas 

as ―x is the individual y‖.  As such, every individual x is just equal to its unit class, or singleton, 

{x}, but, he adds in a footnote that ―this is harmless.‖
135

  Again, we see the broadly pragmatic 

spirit that has come to characterize Quine‘s philosophy emerging in his logical work.  Where he 

can simplify the system, unlike and in reaction to Russell, he does so without regret. 

 Next, Quine introduces the basic rules and axioms, or initial theorems, of NF, among 

them truth-functional and quantificational axioms, and rules of inference.  He also proposes the 

following two set-theoretic principles: 

P1.  (x)(y)(x  y)  ((y  x)  (x = y)), 

the extensionality principle that a class is determined by its members, and  

 R3.  If ―x‖ does not occur in , then ―(x)(y)((y  x)  )‖ is a theorem. 

In short, given any condition on y, there is a class x with members y such that this condition 

holds of the y‘s.  But he then observes, this is of course the inconsistent comprehension principle 
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yielding Russell‘s paradox when we take  as the condition ―(y  y)‖.  As we saw in the 

previous chapter, one way of resolving the paradoxes was to adopt types so that the universe is 

stratified into levels and the variables are restricted to ranging over objects of a particular level.  

(  ), then is only a formula if the values of  are of type n + 1 and the values of  are of type 

n.  In all other cases, (  ) is not true or false but meaningless.
136

 

Quine, however, focuses his attention on an observation we saw Russell himself make in 

the previous chapter that 

In all contexts the types appropriate to the several variables are actually left unspecified; the context 

remains systematically ambiguous, in the sense that the types of its variables may be construed in any 

fashion conformable to the requirement that ―‖ connect variables only of consecutively ascending types.  

An expression which would be a formula under our original scheme will hence be rejected as meaningless 

by the theory of types only if there is no way whatever of so assigning types to the variables as to conform 

to this requirement on ―.‖  Thus a formula in our original sense of the term will survive the theory of 

types if it is possible to put numerals for the variables in such a way that ―‖ comes to occur only in 

contexts of the form ―n  n + 1.‖
137

 

 

While Russell had already noticed this feature of types, Quine takes the idea more seriously and 

follows it through to its conclusion.  It is inessential to resolving the paradoxes that the universe 

actually be stratified into levels; what the typing restriction does is provide a syntactic test for 

which formulas actually determine classes, these are the so-called ―stratified formulas‖.  ―New 

Foundations‖, in this sense, as he later remarked, emerged from the theory of types.
138

 

 Quine first observes some unnatural consequences of Russell‘s type theory.  Although we 

saw Russell clinging desperately to a universal class, his resolution of the paradoxes in type 

theory ultimately forced him to give up this idea in favor of a series of, what Quine describes as, 

quasi-universal classes, a class of all objects of the type directly below.  So there is a class of all 

individuals, of all classes of classes of individual and so on, but there is no single class V that 
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contains all objects regardless of type.  Similarly, there is no single null class  but, again, one 

for each type. Types has the further odd consequence that classes no longer have absolute 

complements.  A class –x does not contain all non-members of x but rather only those non-

members of x at the next lower type than x.  So we see the Boolean class algebra no longer 

applies to classes in general but only to classes within particular types.  Furthermore, these 

classes are then reduplicated within each type, and the same holds also for the usual calculus of 

relations.  Finally, he notes that even arithmetic is reduplicated in each type so that the numbers 

fail to be unique, there being for each type a number 0, 1, 2, 3 and so on.  He concludes, ―Not 

only are all these cleavages and reduplications intuitively repugnant, but they call continually for 

more or less elaborate technical maneuvers by way of restoring severed connections.‖
139

  By 

taking Russell‘s insight of typical ambiguity seriously, Quine resolves the paradoxes while 

avoiding these unhappy consequences:  ―Whereas the theory of types avoids the contradictions 

by excluding the unstratified formulas from the language all together, we might gain the same 

end by continuing to countenance unstratified formulas but simply limiting R3 explicitly to 

stratified formulas.‖
140

  The hierarchy of types is then removed so that variables stay unrestricted 

in range and the logical language allows for all formulas in the original untyped sense.  The 

notion of a stratified formula remains a part of the system only the following revised version of 

R3: 

 R3'.  If  is stratified and does not contain ―x‖, then ―(x)(y)((y  x)  )‖ is a theorem.   

Here we also get a glimpse of a further reason for rejecting the theory of types that Quine 

was only to emphasize in his later account of how he came upon ―New Foundations‖.  There he 

explained that he disliked the arbitrary grammatical restrictions of type theory.  As mentioned 

                                                 
139

 Ibid., p. 78-9. 
140

 Ibid., p. 79. 



 

 

65 

 

above, unstratified formulas, according to type theory, were neither true nor false but 

meaningless, and as such ―[s]eemingly intelligible combinations of signs were banned as 

ungrammatical and meaningless.‖
141

  The theory of types was, for Quine, too drastic in its 

resolution of the paradoxes in banning all unstratified formulas, especially since many of them 

seemed perfectly intelligible.  Much of his work up to ―New Foundations‖ was an attempt to 

legitimize these restrictions so that the banning of unstratified formulas would not be wholesale 

and without reason.
142

  In his first attempt in 1935, he attempted to legitimize the restrictions by 

finding some more basic array of notions that would allow him to provide contextual definitions 

of classes and the membership relation.  ―I hoped,‖ he explained, ―to devise contextual 

definitions that would generate just the formulas that fit the theory of types, while leaving other 

formulas meaningless in the straightforward sense of not being accounted for by the definitions.‖  

The attempt failed, however, as the set-theoretic paradoxes simply shifted to become semantic 

paradoxes.
143

 

 At this point the crucial influence shifted from Russell to Zermelo.  From him Quine 

gained the insight ―that a meaningful open sentence may or may not determine a class, and that it 

can be left to the axioms to settle which ones do.‖
144

  So while Russell banned such open 

sentences as ―x is a member of itself‖ on grounds of their supposed meaninglessness, Quine took 

the contrary position affirming their meaningfulness but leaving it open that they may not 

determine a class depending upon which classes the axioms yield.  His first step in the direction 

of New Foundations was the 1936 ―Set-theoretic Foundations for Logic‖ in which he presents a 
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version of Zermelo‘s system but with a modified version of the separation axiom.  Zermelo state 

his original version of separation as 

(x)(y)(y  x  x  z  Fy). 

Quine‘s idea was to replace ‗x  z‘ with ‗x  z‘ so as to obtain 

 (x)(y)(y  x  x  z  Fy). 

While Zermelo‘s system required several other set-theoretic axioms to be adequate for the 

derivation of mathematics, Quine‘s modified system, which he called ―‖, included only the 

modified separation axiom and the extensionality axiom.  As we might be starting to expect, his 

aim in ―Set-theoretic Foundations‖ was ―the presentation of a system  which resembles 

[Zermelo‘s] system but is more economical.‖
145

  Like the systems of Zermelo and Russell, 

however, in order to derive a substantial amount of mathematics, the system  still required 

additional postulating of the axioms of infinity and choice. 

 Indeed, this lack of economy was the primary drawback Quine saw in Zermelo‘s system 

since it otherwise avoided the difficulties of types in that it lacked both arbitrary grammatical 

restrictions and the reduplication of objects at each level of the hierarchy:  ―Zermelo‘s system 

itself was free of both drawbacks, but in its multiplicity of axioms it seemed inelegant, artificial, 

and ad hoc.‖
146

  But both Zermelo‘s system and the modified version  had another drawback in 

removing type theory‘s reduplication of objects.  While types had quasi-universal classes, 

Zermelo‘s system banned this class altogether, and as such, absolute complements were again 

banned yielding instead only complements with regard to an already given class.  In general, 
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what both systems lacked were big classes.
147

  Here we see another aspect of Quine‘s philosophy 

of set theory which will emerge more fully in the following chapters.  Quine is very much 

concerned with set theory as an explorative project much like the rest of science.  The lack of big 

classes is not necessarily a drawback for reconstructing mathematics within set theory.  Most 

ordinary mathematics goes on with comparatively small sets, but this lack has become all the 

more evident as set theory itself has emerged as a subject of mathematical investigation.  In 

exploring how the set-theoretic universe functions we should not prejudice our explorations to 

only some sets.  We should want to know what all sets are like, how they a similar and where 

they diverge and what sorts of features cause such divergences.
148

  Should we want to know what 

the big sets are like, neither the system of Russell nor of Zermelo can give us any answer.   

What Quine wanted was a system free of all the drawbacks of types and Zermelo, ―but 

would be like the theory of types in having a single comprehension principle of class existence, 

and would admit big classes without restriction to type.‖
149

  Combining the insights of Russell‘s 

typical ambiguity with Zermelo‘s view that the axioms could determine which sets exist gave 

him precisely this as codified in the system of ―New Foundations‖.  In light of Zermelo, ―I was 

able to look to types as a restriction specifically upon classes and not upon language.  The 

purpose of the theory of types was to bar the paradoxes, and this could be done by using it only 

to say which open sentences are to be taken to determine classes.‖
150

  The structure of the set-

theoretic universe, then, was determined by the stratification condition limited only to the 

comprehension principle R3'.  The universe itself was not stratified into a hierarchy of classes as 
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Russell thought.  And now, with the variables reconstrued as general, that is, as ranging over all 

objects with no restriction of type, Quine ―found new strength accruing at every turn, apparently 

with impunity.‖
151

  New Foundations successfully removed Russell‘s arbitrary grammatical 

restrictions while not adding the reduplication of objects back in.  Furthermore he regained the 

universal class and absolute complements as well as other such big classes as the class of 

cardinals and of ordinals.  And finally, he obtained an infinite class without the arbitrary 

postulation of an axiom of infinity in that the universal class existed and contained within in it 

each natural number such that for all such numbers m and n, m  n.
152

   

Quine‘s aim in presenting NF was not to do away with other set theories, to have 

somehow presented the single ―right‖ conception of a set.  Rather his aim was, and would remain, 

to further set-theoretic research generally by looking at sets from a different perspective, which 

preserved certain fairly intuitive features of sets that the systems of Russell and Zermelo did not.  

From Quine‘s perspective none of these systems discovered anything like the essence of sets so 

as to zero in on the one and only correct set theory.  Rather, just like Russell and Zermelo, 

Quine‘s primary purpose was eliminating the paradoxes while still preserving enough of 

Cantor‘s original theory for it be mathematically interesting.  Any set theory adequate to these 

aims was one worthy of mathematical, or perhaps we might even say more broadly, scientific, 

investigation. 

But then did NF in fact avoid the paradoxes?  Quine remarks in conclusion that he has no 

proof that such a system is consistent, but just as Zermelo and Russell reasoned about their 

respective systems, he can see not way of deriving a paradox within it.  As he himself makes this 
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connection: ―The lack of a consistency proof is no special ground for misgivings, for there is 

likewise none for the systematization involving the theory of types.‖
153

  Furthermore, his system 

removes the various unnatural consequences of types.  Both the universal class V and the null 

class  are unique while the complement of x,  –x, is the class of everything not in x.  Thus the 

Boolean class algebra is restored and similarly for the calculus of relations.  Similarly, the 

reduplications of arithmetic are removed so that the numbers are unique and their laws become 

generally applicable as a single calculus thus eliminating whatever complicated technical devices 

type theory required for restoring such severed connections.
154

   

 In concluding his paper, Quine remarks that NF differs from the original inconsistent 

theory in preventing the existence of classes defined by unstratified conditions.  He adds in a 

footnote that the systems of his earlier ―Set-theoretic Foundations for Logic‖ along with 

Zermelo‘s offer other approaches for resolving the paradoxes. ―But these methods entail most of 

the awkward limitations which are entailed by the theory of types,‖ he argues.  ―The present 

method of avoiding the contradictions, if it indeed avoids them, would seem to be the least 

restrictive method yet suggested.‖
155

  So we see again, Quine‘s guideline for developing set 

theory is much like Zermelo‘s and Russell‘s—to preserve as much as the original theory 

unrestricted theory as possible.  In this sense, NF does seem an advance over Zermelo‘s system 

and theory of types.  While both of these versions of set theory are sufficient for reconstructing 

mathematics, they lack certain sets, the so-called ―big‖ sets in particular.  And as we have seen, 

these other theories include a variety of inelegancies resulting from the way they restrict the 

notion of set so as to avoid the paradoxes.   
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 So far we have had only Quine‘s speculations that NF is free from contradiction.  It does 

seem fairly obvious that Russell‘s paradox is not derivable in the system given that there is no set 

with the membership condition y  y.  But how exactly the theory avoids the other paradoxes, 

such as Cantor and Burali-Forti, is less clear.  Furthermore, Cantor had arrived at an important 

result of set theory, that the power set of a set always has greater cardinality than the set itself.  It 

seems we should want to preserve such a result if we are to preserve Cantor‘s set theory.  I now 

turn to see how in fact the known paradoxes are blocked in NF, and also how the theory 

preserves an analogue of Cantor‘s theorem. 

 Recall from the previous chapter that Cantor‘s paradox results from the claim that there 

exists a universal set and Cantor‘s result that for each set x, the power set of x has greater 

cardinality than the set x itself.  Quine‘s NF certainly yields a universal set V in its stratified 

existence claim that (x)(y)(y  x  y = y).
156

  So it seems that such a set should have the 

greatest cardinality given that it contains all sets.  But then by Cantor‘s theorem the cardinality of 

the power set of V would be greater than V itself, so landing us back in the contradiction that 

worried Russell so much.  How then does NF block Cantor‘s paradox?  In the first general result 

about NF, Quine himself showed both how his system blocks this paradox and also preserves an 

analogue of Cantor‘s theorem.
157

  Although it may seem tedious, it is instructive to follow the 

details of this proof to see exactly how stratified comprehension works in preventing Cantor‘s 

paradox. 

 Quine states Cantor‘s theorem as ―the converse domain of any one-many relation has a 

subset which does not belong to the domain.‖  Formally, 
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(1)    (v)[(y)(z)(w)((z, y)  v  (w, y)  v  z = w)   

(x)((y)(y  x  (z)(z, y)  v)  (y)(x, y)  v)]. 

 

Here, he renders functions in terms of two-place relations, where a relation Rxy is just a set v 

with the ordered pair (x, y) as a member.  We can then read it as ―there is a set x, a subset of the 

converse domain of R, such that for any object y, if it is in x then it is borne R by something, but 

the set of such y‘s bears R to nothing, i.e. is not in the domain of R.‖  Hence, we have that a set 

always has more subsets than members. 

To prove (1), assume v is a one-many relation, where a one-many relation is a relation 

such that any two members of the domain of the relation v bearing this relation to the same 

member in the range must be the same object, i.e., 

(2)    (y)(z)(w)((z, y)  v  (w, y)  v  z = w). 

That is to say, such a relation is a function, since for any object in the domain, or input, there is a 

unique object in the range, or output, that it bears the relation to.  And by unrestricted 

comprehension, let x be the set 

(3)    (y)(y  x  (z)((z, y)  v  y  z). 

So if y  x, then y  z, and so z  x.  So from (3) and truth-functional logic, 

(4)    (y)(y  x  (z)((z, y)  v  z  x). 

But then by (2) and truth-functional logic, 

(5)  (z, y)  v  z  x  (x, y)  v. 

Therefore, by (2) and (3) and truth-functional logic, 

(6)    (y)(y  x  (x, y)  v). 

And now, from (3) again,  

(7)    (y)((x, y)  v  y  x  y  x), 
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which, by truth-functional logic, is equivalent to  

(8)    (y)((x, y)  v  y  x). 

And so from (8) 

(9)   (y)((x, y)  v  (x, y)  v), 

which is equivalent to 

(10)    (y)(x, y)  v. 

And from (3), 

(11)    (y)(y  x  (z)((z, y)  v). 

Thus, from (2) and the unrestricted comprehension principle, (1) follows establishing Cantor‘s 

theorem. 

 As we have seen, unrestricted comprehension led to the set-theoretic paradoxes.  Indeed, 

from this principle we have seen that we can prove the existence of a universal set, so Cantor‘s 

paradox would quickly follow.  In Zermelo‘s system, we can also prove Cantor‘s theorem, but 

his restriction on comprehension excludes the existence of a universal set, so there is no reason 

to worry about the reemergence of the paradox there.  But NF, like set theory with unrestricted 

comprehension, allows for a universal set, so how does it prevent Cantor‘s paradox? 

 The proof of Cantor‘s theorem above follows from comprehension, so it will likewise 

follow from comprehension in NF if the existence condition is stratified.  However, it is not.  The 

instance of comprehension used above was 

(3)    (x)(y)(y  x  (z)((z, y)  v  y  z). 

But, using the Wiener-Kuratowski definition of ordered pair, and checking for stratification we 

get 

(3')     (x)(y)(y  x  (zn)({{zn}n+1, {zn,yn}n+1}n+2  vn+3  yn  zn), 
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demonstrating that this is an unstratified condition since y and z must have consecutive 

subscripts n and n + 1.  Therefore, no such set exists in NF and Cantor‘s paradox is blocked.  But 

it also follows now that Cantor‘s theorem in its stated form is false, and this may seem to weigh 

heavily against NF as a live option for formalizing set theory since it now seems to prevent one 

of Cantor‘s most important results about set theory.  It is central to investigating infinite sets, and 

so, losing it would remove much of what made Cantor‘s theory interesting in the first place. 

 Quine, however, observes that NF does have an analogue to Cantor‘s theorem.  Indeed, it 

is the same version of the theorem that we can prove for type theory, since there too, the stated 

version fails in its violation of the typing restrictions.  In type theory, relations can be rendered as 

sets of ordered pairs where the members of the pairs must be of the same type.  Mathematics, 

however, frequently requires pairs with members of different types.  Without some way around 

this, mathematics would be all but impossible in type theory.  The solution was to use the 

singleton operation as a way of raising types.  So for example, the pair (x1, y2), which is excluded 

by typing restrictions, can be rendered in type theory in the following way.  Again using the 

Wiener-Kuratowski analysis of the ordered pair, we get {{x1}, {x1, y2}}.  We then apply the 

singleton operation to appropriately raise the type so as to get {{{x1}2}, {{x1}2, y2}}, which is 

then the stratified ordered pair ({x1}2, y2), a perfectly acceptable statement of type theory.   

Similarly, we can now replace the original statement of Cantor‘s theorem (1) with 

(1')    (v)[(y)(z)(w)((z, {y})  v  (w, {y})  v  z = w)   

(x)((y)(y  x  (z)(z, {y})  v)  (y)(x, {y})  v)], 

 

which is derivable in NF since the condition (zn+1)((zn+1, {yn}n+1)n+2  vn+3  yn  zn+1) is 

stratified hence allowing for the existence of the required set.  However, where (1) states that the 

subsets of a set cannot be correlated one-to-one with its members, that is, there are more subsets 

than members, (1') states that a given set has more subsets than singleton subsets, which has the 
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further consequence that that in general there is no function correlating one-to-one members with 

their singletons.  While this last result may seem especially odd, there are many sets for which 

such a correlation exists.  These are the so-called ―Cantorian sets‖ to which we will return in 

later chapters.  So to conclude, what Quine shows is that, for NF, the original version of Cantor‘s 

theorem is false, although an analogue of it can be proved in the form that the subsets of a set 

outnumber the singleton subsets; and there is no correlation in general between the members of 

set and their singleton sets. 

 The next major investigation into the consistency of NF came in 1939 with Rosser‘s ―On 

the Consistency of Quine‘s New Foundations for Mathematical Logic‖.
158

  Here, Rosser presents 

a stronger system, Q, and shows that none of the usual methods for producing contradictions are 

possible in this system.  Q also yields all of Quine‘s system NF.  Therefore, if Q is free from 

contradiction so is NF. 

 Rosser begins by remarking on Quine‘s result that Cantor‘s paradox is not derivable in 

NF holds similarly for his system Q.  However, he is able to generalize Quine‘s findings to show 

how this result shows the various other set-theoretic paradoxes similarly underivable for both Q 

and NF.  Rosser observes that the central point to Quine‘s proof is his showing that there is no 

function that takes every set to its singleton.  That is, there is no set of ordered pairs (x, y) such 

that x is equal to y where y is the singleton of x, {(x, y) : x = {y}}.   Indeed, the existence of such 

a set would also yield both the Russell and Burali-Forti paradoxes.  For example, consider the 

following: 

(R)()(x)(x    (y)(x  y  {x}Ry)). 

Now, instantiating R by {(x, y) : x = {y}} yields 
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()(x)(x    (y)(x  y  {x} = {y}), 

which gives implies 

()(x)(x    x  x), 

the Russell class.  In fact, Rosser concludes that for any unstratified condition , we can find a 

stratified condition  with free occurrences of a relation R such that by replacing R with {(x, y) : 

x = {y}} makes  equivalent to .  And since relations are defined as classes of ordered pairs, 

which in turn are just classes of classes, thus depending on stratified comprehension for their 

existence.  Hence, attempts to prove the existence of unstratified relations so as to derive the 

Russell, Cantor, or Burali-Forti paradoxes fail in NF.
159

  So Rosser improves upon Quine‘s result 

by showing that this general feature of NF, that is, that there is no general function taking sets to 

their singletons, blocks the usual ways of generating the set-theoretic paradoxes in NF thus 

furthering the plausibility of NF‘s consistency. 

While a similar argument holds against the Burali-Forti paradox it is helpful to consider 

in some detail, as with the Cantor Paradox, how exactly it plays out in NF. Unfortunately, it 

requires a bit more technical machinery than the discussion of the previous two paradoxes.
160

  

First, recall that the Burali-Forti paradox is the paradox of the greatest ordinal.  Let ON be the set 

of ordinals which is naturally well-ordered by , and let  be the order-type of  restricted to ON.  

Since  is the type of  on the ordinals,  is greater than all the ordinals in ON, but  is also an 

ordinal so it must be a member of ON.  Hence,  is both greater than all the ordinals in ON and 

one of the ordinals in ON.   
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To begin our discussion of how Burali-Forti plays out in NF, we must first understand 

which set-theoretic objects the ordinals are in NF.  Thomas Forster explains that the cardinals of 

NF must be Russell-Whitehead cardinals, that is, equivalence classes under equinumerosity, so 

for example, the cardinal number of a set x is the set of all objects the same size as x.  Similarly, 

the ordinals of NF must be Russell-Whitehead ordinals.  So for a well-ordering (X, R), its ordinal 

number is the set of all well-orderings order isomorphic to it.
161

  Recall that every ordinal  has a 

successor  + 1 such that  + 1 >  and that they are naturally well-ordered by the relation .  

For  an ordinal, we define an (initial) segment determined by , written ―seg{}‖, as the set 

{  NO:  < }.  In a stratified formula, seg{} is one type higher than .  As with the 

cardinal numbers, type raising operations will be important if we are to maintain stratification 

restrictions, so we introduce the operation T.  If  is the order-type of (X, R), then T{} is the 

order-type of (P1{X}, RUSC(R)), where P1{X} is the set of singleton subsets of X and RUSC(R) 

is the set of relational singleton (or unit) subsets of R, that is the set {({x}, {y}): x R y}.  

Iterations of the operation T are written ―T
n
‖, for n a natural number.  A segment seg{}, then, 

is a member of the uniquely determined ordinal T
2
{}, which is two types higher than  in a 

stratified formula.   

Holmes next sketches a version of the Burali-Forti paradox.  Consider the following 

inductive argument that for all ordinals , T
2
{} = .  Let  be the smallest ordinal such that 

T
2
{}  .  For each ordinal  < , then, T

2
{} < T

2
{}.  Furthermore, we see that every ordinal 

less than T
2
{} must be T

2
{} for some  < .  But then it follows that T

2
{} is the smallest 

ordinal greater than all the ordinals T
2
{} for  < .  That is, T

2
{} is  itself.  Hence, it follows 
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that there is no such  such that   T
2
{}.  So for all ordinals , T

2
{} = .  Next, we apply 

this result to the well-ordering  itself.  We let  be the ordinal containing . By the above 

argument, T
2
{} = .  Since  is the ordinal of , the ordinal of  restricted to seg{} is also 

.  And here arises the contradiction.  Since the well-ordering  is a strict continuation of 

seg{},  must also include additional ordinals  + 1,  + 2, and so on greater than the 

purported greatest ordinal . 

Fortunately, Quine‘s NF does not allow for this argument to go through.  Since T
2
{} 

and  are of different types in a stratified formula, T
2
{} =  is not stratified and hence, does not 

determine a set.  Since we can only argue by transfinite induction with regard to sets, the above 

argument then fails because T
2
{} =   and unstratified condition.  And now we again see 

Rosser‘s general point about the singleton function in relation to the set-theoretic paradoxes.  

There can be no function taking every set to its singleton.  If there were, we would then have 

T
2
{} = T{}, and T{} = , and thus, T

2
{} =  allowing the above argument to go through 

and thus, yielding the Burali-Forti paradox. 

Forster explains the situation slightly differently observing that with every proper initial 

segment of ordinals we can associate two ordinals: 

(1) the least ordinal not in X, call it ―L1(X)‖, and  

(2) the order-type of X, call it ―L2(X)‖. 

While L1(X) is bigger than every member of X, this is not obviously true of L2(X).  To 

derive the Burali-Forti paradox, we need to show by induction on the end-extension relation that 

(X)(L1(X) = L2(X)).  But in NF, the ordinals L1(X) and  L2(X)) belong to different types.  

Hence, (X)(L1(X) = L2(X)) is unstratified, and so the class of counterexamples is not 
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guaranteed to be a set as is required for our induction.  In fact it turns out that there are initial 

segments of X of the ordinals where L1(X)  L2(X), and so no paradox arises.
162

   

As Rosser concludes his own earlier discussion, ―[I]t seems to be the case that there is no 

danger of deriving a contradiction along any of the known lines until one can handle unstratified 

relations more effectively….‖
163

  And this echoes Quine‘s point made earlier—with regard to 

consistency, we are in no better position in using other versions of set theory.  We do not have 

absolute consistency results for set theory, and so our confidence in its consistency lies in our 

being unable to derive the paradoxes according to the usual known methods.  Consistency for set 

theory—any set theory—rests upon our not having found a means for deriving the set-theoretic 

paradoxes, yet. 
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IV.  QUINE‘S NATURALISM FROM A LOGICAL 

POINT OF VIEW 

  

In this chapter I want to address Quine‘s philosophical origins.  It sometimes seems as if 

his philosophical work did not begin until 1948 with the publication of ―On What There Is‖ and 

then the seminal 1950 ―Two Dogmas of Empiricism‖, culminating ten years later with his 

masterpiece Word and Object.
164

  But by this time, Quine had already amassed a large body of 

work, though it is strikingly almost entirely within technical areas of mathematical logic.
165

  In 

what follows, I will argue that Quine‘s more widely known philosophical views actually begin in 

this logical work going back to his dissertation of 1932.
166

  To this point, there has been limited 

historical research on Quine, the work of Roger Gibson and Peter Hylton being exceptions.
167

  

But they both focus on Quine as epistemologist tracing much of his work back to Carnap.  There 

is no doubt that Carnap was an important influence on Quine.  But in focusing on his early 

logical work, I want stress the importance of Russell to Quine‘s development, an influence that 

has not yet received enough attention for our understanding of his philosophy. 

 Quine began his formal study of philosophy in 1926 at Oberlin College with an 

undergraduate degree in mathematics and honors reading in logic and mathematical philosophy.  

He then quickly moved through graduate school (in just two years) at Harvard.  So it is no 
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wonder his philosophical origins are somewhat hard to place.
168

  He would have had very limited 

time to engage thoroughly with much philosophy at all.  But we do know at least one constant in 

this period—Russell and Whitehead‘s Principia Mathematica.  He learned logic from this text as 

an undergraduate, and it is also the source of his dissertation and the book version that followed. 

 At the most general level, the influence that Russell‘s paradox had on Quine‘s philosophy 

cannot be stressed enough.  As Quine famously remarked in his 1941 essay on Whitehead, 

But a striking circumstance is that none of these proposals [for coming to terms with the paradoxes], type 

theory included, has an intuitive foundation.  None has the backing of common sense.  Common sense is 

bankrupt, for it wound up in contradiction.  Deprived of his tradition, the logician has had to resort to 

mythmaking.  That myth will be best that engenders a form of logic most convenient for mathematics and 

the sciences; and perhaps it will become the common sense of another generation.
169

 

 

Though less vividly, Quine displayed this attitude already in the 1934 A System of Logistic 

remarking that type theory serves its purpose if it blocks the paradoxes.
170

  He does not see types 

capturing anything like the essence of sethood (for Quine there is no essence to be had).  It 

merely restricts set theory enough to prevent contradiction while leaving enough strength in 

place for it to still serve as a framework for the rest of mathematics.  While not stated explicitly, 

this attitude is certainly present in the dissertation as well.  And more importantly, it is an 

attitude that becomes a constant in his philosophy generally.  It is the idea that science is a theory 

we construct, though as such, no less real and perhaps best captured in the oft quoted remark that 

―[t]o call a posit a posit is not to patronize it.‖
171

  This idea informs my reading of Quine 

throughout. I will return to it especially in concluding this chapter where I discuss the 

philosophical significance of his version of logicism. 
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 More specifically I will focus on how Quine‘s naturalism arises out of his engagement 

with Russell‘s work in the foundations of mathematics.  There are two aspects of Russell‘s 

philosophy I will look to.  One is his attitude towards the mathematical and the philosophical, 

particularly as this arises with regard to definitions.  No doubt he sees developments in 

mathematical logic as answering to philosophical problems.  But the relationship between the 

two realms is often vexing.  As an example of this I will look to difficulties that arise for him in 

trying to account for the unity of a proposition.  The other aspect I will examine is Russell‘s 

difficulties with trying to explain the nature of logic, particularly as brought to the fore by his 

axiom of reducibility (though type theory and the paradoxes perhaps already raise this issue as 

displayed in Quine‘s remarks on Whitehead above).  As we will see, logicism for him is part of a 

more general philosophical argument against Idealism.  For it to be successful, mathematics must 

reduce to something that can reasonable thought to be logic.  Reducing mathematics to 

something that is just more mathematics, for example, will not do the philosophical work he 

wants logicism to do. 

 Quine, armed with the insight that common sense is bankrupt, will be able to offer 

solutions to these problems, or perhaps more accurately, dissolutions of them.  He does so by 

fully committing to Russell‘s view that technical developments in mathematics can solve 

philosophical questions.  Quine resolves any tension between the mathematical and the 

philosophical by naturalizing Russell‘s logic.  For him logicism becomes another chapter of 

mathematics in general, answerable to the best science of his day.  I will conclude this chapter 

remarking that logicism still has philosophical relevance for Quine.  But its relevance is now 

within his revolutionary naturalized philosophy.  Logicism serves the philosophical purpose of 
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simplifying and clarifying our understanding of mathematics, and as such contributes to the aim 

for our conceptual scheme as a whole. 

 Before I begin, I should mention one guideline of textual interpretation I have followed.  

I have focused only on the works of Russell we know Quine read in this early period, and 

primarily on Principles of Mathematics and Principia Mathematica.  In some cases, I have then 

ignored texts which may have seemed relevant.
172

 

 

I 

Russell famously opens Principles of Mathematics declaring his twofold aim as first, ―the 

proof that all pure mathematics deal exclusively with concepts definable in terms of a very small 

number of fundamental logical concepts, and that all its propositions are deducible from a very 

small number of fundamental logical principles….‖ And second, ―the explanation of the 

fundamental concepts which mathematics accepts as indefinable,‖ the purpose being ―to see 

clearly…the entities concerned, in order that the mind may have that kind of acquaintance with 

them which it has with redness or the taste of a pineapple.‖  This second aim, he describes as 

―purely philosophical‖.
173

  The purpose of such a reduction of mathematics to logic—what has 

become known as ―logicism‖—was not somehow to better assure us of the certainty of 

mathematics, but was rather part of a complex argument against Idealism.  Russell aimed to 

show that, contrary to the Idealists, at least some of our non-metaphysical knowledge did not 

ultimately lead to contradiction, and this he thought he could do by way of reducing mathematics 
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to logic.
174

  Immediately, we see here one of the most striking and important features of Russell‘s 

philosophy—that the technical and the philosophical are intimately entwined.
175

  It is a theme we 

will constantly return to throughout this chapter in seeing how Quine‘s own philosophy emerged 

from this entanglement.  And in a sense, we will see him as liberating logicism from many of the 

philosophical burdens Russell placed upon it, though Quine too will have philosophical aims 

upon which he too brings the technical to bear. 

In his attack on Idealism, Russell did not limit his project to specific concerns within the 

philosophy of mathematics.  His purpose was much grander than this, one of general 

philosophical concern.  As he himself explains in his preface to Principles the project had its 

origins in trying to cope with some difficulties in the foundations of dynamics, which led him to 

consider the philosophy of continuity and the infinite and so also the foundations of mathematics.  

Logicism in Russell‘s hands, then, was part of a broader project of providing a consistent 

account of science generally, and in particular, it showed in contrast to Idealism that a consistent 

account of absolute space was ready to hand.  Truth did not come in degrees as the Idealists 

claimed but rather, could be shown absolute.  This, according to Russell, could be done by way 

of reducing mathematics to logic.
176

 

Also, Russell‘s logic was not just a technical development that he then brought to bear on 

Idealism, but rather, the logic itself presupposed a particular metaphysics, a metaphysics which 

he drew directly from G. E. Moore: 

 On fundamental questions of philosophy, my position, in all its chief features, is derived from Mr G. E.  

Moore.  I have accepted from him the non-existential nature of propositions (except as happen to assert 

existence) and their independence of any knowing mind; also the pluralism which regards the world, both 

that of existents and that of entities, as composed of an infinite number of mutually independent entities, 
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with relations which are ultimate, and not reducible to adjectives of their terms or of the whole which these 

compose.  Before learning these views from him, I found myself completely unable to construct any 

philosophy of arithmetic, whereas their acceptance brought about an immediate liberation from a large 

number of difficulties which I believe to be otherwise insuperable.  The doctrines just mentioned are, in my 

opinion, quite indispensable to any even tolerably satisfactory philosophy of mathematics, as I hope the 

following pages will show.
177

 

 

This is an atomistic metaphysics committed to abstract objects—propositions, and the view that 

truth and falsity are absolute.  It is what Hylton call ―Platonic Atomism‖.
178

  According to this 

metaphysics, our knowledge of the world is direct and unmediated.  This runs directly contrary 

to the view of the Idealists who claimed that all of our knowledge was conditioned by various 

conceptual structures.
179

 These structures, they claimed, were objective; they correspond to they 

way the world actually is.  But this is difficult to defend as Hylton explains.  If all knowledge is 

mediated, then the claim itself that the world does in fact correspond to these conceptual 

structures must also be mediated by other conceptual structures.  But then the question returns:  

what of the objectivity of these other conceptual structures?   And so on into an infinite regress.  

While the Idealists did in fact have responses to such charges, neither Moore nor Russell saw 

them as sufficient to sustain the view that such mediated knowledge could in fact be objective 

knowledge.  We could not, on the Idealist picture, have genuine true knowledge of how the 

world really is. 

 Against this, Russell, following Moore, denied this central claim of Idealism and instead 

took our knowledge of the world to be direct.
180

  Our perception of the world is of what the 

world is really like.  I speak here of perception in a very broad sense since both Russell and 
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Moore thought we could have something like perception of ordinary everyday physical objects 

as well as of abstract objects.  Indeed, we have already seen this in how Russell explains the very 

aim of his logicist reduction, ―to see clearly…the entities concerned, in order that the mind may 

have that kind of acquaintance with them which it has with redness or the taste of a pineapple‖ 

(my emphasis).  Acquaintance is a relation that gives the mind direct unmediated access to what 

is outside of it. 

   So among the ideas Russell takes from Moore is that of direct unmediated access to the 

world, and it is in this context that propositions enter as central to Russell‘s philosophy.  Now 

returning to the above quoted passage—in line with the objectivity gained by this direct access to 

the world, Russell then states that propositions are entities independent of any knowing mind.  

As he understands them, propositions are non-linguistic, non-mental abstract entities and, 

roughly speaking, the content expressed by a declarative sentence.  In making a judgment, we 

have acquaintance with propositions, which have among their properties those of being true or 

false.  In a true judgment, we have acquaintance with a true proposition, and in a false one, 

acquaintance with a false proposition.  So again, in contrast to the Idealists, truth and falsity do 

not depend on any sort of mediation by ideas in a mind but rather, results from a direct 

relationship to a proposition with the requisite property of truth or falsity. 

 Having stated that propositions are independent of any knowing mind, Russell next 

introduces the crucial idea of analysis.  His view of propositions is atomistic, and it is in this 

sense that he regards the world as pluralistic and made up of ―an infinite number of mutually 

independent entities‖.  Propositions are complex and so can be analyzed into their basic 

constituents, which he calls ‗terms‘.  Hylton explains that, in the mind of Russell, this process of 

analysis is analogous to something like chemical decomposition.  For example, the proposition, 
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‗Socrates is wise‘ analyzes into its two basic components Socrates and wisdom, since, in 

paradigm cases, the proposition actually contains the objects which it is about.
181

  Finally, 

Russell concludes the quoted passage remarking that it was only after he had adopted Moore‘s 

philosophical views that he was able to successfully develop his philosophy of arithmetic.  It is at 

this point, I think, that a certain tension begins to emerge in Russell‘s philosophy and one which 

will be crucial to the understanding of Quine I wish to present.  This tension is one that emerges 

between the philosophical and the mathematical in Russell‘s work.  One the one hand he takes 

mathematical results to be relevant to philosophical problems, and even to solve them.  Yet on 

the other, he still holds that there is some special further task for philosophy to do beyond 

mathematics.  As I will argue, Quine will resolve this tension by fully accepting Russell‘s view 

that technical results can solve philosophical problems, but in doing so he will let the further task 

Russell claims for philosophy go by the wayside.  It is in fully committing the idea that 

mathematics can solve philosophical questions that, I claim, we have the origins of Quine‘s 

naturalistic philosophy.  In short, we have him taking the best methods of the science of his 

day—in this case, those of the new mathematical logic—and using them to both clarify and 

resolve philosophical questions.  As this tension most clearly emerges in Russell‘s talk of 

philosophical and mathematical definitions, let us now turn to consider them directly.
182

 

 Russell begins Principles explaining that pure mathematics is the class of propositions of 

the form ‗p implies q‘, where p and q are propositions each containing at least one variable, the 

same in each proposition, and having no constants but logical constants.  The logical constants, 

he says, are notions definable in terms of implication, the relation of a term to the class of which 
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it is a member, such that, relations, and other further notions involved in propositions of the 

above form.  He also includes the notion of truth, though not itself a constituent of propositions.  

His aim will be to justify that, in fact, this definition suffices to account for what has traditionally 

been thought pure mathematics.  This definition he then claims is  

not an arbitrary decision to use a common word in an uncommon signification, but rather a precise analysis 

of the ideas which, more or less unconsciously, are implied in the ordinary employment of the term.  Our 

method will therefore be one of analysis, and our problem may be called philosophical—in the sense, that 

is to say, that we seek to pass from the complex to the simple, from the demonstrable to its undemonstrable 

premisses.
183

 

 

So the notion of analysis is crucial, and it is a philosophical notion which leads us to the simple 

components at the basis of mathematics.  Indeed, it is by this method that will aid us in obtaining 

acquaintance with the indefinables of mathematics ―as the necessary residue in a process of 

analysis‖.
184

  But what exactly is this process of analysis?   

 On first pass, it seems that analysis is merely the technical reduction of mathematics to 

logical notions.  As Russell explains, it will be through ―the labours of the mathematicians 

themselves‖ that he will be able to obtain certainty and clarity with regard to his questions 

concerning the nature of number, infinity, space, time, and motion, and of mathematical 

inference itself.  In reducing such questions to questions of pure logic, we find exact knowledge 

about mathematics.  This, however, is not the complete story.  He continues, explaining that 

previously the philosophy of mathematics had been just as controversial and unprogressive as 

other branches of philosophy.  Philosophy demanded a meaning to mathematics, but 

mathematics had no answer.  Now, Russell claims, mathematics does have an answer ―so far at 

least as to reduce the whole of its propositions to certain fundamental notions of logic.‖  So it 

might seem again that the reduction of mathematics answers what used to be the concerns of 

philosophy.  It is not uncommon to now think that in its technical reduction logicism has, for 
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example, shown us what the natural numbers are.  But this is not so for Russell as he then states, 

―At this point, the discussion must be resumed by Philosophy.‖
185

  Beyond the technical 

reduction of mathematics to logic, Russell believes there is still some further task for philosophy 

to carry out.  This becomes all the more apparent if we consider his contrasting of two notions of 

definition—the philosophical and the mathematical. 

 Russell first introduces this distinction between philosophical and mathematical 

definition in discussing Peano‘s logical work: 

It is necessary to realize that definition, in mathematics, does not mean, as in philosophy, an analysis of the 

ideas to be defined into constituent ideas.  This notion, in any case, is only applicable to concepts, whereas 

in mathematics it is possible to define terms which are not concepts.  Thus also many notions are defined 

by symbolic logic which are not capable of philosophical definition, since they are simple and 

unanalyzable.
186

   

 

He goes on to explain that in mathematics we define by simply by picking out some fixed 

relation to a fixed term, which only one term can have.  The basic idea is that mathematical 

definition consists in giving necessary and sufficient conditions for an entity to fall under a 

concept.
187

  He then distinguishes philosophical definitions remarking, ―The point in which this 

differs from philosophical definition may be elucidated by the remark that the mathematical 

definition does not point out the term in question, and that only what may be called philosophical 

insight reveals which it is among all the terms there are.‖
188

  So while necessary and sufficient 

conditions are enough for mathematical definition, philosophical definition requires something 

more.  It seems that the mathematical definition can pick out any particular object from among 

several satisfying the requisite conditions, but philosophical definition goes deeper, telling us in 

some sense which objects the defined term really is or what its true meaning is.
189

  Russell has 
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this sense of definition in mind when he talks of analysis as the method for carrying out his 

project, as a method for leading us to acquaintance with the objects of pure mathematics.
190

   

Such an understanding of philosophical definition fits well with Russell‘s later remarks in 

Principles on defining cardinal numbers.  Here, he repeats his account of mathematical definition 

and then explains that ―philosophically, the word definition has not, as a rule, been employed in 

this sense; it has, in fact, been restricted to the analysis of an idea into its constituents.‖
191

  So 

again, we see this idea of decomposition from our earlier discussion of analysis.  Philosophical 

definition, then, is an analysis of an idea into its basic components.  This notion of definition 

leads us to acquaintance with the real reality, a metaphysical reality, if you will, which 

mathematical definition does not necessarily do. 

I say that mathematical definition does not necessarily lead us to the sort of acquaintance 

that philosophical definition does because it seems that it can in some cases.  And here I think it 

starts to become apparent what sort of tension these two distinct notions of definition lead to in 

Russell‘s philosophy.  Indeed, he continues in this passage stating of the philosophical notion,  

This usage is inconvenient and, I think, useless; moreover it seems to overlook the fact that wholes are not, 

as a rule, determinate when their constituents are given, but are themselves new entities …, defined, in the 

mathematical sense, by certain relations to their constituents.  I shall therefore, in future, ignore the 

philosophical sense, and speak only of mathematical definability.
192

 

 

This is at first puzzling if philosophical definition and analysis are to be counted as the same 

thing and analysis the key method for carrying out Russell‘s project.  And even if the two notions 

are not supposed to come to the same thing, his earlier remarks on philosophical definition are in 

no way disparaging and seem to carve out an important role for philosophy.  I think what Russell 

intends here is that philosophical definitions are useless when it comes to discussing the 

technical, mathematical details of his reduction as he does in this section.  He still thinks there is 
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a role for philosophical definition, but it is in reflecting on what the mathematical definition has 

accomplished that it comes into play.  But increasingly, this yields also a tension between the 

philosophical and the mathematical.  Once the mathematical definition has presented the 

requisite sorts of objects for the mathematics, what further analysis is there to do?  What further 

question is there to answer?  As we will see, Russell continues to look at both notions of 

definition, but increasingly we will see him as taking the mathematical notion to do the work of 

the philosophical.  Yet, he continues to hold on to the philosophical, metaphysical foundation of 

his project.  At best then it is unclear what is left for the philosophical notion of definition to do.  

And at worst, it leaves Russell with certain irresolvable problems, chief among the unity of the 

proposition to which we will soon return. 

 To illustrate this, let us consider further Russell‘s account of the definition of cardinal 

number.  He defines the number of a class as the class of all classes similar to the given class, 

where two classes are similar if their members can be put into one-to-one correspondence.  What 

all similar classes have in common, then, is their number.
193

  So a number just is a class of a 

particular sort.  Although this definition of cardinal number succeeds mathematically speaking, 

Russell admits some philosophical worries concerning the connection between classes and 

predicates.  In a previous section, Russell had explained that a philosophical definition is ―the 

analysis of the idea … into constituent ideas,‖ but that this notion ―in only applicable to 

concepts,‖ unlike definition in mathematics.
194

  So a philosophical difficulty remains in that he is 

uncertain whether appropriate concepts can be found to identify with the numbers.  He concludes, 

however, 

For my part, I do not know whether there is any such class of predicates, and I do know that, if there be 

such a class, it is wholly irrelevant to Mathematics.  Wherever Mathematics derives a common property 
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from a reflexive, symmetrical, and transitive relation, all mathematical purposes of the supposed common 

property are completely served when it is replaced by the class of terms having the given relation to a given 

term; and this is precisely the case presented by cardinal numbers.  For the future, therefore, I shall adhere 

to the above definition, since it is at once precise and adequate to all mathematical uses.
195

 

 

While Russell sees his project as inherently philosophical, his criterion of philosophical success, 

as we see here illustrated, is often mathematical.
196

   

I take it that this view is fairly constant throughout Russell‘s work in the foundations of 

mathematics.  Though he makes little explicit use of it in Principia Mathematica, it does appear 

again in the later Introduction to Mathematical Philosophy, in a perhaps even stronger form.  

Here, he remarks again after discussing the notion of similarity relevant to the cardinal numbers, 

―It follows from this that the mathematician need not concern himself with the particular being 

or intrinsic nature of his points, lines, and planes, even when he is speculating as an applied 

mathematician.‖
197

  So again, from the mathematical perspective, there appears to be no further 

question about the essence of points to ask as Russell continues, ―It has to be something that as 

nearly as possible satisfies our axioms, but it does not have to be ‗very small‘ or ‗without parts.‘  

Whether or not it is those things is a matter of indifference, so long as it satisfies the axioms.‖
198

  

A point is, then, any object satisfying the axioms concerning points, and this is what matters to 

mathematics.  And he concludes, ―This is only an illustration of the general principle that what 

matters in mathematics, and to a very great extent in physical science, is not the intrinsic nature 

of our terms, but the logical nature of their interrelations.‖
199

  Interestingly, he sees this as not 
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only a feature of mathematics, but one also of the natural sciences—a view that will take front 

and center in Quine‘s philosophy. 

Russell‘s account of definition is not the only place where the tension between the 

mathematical and the philosophical arise.  Recall, our discussion of the axiom of reducibility in 

Chapter two.  Here, Russell motivated the distinctions of order and the resulting types by way of 

his vicious circle principle as applied to propositional functions, but ultimately justified his 

system on its success in doing away with the paradoxes.  The solution is at once both 

mathematical and pragmatic—mathematical in that it yields technical resolution to the paradoxes 

and pragmatic in that the criterion of success for his system is that the paradoxes are blocked.  I 

should emphasize also that the solution is highly philosophical in that it is rooted in the 

metaphysics of propositions, which he brought to bear on his Idealist opponents.  In this vein, it 

is notable that Russell does not give up Platonic atomism as a philosophical position despite 

initially coming upon his famous paradox in terms of propositional functions.  Furthermore, we 

should observe that, in contrast to Ramsey and Quine (who both distinguished the semantic from 

the class paradoxes), Russell does not opt for a simple theory of types blocking just the class-

related paradoxes, that is, the paradoxes that seem mathematically relevant.  Rather, he vastly 

complicated his universe with the system of orders and types rather than give up his fundamental 

metaphysics.  Since logic presupposed the metaphysics of propositions, a solution to the 

paradoxes meant eliminating the semantic and class paradoxes all at once. 

Recall, though, that once Russell introduced the type distinctions, he still required some 

way to talk of all properties if his logic was going to be sufficiently strong to yield mathematics.  

And to this end, he puts forth his axiom of reducibility.  The axiom states that for every 

propositional function there is an extensionally equivalent predicative propositional function, 
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that is, an extensionally equivalent propositional function of the lowest order compatible with its 

arguments.
200

  While Russell clearly takes the existence of propositional functions as part of his 

logic, reducibility is problematic in its existence claims.  Logically speaking there seems to be no 

reason to assume the existence of the predicative propositional functions the axiom puts forth.  It 

seems a fact about the world we could just as easily reject as accept.  This raises a difficulty 

about the nature of logic for Russell.  Indeed, one of Wittgenstein‘s most persistent criticisms of 

Russell‘s logic was questioning the justification for reducibility.
201

  The absolute truth of logic 

functioned as a crucial component of Russell‘s attack on idealism, and it is hard to argue on 

purely logical grounds that this axiom is unconditionally true.  Furthermore, the axiom does not 

seem to fit with any traditional characterization of logic as self-evident, a priori, or analytic.  

Even taking a Quinean stance and saying that logic is just among the truths we hold to most 

firmly in our web of belief would seem to do little for the logical status of reducibility.  So a 

crucial axiom in Russell‘s logicism fails in its logicality. 

But Russell recognizes this and in fact does not try to ground the axiom in pure logic.  

Rather, he argues,  

The reason for accepting an axiom, as for accepting any other proposition, is always largely inductive, 

namely that many propositions which are nearly indubitable can be deduced from it, and that no equally 

plausible way is known by which these propositions could be true if the axiom were false, and nothing 

which is probably false can be deduced from it.  If the axiom is apparently self-evident, that only means, 

practically, that it is nearly indubitable; for things have been thought to be self-evident and have yet turned 

out to be false.
202

 

 

Russell‘s justification for reducibility, then, is wholly pragmatic, relying on how successfully the 

system in which it is used captures mathematics.  In his preface to Principia he goes even further 
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making this point about axioms generally (sounding very much like Zermelo in his 1908 paper; 

see chapter 2 above) stating that ―the chief reason in favour of any theory on the principles of 

mathematics must always be inductive, i.e. it must lie in the fact that the theory in question 

enables us to deduce ordinary mathematics.‖
203

 

 Russell does, of course, mention the self-evidence of an axiom in the above quote but in a 

way that appears strikingly free of any strong philosophical commitment.  Indeed, his use of the 

terms sounds largely deflationary remarking that it ―only means‖ from a practical perspective 

that a self-evident axiom is ―nearly indubitable.‖  In this sense, it differs little from walking out 

into the rain and declaring that it is raining.  Furthermore, self-evidence does not yield any strong 

justification for an axiom since some apparently self-evident truths have turned out false, 

specifically Frege‘s basic law V, the source of Russell‘s paradox.  And regardless of whether 

reducibility is self-evident, Russell qualifies the inductive reason for accepting an axiom as the 

chief reason for accepting it.  So on these grounds reducibility is perfectly acceptable as part of 

Russell‘s logical system.  But again, the tension in Russell‘s view between the philosophical and 

the mathematical becomes apparent.  In the service of an argument against Idealism, logicism 

needs to be a reduction to something we can all agree to label as logic.  In particular, logic must 

be absolutely true.  Reducibility makes this highly problematic since it seems just as likely to be 

true as to be false.  As a merely formal technical reduction of mathematics to logic, however, 

Russell‘s system succeeds thus making available the pragmatic justification he takes to justify 

any axiom, including reducibility.  As we will see, it is this aspect of Russell that Quine latches 

on to, noticeably absent is any concern with the questions over the nature of logic. 

 

II 
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Quine‘s philosophy developed both under the influence of and in reaction to Russell.  In 

particular, we can see Quine as taking Russell‘s logic and stripping it of—what Quine sees as—

its excess metaphysical baggage.  Indeed, perhaps most striking about Quine‘s earliest logical 

work is that there seems almost no philosophy connected to it.  He does not discuss the nature of 

logic, the philosophical payoffs of logicism, or any other such topic we might expect from 

someone emerging from the philosophy of Principles of Mathematics and Principia 

Mathematica.  As Dreben emphasizes, Quine begins by just doing logic, not talking about it.
204

  

Quine‘s logical beginnings are not part of a larger philosophical argument against Idealism, but I 

do believe that we can find the philosophy in Quine‘s early logic by thinking of this work 

directly in relation to Russell himself.  In this section we will see Quine dropping many of the 

more philosophically extravagant aspects of Russell‘s philosophy, and in doing so, we will come 

to understand Quine‘s philosophical project from within its logical origins.  I want to bring how 

it is that the framework—the naturalistic framework—within which Quine‘s philosophy takes 

place over the next seven decades begins to unfold already in his earliest logical works. 

The seriousness of Quine‘s engagement with Russell is demonstrated by his dissertation, 

―The Logic of Sequences‖, in which Quine reworked the first 500 pages of Principia.
205

  While 

Principia may not seem an explicitly philosophical treatise, we have seen its philosophical basis 

and motivations thoroughly expounded in the earlier Principles.
206

  Indeed, as Russell and 
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Whitehead explain in their preface, Principia was originally intended as the second volume to 

Principles but it then took on a life of its own.
207

  It is fair to say, then, that Principia has a very 

definite philosophical purpose; this is not just a technical demonstration of how mathematics 

reduces to logic.  This is deep philosophy thoroughly intertwined with the technical apparatus of 

the new logic.  In opening Quine‘s dissertation, however, we are immediately struck by this 

sharp contrast with Russell‘s work.  It completely lacks a sketch of any obviously philosophical 

motivations for the work.  It does seem a purely technical exercise.  But I contend that this is not 

so.  The philosophy is there if we know where to look.  Let us turn to Quine‘s preface to see how 

this might go.
208

 

He begins, explaining that he views the dissertation as allied with Principia but that it is 

more comprehensive in that it generalizes Principia’s account of propositional functions and 

relations.  Principia has a system of monadic propositional functions to do the work of classes 

along with a separate theory of dyadic relations.  Parallel axioms and theorems must then 

begiven for each of the two distinct realms.  Furthermore, Russell‘s system does not generalize 

to n-adic relations; it is impossible to prove theorems in general for n-adic relations without first 

specifying the value of n.  Since dyadic relations are enough for reducing mathematics, this is as 

far as Russell goes.  Quine then explains that this is precisely the sense in which he has 

generalized Principia.  By employing a system of sequences, his system allows for classes and 

relations to be treated singly, not as two independent realms.  As a result, he does not need to 

then reprove parallel theorems for relations once he has done so for classes.  Furthermore, such 

sequences may be of any arbitrary length, so that theorems for relations are proved generally for 
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any n-adicy.  In addition to this generalization, Quine observes that his system is more 

economical in primitive ideas though also more elaborate in its postulates.  He also believes that 

he has achieved greater definitional elegance.  All of these concerns of generality, economy, and 

simplicity are quite familiar now as primary concerns of Quine‘s later and more general 

philosophical outlook.  We will return to some of this topic in concluding this chapter. 

One might question the direct link I am claiming here between Russell and Quine.  After 

all, these concerns are often found in the works of the more technically minded.  For example, 

Gödel shares such aims as generality, economy, and simplicity and famously criticized Russell 

for his slovenliness but is not a Quinean naturalist of any sort.
209

  I claim there is a unique 

connection here between Russell and Quine given that Quine learned his logic from Principia 

Mathematica.
210

  Strikingly, Quine did not fall victim to the confusions found in Russell‘s logic, 

achieving a level of clarity that would have satisfied even Gödel.  Quine, unlike Russell, 

steadfastly distinguishes between use and mention, between informal talk about the system and 

formally working within it, adheres to an extensional view of logic, and in general pursues a 

program of ontological economy, themes we will be returning to throughout this chapter.
211

  For 

Quine, such seemingly technical concerns become part of the philosophical work.  As he 

conceives of philosophy, clarifying our scientific theories is a properly philosophical activity 

furthering our understanding of the world.  From such moves against Russell emerge an 

accounting of mathematics consistent with a naturalistic philosophy.  There is no first philosophy 

to dictate a single correct theory of our world but rather, only such broadly pragmatic criteria as 
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generality, economy, and simplicity.  Clarity is a distinctly philosophical aim for Quine, and we 

see it here in how he reshapes Russell‘s logicism. 

 Before delving further into the details of Quine‘s early logical work, let us return to 

consider the nature of logic as I believe this issue will shape much of what will follow.  As we 

have remarked on several times previously, both in this chapter and in others, the paradoxes of 

set theory greatly impacted how Quine conceived of the logicist project.  Indeed, I claim that this 

accounts for why Quine felt no need to give an account of the nature of logic.  As he explains at 

the outset of the published version of his dissertation, A System of Logistic, ―The theory of types 

fulfills its purpose of avoiding contradictions by branding such and such combinations of 

symbols as meaningless.‖
212

  Here, Quine makes his earliest explicit remark on the pragmatic 

aspect of set theory arising from the contradictions, though this was also the attitude implicit in 

the dissertation itself.  Whereas Russell found himself in conflict with his own logical 

inclinations when it came to justifying the axiom of reducibility, and even types to an extent (as 

seen in chapter 2), inductively, Quine accepts from the paradoxes and their resolution that the 

foundations can no longer be thought of as an a priori science.  Any account of logic open to 

Quine will have to be come from within mathematics, and so for Quine there is no tension 

between his logicism and his philosophical aims.  This leaves him free to work out a logical 

system satisfying his particular philosophical concerns of simplicity, clarity, and economy.  The 

first chapter of the dissertation brings out these aims in his adopting an extensional account of 

propositional functions, treating talk of them as interchangeable with talk of classes.  Here, we 

come to see his earliest concerns with notions of meaning, or intensionality.   

He begins by introducing his primitives, among them the notion of a function, or 

propositional function, i.e., a function whose values are propositions.  He explains that his 
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notation φ, ψ, χ, … is indifferent as to representing propositional functions or classes and 

relations.  Whereas Russell opted for the threefold notation φ, ψ, χ, …; α, β, γ, …; and P, Q, R, 

… to represent propositional functions, classes, and relations respectively, Quine takes these all 

as propositional functions.  In this way he represents x ε α, x is a member of α, and xRy, x bears 

the relation R to y, simply as φx and ψ(x, y), which are just special cases of his sequence 

notation χ(x, y, z, …).
213

  And he adopts a version of Russell‘s type theory to block the 

paradoxes.
214

  We can see in his notation his basic aims towards generality and simplicity, and as 

such unification, rejecting that there is anything essential to distinguishing propositional 

functions, classes, and relations.  But more importantly, without any fanfare, Quine states that all 

such functions are to be taken extensionally.  This signals a strong break with Russell and his 

insistence on taking intensional propositional functions and relations as the basis for the 

extensional theory of classes upon which he could then construct mathematics. 

 That this is an important philosophical move against Russell cannot be emphasized 

enough.  Russell‘s adoption of propositional functions as the basis for his logic was not without 

thought or motivation, as Hylton explains.
215

  First, these were the only sorts of objects Russell 

took to have the requisite generality to be properly logical.  Previously, he had granted this status 

also to classes, but with the discovery of the class paradox, he recognized that he would have to 

subject classes to some sort of restriction.  Second, since classes could be defined contextually in 

terms of propositional functions, unresolved questions about their nature—whether they were 
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intensional or extensional and how a class of many objects could be treated as a single object—

no longer required answers.  And third, as we saw already in chapter 2, Russell saw the 

ontological distinctions between types as flowing from and hence justified by the distinctions 

between propositional functions and individuals, which emerged from his account of 

propositions.  Hence, the resolution of the paradoxes and the view of the universe as structured 

into a hierarchy of types rested upon taking propositional functions as primary.  Russell had no 

similar justification for the hierarchy if he instead took classes as fundamental.   

Quine of course rejects this intensional basis for logicism and instead treats propositional 

functions extensionally identifying them with the classes of objects they are true of, their 

extensions.
216

  The move comes without immediate justification, but it is implicit in the entire 

aim of the dissertation—showing that Quine‘s system is adequate for yielding the entire system 

of PM.
217

  As such, there is no need to adopt intensional propositional functions.  Their 

extensional counterparts are enough.  These motivations become all the more apparent in the 

published version of the dissertation, A System of Logistic, as he explains,  

This assimilation of propositional functions to classes and of predication to membership represents no  

actual impoverishment of logistic, but only the  elimination of useless lumber:  for, as will subsequently be 

shown, all theorems of PM involving function variables or predication can be proved in the present system 

under the indicated manner of translation.
218

 

 

But why should we prefer the extensional to the intensional?  Quine says very little of the 

distinction in the dissertation, but again he elaborates his motivations in System of Logistic when 

discussing his extensional treatment of propositions.  He warns that an intensional account may 

force us ―to leave the terra firma of algorithmic logic and tread more metaphysical ground….‖
219

  

In particular, he complains that propositions are rather difficult to pin down as identical.  An 
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extensional account, however, provides a clear identity criterion.  We can easily identify 

propositional functions as the same when they have the same extensions.
220

 

 Now, this all might seem rather ad hoc in comparison to what Russell thought a well-

motivated development of the logic required for carrying out logicism.  He himself thought just 

this, reflecting later in life on Quine‘s systems of logic being such that not ―even the cleverist 

logician would have thought of [them] if he had not known of the contradictions.‖
221

  But we 

have also seen Russell himself thinking in such a way with regard to his axiom system justifying 

it inductively on grounds that it ―enables us to deduce ordinary mathematics.‖
222

  It is this strand 

of Russell that Quine latches on to.  In adopting an extensional view of logic Quine pushes aside 

difficult, if not hopeless worries, external to mathematics, and thus opens the way to a 

philosophy of mathematics that takes place entirely within mathematics itself.  For deducing 

ordinary mathematics, only the extensions matter; all else is ―useless lumber‖.  In short, we can 

see him beginning to work out a philosophy of mathematics in which there is no first philosophy. 

Let us return now to consider more directly the tension in Russell between the 

mathematical and the philosophical.  In particular, I want to consider how this issue arises in the 

context of difficulties Russell has over the nature of propositions.  According to Russell‘s 

metaphysics, propositions are composed of the entities which they are about.  But analysis—the 

decomposition of propositions into their simple constituents—then raises a central difficulty for 

him.  How were these component parts ever unified in a proposition in the first place?  As 

Russell explains the problem in Principles:   
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Consider, for example, the proposition ―A differs from B.‖  The constituents of this proposition, if we 

analyze it, appear to be only A, difference, B.  Yet these constituents, thus placed side by side, do not 

reconstitute the proposition.  The difference which occurs in the proposition actually relates A and B, 

whereas the difference after analysis is a notion which has no connection with A and B.  It may be said that 

we ought, in the analysis, to mention the relations which difference has to A and B, relation which are 

expressed by is and from when we say ―A is different from B.‖  These relations consist in the fact that A is 

referent and B relatum with respect to difference.  But ―A, referent, difference, relatum, B‖ is still merely a 

list of terms, not a proposition.  A proposition, in fact, is essentially a unity, and when analysis has 

destroyed the unity, no enumeration of constituents will restore the proposition.  The verb, when used as a 

verb, embodies the unity of the proposition, and is thus distinguishable from the verb considered as a term, 

though I do not know how to give a clear account of the precise nature of the distinction.
223

 

 

Analysis seems to yield mere lists of a proposition‘s constituents leaving it wholly mysterious 

what the unity of the proposition was originally to consist of.  Such a view is inherent in the 

metaphysics Russell thought entirely necessary to a proper philosophy of arithmetic, namely that 

every component of a proposition is a term (or in Frege‘s terminology, an object).  Constrained 

by his metaphysics, the problem is one Russell never fully resolves.
224

 

 Quine, however, does have a way of coping with such problems and in doing so we can 

see how he also resolves the tension Russell faced between the mathematical and the 

philosophical.  Although, the two were deeply intertwined in Russell, Quine carries this view to 

it fullest conclusion, and in doing so, folds the philosophical into the mathematical.  For Quine, 

philosophy takes place entirely within the best methods current science has to offer, in this case, 

the new mathematical logic.   

To see how this plays out, let us examine the operation of predication, one of the ―active 

primitive ideas‖ of the system of ―Logic of Sequences‖.
225

  Here, we can see how he brings his 

broadly pragmatic approach to logic—which I claim comes from at least one strand of Russell‘s 

thought—allowing him to resolve, or perhaps dissolve, worries about propositional unity.  He 

describes predication as a binary operation upon a function and a sequence (an ordered set of 
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terms), which provides an argument sequence to a function.  The product of predication he says 

is a proposition and is expressed by ‗φX‘.  So we construct a proposition out of function and 

sequence by way of this primitive operation of predication, and this is all he takes there to be to a 

proposition.  He is not, however, unaware of philosophical difficulties that may arise concerning 

propositions: 

But, it maybe be asked, what sort of thing is this product of predication?  From the official standpoint of 

our system, it is to be answered only that it is whatever predication yields; and predication is primitive.  

Unofficially, we may say that by a proposition we mean exactly what one ordinarily means by the term; 

and, from this standpoint, we may describe predication as that operation upon function and sequence which 

renders the latter argumental to the former and produces a proposition.
226

 

 

We see Quine, here, addressing such worries over the nature of the proposition by again applying 

the technical apparatus of mathematical logic, and in particular by carefully maintaining the 

distinction between working within the system and talking about it.  A precise answer to the 

nature of a proposition can be given in terms of the operation of predication, and from an 

intuitive perspective this gives us what we ordinarily think of as a proposition.  Quine has no 

absolute notion of a proposition.  Rather he gives an account of it relative to the particular system 

he works within, suitable to whatever purposes propositions are to play in that system.  In such a 

way, he uses the new logic of Russell to give a precise account of both the question and answer 

concerning worries of the nature of the proposition.  This is all in great contrast with Russell, 

where issues raised by his metaphysics prevent any straightforward account of the nature of 

propositions.   

 Quine concludes his discussion emphasizing this sort of move from a slightly different 

perspective by remarking on how his account of propositions addresses worries about ontological 

categories: 

This treatment, however, is quite independent of metaphysical and epistemological considerations.  It is 

altogether indifferent to the present system if function and argument be construed as abstractions which are, 
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in some philosophical sense, subsequent to the propositions from which they are abstracted, just as it is 

irrelevant that, from a psychological standpoint, propositions are pretty certainly prior chronologically to 

functions and sequences.  Nor, indeed, are we even concerned with maintaining that propositions are, in 

any absolute sense, logically subsequent to functions and sequences—mainly, perhaps, because we have 

little conception of what possible meaning such a statement might have.  The point is merely that it has 

proved convenient in the present system to form our primitives in such a way that, for us, the proposition 

emerges as complex.
227

 

 

Again, his account reflects his guiding thought that what matters is an account of propositions 

suitable to their use in mathematics.  There is no need for a philosophical account distinct from 

the mathematical work at hand.  Here, Quine sets aside worries over whether the proposition or 

its components are ontologically prior—an issue which Russell and Frege debated over at some 

length.
228

  Neither the philosophical view that the components are prior nor the perhaps more 

intuitive view (a fact about our psychology) that the proposition is prior has sway over Quine.  

The logical system itself resolves this issue.  Whether propositions are in some ultimate 

philosophical sense prior is a question which we can make little sense of divorced from any 

context.  But Quine does think the question worth answering, and we see him doing it from the 

perspective of his budding naturalism.  He does the best he can for the traditional philosophical 

worry by making sense of it within the new mathematical logic.  Then from within the 

framework of his logical system, both the question and answer have a straightforward and, 

perhaps more importantly, clear formulation.  As a matter of systematic convenience, rather than 

as a matter of some extra-mathematical metaphysical view, the proposition emerges as complex.  

As we have been seeing, simplicity and elegance are, for Quine, perfectly respectable guides to 

our philosophical theorizing. 

 Aware that much of his account of propositions as sequences looks like mere technical 

innovation, he becomes more explicit about its philosophical payoffs in the published version of 

the dissertation, A System of Logistic, and addresses explicitly ―the philosophical side of 
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logic.‖
229

  One of these issues we saw already in discussing his worries over an intensional 

account of propositions (above, pp. 22-3).  Here, he also briefly contrasts his view with 

Wittgenstein‘s idea that propositions are to be identified with what symbolizes them.  Quine 

suggests that the term ―sentence‖ already serves this purpose.  He clarifies his view against this 

explaining that he takes a sentence to denote a sequence, in particular that sort of sequence he 

identifies as a proposition.  He also remarks that his ―doctrine of propositions as sequences 

stands in striking agreement with Whitehead‘s point of view‖ that propositions, in contrast to 

judgments, are non-assertive; only a judgment evaluates a proposition as true or false.   

Here, Quine gives the example of a proposition predicating redness of a book, which in 

itself is non-committal as to whether the book is in fact red.  He then remarks of his view of 

propositions as sequences that  

it presents a definite technical entity fulfilling just the demands which he [Whitehead] makes of a 

proposition.  The proposition predicating redness of this book is for me the sequence 

Redness, this book 

or    class of all red things, this book. 

Nothing could be more non-committal, less assertive, than the connexity constitutive of association in a 

sequence.
230

 

 

The interesting point here is not so much Quine‘s agreement with Whitehead but rather his 

disagreement with Russell.  In one sense, we have Quine adhering to Russell‘s view, we saw 

previously, that in carrying out the logicist reduction all we want is some entity that will satisfy 

the intended role for that object.  Quine finds in sequences a clear and definite entity which 

successfully plays the role intended for propositions.  To this extent, there is no further worry 

about whether propositions really are sequences.  His example here is in striking contrast to 

Russell.  The sequence redness, this book, is just the sort of example Russell uses to illustrate 

difficulties over a proposition‘s unity after analysis.  Such a sequence does not capture whatever 

                                                 
229

 Quine, System of Logistic, p. 32. 
230

 Ibid., p. 33; my emphasis. 



 

 

106 

the original unity consisted in, reflected by the sentence ―This book is red.‖  The sequence to him 

is just a list.  Quine, however, finds propositions too unclear as a philosophical starting point.  

Rendering them as sequences, replaces the unclear with the clear, displaying the kind of 

connexity we want from propositions, at least in so far as they are to do what we want of them 

within Quine‘s logical system. This perhaps changes the subject matter for Russell.  Propositions 

are not sequences for him; they are propositions and nothing more or less.  But what more do we 

want from them; what else could they be so long as they maintain the desirable features of 

propositions while doing away with certain unwanted confusions?  For Quine, this is the kind of 

analysis philosophy engages in.  Upon finding some term in our scientific theory (broadly 

construed) that is insufficiently clear, we attempt to refine the notion so that it continues to 

satisfy the role for which it was intended while laying aside its troublesome and unnecessary 

features.  Some roughly twenty-five years later in his philosophical masterpiece Word and 

Object, Quine wrote of the Wiener-Kuratowski set-theoretic construction of the ordered pair,  

This construction is paradigmatic of what we are most typically up to when in a philosophical spirit we 

offer an ―analysis‖ or ―explication‖ of some hitherto inadequately formulated ―idea‖ or expression.  We do 

not claim synonymy.  We do not claim to make clear and explicit what the users of the  of the unclear 

expression had unconsciously in mind all along.  We do not expose hidden meanings, as the words 

‗analysis‘ and ‗explication‘ would suggest; we supply lacks.  We fix on the particular functions of the 

unclear expression that make it worth troubling about, and then devise a substitute, clear and couched in 

terms to our liking, that fills those functions.  Beyond those conditions of partial agreement, dictated by our 

interests and purposes, any traits of the explicans come under the head of ―don‘t-cares.‖
231

 

 

It is exactly the sort of reasoning concerning propositions in his earliest logical work that led 

Quine to the ordered-pair a paradigm of philosophical analysis. 

Having made this point about the aims of philosophy for Quine, let us now consider the 

significance of logicism for him.  Recall for Russell, reducing mathematics to logic was part of a 

complex argument against the Idealists demonstrating that mathematics was a branch of human 

knowledge that was absolutely true.  The success of such an argument depended crucially on the 
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reduction being to something that is in fact logical, and difficulties over the nature of logic, 

particularly Russell‘s inductive justification for his system, and the axiom of reducibility in 

particular, left this part of logicism hopelessly inadequate to the task.  Quine, however, accepts 

Russell‘s broadly pragmatic approach to logic and sees no reason at provide any further account 

of the nature of logic.  Logic has no privileged status distinct from other disciplines, such as 

mathematics or the sciences more broadly construed.  What then is the significance of the 

logicist reduction in his hands?   

Given Quine‘s emphasis on technical concerns, we might think he sees logicism as 

merely an interesting development within mathematics but one that ultimately has very limited 

philosophical payoffs.  Such a reading does not seem completely unfair.  Many mathematicians 

have contributed to the technical side of logicism with little interest in philosophical concerns.  

In fact, Russell himself may have lost track of his initial philosophical motivations as he became 

further and further engulfed in the technical project of Principia Mathematica.
232

  I have been 

claiming, though, that Quine‘s use of the technical reflects the beginnings of his philosophy 

generally.  This emerged particularly clearly in the above discussion of propositions, and I think 

this is indicative of how he views the significance of logicism generally.  Logicism for Quine 

represents his earliest attempts at clarifying our conceptual scheme, in this case, focusing on its 

mathematical aspects.   

Philosophical motivations appear scant in ―The Logic of Sequences‖, but they are there, 

at least according to how Quine views philosophy in this period.  Since his philosophy is a 

naturalistic philosophy, it takes place within science broadly construed.  Philosophy‘s role here is 

largely to clarify and simplify our conceptual scheme, or theory of the world.  But this is not a 
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task distinct from that of the natural scientist or mathematician in general as he would later 

remark in Word and Object: 

The philosopher‘s task differs from the others‘, then, in detail; but in no such drastic way as those suppose 

who imagine for the philosopher a vantage point outside the conceptual scheme that he takes in charge.  

There is not such cosmic exile.  He cannot study and revise the fundamental conceptual scheme of science 

and common sense without having some conceptual scheme, whether the same or another not less in need 

of philosophical scrutiny, in which to work.  He can scrutinize and improve the system from within, 

appealing to coherence and simplicity; but this is the theoretician‘s method generally.
233

 

 

And this is the sort of task I see emerging from Quine‘s earliest engagement with Russell‘s 

logicism.  As we have remarked on several times previously, the paradoxes of set theory had 

great impact on how Quine conceived of the logicist project.  We saw him explaining at the 

outset of A System of Logistic that types fulfilled its purpose in avoiding the contradictions.
234

  

Type theory reveals no hidden essence of the notion of set; it is adopted purely as a move to 

avoid the contradictions.  With this guiding him, mathematics no longer had any pull as an a 

priori science, and like the natural sciences, would also rest on various theoretical virtues such as 

simplicity, coherence, and generality.
235

  I should also add, since Quine does not view set theory 

is not a settled branch of mathematics, it is also like other such sciences exploratory and 

experimental.  All of these aspects we see emerging from his engagement with Russell in both 

the dissertation and its published form. 

We can now understand Quine as developing his general philosophical aims out of his 

engagement with Russell‘s logicism—the foundations of mathematics in its infancy as a modern 

science.  Quine‘s purpose broadly speaking was then to help bring this science to maturity.  As 

he often repeats, the aim in this earliest work is to generalize, and as such also simplify, 

Principia Mathematica, in particular by integrating the theory of relations into the theory of 
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monadic functions.  As we saw, this led to greater economy in that theorems could then be 

proved in general for relations of any n-adicy.  But this is only one aspect of this project.  What 

is even more important than certain gains in economy and generality he says is that ―notions will 

be found to exhibit various interesting connections, when generalized in terms of the present 

system, which they did not so clearly exhibit when confined to the more special scheme of 

Principia Mathematica.‖
236

  This is a point he will hold to throughout his philosophical career.  

Writing years later in the essay ―Epistemology Naturalized‖ he remarks that the logicist 

reduction might have been thought to gain clarity in reducing the obscure to the less obscure, in 

particular, by reducing the truths of mathematics to the obvious, or potentially obvious truths, of 

logic.  He denies this view, however, since the logic necessary to the reduction must be inclusive 

of set theory, and set theory itself is a powerful branch of mathematics, certainly more obscure 

than, say, the truths of arithmetic.  He then continues, ―Such reduction still enhances clarity, but 

only because of the interrelations that emerge and not because the end terms of the analysis are 

clearer than others.‖
237

  In particular, the reduction shows how the truths of diverse branches of 

mathematics interrelate by being unified into the single framework of logic and set theory.  And 

it is in this sense that logicism further clarifies our mathematical knowledge. 

We have of course seen another way in which Quine engages in logicism as a project of 

ontological clarification.  Whereas Russell assumed an intensional basis for his logic, Quine 

instead turned to an extensional theory of propositional functions, that is, classes.  On the one 

hand he found an intensional account rather mysterious and likely to force him into metaphysical 

flights.  Perhaps even more importantly, though, he recognized mathematics as only requiring the 

extensional aspects of Principia.  Given the unclarity he found in the intensional realm, this was 
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more than enough reason to simplify the system to an extensional basis alone.  This too reflects 

another constant aspect of his philosophical concerns and the way in which philosophy partakes 

in the clarification and reorganization of our conceptual scheme from within our current best 

science.  As he would later characterize his philosophical project particularly with reference to 

its logical underpinnings:   

Philosophy is in large part concerned with the theoretical, non-genetic underpinnings of scientific theory; 

with what science could get along with, could be reconstructed by means of, as distinct from what science 

has historically made use of.  If certain problems of ontology … which arise in ordinary language, turn out 

not to arise in science as reconstituted with the help of formal logic, then those philosophical problems 

have in an important sense been solved:  they have been shown not to be implicated in any necessary 

foundations of science.  Such solutions are good to just the extent that (a) philosophy of science is 

philosophy enough and (b) the refashioned logical underpinnings of science do not engender new 

philosophical problems of their own.
238

 

 

To the extent that an intensional account of propositions remains mysterious and also had no role 

to play in logicism conceived from within mathematics; and to the extent which an extensional 

account does not suffer these defects and does advances clarity, then there is no further 

philosophical worry to address.  This is what mathematics can ―get along with‖ and ―be 

reconstructed by means of.‖ 

 Finally there is a more strictly logical aspect to Quine‘s project as he sets out to deduce 

Russell‘s system from his own:  ―In the course of the formal development we shall prove 

theorems special cases of which answer to all the formal postulates of Principia Mathematica 

and to all the definitions in that work which differ from our own, thus establishing the fact that 

the formal system of Principia Mathematica follows in it entirety from the present system.
239

‖  

This aim of the project is not unlike the one sketched in the previous paragraph, but here the 

interconnections range across proposed theories.  We further our understanding of the various 

frameworks for foundational work by comparing their relative strengths, seeing which systems 
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we can deduce from which.  Axiomatization also helps for comparing existence assumptions, 

what sorts of sets the various systems are committed to and how strong these assumptions are.  

We also come to see more clearly were the theories are in fact incompatible as opposed to where 

they are only seemingly so.  Again, this is a task Quine holds to throughout his philosophical 

career.  It is, as we shall see in the chapters to come, the culmination of his work in set theory as 

laid out in Set Theory and Its Logic.
240

  But it also characterizes his philosophical work generally.  

This sort of comparative and exploratory undertaking is suited to developing scientific theories 

generally, and logic is very much at the heart of making such comparison possible.  Indeed, the 

simplifying and clarifying aspects of logic are not to be separated from the aims of science 

generally as he later explained: 

Each reduction that we make in the variety of constituent constructions needed in building the sentences of 

science is a simplification in the structure of the inclusive conceptual scheme of science.  Each elimination 

of obscure constructions of notions that we manage to achieve, by paraphrase into more lucid elements, is a 

clarification of the conceptual scheme of science.  The motives that impel scientists to seek ever simpler 

and clearer theories adequate to the subject matter of their special sciences are motives for simplification 

and clarifications of the broader framework shared by all the sciences.  Here the objective is called 

philosophical, because of the breadth of the framework concerned; but the motivation is the same.  The 

quest of a simplest, clearest overall pattern of canonical notation is not to be distinguished from a quest of 

ultimate categories, a limning of the most general traits of reality.
241

 

 

Here, Quine is speaking specifically of the role of first-order logic as a canonical notation for the 

sciences generally.  His talk of reduction and clarification characterizes equally well what he 

sees as the philosophical payoffs for logicism as he conceives it, a contribution to this limning of 

the most general features of reality.  Indeed, as I have been arguing, it is in Russell‘s reduction of 

mathematics to logic that we find the roots of Quine‘s philosophy generally. 
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V.  NEW FOUNDATIONS AND THE PHILOSOPHY OF 

SET THEORY 

 

The previous four chapters have largely been concerned with historical and expositional 

issues related to set theory, and in particular with the set theory and philosophy of W. V. Quine.  

This chapter will continue with such themes, but here I intend to bring these previous 

considerations to bear on some more general issues in the philosophy of set theory.  In particular, 

I will argue against the iterative conception of set, so often taken to be exemplified by Zermelo-

Fraenkel set theory (ZF), as the single correct version of set theory.  Given the variety of set 

theories discussed in previous chapters, it may seem surprising that there should be a single 

correct version of set.  Since the late 1960‘s, however, set theorists have tended to treat the 

iterative conception of set, as expressed by ZF, with privileged status, as if it captures something 

of the essence of set, if you will.  There are various reasons as to why ZF has gained this status, 

but perhaps foremost among them has been George Boolos‘s excellent exposition of the iterative 

conception in his 1971 essay ―The Iterative Conception of Set.‖
242

  In this paper Boolos not only 

makes this conception accessible to philosophers and mathematicians alike, but does it so 

compellingly that it is hard not to believe that there is something truly significant for the notion 

of set in the iterative conception.
243

 

 I, however, will deny that the iterative conception is the only viable notion of set.  In fact, 

this recent favoritism for a single conception of set is, as perhaps already suspected, the anomaly 

in the history of set theory.  As we have seen already, the development of set theory after the 
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paradoxes, as well as before, has largely been a matter of competing intuitions about sets.  Recall, 

Cantor, though operating only with an informal conception of set, perhaps escaped the paradoxes 

because his prior theological views barred him from allowing, what he deemed, absolutely 

infinite sets, among these the universal set, the set of ordinals, and the set of cardinals.  Russell, 

on the other hand, struggled to find a consistent notion of set in part because his own intuitions 

led him so naturally to the idea of a universal set.  Cantor‘s religious views certainly held no 

sway for Russell, but he could initially find no principled way to rule out the problematic sets.  

And finally, Zermelo accepted Cantor‘s restrictions but on largely pragmatic mathematical 

grounds.  For him, as for many logicians working in this early period of set theory, he could see 

that this was a mathematically interesting theory, and, as he saw it, the aim of axiomatization 

was merely to capture enough of this theory to insure its continued interest for mathematical 

research but to rule out enough so that the theory would not give rise to contradiction.  And as 

we have seen, Russell, too, would ultimately agree, at least to an extent, that this pragmatic 

criterion was what would guide the further development of set theory.   

 In this chapter, and the next, I will argue that such pragmatic concerns continue to be the 

primary factor in developing set theory.  Indeed, I will argue that such pragmatic motivations are 

much more in line with both the historical and contemporary development of set theory, and 

attempting to restrict set theory to ZFC potentially has the harmful outcome of inhibiting the 

growth of our mathematical and scientific knowledge.  As such, set theories such as Quine‘s NF 

cannot and should not be ruled out on grounds that they somehow stray too far from what was 

originally intended in the notion of set.  In fact, what I hope to have brought out already and will 

continue to bring out here is that the idea of a single intuitive notion of set, especially as the 

iterative notion, is largely a myth.  I do not want to deny that there is some body of theory that 
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we can pick out as set theory.  Categorization is certainly a useful practice.
244

  But to the extent 

that we can offer criteria for picking out what is to count as set theory, I will argue that NF, too, 

meets such criteria and furthers our understanding of sets in general. 

 

I 

To begin this chapter let us first turn to George Boolos as perhaps the most important 

proponent of the iterative conception of set, due, in no small degree, to the clarity of his 

exposition of this conception.
245

  Boolos begins his paper examining Cantor‘s proposed 

definitions of a set.  Recall, Cantor defined a set as ―any collection into a whole … of definite 

and separate objects … of our intuition or thought,‖ or as ―every aggregate of determinate 

elements which can be united into a whole by some law.‖
246

  While Boolos rightly observes that 

these gesturings at the definition of set are variously unclear, he also states, 

But it cannot be denied that Cantor‘s definitions could be used by a person to identify and gain some 

understanding of the sort of object of which Cantor wished to treat.  Moreover, they do suggest—although 

it must be conceded, only very faintly—two important characteristics of sets:  that a set is ―determined‖ by 

its elements in the sense that sets with exactly the same elements are identical, and that, in a sense, the 
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clarification of which is one of the principal objects of the theory whose rationale we shall give, the 

elements of a set are ―prior to‖ it.
247

 

 

To illustrate what Cantor might have meant by these hints about what sets are, Boolos first 

sketches out what has become known as ―naïve set theory.‖  We have seen this conception of a 

set many times previously.  This is the idea that sets are determined by predicates, or are the 

extensions of predicates.  Recall, given any monadic predicate, it is either true of an object or 

false of it.  The collection of things of which the predicate is true we call its extension.  It is in 

this sense that a set can be thought of as the extension of a predicate.  The idea is very intuitive, 

and as Boolos notes, seems to make sense of Cantor‘s remark that sets are collections of definite 

elements united by some law.  But, as we saw in previous chapters, despite its intuitiveness, the 

naïve conception is also inconsistent as shown by the predicate ―is non-self membered,‖ which 

leads directly to Russell‘s paradox.  Thus, the naïve conception of set must be given up as 

making sense of Cantor‘s proposed definitions of set.
248

 

 ―Faced with the inconsistency of naïve set theory,‖ Boolos suggests then, 

one might come to believe that any decision to adopt a system of axioms about set would be arbitrary in 

that no explanation could be given why the particular system adopted had any greater claim to describe 

what we conceive sets and the membership relation to be like than some other system, perhaps 

incompatible with the one chosen.  One might think that no answer could be given to the question:  why 

adopt this particular system rather than that or this other one?  One might suppose that any apparently 

consistent theory of sets would have to be unnatural in some way or fragmentary, and that, if consistent, its 

consistency would be due to certain provisions that were laid down for the express purpose of avoiding the 

paradoxes that show naïve set theory inconsistent, but that lack any independent motivation.
249

 

 

I quote this passage at length because it illustrates especially well the emerging debate between 

proponents of the iterative conception and a more pluralistic and experimental understanding of 

set theory viewed developing in response to the paradoxes.  The picture Boolos sketches here can 

clearly be identified with certain views of Quine, but I think also with Zermelo and Russell as 

well, even if to perhaps a lesser extent or less explicitly for the latter two.  But despite certain 
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claims from all of them on the apparent ad hoc nature of axiomatizing set theory in light of the 

paradoxes, I think this is not entirely true.  There is certainly a guiding intuition behind various 

approaches to set theory presented by Zermelo, Russell, and Quine respectively.  Namely, they 

all aim to save as much as possible of the idea that a set is the extension of a concept.  Indeed, 

Quine‘s approach can be seen as a generalization of what is common to both Zermelo and 

Russell‘s set theories, but let us first finish laying out Boolos‘s position before returning to these 

issues. 

 Boolos goes on to remark that this artificiality, however, does not have to be the case as 

there is another conception of set, the iterative conception, that strikes him as entirely natural.
250

  

On this conception, much like Russell‘s type theory, the sets are formed at stages, or levels.  

Unlike Russell‘s theory, the stages are cumulative.  A set will be any collection formed at a stage.  

We begin with individuals, again as Russell did, and at stage zero we form all collections of 

individuals.  If no individuals exist, we form only the empty set at this stage.  This will give us 

all subsets of individuals including, of course, the set of all individuals itself.  So we get 2
n
 sets at 

this stage, where n is the number of individuals and may be any natural number or even infinite.  

We now repeat this process at stage one, again for any individuals there may be and for all sets 

formed at stage zero.  This process continues for all stages through that natural numbers.  This 

brings us to the stage following stages 1, 2, 3, …, that is, stage omega, where we form all sets of 

sets of the previous levels including a set of all sets formed at these earlier stages.  We then 

continue as before forming sets in this way through stages omega plus 1, omega plus 2, and so on 

to omega plus omega (or omega times 2), and then to omega plus omega plus omega (omega 

times 3) and so on to omega times omega, and so on.  On this account, the sets are reformed at 

each stage later than the stage that it was originally formed at.  To simplify matters, we say a set 
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is formed only once, at the stage at which it was originally formed.  He also remarks that ZF 

generally does not assume individuals, so the sets it quantifies over are the pure sets, the sets 

formed in the absence of any individuals so beginning with the empty set , then forming {}, 

then {, {}}, and so one through the stages as before.
251

 

 Boolos next axiomatizes this stage theory with the aim of ultimately showing how the 

axioms of ZF follow from it.  He presents the following nine axioms with variables ‗x‘, ‗y‘, ‗z‘, 

… ranging over sets; ‗r‘, ‗s‘, ‗t‘ ranging over stages; the predicates of ‗=‘ and ‗‘ for equality 

and membership respectively, as well as ‗E‘ for ‗is earlier than‘ and ‗F‘ for ‗is formed at‘: 

(I)     (s)sEs, no stage is earlier than itself; 

 

(II)    (r)(s)(t)((rEs  . sEt)  rEt), the transitivity of ‗earlier than‘; 

 

(III)   (s)(t)(sEt  s = t  tEs), either for any two stages, either one comes before the 

other or they are equal; 

 

(IV)   (s)(t)(t  s  sEt), there is an earliest stage; 

 

(V)    (s)(t)(sEt . (r)(rEt  (rEs  r = s))), each stage is followed immediately by a 

stage; 

 

(VI)   (s)((t)tEs . (t)(tEs  (r)(tEr . rEs))), There is a stage aside from the first stage 

which does not immediately follow any stage, e.g., the omega stage; 

 

(VII)  (x)(s)(xFs . (t)(xFt  t = s)), every set is formed at a unique stage; 

 

(VIII) (x)(y)(s)(t)((y  x . xFs . yFt)  tEs), members of sets are formed prior to 

the set itself; and 

 

(IX)  (x)(x)(t)(xFx . tEs  (y)(r)(y  x . yFr . (t = r  tEr), if a set is formed at a 

stage, then at or after any earlier stage, at least one of its members has also been formed. 

 

The first five axioms here are meant to govern the stages, while the last four describe at which 

stages sets and their members are formed.  In addition to these axioms, Boolos adds two 

                                                 
251

 Ibid., pp. 18-20. 



 

 

118 

additional axiom schemas, one for set specification and one for induction with regards to sets and 

stages.  The specification axioms are of the form 

(s)(y)(x)(x  y  (χ . (t)(tEs . xFt))), where χ is a formula of our language with no 

occurrence of ‗y‘ free.   

 

These axioms state that for any stage there is a set formed whose members are just those sets 

formed at earlier stages of which the formula χ is true.  The induction axioms are of the form 

(s)(t)(tEs  (x)(xFt  θ))  (x)(xFs  χ))  (s)(x)(xFs  χ), where χ is a 

formula of our language containing no occurrences of ‗t‘ and θ is like χ except that it 

contains free occurrences of ‗t‘ wherever θ contained occurrences of ‗s‘. 

 

Intuitively, these axioms say that if a stage is covered by a predicate provided that all earlier 

stages are covered by it, then all stages are covered by that predicate.  Boolos defines ‗a stage 

being covered by a predicate‘ as ‗the predicate holding of all sets formed at that stage‘.
252

  The 

point of all this axiomatizing is to show next that we can derive the usual axioms of Zermelo set 

theory (Z) from this account of the stage theory.  In this sense, Boolos claims that the iterative 

conception is a natural account of sets on par with the naïve conception. 

 Recall that the axioms of Z are the empty set axiom, pairing, union, power set, infinity, 

separation, and extensionality.  Boolos also includes regularity, or foundation, among these 

axioms.  Extensionality, he says, ―has a special status.‖
253

  We will return shortly to each of these 

axioms in turn.  Also, to simplify matters, as is usual, he assumes there are no individuals, only 

sets.  We have seen some version of the Zermelo axioms already in chapter two, but to reiterate, 

Boolos states them as follows:   

(1)  Empty Set:  (y)(x) x  y, there is a set with no members; 

 

(2)  Pairing:  (z)(w)(y)(x)(x  y  (x = z  x = w)), for any sets z and w, there is a set 

with z and w as its only members; 
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(3)  Union:  (z)(y)(x)(x  y  (w)(x  w . w  z)), for any set z, there is a set with just 

the members of the members of z as its members; 

 

(4)  Power Set:  (z)(y)(x)(x  y (x)(w  x  w  z)), for any set z, there is a set with 

just the subsets of z as members; 

 

(5)  Infinity:  (y)((x)(x  y . (z) z  x) . (x)(x  y  (z)(z  y . (w)(w  z  (w  x 

 w = x))))), calling z a successor of x if the members of z are only the members of x and x itself, 

there is a set containing an empty set and the successor of any set it contains;  

 

(6)  Separation:  (z)(y)(x)(x  y  (x  z . φ)), where φ is a formula in which ‗y‘ does not 

occur free. For any set z, there is a set y of just those members of z of which φ holds;  

 

(7)  Regularity, or Foundation:  (x) φ  (x)(φ . (y)(y  x  ψ)), where ‗y‘ does not occur 

free in φ and ψ is like φ except that it contains an occurrence of ‗y‘ wherever φ has a free 

occurrence of ‗x‘.  If there is a set x of which φ holds, then there is a set x of which φ holds but 

containing members y of which this formula does not hold. 

 

Let us just present one such example from Boolos of how the axioms of Z follow from 

the stage theory.  Take, for example, the empty set axiom ‗(y)(x)(x  y)‘, which states that 

there is a set with no members.  If we let χ be ‗x = x‘, this yields ‗(s)(y)(x)(x  y  (x = x . 

(t)(tEs . xFt)))‘, which is a specification axiom stating that for any stage there is a set of all sets 

formed at some earlier stage.  Since there is an earliest stage, there is a stage which has no sets 

formed before it.  Hence, there is a set with no members, and so the empty set axiom follows 

from the stage theory.  The other axioms of Z follow similarly, though replacement and choice 

do not.
254

  Adding these two axioms give us the full set theory ZFC, that is, Zermelo-Fraenkel set 

theory with the axiom of choice. 

  

II 

 There is no doubt something very appealing about the view of sets we have just sketched, 

but in this section, I want to take a more critical attitude towards the iterative conception by 

                                                 
254

 Ibid., pp. 22-6. 



 

 

120 

looking at the reasons Boolos gives in its favor as well by trying to bring out some of its less 

intuitive features.  Following his remarks on the supposed ad hoc nature of adopting any set 

theory in light of the paradoxes (quoted above p. 119), Boolos remarks that the iterative 

conception ―often strikes people as entirely natural, free from artificiality, not at all ad hoc, and 

one they might perhaps have formulated themselves.‖
255

  This may be true, but so far this only 

makes it a competitor with other conceptions of set.  As we saw in chapter two, to Cantor it may 

have seemed entirely natural, for example, to rule out a universal set given his background 

metaphysical views, but we saw there that Russell found the opposite view so appealing that he 

could not see his way to fully accepting his own early proposal of type theory.  Even with types 

in its initial Principles formulation, he thought there must be a class of all terms, or more 

generally, objects, and this would regenerate the paradoxes.
256

   Similarly, Zermelo, for whom 

the set theory Boolos describes is named, put forward his axioms with a largely pragmatic 

justification aiming to preserve as much as was mathematically interesting from Cantor‘s 

original theory.
257

  My point here is just to signal that intuitions alone, even the intuitions of set 

theory‘s founders themselves, will not settle questions about which set theory we are to accept.  

And Boolos, I think, ultimately accepts this.  Indeed he continues, observing of the iterative 

conception, 

It is, perhaps, no more natural a conception that the naïve conception, and certainly not quite so simple to 

describe.  On the other hand, it is, as far as we know, consistent:  not only are the sets whose existence 

would lead to contradiction not assumed to exist in the axioms of the theories that express the iterative 

conception, but the more than fifty years experience that practicing set theorists have had with this 
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conception have yielded a good understanding of what can and what cannot be proved in these theories, 

and at present there just is no suspicion at all that they are inconsistent.
258

 

 

So in addition to its naturalness, the iterative conception appears consistent.  But this seems to 

hold for any serious alternatives to the iterative conception.  Certainly type theory also appears 

consistent
259

 as does NF.
260

  And while perhaps neither theory has received the scrutiny of the 

iterative conception as embodied in ZF, there does exist a vast amount of research on each, 

similar to the sort of research set theorists have carried out on ZF.  So consistency alone does not 

uniquely pick out the iterative conception from among other set theories, particularly in the 

experimental form Boolos suggests here—that we think ZF consistent because in working with it, 

we have yet to find a contradiction.  We should also flag another theme here that will continue to 

arise.  Boolos remarks that ―the sets whose existence would lead to contradiction [are] not 

assumed to exist in the axioms of the theories that express the iterative conception,‖ but this 

raises another question.  Are other sets, perhaps of either mathematical or philosophical interest 

banned from these theories?  The obvious possibility is that that none of them yield a universal 

set in contrast to NF.  This is an issue we will return to shortly in more detail considering NF 

further more directly. 

 At this point Boolos himself turns directly to NF (and its extension ML).  He remarks 

first that ZF is the standard first-order theory for expressing the iterative conception (also 

observing that the subsystem Z also embodies this idea as well as the extended systems Von 

Neumann-Bernays-Gödel (NBG) and Morse-Kelley (MK)).  But he says of theories proposed 

incompatible with ZF, by which he means NF and ML: 
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These theories appear to lack a motivation that is independent of the paradoxes in the following sense:  they 

are not, as Russell has written, ―such as even the cleverest logician would have thought of if he had not 

known of the contradictions.‖ A final and satisfying resolution of the set-theoretical paradoxes cannot by 

embodied in a theory that blocks their derivation by artificial technical restrictions on the set of axioms that 

are imposed only because paradox would otherwise ensue; these other theories survive only through such 

artificial devices.  ZF alone (together with its extensions and subsystems) is not only a consistent 

(apparently) but also an independently motivated theory of sets:  there is so to speak, a “thought behind it” 

about the nature of sets which might have been put forth even if, impossibly, naïve set theory had been 

consistent. The thought, moreover, can be described in a rough, but informative way without first stating 

the theory the thought is behind.
261

 

 

At least in part Quine would accept Boolos‘s point, and so would Zermelo, and even Russell in 

certain moods.  This was the point of Quine‘s remark that in light of the contradictions 

―commonsense is bankrupt‖.  Any resolution of the paradoxes will have some degree of 

unnaturalness about it.  But this is not to say that set theories such as types or NF are wholly 

unmotivated.  The development of both types and NF is guided by capturing as much of 

comprehension in its original form as possible as the basis for set existence.  ZF‘s separation is 

perhaps just that much further from the original insight of set existence as a set being the 

extension of a predicate.  Furthermore, types has very much the same sort of hierarchical 

structure that the iterative notion does, and NF takes its guiding thought from types and Russell‘s 

use of typical ambiguity in expositing his system.  Indeed, we could even understand NF as 

taking this idea of a hierarchy, found in both type theory and ZF, and abstracting away from any 

actual layering of the universe.  We might view the insight of both types and ZF being not that 

the universe actually comes in layers but rather that the subscripting of variables can provide a 

syntactic test for set existence without the extra, perhaps metaphysical, claim that the universe 

comes in a prearranged hierarchy.
262

  Both the idea of sets as the extensions of predicates and the 
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ideas of sets being layered in a hierarchy point to ZF not being the only independently motivated 

set theory with an easily describable thought behind it. 

 But Boolos thinks the iterative conception brings out a very particular motivating thought 

that NF does not have.  He next explains, 

Whatever tenuous hold on the conceptions of set and member were given one by Cantor‘s definitions of 

―set‖ and one‘s ordinary understanding of ―element,‖ ―set,‖ ―collection,‖ etc. is altogether lost if one is to 

suppose that some sets are members of themselves.  The idea is paradoxical not in the sense that it is 

contradictory to suppose that some set is a member of itself, for, after all, ―(x)(Sx . x  x)‖ is obviously 

consistent, but that if one understands ―‖ as meaning ―is a member of,‖ it is very, very peculiar to suppose 

it true.  For when one is told that a set is a collection into a whole of definite elements of our thought, one 

thinks:  Here are some things.  Now we bind them up into a whole.  We don‘t suppose that what we come 

up with after combining some elements into a whole could have been one of the very things we combined 

(not, at least, if we are combining two or more elements).
263

 

 

NF certainly does allow for self-membered sets, for example, in its universal set given by the 

instance of the comprehension schema ―(y)(x)(x  y  x = x).‖  Then V is certainly a 

member of V because it is self-identical.  Now, this may very well sound counterintuitive in 

thinking about sets along the lines sketched by Boolos.  As he presents it here, set theory sounds 

like a theory of collections of very ordinary physical objects.  Here are some things and we 

collect them together.
264

  This sounds fine when we think about, say, rocks or paperclips, but this 

brings us back again to the issue we have faced before.  How intuitive is set theory anyway?  On 

its most intuitive version it was of course inconsistent.  But on the gloss Boolos gives it here, it 

would hardly make sense of abstract collections of numbers or say of sets themselves:  ―Here are 

some numbers.  Now we bind them up into a whole.‖  But this is only a metaphor, perhaps a 

                                                                                                                                                             
pp. 145-51. A. A. Fraenkel, Y. Bar-Hillel, and A. Levy remark that Quine‘s NF perhaps makes sense of Russell‘s 

zigzag theory; see their Foundations of Set Theory, 2
nd

 rev. ed., (Amsterdam:  North-Holland, 1973), pp.???.  

Michael Potter also observes this in his Set Theory and Its Philosophy, (New York, Oxford University Press, 2004), 

p. 54. 
263

 Boolos, ―Iterative Conception,‖ pp.17-8; Boolos‘s emphasis. 
264

 Wang also talks this way in talking about the collections that make up set theory.  He uses the example of two 

tables in a room and by looking at them, pointing at them, or thinking about them in the right sort of way, we might 

view them separately or as a unity; see ―Conception of Set,‖ p. 531.  Parsons, in an attempt to get away from this 

idealistic view of how sets come to be, instead puts forth an account in terms of potentiality and actuality in his 

―What is the Iterative Conception of Set?‖ in Benacerraf and Putnam, pp. 503-29.  While perhaps more in line with 

the Platonist tendencies of most set theorists, it depends upon us making rigorous sense of the controversial modal 

notions. 



 

 

124 

useful one, but a metaphor does not make rigorous sense of the sense in which set theory is a 

mathematical theory of collections.  I am at a loss, as I think we should be, when confronted by 

this situation along the same lines of our rock or paperclip collections.  The abstract theory as 

embodied in the idea of a set as the extension of predicate, however, makes pretty clear in what 

sense sets are collections of objects.  And this idea also seems to make sense of Cantor‘s remark 

about combining into a whole by a law.  I can collect rocks, paperclips, numbers, and even sets 

according to whether or not a predicate is true of them.  In its most general form, this idea led to 

contradiction.  So intuitions are to be used with great caution.  But it does guide us as to how set 

theory might use the notions of set and membership and in what sense a set can be a member of 

itself.  What it means for an object to be a member of a set is just for a certain predicate to be 

true of that object.  This may not be our most ordinary understanding of set and membership, but 

it is one of the guiding thoughts that set theory began with.
265

 

Boolos‘s metaphor seems to fail us in other ways as well.  What made set theory so 

important was its ability to make sense of the infinite. This is one of the minimal requirements of 

what any consistent set theory should do.  How would our collecting together an infinite number 

objects be made sense of according to our ability to bind objects together.  Certainly we cannot 

do this by running around grabbing up an infinite number of objects.  Perhaps the metaphor helps 

if we think about a finite number of objects and then we can always just keeping adding one 

more (I am not sure that it does, especially as the idea that follows is that of the potential infinite, 

not the actual infinite as Cantor intended).  But even if this does seem to get us further along in 

understanding infinite collections, it seems to fail yet again when we start talking about 

uncountable infinities and infinities of every increasing size.  None of this is meant to be 
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definitive against Boolos, but it is to urge strong caution in our appeal to metaphors when 

discussing set theory.  The extent to which we have any reliable intuitions about set theory, to me, 

seems very limited and can hardly be a deciding factor in determining which set theories are 

worthy of our investigations as areas of research.  Indeed, much of what we think interesting 

about set theory runs quite contrary to our commonsense view of the world until we begin doing 

set theory. 

Both of these issues raise a further question about the relationship of time to the iterative 

conception of set.
266

  According to the iterative conception, as Boolos describes it, sets are 

formed at stages.  So we have not only the question discussed above of how we collect objects 

into sets, but also the question of when.  It seems counterintuitive to think of set being created at 

particular points in time, either past or future.  Set theorists tend to work on the assumption that 

all the sets are already available to them; that they do not need to wait for some perhaps very 

large sets to be created at a future time (and since we can always ―keep going‖ in the iterative 

hierarchy, it would seem that there are always sets not yet formed).  Nor do they wonder at 

which point in the past a particular set came into being.  Both questions sound absurd (though, 

the question of when a particular set was discovered or that more sets might be discovered in the 

future are not similarly absurd topics).  Wang tries to put such questions aside by claiming that 

set formation as the iterative conception describes it, is an idealization of human capacities, both 

in terms of our collecting abilities and time.
267

  But we have to ask again, how ideal is this 

idealization?  Again, it seems to rest on intuitions that set theory was supposed to make sense of 

in the first place.  Indeed, as Parsons observes, the kinds of intuitions Wang would need to make 
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sense of the iterative conception‘s idea of set formation, would not only go beyond an intuition 

of the potential infinite—our ability to always perform a further step—but beyond limitations 

imposed by space-time structure itself.
268

 

But perhaps Boolos admits all this; that a battle among intuitions will not be resolved.  As 

he concludes, 

There does not seem to be any argument that is guaranteed to persuade someone who really does not see 

the peculiarity of a set‘s belonging to itself, or to one of its members, etc., that these states of affairs are 

peculiar.  But it is in part the sense of their oddity that has led set-theorists to favor conceptions of set such 

as the iterative conception, according to which what they find odd does not occur.
269

 

 

Again, we might say that ―oddity‖ is a relative term, and much of what any set theorist would say 

to the uninitiated would sound quite odd indeed! 

 

III 

 I want to now consider more carefully some of the axioms of Z that both follow and do 

not follow from the stage theory.  I will begin with replacement and extensionality as neither 

follow from the iterative conception, and this seems quite uncontroversial.  As such, however, 

both raise interesting questions about whether the iterative conception deserves the privileged 

status it has gained.   I will then turn to regularity, or foundation, which Boolos say does follow 

from the stage theory.  This will bring us back to one of the issues considered in the previous 

section—that it is too strange to say that a collection can be a member of itself.  The axiom of 

choice will be the last of the axioms I wish to examine.  It, too, does not follow from the iterative 

conception, but as this leads to much broader issues concerning NF and set theory more 

generally, I will postpone discussion of it until chapter six.   
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 Let us begin with replacement since its absence from the iterative conception will be least 

controversial.  ZF, as Boolos describes it, are the previous axioms of Z plus the replacement  

axiom schema: 

F is a function  (z)(y)(x)(x  y  (w)(w  z . F(w) = x)), if F is a function, then 

if its domain is a set, so is its image. 

 

Boolos thinks it possible that we could have allowed an extension of the stage theory from which 

replacement would follow such as all instances of 

If each set is correlated in some way with at least one stage, then for any set z there is a 

stage s such that for each member w of z, s is later than some stage with which w is 

correlated. 

 

But while Boolos thinks that this ―is an attractive further thought about the interrelation of sets 

and stages… it does seem to us to be a further thought, and not one that can be said to have been 

meant in the rough description of the iterative conception.‖
270

  For example, it could be that there 

are exactly 1 stages since nothing in the rough account of the stage theory rules this out.  In 

such a case replacement would not hold generally.  On the other hand, replacement has some 

well-known desirable consequences for the theory of sets.  For example, it allows us to define a 

sequence of sets {R} with which each stage can be identified if we let R0 = ; R+1 = R  

P(R) (the power set of R); and R =  R, where  is a limit ordinal.  Replacement assures 

us that R is well-defined, s is a stage if ()(s = R), x is formed at s if x  s and x  s, and that s 

is earlier than t if ()()(s = R and t = R, and   ).  Replacement allows us to go beyond 

translating the axioms of the stage theory into the language of set theory to stronger axioms 

asserting the existence of stages further out than those suggested by the rough account of the 

stage theory.
271
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 Echoing Russell‘s inductive justification of reducibility (see above, p. 96), Boolos then 

states, 

Although they are not derived from the iterative conception, the reason for adopting the axioms of 

replacement is quite simple:  they have many desirable consequences and (apparently) no undesirable ones.  

In addition to theorems about the iterative conception, the consequences of replacement include a 

satisfactory if not ideal [fn. An ideal theory would decide the continuum hypothesis, at least.] theory of 

infinite numbers, and a highly desirable result that justifies inductive definitions on well-founded 

relations.
272

 

 

While this remark is perfectly acceptable to a view of set theory carried out in a pragmatic and 

experimental spirit, it seems to run somewhat contrary to Boolos‘s declared preference for the 

iterative conception over all other versions of set theory.
273

  While perhaps intuitive and easy to 

describe, we see here that certain important mathematical features do not follow from it until we 

add the replacement axiom.
274

  Again, adding the axiom seems perfectly acceptable if our 

guiding thought in developing set theory is to maintain as much of what is mathematically 

interesting about it in light of the paradoxes.  But if set theory is supposed to be grounded in the 

iterative conception to the exclusion of all other conceptions of set theory, we seem to be caught 

in an uncomfortable halfway point.  On the one hand we privilege ZF over all other set theories 

because it follows from the iterative conception and so gives expression to this intuitive notion of 

set formation.  But on the other hand, we see that the iterative conception is not strong enough to 

capture important mathematical features of set theory.  Thus we are left adding axioms in a 

somewhat ad hoc way so as to restore the power lost in restricting the conception of set to avoid 

contradiction.  I do not mean to suggest here that we should now instead privilege some other 
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version of set theory, say NF, over ZF.   I only want to point out that the intuitive picture that 

was supposed to lead us naturally to prefer ZF only gets us so far mathematically speaking. 

 Let us next consider the axiom of regularity, or foundation, which Boolos says is among 

the axioms of Z following from the iterative conception.  It most certainly does follow as 

demonstrated by Boolos‘s proof sketch.  Let φ hold of a set x.  x, then, is formed at some stage 

which is not covered by φ since φ is false of x.  By an induction axiom, then, there is an 

earliest stage s not covered by φ.  Hence, there is an x formed at stage s of which φ does not 

hold and so, of which φ does hold.  If y is in x, then y is formed before stage s, and so, the stage 

at which y is formed is covered by φ.  Hence, φ holds of y, and this is what ψ says.
275

  What 

is tendentious about this is his claim that the regularity axiom is in fact an axiom of Z. 

 Recall from chapter two that Zermelo does not assume this axiom as one of the axioms of 

his system.  Indeed, it was not explicitly proposed as an axiom until von Neumann‘s work of the 

mid-twenties, and he assumes it on purely pragmatic grounds of simplifying his set theory in 

light of the particular proof he is carrying out.
276

  Zermelo himself was the first to explicitly 

adopt foundation as a general axiom of set theory but did not do so until 1930.
277

  At least as late 

as 1973, Fraenkel et al. state it merely as optional among axioms for Z.
278

  So while the idea 

might look intuitive now in light of the iterative conception and in light of the paradoxes, it was 

oddly enough not an intuition about sets that occurred to anyone at the founding of the theory.  

Indeed, while it might not be a further thought about the iterative conception, it does seem a 

further thought about set theory in general. 
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 So what recommends regularity then?  In short, the axiom says there are no self-

membered sets or sets with circular membership conditions, i.e., no sets such that x  y and y  

x.  Recall that Boolos argued that it is too strange to say that a collection can be a member of 

itself.  But I countered that the metaphor driving this intuition does not hold up.  Boolos offers no 

justification for it other than that it follows from the stage theory he sketches.  I do not think this 

is necessarily unfair in all cases as a justification, but here, it prejudices our choice of set theory.  

While other set theories also express much of what the ZF axioms do, a set theory that allows for 

non-well-founded sets would be automatically ruled out by regularity.  If what it is to be a set is 

to be well-founded, then a set theory that includes non-well-founded sets is ruled out from the 

start.  Boolos‘s claim, then, about ZF alone being an apparently consistent and independently 

motivated account of sets seems to stand automatically unchallenged.  Starting with the iterative 

conception, as Boolos describes it, drives us to accept ZF (including regularity) and its 

subsystems and extensions as the set theory.
279

 

 But there are other motivations for accepting regularity as an axiom of set theory.  While 

it seems Mirimanoff first entertained the idea of focusing on well-founded sets in 1917, followed 

by von Neumann in his 1925 ―An Axiomatization of Set Theory,‖ it was Zermelo who fully 

accepted regularity as an axiom in his 1930 ―On Boundary Numbers and Domains of Sets.‖
280

  

Neither von Neumann nor Zermelo claimed that the universe of sets was actually restricted to 
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well-founded sets.  Rather they both introduced the axiom with the practical ground of obtaining 

categoricity results for their axiom systems.  Regularity simplified the universe by eliminating 

non-well-founded sets, but none of them saw well-foundedness as essential to the concept of set.  

As Zermelo made the point with regard to accepting regularity:  ―This … axiom, which excludes 

all ‗circular‘ sets, and all ‗sets that contain themselves‘, and in general all ‗groundless‘ sets, has 

always been satisfied in all practical applications of set-theory.  Thus, for the time being, it 

presents no essential restriction to the theory.‖
281

 

 More recent justifications for regularity rest on similar grounds in that it simplifies the 

set-theoretic universe particularly with regard to inductive definitions and investigating models 

of set theory.  This attitude is standard in set theory texts.
282

  As is well known, all of the other 

axioms of ZF hold regardless of regularity.  Furthermore, all ordinary mathematics takes place 

within a universe of well-founded sets.  So with regard to ease of use as well as perhaps Occam‘s 

Razor, regularity may seem quite worthwhile to assume, regardless of whether we think this is 

inherent to the notion of set.  As Jech makes the point in his standard introduction to set theory:   

It should be stressed that, whether or not one accepts the Axiom of Foundation, makes no difference as far 

as the development of ordinary mathematics in set theory is concerned.  Natural numbers, integers, real 

numbers and functions on them, and even cardinal and ordinal numbers have been defined, and their 

properties proved in this book, without any use of the Axiom of Foundation.  As far as they are concerned, 

it does not make any difference whether or not there exist any non-well-founded sets.  However, the Axiom 

of Foundation is very useful in investigations of models of set theory….
283

 

 

Kanamori goes somewhat further in his history of set theory, remarking that regularity is in fact 

what makes set theory its own special branch of mathematics:   

It is nowadays almost banal that Foundation is the one axiom unnecessary for the recasting of mathematics 

in set-theoretic terms, but the axiom is also the salient feature that distinguishes investigations specific to 

set theory as an autonomous field of mathematics.  Indeed, it can be fairly said that current set theory is at 
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base the study of well-foundedness, the Cantorian well-ordering doctrines adapted to the Zermelian 

generative conception of sets. 

 

Although he is also careful to note that it is ―a notable inversion [that] this iterative conception 

became a heuristic for motivating the axioms of set theory generally.‖
 284

   

So there do seem to be some distinctly mathematical reasons for preferring a set theory of 

well-founded sets as given by regularity.  But is this attitude towards the well-founded sets an 

accurate picture of set-theoretic current set-theoretic research?  It seems not.  Particularly notable 

in this context is Aczel‘s work on non-well-founded sets.
285

  Since its publication, interest in 

non-well-founded set theory has become widespread with important applications in computer 

science.  Philosophers, too, have recognized such set theories to have important application, 

particularly in modeling ordinary language and in coming to grips with the semantic 

paradoxes.
286

  And many of the current texts on set theory now include sections dedicated to 

non-well-founded sets.
287

  Furthermore, Kanamori himself has noted that set theory itself has 

now become an autonomous subject of mathematical investigation
288

 rather than merely serving 

as a foundation for all other mathematics.  Viewing set theory in this way, it seems we should be 

interested in all sets, not just the well-founded ones.  Should we not also want to broaden our 

investigations to understanding what the non-well-founded ones are like?  So it seems that non-
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well-founded sets do have a place in the mathematics and philosophy surrounding set theory.  

Indeed, it is perhaps fair to say that out of hand dismissals of such set theories have impeded the 

acquisition of mathematical knowledge. 

 I now want to turn to the extensionality axiom and the special epistemological status 

Boolos says it has, which, like replacement, does not follow from the iterative conception.  He 

observes that if someone were to deny any other axiom of ZF, we would be more inclined to 

believe the axiom false than if someone were to deny extensionality.  The claim ―there are 

distinct sets with the same members‖ seems so far from any ordinary conception of set that it 

would justify our believing that the asserter of such a statement must have some non-standard 

usage of the word ‗set‘, that they are not merely claiming extensionality to be false.  ―Because of 

this difference,‖  Boolos concludes, ―one might be tempted to call the axiom of extensionality 

‗analytic,‘ true by virtue of the meanings of the words contained in it, but not to consider the 

other axioms analytic.‖
289

  Analyticity is, of course, a controversial notion, and Boolos 

recognizes this saying that until we have an account of how a sentence can be true by virtue of 

meaning, we should refrain from classifying extensionality as analytic.  Still, 

[i]t seems probable, nevertheless, that whatever justification for accepting the axiom of extensionality there 

may be, it is more likely to resemble the justification for accepting most of the classical examples of 

analytic sentences, such as ―all bachelors are unmarried‖ or ―siblings have siblings‖ than is the justification 

for accepting the other axioms of set theory.  That the concepts of set and being a member of obey the 

axiom of extensionality is a far more central feature of our use of them than is the fact that they obey any 

other axiom.  A theory that denied, or even failed to affirm, some of the other axioms of ZF might still be 

called a set theory, albeit a deviant or fragmentary one.  But a theory that did not affirm that the objects 

with which it dealt were identical if they had the same members would only by charity be called a theory of 

sets alone.
290

 

 

So the important point here regardless of analyticity is that one feature we look for in identifying 

something as a set theory is that its objects should be identical when they have the same 

members.  This seems correct to me.  Much of the value gained by sets is that they have a very 
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clear identity criterion in extensionality, and without this it seems we are dealing with some other 

kind of entity.  But non-well-founded set theories do share this feature with the iterative 

conception.  So if we pick out extensionality as characterizing sets, then why should we favor the 

iterative conception, especially as this key axiom does not follow from it?  Indeed, we could, 

according to Boolos, deny any of the other axioms and still end up with a fragmentary or deviant 

set theory.
291

 

 This does not seem entirely correct.  Throughout its history another axiom has also been 

cited as characterizing set theory, the comprehension axiom.  Now this also does not follow 

generally from the iterative conception, but this is surely a virtue.  In its most general 

formulation, it should not be part of any set theory since unrestricted comprehension yields the 

set-theoretic paradoxes.  The iterative conception does however yield separation, ZF‘s restricted 

version of comprehension, and any set theory will need some such principle to specify which sets 

exist.  Without it we have no sets.  This boils set theory down to two identifying 

characteristics—extensionality and comprehension—and nothing about these two principles 

suggests the iterative conception.  Indeed, they seem more likely to tell against the iterative 

conception in the following way.   
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The naïve conception of set gave us too much in that it yielded contradictory sets, such as 

Russell‘s set of all non-self-membered sets.  One fairly commonplace way of judging a 

successful axiomatization is that it rules out these contradictory sets while doing as little damage 

as possible to the original theory.  In this sense, the iterative conception as expressed by ZF rules 

out too much.
292

  While we do not want contradictory sets, we also had other sets such as the 

universal set in the original theory specified by the instance of comprehension ―(y)(x)(x  y 

 x = x).‖  ZF does away with this as does type theory (at least in its most general version.  

Recall that type theory does yield a series of quasi-universal sets).  NF, however, does not while 

still apparently ruling out contradictory sets.  Indeed, its only two axioms are versions of 

extensionality and comprehension.  This is the same for type theory, but it has perhaps the 

undesirable complication of dividing up the universe into levels, again perhaps moving beyond 

the most basic characteristics of sets.  ZF‘s axioms seem perhaps even more ad hoc.  Given the 

weakening of comprehension in the form of separation, many of the other axioms just serve as 

fixes for restoring the power lost from the original naïve theory.  Starting with the iterative 

conception and moving to ZF does seem to provide some motivation for adopting ZF, but what I 

am trying to bring out here is that starting from our naïve conception of set and moving back to 

ZF makes ZF seems quite arbitrary and unmotivated as a set theory, at least with regard to 

capturing the original notion of set we began with.  I do not take any of these arguments to be 

definitive, but I do think that they show that any set theory can perhaps be made to look quite 

arbitrary depending on , what we take as our starting point for thinking about sets.  We have seen 
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this play out in a variety of ways, particularly in investigating the historical development of set 

theory. 

This still leaves us to discuss the axiom of choice, but I will postpone this until the next 

chapter as it will lead us to much more general considerations of NF.  For now I will just sum up 

our considerations so far of Boolos‘s account of the iterative conception of set.  The general 

point I have tried to make throughout this chapter is that while other set theories may seem 

arbitrary, there is something quite arbitrary in ZF as well.  And we have seen this both in the 

assumption of replacement as an extra postulate as well as in ZF ruling out certain seemingly 

legitimate, and perhaps quite interesting, sets, namely the non-well-founded sets.  Let us turn 

now to the axiom of choice, which will lead us to consider more generally NF and Quine‘s views 

on set theory as a whole. 
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VI.  MORE ON NEW FOUNDATIONS AND 

THE PHILOSOPHY OF SET THEORY 

 

 In this final chapter, we consider Quine‘s NF more generally in comparison to other set 

theories and conclude with his views on the philosophy of set theory as a whole.  Recall from the 

previous chapter that Boolos claimed that ZF is the only apparently consistent and independently 

motivated set theory.  I have been arguing against this claim trying to bring out the ways in 

which it is far less intuitive than Boolos presents it and the ways in which NF and other set 

theories are in fact also independently motivated.  Indeed, throughout this dissertation I have 

been urging that the development of set theory has been largely a battle of competing intuitions 

over what sets are like.  This may be worrisome in that perhaps it leaves us with no objective 

way of determining what should count as a viable set theory.  What we call set theory could just 

be a matter of personal preference.  Should we allow just any theory of collections count as a set 

theory?  This situation is not so bleak however.  There do seem to be some criteria readily 

available for assessing whether we count some body of theory as set theory.   

We have already seen some of this in our historical recounting of the development of set 

theory in that the concept of a set began with some idea of sets being the extensions of predicates 

(though initially Cantor says little about what sets are).  While I take all set theories to have this 

origin, and the history seems to play out this way, this in itself is perhaps a controversial claim.  

Many philosophers and logicians have stated that there are two separate notions of a set, the 

logical and the mathematical, where the former takes sets to be the extensions of predicates and 

the latter takes them to be formed according to the iterative conception.
293

  Having touched upon 

this debate elsewhere I will not say any more here other than to reiterate that I do not think the 

distinction holds up very well, and that it is mostly a distinction that encourages a privileging of 

                                                 
293

 Gödel, for example, draws this distinction in his ―What is Cantor‘s Continuum Problem?‖ pp. 474-5. 



 

 

138 

the iterative conception.  The usual argument is that the logical conception of set has its home in 

philosophy and that is where the paradoxes arose.  Within mathematics, the iterative conception 

was always present and so mathematicians were never troubled by the paradoxes or the notion of 

a set more generally.  The history, however, shows the iterative conception and this distinction 

emerging only after the paradoxes (see Chapter II especially).  I will put this issue aside now. 

W. D. Hart has suggested another set of criteria that serves to distinguish set theory.
294

  

First, set theory must deal with the paradoxes in some way.  Second, it should contain a 

mathematically interesting account of the infinite as this was one of the aspects that drove the 

development of set theory in the first place.  As such it should preserve at least some version of 

Cantor‘s theorem.  And third, set theory should be capable of serving as a framework for 

classical mathematics.  This seems a reasonable, minimal set of criteria for identifying a theory 

of collections as set theory in the way the tradition intended it, though we might still revise them 

in light of further development in set theory.  We have already seen that NF succeeds on the first 

two criteria.  The primary focus of this chapter will be to show that it succeeds also on the third.  

To begin this discussion I pick up with Boolos‘s considerations of the axiom of choice in relation 

to the iterative conception. 

 

I 

Boolos introduces choice in the form often called ―the multiplicative axiom,‖
295

 which 

states 

For any x, if x is a set of nonempty disjoint sets, then there is a set, that is, a choice set for 

x, that contains exactly one member of each of the members of x. 
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The axiom is crucial for much of ordinary mathematics, but as Boolos rightly notes, neither 

choice nor its negation follow from the iterative conception.  Much like replacement, he suggests 

we might extend the stage theory so that it does decide choice (no doubt preferably that it be 

true).  ―But,‖ he remarks, 

it seems that no additional axiom, which would decide choice, can be inferred from the rough description 

without the assumption of the axiom of choice itself, or of some equally uncertain principle, in the 

inference.  The difficulty with the axiom of choice is that the decision whether to regard the rough 

description as implying a principle about sets and stages from which the axiom could be derived is a 

difficult decision, because essentially the same decision, as the decision whether to accept the axiom.
296

 

 

For example, we might try to extend the stage theory by adding the following principle: 

Let x be a set of non-empty disjoint sets, so x is formed at some stage s.  Then the 

members of x must be formed at some stage earlier than s.  Therefore, at stage s or earlier, there 

exists a set that contains exactly one member of each member of x. 

 

But such a principle, Boolos explains, begs the question since we have no reason to think that 

such a set is in fact formed.  It is the axiom of choice itself that allows us to chose exactly one 

member from each member of x, that is, to form a choice set for x.
297

  He concludes then, ―To 

say this is not to say that they axiom of choice is not both obvious and indispensable.  It is only 

to say that the justification for its acceptance is not to be found in the iterative conception of 

set.‖
298

   

So, again, much like the axiom of replacement, a crucial mathematical principal does not 

follow from the iterative conception of set.  This is again not to say that we should reject ZF as a 

framework for mathematics, but rather to say that we can only get so far motivating it by way of 

the iterative conception.  The situation is the same for type theory; choice must be assumed as an 

additional axiom if the system is to be sufficient for ordinary mathematics.  If we approach set 

theory in a pragmatic spirit, such additional postulates should be of minimal concern.  Our guide 
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to developing set theory is to incorporate enough power to make the system mathematically 

interesting.  But the option of adding choice is not available to NF.  In fact, this will be our first 

serious challenge to adopting NF as a set theory for NF does decide choice, and it says this 

principle is false.  So can NF serve a plausible framework for mathematics?  This is the question 

we now turn to. 

There is no doubt that the axiom of choice is an important principle for mathematics, 

used in a wide variety of results from all areas of the subject.
299

  But the axiom itself has had a 

rather controversial history.  Zermelo, in his 1904 well-ordering paper,
300

 was the first to put 

forward the principle as an explicit axiom, which he used to show that every set can be well-

ordered.
301

  Attacks on the proof immediately followed describing its use as an illegitimate 

method for mathematics.  Zermelo responded with his 1908 proof and his fully developed axiom 

system for set theory.
302

  And while choice finally won out as an accepted method of proof, its 

status remains somewhat different from other axioms of set theory. 

Justification for the axiom generally points to its usefulness and importance in 

mathematics.  Indeed, much of Zermelo‘s strategy in defending it was to show that a significant 

amount of already accepted mathematics relies upon it, but as an implicit assumption.  Such 

arguments continue to be common in set theory texts.  For example, Jech points to such 

important results relying on choice as the Hahn-Banach Theorem, Tichonov‘s Theorem, and the 

Maximal Ideal Theorem as accounting for the axiom‘s ―universal acceptance‖.
303

  Despite this 

widespread acceptance, mathematicians and logicians continue to be careful about the use of 
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choice.  In particular, they often distinguish proofs in ZF from those done in ZFC (ZF plus 

choice) and frequently try to reprove results relying on choice with proofs that do not.  Indeed, 

much of Jech‘s most notable work focuses on such results.
304

   

Aside from such justifications by way of its usefulness, there may also be something that 

seems rather obvious about the axiom.  From a collection of disjoint sets, it allows us to pick a 

unique representative for each one yielding a choice set for the collection.  Jech observes that the 

axiom is often described by using the analogy of an election where each set in the collection are 

the candidates for a particular office and the election process gives us a choice function from 

each of these sets.  But he is careful to point out that such an analogy talks only of a finite case 

and that this gives us no justification for assuming the axiom to hold in infinite cases.
305

  

Reflecting on the arithmetic of infinite numbers, for example, suggests in a pretty 

straightforward way that what holds for the finite should give us no reason to think it will hold 

analogously in the infinite.  Indeed, as I have pointed out several times already, we seem to have 

very few initial correct intuitions about the infinite, and it was only Cantor‘s discovery of set 

theory that allowed us to gain a rigorously makes sense of it understanding of it. 

It turns out that for the finite case, the axiom is unnecessary since it is provable when 

dealing only with finite collections of finite sets.  The situation is, of course, very different for 

infinite sets.  Indeed, even when an infinite collection contains only finite sets, choice is not 

generally provable.
306

  So choice must be added as an axiom to deal with infinite sets in general.  

But now we get some a fairly unintuitive result.  Banach and Tarski, generalizing a result of 

Hausdorff, proved, using choice, that a sphere can be decomposed into parts and rearranged 
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using rigid motions, so as to obtain two spheres each the same size as the original sphere.
307

  W. 

D. Hart makes the point even more dramatically glossing the result as saying that it allows us to 

decompose a sphere the size of a pea and reassemble it into a sphere the size of the sun.
308

  This 

has become known as ―the Banach-Tarski Paradox.‖  The point here is not to claim that choice 

must then be false in light of such a result, but merely to bring out its lack of grounding in 

commonsense.  As Potter observes, the unintuitive nature of the result depends upon our trying 

to understand it in terms of our ordinary intuitions about elementary geometry.  The argument for 

this paradoxical result, however, does not rely on any such intuitions but rather depends on a 

mathematical understanding of transcendental functions.
309

   

I have been continually coming back to attempts, such as this, at grounding set theory in 

ordinary everyday conceptions of, say collections or the infinite.  Our understanding of such 

issues may develop in conjunction with certain initial intuitions about sets, but this is a constant 

back and forth between the technical development of the subject and our initial intuitions about it.  

If intuitions alone were the final arbiter for the success of a mathematical theory, I suggest we 

would throw out much of mathematics as we now know it.  Certainly set theory would have 

ended with Russell‘s paradox.  But I also want to make the point that there is some unfairness 

when examining set theories other than ZF (or ZFC).  Because they violate our ordinary 

understanding, say, of what it means to be a member of a collection (see chapter IV), they are 

often treated with disdain and unworthy as research projects.  I am urging that such non-standard 
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set theories are only thought non-standard, that is contrary to intuition, because we have become 

so familiar with the iterative conception as exemplified by ZF. 

But to return to our immediate topic—what of the axiom of choice in NF?  The situation 

does not initially look good since in 1953 Ernst Specker proved that choice is refutable in NF.
310

  

We want to know exactly what Specker proved, though.  Will it prohibit much of accepted 

mathematics?  If yes, this seems a serious point against NF as a framework for which 

mathematics can take place in.  If much of accepted mathematics can be developed in NF, 

however, this can not be used against NF.  In fact, we might then have reason to prefer NF over 

ZF.  Choice is independent of the axioms of ZF; we can neither prove it nor refute it in ZF.  On 

this count then, NF seems to be a more ideal theory, as Boolos characterizes an ideal theory, 

since it decides the axiom of choice whereas ZF does not.  We would get both the development 

of accepted mathematics and an answer to the truth or falsity of choice if we were to accept NF 

as a working set theory.  Let us see then what exactly the situation is. 

Specker‘s refutation of choice in its original form is rather abstract and hard to grasp 

apart from what appear to be some rather arcane details of NF.  To make the proof more 

accessible, I follow, instead, the account Rosser gives in his review of Specker‘s result.
311

  We 

will assume the axiom of choice and then proceed by reductio.  He begins by observing that the 

proof depends significantly on many properties of cardinals being invariant when their types are 

raised uniformly.  That is, given a cardinal m, we choose a class  of cardinality m and let T(m) 

be the cardinality of the singleton subclasses of , USC().  T(m) thus gives us the cardinal m, 

but it is of one type higher.  (We have already seen the importance of such type raising 
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operations in NF in our chapter 3 discussion of Cantor‘s theorem.)  To illustrate such invariance, 

Rosser gives a few examples: 

m  n  T(m)  T(n); 

T (m + n) = T(m) + T(n), when m + n, m, and n are all cardinals; and 

T(0) = 0, T(1) = 1, T(2) = 2, and so on. 

And as a consequence, we see that if m = q + q + q + k, where k = 1, 2, or 3, then T(m) = T(q) + 

T(q) + T(q) + k.  So residues (mod 3) are invariant, the cardinality, in general, is not.  In fact, we 

cannot even prove for all finite m that T(m) = m. 

 Next, to define 2
m

 so that it has the same type as m, we find an , if such an  exists, 

such that the cardinality of USC() = m.  We then let 2
m

 be the cardinality of all subclasses of .  

Now if 2
m

 exists, then m  2
m 

and T(2
m

) = 2
T(m)

, another case of invariance.  However, 2
m

 does 

not exist for all m.  Indeed, if V is the cardinality of the universe, then 2
m

 exists if and only if m 

 T(V).  We also note that 2
T(V) 

= V, 2
T(T(V)) 

= T(V), and so on.  We also define, for any 

cardinal m, (m) as the set (it is stratified) of m and as many of 2
m

, 2
2^m

 … as exist.
312

  So if 

they all exist so that (m) is infinite, then (T(m)) consists of  T(m), T(2
m

), T(2
2^m

), … and is 

also infinite.  The interesting case is when (m) is finite.  For example, 2
V 

does not exist, so 

(V) contains only V. 

 Now, by choice we can show that if (m) is finite, then (T(m)) is also finite, and also 

that the cardinalities of (m) and (T(m)) have different residues (mod 3).  Let (m) have finite 

cardinality.  Then there is a greatest member of (m), say n.  So 2
n
 cannot exist; otherwise it 

would be the greatest member of (m).  Thus T(V)  n, since cardinal comparability follows 
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from choice.  Then T(T(V))  T(n), and so T(V) = 2
T(T(V)) 

 2
T(n)

.  This gives us two cases to 

consider. 

Case 1:  T(V) = 2
T(n)

.  Then the members of (T(m)) are T(m), T(2m), …, T(n), 2
T(n)

, 2
2^T(n)

, so 

intuitively (T(m)) has two more members than (m).  So (T(m)) is finite and its residue 

(mod 3) differs from that of (m). 

Case 2:  T(V)  2
T(n)

.  Then 2
T(n)

 is the greatest member of (T(m)).  So now (T(m)) has 

intuitively one more member than (m), and similar to the first case (T(m)) is finite and its 

residue (mod 3) differs from that of (m). 

 Now by choice again, there is a least m for which (m) is finite, and since (T(m)) is 

also finite, m  T(m).  By the definition of T(m), there is a p such that m = T(p) and p  m.  

Hence, p = m, and so T(p) = T(m), and then finally m = T(m).  Therefore, the cardinals of (m) 

and (T(m)) have the same residue (mod 3).  Contradiction.  Thus, the axiom of choice is false 

in NF.  Also, since the generalized continuum hypothesis implies choice, it too must be false.
313

 

 So where does this leave us then with regard to NF as a framework for ordinary 

mathematics?  It seems in a situation very similar to where we are with ZF.  Rosser observes 

almost immediately in his note that he ―has become increasingly convinced that‖ all ordinary 

mathematics can be developed within the Cantorian sets, that is, those sets  for they and the set 

of their singleton subsets have the same cardinality (we have already discussed such sets in 

chapter 3 with reference to Cantor‘s theorem).  And for such sets, it seems quite reasonable to 

assume that choice holds.  Indeed, Specker‘s proof only shows it failing for non-Cantorian sets 

such as the universe.   

                                                 
313

 Adolf Lindenbaum and Alfred Tarski, ―Communication sur les Recherces de la Théorie des Ensembles [1926],‖ 

in Alfred Tarski, Collected Papers, vol. I, Steven R. Givant and Ralph N. McKenzie, eds., (Boston:  Birkhäuser, 

1986), pp. 171-204.  They sketch their result on pp. 187-8.  Waclaw Sierpinski proved it in ―L'hypothèse généalisée 

du continu et l'axiom du choix,‖ Fundamenta Mathematica 34 (1947), pp. 1-5. 



 

 

146 

But as I have already remarked mathematicians are generally careful about their use of 

choice, not necessarily doubting its truth but keeping track of where it is necessary to a result.  

And Rosser is no exception to this.  Even prior to Specker‘s proof, when it might have seemed 

completely reasonable to assume the full axiom of choice, that is, choice for the universe, Rosser 

limited himself to the denumerable axiom of choice, the existence of a choice function for 

countable families of non-empty sets.
314

  Indeed, denumerable choice suffices for the 

development of most mathematics including that of the real numbers.
315

  As Rosser describes the 

situation in a post-Specker appendix to Logic for Mathematicians, there are an infinite number of 

choice axioms each of which says we can make  many choices, where  is any cardinal.  It is 

only where  is the cardinality of the universe that Specker‘s proof holds.
316

  Hence, this result 

does not threaten Rosser‘s reduction of mathematics to NF. 

The failure of choice for NF generally may still seem an oddity, and perhaps a very 

uncomfortable one.  While Zermelo‘s well-ordering theorem claimed to show that all sets can be 

well-ordered, the theorem cannot hold in NF since this is equivalent to the axiom of choice.  But 

we should not forget, that Zermelo‘s set theory rules out certain sets from the start, most 

noticeably in comparison to NF, the universal set.  And the universe is such a set that is non-

well-orderable.
317

  If our starting point does not allow for such sets, then there are of course no 

problems for Zermelo‘s well-ordering principle.  But the very question I have been trying to raise 

throughout this dissertation is what grounds are there for ruling out such sets as the universal set 

from the start.  It seems to have a perfectly clear specifying condition, and it also seems perfectly 
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reasonable that in the course of set-theoretic research (because our interest is in sets as such) we 

might want to know what the universe and other big sets are like.  Indeed, as we have seen, this 

was one of Quine‘s driving motivations in proposing NF in the first place. 

As a final point on the axiom of choice, recall Boolos‘s comment about an ideal theory 

saying that it should decide the continuum hypothesis, which is independent of the axioms of ZF 

(and ZFC).  Choice is also independent of ZF and has had a controversial history with regard to 

its truth.  Most logicians and mathematicians now accept its but largely on its pragmatic value 

for mathematics overall—it yields many desirable results and no (or perhaps, not many) 

undesirable ones.  But NF, too, can have choice, just not in the unrestricted form that ZFC has it.  

This is because ZFC is inherently restricted in banning such sets as the set of cardinals, the set of 

ordinals, and the universal set itself.  Restricted versions of choice, such as the denumerable 

axiom of choice or choice restricted to Cantorian sets, will work perfectly well in NF and 

provide for much of ordinary mathematics just as ZFC does.  Yet, NF is perhaps more ideal (in 

Boolos‘s sense) than ZF with regard to choice.  Choice is independent of ZF and so must be 

added as an additional axiom if ZF is to serve as a framework for mathematics.  Indeed, in a 

sense then, ZF gives us no reason to think that choice is true.  It yields many desirable 

consequences, so it makes sense that we would want it to be true. But wanting and actually being 

so are two different things.  NF actually tells us that choice in its most general form is false and 

so actually decides a set-theoretic statement that ZF does not.  This does not inhibit the 

development of mathematics in NF since choice holds for Cantorian sets.  Indeed, we might 

think of this failure as telling us something further about all the sets there are.  In ZF style set 

theory, we build in the assumption that all sets are Cantorian.  With NF we explore the set-

theoretic universe as a whole without prejudice towards particular kinds of sets.  In the failure of 
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choice, we then gain some insight into the general properties of non-Cantorian sets and what 

distinguishes them from the Cantorian ones.
318

  Furthermore, as a consequence of disproving 

choice, we also gain information about the generalized continuum hypothesis (GHC).  A result of 

Tarski and Lindenbaum shows that GHC proves choice, so GHC is also false in NF.  So in 

Boolos‘s sense, it seems NF may be a more ideal theory than ZF (or ZFC) in deciding questions 

such as these. 

That the failure of choice in NF does not inhibit the development of ordinary 

mathematics in this theory is reassuring, but this may not be the only worry to have.  As is well 

known, developing mathematics set-theoretically generally proceeds by first showing that set 

theory captures arithmetic. The other number systems of integers, rationals, and reals are then 

built up from this basis.  So we also want to be certain that NF can provide for arithmetic, and 

here, further difficulties lie.  Since NF‘s comprehension schema is restricted by stratification, 

certain inductive definitions used in arithmetic will be problematic. 

 For NF, sets do not exist when their specifying conditions are unstratified, and so this 

will come into play with induction as well—we will only have induction for stratified conditions.  

So for example, we might expect that we should be able to prove for each natural number n, that 

it counts the set of its predecessors.  That is, we might expect to prove by induction (n)(n  N 
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 {m: m  N . 0  m  n}  n, but we see here that this condition is not stratified since n occurs 

on both sides of the membership relation.   

 To resolve such issues, Rosser suggested the axiom of counting which states for any 

natural number n, n counts the number of its predecessors, (n  N){m: 0  m  n}  n.  

Equivalent to the axiom is the type raising operation T for ordinals (analogous to T for cardinals) 

is the identity map when applied to natural numbers, that is, for all natural numbers n, T{n} = n, 

or the order-type of the relational unit subsets of n is equal to n.  This further yields that all finite 

sets are Cantorian, that all finite sets are strongly Cantorian (i.e., the singleton function is a set), 

and that there is an infinite strongly Cantorian set.  Indeed, these claims are equivalent under the 

axiom of counting.
319

  The counting axiom also helps to preserve a variety of more ordinary 

mathematical results such as those theorems of number theory concerning the number of integers 

having a particular property.  And it simplifies the natural numbers generally in assuring us that 

for any set   n,  has n members.
320

 

 But let us not forget that counting is an additional axiom not decided by the two original 

axioms of NF, extensionality and comprehension.  We might try to justify it on its rather intuitive 

sounding nature, though I have urged that we be wary of such justifications in the past, for 

example, with regard to choice.  And indeed, much like choice, counting is a surprisingly 

powerful axiom.  In fact, NF plus counting (NFC) proves the consistency of NF, so on pain of 

inconsistency (by way of Gödel), it had better not be the case that counting follows from the two 

initial axioms.  Still, we might say that counting fairs somewhat better than choice in it not 

yielding any especially counterintuitive results, aside from those already present in NF without 

counting that is (and these results tend to come from the presence of non-Cantorian or big sets in 
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NF and so are perhaps only counterintuitive because other set theories do not allow us to 

investigate such sets).  Unless we demand some further self-evident grounding for our 

mathematics, we seem to be no worse off in our choice of axioms than we are for ZF (or ZFC).  

Indeed, in its economy of axioms, NF recommends itself considerably over ZF (and ZFC).  And 

this is enough for the point I have been arguing—that, so far at least, the view that ZF somehow 

gives us the only viable account of sethood relies more on prejudice than fact. 

  

II 

 In this concluding section, I want to now try to give some account of what exactly a 

Quinean philosophy of set theory looks like.
321

  Given what we have seen of its exploratory and 

experimental nature, it cannot be to bring forth something like the essence of sethood as a sort of 

a priori science.  Quine is open-minded about competing set theories, as I take it he is, in some 

sense, about about all competing scientific theories.  This is not to say that almost anything might 

count as set theory for him.  Indeed, the point of the previous section was to show, according to 

some generally uncontroversial criteria, that Quine‘s NF could be reasonably reckoned within 

the discipline of set theory.  So given his approach to set theory, I want to turn to the question of 

what a Quinean philosophy of set theory is if not to bring forth the essence of sethood, for 

example, in terms of an iterative hierarchy. 

 The culmination of Quine‘s work in set theory came in his 1963 Set Theory and Its Logic, 

a work, I claim, that stands along side Word and Object as one of his greatest philosophical 

achievements.  The book is dedicated to Russell as initiating Quine‘s interest in the subject and 
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has the epigraph from the Pirates of Penzance, ―How quaint the ways of paradox,‖ stressing yet 

again the central importance Quine sees in the paradoxes as giving rise to the development of set 

theory.  His major theme is a comparative study of the main approaches to set theory.  In the first 

two parts of the book, he develops a set theory, which he intends as largely neutral between the 

usual systems of Russell, Zermelo, and himself.  He describes his policy as one of minimizing 

set existence assumptions making them only where the development of the theory demands 

them.
322

  To this end he employs the apparatus of virtual classes, simulating talk of classes by 

way of contextual definitions rather than assuming their existence outright from the start.  This 

gives him a useful contrast later when he introduces actual classes, better demonstrating ―what 

power real classes confer that the counterfeits do not.‖
323

  He adopts axioms strong enough only 

to imply the existence of finite sets.  Where more substantial claims enter in, such as the 

existence of infinite sets or the axiom of choice, he adopts these only as hypothetical claims at 

the outset of proving the theorem requiring these added assumptions.
324

    It is only after 

introducing his neutral and largely minimal set theory that he thinks we are ready in the third part 

of the book to consider the relative advantages and disadvantages of the various more familiar 

and substantial set theories.  His aim is to prepare us to consider the relative merits of the usual 

set theories from a perspective which is prejudiced towards none of them.
325

 

He also returns again to the theme that ―intuition is bankrupt‖ when it comes to 

developing a viable system of sets, for intuition brought set theory in its earliest days to 

contradiction.  This is not to say that intuitions never come into play or are never helpful in set 
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theory, but we need to be cautious as Quine explains (I put forth a similar argument in the 

previous chapter but here we have Quine himself making it):   

The notion of class is so fundamental to thought that we cannot hope to define it in more fundamental terms.  

We can say that a class is any aggregate, any collection, any combination of objects of any sort; if this 

helps, well and good.  But even this will be less help than hindrance unless we keep clearly in mind that the 

aggregating or collecting or combining here is to connote no actual displacement of the objects, and further 

that the aggregation or collection or combination of say seven pairs of shoes is not to be identified with the 

aggregation or collection or combination of those fourteen shoes, nor with that of the twenty-eight soles 

and uppers. In short, a class may be thought of as an aggregate or collection or combination of objects just 

so long as ‗aggregate‘ or ‗collection‘ or ‗combination‘ is understood strictly in the sense of ‗class‘.
326

 

 

This is not to say we have no way of knowing what a class is.  Quine does think there is some 

use for coming to understand classes by way of an analogy to the ordinary collections of physical 

objects we come in contact with every day.  But to understand collections as classes, he turns to 

predicates.  If we begin with a sentence about a thing, we can then think of removing reference to 

that thing from the sentence leaving us only with the predicate, or an open sentence, true of some 

things and false of others.  The class, then, as we are now familiar with, is exactly those things of 

which the predicate is true, the extension of the predicate.  He also notes that we want classes to 

be identical when they have the same members, so we also adopt extensionality as our principle 

of class identity.  But he continues to be careful in appealing to intuitions; his gesturing at what a 

class is as distinct from ordinary collections is not meant as definitive: 

I was describing the function of the notion of class, not defining class.  The description is incomplete in that 

a class is not meant to require, for its existence, that there be an open sentence to determine it.  Of course, if 

we can specify the class at all, we can write an open sentence that determines it….  But the catch is that 

there is in the notion of class no presumption that each class is specifiable.  In fact there is an implicit 

presumption to the contrary, if we accept the classical body of theory that comes down from Cantor.
327

 

 

Maintaining Cantor‘s theory of the infinite is not the only reason Quine cites for not adhering too 

closely to the idea of classes as the extensions of predicates.  Because this ―natural attitude‖, as 

he describes it, led to contradiction, we must instead make deliberate and careful choices about 

our class existence axioms since ―intuition is not in general to be trusted here.‖  But since we 
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have a variety of interesting alternative axiomatizations available, he thinks it hasty to focus on 

just one of them ―to the point of retraining our intuition to it.‖
328

  In the contemporary philosophy 

of set theory, this is of course exactly what has happened.  Being a viable set theory has become 

nearly inseparable from the intuitions guiding the iterative conception of set.   

On Quine‘s view, then, seeming artificiality is not a reason to reject a particular set 

theory.  Yet, he also does not rule out a particular set theory as eventually being adopted as best 

for he thinks his own approach—a careful weighing of the benefits and drawbacks of the various 

options—―can encourage research that may some day issue in a set theory that is clearly best.‖
329

  

As we might expect, his attitude here is much like the attitude one could have with regard to the 

progress of science generally.  Various theories are developed until finally one emerges as best, 

however temporary this privileged position might happen to be. 

This careful comparative development of set theory with regard to its existence 

assumptions and axiomatic strength is, for Quine, the philosophy of set theory. This should be no 

surprise to those familiar with his approach to the philosophy of the sciences generally.  Neither 

in the natural sciences nor in mathematics do we look for a first philosophy.  Our starting point is 

within science itself, so in the case of set theory, its philosophy begins within set theory rather 

than in some extra-scientific metaphysical conception that it must be fitted to. 

Having now cleared his readers‘ minds of set-theoretic prejudice in the first two parts of 

Set Theory and its Logic, he turns in part three to consider the familiar set theories of Russell, 

Zermelo, and himself.  Rather than draw distinctions and build boundaries between them, Quine 

takes the very radical approach of bringing these various and often incompatible set theories into 
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discussion with each other.  So let us turn to the details of Quine‘s picture and how it might 

further the growth and knowledge of set theory. 

 He begins his study with Russell‘s theory of types, progressing next to Zermelo‘s theory, 

and finally to his own NF.  This account is not historical nor is it intended to be.  Rather we can 

view his account as a sort of logical progression through the various set theories he considers 

showing how each one can be seen, in a sense, as emerging from the other.  We have seen both 

Boolos and Russell, among others,
330

 argue against Quine‘s NF by remarking on its seemingly 

artificial development as only a response to the paradoxes, that there is no motivating thought 

behind it other than this.  Quine of course largely accepts this, but sees it as the situation 

generally in set theory after the paradoxes.  To him it is not a criticism of NF any more than it is 

a criticism of the other set theories he considers.  The paradoxes forced such artificiality upon all 

of us.  As we have heard over and over again from him, our most intuitive thought about sets, 

that is, as extensions of predicates, led us into contradiction.  And we have seen this play out in 

the early history of set theory.  Talk of sets existing in some sort of hierarchy entered in not as an 

intuitive first thought about sets but rather emerged from considerations of paradoxes, first in 

Russell and sometime later in Zermelo (much later than his first axiomatization).  Artificial 

development, then, is unavoidable. 

 Perhaps critics of NF would grant Quine‘s point that all set theory is in part artificial, but 

for them, NF is just a little too artificial as opposed to types or Zermelo set theory.  Quine‘s 

comparative account of set theory can be read as a response to just this sort of criticism.  Aside 

from comparing the relative merits of the various set theories and how their respective 

disadvantages may lead one to a different axiomatization, he—perhaps even more importantly—
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brings out what unifies them.  To this end he begins with types and shows how its hierarchical 

structure leads to Zermelo and then finally to his own NF.  What Quine does is take this talk of 

hierarchy and abstract away from this metaphor as much as possible until he is left with its barest 

logical structure, present across the boundaries of the various competing and incompatible 

axiomatizations of set theory.  This comparison accounts for certain intuitions about set theory 

while also moving against our becoming too attached to certain intuitions we might have about 

set theory.  The final section of Set Theory and Its Logic, then, is a crucial move in an argument 

against those who would focus on just one formulation of set theory ―to the point of retraining 

our intuition to it.‖
331

 

 Let us see now how this argument goes.  We discussed already in Chapter 2 how Russell 

saw his theory of types as emerging from Poincaré‘s diagnosis that the contradictions all have 

there origins in quantifying over illegitimate totalities, what Russell took to be summed up in his 

vicious circle principle.  Recall that in its simplified version, the theory of types divides the 

universe into levels—individuals at the lowest level, then classes of individuals, then classes of 

classes of individuals and so on.  For something to be a member of a class, it must be of level n 

while the class of which it is a member is of level n + 1.  This dividing of the universe into levels, 

motivated by Russell‘s vicious circle principle, then apparently restored consistency to the theory 

of classes.  But Quine observes that this move is drastic in that its type restrictions tamper with 

the original logic.  Furthermore, (as we saw also in chapters 3 and 4) type theory has the 

undesirable feature of reduplicating objects in other levels of the hierarchy, among them the 

empty class, a series of quasi-universal classes, and the various objects of mathematics such as 

the different number systems. 
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 Quine, Set Theory and Its Logic, p. 5. 
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 We might take these drawbacks alone to move us beyond types to some other approach to 

set theory, but here, Quine observes that there is also something valuable in the constructive 

metaphor of type theory—―it is a part of set theory that carries extra conviction, because of the 

construction metaphor….‖
332

  Quine then moves to Zermelo set theory with its unrestricted (with 

regard to type) variables not merely as a reaction to the undesirable features of types but rather as 

a natural generalization of types‘ hierarchical structure.  Whereas other philosophers of set 

theory have ruled out types as set theory, often by fiat, Quine engages with both theories to 

demonstrate how we might see the interconnections between them.
333

 

 To show how Zermelo‘s theory emerges from Russell‘s, Quine first observes that typical 

ambiguity in types does not change a many-sorted theory into one with general variables.  The 

point of typical ambiguity is that although we often do not explicitly specify the types involved 

for each formula (for ease of writing and reading), we must still be certain that they can be made 

explicit in the appropriate way if called upon to do so.  So for example the typically ambiguous 

formula ―(y)(x)(x  y)‖ can be shown legitimate by restoring type indexes according to the 

scheme ―(y
n+1

)(x
n
)(x

n
  y

n+1
)‖.  Quine observes, however, that we may also have reasons to 

consider the translation of the many-sorted types into a theory of general variables.  For instance, 

the type indices are themselves cumbersome, but typical ambiguity can make things worse in 

some cases.  Consider the two formulas ―x  y‖ and ―y  x‖.  Both are meaningful under types, 

and yet, ―x  y . y  x‖ is not.  In this way we see that types blocks the set-theoretic 

contradictions with the drastic move of revising general logic.  Quine, favoring the maxim of 
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 Ibid., p. 264. 
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 The standard move is to declare types part of logic, that is, higher-order logic, and so not of set theory.  Quine 

remarks on this in Set Theory and Its Logic, pp. 257-58, as well as in many other places in his writings.  Boolos 
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minimum mutilation, thinks this is to be avoided where possible.  Furthermore, given his 

comparative interest in set theory (and scientific theories generally), a single underlying logic 

makes such studies far more feasible. 

 Quine then argues, however, that the many-sorted logic is not essential to type theory.  

Instead, we can allow the variables to be completely general and add a predicate Tn to impose the 

type restrictions.  Formulas can then be restricted in the familiar way as follows:  ―(x)(Tnx  

Fx)‖ or ―(x)(Tnx . Fx)‖.  This move, he says, makes sense of Russell‘s grammatical 

restrictions.
334

  Whereas Russell declared all formulas of the form ―x
m

  y
n
‖ with n  m + 1 

meaningless, we can now take such formulas to be simply false.  So the grammatical restrictions 

generated by types appear unnecessary in the first place.  The two axiom schemas of types go 

over into the new theory as follows:  comprehension and extensionality become respectively 

―(y)(Tn+1y . (x)(Tnx  x  y  Fx)‖ and ―(Tn+1x . Tn+1y . (w)(Tnw  (w  x  w  y)))  x = 

y‖ (officially identity is defined in terms of membership and first-order logic and so is 

eliminable). 

Having shown the eliminability of typed variables in favor of typing predicates, Quine 

goes on to show how smoothly types can lead us into Zermelo‘s set theory by converting the 

restricted variables of types into cumulative types with general variables.
335

  We begin by 

equating the empty sets of all the various types, so as to get a single empty set.  Quine then 

                                                 
334

 This was one of Quine‘s earliest motivations for his attempts at reworking Russell‘s logic.  See his remarks on 
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158 

introduces the trick of identifying individuals, the memberless objects of type 0,
336

 with their unit 

classes and treating membership between individuals as identity.  So the objects of type 0, the 

T0x‘s—the individuals—can now be defined by the formula ―(y)(y  x  y = x)‖, and the 

objects of higher type, the Tn+1x‘s—the classes—by the formula ―(y)(y x Tny)‖.  So any 

typed variable can be re-written according to these definitions so that we use only completely 

general variables, and the types become cumulative, that is, Tmx  Tnx for all m  n. 

Here, we see just the sort of philosophy of set theory Quine engages in.  Rather than 

looking at differences and attempting to privilege one set theory over another, he tries to see their 

similarities.  For Quine, coming to understand the realm of sets means investigating sets from the 

various perspectives different set theories allow for.  His endeavor in set theory, like in much of 

science, is cooperative rather than exclusionary and aims to broaden our knowledge through an 

open-mindedness about set theory.  This moving from non-cumulative to cumulative types 

allows us perhaps to better understand the apparent hierarchical structure of sets.  It was always 

present in both types and Zermelo set theory, and Quine has now shown us explicitly how the 

idea connects between the two approaches to set theory.  Quine himself found this connection 

immensely striking.  He later observed of Zermelo‘s theory that ―in its multiplicity of axioms it 

seemed inelegant, artificial, and ad hoc.  I had not yet appreciated how naturally his system 

emerges from the theory of types when we render the types cumulative and describe them by 

means of general variables.‖  So while many have remarked on the artificiality of Quine‘s 

systems, Quine initially thought the same of Zermelo‘s.  The sort of elegance, simplicity, and 

unity Quine (as well as many other philosophers of science) has so often put forth as desirable 
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for scientific theories generally
337

 comes now also to Zermelo‘s theory by way of its emergence 

from the perhaps more intuitive theory of types.  There are, of course, a variety of ways we 

might consider types to be intuitive.  Here, I have in mind (as I suspect Quine does too) that 

types, at least initially seemed to do the least damage to the original conception of sets as 

extensional and specified by a comprehension principle of a sort.  In linking these theories, this 

sort of intuitiveness of types passes on to Zermelo.  Indeed, Quine concludes that had he 

appreciated this link earlier, ―I might not have pressed on to ‗New Foundations.‘‖
338

 

Bringing out such connections now also gives us another way to see NF as sharing an 

important aspect with types and Zermelo set theory.  The move from types to Zermelo perhaps 

gives us further reason to think the idea of a hierarchy somehow essential to what a set is.  But as 

we saw in the previous chapter, it is notoriously difficult to make philosophical sense of this idea.  

We have on the one hand talk of sets coming into being at particular levels of the hierarchy, but 

then on the other, talk of sets existing eternally from the past and to the future.  With NF, Quine 

perhaps gives a way of making sense of this idea of hierarchy while also freeing it from a 

particular metaphysical account of sets in the following way.  We can think of NF as abstracting 

away completely from the idea of a hierarchy until we are left with a much weaker purely 

syntactic account of set existence.  As Dreben has put it—and Ullian following him—Quine‘s 

approach is one of syntactic exploration.
339

  The hierarchy gives us only the numbering scheme 

used as NF‘s syntactic test for set existence, an idea which Quine came upon by taking typical 

ambiguity very seriously, which appears to have no need for an actual hierarchy of sets.
340

  We 

need not then make the further leap to, say, the iterative hierarchy to give us an account of the 
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 See for example Quine‘s ―Posits and Reality,‖ in Ways of Paradox, pp. 247-8. 
338

 Quine, ―Inception of ‗N. F.‘,‖ p. 287. 
339
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essence of sethood.  This would be an extra, more robust philosophical assumption.  Quine‘s 

syntactic account, instead, keeps our feet on the ground.
341

  In doing the philosophy of set theory, 

Quine tries to keep to his naturalistic strictures, and for him we must always remember that 

―philosophy of science is philosophy enough.‖
342
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 He makes this remark in his Methods of Logic, 4
th

 edition, (Cambridge:  Harvard University Press, 1982), p. 212 

when considering the substitutional versus set-theoretic account of logical truth.  The point seems apt here as well—

we try to get by with fewer assumptions where possible. 
342

 W. V. Quine, ―Mr. Strawson on Logical Theory,‖ in Ways of Paradox, p. 151. 
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