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SUMMARY

Object handover is a common physical interaction between humans. It is thus also of

significant interest for human-robot interaction. In this work, we are focused on robot-to-

human object handover. To implement the task on the robot, the configuration (position and

orientation) in which the object is transferred should be selected so that the handover is safe

and comfortable for the human. The trajectory along which the robot moves the object to the

point of transfer should be also selected so that the robot intention is clear and the handover

feels natural to the human. We propose to select the configuration for the transfer and the

trajectory to reach this configuration based on what humans do in human-human handover.

We describe a human study designed to investigate the human-human handover and propose

an ergonomic model that can predict object transfer position observed in the study. A human-

robot experiment is then conducted that shows that the proposed model generates transfer

positions that match the preferred height and distance relative to the human.

Another significant challenge in robot-to-human handover is how to reduce the failure rate,

i.e., ensuring that the object does not fall (object safety), while at the same time allowing the

human to easily acquire the object (smoothness). To endow the robot with a failure recovery

mechanism, we investigate how humans detect failure during the transfer phase of the handover.

We conduct a human study that shows that a human giver primarily relies on vision rather

than haptic sensing to detect the fall of the object. Motivated by this study, a robotic handover

system is proposed that consists of a motion sensor attached to the robot’s gripper, a force

xii



SUMMARY (Continued)

sensor at the base of the gripper, and a controller that is capable of re-grasping the object if it

starts falling. The proposed system is implemented on a Baxter robot and is shown to achieve

a smooth and safe handover.
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CHAPTER 1

INTRODUCTION

Object handover is a common type of interaction between humans. In a handover, a giver

hands the object off to a receiver. While they both participate in the exchange, they each

have a different goal: the giver wants to safely release the object while the receiver wants to

readily acquire the control of the object and establish a stable grasp [4]. Different characteristics

of human-human handovers have been studied in the literature. Shibata et al. analyzed the

human hand trajectory during the task [5], Basili et al. studied reaching motion of humans [6]

and Mason et al. investigated grip forces applied to the object by the giver and the receiver [4].

The handover task has attracted much attention from human-robot interaction community

in an effort to equip assistive robots with a similar functionality. There are variety of appli-

cations for robots that can deliver objects to humans, e.g., a helper robot that can assist a

mechanic by delivering a tool, or a bartender robot that can deliver your drink. Researchers

have studied how to perform human-like handover [7–10] and how to implement smooth and

safe robot-to-human handover controllers [3, 11–13].

Strabala et al. [14], proposed a structure for robot-to-human object handover consisting of

four main steps: grasping the object, approaching the receiver, reaching out and transferring

the object (See Figure 1). Each phase should be properly planned and executed in order to

have a successful handover. There are many questions with regards to each phase that should

be answered. For example, the giver should decide how to grasp the object, how to approach

1
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the receiver, when to reach out and where to transfer the object. Answers to these questions

determine the handover configurations, i.e., the configurations in which the object transfer

occurs. While humans habitually select the proper handover configurations, robots have to

deliberately select the configurations based on the task conditions.

7

Grasp Approach Reach 
Out Transfer

Figure 1. Four main phases of a robot-to-human object handover. In this work, we are
focused on the last two phases.

The first step in a robot-to-human handover is for the robot to pick up the object. There

are several concerns regarding how to grasp the object for the purpose of a handover: Kim et

al. [15], investigated the effect of the object’s shape on how a robot should grasp an object

in order to hand it over to a human. Lopez-Damian et al. [16], presented a planner to grasp

unknown arbitrary objects for interactive manipulation tasks and Sadigh et al. [17], presented

a robotic grasping controller that prevents the object slipping while generating minimal normal

forces.

After grasping, the next step is to approach the human. Many of the proposed handover

controllers for robots are inspired by human-human handovers. Shibata et al. [5], analyzed

trajectories adopted by humans during the approach phase of a handover. Satake et al. [18],
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investigated how a robot should approach a human in order to initiate an interaction. Mumm

et al. [19], studied the relation between human proxemics, that is the amount of space that

people need to set between themselves and others, and the robot’s likability and eye gaze.

In the Robotics Lab. at the University of Illinois at Chicago, we are mainly focused on

physical human-robot interaction. Therefore, in this work we focus on the last two phases

of the handover, i.e., the reaching out phase and the transferring phase, where there is a

physical interaction between the parties. It is mainly during the reaching out phase that the

giver and the receiver coordinate the handover configurations [20]. Many researchers make

ad-hoc assumptions on how to select proper handover configurations for a robot-to-human

handover. For example, Sisbot et al. [8], proposed a manipulation planner that selects the

handover configurations by optimizing several cost functions which represent human’s safety,

visibility and accessibility. While the performance of the proposed planner by Sisbot is evaluated

in comparison to a faster shortest path motion, there is no evidence that shows the planner

generates natural and intuitive motion. In another study, Cakmak et al. [21] investigated human

preferences for robot-to-human handover configurations. Subjects are asked to evaluate different

handover positions and configurations simulated for the HERB (Home Exploring Robot Butler)

robot [22]. The drawback of this approach is that the subjects’ lack of experience with HERB

robot can result in inaccurate feedback. Asking humans to directly express their preferences

in a human-robot interaction is counter intuitive for humans. Take the elderly as an example:

while they can clearly express their needs, they cannot determine the details of how an assistive
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robot should behave. Another drawback of this study, is that the conclusions can only be

applied to HERB robot.

Unlike the study in [21], we propose to obtain preferred handover configurations from

human-human handovers. This approach will result in generating human like motions, that

will guarantee that the human can interpret the robot intent (legibility) and that the motion

looks natural. Furthermore, the results can be applied to every manipulator that is capable

of grasping and carrying objects. In Chapter 2, we present our study of human-human han-

dovers with the aim of characterizing human preferred handover configurations and we propose

a dyadic joint torque model to predict the object transfer position in human-human handovers.

It is shown that the proposed model is in accordance with the data collected in the human

study. Furthermore, through a human-robot experiment, we show that the proposed model

can generate object transfer positions at the height favored by humans and with a comfortable

distance from the human.

The most critical phase of a handover task is the transfer phase, in which the object load

is gradually transferred from the giver to the receiver [2]. The transition starts from the time

that the giver makes the decision to open her hand and release the object, and it ends when

the object is fully released and the giver is no more in contact with the object. The timing

needs to be precisely coordinated between the giver and the receiver. On the giver’s side,

releasing the object too early may result in the object falling (a failure), while releasing it too

late results in high interaction forces [2]. Humans highly benefit from different mechanisms

to prevent failure during a handover. Here, we are primarily interested in what the giver can
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do. A human giver may attempt to catch the object before it hits the ground. In addition,

using social-cognitive reasoning based on haptic information, gaze, the pose of the receiver’s

body, and the configuration of her hand, humans have a remarkable ability to judge whether

the receiver is ready to grasp the object during the handover. In this regard, it is worthwhile

noting that while haptic interaction during a handover has been shown to be substantial [2], it

mainly happens before the object transfer phase is initiated: if the haptic sensing suggests that

there is a problem, the giver will never release the object and there will be no potential failure.

In Chapter 3, we investigate how human givers detect a failure during the transfer phase of

the handover. The main question that we want to answer is which sensory modalities are used

by human givers to detect a failure? We describe a human study designed to investigate this

question. The human study shows that humans primarily rely on vision. That is, they detect

the impending fall of the object by observing its motion. This finding is then used to design a

robot handover system that consists of a motion sensor attached to the robot’s gripper, a force

sensor at the base of the gripper, and a controller that is capable of re-grasping the object if it

starts falling. We show that the proposed system achieves a safe and smooth handover.

As the final step of our research, in chapter 4, we propose a comprehensive handover system

that would manage to execute a sequence of actions in order to perform robot-to-human han-

dover. Safety, smoothness and legibility are achieved using the models presented in Chapters 2

and 3 for the reaching out phase and the transferring phase.



CHAPTER 2

MODELING REACHING OUT PHASE IN OBJECT HANDOVER

Parts of this chapter have been presented in Parastegari et al. [23]. Copyright c©2017, IEEE.

2.1 Introduction

Humans extensively rely on context and communicate through several modalities during

the handover [20]. Several previously proposed human-robot handover controllers are inspired

by human-human handovers. Kajikawa et al. [11] proposed a handover planner that generates

human-like motions for the robot and Prada et al. [24] used Dynamic Movement Primitives

(DMP [25]) to imitate the human motion in handovers.

Different methods have been proposed for planning the reaching out motion. Shibata et

al. [5], analyzed trajectories adopted by humans while reaching out during a handover. Sisbot

et al. [7] proposed a planner that generates a safe and legible path for reaching out. Becchio et al.

[26] compared the velocity profiles for placing an object on a table versus another person’s palm.

In [27], a robotic handover motion controller is proposed which adapts to sudden movements

of the human’s hand. Glasauer et al. [10] investigated how a robot can convey the intent to

hand an object over using reaching out like a human and in [28], different approach directions

are compared to find the human-preferred approach direction. In another study, safety and

legibility of two different reaching velocity profiles are investigated [29]. Kajikawa et al. [30],

came up with a controller that selects the velocity of the reaching motion proportional to the

6
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distance to the receiver. In another effort to plan the reaching out motion, Prada et al. [24],

proposed to use Dynamic Movement Primitives.

Before starting the reaching out motion, the robot should choose the best location and

configuration at which the object should be transferred. In [31], a strategy is proposed for the

robot to choose the handover location based on the context. In [8], the handover location is

chosen based on human’s safety, field of view, accessibility and preferences. In [32], it is left

up to the human to choose the handover location and the robot simply complies. Aleotti et

al. [33], proposed a method in which the robot presents the object to the human considering the

human preferred way to grasp the object. In [21], five different objects are simulated to find the

preferable handover configuration. In another study, affordances are considered when presenting

the object to the human [34]. However, there appears to be no work that investigates human

preferred handover configurations in human-human handovers. In this chapter, we present our

study of human-human handovers with the aim of characterizing human preferred handover

configurations. We focus on the reaching phase of handover, i.e., it is assumed that the giver

has already grasped the object and approached the receiver, so the giver and the receiver are

within a reachable distance from each other. We investigate the giver’s velocity during the

reaching motion and show that the peak velocity remains unchanged regardless of the task

conditions. Furthermore, we propose a dyadic joint torque model to predict the object transfer

position in human-human handovers and show that the collected data in our human study is in

accordance with the proposed model. To evaluate the performance of our model, we implement

it on a Baxter robot and conduct a robot-to-human handover experiment. The experimental
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results show that the proposed model can generate object transfer positions at the height favored

by humans and with a comfortable distance from the human.

2.2 Object Transfer Position in a Handover

An essential part of planning of a handover is to select the object transfer position (Pt).

Shibata et al. [5] showed that in a handover, the giver traverses a feed-forward minimum-jerk

motion to reach Pt and that the giver’s motion is started before the receiver begins his/her

motion. Shibata suggested it is the giver who selects Pt and dictates it to the receiver. Criteria

on selecting Pt include safety, i.e., the position should not cause any harm to the receiver [20],

and accessibility, i.e., it should be easy for the receiver to reach and take the object [8]. Here

we propose a model to describe the giver’s selection of Pt in human-human handovers. Our

proposed model predicts Pt based on human ergonomics. There are a large number of studies on

human posture modeling based on human ergonomics [35–39]. Katayama et al. [35], proposed

five different optimization models to characterize human comfort, including the joint torque

model. Based on this model, the human selects the posture (configuration) that minimizes the

following cost function:

EJT (q) =
n∑

j=1

(τj(q))
2 (2.1)

where q is the configuration of the arm, τj is the joint torque of the jth joint of the arm, and

n is the number of joints in the arm. In order to calculate the joint torques, it is necessary to

have the dynamical model of the human’s arm, including the weight of the links.
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The joint torque model and all the other Katayama’s optimization models, are designed

mainly for single-person manipulation tasks. Here we generalize this model to a dyadic task so

it can be used in a handover. We define the dyadic joint torque (DJT) cost function, as the

sum of the joint torques of the two actors:

EDJT (q) = Egiver
JT (q) + Ereceiver

JT (q) (2.2)

where Egiver
JT and Ereceiver

JT are the giver’s and the receiver’s cost functions respectively, given

by Equation 2.1.

For the sake of simplicity, we make the following assumptions:

1. Reachable Workspaces: We assume that the actors are in a close vicinity of each other,

so their workspaces mostly overlap.

2. Plannar Motion: We assume that the actors are placed in front of each other so that their

reaching motion trajectories lie on a vertical plane that includes the actors and Pt (the

Task Plane) (See Figure 2).

3. Two Joint Plannar Manipulators: To further simplify the problem, we model the human’s

arm as a simple 2-joint plannar manipulator (n = 2). The joints are placed at the shoulder

and the elbow, and the arm’s movement is constrained to the Task Plane.

The Two Joint Plannar Manipulators assumption that we made makes it easy to calculate

the joint torques for the actors.
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Figure 2. Experimental setup. The Task Plane is shown with the object transfer position (Pt)
and the coordinate frame. The width of the table and the distance between the actors are

60cm and 100cm respectively.

The only thing that is left is the weight of the object to be handed over. The weight of the

object is mapped to the giver’s arm joint torques:

Tobj = JT
giver(q)Wobj (2.3)

where, Wobj is the object’s weight force vector, Tobj is an 2× 1 vector that represents the joint

torques caused by Wobj and Jgiver(q) is the giver’s arm Jacobian matrix. The reason that we

assigned the weight of the object to the giver is that it is the giver who carries the object to

the transfer position.

Now, the optimum object transfer position in the Task Plane (P̃ ) can be obtained by

minimizing EDJT :

P̃ = arg min
q

(EDJT (q)) (2.4)
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Figure 3 shows an example of the output of the DJT model. In the next section, we present

a human study on reaching motion in human-human handovers which validates the proposed

model.

2.3 Human Study

To investigate the reaching motion in human-human handovers and validate our proposed

model for object transfer position, we conduct a human study with 30 participants (13 females

and 17 males) between ages 20 to 39. The participants are recruited from the University of

Illinois at Chicago (UIC) students and staff by posting flyers and sending emails to UIC graduate

students email-list, according to our approved IRB protocol. The participants perform the

handover task with different objects while standing/sitting across a table, where the objects

are placed.

2.3.1 Experimental Setup and Procedure

The objects are placed on a table with dimension (L : 75cm,W : 60cm,H : 70cm). The

position of the participants are specified with two squares marked on the floor. The center of

the two squares are at 20cm from the opposite edges of the table, which makes a total 100cm

distance between the two actors in each trial (See Figure 2). At this distance, the workspaces

of the subjects have a significant overlap.

To account for the effects of the variations in the properties of the object, e.g., the weight

and the shape of the object, we use four different objects that are frequently encountered in daily

handovers: a hammer, a knife, an empty cup and a cup full of water (See Figure 4). The empty

cup represents an ordinary light-weight object, the hammer represents an object with specific



12

-0.5 0 0.5

x (m)

1

1.5

2

z 
(m

)

0.5

1

1.5

Figure 3. DJT cost function simulated for two actors with Hi = 187cm, Li = 190cm and
Wi = 80Kg (i =receiver,giver). The object’s weight is 0.2Kg. The optimum object

transfer position is shown by a yellow dot.

shape and functionality, the knife represents an object which requires the giver to be watchful

for the safety of the receiver when handing it over, and the cup full of water is an object which

requires the giver to be watchful for the safety of the object (the giver might spill the water if

moving too fast). To prevent any incident, we made the knife blunt by covering the sharp edge

with a thick and transparent tape, so it cannot cut anything. The object type is represented

by categorical variable Obj that has four levels of (Hammer,Knife,EmptyCup,FullCup).

Each pair of participants performs the task in three different poses: (a) both standing; (b)

the receiver standing while the giver is sitting; and (c) the giver standing while the receiver is

sitting. This is mainly to study the effects of changing the human kinematics on the object

transfer position. We do not include the case where both participants are sitting as we expect

it to be similar to the both standing case. The pose is described by a categorical variable Pose

that has three values: (BothStanding,GiverSitting,ReceiverSitting). Each pair performs
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Figure 4. Different objects used in the experiment. A hammer, a knife, an empty cup and a
cup full of water.

the handover with each object in every possible pose, resulting in a total of 12 handovers per

pair of subjects.

Prior to the experiment, the physical dimensions of each subject, including his/her height,

arm span and waistline height are measured along with the subject’s weight to determine the

body kinematics of the subject and the mass of his/her arm. We represent the body dimensions

of the subjects by Di = {Hi, Li,Wi,Wsti}, where i ∈ {giver, receiver} specifies the role, Hi

is the height, Li is the arm span, Wi is the weight and Wsti is the waistline height of the

participant. There are studies such as [40], that relates the length of each link in human’s arm

to human’s height and arm-span. Using this data, we can determine the optimal object transfer

position using Equation 2.4 and compare it to the actual measurements.

To track the position of the active hand of the subjects, each trial is recorded by two cameras.

One camera is installed on the ceiling to record a top view, and the other one is installed next to

the table to record a front view. The cameras are calibrated using finely gridded papers and the
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extrinsic parameters of the cameras are extracted by direct linear transformation method [41]

to get positioning resolution of about 1.5cm from each camera in the vicinity of the table. Each

camera records at 30 frames/sec. The participants are asked to perform the task with their

right hand while wearing distinctively colored gloves. The gloves are tracked in the recordings

by their color; the center point of the glove is located and considered to be the position of the

corresponding hand. Finally, the 2D trajectories extracted from the two cameras are combined

to get 3D trajectories with resolution of about 2.0cm in each direction. All the positions are

measured in the reference coordinate frame, attached to the middle of the table’s surface. The

reference coordinate frame is shown in Figure 2. The experimental setup and images from the

two cameras can be seen in Figure 5.

(a) Front view (b) Top view

Figure 5. Experimental setup. The giver is wearing a red glove while the receiver is wearing a
blue glove on the right hand.
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2.4 Results

2.4.1 Object Transfer Position

In each trial, the subjects hand over one of the four objects, in one of the three poses. We

measure the actual object transfer position (Ptx , Ptz) in the task plane and compare it with

the predicted position from the model (P̃tx , P̃tz). Figure 6, shows the range of Pt next to the

prediction error (err) that is defined as err = Pt − P̃t, in two directions. While there is a large

variation in the measured object transfer position (up to 50cm), the prediction error is less than

6cm.

x z
-0.2

0

0.2

0.4

(m
)

(a)

err_x err_z

-0.05

0

0.05

(m
)

(b)

Figure 6. Box plot of (a) the measured object transfer position over all trials, (b) the
prediction error. The blue box shows the inter-quartile (25%-75%), the whiskers show min

and max, and the red line shows the median of the data.

To statistically evaluate the proposed model, we set up a repeated measures ANOVA test.

The within-subject factors include Obj, Pose, direction (1:x, 2:z) and ActualOrPredicted
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(1: Actual, 2: Predicted). The between-subjects factors are the Wi, Hi and Li as defined in

Section 2.3.1. We have 15 subjects and 4 × 3 × 2 × 2 = 48 repeated measurements from each

subject.

Performing Mauchly’s test of sphericity [42] shows that the assumption of sphericity has

been violated (χ2(1127) > 10000, p < .0001). We apply a GreenhouseGeisser correction [43]

(ε̂ = 0.0814). The repeated measures ANOVA with correction shows significant effect on the

measurements from the between-subjects factors: Hgiver (F (0.081, 0.1628) = 52.8, p < 0.0185);

Hreceiver (F (0.081, 0.1628) = 48.1, p < 0.020) and Lgiver (F (0.081, 0.1628) = 61.7, p < 0.0159).

No significant effect is observed from other between-subjects factors.

To evaluate our model, we perform post-hoc pairwise comparisons. A comparison with

Bonferroni correction [44] reveals no difference between Ptx and P̃tx (p = 0.390) or between

Ptz and P̃tz (p = 0.247). This proves that the prediction of the proposed model is close to the

actual measurements.

Another observation is the significant difference in Ptx between two groups ofOBJ =FullCup

and OBJ =EmptyCup (p < 0.021). It is shown in Figure 7a, that EmptyCup is transferred rela-

tively closer to the receiver compared to FullCup. This is consistent with our DJT model that

predicts heavier objects are transferred closer to the giver to minimize the joint torques caused

by the object’s weight.

Furthermore, our data shows that the object is transferred relatively higher in BothStanding

pose, compared to GiverSitting (p = 0.027) and ReceiverSitting (p < 0.025). Figure 7b,

clearly shows this difference. This observation can be explained by our DJT model, which
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Figure 7. Variations in the object transfer position caused by Obj and Pose. (a) FullCup is
transferred farther from the receiver relative to EmptyCup; (b) The object is transferred at

relatively higher position in BothStanding pose compared to the two other poses. The blue
box shows the inter-quartile (25%-75%), the whiskers show min and max, and the red line

shows the median of the data.

predicts lower object transfer position when one of the actors is sitting, to decrease the generated

joint torques for that actor.

2.4.2 Reaching Motion

We computed the absolute velocity of motion for both the giver and the receiver from the

time that the giver grasps the object to the time that the object is transferred. Figure 8,

shows a histogram of the velocity profiles, normalized in terms of duration and the peak value.

It is clearly shown that the velocities have a bell-shaped profile. This is consistent with the

results of Shibata’s study [5] that shows the giver and the receiver both traverse a minimum-jerk

trajectory to reach the object transfer position.

Figure 8a, shows that the normalized giver’s velocity of reaching motion has a bell-shaped

profile. Note that the actual velocity profile has a duration and a peak value. The duration
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Figure 8. Histogram of normalized velocity of motion for (a) giver, (b) receiver.

of the reaching motion is related to the distance between the actors and the object transfer

position that we studied in Section 2.4.1. Here, we focus on the peak velocity of the giver’s

reaching motion. In order to eliminate the effect of the distance, we normalize the velocity by

the distance (the area under the velocity curve). We represent the peak value of this normalized

velocity by Vmax.

In our collected data, Vmax lies between 0.5 (1/s) and 2.7 (1/s). Figure 9, shows the

variation in Vmax in case of different objects and different poses. To study the effects of the

task conditions on Vmax, we set up another repeated measures ANOVA test. The within-subject

factors include Obj, Pose. We have 15 subjects and 4×3 = 12 repeated measurements for each

subject.

Performing Mauchly’s test of sphericity shows that the assumption of sphericity has been vio-

lated (χ2(65) > 10000, p < .0001). We apply a GreenhouseGeisser correction (ε̂ = 0.2465). The

repeated measures ANOVA with correction shows no significant interaction between Obj and
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Figure 9. Box plot of normalized Vmax for (a) different poses and (b) different objects. The
FullCup is transferred relatively slower than the other objects. The blue box shows the

inter-quartile (25%-75%), the whiskers show the data within 5 IQR of the higher and the
lower quartiles and the red line shows the median of the data.

Pose (F (1.479, 20.706) = 0.4884, p = 0.627). Obj has a significant effect on Vmax (F (0.739, 10.352)

= 18.62, p < 0.001). However, post-hoc pairwise comparisons with Bonferroni correction re-

veal no significant difference in Vmax between Obj=Hammer and Obj=Knife (p = 0.3205); or

Obj=Hammer and Obj=EmptyCup (p ' 1); or Obj=Knife and Obj=EmptyCup (p = 0.3854). In

other words, while three of the objects are carried with almost the same velocity, FullCup is

carried significantly slower. The other factor in the study, Pose, shows no significant effect on

Vmax (F (0.493, 6.902) = 1.9548, p = 0.1987).

The results of our test on Vmax suggest that the giver’s peak velocity is determined regardless

of Pose. Also, putting FullCup aside, Vmax remains unchanged for different objects. The

conclusion is that the giver’s motion has a fixed maximum velocity, regardless of the pose or

the object. The only exception is FullCup. We speculate that FullCup is transferred slower
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because of the existing physical constraint. In case of a FullCup, the giver is aware that moving

too fast, he/she might spill the water. Therefore, she selects a lower velocity to be safe.

2.4.3 Other Observations

Grasp configuration: We observed that every giver grasped Hammer from the handle and

offered the head to the receiver. Also every giver, except one, grasped Knife from the handle.

That one participant grasped Knife from the blade and offered the handle to the receiver. For

the cups, we observed that in GiverSitting pose, every giver grasped the cups from the side.

In the other two poses where the giver is standing, the cups are grasped sometimes from the

side and sometimes from the top.

Orientation of the object transfer: Cakmak et al. [21] showed that humans tend to maintain

the default orientation of the object while handing it over. The default orientation of the

object is defined as “the orientation in which the object is viewed most frequently in everyday

environments”. Cakmak argues that the reason behind it is to maintain the object main

functionality [21].

In our experiment, any upright orientation is considered a default orientation for EmptyCup

and FullCup. For Knife and Hammer, the default orientation is lying with the handle toward

the giver. Our data shows that the subjects almost always maintain the default orientation,

except when they are transferring Knife. Our recordings show that the giver tilts Knife either

to the right (51% of the trials), to the left (13% of the trials), or to the top (22% of the trials)

so the sharp edge does not threaten the receiver. In 13% of the trials, Knife is transferred in

default orientation. We speculate that humans prefer to preserve the main functionality of the
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object, unless the main functionality can be harmful to the receiver. In this case, the giver

changes the orientation of the object in order to prevent any incident.

2.5 Human Robot Experiment

Based on the results of Shibata’s study [5], we know that in human-human handovers, it

is the giver who selects the position of the object transfer and dictates it to the receiver. Our

DJT model suggests that the giver considers the comfort of both herself, and the receiver, when

selecting the optimum object transfer position. Now the question is, can we apply the DJT

model to a robot giver in a robot to human handover? If yes, what is the best policy for the

robot? Does the robot have to maximize the comfort for both the receiver and itself? Or should

it be just the comfort of the receiver?

Most of the assistive robots have dimensions bigger than humans. For the motion of the

robot to be natural, we propose to replace the robot’s kinematics in our DJT model with

kinematics from one tall stout human. This results in the robot’s motion to be similar to what

the human receiver expects to see from a human with the similar physical dimensions to the

robot. In order to evaluate the performance of the model in this case, we perform a human-robot

experiment in which the robot plays the role of a giver in a handover task. Our experiment

shows that in terms of the height above the ground, the subjects prefer the object transfer

position generated by our DJT model to alternative positions. In terms of the distance from

the human, there is no significant preference between the position generated by DJT model and

one alternative position.
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2.5.1 Experimental Setup and Procedure

Ten people between ages 23 to 29 participated in our experiment (2 females and 8 males).

The participants were recruited in the same way we recruited the participants in the human

study (see Section 2.3). The height, weight, arm span and waistline height of each subject were

measured prior to the experiment.

We implemented our model on a Baxter Robot [45] with an electrical 2-finger gripper. There

is a table with dimension (L : 75cm,W : 60cm,H : 70cm) at a distance of 40cm in front of the

robot. In each trial, the robot grasps an object that is placed on the table, reaches out to the

human subject and transfers the object to the human. The subject is sitting/standing across

the table at a distance of 20cm from the edge of the table. The robot releases the object when

the subject applies a pulling force to the object. To measure the applied force, a SI-65-5 ATI

Gamma force sensor [46] is added to the robot’s arm, between the end-effector and the gripper,

through two 3D-printed interfaces. The force sensor output is sampled at 100Hz and the data

is transferred to a PC through a PCI-6034 NI data acquisition board [47]. Figure 10, shows the

robot’s arm, the gripper and the force sensor.

To get familiar with the robot, each participant performs the handover task, receiving an

empty cup from the robot, 2 times while the subject is standing, and 2 times while the subject

is sitting on a chair across the table. After this, each participant performs four different tasks:

1. In the first task, the subject stands across the table, in front of the robot. The robot

passes an object (an empty cup with weight=65± 5g) to the participant in four different

locations (P1 to P4). P1 is selected by the DJT model. Two other positions are selected
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Figure 10. Experimental setup. A force sensor is installed between the Baxter’s end-effector
and the electrical gripper.

at the same height as P1, but 15cm farther from the receiver (P2), and 15cm closer to the

receiver (P3). P4 is selected 15cm below P1, at the same distance from the receiver (see

Figure 11). P1 to P4 are selected by the robot in a randomized order to make sure that

the results do not depend on the order. The subject is asked to compare the four object

transfer positions.

2. In the second task, the subject sits on a chair across the table, in front of the robot.

Again, the robot passes an object (the same empty cup as in task 1) to the participant in

four different locations (P1 to P4). P1 is selected by the DJT model. Two other positions

are selected at the same height as P1, but 15cm farther from the receiver (P2), and 15cm

closer to the receiver (P3). This time, P4 is selected 15cm above P1, at the same distance

from the receiver. P1 to P4 are selected by the robot in a randomized order, to make sure

that the results do not depend on the order. The subject is asked to compare the four

object transfer positions.
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Figure 11. Different object transfer positions in task 1 of our human-robot experiment. The
human is standing behind the table in this task.

3. In the third task, the robot hands over a heavy object (a cup full of water with weight

= 335± 5g) in two different locations (P1 and P2) while the subject is sitting behind the

table. P1 is selected by the DJT model. P2 is a location simulated by the DJT model for

a hypothetical light object (the same empty cup as in task 1).

4. In the forth task, the robot hands over a light object (the same empty cup as in task 1)

at the same two locations as in task 3.

In our DJT model, the dimensions of the robot are replaced by dimensions of a human with

height=190cm, weight=100Kg and arm-span=200cm. After completing each task, the subject

is asked to answer a questionnaire that compares different object transfer positions:

1. Preference: Which trial did you prefer?

2. Naturalness: Which trial looked more natural?
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The subjects can choose any one of the trials, more than one trial, or “all were the same” as

an answer to each question. For each position, an overall score is calculated in each question,

that is equal to the number of times that position is selected by one of the subjects.

2.5.2 Results

Table I, shows the score of each position in each task. In task 1, P1 is preferred by signif-

icantly more participants than P4 (t = 2.63, p = 0.0251). That shows the generated transfer

location by DJT model is at the preferred height. P1 also looked more natural to significantly

more subjects compared to P4 (t = 2.61, p = 0.0261). At the same time, there is no significant

preference for P1 over P3 (t = −0.49, p = 0.63). These two locations are different in terms of

the distance to the receiver.

Results of task 2, similar to task 1, show that the transfer location generated by the DJT

model is at the preferred height. P1 is preferred by significantly more participants (t = 2.60, p =

0.026) compared to P4. P1 also looked more natural to the subjects compared to P4 (score 7

to 2), the difference is not significant though. This time also, there is no significant preference

for P1 over P3 (t = 0.82, p = 0.42).

Looking at the results of task 3 and task 4, we see no significant preference for P1 over P2

or vice versa, in any of the two tasks (task 3: t = −0.28, p = 0.78, task 4: t = 1.31, p = 0.22).

In the case of a heavy object, P2 slightly wins the preference score (6 to 5).

Overall, the results of our human-robot experiment validate the DJT model, in terms of the

height of the object transfer position generated by the model. At the same time, humans show
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TABLE I

HUMAN-ROBOT EXPERIMENT RESULTS: SCORE OF DIFFERENT OBJECT
TRANSFER POSITIONS IN EACH TASK

Task # Criteria Position

P1 (DJT) P2 P3 P4

1
Liking 7 1 9 1

Naturalness 9 1 10 2

2
Liking 8 1 5 1

Naturalness 7 1 4 2

3
Liking 5 6 - -

Naturalness 5 6 - -

4
Liking 7 3 - -

Naturalness 7 3 - -

no preference for the transfer location generated by DJT model, in terms of the distance from

the receiver.

2.6 Discussion

In this chapter, we studied the reaching motion of a human giver in human-human handovers

in terms of the selected object transfer position and the velocity of motion. We proposed a

dyadic joint torque (DTJ) model to describe how humans choose the object transfer position.

We showed that the DTJ model can successfully predict the object transfer position, based on

kinematics and body weight of the human actors along with the object’s weight. Furthermore,

we showed that unless there is a physical constraint, the velocity of the giver’s reaching motion

does not depend on the object type and/or the actors’ pose. At the end, we evaluated our

proposed model in a robot-to-human handover experiment and showed that when applied to a
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robot giver, our model will select object transfer position at desired height above the ground

and comfortable distance from the human.

One possible extension of this work is to investigate the performance of the proposed DJT

model, in a human-to-robot handover. Predicting the object transfer position is essential in

human-to-robot handover: there is no need for online planning for the robot, if a reliable

prediction is available. Unlike robot-to-human handover, there are only a few studies regarding

the human-to-robot handover in the literature due to the complexity of the object transfer, and

lack of reliable human pose detection systems.



CHAPTER 3

FAILURE RECOVERY DURING THE TRANSFER PHASE OF AN

OBJECT HANDOVER

Parts of this chapter have been presented in Parastegari et al. [1]. Copyright c©2016, IEEE.

3.1 Introduction

Humans coordinate object transfer by communicating through different channels: verbal

communication, vision and most importantly through the sense of touch. It is shown that haptic

communication plays an important role in object handover and gives humans the capability of

performing efficient handovers without dropping the object [48]. In case that the robot is the

giver, there should be an accurate plan about when to open the robot’s hand and release the

object. Several methods have been proposed regarding this matter: a simple algorithm is to

release the object after a predefined period of time [9, 29]. This algorithm frequently fails by

dropping the object since there is no coordination between the robot and the receiver. Deyle et

al. [49] proposed an algorithm in which the robot releases the object once the exerted force to

the base of the robot’s fingers exceeds a predefined threshold. Bohren et al. [50] implemented an

impedance controller for the robot, so the object is released whenever the displacement of the

robot’s hand due to the exerted force by the receiver is more than a certain distance. Another

approach proposed by Nagata et al. [13] is to continuously check the stable grasp condition.

28
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The object is released once the grasp becomes unstable. This approach requires force/torque

sensors at fingertips.

While these approaches focus on a smooth object transfer, they suffer from a high failure

rate. A failure happens when the object is dropped during the handover mainly because of

a collision with the receiver’s hand or an obstacle. Due to such a collision, a similar force or

displacement is measured in the robot’s hand as if the receiver were pulling the object. So the

robot mistakenly releases the object.

In order to make sure that the receiver has fully taken the control of the object before

the object is released, the controller’s tolerance to disturbances should be increased in these

approaches. As a result, a large force must be applied by the receiver to take the object. In

other words, there is a trade-off between the handover smoothness and the object safety [3].

In another study, Chan et al. [2] investigated the relation between the load forces vs. the

grip forces during human-human handovers and showed that the grip force exerted by human

givers has a linear relation with the vertical load force they apply. Based on this observation, a

human inspired handover controller was proposed and implemented for PR2 robot which shows

smooth performance compared to other approaches [3]. While the proposed algorithm is proved

to be fail-safe on some level, it only works when the object is transferred in a vertical direction

and in quasi-static situation.

In an effort to prevent falling of the object when the object is grasped by a robotic hand,

different slip detection and recovery methods have been proposed. Vibration sensing [51], optical

tracking of the object [52] and skin-line sensing [53] are among the proposed slip detection
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methods. In [54], tactile and force sensors are used to detect a slip. In a study in neuro-

physiology [55], it is shown that humans detect slippage of objects based on firing activity

sensed by high frequency sensors in the finger tips. Once the slip is detected, the grasp force

should be regulated to retain the object. Cipriani et el. [56], proposed different hierarchical

control strategies to regulate the grasp force and Yussof et al. [57], analyzed performance of a

tactile based slippage control algorithm for a robotic hand performing grasp-move-twist motion.

Although the aforementioned methods effectively improve the safety of the object in a grasp,

they cannot be employed in handover, since in the object transfer phase slipping in unavoidable

in order to release the object once it is taken by the receiver. The main issue in a handover

task is to distinguish between unwanted slippage caused by a collision versus wanted slippage

caused by the receiver pulling the object.

In this chapter, we talk about the study that we conducted to investigate the human failure

recovery ability during a handover. Our main question was: On which senses do humans rely to

detect a failure in a handover? The outcome of the human study shows that humans primarily

rely on vision to detect a failure, through watching the object motion. This indicates that

information about the object position plays a central role in detecting a fall. However, due to

the ready availability of accelerometers, we choose object acceleration as an indicator of the

impending fall of the object. This result is used to design a re-grasping mechanism for robots.

The idea of using object acceleration to achieve safer handover has been explored in the past.

In [3], the object acceleration is continuously measured and the handover controller ensures

that the acceleration is smaller than a threshold before releasing the object. While this method
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improves the safety of the handover, it cannot recover from a failure once the object is released,

e.g., if the object slips from the receiver’s hand. Also, it cannot handle moderate collision

between the receiver’s hand and the object. In contrast, we propose a handover controller

for a two finger robotic gripper that is able to detect and recover from a failure based on the

object acceleration. The proposed handover system is implemented on a Baxter Robot and it

is shown that it can effectively prevent the object from falling by re-grasping the object when

the handover is problematic. Furthermore, it is shown that the proposed controller provides a

wide range of angles of pulling for the user and that the user can easily take the object from

the robot (compared to existing handover controllers).

3.2 Handover Failure Detection

In a handover, the decision to release the object is made by the giver once she is confident

that the receiver has grasped the object or is capable of doing so. The decision is based on the

information provided by the sensors, such as vision and haptic sensing, but it is also affected by

social-cognitive processes. In [2], it is shown that during the object transfer phase, the object

load is gradually transferred from the giver to the receiver. The total duration of the object

transfer phase (ttransfer) is also measured and reported to be between 300ms to 700ms, in an

experiment where a baton shaped object with variable weight of 480g to 680g was handed over

between the participants. Figure 12 shows a simulation of the forces during the transfer phase

of the handover that mimic those presented in [2]. A simple open-loop controller was used to

generate the simulation.
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Figure 12. A simulation of the object transfer phase: the object load is gradually transferred
from the giver to the receiver during ttransfer. (a) The giver load force (FLG

). (b) The
receiver load force (FLR

). The simulation mimics the forces shown the first panel in Figs. 4
and 5 in [2].

There are different ways a handover can fail. For example, if the giver decides to abort

the handover because she determines that the receiver is not ready, this could be considered a

failure. In this work, by a failure we mean a very specific situation when the giver has made

the decision to open her hand and let the object go, but for some reason, the receiver fails to

grasp the object so the object starts to fall. In particular, we are interested in how the giver

can detect a failure and react to it by re-grasping the object. Our motivation for studying how

humans detect failure during the handover is to use what we learn to design a system that

allows a robot giver to recover from failures. In particular, we need to determine which sensors

should be used by the robot.

We should stress that the focus of our work is on handovers where the forces during the

transfer phase follow Figure 12. This happens for instance when the giver holds the object by

opposing fingers pressing against vertical faces of the object (see Figure 15). In this case, a
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release of the object immediately results in a fall. In other handover configurations, such as

when passing a plate to another person, after the giver releases the object, it is still partially

supported by her hand so the fall does not happen immediately and there is more time to react

to a failure.

The only two senses that might help the giver to detect a failure are vision and haptic

sensing (after the fact, a failure can be detected by hearing the object hit the ground; but at

that point it is too late to react). Humans can always detect a failure through vision: as they

follow the trajectory of the object, if the object is not in the receiver’s hand, that means a failure

has occured. However, the contribution of haptic sensing is unclear. Haptic sensing is shown to

play an important role in object grasping [48] and in particular in slip detection when an object

is fully grasped [55]. Slip detection can thus be used to control the grasp [52, 54, 57, 58]. But

in a handover, in contrast to grasping, it is expected that the object will slip from the giver’s

hand as it is transferred from the giver to the receiver so the slip does not indicate a failure.

The next section describes a human study that was performed to determine whether humans

in the role of a giver use haptic sensing to detect a failure during a handover1.

3.3 Human Study

The human study is conducted with 10 participants (5 men and 5 women) between ages 21 to

37. The participants are recruited from students and staff at the University of Illinois at Chicago

(UIC) by posting flyers and sending emails to UIC graduate students email-list, according to

1Clearly, for the receiver, haptic sensing with its ability to detect slip is crucial to securely grasp the
object.
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our approved IRB protocol. The subjects play the role of the giver in the handover task by

keeping an object in their hand. The experimenter plays the role of the receiver and tries to

take the object from the subject.

3.3.1 Experimental Setup and Procedure

While blindfolded, each subject performs the handover task 10 times. The object to be

handed over is an 8cm×8cm×9.5cm mug (see Figure 13). In each trial, the participant keeps

the mug in her hand and the experimenter attempts to take the mug. In half of the trials (5

trials), the experimenter performs the taking, i.e., the object is completely grasped using three

fingers: the thumb, the index and the middle finger. The mug is then pulled horizontally out

of the participant’s hand (see Figure 14a, the direction of pulling is shown by a blue arrow).

In the other 5 trials, the experimenter performs the dropping, i.e., the object is intentionally

dropped by putting the index and middle fingers inside the mug and pulling it horizontally (see

Figure 14b, the direction of pulling is shown by a blue arrow). In order not to give any clue to

the subject, the experimenter tries to touch and pull the mug softly so the participant cannot

realize how many fingers are used. The taking and dropping actions are interleaved randomly

so the participant is neither aware of the number of repetitions of each action nor the order

of the actions. There is a pillow on the table so in case the object falls, it won’t make a loud

sound. Also, a loud music is played for the participant through headphones, so she cannot hear

the sound of the object hitting the pillow.

The participant’s role is to tell whether the object is dropped or taken after each trial. The

expectation is that if haptic sensing contributes significantly to detecting a failure during the
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transfer by the giver, the participants should be able to detect the drop at a rate significantly

better than chance (which would be 50%). Note that the participants are instructed not to

re-grasp the object if they feel it was dropped. To determine the effect of the direction of

pulling, the experiment is repeated again, but with a different pulling direction. This time, the

object is pulled diagonally (see Figures 14c and 14d, the direction of pulling is shown by a red

arrow). In total, each subject thus performs 20 trials.

The Mug 

IMU + Arduino  

Figure 13. The object and the installed equipment.

In order to maintain the consistency between the trials, we attached a 9 degrees-of-freedom

Sensor-Stick SparkFun Inertial Measurement Unit (IMU) [59] to the mug to measure its accel-

eration (see Figure 13). The IMU is interfaced with a computer through an Arduino MEGA

development kit [60]. For each trial, we make sure that the object’s acceleration in the direction

of pulling falls in the range of 1.5 to 4.5m/s2; otherwise the trial is disregarded. This range of
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accelerations was observed in a pilot study in which several subjects simply handed over the

same mug to each other. The object and the IMU weigh 420±10g in total.

1 

(a)

1 

(b)

2 

(c)

2 

(d)

Figure 14. Pulling action in (a) taking horizontally, (b) dropping horizontally, (c) taking
diagonally and (d) dropping diagonally cases. The blue arrow shows the horizontal pulling

direction. The red arrow shows the diagonal pulling direction.

Note that during the human study, several precautions are taken to eliminate the human

social-cognitive reasoning that typically takes place during the handover: the experiment is

repeated several times in the same configuration and the giver cannot see the experimenter

(the receiver) nor her hand.
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3.3.2 Results

The range of the magnitudes of the object acceleration in the direction of pulling is shown in

Table II. The performance of the participants is summarized in Table III. For example, the first

row in Table III indicates that when the experimenter performed the taking action and pulled

the object horizontally, the success rate was 62%, i.e., in 62% of the trials, participants could

correctly identify the action and express that the object was taken. The third row in the table

shows that the total success rate of the participants, when the object was pulled horizontally,

was 54%. In order to determine the role of haptic sensing, we used the data to test whether or

not participants were able to answer correctly significantly more often than chance (50%).

TABLE II

OBJECT ACCELERATION IN THE DIRECTION OF PULLING
Object

Accelera-
tion

Min.
(m/s2)

Max.
(m/s2)

Ave.
(m/s2)

SD
(m/s2)

Pulling
Horizon-

tally
1.6 4.4 3.2 0.7

Pulling
Diagonally

1.8 4.4 3.7 0.6

Let xi, i = 1, . . . , 10, denote the success rate of each participant when the object is pulled

horizontally (one sample). The average of all the samples is x̄i = 54% and its standard deviation
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TABLE III

PERFORMANCE OF THE PARTICIPANTS. PARTICIPANTS WERE INSTRUCTED
NOT TO RE-GRASP THE OBJECT IF THEY FELT IT WAS DROPPED.

Pulling Direction Action
Participant’s Guess

Correct Incorrect

Horizontal

Taking 62% 38%

Dropping 46% 54%

Total 54% 46%

Diagonal

Taking 62% 38%

Dropping 72% 28%

Total 67% 33%

is SD(xi) = 13%. One-sample t-test indicates that the performance of the participants does not

significantly differ from the 50% success rate expected by chance: t = 0.973, p− value = 0.356.

To make sure that the underlying distribution assumptions of t-test do not affect the analysis,

the significance level is also calculated using a non-parametric test. We use a binomial test [61]

on the overall success rate of all the participants, tested against a null of 50% success rate.

Using binomial test makes sense here because the action is randomly selected in each trial and

hence the trials are statistically independent. This test also shows that the success rate does not

significantly differ from chance: p − value = 0.481. Furthermore, the 95% confidence interval

of the success rate is [0.42 , 0.65] which shows that the correct and the incorrect answers are

almost equally likely to be selected.
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The conclusion is that in this setup, the information provided by haptic sensing is not reliable

enough to detect falling of an object during the object transfer phase. In fact, the participants

stated that they often could not decide with certainty whether the fall occurred and they just

chose a random answer. The performance of participants is slightly improved when the object

was pulled diagonally, with participants answering correctly in 67% of trials (row 6 in Table III).

We speculate that this improvement is because of the greater difference between the object’s

motion in taking and dropping scenarios when the object is pulled diagonally. Even though

the success rate in this case is significantly higher than chance (p − value < 0.01), the failure

rate of 33% is still quite high. Considering that humans can easily detect the failure with their

eyes open, the data shows that closing the participants’ eyes has significantly affected their

performance.

3.4 Robot Handover System with Failure Recovery

Given the results of the human study, we were motivated to choose vision instead of a

haptic sensor to detect the fall of the object. In a human-human handover, vision clearly plays

a significant role. The giver watches the receiver reaching for the object and perceives her

readiness to take it. This information helps the giver to coordinate the time, the location and

the configuration of the handover. On the other hand, during the transfer phase, both the giver

and the receiver visually monitor the object to ensure the successful completion of the task.

However, visual processing is time consuming, both for humans and for computers. In order to

use the motion of the object for failure detection, and to allow the robot to react to the failure,

motion needs to be monitored with a sensor that has a fast response time.
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Among the characteristics of the object’s motion, the acceleration can be used as an indicator

of an impending fall of the object and this is the modality we used in our work. Object

acceleration can be measured by installing an accelerometer on the object; however, this is

clearly not a solution that is suitable for implementation on a robot. Instead, the robot should

be equipped with a sensor that can measure the object’s acceleration with respect to the robot’s

hand. We propose to attach an optical sensor similar to what is used in an optical mouse,

to the finger of the robot. Optical sensors are able to measure acceleration up to 10g [62].

They often have a limited range of operation, i.e., the object should be in close proximity to

the sensor (distance<4mm). But in our application in which the object is in contact with the

robot’s finger, these optical sensors provide a cost-effective and practical solution. Also, like any

other position based estimate, our acceleration measurement is subject to high-frequency noise.

But in Section 3.5, we show that our proposed controller is highly robust against acceleration

measurement noise.

In the following, a model of a handover system with a two finger robotic gripper is proposed.

Subsequently, we design a handover controller that includes a re-grasping mechanism. The re-

grasping mechanism relies on the feedback that includes the acceleration of the object measured

by an optical sensor installed on the gripper, as well as forces measured at the wrist.

3.4.1 System Model

Assume a two finger robotic gripper with an object grasped by the gripper. The robot’s

wrist is equipped with a force sensor that measures the forces applied to the object and there is

an optical sensor attached to the gripper that measures the object acceleration relative to the
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Figure 15. The two finger gripper and applied forces to the object.

gripper. A human subject tries to take the object from the gripper by pulling it. In Figure 15,

the gripper, the object and forces applied to the object are shown.

Fp the pulling force applied by the human, ϕ is the angle of pulling, W is the object weight,

FG is the controlled grip force and Ff is the friction force between the gripper and the object.

For the sake of simplicity, it is assumed that Fp is in the plane that is perpendicular to the

grip force (FG).

Decomposing applied forces in the x and y directions (see Figure 15), the equations of

motion governing the system become:

Fp cosϕ− Ff cos θ = Max

W + Fp sinϕ− Ff sin θ = May

(3.1)

where M is the object mass, θ is the angle between the friction force and x axis and ax

and ay are the components of the object acceleration in the x and y directions, respectively.

Italicized letters are used to show scalars including vector norms.

Let Fsum be the magnitude of the vector sum of W and Fp:
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Figure 16. System modes.

Fsum =

√
(W + Fp sinϕ)2 + (Fp cosϕ)2 (3.2)

Based on the configuration of the object and the gripper, the system can be in one of the

three modes: the grasp mode, the slipping mode and the release mode. Different system modes

and mode switching conditions are shown in Figure 16 and are explained below.

Mode 1 (Grasp Mode):

We assume the system starts in the grasp mode in which the object is fully grasped and

ax = ay = 0. The human can pull the object but as long as the total external force applied

to the object Fsum is less than the maximum static friction force (Ffmax), the system stays in

the grasp mode. We have Ffmax = µsFG where µs is the static friction coefficient between the

object and the gripper (effectively, µs is twice the static friction coefficient between the object

and each finger of the gripper).

In the grasp mode we have:
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Fp cosϕ = Ff cos θ

W + Fp sinϕ = Ff sin θ

(3.3)

Mode 2 (Slipping Mode):

Once Fsum exceeds Ffmax , the system switches to the slipping mode in which the object

slips between the fingers of the gripper. In the slipping mode, the system equations become:

Ff = µkFG

Fp cosϕ− Ff cos θ = Max

W + Fp sinϕ− Ff sin θ = May

ay
ax

= tan θ

(3.4)

where µk is the kinetic friction coefficient between the object and the gripper (twice the kinetic

friction coefficient between the object and each finger of the gripper). It is assumed that the

object moves in a straight line, so the object’s acceleration is in the direction of motion.

While most of the proposed handover controllers in the literature have only two modes of

operation (complete grasp and complete release) the slipping mode is essential to our controller.

In this mode, the object is allowed to move but it is not completely released. Therefore, the

object’s downward acceleration can be measured and the system can distinguish between an

unwanted collision and a force applied by the user. One of our main contributions in this

research is to design a controller that keeps the system in the slipping mode in order to achieve

a smooth and safe handover.
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Mode 3 (release mode):

Once the output of the controller (FG) becomes zero, the friction force also becomes zero

(Ff = 0) and the object is released from the gripper.

3.4.2 Controller Design

We assume that there is a force sensor attached to the robot’s wrist that measures the force

applied to the object. The output of the force sensor (Fs) is equal to the friction force between

the gripper and the object:

Fsy = Ff sin θ , Fsx = Ff cos θ (3.5)

In [3], the grip force is chosen based on the vertical load force in a linear fashion (FG =

αFsy +F0). In this way, the grip force decreases as the user compensates the vertical load force.

It is shown in [2] that the grip force must decrease monotonically with the vertical load force

in order to achieve a smooth handover. We thus employ the same strategy. But in order to

prevent the object from falling, we propose to include the object’s downward acceleration in

the controller equation. A higher downward acceleration of the object should result in a larger

grip force. Also, we want the human to be able to take the object not only vertically, but in

any direction. So the x component of the measured force should also be considered. As the

x component of the pulling force increases, the grip force should be decreased. Therefore, we

propose the controller equation as below:

FG = αFsy + βay − γFsx (3.6)
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where α, β and γ are constant values. Please note that FG is bounded below by zero

(FGmin = 0).

According to Equation 3.6, after the object is released from the gripper (Fsx = Fsy = 0),

even a small value of the object’s downward acceleration results in the grip force becoming non-

zero, so the system switches back to the slipping mode. In order to solve this issue, a −Fmargin

term is added to the controller that makes the system tolerate a small downward acceleration:

FG = αFsy + βay − γFsx − Fmargin (3.7)

It is shown in Section 3.4.4, that Fmargin helps the stability of the system when the system

is in the release mode. In discrete time, the controller equation becomes:

FG[n+ 1] = αFsy [n] + βay[n]− γFsx [n]− Fmargin (3.8)

The control loop is shown in Figure 17. We assume that the dynamics of the gripper is

negligible so that the commanded grip force is directly applied to the object. The plant under

control consists of the gripper and the object.

The coefficients α, β and γ in Equation 3.8 should be selected properly to achieve the

following design goals: (a) the robot should not allow the object to fall; and (b) the handover

should happen in a smooth and effortless manner. The following performance and stability

conditions should be satisfied in order to achieve the stated design goals.
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𝐅𝐩 is the pulling force applied by the human, 𝜑 is the angle

of pulling, 𝐖 is the object weight, 𝐅𝐆 is the controlled grip
force and 𝐅𝐟 is the friction force between the gripper and the
object. For the sake of simplicity, it is assumed that 𝐅𝐩 is in the

plane that is perpendicular to the grip force (𝐅𝐆).

Decomposing the applied forces in the 𝑥 and 𝑦 directions 
(see Fig. 4), the equations of motion governing the system 
become: 

𝐹𝑝 cos 𝜑 − 𝐹𝑓 cos 𝜃 = 𝑀𝑎𝑥

𝑊 + 𝐹𝑝 sin 𝜑 − 𝐹𝑓 sin 𝜃 = 𝑀𝑎𝑦 (1) 

where 𝑀 is the object mass, 𝜃 is the angle between the friction 
force and 𝑥 axis and 𝑎𝑥 and 𝑎𝑦 are the components of the

object acceleration in the 𝑥 and 𝑦 directions, respectively. 
Italicized letters are used to show scalars including vector 
norms. 

Let 𝐹𝑠𝑢𝑚 be the magnitude of the vector sum of  𝐖 and 𝐅𝐩:

𝐹𝑠𝑢𝑚 = √(𝑊 + 𝐹𝑝 𝑠𝑖𝑛 𝜑)
2

+ (𝐹𝑝 𝑐𝑜𝑠 𝜑)
2

(2) 

Based on the configuration of the object and the gripper, 
the system can be in one of the three modes: the grasp mode, 
the slipping mode and the release mode. Different system 
modes and mode switching conditions are shown in Fig. 5 and 
are explained below. 

1) Grasp mode:
The system starts in the grasp mode in which the object is

fully grasped and 𝑎𝑥 = 𝑎𝑦 = 0. The human can pull the

object, but as long as the total external force applied to the 
object (𝐹𝑠𝑢𝑚) is less than the maximum static friction force
(𝐹𝑓𝑚𝑎𝑥

), the system stays in the grasp mode. We have 𝐹𝑓𝑚𝑎𝑥
=

𝜇𝑠𝐹𝐺 where 𝜇𝑠 is the static friction coefficient between the
object and the gripper.  

Figure 5.  System modes 

In the grasp mode we have: 

𝐹𝑝 cos 𝜑 = 𝐹𝑓 cos 𝜃

𝑊 + 𝐹𝑝 sin 𝜑 = 𝐹𝑓 sin 𝜃 (3) 

2) Slipping mode:

Once 𝐹𝑠𝑢𝑚 exceeds 𝐹𝑓𝑚𝑎𝑥
, the system switches to the

slipping mode in which the object slips between the fingers of 
the gripper. 

In the slipping mode, the system equations become: 

𝐹𝑓 = 𝜇𝑘𝐹𝐺

𝐹𝑝 cos 𝜑 − 𝜇𝑘𝐹𝐺 cos 𝜃 = 𝑀𝑎𝑥

𝑊 + 𝐹𝑝 sin 𝜑 − 𝜇𝑘𝐹𝐺 sin 𝜃 = 𝑀𝑎𝑦
𝑎𝑦

𝑎𝑥

= tan 𝜃 (4) 

where 𝜇𝑘 is the dynamic friction coefficient between the object
and the gripper. It is assumed that the object moves in a straight 
line, so the object’s acceleration is in the direction of motion. 

While most of the proposed handover controllers in the 
literature have only two modes of operation (complete grasp 
and complete release) the slipping mode is essential to our 
controller. In this mode, the object is allowed to move but it is 
not completely released. Therefore, the object’s downward 
acceleration can be measured and the system can distinguish 
between an unwanted collision and a force applied by the user. 
One of our main contributions in this study is to design a 
controller that keeps the system in the slipping mode in order 
to achieve a smooth and safe handover. 

3) Release mode:
In case that the output of the controller is 𝐹𝐺 = 0, the

friction force would also be zero (𝐹𝑓 = 0) and the object is

released from the gripper.  

B. Controller Design

Here we discuss the general design requirements for a 
handover controller that works based on the model presented 
in Section VI-A. Later in section VII, an instance of such a 
controller is shown and its performance is evaluated through 
simulation. 

The output of the force sensor attached to the robot’s wrist 
(𝐅𝐬) is equal to the friction force between the gripper and the
object: 

𝐹𝑠𝑦
= 𝐹𝑓 sin 𝜃     ,   𝐹𝑠𝑥

= 𝐹𝑓 cos 𝜃 (5)

The controller gets 𝐹𝑠𝑥
, 𝐹𝑠𝑦

 and 𝑎𝑦 as input and returns 𝐹𝐺

as output (See Fig. 6). The design goals for the controller are: 
(a) the robot should not allow the object to fall; and (b) the
handover should happen in a smooth and effortless manner.
These goals can be achieved by controlling the conditions at
which the system switches between the three modes, i.e. grasp
mode, slipping mode and release mode. In the following, we
discuss the required conditions for mode switches.

Figure 6.  The controller loop 

 

1) Switching from grasp mode to slipping mode

(smoothness of transfer):

Initially, the system is at rest (𝐹𝑝 = 0, 𝑎𝑦 = 0, 𝐹𝑠𝑦
=

𝑊, 𝐹𝑠𝑥
= 0). In order to sustain the object, we should have:

𝜇𝑠𝐹𝐺 ≥ 𝑊
(6) 
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Figure 17. The controller loop.

3.4.3 Performance Conditions

Rest condition: in the grasp mode, when the system is at rest (Fp = 0, ay = 0, Fsy =

W,Fsx = 0), in order to prevent the object from falling we should have µsFG ≥W . Substituting

FG from Equation 3.7 we have:

α ≥ 1

µs
+
Fmargin

W
(3.9)

Therefore, α should satisfy Equation 3.9 so the object doesn’t fall in the grasp mode.

Re-grasp Condition: we should make sure that the system switches back from the release

mode to the slipping mode when the object downward acceleration is more than a threshold.

In the release mode we have Fsx = Fsy = 0. Therefore:

FG[n+ 1] = βay[n]− Fmargin (3.10)

The maximum object’s downward acceleration that the system tolerates is:
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aymax =
Fmargin

β
(3.11)

In case we have ay > aymax , the system will re-establish the grasp by switching back to the

slipping mode.

Force overshoot: force overshoot is defined as the pulling force that the user has to apply

before the object is released. Here we define the start force threshold FST as the pulling force

that the user has to apply to the object so the system switches from the grasp mode to the

slipping mode. It is shown later that the force overshoot is equal to FST . To calculate FST

we consider the switching condition from the grasp mode to the slipping mode at the extreme:

Fsum = µsFG. Expanding Fsum and substituting FG from Equation 3.7 we have:

√
FST +W 2 + 2WFST sinϕ = µs [α(W + FST sinϕ)− γ(FST cosϕ)− Fmargin] (3.12)

Equation 3.12, establishes a relation between the start force threshold and the direction of

pulling. In Figure 18, the start force threshold is shown with respect to the pulling angle ϕ for

a specific set of parameters specified in Table IV and three different values of γ.

According to Figure 18, for a specific value of γ, there is a maximum angle (ϕmax) at which

the user can successfully take the object from the robot by pulling it in that direction. For

γ = 3, we have ϕmax = 20◦. Higher values of γ result in lower start force threshold and wider

range of angles at which the user can successfully take the object.
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Figure 18. FST versus the pulling angle ϕ, plotted for three different values of γ.

TABLE IV

SYSTEM PARAMETERS USED IN THE SIMULATIONS

Parameter α β γ Fmargin(N) ki M(Kg) µs µk

Value 10 3 1 12 0.13 0.2 0.6 0.5

3.4.4 Stability Conditions

Stability of robots physically interacting with humans has been extensively studied [63–69].

The primary focus of these investigations are robots that are physically coupled with humans

such as assistive devices and haptic interfaces, where stability is necessary for safety. The

common approach in these studies is to model the human (and the environment if needed),

either explicitly as an impedance or admittance, or implicitly as a passive subsystem, and the

stability of the overall system is then examined.

In tasks such as a handover, it is more accurate to characterize the actions of the human

as the exogenous inputs for the robot; the robot needs to generate an appropriate action in
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response. As a result, the issue of stability reduces to stability of the robot controllers imple-

menting specific robot actions for arbitrary input.

In the case of the handover, the primary response of the robot is the applied grip force FG.

The stable behavior of the robot thus reduces to two separate conditions: (a) for a constant

pulling force Fp (human input), the grip force FG should converge to a constant; and (b) for a

constant pulling force Fp, the system should not switch between different modes (grasp, slipping,

release).

Assuming the system is in the grasp mode, we can determine FG by substituting Equation 3.3

and Equation 3.5 into Equation 3.7:

FG = αW + Fp sinϕ− γFp cosϕ− Fmargin (3.13)

This shows that in the grasp mode, condition (a) is satisfied.

Once the system switches to the sliding mode, it shouldn’t switch back to the grasp mode

unless the pulling force is below FST . That is to prevent consecutive mode switches. Here we

define the stable force threshold (FBT ) as the minimum amount of the pulling force that the

user has to apply to the object when the system is in the slipping mode so the system doesn’t

switch back to the grasp mode. To calculate FBT , we find sin θ and cos θ from Equation 3.4 and

substitute them into Equation 3.5. Fsx , Fsy and ay can then be found in terms of FG, Fp and

ϕ:
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Fsy = µkFG
W + Fp sinϕ

Fsum
, Fsx = µkFG

Fp cosϕ

Fsum

ay =
1

M

(
W + Fp sinϕ− µkFG

W + Fp sinϕ

Fsum

) (3.14)

Substituting Equation 3.14 into Equation 3.8 we have:

FG[n+ 1] = aFG[n] + b (3.15)

where:

a =
µk
Fsum

.

[
(W + Fp sinϕ)(α− β

M
)− γFp cosϕ

]
(3.16)

b =

[
β

M
(W + Fp sinϕ)− Fmargin

]
(3.17)

For Equation 3.15 to be stable and produce bounded output, we should have:

|a| ≤ 1 (3.18)

In other words, the single pole of the system (z = a) should be inside the unit circle so the

closed loop system becomes stable. Please note that the dynamics of the gripper is neglected.

In the extreme case when |a| = 1, Fp would be equal to FBT . This gives us FBT as a function of

the direction of pulling. In Figure 19a, FBT is shown with respect to pulling angle (ϕ) for a set

of system parameters specified in Table IV. As it is shown in Figure 19a, FBT is greater than
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Figure 19. FST and FBT with respect to pulling angle ϕ in (a) the primary controller design
and (b) after adding integrator term.

FST . In fact, it can be shown that the minimum required force to have a stable system is greater

than the start force threshold for any set of system parameters. That means, when applying an

ascending pulling force, the system switches to the slipping mode once Fp exceeds FST and then

switches back to the grasp mode before Fp reaches FBT . This results in an unstable situation.

To resolve this issue, we add an integrator term to the system:

FG[n+ 1] = ki
(
αFsy [n] + βay[n]− γFsx [n]− Fmargin

)
+ (1− ki)FG[n] (3.19)

Therefore, Equation 3.16 becomes:

a = ki
µk
Fsum

.

[
(W + Fp sinϕ)(α− β

M
)− γFp cosϕ

]
+ (1− ki) (3.20)
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Again, we put |a| = 1 to calculate FBT . In Figure 19b, FBT and FST are shown as a

function of the pulling direction. Figure 19b shows that the integrator term has pushed the

pole of the system inside the unit circle so the system has become stable for all values of the

pulling force. It can be shown with further analysis that adding the integrator term not only

satisfies (|a| ≤ 1), but also results in FG to be descending for a constant pulling force Fp and

therefore guarantees the system to stay in the slipping mode.

3.5 Simulation Results

Matlab simulations are carried out to evaluate the performance of the controller framework

proposed in Section 3.4.2. We define two different actions: (a) dropping, and (b) taking, similar

to what we defined in Section 3.3. In dropping, a force is applied to the object, but the weight

of the object is not compensated, resulting in the object falling if released by the robot. This

is to test whether the robot can prevent a failure. In contrast, in taking, it is assumed that the

object is taken by a human, so the weight of the object is compensated. In this case, we want

to see whether the controller can achieve a smooth handover. The two actions are simulated

similarly: in each time step, the pulling force in the desired direction is applied to the object

in addition to FG and W . The acceleration of the object is then calculated considering the

friction force between the gripper and the object. The only difference between the two actions

is that in a taking scenario, the object’s weight is canceled out during the transfer phase.

In the simulations, we selected the object’s mass M = 0.2Kg and µs = 0.6, µk = 0.5. The

controller parameters are selected as follows: the maximum object’s downward acceleration

that the system tolerates is set to 4(m/s2). Based on Equation 3.11, β is set to 3 and Fmargin
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is set to 12. Parameter α is then selected equal to 10 to satisfy Equation 3.9. Also, based on

Figure 18, γ is set to 5 to achieve FST (ϕ = 0) < 1N , i.e., force overshoot of less than 1N when

pulling the object horizontally. The system parameters used in the simulations are summarized

in Table IV.

In the first simulation, a horizontal pulling force is applied to the object with ϕ = 0◦. Both

the dropping and the taking actions are performed. Fp starts from zero at T0 = 1s and reaches

2N at T1 = 1.5s. In the dropping scenario, the pulling force becomes zero again at T2 = 2.5s.

In Figures 20a and 20b, the applied pulling force and the controller output are shown for the

taking and dropping actions, respectively. The acceleration of the object for both actions is

shown in Figures 20c and 20d. The background colors in the figures indicate the mode of the

system: red corresponds to the grasp mode, yellow to the slipping mode, and green to the release

mode.

As shown in Figure 20a, in case of taking, FG drops to zero once the pulling force is applied,

which means the object is released immediately. Also it is shown in Figures 20b and 20d that

while the pulling force is applied, FG is regulated and ay is kept below 4m/s2. Furthermore,

once applying the pulling force stops in Figure 20b, FG rises back to the initial value, the grasp

is re-established and the object’s fall is prevented. Another observation is that in Figure 20c, it

can be seen that the object briefly accelerates downward before it is completely released. The

reason is that we intentionally added a slight delay to the weight compensation algorithm so it

better simulates the behavior of a human receiver.
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(a) Forces: Taking (b) Forces: Dropping

(c) Acceleration: Taking (d) Acceleration: Dropping

Figure 20. Applied pulling force and grip force in (a) taking and (b) dropping. Acceleration of
the object in (c) taking and (d) dropping. Red background indicates the grasp mode, yellow

the slipping mode and green the release mode.

In the next run, the taking action is simulated with two different angles of pulling. In

Figures 21a and 21b, the applied pulling force along with the regulated grip force is shown for

taking action with ϕ = 20◦ and ϕ = −20◦ respectively. The corresponding object accelerations

can be found in Figures 21c and 21d. In both cases, the object is released immediately; note

that in the case of ϕ = −20◦, the object has negative downard acceleration after being released

because it is pulled upward.
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(a) Force: ϕ = 20◦ (b) Force: ϕ = −20◦

(c) Acceleration: ϕ = 20◦ (d) Acceleration: ϕ = −20◦

Figure 21. Applied pulling force and grip force in taking with (a) ϕ = 20◦ and (b) ϕ = −20◦.
Acceleration of the object in taking with (c) ϕ = 20◦ and (d) ϕ = −20◦. Red background

indicates the grasp mode, yellow the slipping mode and green the release mode.

In order to investigate the effect of the friction coefficient on the behavior of the system,

the simulation is repeated with ϕ = 0◦, this time with two different friction coefficients. In

Figures 22a and 22b, the object acceleration is shown for the taking and the dropping actions

for a surface with high friction (µs = 0.9, µk = 0.8). In Figures 22c and 22d, the object

acceleration is shown for the same actions for a surface with low friction (µs = 0.3, µk = 0.2).

In both of the taking cases, the object is released immediately after being pulled as expected.

In the dropping cases, the object is not released and the grasp is re-established after the pulling
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force is removed, although the object’s slipping acceleration is higher in the system with low

friction.

(a) Taking: High friction (b) Dropping: High friction

(c) Taking: Low friction (d) Dropping: Low friction

Figure 22. Acceleration of the object in (a) taking with high friction, (b) dropping with high
friction, (c) taking with low friction and (d) dropping with low friction grippers. Red

background indicates the grasp mode, yellow the slipping mode and green the release mode.

The next simulation investigates the sensitivity of the system. In Figures 23a and 23c, the

forces applied to the object and the object’s acceleration are shown for the dropping action

under the presence of a white Gaussian noise (SNR = 3dB) applied to FG. It can be seen
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that the object’s downward acceleration is still maintained below 6m/s2 and the grasp is re-

established after the pulling is stopped. In Figures 23b and 23d, the same signals are shown

in a dropping action while there is a white Gaussian noise (SNR = 3dB) applied to ay. The

figure clearly shows that the system is able to prevent the object from falling and re-establishes

the grasp after the pulling is stopped. This shows that the overall performance of the system

is quite robust against the sensor noise and the gripper disturbance.

(a) Force: Noisy FG (b) Force: Noisy ay

(c) Acceleration: Noisy FG (d) Acceleration: Noisy ay

Figure 23. Applied pulling force and grip force in dropping with (a) disturbance applied to FG

and (b) noise applied to ay. Acceleration of the object in dropping with (c) disturbance
appied to FG and (b) noise applied to ay. Red background indicates the grasp mode, yellow

the slipping mode and green the release mode.
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3.6 Implementation and Experiments

Our proposed fail-safe (FS) handover controller is implemented on a Baxter robot [45] with

a parallel gripper [70] installed on one of the robot’s arms. In order to control the grip force,

we used an open-loop position-based method: a small metal plane is added to one of the fingers

of the gripper with a linear spring between the plane and the finger. Therefore, the grip force

can be controlled based on the gripper position:

FG(x) =


k(x− x0), x > x0

0, x ≤ x0

(3.21)

where k is the stiffness of the spring, x is the gripper position command and x0 is the position

at which the gripper touches the object. The stiffness of the spring (k) was experimentally

determined to be 5(N/cm). The gripper position control loop operates at 25Hz.

In order to measure the applied force, a SI-65-5 ATI Gamma force sensor [46] is added to

the robot’s arm between the end effector and the gripper. The force sensor output is sampled

at 100Hz and the data is transferred to a computer through a PCI-6034 NI data acquisition

board [47]. A 6cm×7cm×17cm empty box is used as the test object. The object weight is 230±5

mg. The object downward acceleration is measured through an ADNS-2051 optical sensor [62]

installed on one of the fingers of the gripper. The object, the gripper and the installed devices

on the gripper are shown in Figure 24.
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Figure 24. The experimental setup.

3.6.1 Experiment One: Evaluating the smoothness of the controller

In order to evaluate the smoothness of our FS controller and to fine-tune the parameters

of the controller, we designed a robot-to-human handover experiment. Baxter would hand the

object over to human subjects, using different controllers. In each trial, Baxter grasps the

object within its electrical gripper. The handover controller is then activated and a beep sound

is played for the subject. Participants are told to take the object from the robot, after hearing

the beep sound.

3.6.1.1 Handover Controllers

We began with implementing the Fail-safe handover controller with the same parameters

used in the simulations (see Table IV). Prior to experiment one, we conducted a pilot study

with four participants (in addition to the subjects in experiment one), to see if the controller

can perform the handover task smoothly without dropping the object. We realized that the

system is very sensitive to measured force noise and in several cases, it dropped the object



60

before the participants touched it. Therefore, we decided to increase the force overshoot by

decreasing parameter γ, from 5 to 3. Also we increased Fmargin from 12N to 15N to increase

the maximum tolerated object’s downward acceleration.

We used four different handover controllers in experiment one: (a) first Fail-safe handover

controller (FS1) with parameters α = 10, β = 3, γ = 3, Fmargin = 15. ki = 0.13. This controller

should have a performance similar to the controller used in the simulations. According to

Figure 18, with having γ = 3, the force overshoot is about 2N when pulling forward (FST (ϕ =

0) ' 2N); (b) second Fail-safe handover controller (FS2) with parameters similar to FS1, except

that α was increased to 15. This controller is used in the experiment to investigate the effect of

changing parameter α. According to Equation 3.12, this controller has force overshoot about

4N when pulling forward; (c) third Fail-safe handover controller (FS3) with parameters similar

to the FS1 controller, except that γ was decreased to 1. this controller is used in the experiment

to investigate the effect of changing parameter γ. The force overshoot is about 3N when pulling

forward; (d) the forth controller is Human-Inspired handover controller (HI) [3].

The human inspired handover controller was proposed in [3] and it was shown to have a

smooth performance compared to the other existing handover controllers. We thus wanted to

compare the smoothness of our FS controller to that of the HI controller. The HI controller

regulates the grip force according to the object’s load force, in a linear fashion:

FG(FL) = mFL + FZLG (3.22)
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where FG is the applied grip force, FL is the object’s gravitational load force acting on the

robot’s gripper, m is a constant slope and FZLG is a non-zero amount of grip force applied at

zero load force that acts as a safety margin [3].

𝐹𝐹𝐺𝐺  

𝐹𝐹𝐿𝐿 

(𝐹𝐹𝐿𝐿𝐿𝐿,𝐹𝐹𝐺𝐺𝐿𝐿) 

−𝜀𝜀 

𝐹𝐹𝑍𝑍𝐿𝐿𝐺𝐺  

Figure 25. Grip force produced by the human inspired (HI) handover controller [3].

The HI controller output is illustrated in Figure 25. In the figure, FLo is the total weight of

the object supported by the robot at the begining of the handover when the robot has stably

grasped the object. At this time, the robot applies an initial grip force of FGo that has been

properly calculated so the object does not slip. A slight upward pulling force of ε has to be

applied to the object, so it is completely released. The slope parameter (m) can be calculated

based on FLo, FGo and FZLG. We selected the controller parameters so that it mimics the

behavior of Controller A introduced in [3], which was shown to be preferred by humans: FGo

was set to 15N to have an initial stable grasp, ε was set to −2N (according to the results of
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the human-human study in [2] for Controller A), and FZLG was set to 5N to account for the

sensor measurement errors.

3.6.1.2 Experimental Procedure

Each participant compares three pairs of controllers: (FS1 vs. FS2), (FS1 vs. FS3) and

(FS1 vs. HI). In each comparison, the robot hands over the object two times with one controller,

followed by another two times using the other controller. After a set of four trials, the subject

is asked to answer a survey evaluating the behavior of the robot in the first two trials compared

to the second two trials. To eliminate ordering effects, each controller pair was presented to the

participants in both orders. That results in a total of 6 pairwise comparisons and 24 trials. To

balance the carryover effects, we used a complete Latin square design [71].

To observe the effect of the pulling direction on the results, the participants are asked to

perform the entire procedure twice, once while standing and once while sitting, resulting in a

total of 48 trials per participant. We expected that the participants would pull the object in

different direction when they are sitting compared to standing situation.

We put a table with dimension (L : 75cm;W : 60cm;H : 70cm) at a distance of 70cm in

front of the robot. The subject is sitting/standing across the table at a distance of 15cm from

the edge of the table. The object is transferred at a height=25cm above the table and at a

distance=40cm from the edge of the table in front of the subject. Figure 26 shows the position

of the subject and the robot in standing and sitting cases.

The survey questions are:
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(a) (b)

Figure 26. Robot to human handover experiment: (a) standing case; (b) sitting case.

1. Rate how easy it was to take the object from the robot in the first two trials. There are

five options, very easy, easy, moderate, hard and very hard.

2. Rate how easy it was to take the object from the robot in the second two trials. There

are five options, very easy, easy, moderate, hard and very hard.

3. Do you prefer the robot behavior in the first two trials or in the second two trials? There

are three options, I prefer the robot behavior in the first two trials, I prefer the robot

behavior in the second two trials, and No preference.

For the study, 18 participants (13 males and 5 females) between ages 21 to 39 were recruited

from students and staff at the University of Illinois at Chicago (UIC), by posting flyers and

sending emails to UIC graduate students email-list. Before starting the experiment and to get

familiar with the robot, each participant performed the handover task 8 times while standing,

including 2 times with each controller in a random order. Participants were informed that there
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is no movement in the robot’s arm during the task. No further instructions were provided to

the participants about how to take the object.

3.6.1.3 Results

We used the sign test [61] to analyze the survey responses.

3.6.1.3.1 Standing case

Significantly more participants responded that they prefer the FS1 controller over HI con-

troller (Z=-3.031,p=0.0024) and also over FS2 controller (Z=-3.241,p=0.0012).

Participants’ ratings for how easy it was to take the object from the robot did not signifi-

cantly differ between the FS1 controller and the HI controller (Z=-1.18,p=0.238), or between

the FS1 controller and FS3 controller (Z=-1.34,p=0.180). However, significantly more partici-

pants responded that the object can be more easily taken from the robot with the FS1 controller

compared to the FS2 controller (Z=-2.932,p=0.0034).

While the system is in the grasp mode, the applied pulling force can be calculated using

Equation 3.3 and Equation 3.5. The average applied pulling force and the average produced

grip force for the standing trials are shown in Figure 27 for all of the controllers. The force

signals are normalized over time (t = 1 shows the time that the object is released). Force

overshoot for each controller can be determined from Figure 27a by measuring the maximum

pulling force applied before the object is released. It can be seen in Figure 27a that the FS1

controller force overshoot (∼2N) is smaller compared to other controllers.
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Figure 27. (a) Average applied pulling force, (b) average grip force for all of the controllers -
standing trials. Force signals are normalized over time.

3.6.1.3.2 Sitting case

We speculated that in the sitting case, a subject would pull the object almost horizontally

as the object is in front of his/her upper body. Since the HI controller can only handle vertical

object transfer, we predicted the force overshoot for this controller to be significantly higher

when the user tries to take the object horizontally. We also predicted larger force overshoot

for the FS2 and FS3 controllers in this case, since FST (ϕ = 0) is larger for these controllers

compared to the FS1 controller. The average applied pulling force and the average produced

grip force for sitting trials are shown in Figure 28 for all of the controllers. The force signals

are normalized over time (t = 1 shows the time when the object is released). It can be seen

in Figure 28a that the FS1 controller force overshoot (∼2N) is smaller compared to other

controllers. In fact in this case, there is a significant difference between the force overshoot of

the FS1 controller and that of the other controllers.
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The survey analysis shows that in the sitting case, significantly more participants responded

that the object can be more easily taken from the robot with the FS1 controller compared to the

HI controller (Z=-3.171,p<0.0016), to the FS2 controller (Z=-3.171,p<0.0016), and also to the

FS3 controller (Z=-2.428,p<0.016). Also, significantly more participants responded that they

prefer the FS1 controller over the HI controller (Z=-3.53,p<0.0005), over FS2 controller (Z=-

3.591,p<0.0004), and also over FS3 controller (Z=-3.103,p=0.0019). The subject preference

ratings can be explained by the smaller force overshoot of FS1 controller.

In summary, we conclude that the FS1 controller shows a superior performance compared

to the other controllers in terms of the force overshoot (smoothness) and the subject preference

ratings.
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Figure 28. (a) Average applied pulling force, (b) average grip force for all of the controllers -
sitting trials. Force signals are normalized over time.
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3.6.2 Experiment Two: Evaluating the object safety

The second experiment is designed to evaluate the object safety. Following the same method

that we used in Section 3.5, a failure is simulated for the robot: a forward pulling force of

specified magnitude is applied to the object without compensating the weight of the object.

A rope is attached to the object with an analog force meter attached to the rope. At t = 3s

the rope is pulled with Fp = 2N and ϕ = 0. For this experiment we use FS1 controller from

Section 3.6.1 which showed superior performance compared to the other controllers.

(a) Force (b) Acceleration

Figure 29. Problematic handover: (a) applied pulling force and the grip force; (b) the object
downward acceleration ay.

Figure 29 shows the applied pulling force, the generated grip force and the object downward

acceleration. As it is shown in Figure 29b, the object downward acceleration ay is kept below

4m/s2 while the pulling force is applied. That means that the object is not released completely
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and the system has remained in the slipping mode, successfully preventing the object from

falling.

3.7 Discussion

In this chapter, we proposed a novel framework for ensuring a safe and smooth robot-to-

human handover. The framework critically depends on the ability of the robot to readily detect

a failure during the handover and effectively recover from it. This in turn motivated us to study

how humans detect failure when they play the role of a giver. Towards this goal, we conducted

a human study to investigate which sensing modality is used by humans to detect failure. In

particular, we examined whether haptic sensing plays the dominant role in detecting failure,

or the human givers primarily depend on vision. The results suggest that at least in some

scenarios, haptic sensing is not reliable enough to determine whether the object is dropped or

successfully taken by the receiver after being released, and that humans seem to rely on vision.

Motivated by this finding we proposed a robot handover architecture that relies on measuring

relative motion between the object and the robot hand, provided through an optical sensor, to

detect an impending handover failure. In turn, a handover controller was proposed that uses the

measurement of object acceleration in the feedback loop to guarantee handover safety. At the

same time, by monitoring the force applied on the object, the controller achieves smoothness

of the handover. The proposed architecture thus overcomes the shortcomings of the existing

controllers that trade off smoothness for safety, or vice versa.

We provided a detailed analysis of the proposed controller. The controller is designed to

work in three different modes: grasping, slipping and the release mode. One of our main con-
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ceptual contributions is to explicitly model the slipping mode. The slipping mode characterizes

the transfer phase of the handover and is therefore critical for both safety and smoothness.

By monitoring the object acceleration and applied forces, the controller is able to distinguish

between a slipping object that is falling and a slipping object that is being transferred from

the robot’s hand to the human. Performance of the proposed handover controller was first

investigated through simulation and it was shown that the controller is quite robust. Also, we

showed experimentally and by assessing human satisfaction that the proposed system demon-

strates significantly higher performance compared to other handover controllers. Given that the

proposed system is inexpensive and easy to implement on general robot hardware, we believe

that it represents a significant step towards improving physical human-robot interaction.



CHAPTER 4

CONCLUSIONS AND FUTURE WORK

4.1 A Comprehensive Robot-to-Human Handover System

In this work, we studied the reaching out phase and the transfer phase of an object handover.

These are the two phases in which there is physical interaction between the actors. In Chapter 2,

we studied the reaching motion of a human giver in human-human handovers and proposed a

dyadic joint torque (DTJ) model that can estimate the object transfer position, based on

kinematics and body weight of the human actors. Besides that, we investigated the velocity of

the giver’s reaching motion and showed that unless there is a physical constraint, the velocity is

independent of the task conditions including the object type and the actors’ pose. We evaluated

the DJT model in a robot-to-human handover experiment and showed that the model will

generate object transfer position at desired height above the ground and comfortable distance

from the human.

In Chapter 3, we proposed a novel handover system that consists of an acceleration sensor

mounted on the robot gripper and a fail-safe controller. Our fail-safe controller has the ability

to recover from a handover failure by re-grasping the object. We showed experimentally that

the proposed system exhibits significantly higher performance compared to other handover

controllers in terms of smoothness and safety of the task. Our other contribution is that we

proposed a setup in which all the required sensors are embedded in the robot’s hand. This makes

70
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our system more practical for use in everyday applications. Also, it is possible to implement

the proposed system on any robot which possesses a simple two finger gripper.

The final goal in this research is to develop a comprehensive handover system implemented in

ROS which manages to perform all the steps of a robot to human handover task autonomously.

We use Baxter Robot for the implementation of the proposed system. The software architecture

of the system is shown in Figure 30.
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Figure 30. The comprehensive handover system.

The system consists of two main controllers (the green blocks in Figure 30). Object

Transfer, working at 10Hz, is responsible for the object transfer phase. It receives the ap-

plied force to the object (FS) and the object downward acceleration (ay) and regulates the grip
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force (FG) applied by the gripper. A block diagram of this controller is presented in Figure 17

(the controller is discussed in Section 3.4.2).

Handover Controller, working at 100Hz, is responsible for the grasp and the reach-

ing out phases. First, the initial position of the object is obtained from OBJ. Handover

Controller sends the command to the path planner, so the robot moves its arm to pickup

the object. After grasping the object, Handover Controller calculates the object transfer

position (TransferPose) based on the human pose and his/her kinematics, using our DJT

model proposed in Section 2.4.1. The human pose and kinematics are obtained from HUM block.

TransferPose is sent as a command to the path planner. Path Planner plans and implements

a linear minimum jerk trajectory to the commanded position. It uses the inverse kinematics of

the robot (IK Module) to compute the required joint values at each iteration.

The two controllers work almost independently, except the release interrupt path (showed by

a dashed red line in Figure 30). Whenever the object is fully released by the robot, the Object

Transfer sends an interrupt signal to the Path Planner and stops any further movement.

HUM computes the pose and the kinematics of the human, and OBJ estimates the initial

position of the object. These blocks receive input from a Kinect sensor. Microsoft developed

Kinect, as a motion tracking sensor mainly for Xbox video game consoles. Images from Kinect

provide raw depth and RGB color at 30Hz. Several software packages have been developed that

extract human tracking data by processing the images from Kinect. OpenNI is one of the tools

that provides a 14-point skeleton outlining the human’s pose (see Figure 31).
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Figure 31. Human tracking with OpenNI.

Although the Kinect human tracking system is reliable, there are several issues with the

tracked position of the hand. These errors occur when the human is moving fast or when

there are other objects near the human. Mincelli et al. [72], proposed two corrections in order

to improve the tracking system performance. In case the Kinect output lags the true human

motion, the hand position is moved to the closest 3D point in a small box around the estimated

point by Kinect (see Figure 32a). It is reported that this correction has a fast response and it

is robust against the noise in the estimated human pose.

During the final phase of a handover, the robot’s hand gets close to the human’s hand. At

this point the robot partially merges into the human’s point cloud. In the correction method

proposed in [72], the information about the joint configuration of the robot is used to determine

the position of the robot’s hand and if it is closer than 15cm to the human’s hand, the estimated
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(a) (b)

Figure 32. Skeleton tracking correction. White lines: OpenNI skeleton tracker output. Red
lines:corrected hand position. Figure from Mincelli et al.

position of the human’s hand is filtered out (See Figure 32b). This approximation is based on

the assumption that the human does not move much when very close to the robot.

While the performance of each controller in Figure 30 is evaluated through human-robot

experiments in Chapters 2 and 3, due to the mentioned practical limitations of the human

tracking sensor, we were unable to experimentally evaluate the performance of the whole system.

With the current fast progress rate in the virtual reality (VR) technology, it is expected to have

more reliable tracking sensors available to be used in the proposed handover system in near

future.

4.2 Future Work

One possible extention of this work is to design a human-to-robot handover controller. In

most of the previous studies that address human-to-robot handover, it is the human who has
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to position and orient the object into the robot’s hand and then push it, so the robot perceives

that it should close its hand. However, there are only few works in which the robot actively

takes the object instead of receiving it. The main reason is the challenge of reliably tracking

the human’s hand. By introducing human tracking systems like the Kinect sensor, researches

began to develop handover systems in which the robot locates the human’s hand, and then

reaches out to take the object [24,72]. Kinect sensor is also used for identifying if an object was

held by the human, recognizing the object type and calculating where the robot should put its

hand for the handover.

The final step in human-to-robot handover is to grasp the object by closing the gripper.

In [72], two methods are proposed to trigger a gripper closing command: detecting a force

applied to the robot’s hand and a timeout. It is reported that sometimes users do not intuitively

know that they have to push the object into the robot’s hand, so the timeout trigger is added

to the system. On the other hand, the timeout itself can make the robot seem aggressive to the

user. The issue of triggering the gripper closing command is similar to the problem of releasing

the object in a robot-to-human handover discussed in Section 3.1. We propose to add an optical

sensor to the gripper both to measure the object acceleration and to detect the object presence.

Based on the measured object acceleration, we can prevent the object from falling in case of an

imperfect handover.
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