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SUMMARY

We consider an autonomous agent facing a stochastic, partially observable, multiagent en-

vironment. In order to compute an optimal plan, the agent must accurately predict the actions

of the other agents, since they influence the state of the environment and ultimately the agent’s

utility. To do so, we propose a special case of interactive partially observable Markov decision

process (I-POMDP), in which the agent does not explicitly model the other agents’ beliefs

and intentions, and instead models the other agents as stochastic processes implemented by

probabilistic deterministic finite state controllers (PDFCs).

The agent maintains a probability distribution over the PDFC models of the other agents,

and updates this distribution using Bayesian inference. Since the number of nodes of these

PDFCs is unknown and unbounded, the agent places a Bayesian nonparametric prior distribu-

tion over the infinitely dimensional set of PDFCs. This allows the size of the learned models to

adapt to the complexity of the observed behavior. Deriving the posterior distribution is in this

case too complex to be amenable to analytical computation; therefore, we provide a Markov

chain Monte Carlo (MCMC) algorithm that approximates the posterior beliefs over the other

agents PDFCs, given a sequence of (possibly imperfect) observations about their behavior.

Experimental results show how the learned models converge behaviorally to the true ones.

Moreover, we describe how the learned PDFCs can be embedded in the learning agent’s own

decision making process. We consider two settings, one in which the agent first learns, then

interacts with other agents, and one in which learning and planning are interleaved. We show

xii



SUMMARY (Continued)

how the agent’s performance increases as a result of learning in both situations. Moreover,

we analyze the dynamics that ensue when two agents are simultaneously learning about each

other while interacting, showing in an example environment that coordination emerges naturally

from our approach. Moreover, we demonstrate how an agent can exploit the learned models to

complement its possibly noisy observations about the environment.
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CHAPTER 1

INTRODUCTION

In artificial intelligence, an agent is defined as an autonomous entity that interacts with an

environment by performing actions and receiving observations, and is characterized by an agent

function, a mapping from the agent’s history of observations to actions (1). A rational agent

aims at performing a course of actions that maximizes a given optimality criterion. The work

presented in this thesis considers an agent facing an environment that is:

• sequential: the environment evolves as a discrete sequence of configurations;

• stochastic: when the agent performs an action, the environment goes from one configu-

ration to the next according to some probability distribution; and

• partially observable: the agent only receives partial observations stochastically related

to the current configuration.

In this kind of environment, a rational agent maximizes its expected utility, where the expecta-

tion is taken with respect to its belief, defined as the agent’s subjective probability distribution

over the current state of the environment. This concept of rationality prescribes that at each

step a rational agent updates its belief according to Bayesian inference, on the basis of newly

collected evidence. Finding the strategy that maximizes the expected utility in this scenario

is known as partially observable stochastic planning, and has a mathematical formulation given

by the partially observable Markov decision process (POMDP) (2). Computing the optimal

1
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solution to this problem is computationally very intensive, due to the uncertainty both in the

environment transitions and in the agent’s observations.

Yet an additional layer of complexity is introduced when there are other agents that also

influence the environment with their own actions. We say in this case that the environment is

multiagent. Traditionally, problems in which multiple agents interact within an environment

have been approached using tools from economics and game-theory, that are mostly based one

the concept of Nash equilibrium.

In this work, we depart from equilibrium solution concepts, and build upon the body of

work that uses subjective game theory and decision theory as its core paradigms (3; 4; 5). In

particular, we propose an approach to multiagent stochastic planning that continues on the

path opened by the introduction of the interactive partially observable Markov decision process

(I-POMDP) (6). Within this framework, an agent maintains a belief not only on the state of

the environment, but also on the models of other agents, and its decisions depend solely on this

subjective belief.

In I-POMDP literature, it is predominant to consider intentional models (7; 8) of other

agents, which consist in ascribing to them beliefs and preferences, and simulating their decision

making process in order to predict their actions. This intentional stance is reciprocated by the

other agents, yielding an infinite hierarchy of nested beliefs, which is cut off at a finite level for

implementation purposes.

In this work, we propose the use of subintentional models to represent the other agents’

behavior. A subintentional model is intended here as a stochastic process over the modeled
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agent’s sequence of actions, that depends on the observations it receives as input. Note that a

subintentional model does not explicitly take into account another agent’s preferences or beliefs.

Our interest in subintentional models has several motivations. The first is computational:

since subintentional models do not explicitly represent the other agents’ beliefs, there is no

explicit reciprocal modeling. This means that an agent does not have to recursively solve

the other agents’ models in order to enable its own optimal decision making. This may lead to

substantial computational savings. Moreover, we are interested in situations where an agent has

weak prior knowledge about others. In particular, we consider the case in which their preferences

are completely unknown to the modeling agent. In this scenario, the agent’s predictions of the

other agents’ actions can be solely based on recognizing regular patterns in their behavior, which

is what subintentional models directly attempt to do. Furthermore, subintentional modeling

makes no assumption about the rationality of the other agents. On the other hand, intentional

modeling relies on the fact that other agents are rational, since their actions are predicted

by assuming that they maximize their expected utility. While this may usually be a safe

assumption, it is not universally true. For example, an agent’s rationality may be bounded or

compromised.

Among all possible subintentional models, we consider the probabilistic deterministic finite

controller (PDFCs) representation, in which the transitions between the nodes are deterministic,

while actions are generated stochastically in each node. Intuitively, the nodes of a PDFC

represent discrete “mental states” of the modeled agents. However, the other agent’s beliefs are

never represented explicitly.
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In line with the decision-theoretic approach to planning discussed above, the modeling agent

places a prior distribution over the space of PDFCs, and updates this belief in the Bayesian

way, based on the observed behavior of other agents. We do not assume that the agent is given

a restricted set of possible PDFCs of the other agents a priori. Instead, every possible PDFC

must be considered. This implies that the size of the PDFC, albeit finite, is unbounded. This

is desirable, since we do not wish to bound, a priori, the complexity of other agents’ models.

However, constructing a probability distribution over PDFCs of unbounded size presents some

challenges. In this work, we tackle this problem by using a nonparametric Bayesian prior

distribution (9). Note that the term “nonparametric” does not indicate in this case the absence

of parameters, but quite the opposite situation in which the posterior number of parameters

(here, the size of the PDFC) scales with the complexity of the observed data (here, another

agent’s behavior.)

1.1 Summary of Contributions and Results

The goal of this thesis is to provide a multiagent planning methodology that specializes the

interactive POMDP framework by considering subintentional models of other agents, which are

represented as probabilistic deterministic finite controllers (PDFC). This is achieved by means

of the following contributions:

• We design a suitable nonparametric prior probability distribution for the infinite-dimensional

space of PDFCs, based on the Dirichlet process. We motivate the use of this prior distri-

bution and characterize it by defining the probability it induces over the number of nodes

of the PDFCs.
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• Performing Bayesian inference using nonparametric distributions is not amenable to an-

alytical solutions. We develop an ad-hoc Markov chain Monte Carlo algorithm (MCMC)

that learns a sample-based approximation of the posterior distribution from a sequence

of observed behavior. In order to allow a more efficient exploration of the state space,

the algorithm occasionally splits and merges whole PDFC nodes, along with performing

Gibbs moves on individual transitions. The modeling agent’s observations may not re-

veal completely the behavior of the modeled agents; therefore, the inference procedure

must deal with partial observability. We show, for three experimental domains, that the

posterior distribution concentrates around PDFCs that are progressively more similar to

the true models generating the behavior as longer training trajectories are used. While

learning the true model of another agent exactly with probability one is only possible

with an infinite amount of observations, our method is able to pick up regularities in

the modeled agent’s behavior even from limited observations, and the prior distribution

naturally compensates for data scarcity in the Bayesian way.

• We formalize the framework of subintentional I-POMDP with PDFC models, yielding a

mechanism that allows the agent to exploit the learned PDFCs during interaction. We

present two modalities of use of this framework.

– Learn, then plan. The modeling agent first accumulates observations about other

agents’ behavior, performs inference about their models offline, and then exploits

such models during interaction. Our results demonstrate that, even though learning

the exact model of another agent is unattainable, especially with realistic observabil-
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ity assumptions, the agent can still largely improve its performance by recognizing

behavioral patterns that are statistically significant and encode them in a compact

model. This allows the agent’s performance to greatly improve even when the true

model is not actually discovered.

– Interleaved learning and planning. The agent periodically updates the models of

other agents during interaction. In this context, we show experimentally that our

methodology is robust with respect to the actual process that generates the other

agents’ behavior, even when their true model is not implemented as a finite-state pol-

icy. Moreover, we analyze the dynamics that ensue when two agents simultaneously

learn about each other in a simple but meaningful interactive domain. We show

that coordination between two agents can emerge naturally from our methodology

without requiring any prior knowledge of the agents’ about each others’ preferences.

Furthermore, we provide an example of how an agent can exploit the learned models

to augment its own observation capabilities, enabling it to achieve higher payoffs as

a result.

1.2 Structure of the Thesis

The rest of this thesis is organized as follows:

• In Chapter 2 we provide the necessary background to the presented work and discuss

some of the related work in multiagent learning.
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• Chapter 3 describes the prior distribution over PDFCs that constitutes the basis for our

work, and provides its characterization in terms of induced number of nodes.

• Chapter 4 presents the MCMC inference algorithm that performs approximate Bayesian

inference on the space of PDFCs from perfectly observed behavior trajectories, followed

by the description and discussion of experimental results.

• In Chapter 5, we describe how the MCMC algorithm can be expanded to deal with

partially observed behavior, and validate its effectiveness.

• In Chapter 6, we propose a two-phase methodology in which an agent first learn about

other agents, and then interacts with them. We show that, as a result of learning, the

agent increases its rewards.

• Chapter 7 provides an approach for interleaving learning and planning, and provides

experimental results for an example domain, by analyzing different types of interactions

between two agents.

• Chapter 8 concludes the thesis and describes possible future work.



CHAPTER 2

BACKGROUND

2.1 Partially Observable Markov Decision Processes

A general framework for (single-agent) stochastic planning under partial observability is the

partially observable Markov decision process (POMDP) (2). Formally, a POMDP is a 6-tuple

P = (S,A,Ω, T,O,R), (2.1)

where:

• S is the set of the possible states of the world.

• A is the set of the agent’s possible actions.

• Ω is the set of the agent’s possible observations,

• T : S × A → ∆(S) is the environment’s transition function (or model), that maps

each state-action pair to a distribution over the next state of the environment1. If the

environment is in state s and the agent executes action a, the next state of the environment

s′ is drawn with probability p(s′|s, a) = T (s, a, a′).

• O : A × S → ∆(Ω) is the agent’s observation function (or model), that maps each

action-state pair to a probability distribution over the set observation received by the

1The symbol ‘∆’ denotes the probability simplex over a set

8



9

agent. If the agent executed action a resulting in state s′, then the observation to the

agent is drawn with probability p(ω|a, s′) = O(a, s′, ω).

• R(s, a)→ R is the agent’s reward function (or model), that maps each state-action pair

to a real number representing the reward awarded to the agent.

A solution to a POMDP is a function that maps any history of observations and actions to

distribution over the agent’s actions. Formally, we define a history, or trajectory, of length t as

h1:t = (a1:t−1, ω2:t).
1 We denote as H1:t the set of all possible histories of length t. A solution

to a POMDP is therefore a function f : H1:t → ∆(A), for any relevant t, that optimizes a given

optimality criterion.

The optimality criterion depends on the planning horizon, that is, the length of interaction

with the environment considered by the agent. If the horizon is finite, say T , then the agent

can aim at optimizing the total sum of expected rewards received during that time, and the

agent’s policy will only have to consider histories of length at most T . If the horizon is infinite,

indicating that the agent assumes that the interaction has an unbounded duration, then we

need to carefully design on optimality criterion. The usual criterion in this case is the expected

sum of discounted rewards, defined as:

E

[ ∞∑
t=1

γt Rt

]
, (2.2)

1The notation x1:t indicates the sequence (x1, x2, . . . , xt).
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Where Rt is the random variable representing the reward obtained at time t, and 0 < γ < 1 is

the discount factor, that indicates how future rewards are discounted, so that the sum above

converges. For infinite-horizon POMDP, the discount factor is usually included in the tuple of

Equation 2.1.

Instead of explicitly considering the infinite set of possible histories, a POMDP agent usually

summarizes this information into a belief state b ∈ ∆(S), a probability distribution over states

of the world that is a sufficient statistics of the past history of the agent, i.e. b(s) is the

probability that the agent assigns to the world being in state s. Since it is a sufficient statistics,

it is possible to obtain a closed formula for the “updated” belief b′ upon executing an action a

and receiving an observation ω, starting from belief b. The belief update formula can be derived

via application of Bayes’ rule and is:

b′(s′) = p(s′|ω, a, b) = β O(s′, a, ω)
∑
s∈S

b(s) T (s, a, s′), (2.3)

where β−1 = p(ω|a, b) is the Bayes normalization factor, that is constant with respect to s′.

2.1.1 Solving POMDPs

We can view a policy for a POMDP agent as a conditional plan implemented by a policy tree

π: from a starting node, the agent executes a prescribed action1 and receives an observation.

1Note that here we consider deterministic policies. The discussion is still valid in the case of stochastic
policies with minimal variations.
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This makes the agent transition to a child of the original node, and this process is repeated at

each timestep. The value of a given policy tree π in a state s is given by the recursive equation:

Vπ(s) = R(s, a(π)) + γ
∑
s′∈S

T (s, a(π), s′)
∑
ω∈Ω

O(a, s′, ω)Vπ.ω(s′), (2.4)

where a(π) indicates the action prescribed at the root of policy tree pi, and π.ω is the subtree

reached when traversing the edge labeled by ω. We call Vπ the value function induced by π.

Since the equation above is linear, the value of following a plan given a belief b is:

Vπ(b) =
∑
s∈S

b(s)Vπ(s) = b · Vπ, (2.5)

using vector notation. Given Πt, the set of all the policy trees of depth t, the optimal plan π∗ for

belief b is then π∗ = argmaxπ∈Πt Vπ. From this equation we can derive the insight that a policy

tree π corresponds to a value function that is linear in b, and that the optimal value function V ∗t

corresponds to the piece-wise linear convex surface of the collection of value functions induced

by policy trees in Πt. A qualitative example is depicted in Figure 1, for a POMDP with two

states.

From what is described above, it follows that the optimal infinite-horizon value function is

the solution to the set of recursive relations:

V ∗(s) = max
a∈A

[
R(s, a(π)) + γ

∑
s′∈S

T (s, a(π), s′)
∑
ω∈Ω

O(a, s′, ω)V ∗(s′)

]
, (2.6)
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t

Figure 1. POMDP value function. Adapted from (2).

for all s ∈ S, which usually referred to as the Bellman equation.

Value iteration is a dynamic programming algorithm and the earliest known method for

solving POMDPs exactly (10). It applies the Bellman equation recursively until convergence to

an ε-optimal value function, while pruning completely dominated strategies. In some cases, the

number of optimal non-dominated plans stops growing long before reaching convergence and

the resulting value function is composed by a bounded number of linear segments; these policies

are called finitely transient (2). This corresponds to the situation in which the belief regions

induced by the optimal value function (see Figure 1) are mapped into each other exactly by

the belief update formula. In this case the optimal policy can be represented as a finite state

controller (see next section.)

Since its publication in (10), many different versions of value iteration have been proposed.

In (2), the authors provide a more efficient form of value iteration called the “witness algorithm.”
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However, the problem of solving a POMDP exactly has been proven to be PSPACE-complete

(11). Therefore, some versions of value iteration give up optimality in favor of convergence

speed. One of the most prominent class of such approximations is the so-called point-based

value iteration (12; 13), in which only a finite set of reachable beliefs is considered instead of

the whole belief simplex. Other methods include Monte Carlo approximation (14) and factored

representations of the state space (15; 16).

An alternative class of algorithms is policy iteration (17; 18). While also employing

dynamic programming, this algorithms work directly on the space of finite state controllers in

order to derive high-quality policies.

The types of POMDP algorithms mentioned above aim at solving a problem offline, once

and for all. On the other hand, in online POMDP algorithms (19), an agent starts from

a given belief state, and uses a forward search procedure in the belief space in order to select

its current optimal action; at each step, this process is repeated. Recently, a sample-based

online POMDP solver was proposed in (20), that uses a Monte-Carlo tree search (MCTS) (21)

procedure for implementing the forward search, instead of exploring the full-width search tree.

Such algorithm, called partially observable Monte Carlo planning (POMCP), is of primary

importance in this work and is described more in detail in the next section.

2.1.2 Partially Observable Monte Carlo Planning

Traditional online POMDP planners work by executing a “full-width” search of the forward

belief tree. This means that the agent considers every possible belief state that can be reached

from the current belief. This procedure has a complexity exponential in the time horizon. In
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contrast, POMCP is an online randomized algorithm that performs a finite set of random-

ized simulations through the belief search tree instead of executing a full-width search. The

algorithm has two main features:

• Instead of running a set of random simulations, the algorithm uses Monte Carlo tree

search (MCTS) to orient the search towards more promising regions of the belief search

tree. This is done by considering the choice of action at each hypothetical belief node as

a multi-armed bandit problem, and applying the UCB1 algorithm (22) in order to select

the next action in the simulation. This provides an optimal trade-off between exploring

new future belief paths and focusing the search on branches that seem promising.

• Each belief node is represented empirically as a set of unweighted particles, each corre-

sponding to a possible state of the world. During the execution of MCTS to select the

next action, the sampled future states of the world are stored at each belief node along

the simulation. Once the agent executes a real action and receives an observation, its

updated belief node is obtained by following the corresponding branch in the lookahead

belief tree created by MCTS: the set of particles that were stored in such node during the

simulations constitute the new belief of the agent.

Due to its high performance, POMCP has been gathering growing interest in the since its

inception, and its use has become widespread in the POMDP community.

2.2 Probabilistic Deterministic Finite-state Controllers

As mentioned in the Section 2.1.1, finite-state controllers (FSCs) represent in some cases the

optimal solution to POMDP; indeed, some algorithms search directly in the space of finite state
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controllers in order to find a good policy. Therefore, our choice of modeling an observed agent’s

behavior as a finite state controller is perhaps not surprising. As we will see, finite controllers

are suitable to capture regularities in an observed agent’s behavior even when the latter is not

prescribed by an actual finite controller. In other words, finite state controllers are a powerful

statistical model that yields to effective learning of input/output stochastic processes.

In this work, we consider a special case of FSCs, called probabilistic deterministic finite-state

controllers (PDFCs). A PDFC is a 6-tuple:

C = (Ω, A,Q, τ, θ, τ0), (2.7)

where:

• Ω is the set of observations of the agent.

• A is the set of actions the agent can execute.

• Q is the set of nodes.

• τ : Q×A×Q→ Q is the deterministic node transition function. If q is the current node,

from which an agent executes an action a and receives an observation ω, the next node

is q′ = τ(q, a, ω), that we usually abbreviate as τqaω.

• θ : Q → ∆(A) is the stochastic emission (action generation) function. If q is the cur-

rent node, the agent will execute action a with probability p(a|q) = θ(q, a), sometimes

abbreviated as θqa; similarly, θq denotes the probability vector (θq1, θq2, . . . , θq|Aj |).

• τ0 is the starting node.
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It is straightforward to see how a PDFC can implement a POMDP agent function: condi-

tional on the observed history h1:T = (a1:T−1, ω2:T ), the current PDFC node is defined recur-

sively for t = 1, 2, . . ., starting from q1, as qt = τ(qt−1, at−1, ωt), and will generate an action

drawing from the probability distribution θ(qt, ·). Intuitively, the nodes of a PDFC implement-

ing a conditional policy can be viewed as internal mental states of the agent that behaves

according to such policy. In POMDPs, this is indeed the case, since each node of a PDFC (and

in general, of a FSC) can be mapped to a region of the belief space.

Given a sequence of observations ω2:T , a PDFC induces a probability distribution over the

action sequence a1:T defined as follows:

q1 = τ0

p(a1:T |ω2:T ) = θ(q1, a1)
∏
t=2:T

∑
q∈Q

δK(q, τ(qt−1, at−1, ωt)) θ(q, at).

(2.8)

Here and in the remainder of this thesis, δK denotes the Kronecker delta function1.

PDFCs are related to transducers in the context of grammar learning (23). In (24), the

authors propose a heuristic algorithm for learning deterministic transducers based on state-

merging moves. More recent work (25) attempts at learning stochastic transducers using spec-

tral methods.

1The Kronecker delta function is equal to 1 if its arguments are equal, 0 otherwise.
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2.3 Interactive POMDPs

The interactive POMDP (I-POMDP) (6) is an extension of the single-agent POMDP frame-

work to multiagent settings. It is important to notice that in the I-POMDP framework each

agent maintains full autonomy, and performs its planning in isolation and without any sort

of centralized control. In the following and in the rest of this thesis, we consider an environ-

ment containing two agents, namely agent i and agent j. All the descriptions and methods

easily generalize to environments with more than two agents. In its most general form (26), an

I-POMDP for agent i is defined as a 6-tuple:

I − POMDPi = (ISi, A,Ωi, Ti, Oi, Ri), (2.9)

where:

• ISi is the set of interactive states, defined as ISi = S ×Mj , where Mj is the set of

possible models of the other agent. Each model mj ∈ Mj is a triple mj = (Oj , hj , fj),

where Oj ∈ Oj is an observation function1, hj ∈ Hj is a history, and fj ∈ Fj is an agent

function of the form fj : Hj → ∆(Aj).

• A = Ai ×Aj is the set of joint actions for the agents.

• Ωi is the set of observations for agent i.

1Oj here also implicitly contains information about agent j’s observation set Ωj .
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• Ti : S × A → ∆(S) is the stochastic transition function. Ti(s, ai, aj , s
′) = p(s′|s, ai, aj) is

the probability of landing in state S given that the agents execute actions (ai, aj) when

the environment is in state s.

• Oi : S ×A→ ∆(Ωi) is the stochastic observation function. Oi(s, ai, aj , ω) corresponds to

the probability that agent i receives observation o, given that the joint action (ai, aj) was

executed and the resulting state is s.

• Ri : ISi ×A→ R is the reward function. Ri(is, ai, aj) is the payoff to agent i when joint

action (ai, aj) is executed in interactive state is. In line with I-POMDP literature, we

restrict the model by assuming that Ri : S ×A→ R, that is, the reward depends only on

the physical state of the world, and the agent does not have preferences over the models

of the opponent.

Similarly to single-agent POMDPs, any history can be summarized with a belief over the

interactive state space. However, the belief update equation is more complicated. First, the

agent, say i, needs to infer what action agent j has executed, in that it influences the state

of the environment and agent i’s own observation. Second, agent i needs to speculate over j’s

observation in order to update its belief about j’s model. We assume in the following that the
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model mj of the other agent is stationary, except obviously for the observation history, which

grows as time passes. The belief update is defined as:

b′(is′) = p(is′|ai, ωi, b) =

β
∑

is∈IS : (O′j ,f
′
j)=(Oj ,fj)

b(is)×
[ ∑
aj∈Aj

fj(hj , aj) Oi(ai, aj , s
′, ωi) p(is

′|is, ai, aj)
]
.

(2.10)

The quantity p(is′|is, ai, aj) is the interactive transition model and is defined as:

p(is′|is, ai, aj) = Ti(s, ai, aj , s
′)
∑
ωj∈Ωj

Oj(s, ai, aj , ωj) δK(h′j ,APPEND(hj , (aj , ωj))), (2.11)

where APPEND is a function that returns a sequence resulting from the concatenation of its

second argument to the first.

The formalization above is mathematically sound, but of little practical use if we do not

restrict the set of possible agent functions Fj . Simply considering every possible agent function,

even limited to the Turing-computable ones, is not viable. Beyond the apparent impracticality

of such approach, there are actual theoretical limits, as described in (26). In fact, instead of

every possible agent function, the original definition of I-POMDP introduced in (6) considered

the–still very broad–set of intentional models, and is described in the next section.

2.3.1 Intentional I-POMDPs

By intentional I-POMDPs, we consider the framework in which the set of policies Fj of the

agent j is itself implicitly specified as an I-POMDP. This means that an I-POMDP agent i of

this kind models another agent j in terms of beliefs and intentions, i.e. it takes an “intentional
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stance” in modeling the other agent. This includes the possibility that agent j models agent i

back, and so on, generating an infinite hierarchy of nested beliefs. Because of this, in intentional

I-POMDPs only a finite number of nesting levels is taken into account.

Formally, a finitely nested I-POMDP is described with a 6-tuple similar to Equation 2.9,

with the addition of an index indicating the nesting level, i.e.:

I − POMDPi,l = (ISi,l, A,Ωi, Ti, Oi, Ri). (2.12)

All the elements are the same as before, with the exception of the interactive state space, which

is now more specific and defined as ISi,l = S×Mj,l−1. Here, Mj,l−1 = {Θj,l−1∪SMj,} for l ≥ 1,

and Mj,l−1 = ∅ for l = 0. Θj,l−1 is the set of computable intentional models of agent j, while

SMj is the set of subintentional models. An intentional model is a pair θj,l−1 = 〈bj,l−1, θ̂j,〉,

where bj,l−1 is a belief over ISj,l−1, and θ̂j = 〈Ai, Tj ,Ωj , Oj , Rj〉 is a frame of agent j, which

is assumed to be rational. A subintentional model smj can be as simple as a probability

distribution over j’s action or a more complex nondeterministic finite state machine. The

interactive state space with l levels of nesting can be recursively constructed as:

ISi,0 = S, Θj,0 = {〈bj,0, θ̂j〉|bj,0 ∈ ∆(ISj,0)},

Mj,0 = Θj,0 ∪ SMj

ISi,1 = S ×Mj,0, Θj,1 = {〈bj,1, θ̂j〉|bj,1 ∈ ∆(ISj,1)},

Mj,1 = Θj,1 ∪ SMj

...
...

ISi,l = S ×Mj,l−1, Θj,l = {〈bj,l, θ̂j〉|bj,l ∈ ∆(ISj,l)}
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The I-POMDP belief update defined in Equation 2.10 can be specialized to this case. Al-

though we do not provide all the details here, it is evident that in order to compute the

probability over agent j’s action, agent i must simulate j’s own decision making process, that

in turn might require to solve j’s model of i’s decision making process, and so on down to level

0. Therefore, it is clear that solving an intentional I-POMDP at any level of nesting is at least

as complex as solving a single-agent POMDP. On top of this computational hardness, there

is a more theoretical limitation. While we may wish to maintain a belief over every possible

belief at the subsequent level, it can be shown (27) that it is impossible to have a probability

distribution over every possible belief for nesting level larger than two.

Nevertheless, several approaches have been proposed that alleviate these difficulties, usually

by compromising for an approximate solution. Some of these methods mirror advances proposed

for single-agent POMDP algorithms, although their generalization is far from straightforward.

Among these, we find Monte Carlo methods (27), policy iterations algorithms (28), point-based

value iteration (29), and nested dynamic influence diagrams (30).

2.4 Bayesian Inference and Nonparametric Priors

2.4.1 Bayesian Learning

Bayesian inference is a powerful paradigm that allows to “learn” hypotheses from data by

transforming a previously held belief over the hypothesis space, the prior, into a posterior belief

filtered by the data that are observed. The idea is that the hypotheses that better “explain”

the data will have a higher posterior probability (of being true) than the ones that do not

appear to support the observed data. Let us denote our hypothesis space as Θ, usually called
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the “parameter space” because θ ∈ Θ parameterizes a stochastic generative model p(X|θ),

for some observed variable X. Assume that we have a previously held belief over the values

of θ, the prior probability p(θ). After observing some realizations of the generative process,

x1:N = (x1, x2, . . . , xN ), the evidence, we can update our belief over the hypothesis space using

Bayes’ rule, as:

p(θ|x) =
p(x|θ) p(θ)

p(x)
. (2.13)

Above, the term p(θ|x) is the posterior distribution, that represents our updated belief after

observing the evidence, while p(x|θ) is the likelihood, that is a measure of how likely it is that

we are observing the evidence, given that the parameter of the generative process is θ. The

denominator p(x) =
∫

Θ p(x|θ)p(dθ) represents the probability of observing the evidence given

the prior belief, and serves as a normalization factor since it is independent from the value of

θ on the left-hand side.

Note that in general, each data point xi is a vector and not just a scalar. Similarly, the

parameter space Θ is in general multi-dimensional, e.g. Θ = RD for some D ∈ N+. De-

spite making the computation more involved, this does not pose any difficulty. Moreover, the

parameter space can be infinite-dimensional, as we see in Section 2.4.3.

2.4.2 Markov Chain Monte Carlo Inference

It is often the case that the posterior distribution in Equation 2.13 cannot be computed

analytically, and approximate numerical solutions must be adopted. Markov chain Monte Carlo

(MCMC) (31) is very popular class of methods that allow to draw a set of samples from the

posterior distribution, without actually having to compute it analytically. This is done by
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constructing an aperiodic, irreducible Markov chain over the parameter space Θ, for which the

stationary distribution is the posterior distribution p(θ|x). MCMC methods differ on how to

build the jumping probability of going from a state θ(n) of the chain the the next state θ(n+1).

Every MCMC algorithm starts by drawing an initial value of θ such that p(θ|x) > 0, and

then generates a sequence of states using the jumping probability. At some point, referred to as

the mixing time, this chain will reach its stationary distribution. The samples generated form

there on will be as if drawn from the stationary distribution of the chain, that is, the target

posterior distribution. In the following two sections, we briefly describe two of the most used

MCMC methods: Metropolis-Hastings and Gibbs sampling.

2.4.2.1 Metropolis-Hastings

A method for constructing a suitable Markov chain is the Metropolis-Hastings (MH) algo-

rithm (32; 33). The method iterates through the following steps:

1. Sample an initial value θ(1) from some distribution g, such that p(θ(1)|x) > 0. Set n = 1.

2. Sample a candidate value θ∗ from a proposal distribution q(·|θ(n)).

3. Compute the MH acceptance ratio:

a = min

[
1,
q(θ(n)|θ∗)
q(θ∗|θ(n))

p(θ∗|x)

p(θ(n)|x)

]
= min

[
1,
q(θ(n)|θ∗)
q(θ∗|θ(n))

p(x|θ∗) p(θ∗)
p(x|θ(n)) p(θ(n))

]
. (2.14)

4. Accept the proposed value θ∗ as the next value θ(n+1) with probability a.

5. Set n = n+ 1 and repeat from steps 2-5 until convergence.
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The method requires the choice of a proposal distribution q(·|θ). Such distribution can be

arbitrary, as far as it generates an aperiodic and irreducible chain. However, different choices

can greatly influence the mixing time and the convergence of the chain.

2.4.2.2 Gibbs Sampling

Gibbs sampling (34) is another method that generates a Markov chain over the parameter

space whose stationary distribution is the target posterior, and is designed to cope with multi-

dimensional parameter spaces. Suppose that θ is a d-dimensional vector θ = (θ1, θ2, . . . , θd).

While we might not be able to sample directly from the multivariate posterior p(θ|x), it is often

the case that the univariate conditional distributions p(θi|θ−i, x) are easier to sample from.

The notation θ−i indicates all values of θ except θi, i.e. θ−i = (θ1, . . . , θi−1, θi+1, . . . , θd). By

exploiting this fact, the Gibbs sampler builds a chain by iteratively sampling from the univariate

conditional distributions, and is composed by the following steps:

1. Sample an initial value θ(1) from some distribution g, such that p(θ(1)|x) > 0. Set n = 1.

2. For i = 1, 2, . . . , d, sample the next values θ
(n+1)
i ∼ p(θ | θ(n+1)

1 , . . . , θ
(n+1)
i−1 , θ

(n)
i+1, . . . , θ

(n)
d ).

3. Set n = n+ 1 and repeat steps 2-3 until convergence.

There exist many variations of the basic Gibbs sampling schema described above. A simple

variation is to consider a random ordering of the individual parameters instead of a pre-defined

one. Another modification consists in sampling groups of variables at a time instead of just

one, whenever this is possible. This is known as blocking. Yet another modification is to include

a MH step within Gibbs in order to sample the value of one or more variables, resulting in a
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hybrid MCMC sampler. Sometimes, one or more variables can be integrated out analytically.

When this is done, the resulting algorithm is referred to as collapsed Gibbs sampler.

2.4.3 Dirichlet Process, Stick-Breaking Process, Chinese Restaurant Process

The fact that we can consider an infinite-dimensional space is somewhat surprising: how can

we perform inference over an infinite amount of parameters if we will observe a finite amount

of observations? The catch is that, usually, infinite-dimensional parameter spaces are used to

describe spaces that are actually finite-dimensional, but whose dimensionality is unknown and

unbounded. While there are several ways to design a prior distribution p(θ) over an infinite-

dimensional space, we focus here on the class of Bayesian nonparametric (BNP) priors, and in

particular on distributions based on the Dirichlet process (DP).

A Dirichlet process (35; 9) is a probability distribution over measures, characterized by a

mean probability distribution G0 over a parameter space Θ, and a concentration parameter α.

We denote this as DP(H,α). The following hierarchical construction yields a distribution over

an infinite-dimensional space that has some nice mathematical properties:

G ∼ DP(H,α)

θk | G ∼ G k = 1, 2, . . .

(2.15)

A draw G from DP(H,α) is an infinite discrete distribution over Θ that has the following

form (36):

G(θ) =
∞∑
k=1

πkδK(θ, θk), (2.16)

where:
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• For each k = 1, 2, . . .∞, θk is drawn according to the mean measure of the process, i.e.

θk ∼ H.

• The infinite-dimensional weight vector π is drawn from the stick-breaking distribution

denoted as GEM(α)1, i.e. π ∼ GEM(α). This means that each component π1, π2, . . . is

drawn recursively as:

πk = µk

k−1∏
h=1

(1− µh), where µk ∼ Beta(1, α). (2.17)

A draw from GEM(α) can be thought as being generated by the following intuitive proce-

dure, that gives it the name “stick-breaking process”: imagine to break a stick of length 1 at

a random point π1 drawn according to Beta(1, α). We then take the remaining part (of length

1− π1) and break it using the same procedure, and so on infinite times.

We can motivate the terms “mean (or base) measure” for H and “concentration parameter”

for α. When α→ 0, the entire stick is broken off and allocated to π1, resulting in a degenerate

draw G corresponding to just one θ1 being drawn from the base measure H. On the other hand,

when α→∞, we break the stick into infinite infinitesimally small segments, each associated to

a θk ∼ H. The discrete distribution G is then an approximation of the (in general continuous)

mean distribution H. In this sense, α controls how G “concentrates” around the mean measure

H.

1The acronym stands for Griffiths, Engen, and McCloskey.
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Yet another characterization of the Dirichlet process comes from the fact that π can be

integrated out analytically (37) from the posterior distribution of Equation 2.15; after observing

a sequence of N draws θ1, θ2, . . . , θN that assume K distinct values, the next value θN+1 is

distributed according to:

p(θN+1|θ1, θ2, . . . , θN , α) =
K∑
k=1

nk
α+N

δD(θk) +
α

α+N
H, (2.18)

where δD indicates the Dirac delta function, and nK is the number of times θk has been

encountered during the N previous samples. This means that a value of θk that has already

been observed will be drawn with a probability proportional to the number of times it has

been observed, while with probability proportional to α we will draw a brand new value for

θN+1 from the base measure H. This formula is called the “Chinese restaurant process” (CRP)

because of the following analogy: imagine a restaurant with infinite tables, each big enough to

sit an infinite number of people. When the first customer comes in, she will be seated at the

first table, and a menu item θ1 will be picked for that table from distribution H. When the

second customer enters the restaurant, the host will seat him at the first table with probability

1
α+1 , or to a new table with probability α

α+1 , and in this case a menu item θ2 for that table will

be drawn from H. In general, when the (N + 1)-th customer enters the restaurant, he will be

seated at an already existing table k with probability proportional to the number of customers

nk already seated at that table, and will be served menu item θk associated to that table, or
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she will be seated at a new table K + 1 with probability proportional to α, and will be served

an item θK+1 drawn from H.

Equation 2.15 can be re-written in terms of an infinite sequence z = (z1, z2, . . .), with

zi ∈ N+ for each k = 1, 2, . . . ,∞. We have:

π ∼ GEM(α)

zi | π ∼ π i = 1, 2, . . . , N

θk ∼ H k = 1, 2, . . .

(2.19)

Intuitively, zi is the number of the table that customer i gets seated at, which is assigned to

menu item θzi . The CRP rule can now be expressed as:

p(zN+1 = k|z1, z2, . . . , zN , α) ∝ nk for existing table k, and

p(zN+1 = K + 1|z1, z2, . . . , zN , α) ∝ α for new table K + 1.

(2.20)

2.4.4 Dirichlet Process Mixture Models

The construction above can be used to place a prior probability distribution over mixture

models with an infinite number of components. A mixture model generates a draw xi with

probability:

p(xi|π, θ1, θ2, . . .) =
∞∑
k=1

πk f(xi|θk), (2.21)

where f(·|·) is the density of some probability distribution parameterized by θk. Above, πk

represents the weight, or “importance” of component k. Equation 2.19 naturally provides a



29

π

α

zi

xi

θk

λ

∞

N

Figure 2. Graphical model of a DPMM.

hierarchical prior distribution over the parameters (π, θ1, θ2, . . .) of an infinite mixture model.

The overall construction is called Dirichlet process mixture model (DPMM) (38):

π ∼ GEM(α)

zi | π ∼ π i = 1, 2, . . . , N

θk ∼ H(λ) k = 1, 2, . . .

xi | zi ∼ F (θzi) i = 1, 2, . . . , N,

(2.22)

and can be depicted as the Bayesian network of Figure 2.

DPMMs are important in clustering applications when the number of clusters is not known

a-priori. The task is to assign a cluster index, zi to each observation xi, i = 1, 2, . . . , N . From

a Bayesian perspective, we want to provide a posterior probability over the cluster assignments

p(z1, z2, . . . , zN |x1, x2, . . . , zN , α, λ). Since the computation of this quantity cannot be carried

out analytically, approximate methods must be employed. Gibbs sampling is widely used to
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tackle this problem. Since the elements of the sequence x1:N are i.i.d., they are also exchange-

able. This makes it possible to treat every element in the sequence as if it were the last one,

and devise its Gibbs conditional distribution: for an observation xi, given the current value

of all the other cluster assignments z−i = z1, x2, . . . , zn−1, zn+1, . . . , zN and of the parameters

(θ1, θ2, . . .), the conditional probability of the cluster assignment zi can be derived, by applying

Bayes’ rule and using the CRP of Equation 2.20:

p(zi = k|xi, z−i, α, λ, θ1, θ2, . . .) ∝ n−k F (xi|θk) for existing table k, and

p(zi = K + 1|xi, z−i, α, λ, θ1, θ2, . . .) ∝ α
∫

Θ f(xi|θ)dH(θ|λ) for new table K + 1,

(2.23)

where n−k is the number of samples currently assigned to cluster k, not considering zi. It is

interesting to observe that the CRP rule embodies the so-called “rich get richer” paradigm:

larger clusters are more likely to attract even more samples, and are therefore self-reinforcing.

In some cases, F and H can be picked from conjugate families, so that the integral in

Equation 2.23 can be computed analytically, and the θk’s can be integrated out altogether by

employing predictive distributions based on sufficient statistics. Whenever this is not possible,

we have to use some more complex algorithm to get around the complexity of computing the

integral. Neal (39) provides and compares several algorithms to deal with the non-conjugate

case.

It is obvious that a finite amount of samples x1:N can only be grouped finite number of

clusters K ≤ N , although in theory Equation 2.22 defines a probability over infinite clusters.

This discrepancy is resolved by assuming that there are indeed infinite potential clusters, but
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only a finite amount gets instantiated, i.e. its size is larger than zero. Antoniak (40) derives

a formula for the probability of the number of clusters K when N samples are observed (note

that this quantity depends only on the number of samples, not their value:)

P (K = k|α,N) = s(N, k)αk
Γ(α)

Γ(α+N)
, (2.24)

where s(N, k) is the absolute value of the Stirling number of the first kind for N, k. This

formula is useful in case one would like to place a hyperprior distribution over the concentration

parameter α in order to make the prior more flexible.

2.5 Model-based Multiagent Learning

The concept of learning in multiagent systems is complex and multi-faceted (41), and has

been the subject of extensive research both in the field of game theory and agent-based artificial

intelligence. In the following, we briefly review some approaches to learning explicit models of

other agents. The goal is not to provide a comprehensive survey, but to present some of the

related research in order to better contextualize our work.

One of the first approaches to opponent’s policy modeling to have been proposed is fictitious

play. (42). According to this method, an agent, say i, ascribes to another agent, j, a probability

over its actions given by the observed empirical distribution of j’s previous actions. Despite

being a very simple method, fictitious play has been extensively studied in its relation with

Nash equilibrium, with a number of theoretical results (43). Fictitious play is applicable to
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repeated games with perfect monitoring, that is, the same stage game is played by two agents

repeatedly, and the agents can observe each other actions.

A considerably more sophisticated method of learning that applies to the same setting is

rational learning (44). Given a set of possible strategies S for the agents, and a set of possible

histories of a game H, the probability that i ascribes to j’s strategy sj ∈ S, given a history h,

is derived by applying Bayes’ rule:

p(sj |h) =
p(h|sj) p(sj)∫
S p(h|sj)p(dsj)

. (2.25)

A remarkable result for rational learning is that, provided that the probability induced on

future plays by an agent’s belief over the other agent’s strategy is absolutely continuous with

respect to the distribution induced by the true strategy, the game will converge to a subjective

equilibrium. The requirement above is called absolute continuity condition (ACC), and is often

referred to as the “grain of truth” property: roughly speaking, an agent’s belief needs to assign

a nonzero probability to the true state of affairs. Unfortunately, assessing the ACC condition is

very hard for most but the simplest cases. Moreover, if the set of strategies S is large, infinite,

or even uncountable, there is little hope that Equation 2.25 can be implemented analytically.

The interactive POMDP model described in Section 2.3 implements rational learning within

the belief update formula (Equation 2.10). Importantly, it extends rational learning to sequen-

tial, stochastic, partially observable settings. In (26), the authors extend the subjective equi-

librium convergence of rational learning to this more general setting, by re-defining the ACC in
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terms of probability over future sequences of observations. However, they also notice how it is

impossible for two agents to recursively maintain beliefs over every possible computable strat-

egy. This result suggests that in I-POMDPs the space of strategies of another agents needs

to be limited to some extent. Another work that expands on rational learning is (45), that

considers environments that evolve stochastically (but are perfectly observable,) in which each

agent maintains a belief over the other agents’ finite set of types.

In (46), the authors suggest the use of deterministic finite automata (DFA) for opponent

modeling, and propose a heuristic algorithm that derives a DFA consistent with past plays.

This approach assumes that the environment is a (single-state) repeated game with perfect

monitoring, without allowing the modeled agent being itself adaptive. The same authors write

in (47): “With this assumption [that the opponent is static] removed, we may want to look at

windows of the input rather than the complete history”. Interestingly, this is the same method

that we follow in Section 6.1.2 for interleaving learning and planning.

One approach to multiagent learning that aims at explicitly modeling adapting opponents

is the one in (48). As before, the authors focus on repeated games with perfect monitoring,

and establish a series of desirable properties for opponent modeling: (i) if the opponent is a

member of the target class, the algorithm should yield an ε-best response; (ii) in self-play, it

should converge to an ε-Nash equilibrium; and (iii) against any opponent, it should stay within

ε of the security value of the game. The algorithm therein provided satisfies these properties,

and targets a class of opponents whose policy only depends on a history of finite length. The

work in (49) makes similar assumptions, and proposes to solve the game in the space of the
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“adversary induced MDP”, whose state space is the set of all possible joint histories of a specific

length, that can be solved with MDP methods.

2.5.1 Relations to Our Approach

We can recognize commonalities between some of the related work surveyed above and the

approach we propose in this paper. Like (44) and related methods, we also use the Bayesian

update as the fulcrum of learning. For obvious reasons, our work is related to the analysis of

convergence in I-POMDPs (26), and in particular shares the same generality about the type

of environment considered. A trait in common with (46) is to use finite-state models of other

agents, and that we address their adaptability by implementing an approach similar to what

was hinted at by the same authors in (47). On a related note, (48) and (49) consider models of

opponents whose actions are based on a limited history, and whose adaptability can hence be

modeled by considering a finite amount of observations.

2.5.2 The Case for Explicit Opponent Modeling

In the work presented in this paper, as well as in the literature surveyed above, an agent

forms explicit models of other agents’ policies, against which to provide a best response. How-

ever, there has been considerable effort in multiagent learning towards algorithms that model

the opponents implicitly (50; 51; 52). The choice of which of these two paradigms is best suited

to solve the problem at hand depends on assumptions about the prior knowledge that the agent

has about the environment.

In our case, we assume that that an agent, say i, knows its own I-POMDP parameters. This

means that i knows its reward function, its observation function, and the world’s transition
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function as a response to both agents’ actions. Note that this knowledge induces a problem

that is different from the one solved by reinforcement learning (RL), where such assumptions

are usually not made. Another subtle difference with RL, sometimes overlooked, is that in

POMDPs (and hence in I-POMDPs) the agent does not observe its rewards at each timestep,

unless this is explicitly encoded in the observation function.

Since agent i knows the world’s transition function, the missing piece of information is a

mapping gj : Ω∗i × A∗i → at+1
j from i’s observations to j’s actions. In this paper, we further

assume that j’s observation function is known, allowing i to speculate about j’s observations

and actions, given its own. Therefore, instead of inferring gj , the agent aims at directly learning

j’s agent function fj : Ω∗j × A∗j → Aj . This is precisely the type of opponent modeling that

takes place in I-POMDPs, using either intentional or subintentional models.

Surely, agent i could still treat agent j’s policy implicitly, and fold it into the transition

function as noise, but that would imply that j’s actions depend at most on just the current

state of the world, which is unrealistic since j’s decision making is in general more involved. We

claim that using finite state models is an appropriate hypothesis space for j’s policies, especially

since we do not bound the number of nodes, hence allowing j’s actions to depend on a history

of unbounded length.

Without the prior knowledge assumptions made above, modeling the other agent explicitly

might be ineffective, whereas POMDP reinforcement learning techniques, such as utile suffix

memory (53), Bayes-adaptive POMDPs (54), infinite generalized policy representation (55),
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infinite POMDPs (56), and others would be more suitable to solve the problem, by learning a

model of the environment that implicitly contains the other agent’s policy.



CHAPTER 3

A PRIOR DISTRIBUTION FOR PDFCS

As mentioned in Chapter 1, the goal of this work is the design and implementation of an

I-POMDP agent, henceforth i, that operates in a stochastic, partially observable, multiagent

environment, and models the other agent, j, explicitly as a PDFC. Since the exact model of

the other agent is not known a-priori, agent i needs to infer an accurate model of j from its

own observations.

We propose a Bayesian methodology that yields learning over the class of possible PDFCs,

denoted as Cj , given an observed trajectory (or history) h1:T that provides some information

about an agent j’s behavior. We want to compute the posterior distribution:

p(cj |h1:T ) ∝ p(h1:T |cj) p(cj). (3.1)

Crucial to this task is providing a suitable prior distribution p(cj) over PDFCs. Since agent

j’s complexity is unknown to agent i, we do not wish to bound, a priori, the number of nodes

of j’s PDFC. Instead, we want to provide a prior probability that allows the complexity of the

learned PDFC to scale with the complexity of the observed behavior: if agent j follows a simple

policy, we want to learn a small PDFC that best captures our observations; on the other hand,

if j’s behavior exhibits complex patterns, we want to be able to learn a more complex model

that explains such regularities.

37
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Recall from Section 2.2 that each node k of a PDFC is associated to a continuous parameter

θk ∈ ∆(Aj). Because of this, the set of PDFCs (of unbounded size) Cj is an infinite-dimensional

sample space. We described in Section 2.4.3 a prior probability over infinite dimensional spaces

based on the Dirichlet process, along with its application as a prior for infinite mixture models.

In this chapter, we propose a variation of such prior distribution that applies to the space of

PDFCs.

In a related work (57), a hierarchical stick-breaking prior has been proposed for probabilistic

deterministic finite automata (PDFA) in the context of language modeling. The transition

function of a PDFA depends on the previous node and on the action there executed, and not

on an external input signal (the observation) as in the case of PDFCs, which are in fact a

generalization of PDFAs. Nevertheless, the methodology described by the authors bears some

similarities with our work. Moreover, stick-breaking priors have been used over the space of

policies for decentralized POMDPs (58). While there are similarities in the way that prior

probabilities over controllers are defined, the cited work presents a “planning as inference”

methodology for decentralized POMDPs, targeting a very different problem than the one we

consider in our work.

3.1 Dirichlet Process Prior for PDFCs

In this section, we describe the prior distribution over PDFCs that we adopt. The main idea

is to view the PDFC inference problem as clustering the transitions of a PDFC into groups, each

assigned to a node of the PDFC that represents the destination of the transitions belonging

to that group. Recall from section 2.2 that each transition is identified by a starting node, an
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action, and an observation. By determining the destination node of each transition, we have

defined the PDFC’s transition function τ .

For each starting node k = 1, 2, . . . ,∞, action g = 1, 2, . . . , |Aj |, and observation h =

1, 2, . . . , |Ωj |, the destination node is drawn from a discrete infinite probability vector π. This

vector is in turn distributed according to the stick-breaking process with concentration param-

eter α defined in Equation 2.17. For each node k = 1, 2, . . . ,∞, the corresponding emission

distribution over Aj is drawn from a symmetric Dirichlet distribution with total parameter λ.

Intuitively, the parameter λ encodes our prior belief about the entropy of the emission distribu-

tions of the PDFC: a large value of λ reflects a bias towards more stochastic action generation

functions, while lower values favor emission distribution peaked around one action. Setting

λ = |Aj | yields a non-informative (flat) prior distribution. Note that the Dirichlet distribution

is conjugate to the multinomial distribution from which actions are generated in each node.

Summarizing, we define the following hierarchical prior distribution over the space of PDFCs

Cj :

π | α ∼ GEM(α)

τ0 | π ∼ π

τkgh | π ∼ π k = 1..∞; g = 1..|Aj |; h = 1..|Ωj |

θk | λ ∼ Dir
(
λ
|A| , . . . ,

λ
|A|
)

k = 1..∞

(3.2)

An important property of the stick-breaking distribution is that the vector π can be inte-

grated out analytically.
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The derivation of the Chinese restaurant process formula carries over to this application,

making it possible to define the conditional probability of τkgh given all other previously allo-

cated transitions τ−(kjh) as:

p(τkgh = i|α, τ−(kgh)) ∝ vi for existing node i

p(τkgh = ī|α, τ−(kgh)) ∝ α for new node ī,

(3.3)

where vi is the number of transitions in τ−(kgh) that point to node i, not considering τkgh, and

including the starting node τ0, i.e.:

vi = δK(τ0, i) +
∑

(k′,g′,h′)6=(k,g,h)

δK(τkgh, i). (3.4)

As we noted in Section 2.4.4 for Dirichlet process mixture models, the CRP induces a “rich

get richer” property on the nodes of the PDFC: transitions are biased to point to nodes that

already receive a large amount of incoming transitions. This bias is not undesirable in our case:

if we imagine that each node of a PDFC is associated to a unique region of agent j’s belief

space (as is the case for POMDP controllers,) then the self-reinforcing property of the CRP

reflects the fact that some belief regions represent more common “mental states” for the agent,

such as reset states. The histograms in Figure 3 depict the number of incoming transitions (vi,

sorted in descending order) for a sample from the PDFC prior with different values of α, with

|Aj | = 3 and |Ωj | = 2.
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Figure 3. Number of incoming transition per node, sorted, with different values of α.

Strictly speaking, Equation 3.2 defines a distribution over PDFCs with infinite nodes, and

not an unbounded finite number of nodes. However, we are interested only in the finite “con-

nected component” containing the nodes that are reachable from the initial node, ignoring the

infinite subset of nodes that are not connected. Conceptually, this is akin to more conventional

DPMM priors used for clustering, where the result of inference is a finite amount of clusters,

even though the prior contemplates infinite components (see Section 2.4.3). It is useful to de-

termine analytically the probability over the effective number of nodes K induced by our prior

distribution.

3.1.1 Induced Probability of the Number of Nodes

We want to obtain the probability of K, the number of nodes that gets “instantiated” when

drawing from the prior in Equation 3.2 as a function of the concentration parameter α, the

number of actions |Aj | and observations |Ωj |. We can view the process of sampling a PDFC

from the prior recursively, starting from one single node and drawing its outgoing transitions

according to Equation 3.3, some of which may point to new nodes; we then do the same with
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the second node, if any, and so on. By “instantiated” nodes, we refer to the nodes drawn as a

result of this procedure. Since the prior is an exchangeable probability distribution, there is no

loss of generality in interpreting a draw from p(τ |α) sequentially as above.

Let us now derive the probability over the number of nodes K induced by this sequential

drawing procedure. We observe that K is the index of the first node whose outgoing transitions

τK·· all point to already existing nodes (including node K itself.) We will start from K = 1,

K = 2, K = 3, and then derive a general rule. Let us denote as Z = |Aj ||Ωj | the number of

outgoing transitions from each node. In the following, we index the transitions in the order

that they are sampled in our schema, so that transitions 1 ≤ l ≤ Z are from the first node,

transitions (Z + 1) ≤ i ≤ 2Z are from the second node, and so on. From what we described

above, we know that K = 1 if and only if all of the first node’s outgoing transitions point to

itself, i.e., no new node is generated besides the first, which is created with probability one (αα).

According to the CRP rule, the probability of this happening is:

p(K = 1|α) =
α

α

1

(1 + α)

2

(2 + α)
. . .

Z

(Z + α)
=

αZ!

α(Z+1)
, (3.5)

where α(Z+1) is the Pochhammer symbol indicating the rising factorial α(Z+1) = α(α+ 1)(α+

2)...(α+ Z).

For K = 2, it must be the case that at least one of the first node’s outgoing transitions

points to the second node, and the second node’s transitions all point to the first or second

node. The transition from the first to the second node with the lowest index, that is, the one
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that “generated” the second node when sampled, can be any of the first node’s Z outgoing

transitions, therefore:

p(K = 2|α) =
α

α(2Z)

(2Z)!

Z!

(
α · 2 · . . . · Z + 1 · α · . . . · Z + . . . + 1 · 2 · . . . · α

)
. (3.6)

The sum of products between round brackets is the combinatorial quantity whose computation

is critical in the general case.

Let us now consider K = 3: we know that there must be one transition from the first

node, having index say l ≤ Z, that points to the second node (and contributes “one α”)

and one transition indexed l < l′ ≤ 2Z that goes to the third node. This transition may

originate from either the first or second node. The sum of products resulting from all such

possible configurations of new transitions to the second and third node is needed to compute

p(K = 3|α). For a generic K, we have to consider all the “legal” configurations of the (K − 1)

“α’s” that occur in the nodes previously sampled. We formalize this concept by introducing

some definitions.

Definition 1. A configuration for a PDFC with K nodes is a binary vector

wK = (wK1 , w
K
2 , . . . , w

K
(K−1)Z) of length (K−1)Z, containing exactly (K−1) zeros. Intuitively,

the position of the first zero in this sequence identifies the first transition that was sampled to

point to the second node, the second zero indicates the transition that first points to the third

node, and so on. We denote as Lk the position of the kth zero in a configuration. By convention,

L(0) = 0.
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Therefore, LK−1 is the first transition that points to node K in a PDFC with K nodes. We

know that this transition must be drawn after the first transition to node (K − 1) is drawn.

This leads to the definition of “legal” configuration.

Definition 2. A configuration wK is legal if, for all 0 < k < K, we have that Lk−1 < Lk <

Z(K − 1). We denote as WK the set of all legal configurations for a PDFC with K nodes.

Each legal configuration wK is associated to a quantity z(wK), that is the product of the

positions of ones in the configuration, i.e. z(wK) =
∏Z(K−1)
i=1 i wKi . The combinatorial quantity

that we need for computing the probability of having K nodes, denoted as q(K), is the sum of

such quantities for all legal configurations, i.e.

q(K) =
∑

wK∈WK

z(wK). (3.7)

If q(K) is known, then the probability of having K nodes is given by

p(K|α) =
αK

α(KZ+1)

(KZ)!

((K − 1)Z)!
q(K), (3.8)

where:

• αK are the numerators of the CRP terms corresponding to transition draws that resulted

in the creation of new nodes, including the α in the first vacuous term α
α that “creates”

the first node;
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• α(KZ+1) = α(α + 1)(α + 2)...(α +KZ) is the rising factorial, resulting from the product

of the denominators of the CRP conditional distributions;

• (KZ)!
((K−1)Z)! =

(
(K − 1)Z · ((K − 1)Z + 1) · . . . ·KZ

)
are the numerators of CRP terms for

transitions outgoing from the last node K, that did not result in the creation of any new

node;

• q(K) is the sum of products of legal configurations, described above.

Figure 4 shows the probability over the number of nodes computed from Equation 3.8 when

Z = 6, for different values of α. It is clear that the expected number of nodes increases with

α. This is not surprising: a higher value of α implies a higher likelihood of sitting customers

(transitions) at a new table (node) instead of an existing one, in the Chinese restaurant analogy.

Indeed, the prior in Equation 3.2 can be intuitively described with an extension of the restaurant

analogy: instead of receiving a number N of customers, our new restaurant process starts by

receiving one customer and sitting her at the first table. This causes Z more customers to enter

the restaurant, which are seated according to the rule of the CRP. For every new table that

gets allocated, Z more customers enter the restaurant, until no new tables are created.

Figure 5 shows a histogram representing the empirical distribution of the number of nodes

K of 10000 PDFCs drawn from the prior distribution with α = 5 and Z = 6, along with a

line representing the probability computed analytically. We can see that the two distributions

converge.
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3.1.1.1 Efficient Computation

A brute-force computation of the q terms in Equation 3.8, according to the formula in

Equation 3.7, would have exponential complexity. In the following, we instead describe a way

to compute q(K) more efficiently. Let us introduce the quantity q(K, l), that represents the sum

of products z(wK) for legal configurations having the last zero in position l, i.e. LK−1 = l. Since
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the last zero in a legal configuration for a PDFC with K nodes can occur between positions

K − 1 and Z(K − 1), we have that q(K) =
∑Z(K−1)

l=K−1 q(K, l). In order to make its manipulation

easier, we decompose q(K, l) into the sum of products of the configurations truncated at index

l included, denoted as q̄(K, l), and the remaining product of the configuration (which does not

contain any zero), i.e.:

q(K, l) = q̄(K, l) (l + 1)(l + 2) . . . ((K − 1)Z). (3.9)

It follows that:

q(K) =

Z(K−1)∑
l=K−1

q̄(K, l)
((K − 1)Z)!

l!
. (3.10)

We can now derive a recursive relation for q̄(K, l) from q̄(K, l − 1). When “moving” the

position of the last α from (l − 1) to l, we have to multiply the previous q̄ by (l − 1), since in

the corresponding configuration the element wKl−1 switched from 0 to 1. Moreover, by shifting

the position of the last α to l, we must acknowledge that there are now potentially more

configurations that are legal for the first (K − 2) α’s, that is to say LK−2 can now take the

value l− 1. This is only true when l− 1 is a legal value for LK−2, i.e. when (l− 1) < (K− 2)Z.

Putting all this together, we have:

q̄(K, l) = (l − 1) q̄(K, l − 1) +


q̄(K − 1, l − 1) if (l − 1) < (K − 2)Z

0 otherwise.

(3.11)
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Computing the values of q in this way has a complexity of O(K2), much lower than O(2K)

that results from direct computation of Equation 3.7. Moreover, these values can be pre-

computed and stored, since they are not dependent on α, and used when needed.



CHAPTER 4

PDFC INFERENCE FROM FULLY OBSERVED BEHAVIOR

4.1 Learning Setup

In this chapter, we assume that agent i perfectly observes agent j’s history, i.e. the sequence

of j’s actions and observations hj1:T = (ωj1:T , a
j
1:T ). This assumption is sometimes unrealistic,

but it allows to evaluate the PDFC learning algorithm under ideal conditions. In Chapter 5,

this assumption will be relaxed and the learning algorithm extended to cope with the partially

observable case. Moreover, we assume throughout this work that agent j’s observation function

Oj is known by agent i. However, we never assume any knowledge about j’s reward function

Rj ; this makes the proposed approach very general, since it reflects agent i’s lack of knowledge

about the nature of the opponent, that could be competitive, cooperative, indifferent, or else.

The Bayesian learning of agent j’s PDFC cj , with perfect observability of j’s behavior

trajectory, can be formally defined as computing the posterior distribution:1

p(cj |hj1:T ) = p(τ, θ|ωj1:T , a
j
1:T ) =

p(aj1:T |τ, θ, ω
j
1:T ) p(τ, θ)

p(aj1:T |ω
j
1:T )

, (4.1)

where θ is a shorthand for the sequence (θ1, θ2, . . .). Notice that the product of Bayesian learning

is not one single PDFC, but instead a distribution (the posterior) over all possible PDFCs.

1Here and in the remainder of this document, we interpret τ as including the information about the
initial node τ0, unless otherwise stated.

49
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Figure 6. Graphical model representation of PDFC learning setup, with observable
observation/action pairs.

The dynamic Bayesian network in Figure 6 depicts the learning scenario graphically. We

place the prior distribution defined in Equation 3.2 over the PDFC’s parameters (τ, θ). The

rest of the conditional distributions of the model are given by the dynamics (transition and

emission function) of the PDFC being learned:

q1 | τ = τ0

at | qt, θ ∼ θqt t = 1, . . . , T

qt+1 | qt, ajt , ωjt+1, τ = τ
qta

j
tω
j
t+1

t = 1, . . . , T − 1.

(4.2)

Moreover, we place exponential hyperpriors over the concentration parameter α of the stick-

breaking distribution and the parameter λ of the symmetric Dirichlet over θk. This makes the
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learning more flexible with respect to the number of nodes and the entropy of the emission

distributions of the PDFC. Specifically, we have:

α | ζα ∼ exp(ζα)

λ | ζλ ∼ exp(ζλ).

(4.3)

4.2 MCMC Sampler for PDFC Inference

Computing the posterior distribution in Equation 4.1 is not analytically tractable. This is

usually the case for complex models in Bayesian learning. In this work, we adopt a Markov-

chain Monte Carlo (MCMC) algorithm to approximate the posterior distribution, inspired by

previous research on DPMM inference. Using a Monte Carlo method means that we will obtain

an empirical distribution that approximates the true posterior. In other words, we will obtain

an ensemble of candidate PDFCs of agent j, and not just a single model.

In general, the state of the Markov chain is a value assignment to all the PDFC parameters

that we need to learn, including the hyperparameters α and λ. However, we have seen in

Section 2.4.3 that the weight vector π ∼ GEM(α) can be integrated out analytically via the

CRP construction. Moreover, we placed a Dirichlet prior over each node’s emission parameter

θk, that is conjugate to the multinomial action generation. Therefore, the emission parameters

θ can also be integrated out analytically. Lastly, since in a PDFC the next node depends

deterministically on the value of the previous node, its action, and the new observation, there

is no need to include it explicitly in the state: the sequence q1:T can be derived at will when
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needed. The resulting collapsed state is therefore a tuple (τ, λ, α)(n), where n indicates the n-th

iteration of the MCMC algorithm.

We can devise a Gibbs sampling procedure on this space that, at each iteration, uniformly

draws a transition and re-samples its destination. Recall that a transition in a PDFC with K

nodes is identified by a starting node 1 ≤ k ≤ K, an action 1 ≤ g ≤ |Aj |, and an observation

1 ≤ h ≤ |Ωj |, and takes value τkgh. According to this schema, given a triple (k, g, h) identifying

a transition, the next state in the Markov chain is obtained by:

τ
(n+1)
kgh ∼ p(τkgh|τ (n)

−(kgh), α
(n), λ(n), ωj1:T , a

j
1:T ), (4.4)

where we note that τ−(kgh) also includes the value of the initial node τ0. We call this jumping

distribution an incremental move. The details on how to draw the new value for a single

transition are provided in Section 4.2.1.

Despite being relatively easy to implement, allowing only one transition to change at each

iteration may negatively affect the mixing time, and potentially cause the MCMC algorithm to

get stuck in local modes of the posterior distribution for long periods of time, a problem not

new in the context of Gibbs sampling for mixture models (59; 60). This is because in order to go

from a local mode to a state with higher probability, the incremental Gibbs sampler might need

to pass through a sequence of states of low probability, effectively preventing the state from

ever reaching the global mode of the posterior distribution. In DPMMs, this might prevent the
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creation of new components. In our case, incremental moves might not be sufficient to reach

the region of the space containing PDFC configurations with an adequate number of nodes.

In order to tackle this problem, we implement split-merge moves (61), that split a whole

node or collapse two nodes in a single step, thus enabling a more effective exploration of the

sample space. Split-merge moves are computationally more expensive than incremental moves,

therefore they are applied only every Rth iterations, where R is a parameter of our MCMC

algorithm. A detailed description of this step is provided in Section 4.2.2.

Additionally, the algorithm resamples the hyperparameters α and λ at each iteration. This

is done via a Metropolis-Hastings (MH) step, as detailed in Section 4.2.3.

The overall MCMC algorithm, whose structure is provided in Algorithm 1, employs a general

Gibbs sampling schema, and incorporates Metropolis-Hastings moves for splitting and merging

nodes and sampling hyperparameters. It is therefore an instance of hybrid MCMC sampling.

4.2.1 Incremental Moves

In order to perform an incremental Gibbs move, we first sample a single transition source

uniformly at random out of the K|Aj ||Ωj |+1 transitions of the PDFC in the current state, where

K is the current number of PDFC nodes. Note that the initial node τ0 is just a special case

of transition, hence the ‘+1’ above. Let the sampled transition be indexed as kgh, indicating

respectively the source node, the action, and the observation it corresponds to; the special index

‘0’ indicates the initial node.

We then proceed to sample the destination of this transition from its conditional distribution,

given the current values of all other state variables. Such destination node can be one of the
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Algorithm 1 LearnPDFC-PO

Input: ωi1:T , a
i
1:T ,M,R, S,Niter

Output: τ (1:Niter), α(1:Niter), λ(1:Niter)

. Initialize PDFC
1: τ

(1)
0 ← 1

2: τ
(1)
1gh ← 1 ∀ g = 1..|Aj |, h = 1..|Ωj |

3: α(1) ∼ exp(ζα)
4: λ(1) ∼ exp(ζλ)

. Initialize hidden sequences
5: (s1:T , a

j
1:T , ω

j
1:T )(1) ← sample-seq(τ, λ, ωi1:T , a

i
1:T )

. MCMC iterations
6: for n = 2..Niter do
7: if mod (n,R) 6= 0 then
8: τ (n) ← incremental-move(τ (n−1), α(n−1), λ(n−1), (aj1:T , ω

j
1:T )(n),M)

9: else
10: τ (n) ← split-merge(τ (n−1), α(n−1), λ(n−1), (aj1:T , ω

j
1:T )(n), S)

11: end if
12: (s1:T , a

j
1:T , ω

j
1:T )(n) ← sample-seq(τ (n), λ(n), ωi1:T , a

i
1:T )

13: (α(n), λ(n))← sample-hyperpars(τ (n), α(n−1), λ(n−1), (aj1:T , ω
j
1:T )(n))

14: end for

existing nodes or an entirely new one, that is added to the PDFC. By using Bayes rule and

applying the conditional independence encoded in the model’s structure (see Figure 6), we

obtain:

p(τkgh|τ−(kgh), ω
j
1:T , a

j
1:T , α, λ) ∝ p(τkgh|α, τ−(kgh)) p(a

j
1:T |τ, ω

j
1:T , λ), (4.5)

where as before τ−(kgh) denotes all current values of τ except the one being sampled, and

τ = τkgh ∪ τ−(kgh).

The first term of the RHS side of Equation 4.5 is the conditional prior distribution, given by

the Chinese restaurant process in Equation 3.3. The second term of the RHS is the likelihood
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that the new assignment awards to the action sequence aj1:T , given j’s observation sequence

ωj1:T . For existing nodes, this can be computed by considering that τ , aj1:T , and ωj1:T jointly

determine the value of the node sequence q1:T .

The likelihood can be then obtained as the expectation of Equation 2.8 with respect to the

measure p(θk|λ), for each node k. Since this latter density is in our model a conjugate prior

to the multinomial action generation of the PDFC, this expectation can be easily computed in

closed form as follows. Let us introduce a count matrix d, where each element dkg represents

how many times action g is generated in node k in such sequence, that is:

dkg =

T∑
t=1

δK(qt, k)δK(ajt , g). (4.6)

Given that each action is conditionally independent, we can use the properties of the

Dirichlet-multinomial model (62), and marginalize over the parameters θk’s, to obtain:

p(aj1:T |ω
j
1:T , τ, λ) =

K∏
k=1

[
Γ(λ)

Γ(dk· + λ)

|Aj |∏
g=1

Γ(dkg + λ/|Aj |)
Γ(λ/|Aj |)

]
, (4.7)

where the quantity dk· is the number of times node k is visited, i.e. dk· =
∑|Aj |

g=1 dkg.

Computing the likelihood term of assigning τkgh to a new node is more complicated. This

is because, when a new node is considered, its own outgoing transitions need to be evaluated.

According to the prior, such transitions can in turn point to some other new node, and so on

recursively. It is therefore unfeasible to sum over all the countably infinite possible transition

configurations that stem out of the new node. This situation is akin to DPMMs with non-
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conjugate priors, where the components’ parameters cannot be integrated analytically. In our

case, the parameters θk’s are given a conjugate Dirichlet prior, and hence θ can be integrated out

analytically. However, the new node’s outgoing transitions, that can be thought as additional

parameters of the nodes, cannot.

A simple solution to this problem could be the use of a Metropolis-Hastings (MH) step

instead of Gibbs to sample the new transition, similarly to the algorithm proposed in (57). In

our case, however, such method leads to slow mixing rates. A better solution is to adapt the

auxiliary variables algorithm described in (39), as described in the next section.

4.2.1.1 Incremental Gibbs Sampling with Auxiliary Variables

The key idea behind this method is to approximate the integration over possible new nodes

by sampling M candidate transition configurations for the new node (i.e. the new node’s own

outgoing transitions) from the conditional prior distribution, which is obtained by recursively

sampling from the CRP until no new node is generated. Once the likelihood of these candi-

dates is evaluated, we sample the transition τkgh from Equation 4.5, distributing α uniformly

among the M candidates, so that the total prior probability of generating a new node is still

proportional to α. In the following, we provide the details of this procedure.

For this approach to work, we need to be able to sample a number M of candidate new

nodes, that are the “auxiliary variables” the name of the method refers to. These candidate

nodes are characterized by their own outgoing transitions, which are sampled as needed from

the conditional prior distribution, given by the CRP rule in Equation 2.18. Sampling from the

CRP might in turn create additional new nodes, whose outgoing transitions need to be sampled
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Algorithm 2 sample-new-node(τ,K, k, g, h)

1: ∀k = 1..K vk ←
∣∣{k : τk′g′h′ = k

}∣∣
2: vτkgh ← vτkgh − 1
3: τkgh = K + 1
4: v ← (v1, v2, . . . , vK , 1)
5: K ← K + 1
6: k′ ← K + 1
7: while k′ ≤ K do
8: for g′ ∈ {1, . . . , |A|} do
9: for h′ ∈ {1, . . . , |Ωj |} do
10: τk′g′h′ ← Mult((v1, . . . , vK , α)) //CRP
11: if τk′g′h′ = K + 1 then
12: v ← (v1, . . . , vK , 1)
13: K ← K + 1
14: else
15: vτk′g′h′ ← vτk′g′h′ + 1
16: end if
17: end for
18: end for
19: k′ ← k′ + 1
20: end while
21: return τ

recursively, and so on until no new nodes are generated. Each candidate new “node”, in fact,

is in general a set of new nodes made reachable from the existing PDFC through the transition

τ−(kgh), rather than a single node. For this reason, we refer to each candidate configuration as

τ̃m, where m ∈ {1, . . . ,M}, indicating the whole PDFC topology resulting from attaching the

mth candidate set of new nodes thus generated to the existing PDFC. The iterative procedure

that generates each candidate new configuration is detailed in Algorithm 2.
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Using this procedure, we sample the M new candidate nodes, that are used as possible

values for τkgh, along with the set of already existing nodes. The new value for τkgh is then

sampled using the following probabilities:

p(τkhg = k′|τ−(khg), ω
j
1:T , a1:T )

∝


vi p(a1:T |τ−(kgh), τkgh = i, ωj1:T ) for i = 1, . . . ,K

α
M p(a1:T |τ̃ i−M , ωj1:T ) for i = K + (1, . . . ,M)

,

(4.8)

where the likelihood terms in the formula are computed as in Equation 4.7.

4.2.2 Splitting and Merging Nodes

This step starts by sampling two transitions uniformly at random. If these transitions point

to the same node, a split of such node is proposed, otherwise a merge of the two destination

nodes is proposed. Once a split or merge is proposed, it is accepted or rejected using the MH

criterion. It is important to propose “high-quality” splits, since it is intuitive that just splitting

the node randomly will probably not represent an improvement, and hence the move will likely

be rejected by the MH criterion. In order to do so, the algorithm described in (61) is adapted

to our case.

When splitting a node, its incoming transitions are re-directed towards either one of the

two newly created nodes using S iterations of a restricted Gibbs sampler (S is a parameter of

the algorithm,) that also samples the new nodes’ outgoing transitions. This produces a split

that reflects to some extent the observed data instead of being just randomly sampled, and
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hence has a higher chance of being accepted. A merge is proposed using a similar method, that

collapses two nodes into one and samples its outgoing transitions. The detailed description of

this procedure is provided in the next section.

4.2.2.1 Split-Merge Proposals

We provide here the details of the procedure that implements split-merge moves in our

MCMC algorithm. This procedure is inspired by (61) and adapted to our case.

Let us consider the transition function τ as a K × |Aj | × |Ωj | matrix, where K is the

current number of nodes. We will denote an element of such matrix as τu ∈ {1, . . . ,K}, with

u = (k, g, h) indicating that the PDFC will transition to the node indexed by the value of

τu starting from node indexed as k ∈ {1, . . . ,K}, after action indexed by g ∈ {1, . . . , |Aj |} is

executed and observation h ∈ {1, . . . , |Ωj |} is received.

We will describe a procedure for proposing a new matrix τ∗ from the current one. Such

matrix can be the result of splitting a node into two nodes, or merging two nodes into one.

Regardless of which type of move (split or merge) is performed, the proposed transition matrix

τ∗ is accepted stochastically according to the Metropolis-Hastings acceptance ratio, defined as

(we omit the dependence on the hyperparameters α and λ for readability):

a(τ∗, τ) = min

[
1,
q(τ |τ∗)
q(τ∗|τ)

p(τ∗)

p(τ)

p(aj1:T |τ∗, ω
j
1:T )

p(aj1:T |τ, ω
j
1:T )

]
. (4.9)

In the equation above, the prior probability terms can be computed from sequentially ap-

plying the CRP formula in Equation 2.18, and the likelihood terms are computed form Equa-
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tion 4.7. The jumping distribution q(τ∗|τ) is responsible for generating a good quality candidate

configuration.

The split-merge procedure is composed by the following steps, adapted from (61), to which

we refer for further explanation of the statistics details involved.

1. Sample a pair of indexes u = (k′, h′, j′) and w = (k′′, h′′, j′′) uniformly at random.

2. Let Z denote the set of indexes z such that τz = τu or τz = τw and z 6= u, z 6= w.

3. Define the launch states τLsplit and τLmerge by performing the following operations.

• To obtain τLsplit :

– If τu = τw (i.e. the proposed move is a split,) assign τ
Lsplit
u = K+1 and τ

Lsplit
w =

τw. Note that by K + 1 we denote a new node that is not yet instantiated.

For each z ∈ Z, assign τ
Lsplit
z to either τ

Lsplit
u or τ

Lsplit
w uniformly at random.

Sample the new slice of the transition matrix τ
Lsplit
(K+1,·,·) according to the restricted

conditional prior distribution.

If τu 6= τw (i.e. the proposed move will be a merge,) simply assign τ
Lsplit
u = τu

and τ
Lsplit
w = τw. For all indexes z ∈ Z, let τ

Lsplit
z = τz.

– Perform S iterations of the restricted Gibbs sampler starting from this state

to obtain τLsplit . The restricted Gibbs sampler is a method to propose high-

quality splits, given the observed data. It is “restricted” because it considers

only a subset of transitions on which to operate. Specifically, for each element of
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Algorithm 3 restricted-gibbs(k′, k′′, Z, ωj1:T , a
j
1:T , S)

1: for s ∈ {1, . . . , S} do
2: q ← 1
3: for z ∈ Z do
4: Sample k̄ ∼ p(τz = k|τ−z, ωj

1:T , a
j
1:T ) for k ∈ {k′, k′′}

5: τz ← k̄
6: q ← q × p(τz = k̄|τ−z, ωj

1:T , a
j
1:T )

7: end for
8: for k ∈ {k′, k′′} do
9: for g ∈ {1, . . . , |A|} do
10: for g ∈ {1, . . . , |A|} do
11: u← (k, g, h)
12: Sample ī ∼ p(τu = i|τ−u, ωj

1:T , a
j
1:T ) for i ∈ {1, . . . ,K}

13: τu ← ī
14: q = q × p(τu = ī|τ−u, ωj

1:T , a
j
1:T )

15: end for
16: end for
17: end for
18: end for
19: return τ, q

z ∈ Z, it samples the value of τz to be either node τw or (K+ 1) from the condi-

tional distribution of these assignments. Moreover, it samples the destinations

for the outgoing transitions of the two nodes above from the current set of nodes

{1, . . . ,K+1}. The details of the restricted Gibbs sampling can be found in Algo-

rithm 3, that is invoked here as restricted-gibbs(τ, τu,K+1, Z, ωj1:T , a
j
1:T , S).

• To obtain τLmerge :

– Regardless of whether τu = τw or τu 6= τw, assign τ
Lmerge
u = τ

Lmerge
w = τw. For

all indexes z ∈ Z, let τ
Lmerge
z = τw.
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– Perform S iterations of the restricted Gibbs sampler starting from this state,

obtaining τLmerge , by calling restricted-gibbs(τ, τw, τw, Z, ω
j
1:T , a1:T , S).

4. Split move.

• If τu = τw, a split move is proposed, by executing one final restricted Gibbs sampling

sweep starting from τLsplit to obtain τ split. Note that, as a result of this move (and

the intermediate Gibbs sampling sweeps performed in step 3,) the only values that

are possibly altered are τz, for each z ∈ Z, and the values in the sub-matrices

τ
(τsplitu ,·,·) and τ

(τsplitw ,·,·). Note that τ splitu = K + 1.

• Compute the proposal probability q(τ split|τ) as the restricted Gibbs sampling tran-

sition kernel from the final iteration. This is the product of the conditional prob-

abilities of the sampled values as they were being sampled during the final sweep

(the value q returned by Algorithm 3.) Compute the reverse proposal probability

p(τ |τ split) as the Gibbs sampling kernel from a hypothetical scan of the restricted

Gibbs sampler from τLmerge to the original τ .

• Compute the Metropolis-Hastings acceptance probability a(τ split, τ) and evaluate

accordingly. If the proposal is accepted, the state τ split becomes the next state of

the Markov chain, otherwise the state τ is left unchanged.

5. Merge move.
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• If τu 6= τw, a merge move is proposed, by executing one final restricted Gibbs sam-

pling sweep starting from τLmerge to obtain τmerge. Note that in this case, the only

values of τ that possibly gets altered are the elements of the sub-matrix τ(τmergew ), i.e.

the transitions departing from the new merged state.

• Compute the merge proposal probability q(τmerge|τ) as the transition kernel of the

final scan of restricted Gibbs sampling. Moreover, compute the inverse proposal

probability q(τ |τmerge) as the transition kernel of a hypothetical iteration of the

restricted Gibbs sampling, going from the split launch state τLsplit to the original

state τ .

• Compute the Metropolis-Hastings acceptance probability a(τmerge, τ) and evaluate

accordingly. If the proposal is accepted, the state τmerge becomes the next state of

the Markov chain, otherwise the state τ is left unchanged.

4.2.3 Resampling Hyperparameters

Recall from Section 4.1 that the concentration parameter α and the Dirichlet parameter λ

are distributed exponentially with parameters ζα and ζλ, respectively. We adopt a Metropolis-

Hastings procedure in order to resample their values at each iteration of Algorithm 1; the details

are described in the following.

4.2.3.1 Concentration Parameter

The concentration parameter α of the stick-breaking process employed by our prior is con-

ditionally independent from all the other variables, given the current number of nodes K of
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the PDFC. We use Metropolis-Hastings procedure to sample from the conditional distribution

p(α|K). Given the current value α, the new α∗ is proposed from a log-normal distribution with

mean ln(α) and unit variance, i.e. α∗ ∼ lnN (ln(α), 1). This proposal distribution is convenient

in that it yields a simple formula for the MH acceptance ratio. By substituting the appropriate

densities into Equation 2.14, we have the following derivation:

a(α∗, α) = min

[
1,
q(α|α∗)
q(α|α∗)

p(α∗)

p(α)

p(K|α∗)
p(K|α)

]
= min

[
1,

1
αe
− 1

2
(lnα−lnα∗)2

1
α∗ e
− 1

2
(lnα∗−lnα)2

ζαe
−ζαα∗

ζαe−ζαα
p(K|α∗)
p(K|α)

]

= min

[
1,
α∗

α

e−ζαα
∗

e−ζαα
p(K|α∗)
p(K|α)

]
.

(4.10)

Above, the likelihood terms p(K|α) and p(K|α∗) can be computed from Equation 3.8.

4.2.3.2 Dirichlet Distribution Parameter

The Dirichlet parameter λ is conditionally independent from all the other variables, given

the counts dkg of the actions executed in each node, defined in Equation 4.6.

To sample λ, we use the same method as above, obtaining the MH acceptance ratio:

a(λ∗, λ) = min

[
1,
λ∗

λ

e−ζλλ
∗

e−ζλλ
p(d|λ∗)
p(d|λ)

]
, (4.11)

where the likelihoods p(d|λ) and p(d|λ∗) are given by Equation 4.7.
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4.3 Experimental Results

4.3.1 Description of the Experimental Domains

4.3.1.1 Tiger Problem

The (single-agent) Tiger Problem was first introduced in (2), and represents one of the

most widely used example domains for POMDPs. Despite its simplicity, it incorporates all the

element typical of stochastic, partially observable planning.

In the Tiger Problem, the agent faces two doors. Behind one door is a pot of gold, while

the other hides a ferocious tiger. The state of the world is identified by the position of the

tiger, i.e. S = {TL, TR}, corresponding to the tiger being behind the left or the right door,

respectively. At each timestep, the agent can perform one of three actions: listen (L), open

the door on the left (OL), or open the door on the right (OR), that is, A = {L,OL,OR}.

Listening does not affect the position of the tiger. However, the agent receives upon listening

one of two observations: a growl from the left (GL), or a growl from the right (GR), that is,

Ω = {GL,GR}. These observations are related to the position of the tiger; specifically, the

agent perceives a growl from the direction where the tiger is with 0.85 accuracy, and receives

a “wrong” signal with 0.15 accuracy. Upon opening either door, the position of the tiger is

reset with uniform probability. When opening a door, the agent does not receive informative

growls about the position of the tiger, that is, the growls are both received with probability 0.5.

Each listening action costs the agent 1. When opening a door, the agent receives a reward of

10 if the door hides the gold, while he gets a penalty of -100 if instead the tiger is found. The

description above is summarized in Table I.
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TABLE I

SPECIFICATION OF THE TIGER PROBLEM.

Transition function:

a : L OL OR
s : TL TR TL TR TL TR

a′ :
TL 1 0 0.5 0.5 0.5 0.5
TR 0 1 0.5 0.5 0.5 0.5

Observation function:

a : L OL OR
s′ : TL TR TL TR TL TR

ω :
GL 0.85 0.15 0.5 0.5 0.5 0.5
GR 0.15 0.85 0.5 0.5 0.5 0.5

Reward function:

a : L OL OR

s :
TL -1 -100 10
TR -1 10 -100

Since the Tiger Problem is quite simple, an exact solution can be computed. If we assume

that the agent is initially completely uninformed about the position of the tiger (i.e. the initial

belief is b(TL) = 0.5,) then the optimal infinite horizon policy can be represented by a 5-node

deterministic finite-state controller, depicted in Figure 7, where the blue color identifies the

initial node. The intuition behind the agent’s policy is the following: in order to be confident
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Figure 7. Optimal policy for the single-agent Tiger Problem.

enough about the position of the tiger, the agent listens until the number of growls from one

side is at least two more than the growls from the other side.

4.3.1.2 Maze Problem

The Maze Problem is an adaptation of the 4×3 world described in (1), and is represented in

Figure 8-a. The world is composed of the cells of a 4×3 grid, with one cell blocked. The agent’s

start position is drawn uniformly at random and the agent is unaware of its own position. The

agent can move up, down left, or right at each timestep, i.e. A = {U,D,L,R}. The agent

successfully moves in the intended direction with 0.8 probability, while with 0.1 probability it

slips to either the left or the right, as represented in the right of Figure 8-a. When moving

against a wall, the agent just remains in the current location. The goal of the agent is to reach

the upper right corner of the maze, where it is awarded a reward of 1. Each move costs the

agent 0.04. There is a monster lurking in cell 7 that inflicts the agent a penalty of -1. The
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Figure 8. Representation of (a) the Maze domain, and (b) the AUAV domain.

agent senses the presence of the monster when in one of the two non-goal neighboring locations

with probability 0.8. The agent does not perceive the presence of the monster anywhere else.

Moreover, the agent knows with probability 1 when reaching cell 10, by perceiving a light that

is not perceived anywhere else. After reaching the upper right corner or being caught by the

monster, the agent’s position is reset at random and the interaction repeats. The agent is

notified with a “game over” signal when this happens.

Summarizing, there are |S| = 11 possible states of the environment, |A| = 4 actions the

agent can execute, and |Ω| = 4 possible observations. When solving this problem with a finite-

grid approximation (63), we obtain a deterministic finite state controller with |Q| = 42 nodes.

4.3.1.3 Fugitive in the AUAV Domain

This problem models a fugitive agent trying to reach a safe house located on a 5 × 5 grid,

depicted in Figure 8-b. In the multiagent version of this problem that we will introduce in
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Chapter 7 and is described in (30), an autonomous unmanned aerial vehicle (AUAV) is tasked

to intercept the fugitive, hence the name of the domain. As in the previous problem, the agent

can move in four directions, but in this case the result of these actions is deterministic, meaning

that the agent will always successfully move in the desired location if possible. The agent can

sense its position with respect to the safe house, namely whether it is north of it, south of it, or

at the same level. These observations are received with accuracy 0.8, and only when the agent

is in the proximity of the house, that is, in the four locations adjacent to it. When the agent

reaches the safe house, it receives an “end” signal and its position is reset uniformly at random

for a new round.

Summarizing, there are |S| = 25 states of the world, |A| = 4 actions available to the agent,

who can receive |Ω| = 4 observations. The controller obtained using the same method as above

has in this case |Q| = 36 nodes.

4.3.2 Experimental Analysis of MCMC Algorithm

In this section, we provide experimental results about the convergence of the MCMC algo-

rithm through its execution. We consider the value of four variables of interest for a sample

run of the algorithm in each of the three domains described above. The variables we consider

are:

• The log-likelihood of the PDFC, i.e. log
[
p(aj1:T |ω

j
1:T , τ, λ)

]
, computed from Equation 4.7,

that reflects how well the PDFC fits the observation/action trajectory of agent j.

• The number of instantiated states K.

• The value of the concentration parameter α.
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• The value of the Dirichlet distribution parameter λ.

The parameters of Algorithm 1 were set as follows: T = 512, Niter = 5000, M = 50,

R = 50, S = 2, ζα = ζλ = 0.1. We note that the values of the ζα and ζλ imply a relatively

vague distribution over α and λ, making the learning process more flexible with respect to

the number of nodes and entropy of action emission distributions. On the other hand, this

additional layer of parameters has the potential of negatively affect the mixing time. In our

experiments, however, this has shown to be negligible.

The length of the input trajectories T was set to 512. The trajectories were generated by

running a simulation of each POMDP domain with the agent acting as prescribed by the finite

state controllers described in Section 4.3.1.

Figure 9 depicts, for each problem, the values observed during a sample run of the algorithm.

For all domains, the likelihood of the models progressively increases and then stabilizes (first

row of plots, in red,) confirming the expectation that the MCMC sampler moves towards

regions of the sample space with high posterior probability, where the Markov chain reaches its

stationary regime. The number of nodes K (second row, in blue) varies through the execution,

hence demonstrating the ability of the proposed Bayesian methodology to consider PDFCs of

different size. The third rows of plots (in green) shows the value of the concentration parameter

α throughout the iterations of the algorithm. Specifically, the grey line shows the actual values,

while the bold green line is the smoothed value, that makes it easier to see trends. We can see

that the value of α follows the increase and decrease in the number of nodes K in the plots

above, which is expected given the positive correlation between α and K from Equation 3.8.
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Algorithm 1 for the three experimental domains.
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The last row (purple) of plots shows the value of the Dirichlet parameter λ, which quickly

decreases as the inference goes on. This result is meaningful: since we are using trajectories

generated by deterministic controllers, the value of λ adapts to favor PDFCs with low entropy

action generation distributions θk.

4.3.3 Convergence to the True Controllers

In this section we evaluate how “similar” the PDFCs inferred by Algorithm 1 are to the

true controllers generating the data. Defining a measure of distance between two PDFCs is not

straightforward. Here, similarity is measured with respect to the predictive action distribution,

that is, how close the predictive probability over the next action of agent j is to the true

probability. Computing the predictive probability can be formalized as a filtering task: given

a PDFC c, our current distribution over the nodes of the controller p(qt), the action that j

executes ajt , and the observation that j receives ωjt , the predictive distribution over the next

action is:

p(ajt+1|p(qt), ajt , ωjt+1, c) =
∑
qt

p(qt)
∑
qt+1

δK(qt+1, τqtajtω
j
t+1

) θ
qt+1a

j
t+1

. (4.12)

4.3.3.1 Weighted Kullbak-Leibler Divergence Between two PDFCs

To derive a well-defined accuracy measure for the predictive probability, we build on the

following intuitive idea: suppose that an agent operates according to the true controller cT , and

a second hypothetical agent does so according to the learned controller cL. The environment

only responds to the action of the first agent (the true one.) In this setting, let us denote as
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ηqLqT the co-frequency, or probability of the two agents being simultaneously in nodes qL and qT

of the respective controllers. The co-frequency can be computed as the stationary distribution

of a Markov chain whose transition function is the composition of the controllers’ parameters

and environment’s dynamics. The details of this computation are provided in Appendix A.

We then define the weighted Kullback-Leibler divergence (wKL) of the learned con-

troller cL from the true controller cT as:

wKL(cL, cT ) =
∑

(qL,qT )∈QL×QT

ηqLqT KL(θqL , θqT ), (4.13)

where KL is the Kullback-Leibler divergence between two finite discrete distributions p and q

over the same set, i.e.

KL(p, q) =
∑
i

p(i) log
p(i)

q(i)
. (4.14)

4.3.3.2 Results

The following results show the values of the weighted KL divergence of the learned PDFCs

from the true one, with respect to the length of the observation sequence Tlearn. For each of the

three domains and for each of the considered values of Tlearn, 10 learning trials were performed.

Each learning trial consists of generating a trajectory (ωj1:Tlearn
, aj1:Tlearn

) from a simulator and

calling Algorithm 1 on such sequence. The parameters of the MCMC sampler were set as above,

that is, Niter = 5000, M = 50, R = 50, S = 2, ζα = ζλ = 0.1. In each trial, the second halves

of the generated sample chains were subsampled every 100 iterations, resulting in ensembles of
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Figure 10. Weighted KL distance between the learned and the true controllers (line) and
number of nodes of learned PDFC (bars). The fourth panel reports the timing results.

25 PDFCs per trial. We computed the overall mean wKL across trials, which is reported in

Figure 10 along with the median size of the learned PDFCs.

For the Tiger Problem, we see that the wKL quickly approaches zero (Tlearn ≥ 64) and the

number of nodes stabilizes at 5, the size of the true controller. This is evidence of the fact that

for this simple case, the structure of the true controller is retrieved and the emission probability

of the nodes converge to the action generation functions of the true controller.
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For the other two problems, the wKL decreases more gradually, eventually converging

towards zero. For the AUAV problem, the number of nodes approaches the size of the true

controller (36 nodes) for long sequences. In the Maze problem, the size of the PDFCs grows

steadily but remains lower than the true size (42 nodes), even when the wKL approaches zero.

While it seems that for this problem we may need an impossibly long sequence to eventually

learn the true number of nodes, the learned PDFCs are behaviorally very close to j’s true

controller.

In order to shed some light over this result, Figure 11 reports the proportion of time spent

in each node of the true controller in the limit, sorted in decreasing order. This frequency can

be computed as the marginalized stationary distribution of the Markov chain over S×Q, whose

transitions are given by the combined dynamics of the POMDP domain and the PDFC.

We can see that the distribution decreases rapidly for the Maze problem, with less than

1% of the time spent in more than 50% of the nodes. This means that most of the complexity

of the observed agent’s behavior can be captured with fewer nodes. For the AUAV problem,

the distribution decreases more gradually, meaning that more nodes are required to accurately

describe the observed behavior. The relation between node occupancy and convergence to the

true controller is important to establish theoretical properties of learning, and will be explored

more in depth in future work.

As a further argument that, even if with fewer nodes, the PDFCs learned for the Maze

domain resemble the true controller, Figure 12 provides a co-frequency graph in which the set

of nodes on the left are the nodes of the true controller, and the nodes on the right belong to
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Figure 11. Node occupancy for Maze and AUAV problems. The vertical line indicates the
99% percentile.

a PDFC of size 16, learned with a training sequence of length Tlearn = 212. Of the 42 nodes

of the true controller, only 16 are represented explicitly, while all the others are collapsed into

one meta-node, represented as a grey rectangle in the graph, which accounts for only 3.71% of

total occupancy. The thickness of each edge (qT , qL) is proportional to the co-frequency ηqLqL .

There is almost an exact one-to-one relation between the two sets of nodes, which is especially

true for the nodes that are visited frequently. We can deduce that the smaller PDFCs that the

algorithm learns capture most of the relevant topology of the true controller, even with a much

lower number of nodes.

The bottom-right panel of Figure 10 reports the running time of the MCMC algorithm1,

which is at most linear in the amount of data considered. Notice that the growth rate for the

AUAV problem is almost constant for large values of Tlearn, while it increases for the Maze

problem, indicating higher dependence on the PDFC’s size than on Tlearn. This is due to

1Implemented in MATLAB R© and running on an Intel R© Xeon R© 2.27 GHz processor.
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Figure 13. MCMC sampling log-likelihood when split-merge moves are used and when they
are not, with respect to MCMC iteration (left) and c0mputation time (right).

optimizations in the computation of the quantities d used in Equation 4.7, which contains the

only dependency of running time on Tlearn.

4.3.4 Benefit of Split-Merge Moves

In order to show that split-merge moves increase the quality of the learning with respect to

a purely incremental Gibbs sampling approach, we compare the log-likelihood obtained using

the two methods in the Maze domain. 50 action/observation trajectories of length Tlearn = 210

were generated, and for each such sequence Algorithm 1 was run both with parameters (R =

50, S = 2) as above, and with the split-merge procedure disabled. All other parameters were set

as in the previous experiments. Figure 13-left shows the average log-likelihood throughout the

execution of the algorithm for both cases. It is clear that using split-merge moves leads to better

results in terms of mixing speed with respect to the number of iterations. However, splitting and
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merging nodes is computationally intensive and makes the algorithm slower. For this reason,

Figure 13-right reports the log-likelihood with respect to execution time (in seconds.) The

plots show that, even when considering the actual computation time, using split-merge moves

delivers superior results.



CHAPTER 5

PDFC INFERENCE FROM PARTIALLY OBSERVED BEHAVIOR

5.1 Learning with Partial Observability

In general, agent i may not be able to perfectly observe the trajectory of observations and

actions (ωj1:T , a
j
1:T ) of agent j, and instead just receive its own sequence of observations from

the environment, ωi1:T . Moreover, agent i may not be just a passive observer. Its own actions

need to be taken into consideration when learning j’s model since they can affect j’s behavior.

The sequences of world states s1:T , actions aj1:T , and j’s observations ωj1:T are related to i’s

received sequence of observations via the world’s transition and both agent’s observation func-

tions, which are here assumed to be known. We hence need to infer the posterior distribution:

p(τ, θ|ωi1:T , a
i
1:T ) =

p(ωi1:T |τ, θ, ai1:T ) p(τ, θ)

p(ωi1:T |ai1:T )
. (5.1)

The extended graphical model that represents the learning scenario in this case is depicted

in Figure 14. We place the same prior as before on the variables describing j’s PDFC, and

the conditional distributions in Equation 4.2 and Equation 4.3 still apply to this model. The

80
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Figure 14. Graphical model representation of PDFC learning setup under partial observability
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conditional distributions involving the new variables are given by the dynamics of I-POMDP

model:

st | st−1, a
i
t−1, a

j
t−1 ∼ T (st, a

i
t, a

j
t , st+1) t = 2, . . . , T

ωit | ait−1, a
j
t−1, st ∼ Oi(ait−1, a

j
t−1, st, ω

i
t+1) t = 2, . . . , T

ωjt | ait−1, a
j
t−1, st ∼ Oj(ait−1, a

j
t−1, st, ω

j
t+1) t = 2, . . . , T.

(5.2)

In order to extend the MCMC algorithm presented in Chapter 4 to the partially observable

setting, we treat the sequences s1:T , a
j
1:T , ω

j
1:T as hidden variables, whose values also need to

be inferred along with the PDFC’s parameters. Therefore, we extend the state of the MCMC

algorithm to be (τ, s1:T , a
j
1:T , ω

j
1:Tλ, α)(n), where as before (n) indicates the n-th iteration of

the algorithm. Accordingly, we add one step to the algorithm, that samples the value of the
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Algorithm 4 LearnPDFC-PO

Input: ωi1:T , a
i
1:T ,M,R, S,Niter

Output: τ (1:Niter), α(1:Niter), λ(1:Niter)

. Initialize PDFC
1: τ

(1)
0 ← 1

2: τ
(1)
1gh ← 1 ∀ g = 1..|Aj |, h = 1..|Ωj |

3: α(1) ∼ exp(ζα)
4: λ(1) ∼ exp(ζλ)

. Initialize hidden sequences
5: (s1:T , a

j
1:T , ω

j
1:T )(1) ← sample-seq(τ, λ, ωi1:T , a

i
1:T )

. MCMC iterations
6: for n = 2..Niter do
7: if mod (n,R) 6= 0 then
8: τ (n) ← incremental-move(τ (n−1), α(n−1), λ(n−1), (aj1:T , ω

j
1:T )(n),M)

9: else
10: τ (n) ← split-merge(τ (n−1), α(n−1), λ(n−1), (aj1:T , ω

j
1:T )(n), S)

11: end if
12: (s1:T , a

j
1:T , ω

j
1:T )(n) ← sample-seq(τ (n), λ(n), ωi1:T , a

i
1:T )

13: (α(n), λ(n))← sample-hyperpars(τ (n), α(n−1), λ(n−1), (aj1:T , ω
j
1:T )(n))

14: end for

three hidden sequences given the current values of all other variables, as detailed in Section

5.1.1. The overall structure of the MCMC algorithm for the partially observable case is listed

in Algorithm 4.

5.1.1 Sampling Hidden Sequences

An easy way to sample the sequence s1:T , ωj1:T , aj1:T would be to use a Gibbs sampling

schema applied to each individual variable, given the value of all the others. Although simple

to implement, this method would lead to poor mixing since it does not allow more than one

variable to change at the same time, and the amount of variables in these sequences can be
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large. We can instead sample each entire sequence in block, by adapting similar methods

used for hidden Markov models (64). It is actually possible to take this approach further,

and sampling the three sequences together and in block, given the current values of the other

variables. In order to do this, we propose a backward filtering, forward sampling procedure

(BFFS), described in the following.

We begin by noticing that at each timestep the value of the variables (st, qt) represents a

sufficient statistics, that is, all past history of all other variables can be summarized with just

these two. This is because (st, qt) make all future variables conditionally independent from past

variables, as evinced from the structure of the Bayesian network in Figure 14. Therefore, by

applying concatenation and Bayes rule, the following holds for each 1 < t ≤ T :

p(ajt−1, st, ω
j
t |st−1, qt−1, a

i
t−1:T , ω

i
t:T , τ)

∝ p(ajt−1|qt−1) p(st|st−1, a
i
t−1, a

j
t−1) p(ωjt |ait−1, a

j
t−1, st)

× p(ωit|ait−1, a
j
t−1, st) p(ω

i
t+1:T |st, qt = τ

qt−1a
j
t−1ω

j
t
, ait:T ).

(5.3)

All but the last term of the RHS in the equation above are known from the conditional

probabilities of the Bayesian network. The last term can be computed for each time step using

a variation of the backward portion of the forward-backward algorithm for HMMs (64): it

can be interpreted as a backward probability message, and represents the probability of future
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observations given the sufficient statistics at time t, denoted as ξt(st, qt). This quantity can be

computed for each 1 ≤ t ≤ T using the following recursive relation:

ξt(st, qt) = p(ωit+1:T |st, qt, ait:T )

=
∑
ajt

p(ajt |qt)
∑
st+1

p(st+1|st, ait, ajt ) p(ωit+1|ait, ajt , st+1)

×
∑
ωjt+1

p(ωjt+1|ait, ajt , st+1) p(ωit+2:T |st+1, qt+1 = τ
qta

j
tω
j
t+1
, ait+1:T )

=
∑
ajt

p(ajt |qt)
∑
st+1

p(st+1|st, ait, ajt ) p(ωit+1|ait, ajt , st+1)

×
∑
ωjt+1

p(ωjt+1|ait, ajt , st+1) ξt+1(st+1, τqtajtω
j
t+1

).

(5.4)

The computation starts at ξT (·, ·) = 1 and proceeds backwards down to t = 1. Once ξ1:T is

computed, the new values of a1:T , s1:T , and ωj1:T can be sampled using Equation 5.3, moving

forward from t = 1 to T .

5.2 Experimental Results

5.2.1 Multiagent Extension of Experimental Domains

The experimental domains introduced in Section 4.3.1 are here extended to their multiagent

versions, whose details are described in the following sections.

5.2.1.1 Multiagent Tiger Problem

We consider the two-agent extension of the Tiger Problem (Section 4.3.1.1) as introduced

in (6). There are two agents facing two doors. As before, one door hides a tiger and the other

hides gold. The reward function of the two agents is the same as before: if an agent opens the
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door that leads to the gold, it will be rewarded 10, while finding the tiger yields a penalty of 100,

and each listening action costs 1. Also, as before, each agent can hear the tiger’s growl with 0.85

accuracy. Additionally, upon listening, the agents hear a creak from the direction of the door

that the other agent opens, or just silence if the other agent is also listening. These creaks (or

lack thereof) are perceived with 0.9 accuracy. This configuration leads to an observation set for

the two agents of cardinality |Ωi| = |Ωj | = 6. The transition function is such that the position

of the tiger is reset uniformly when either agent opens the door. The formal specification of

this problem is provided in Table II.

5.2.1.2 Multiagent Maze Problem

We extend the Maze domain described in Section 4.3.1.2 to a setting with two agents. We

assume that agent j is the agent described in the single-agent setting, while agent i is the

monster that was lurking in cell 7 of the original problem. Agent i has the same set of actions

and the same moving ability of agent j, that is, it moves in the intended direction with 0.8

probability, and slips off the either side with 0.1 probability. The observation function of agent j

is the same as the one described for the single-agent setting. Agent i, instead, is able to observe

its own position exactly, and perceives j’s position with 0.9 accuracy. Note that, even though

the location of the agent j is perfectly observable by agent i, its actions are not. The goal of

agent i is to chase agent j and prevent it from reaching the upper-right corner. Specifically,

agent i receives a reward of 1 when intercepting agent j, and each step costs 0.04.
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TABLE II

SPECIFICATION OF THE MULTIAGENT TIGER PROBLEM. THE OBSERVATION
FUNCTION IS FACTORED INTO GROWLS AND CREAKS.

Transition function
(ai, aj) s TL TR
(L,L) TL 1 0
(L,L) TR 0 1

(OL, ∗) ∗ 0.5 0.5
(OR, ∗) ∗ 0.5 0.5
(∗, OL) ∗ 0.5 0.5
(∗, OR) ∗ 0.5 0.5

i’s reward function
(ai, aj) TL TR
(L, ∗) -1 -1

(OL,L) -100 10
(OL,OL) -100 10
(OL,OR) -100 10
(OR,L) 10 -100

(OR,OL) 10 -100
(OR,OR) 10 -100

j’s reward function
(ai, aj) TL TR
(∗, L) -1 -1

(L,OL) -100 10
(OL,OL) -100 10
(OR,OL) -100 10
(L,OR) 10 -100

(OL,OR) 10 -100
(OR,OR) 10 -100

i’s observation function
GROWLS CREAKS

(ai, aj) s GL GR (ai, aj) s S CL CR
(L, ∗) TL 0.85 0.15 (∗, L) ∗ 0.9 0.05 0.05
(L, ∗) TR 0.15 0.85 (∗, OL) ∗ 0.05 0.9 0.05

(OL, ∗) ∗ 0.5 0.5 (∗, OR) ∗ 0.05 0.05 0.9
(OR, ∗) ∗ 0.5 0.5 (OL, ∗) * 1/3 1/3 1/3

(OR, ∗) * 1/3 1/3 1/3

j’s observation function
GROWLS CREAKS

(ai, aj) s GL GR (ai, aj) s S CL CR
(∗, L) TL 0.85 0.15 (L, ∗) ∗ 0.9 0.05 0.05
(∗, L) TR 0.15 0.85 (OL, ∗) ∗ 0.05 0.9 0.05

(∗, OL) ∗ 0.5 0.5 (OR, ∗) ∗ 0.05 0.05 0.9
(∗, OR) ∗ 0.5 0.5



87

5.2.1.3 AUAV Reconnaissance Problem

The POMDP problem described in Section 4.3.1.3 is here extended to two agents, of which

agent j is the fugitive, and agent i is an autonomous unmanned aerial vehicle (AUAV) that is

tasked to locate the fugitive. This setup is an adaptation of the AUAV domain described in

(30). The observation and reward functions of the fugitive agent are as before. The AUAV,

who like the fugitive moves deterministically in all four directions, can observe the location of

the fugitive with 0.9 accuracy. If the AUAV is successful in intercepting the fugitive, it receives

a reward of 50, while each step has a cost of -5.

5.2.2 Observational Kullback-Leibler Divergence

In order to evaluate the performance of the MCMC algorithm in the partially observable

case, we consider a metric based on how closely the learned PDFCs can predict the next

observation of agent i, ωit+1, at each time t. The weighted KL divergence of action probabilities

that we considered in Section 4.3.3.1 is not a fair metric to use in the partially observable

setting since j’s actions aj1:T are not provided as input to the learning algorithm. While a

low value of wKL would also imply that the probability induced by the learned PDFC over

agent i’s observations resembles the probability obtained with the true controller, the opposite

is in general not true. In other words, while two models of agent j might not be behaviorally

equivalent, they could still be observationally equivalent from the perspective of agent i.

We hence derive a quantitative measure of observational similarity between two models.

Recall that wKL was defined in terms of node co-location frequency and KL divergence between

action distributions. In the partially observable case, computing the nodes’ co-location is much
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more complicated, since the composed transition probability between any two pair of nodes

would have to incorporate i’s belief update about the interactive space Q × S. Instead, we

derive an empirical measure of observational distance between two controllers. Given a PDFC

c, let us define the predictive observational distribution at each time t, given agent i’s current

belief, as:

pct,obs = pc(ωit+1|bt(st, qt), ait)

=
∑

(st,qt)

bt(st, qt)
∑
ajt

θcqt(a
j
t |qt)

∑
st+1

p(st+1|st, ait, ajt ) p(ωit+1|ait, ajt , st+1),
(5.5)

where θcq is the action distribution of node q in PDFC c. This quantity is agent i’s belief over

what observation it will receive next. Given a test trajectory of length Ttest generated by the

true controller CT , the mean observational KL divergence of a learned controller cL from

cT is defined as the empirical mean across the test sequence of the KL divergence of predictive

observation probability.

K̄Lobs(cL, cT ) =

Ttest∑
t=1

KL(pcLt,obs, p
cT
t,obs). (5.6)

We use this metric to evaluate the learning performance in the following section.

5.2.3 Results

For the three problems domains described above, the training sequences were generated by

simulating the POMDP environment without any interaction of agent i, and with the observed

agents behaving as prescribed by their optimal controllers as in 4.3.3.1, that is, assuming that
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agent j is oblivious to the presence of agent i. This assumption will be relaxed in the context

of online learning (Chapter 7).

Algorithm 4 was executed on input sequences of varying lengths, namely Tlearn = {24, 26, 28,

210} for the Tiger Problems, and Tlearn = {28, 210, 212, 214} for the Maze and AUAV domains.

For each such values, 20 sequences ωi1:Tlearn
were simulated and a run of the MCMC sampler was

executed on each of those. The parameters of the algorithm were set as in the fully observable

case, that is, Niter = 5000, M = 50, R = 50, S = 2, ζα = ζλ = 0.1, and 25 PDFCs were

sampled at regular intervals from the second halves of such runs. The learned PDFCs were

then evaluated according to the metric introduced in the previous section, computed over a

sequence of length Ttest = 210.

Figure 15 reports the mean value and 95% confidence intervals of the observational KL

divergence for each problem and sequence length, while Figure 16 reports the median size of

the learned PDFCs. As expected, K̂Lobs generally decreases as more data is used to train

the PDFCs. We observe a slight increase in the last value for the Tiger Problem, which is

nevertheless still within the confidence interval of the previous value. The dashed horizontal

lines represent the KL divergence that is obtained from a completely random model i.e. a PDFC

with one node having uniform probability over |Aj |. For all three domains, the KL divergence

obtained by training the PDFCs on longer sequences dips to only a small fraction of such value

(9.17%, 14.23%, and 17.09% respectively for the three problems,) indicating that the learned

models indeed capture important patterns in agent j’s behavior, at least as far as revealed

by i’s observation sequences. For the Maze domain, K̂Lobs is very low even when trained on



90

4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

log(Tlearn)

K̂
L

o
b
s

Tiger

 

 

8 10 12 14
0

0.1

0.2

0.3

0.4

0.5

0.6

K̂
L

o
b
s

log(Tlearn)

Maze

 

 

8 10 12 14
0

0.1

0.2

0.3

0.4

0.5

0.6

log(Tlearn)
K̂
L

o
b
s

AUAV

 

 

Random PDFC
Learned PDFCs

Figure 15. KL divergence of predictive observation probability of learned PDFCs from true
controllers: mean (line) and 95% confidence interval (vertical bars.)

relatively short sequences of 256 steps; at the same time, the size of the learned PDFCs is small

with respect to the 42 nodes of the true controller. This is in line with the results reported

for the fully observable case (Figure 10), and indicates that the behavioral patterns of agent j

are actually quite simple. This is a desirable feature of the proposed nonparametric Bayesian

learning algorithm, that is able to adjust the size of the learned controllers to the complexity

of observed behavior.
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Figure 16. Median number of nodes of the learned PDFC in the partially observable case

The median size of the inferred PDFCs is shown in Figure 16, for each problem and length

of training sequence. As expected, the number of nodes in the learned PDFCs grows with

the amount of training data. However, the PDFCs learned in this settings are usually smaller

than the ones learned with perfect observability of j’s behavior. This is because, with partial

observability, i’s perception of j’s behavior is filtered via the noisy world’s dynamics, and

therefore longer observations are needed to allow identification of the same behavioral patterns.

Figure 17 reports the running time of the algorithm for each domain and length of training

sequence. With respect to the fully observable case, the additional sequence sampling step

in Algorithm 4 makes the procedure more time consuming. Unfortunately, this sampling is

an iterative procedure that cannot be vectorized or optimized algorithmically. However, other

choices of implementation language can make the procedure much faster, and preliminary results

have shown no noticeable loss in performance if sequences are sampled less frequently than every

iteration. Moreover, the backward filtering in Equation 5.4 can be approximated via a particle
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Figure 17. Running time of Algorithm 1

filter, making the execution time independent from the size of the problem. The exploration of

faster sequence sampling methods is delegated to future work.



CHAPTER 6

PLANNING AGAINST LEARNED PDFCS

6.1 Best-Response Agents

While the previous chapters are focused on learning probabilistic deterministic finite-state

controllers of another agent, this chapter is dedicated to the use of the learned models in the

context of multiagent autonomous stochastic planning. In particular, we consider in this chapter

a two-phase scenario, in which agent i first collects data about the behavior of agent j, learns

a set of candidate PDFCs, and then exploits the learned models in its own decision making

process. This approach works under the assumption that j’s model is static, i.e. does not

change throughout its interaction with the environment, and in particular remains the same

from the observation phase into the interaction phase. This implies that j is oblivious of i’s

presence, or that j plans against a model of i that is given a priori. These assumptions are

dropped in Chapter 7, where the two agents interact and simultaneously learn about each other.

Note that we use the word “against” without necessarily implying an adversarial stance

between the two agents. Instead, what we mean is that agent i aims at finding its best

response with respect to its subjective beliefs about the other agent’s model, as in the case of

interactive POMDPs (Section 2.3). The next section provides the details on how the learned

PDFCs of agent j are embedded into agent i’s decision making process.

93
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6.1.1 Subintentional I-POMDPs

The interactive POMDP framework is general enough to accommodate different kinds of

models of other agents. As described in Section 2.3, one possibility are intentional models: the

other agents’ beliefs and preferences are modeled explicitly, and agent i’s best response with

respect to its beliefs requires to recursively solve the I-POMDP models of the other agents.

As noted before, this recursive modeling yields to a hierarchy of nested beliefs, whose depth

must be limited to a finite level in order to make the approach implementable. Even so, the

computational effort needed to solve intentional I-POMDPs is in general very high.

Instead of using intentional models of other agents1, we specialize the generic I-POMDP

framework by considering only subintentional models. As mentioned before, a subintentional

model is any stochastic process that takes as input a sequence of observation symbols ωj1:T

belonging to the set Ωj and induces a probability distribution over the sequence of actions

aj1:T from the set Aj . There is no concept of agenthood in such description: the other agents’

preferences and rationality criterion are not modeled. The focus is on prediction rather than

explanation; as such, the choice of modeling other agents as either intentional or subintentional

can be viewed in light of the general discussion about explanatory and predictive models in

statistics and artificial intelligence (see for example (65)).

1Strictly speaking, the intentional I-POMDP formalization (6) considers subintentional models side
by side with intentional models. However, how to obtain the set of possible subintentional models or
how to update them is not explicitly discussed.



95

Without getting into the merits of this general debate, we highlight in the following some

pros and cons of the two approaches in the context of I-POMDPs:

• Complexity. Using subintentional models is arguably less computationally intensive

than recursively solving other agent’s intentional models.

• Prior assumptions. Despite the intentional I-POMDP formulation is in theory very

flexible on what prior knowledge is available to the agent, practical implementations

always assume knowledge about the structure of the other agent (its frame,) and in

particular its reward function, or limit the set of possible frames to a small finite set. The

subintentional I-POMDP methodology that we propose, on the other hand, assumes no

knowledge about the other agent’s payoff structure, and about what transition function

the other agent considers; however, we assume in this work that its observation function is

known. Moreover, intentional I-POMDPs assume that the other agent is rational. There

is no such assumption when using subintentional models.

• Use of prior knowledge. If the true frame of the agent is indeed known, the subinten-

tional approach is wasteful in that it does not exploit it. Nonetheless, the subintentional

approach described in this work was explicitly designed to cope with situations where

little prior knowledge is given, and does not necessarily represent best approach to all

possible scenarios.

• Transferable knowledge. If the frame of the other agent is not fixed, intentional

modeling may provide insight into its reward function by means of belief update. Since an

agent preferences may carry over from one domain to another, this constitutes transferable
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knowledge that can be used in situations different than the one in which the knowledge

was obtained. On the other hand, subintentional models are more intricately tied to a

particular domain, and are only valid insofar the environment (or more precisely, the

modeled agent’s belief about the environment) remains unchanged. Switching to a new

domain requires the other agent’s models to be re-learned from scratch. However, it

might be possible to speculate about an agent’s preferences starting from its inferred

subintentional model, using inverse reinforcement learning methods such as the one in

(66). We leave the exploration of such possibility for future work.

6.1.2 Subintentional I-POMDPs with PDFC Models

A subintentional interactive POMDP with PDFC models of other agents is an interactive

POMDP (Equation 2.9) in which the agent function of j is implemented by a PDFC. Recall

that a model of the other agent is a tuple1 mj = (hj , fj , Oj), where hj is a history for agent j, fj

is an agent function, and Oj is an observation function. We specialize the notion of model from

the general I-POMDP case as mj = (qj , cj , Oj), where cj is a PDFC that implements the agent

function, and qj is a node of the PDFC, that summarizes the past history. Since we assume

that j’s observation model is known, an interactive state is a tuple is = (s, cj , qj). Ideally, cj

belongs to the set of all possible PDFCs. In practice, the set of PDFCs Cj that we consider is

the finite ensemble resulting from Algorithm 4. This is not a severe limitation, however: the

set Cj was indeed inferred from the set of all possible controllers by learning on past data, and

1Since there is no longer the need to keep track of complex time indexes, we switch to the more usual
notation that indicates the agent with subscripts rather than superscripts.
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hence represents an approximation of the distribution over the uncountably infinite set of all

possible PDFCs.

The formula of the I-POMDP belief update in Equation 2.10 can be rewritten as:

p(is′|ai, ωi, b) = β
∑

is : cj=c′j

b(is)
∑
aj

θcj (qj , aj) Oi(ai, aj , s
′, ωi) p(is

′|is, ai, aj), (6.1)

where β is a normalization constant, and p(is′|is, ai, aj) is the interactive transition function

defined as:

p(is′|is, ai, aj) = T (s, ai, aj , s
′)
∑
ωj

Oj(ai, aj , s
′, ωj) δK(q′j , τ

cj (qj , aj , ωj)). (6.2)

Since there is no recursion into j’s intentional models, a subintentional I-POMDP can be

flattened into a POMDP. Therefore, standard POMDP algorithms can be adapted in order to

compute a solution. However, the size of the interactive state space can be very large, even for

simple problems, since we are considering a potentially large number of models of agent j.

For this reason, we use in this work the Monte Carlo tree search method for POMDPs

(POMCP) introduced in (20) and described in Chapter 2 to solve the subintentional I-POMDPs.

The running time of the algorithm is virtually independent from the size of the problem, since

it makes use of a generator implementation of the I-POMDP rather than a flat or factorized

specification.
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6.2 Experimental Results

We demonstrate how the use of j’s learned PDFCs in agent i’s own planning improves the

agent’s performance. In this setting, j is oblivious to i’s actions, and always operates according

to its true controller. We consider the reward collected by agent i with respect to the amount

of observations used for learning j’s models. In particular, we used the same PDFCs that were

generated during the evaluation of the learning algorithm in Section 5.2.

The rewards obtained by exploiting the learned PDFCs are compared against the following

baselines:

• Uniform (U): agent i models j’s actions uniformly at random, which is equivalent to a

PDFC with single node and action distribution p(aj) = |A|−1.

• Proportional (P): i predicts j’s actions with probability given by their observed fre-

quency.

• True (T): i knows j’s true controller.

The performance of the resulting I-POMDPs was computed by averaging the total reward

collected during 1000 runs of the POMCP algorithm, with discount factor 0.9 and using 210

simulations for exploring the search tree at each step; all other POMCP parameters were set

as in (20).

Figure 18 reports agent i’s mean total reward for the three problems and the median size

of j’s PDFCs. Numbers along the x-axes indicates the base-2 logarithm of the observation size,

while letters identify baseline models. Note that as before, since the Tiger problem is much
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smaller, we consider shorter training sequences. For all problems, the performance obtained

when using the learned models of j is always higher than when using uniform or proportional

models, and approaches the upper bound (known j’s true model) with longer training sequences.

This is because, with more information available, agent i is able to learn more accurate models

that better predict j’s actions.

We underline how, even with shorter observation sequences, agent i is able to learn models

that provide a large performance gain over the random or proportional models. In particular

for the Maze problem, using only 256 observations for learning, agent i’s performance grows

to about 90% of the difference between using the true model and the random model. Similar,

albeit less extreme jumps are also observable for the other problems. This is a demonstration

that, even though learning the exact model of another agent is unattainable, especially with

realistic observability assumptions, we can still largely improve our performance by recognizing

behavioral patterns that are statistically significant and encode them in a compact model.
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CHAPTER 7

INTERLEAVED PLANNING AND LEARNING

The methodology described in the previous chapter, in which agent i first learns about agent

j’s policy, and then exploits this knowledge to provide its own best response during a subse-

quent interaction phase, is of limited application in many realistic scenarios. The underlying

assumption that agent j’s policy remains stationary, so that the models learned during the

training phase can be exploited during the interaction phase, is very strong, and rules out the

possibility that j’s policy might also be adaptive. In particular, agent j may itself be modeling

agent i, and therefore its policy may change throughout the interaction.

It is evident that endowing the agent with the capability of interleaving learning and plan-

ning is crucial for maximizing its rewards when facing unknown, possibly adaptive opponents.

The methodology we propose combines the MCMC learning algorithm presented in Chapter

5 with the POMCP algorithm described in (20) and summarized in 2.1.2, as described in the

following section.

7.1 Integrating learning and planning

The POMCP algorithm maintains a particle representation of the agent’s belief about the

state of the environment. In the context of a subintentional interactive POMDP, this means

that each particle is a triple (s, cj , qj) whose elements represent respectively the physical state

of the world, a PDFC for agent j, and a node within such PDFC. Note that s is not necessarily

101
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atomic, and may be itself composed by a set of variables. The component cj of the state belongs

to a set of candidate PDFCs Cj , that are either given to the agent before the interaction or have

been previously learned. In order to allow the agent to adapt to changing opponents, agent i

needs to be able to modify the set Cj of possible models. In the methodology we propose, this

is done by periodically re-training the PDFCs based on newly available information.

One possibility is for the agent to update the set of PDFCs at fixed time intervals. We hence

introduce the parameter ∆Tupdate, that represents the number of timesteps that separates two

updates. Each update is performed by invoking the MCMC algorithm described in Chapter 5.

However, instead of initializing the MCMC state with a single-node PDFC, one of the current

elements of Cj is used instead to “hot-start” the MCMC sampler. As a heuristic, we choose

this PDFC that results from the majority vote among the current particles in agent i’s belief

state. The choice of hot-starting the sampler means that the models learned beforehand are

not completely discarded.

The data that is used for re-training the models at each update is i’s most recent history,

going back W steps, i.e., at time t, hit−W+1:t = (ait−W :t−1, ω
i
t−W+1:t). Note that the observation

window length W and ∆Tupdate do not necessarily have the same value. The choice of these

parameters might depend on several factors, mainly based on the time available to the agent to

re-train models during execution. Ideally, agent i would like to update j’s models frequently,

so to keep up to speed even with an opponent that changes at a quick pace, but may not be

able to do so because of runtime constraints.
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7.1.1 Resampling j’s PDFCs in the POMCP algorithm

As described above, a new set of PDFCs is obtained at each timestep t multiple of ∆Tupdate,

by executing the MCMC algorithm with the observations gathered by i in the last W timesteps.

We assume that the agent’s interaction with the environment is on hold during the execution of

the learning algorithm. In order for the learned PDFCs to be synchronized when the interaction

resumes, it is important to know what node of the PDFC is occupied by agent j at time t, that

is, at the end of the training sequence. Note that this is usually different from the initial node

τ0 of a PDFC, defined as the node agent j occupies at the beginning of the training sequence.

In our setting, we assume that the sequence resampling procedure (Section 5.1.1) stores the

sampled value of qjt , so that it is readily available when interaction resumes. Accordingly, we

represent the learned PDFCs at time t as a set Ctj of pairs (cj , qj), where cj is a PDFC and qj

is the node occupied at time t.

Once a new set Ctj has been obtained, the set of unweighted particles Bt that represents

agent i’s belief in the POMCP algorithm needs to be refreshed, in order to take into account

the new models. As mentioned above, the particles in Bt form the empirical joint distribution

b̂t(s, cj , qj) over the set of world states and models of j, i.e.

b̂t =
1

|Bt|
∑

(s,cj ,qj)∈Bt
δD(s, cj , qj). (7.1)
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The set of particles is refreshed by drawing, for each particle, its new components (cj , qj)

uniformly at random from Ctj , leaving the state s unchanged. In this way, the marginalized

belief over the state of the world encoded in the existing particles is preserved.

After resampling the belief, one last operation needs to take place before resuming execution.

Recall that in the POMCP algorithm the current belief is the root of a belief sub-tree (the search

tree starting from the current belief) that was previously expanded and stored. Normally, the

subtree is retained in POMCP so that the new Monte Carlo search from the current node does

not start from scratch, and utilizes the portion of the tree that had already been expanded

under the current root. When j’s PDFCs are resampled, however, the belief subtree must

be pruned to avoid incompatibility, since it had been generated assuming a different set Cj ,

meaning that its branches extends into a state space that is different from the current, updated

one.

7.2 Experimental Results

In this section, we report the results of the experiments conducted in order to assess the

performance of online learning agents in various versions of the multiagent Tiger Problem.

7.2.1 Planning and Learning Against a Stationary Opponent

The multiagent Tiger Problem described in Section 5.2.1.1 induces a low degree of inter-

action between the two agents: for agent i, knowing agent j’s policy is only useful insofar it

reveals whether j has opened a door, so that i can infer that the state of the world might have

been disrupted by resetting the tiger with uniform probability, and therefore recently heard

growls might be uninformative. Even without any model of j, agent i would know with high
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probability whether a door has been opened due to the high reliability of creaks. This is the

reason why the reward increase for the Tiger Problem in Figure 18 is relatively smaller with

respect to the confidence interval, compared to the other two problems. If the creaks were

perfect, in fact, knowing j’s model would be completely inconsequential.

For this reason, we modify the multiagent Tiger Problem to make the agents’ rewards

directly dependent on both agents’ actions, so to increase the importance of accurate action

predictions. In this new setup, the two agents receive a reward of 50, instead of 10, when

they open the same door and find the gold. Moreover, we assume that the agents observe

each others’ last action perfectly at each timestep, that is, the creaks are perceived with 100%

accuracy for any action. Note that, even though actions are observable, the agents do not

perceive each others’ observations. The complete specification for this version of the multiagent

Tiger Problem is provided in Table III. This version of the tiger problem clearly promotes

cooperative behavior : the two agents will want to synchronize and open the same door at the

same time. In order to do so, they need to predict each others’ actions accurately.

In this section, we explore the scenario in which only one agent, i, repeatedly updates j’s

model, while j does not. We consider three different types of agent j, described in the following:

1. Agent j acts according to the optimal solution to the single-agent Tiger Problem, i.e. the

5-nodes deterministic controller in Figure 7, that we denote here as ctiger. This policy

corresponds to j being oblivious to i’s presence, or equivalently, assuming that agent i

always listens.
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TABLE III

SPECIFICATION OF THE COOPERATIVE MULTI-AGENT TIGER PROBLEM WITH
OBSERVABLE ACTIONS. THE OBSERVATION FUNCTION IS FACTORED INTO

GROWLS AND CREAKS.

Transition function
(ai, aj) s TL TR
(L,L) TL 1 0
(L,L) TR 0 1

(OL, ∗) ∗ 0.5 0.5
(OR, ∗) ∗ 0.5 0.5
(∗, OL) ∗ 0.5 0.5
(∗, OR) ∗ 0.5 0.5

i’s reward function
(ai, aj) TL TR
(L, ∗) -1 -1

(OL,L) -100 10
(OL,OL) -100 50
(OL,OR) -100 10
(OR,L) 10 -100

(OR,OL) 10 -100
(OR,OR) 50 -100

j’s reward function
(ai, aj) TL TR
(∗, L) -1 -1

(L,OL) -100 10
(OL,OL) -100 50
(OR,OL) -100 10
(L,OR) 10 -100

(OL,OR) 10 -100
(OR,OR) 50 -100

i’s observation function
GROWLS CREAKS

(ai, aj) s GL GR (ai, aj) s S CL CR
(L, ∗) TL 0.85 0.15 (∗, L) ∗ 1 0 0
(L, ∗) TR 0.15 0.85 (∗, OL) ∗ 0 1 0

(OL, ∗) ∗ 0.5 0.5 (∗, OR) ∗ 0 0 1
(OR, ∗) ∗ 0.5 0.5

j’s observation function
GROWLS CREAKS

(ai, aj) s GL GR (ai, aj) s S CL CR
(∗, L) TL 0.85 0.15 (L, ∗) ∗ 1 0 0
(∗, L) TR 0.15 0.85 (OL, ∗) ∗ 0 1 0

(∗, OL) ∗ 0.5 0.5 (OR, ∗) ∗ 0 0 1
(∗, OR) ∗ 0.5 0.5
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2. Agent j plans its actions online using the POMCP algorithm, solving a subintentional

I-POMDP that assumes a uniform random model of i. We denote this as POMCP(crand).

3. Agent j plans online with POMCP, assuming that i’s model is the 5-nodes solution to

the single-agent Tiger Problem. This is denoted as POMCP(ctiger).

In the experiments, the parameters of the POMCP algorithm were set identically for the two

agents. In particular, 212 simulations were used to select the agents’ action at each timestep.

Agent i initially assumes a completely random model of j, corresponding to a single-node PDFC

with uniform action distribution. During execution, i updates j’s models every ∆Tupdate = 500

timesteps, based on its observations and actions in the last W = 500 timesteps. The parameters

of the PDFC learning algorithm were set as follows: Niter = 2000, M = 50, R = 50, S = 2,

ζα = ζλ = 0.1. After each update, the set of PDFCs Cjt is obtained by subsampling the second

half of the MCMC realization every 100 iterations, resulting in 20 PDFCs. Each scenario was

simulated 50 times for 2500 timesteps.

Figure 19 reports the results obtained during such executions: the top row shows the rewards

obtained by both agents in the three scenarios, while the bottom plots represent the average

size of j’s PDFCs learned by agent i. The rewards are averaged over segments of 500 timesteps,

so to align with the model updates performed by agent i.

In all four cases, we can see that agent i’s performance improves as a result of learning.

This result is relevant because it shows that modeling j as a PDFC is robust with respect to

the actual process that generates j’s actions. While it is obvious that PDFCs are suitable to

model behavior that is indeed generated by a finite controller, the results presented here show
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Figure 19. Agent i learns j’s model during interaction, with j being either a PDFC or an
online planning agent that assumes some stationary model of i. Top row reports average

rewards for the agents, bottom row reports the size of j’s model as learned by i.

that PDFCs are a good choice even when the behavior is generated by a process (here, online

POMDP planning) that lies outside the space of finite state controllers. Note that, for now, we

are considering opponents that do not adapt themselves.

The results also show that the increment in i’s reward varies depending on j’s type. In the

following, we analyze each case separately.

1. j’s policy: ctiger

When j is implemented by the controller that solves the single-agent Tiger Problem, we

can see that both agents’ rewards increase by a large margin as soon as i learns about

j. The fact that j’s rewards also improve is due to the fact that we are dealing with a
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cooperative environment, and therefore an increase in i’s reward implies that j’s payoff

also goes up. In particular, agent i tries to synchronize door openings with j, and can

do so successfully when it has learned an accurate model of j’s behavior. The fact that

j’s average rewards are actually higher than i’s is somewhat counter-intuitive: how come

that agent i, who is here doing the “heavy lifting” for improving cooperation, receives a

lower reward? The reason lies in the fact that there is no competition at all between i

and j in this scenario, and i is only concerned about its own payoff; it so happens that

maximizing i’s expected rewards leads to j actually receiving an even higher payoff. To

validate this result, let us consider the hypothetical case in which i knows that j’s policy is

ctiger, and does not perform any learning. The flattened I-POMDP is small enough to be

solved by value iteration1, resulting in a 10-node finite controller. We can then compute

the expected average utility as described in Appendix B, obtaining the values 8.33 and

9.26 respectively for i and j, which are the values that the agents’ rewards converge to in

our experiment. This means that i learns j’s model and is able to provide a best response

that is as good as if it knew j’s true model

As a possible follow-up question, we may ask: does this mean that i would be better off

playing according to a simple 5-node controller, as j is doing? The answer is, obviously,

no. This is because if both agents were to play according to such policy, the expected

average reward would be just 4.59. Indeed, one could conceive a meta game-like setting

1we use the “witness algorithm” (2).
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in which the two agents have to choose their strategy (e.g. a PDFC, POMCP, POMCP

with learning, etc.) and then implement their policy. Although this seems like a fasci-

nating direction, this meta-problem takes us to game-theoretic solution concepts, which

constitute the approach to multiagent systems from which we are trying to depart in the

first place, by proposing a methodology based on decision theory.

2. j’s policy: POMCP(crand)

The plot in the middle of Figure 19 shows the rewards of the two agents when j is choosing

its actions online with the POMCP algorithm, as the best response to a completely

random model of i. Both rewards increase as a result of i learning, but j’s utility remains

substantially lower than i’s. This is due to the fact that j is planning against a model

of i that is very different from i’s actual decision process. In particular, modeling i as

random gives j more confidence when it comes to opening a door, since j believes that

at each timestep i will open the same door with probability 1/3, effectively raising the

payoff of finding the gold to 26.67. Agent i learns a model of this behavior and tries to

synchronize its own actions. Despite being agent i’s better option when facing this type

of agent, this leads to a lower utility than the previous case, in which syncing with j’s

policy led to less risk and higher payoff. Note that at the beginning the average reward

is the same for both agents, since they both have a random model of the other.

3. j’s policy: POMCP(ctiger)

The last plot on the right reports the agents’ rewards when j plans assuming that i

behaves according to the 5-node solution to the single-agent scenario. The utilities that
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the agents achieve are higher than in the previous case, and seem to mirror the utilities

observed in the first scenario that we analyzed above, with i’s rewards now being slightly

higher than j’s. This observation is indeed very interesting. Arguably, j is now adopting

the same kind of behavior that i was using in that first scenario, since its model of i is

now the same controller that i was planning against in that case (although i had to learn

such controller.) Therefore, we know there must be a policy for i that provides at least as

much reward as j collected in the first scenario, which is exactly what we see in the plot.

The charts on the bottom of Figure 19 display the mean size of the inferred PDFCs. We

can see that i learns significantly larger controllers in the third scenario. This is line with the

complexity of agent j’s true policy, especially in light of the analysis above, that describes how

in the first two settings agent j indeed follows a rather simple policy. In the third scenario, j’s

decision making becomes more involved, which causes i to learn more complex models. This

showcases the ability of our Bayesian nonparametric learning approach, that infers PDFCs

whose complexity scales with the complexity of observed data.

7.2.2 Self Play: Coordination and Discoordination

In this section, we consider the case in which both agents periodically update each others’

model. Following game theoretic terminology, we call this scenario self-play, indicating that the

same learning algorithm is employed by both agents. Our goal is to explore the dynamics that

ensue when the agents are learning about each other at the same time. For this experiments, we

use the same baseline domain as the previous section, but consider alternative reward functions

for the agents. The three reward functions we consider defines three types of agent:
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• Altruistic. This payoff function is the same as the previous section: the agent receives

a reward of 50 instead of 10 when it opens the door hiding the gold and the other agent

opens the same door.

• Indifferent. When finding the gold, this agent does not care whether the other agents

opens the same door or not, and receives a reward of 10 regardless. This reward function

is the same as for the original two-agent Tiger Problem.

• Selfish. The agent receives a reward of 50 instead of 10 when finding the gold, and the

other agent either opens the other door or listens.

Table IV formally specifies these reward functions, from the point of view of agent i.

TABLE IV

ALTERNATIVE REWARD MODELS FOR THE MULTIAGENT TIGER GAME.

“Altruistic” agent
(ai, aj) TL TR
(L, ∗) -1 -1

(OL,L) -100 10
(OL,OL) -100 50
(OL,OR) -100 10
(OR,L) 10 -100

(OR,OL) 10 -100
(OR,OR) 50 -100

“Indifferent” agent
(ai, aj) TL TR
(L, ∗) -1 -1

(OL,L) -100 10
(OL,OL) -100 10
(OL,OR) -100 10
(OR,L) 10 -100

(OR,OL) 10 -100
(OR,OR) 10 -100

“Selfish” agent
(ai, aj) TL TR
(L, ∗) -1 -1

(OL,L) -100 50
(OL,OL) -100 10
(OL,OR) -100 50
(OR,L) 50 -100

(OR,OL) 50 -100
(OR,OR) 10 -100



113

A set of experiments was conducted by considering the reward functions above to be assigned

to two agents i and j; since the observation and transition functions of this I-POMDP are

symmetric for the two agents, there are a total of 6 possible combinations. We remark here

that the agents do not know, nor model, the other agent’s reward function. Both agents plan

their actions online with the POMCP algorithm and update each others’ models every 500

timesteps, using an observation window of length 500. All parameters of the POMCP planner

and the MCMC algorithm were set as in the previous section, except that the agents interact

for 5000 timesteps. Figure 20 reports the average rewards obtained by the two agents for each

experiment, each averaged over 50 executions, while Figure 21 contains the average size of the

controllers learned by both agents. In the following, we analyze individually the results for each

combination of agent types.

7.2.2.1 Analysis of the Agent’s Behavior

• i: ALTRUISTIC, j: ALTRUISTIC

When both agents want to achieve coordination, their average reward increases quickly

(two rounds of model updates) and then stabilizes between 10 and 11. As expected,

the rewards for the two agents are the same, except for some noise, since they have the

same reward function and the environment is perfectly symmetrical. The equilibrium

behavior that is achieved consists of both agents opening a door every other action;

specifically, they open the door opposite the source of the tiger’s growl heard in the

previous timestep. We denote this behavior as aggressive, because, differently from the

single-agent Tiger Problem, the agents do not wait for two agreeing growls before opening
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Figure 22. Finite state controller for the Tiger Problem with three nodes; the agent opens a
door every other action, after only one listen.

a door. Moreover, their actions are synchronized : they both listen and then both open a

door, and so on, resulting in a highly cooperative behavior. The agents can be aggressive

because, having learned each others’ model, they are confident enough that the other

agent will likely open the same door, which increases the expected utility of opening the

door. This pair of strategies is arguably Pareto-optimal, that is, no strategy pair other

than both agents being aggressive and synchronized yields to higher payoffs for either

agent. In fact, opening a door at each timestep would be detrimental, because the agents

would have no idea about the position of the tiger, yielding to lower expected payoff. If

instead they would choose to wait longer, they would “waste” time, since in the long run

it pays off to take a higher (but calculated) risk and start over instead of waiting for

another timestep. Of course, this argument would not necessarily hold were the agents

to plan for a short finite horizon.

The fact that this pair of strategies indeed constitutes an equilibrium is confirmed by

observing that an aggressive strategy can be encoded in the 3-node deterministic controller
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in Figure 22, where the starting node is picked by assuming that the agent is initially

uninformed about the position of the tiger (i.e. has a (0.5, 0.5) belief.) Assume now

that one agent, i, models the other agent j with such controller. The resulting flattened

I-POMDP is sufficiently simple, and i’s best response policy can be computed exactly

via value iteration; we obtain that i’s best response, when i is also initially uninformed

about the location of the tiger, is the same 3-node controller. Therefore, this strategy

pair constitutes a mutual best response, that is, the two strategies are in equilibrium.

Moreover, the average expected utility of the two agents can be derived analytically, and

is equal to 10.7, which is exactly the average payoff that we observe in the reward plot.

Note that in our experiment the two agents do not know each others’ initial belief about

the tiger’s location (actually, the two agents never model each others’ beliefs explicitly;)

however, the creaks are sufficient for them to synchronize their behavior and open at

the same time. This is a remarkable result and shows that, in this problem, Pareto-

optimal cooperation emerges naturally from our methodology, without the agents having

any knowledge of each others’ payoff.

In Figure 21 we can see that the corresponding mean size of the learned PDFCs converges

to around four nodes. The fact that the PDFCs are on average slightly larger than the

3-node minimal controller that describe the agents’ behavior can be attributed to noisy

observation, and the fact that, when opening, the agents do not perceive an informative

growl, therefore their history of observations is less informative than a sequence of the

same length obtained by an agent that is always listening. Nonetheless, we can see clearly
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that the size of the inferred PDFC does not increase as time progresses, which is indicative

of the fact that the complexity of the learned controllers aligns with the complexity of

the observed behavior, thanks to the use of a Bayesian nonparametric prior.

• i: INDIFFERENT, j: ALTRUISTIC

In this scenario, j has an altruistic reward function that makes it strive for coordination,

once adequate models of i’s behavior have been learned, its rewards increase, as shown

in the corresponding plot in Figure 20. As for i, recall that an indifferent agent gets the

same reward when finding gold, regardless of what the other agent does in that timestep.

As we mentioned before, modeling another agent is inconsequential from the point of view

of an indifferent agent in this environment since the agents are perfectly informed about

each others’ past action, and can therefore determine whether the tiger’s position might

have been reset. This is why, at a first look, there is no noticeable change in i’s average

reward (green line,) although there is in fact a slight increase for t > 1000. This is due

to the fact that as i becomes more successful in coordinating its openings with j’s, the

position of the tiger is less likely to be disrupted by i while j is listening, making it easier

for j to acquire consistent observations.

We observe from Figure 21 that the size of the learned PDFCs in this scenario increases

over time, since the policy of the two agents is more involved than in the previous case of

two altruistic agents. Note that agent j’s model of i also grows in complexity, although

as mentioned above i’s model is inconsequential for j’s planning; however, j does not
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perform itself the meta-reasoning that lead us to such conclusion, and still tries to learn

accurate models of i.

• i: INDIFFERENT, j: INDIFFERENT

Two indifferent agents have no incentive to coordinate their actions. The only way in

which their actions affect each other is by resetting the position of the tiger, and since

they know exactly when this event might occur from hearing perfect creaks, their models

of each other are inconsequential. This explains why there is no significant change in their

rewards as time progresses.

• i: SELFISH, j: ALTRUISTIC

In this scenario, the two agents have conflicting goals: one agent wants to synchronize

door openings, while the other agent has the opposite goal of opening a door when the

other agent does not open the same door. We refer to this situation as discoordination.

Note that both agents are still trying to avoid the tiger and acquire the gold, so there is a

delicate balance of interests at play. The corresponding reward plot in Figure 20 reveals

an interesting dynamic, described in the following. First, let us observe that, by initially

assuming a completely random model of the other agent, the selfish agent (i) starts off

acting aggressively, that is, adopting the behavior encoded in the controller of Figure 22.

This is because i believes at each timestep that j will not open the same door with

probability 2
3 (corresponding to agent j opening the other door or listening.) In contrast,

the altruistic agent j is initially more cautious, since it attributes a probability of only 1
3

to i opening the same door. Agent i’s aggressive behavior is very easily recognized by j
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as soon as learning takes place, at which point j starts synchronizing its openings with

i’s. At the same time, i learns that j is acting cautiously, leading it to continue with its

aggressive behavior, which j has no problem taking advantage of, increasing its rewards

and sinking i’s.

At the next iteration of learning, agent i becomes aware of j’s aggressive synchronizing

behavior, and starts opening doors only immediately after hearing a creak from j, knowing

that i will be then listening, intuitively beating agent j at its own game. This has the

result of increasing j’s reward and lowering i’s, and at the same time slows down the pace

at which the agents open doors, so neither reward becomes particularly high or low.

As time progresses, the combined behavior of the two agents starts to vary from run to

run and becomes more difficult to analyze. This is due to the stochastic nature of the

environment, the agent’s planning, and their learning. However, by looking at traces from

individual runs, one could observe that the mutual modeling dynamics described above

re-emerge at irregular intervals through the agents’ interaction.

• i: SELFISH, j: INDIFFERENT

As described above, the selfish agent, i, starts behaving aggressively since the start.

Even after learning agent j’s PDFCs, the aggressive strategy remains optimal for the

agent, so there is no noticeable upward or downward trend in the agents’ rewards in the

corresponding plot in Figure 20.

• i: SELFISH, j: SELFISH

Given the fact that they both want to “avoid each other”, two selfish agents have cooper-
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ative reward functions. Arguably, their best combined strategy is to behave aggressively

in an anti-synchronization pattern, so that each agent opens a door while the other is

listening. This pair of strategies can be encoded with two 3-node controllers of the type

showed in Figure 22, with different starting nodes, that is, one agent starts with a listen

action, while the other starts by opening either door. This pair of policies can be shown

to be a best response to each other by exactly solving the resulting flattened I-POMDP

exactly from the point of view of either agent. It is easy in this case to compute the

expected utility if the two agents were indeed to use such policies, by considering that

when opening the door opposite from the direction of the perceived growl, an agent will

receive a reward of 50 with probability 0.85 (gold, not shared, since the other agent is

listening), and of -100 with probability 0.15 (tiger). Since the agent listens half the time,

with a cost of -1, the expected average payoff is 1
2 (−1 + 50 ∗ 0.85− 100 ∗ 0.15) = 13.15.

The corresponding plot in Figure 20 shows that this is indeed the average reward ob-

tained by the agents, that are able to recognize each others’ aggressive policy and start

anti-synchronizing their actions as soon as they learn about each others’ models.

The size K of the learned PDFCs has an interesting trend. From the corresponding chart

in Figure 21, we see that after learning for the first time, the PDFCs have on average

about 4 nodes, for both agents. These PDFC capture the aggressive behavior that the

two agents observe about each other in the first 500 timesteps. After learning happens

the second time at t = 1000, however, the size of the learned PDFCs drops to slightly

above two nodes. This is interesting, and is explained by the fact that when successfully
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playing an aggressive anti-synchronization policy (i.e. door openings are interleaved,) one

agent, say i, cannot speculate on what observation the other agent may have received

while i itself is opening a door, and therefore there is no observed pattern that reveals

that the other agent is opening the opposite door than the one it receives the growl

from. All is there to infer is the alternation of listening and (any) opening, which can

indeed be encoded in a PDFC with 2 nodes. Once again, this shows that the Bayesian

nonparametric prior allows the agents to learn PDFCs whose size mirrors the complexity

of observed behavior.

7.2.3 Social Dynamics: “Follow the Leader”

In this section, we consider a further variation of the multiagent Tiger Problem. As before,

the agents receive creaks at each timestep, that perfectly reveals the last action of the other

agent. Moreover, we consider the case in which both agents are “indifferent” with respect to

sharing or not sharing the gold with the other agents, that is, the reward functions are the same

as in the original multiagent Tiger Problem (6). In this case, however, the agents are endowed

with asymmetric growl observation functions: agent i receives a growl from the door hiding the

tiger with high accuracy 0.96, while agent j has a lower accuracy of only 0.7. Moreover, when

either agent opens a door, the tiger persists in its current location with 0.96 probability, instead

of being relocated uniformly at random. The formal description of this I-POMDP is provided

in Table V.

Given its high hearing accuracy, agent i only needs to hear one growl in order to be suffi-

ciently confident about the position of the tiger to open the opposite door. Because it is likely
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TABLE V

SPECIFICATION OF THE COOPERATIVE MULTI-AGENT TIGER PROBLEM IN THE
“FOLLOW THE LEADER” SCENARIO. THE POSITION OF THE TIGER IS

PERSISTENT UPON OPENINGS WITH PROBABILITY 0.96 AND THE AGENTS HAVE
ASYMMETRIC GROWL HEARING ABILITIES.

Transition function
(ai, aj) s TL TR
(L,L) TL 1 0
(L,L) TR 0 1

(OL, ∗) TL 0.96 0.04
(OL, ∗) TR 0.04 0.96
(OR, ∗) TL 0.96 0.04
(OR, ∗) TR 0.04 0.96
(∗, OL) TL 0.96 0.04
(∗, OL) TR 0.04 0.96
(∗, OR) TL 0.96 0.04
(∗, OL) TR 0.04 0.96

i’s reward function
(ai, aj) TL TR
(L, ∗) -1 -1

(OL,L) -100 10
(OL,OL) -100 10
(OL,OR) -100 10
(OR,L) 10 -100

(OR,OL) 10 -100
(OR,OR) 10 -100

j’s reward function
(ai, aj) TL TR
(∗, L) -1 -1

(L,OL) -100 10
(OL,OL) -100 10
(OR,OL) -100 10
(L,OR) 10 -100

(OL,OR) 10 -100
(OR,OR) 10 -100

i’s observation function
GROWLS CREAKS

(ai, aj) s GL GR (ai, aj) s S CL CR
(L, ∗) TL 0.96 0.04 (∗, L) ∗ 1 0 0
(L, ∗) TR 0.04 0.96 (∗, OL) ∗ 0 1 0

(OL, ∗) ∗ 0.5 0.5 (∗, OR) ∗ 0 0 1
(OR, ∗) ∗ 0.5 0.5

j’s observation function
GROWLS CREAKS

(ai, aj) s GL GR (ai, aj) s S CL CR
(∗, L) TL 0.7 0.3 (L, ∗) ∗ 1 0 0
(∗, L) TR 0.3 0.7 (OL, ∗) ∗ 0 1 0

(∗, OL) ∗ 0.5 0.5 (OR, ∗) ∗ 0 0 1
(∗, OR) ∗ 0.5 0.5
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that the tiger persists at its current location, agent i will open the same door again imme-

diately, and only after it will need to perform another listen, before possibly opening a door

again. On the other hand, agent i becomes confident enough about the tiger’s position only

after the number of growls coming from one door is 5 more than the growls coming from the

other door, assuming that it starts from a uniform belief. After opening, j needs to listen again

immediately before being able to open a door again. Moreover, agent i might open a door while

j is trying to listen, effectively further deteriorating j’s already feeble hearing ability.

Based on these considerations, the initial interaction that takes place between these two

agents is very asymmetric, with i opening doors very frequently and collecting high rewards,

and j acting more timidly and gathering very little. The initial average rewards of the two

agents in Figure 23 show that this is the case.

Recall from the analysis above that when the agents’ hearing capabilities are the same and

both are of the “indifferent” type, there is no performance improvement when the agents model

each other, since knowing what actions the other agent is about to do is inconsequential, given

that the immediate rewards depend directly only on each agent’s own actions, and the other

agent’s previous action is revealed in the next timestep.

For the scenario we consider in this section, however, we see in the plot that this is not

the case: there is a significant improvement in j’s rewards after learning about i’s model. This

is due to j’s ability to perform inference about the location of the tiger from observing i’s

actions. Intuitively, j’s reasoning is that, if agent i (who j knows has good hearing) opened a

door, it means that the gold was probably there, and it likely still is, given that it persists with
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Figure 23. Average rewards (left) and number of inferred nodes (right) for the “follow the
leader” scenario. The gray area represents the 95% confidence interval.

high probability in its location. This social dynamics has previously been analyzed from an

I-POMDP perspective using intentional models (67), and given the name “Follow the Leader”.

In the intentional case, however, it is assumed that j knows i’s reward function: it is then clear

that j is able to perform inference on the state via i actions since it knows what i’s preferences

are. In other words, j knows that i does not want to open the door that hides the tiger, and

therefore it is likely that the door it opens leads to the gold.

In our case, instead, j does not know what agent i likes or does not like, and in fact never

attempts at modeling i’s preferences. Still, j is able to increase its performance as a result of

learning about i’s policy in the form of a PDFC. This is somewhat surprising: j’s observation

function does not change as a result of learning, yet j is able to better locate the tiger by

“piggy-back riding” on i’s behavior, even though j does not know about i’s preferences. This
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is possible because, using its own (very uncertain!) past observations, j is able to recognize

a pattern between the growls, that are stochastically related to the position of the tiger, and

the creaks, that depend on i’s actions. This establishes a relation between i’s actions and the

state of the world, that is implicitly encoded in the learned PDFCs. Agent j then exploits this

pattern to effectively augment its feeble hearing.

7.2.4 Summary of Results

In this section, we summarize the main results obtained from the experiments described in

this chapter.

• Modeling another agent j as a PDFC is robust with respect to the process underlying j’s

decision making, for the case we tested, i.e. when agent is a PDFC, an online planner with

static model of i, or models i back (self play). This shows that the hypothesis space of

PDFCs and the proposed methodology are powerful enough to capture regularities even

in behaviors that are not actually generated by finite state controllers. [Section 7.2.1]

• Two learning agents in self play achieve coordination in the multiagent Tiger Problem

when their reward functions are compatible. This is remarkable because the agents do not

know anything about each others’ payoff. Coordination emerges naturally from reciprocal

modeling. [Section 7.2.2]

• In the multiagent Tiger Problem, we show an example of two learning agents with compet-

itive payoffs (discoordination) that take turns at exploiting each others’ model. [Section

7.2.2]
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• The size of the inferred PDFCs reflect the complexity of behavior exhibited by the modeled

agents. This validates the use of Bayesian nonparametrics. [Section 7.2.1, Section 7.2.2]

• A myopic (low hearing accuracy) agent is able to learn models of a more informed agent

and exploit them to increase its own payoff, by performing inference based on the other

agents’ actions (“Follow the Leader”). This effectively augments the observation capabil-

ities of the modeling agent. Again, this is remarkable because the agents do not know

each others’ reward functions: the myopic agent is able to “piggy back ride” on the more

informed agents’ actions without knowing why the latter opens a door or listens. [Section

7.2.3]



CHAPTER 8

CONCLUSION AND FUTURE DIRECTIONS

In this thesis, we presented a novel approach to planning in interactive POMDPs where

other agents are modeled as probabilistic deterministic finite controllers (PDFCs). In order to

do so, we constructed a suitable Bayesian nonparametric prior on the space of PDFCs that

allows the size of the controllers to scale with the complexity of the observed behavior. We

designed an ad-hoc MCMC learning algorithm that allows to learn accurate PDFCs representing

agents’ policies from a sequence of observations, that is in general only a noisy realization of the

modeled agent’s behavior. We showed how to embed the learned controllers in the modeling

agent’s own decision making process, adapting the general I-POMDP framework to consider

subintentional models. Moreover, we provided a methodology that allows an agent to interleave

learning about other agents and planning during execution, by combining our MCMC learning

algorithm with an online POMDP solver.

Our reported experimental results show that this type of opponent modeling allows the

planning agent to increase its performance. The results also show that when two agents are

simultaneously learning about each other, coordination can emerge naturally from our approach.

One strength of our methodology is that it can be applied to situations where the modeling

agent has little prior knowledge about the opponents’ type. In particular, we assume that the

agent is completely uninformed about their reward function. To the best of our knowledge,

this is the first approach to I-POMDPs that operates under such assumptions. Therefore, we
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consider our methodology very promising, and advocate that subintentional modeling should

be considered as a strong alternative to intentional modeling in interactive POMDPs and mul-

tiagent planning problems in general.

In the following, we provide possible directions for future research.

8.1 Truly Online PDFC Inference and Scaling Up

In this work, we show how the MCMC algorithm can be used periodically during interaction

to update the models of other agents. However, a fully embedded learning method would update

the posterior distribution over all PDFCs at each timestep during execution, and not consider

only the PDFCs that resulted from the last run of the MCMC algorithm.

We believe that a particle-based approach to learning PDFCs could fit well within the

POMCP planning algorithm. However, online sampling of nonparametric Bayesian models is

still not supported by well-developed methodologies. Nonetheless, approaches such as particle

learning (68) seem promising for being applied to our problem.

The proposed approach has been shown to work for problems of low and medium complexity.

We showed that our learning algorithm behaves well with controllers and environments each

with a few dozens states. While this may be sufficient for some applications, some real-world

problem have a higher complexity, and would make our approach too slow in time-sensitive

situations.

We believe that particle-based methods can provide as much speedup in the learning phase

as they do in online POMDP planning. Future efforts should then be focused on sequential

particle-based methods for PDFC learning, to be fully integrated within the POMCP algorithm.
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8.2 Inferring Other Agents’ Observation Function

Recall that a model of another agent in the interactive state space of an I-POMDP is

composed by an agent function and an observation function, that describes how the world

feeds that agent information in the considered model. In this thesis, we assume that the

observation function of another agent is known. However, this may sometimes not be true

in realistic situations. Relaxing this assumption while constraining the other agent’s possible

observation functions to belong to a finite set would not represent a challenge for our approach:

we would simply have to learn a different set of PDFCs for each observation function. A less

trivial problem would arise if the modeling agent would be completely noninformed about the

others’ observation functions.

To tackle this, a possibility would be to treat the observation parameters of the opponents as

yet another variable to be estimated by our Bayesian inference procedure. Since the observation

function of an agent is a set of multinomial distributions, we consider it part of the state of

the MCMC algorithm and place a Dirichlet prior over it. A preliminary investigation in this

direction can be found in our previous work (69).

Dropping the assumption of knowledge of other agents’ observation functions (and in a

strong sense, of having any prior knowledge about it) raises some questions about what is

indeed learnable. In particular, it does not seem possible, in theory, to learn both another

agent’s PDFC and its observation functions as separate entities. This is due to the fact that

the learning agent would not know which of the two elements is responsible for the modeled

agent to act a certain way. Therefore, we believe that a methodology that avoids treating the
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two separately is more appropriate. For example, a modeling agent i can attempt at learning a

combined model that directly relates its own actions and observations to the actions of another

agent, that is, learning a representation of g : (Ωi × Ai)∗ → Aj . We believe that this is an

interesting direction for future work, that would make our approach applicable under even less

stringent assumptions.

8.3 Inferring Other Agents’ Utilities

As mentioned several times in this thesis, our approach makes no assumption of knowledge

about the other agents’ preferences. This makes the approach general, but as we point out

in Chapter 6, the learned PDFCs are hardly applicable outside the domain where they were

obtained. On the other hand, learning explicitly about an agent’s preferences would instead

generate transferable knowledge that the agent can exploit in different situations.

This is similar to a problem known as inverse reinforcement learning, that has been ex-

tensively studied in the context of (fully observable) MDPs (70; 71; 72). Although there are

less results for inverse reinforcement learning in partially observable domains, we believe that

recent approaches, such as (66), can be applied to our case, making it possible to back-engineer

information about an agent’s utilities from the learned PDFC policies.
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Appendix A

COMPUTING THE NODE CO-FREQUENCY OF TWO PDFCS

Let m = (S,A,Ω, T,O,R) be a POMDP specification, and let cT = (Ω, A,QT , τT , θT , τ0T )

and cL = (Ω, A,QL, τL, θL, τ0L) be two PDFCs. We refer to to cT and cL as the true and the

learned PDFC, respectively, indicating that the world responds solely on the actions of cT . Let

us introduce the following definition.

Definition 3. The T-composition of cT and cL is a PDFC cTL = (Ω, A,QTL, τTL, θTL, τ0TL)

such that:

• QTL = QT × QL, that is, each state is defined as a pair (qT , qL) where qT ∈ QT and

qL ∈ QL.

• τTL : QTL ×A× Ω→ QTL is defined as follows: ∀ qL ∈ QL, qT ∈ QT , a ∈ A,ω ∈ Ω,

τTL((qT , qL), a, ω) = (q′T , q
′
L) ⇐⇒ τT (qT , ω, a) = q′T ∧ τL(qL, ω, a) = q′L. (A.1)

• θTL : QTL → ∆(A) is defined as follows: ∀ qL ∈ QL, qT ∈ QT , θTL((qT , qL), ·) = θT (qT , ·),

that is, the action is generated according to the true PDFC’s distribution.

• τ0TL = (τ0T , τ0L).

We next derive the transition matrix Dmc of a Markov chain whose states are given by the

cross product of the states S in POMDP m and the nodes Q in PDFC c. The transition matrix
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Appendix A (Continued)

is computed by combining the dynamics of the POMDP environment and the components of

the PDFC. We have that the probability of transitioning from a state (q, s) to a state (s′, q′) is:

p(s′, q′|s, q) = Dmc((s, q), (s
′q′)) =∑

a∈A
θc(q, a)

∑
s′∈S

T (s, a, s′)
∑
ω∈Ω

O(a, s′, ω) δK(q′, τc(q, a, ω)).

(A.2)

If Dmc represents an irreducible Markov chain, we compute its stationary distribution π.

We can then consider the marginalized distribution πQ(q) =
∑

s∈S π(s, q) and observe that the

node co-frequency ηqT qL = πQTL((qT , qL)) is indeed the marginalized distribution of the Markov

chain built in this way, by using POMDP m and the T-composition cTL of the two PDFCs cT

and cL.

Note that, even if the chain is irreducible but not aperiodic, the stationary distribution

still represents the proportion of time spent in a given node in the limit. However, if the

resulting Markov chain is not irreducible, we first have to compute its communication classes,

and derive the stationary distribution of each. We can then combine the resulting distributions

by considering the probability of the chain to reach each communication class.
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Appendix B

COMPUTING THE EXPECTED I-POMDP REWARDS OF TWO PDFC

AGENTS

Assume that we are given the description of an I-POMDP and two compliant PDFCs ci and

cj , that prescribe the behavior of agent i and j respectively. By “compliance”, we refer to the

fact that the observation and action sets of the I-POMDP and the PDFCs correspond for both

agents. We show how to compute the agents’ expected long-term average rewards, defined for

agent i as:

Ravgi = lim
n→∞

n∑
t=1

[
R̄ti|ci, cj

]
, (B.1)

where R̄t|ci, cj represents the random variable denoting the reward obtained at time t when the

agents are operating according to PDFCs ci and cj . The definition for agent j is straightforward.

First, let us define the expected immediate reward in interactive state is = (s, qi, qj) for

agent i as:

R̄i(s, qi, qj) =
∑
ai∈Ai

p(ai|qi)
∑
aj∈Aj

p(aj |qj)Ri(s, ai, aj), (B.2)

and similarly for agent j.

In order to compute the average long-term reward, we derive the combined dynamics of the

world and both agent’s PDFCs as a matrixD, whose entries are indexed by (is, is′) and represent
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the probability of transitioning from the interactive state is = (s, qi, qj) to is′ = (s′, q′i, q
′
j). We

have:

D(is, is′) =
∑
ai∈Ai

p(ai|qi)
∑
aj∈Aj

p(aj |qj)
∑
s′∈S

p(s′|s, ai, aj)

×
∑
ωi∈Ωi

p(ωi|ai, aj , s′)
∑
ωj∈Ωj

p(ωj |ai, aj , s′) δK(q′i, τ
i
qiaiωi) δK(q′j , τ

j
qjajωj ).

. (B.3)

To compute the average reward for either agent, we obtain the stationary distribution of

the Markov chain induced by D, denoted as π. As discussed in Appendix A, we need to be

careful in case the chain so defined is not irreducible.

The average reward is then computed as the expectation of rewards with respect to π, that

is simply the scalar product:

Ravgi = πR̄i. (B.4)
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