
Large Knowledge Bases and Networks: Results on Analogies and

Betweenness Centrality

BY

RAHUL KUSHWAHA

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Computer Science

in the Graduate College of the
University of Illinois at Chicago, 2014

Chicago, Illinois

Defense Committee:
Gyorgy Turan, Chair and Advisor
Robert H. Sloan, University of Illinois at Chicago
Bhaskar DasGupta, University of Illinois at Chicago



To my father & mother,

for their endless support and love.

ii



ACKNOWLEDGMENTS

I would like to thank Prof. Gyorgy Turan for his endless support since the first day of my

school. His advise in academic and professional front has helped me clear all my doubts and

fear. This work would not be possible without his excellent guidance, patience and care. I

would also like to thank Prof. Robert H. Sloan for helping me during the different phases of

Analogy Solver and providing me with great insights.

I would also like to express my gratitude to Dr. Dimitris Diochnos who allowed me to take his

research forward, a few inches. He was always there to help me regarding any topic. He is an

excellent mathematician and programmer with great explanatory skills. Special thanks goes to

Prof. Bhaskar DasGupta, who was willing to participate in my Thesis Defense and Prof. Peter

D. Turney who provided us with the analogy questions to experiment on.

Finally, I would also like to thank my parents, brothers, sisters and friends. They have al-

ways supported and encouraged me with their good wishes.

RK

iii



TABLE OF CONTENTS

CHAPTER PAGE

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 BETWEENNESS CENTRALITY . . . . . . . . . . . . . . . . . . . . . 3
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 k-Betweenness Centrality . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Complete Binary Tree . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.1 Nodes at a distance d . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.2 Total number of paths of length k through a vertex . . . . . . 15
2.3.3 Total number of paths through a vertex . . . . . . . . . . . . . 17

3 ANALOGY SOLVER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.1 A brief introduction to ConceptNet 4.0 . . . . . . . . . . . . . . 20
3.2 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2.1 Baseline Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2.2 Refinement Algorithms . . . . . . . . . . . . . . . . . . . . . . . 24
3.2.3 Spreading Activation . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2.4 Path Similarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3 The ”FIVE” Examples . . . . . . . . . . . . . . . . . . . . . . . 27
3.3.1 Question 1: Bird is to Avian as Dog is to Canine . . 27
3.3.2 Question 2: Consider is to Contemplate as Examine

is to Scrutinize . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3.3 Question 3: Weave is to Fabric as Write is to Text . 31
3.3.4 Question 4: Abbreviation is to Word as Abstract is

to Report . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.3.5 Question 5: Skull is to Head as Skeleton is to Body 35
3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

CITED LITERATURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

iv



LIST OF TABLES

TABLE PAGE

I BETWEENNESS CENTRALITY MEASURES FOR THE NODES
OF THE TREE SHOWN IN 2.1. TAKEN FROM (1). . . . . . . . . 5

II BETWEENNESS CENTRALITY MEASURES FOR THE NODES
OF THE TREE SHOWN IN 2.1. TAKEN FROM (1). . . . . . . . . 6

III TYPES OF RELATION . . . . . . . . . . . . . . . . . . . . . . . . . . 22

IV TOP 27 CONCEPTS WITH RESPECT TO DEGREE. . . . . . . . 22

V DIRECTLY CONNECTED CONCEPTS. . . . . . . . . . . . . . . . . 30

VI NUMBER OF DISTINCT OUTGOING AND INCOMING NEIGH-
BORS FOR THE VARIOUS CONCEPTS THAT APPEAR IN THE
ANALOGY CONSIDER/CONTEMPLATE. . . . . . . . . . . . . . . . . . . . 30

VII RESULTS OF THE VARIOUS COMBINATIONS OF REFINEMENT
ALGORITHMS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

VIII RESULTS OF THE PREVIOUS SIMILARITY MEASURES. TAKEN
FROM (2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

v



LIST OF FIGURES

FIGURE PAGE

1 A simple tree (1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 A simple tree in which the k-betweenness centrality of some nodes oscil-
late up and down. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 k-Betweenness Centrality for Tree in Figure 2.2 . . . . . . . . . . . . . . 7

4 A simple tree in which the k-betweenness centrality of node 1 oscillates
up & down with respect to itself. C2

B(1) = 1
15 , C3

B(1) = 2
32 and C4

B(1) =
7
42 . Therefore we can say that C2

B(1) > C3
B(1) < C4

B(1) . . . . . . . . . . 8

5 A simple path consisting of more than 2k vertices. . . . . . . . . . . . . . 9

6 A simple tree where i vertices constitute the stem and mi are tail vertices. 9

7 A simple tree where i vertices constitute the stem and mi are tail vertices. 10

8 A Complete binary tree of height H. As we can see all the nodes except
the leaf node have 2 children. The leaf nodes have the lowest height 0,
and the root has the highest, H. . . . . . . . . . . . . . . . . . . . . . . . 12

9 A complete binary tree of height H. We are looking for nodes at a
distance d not contained in the subtree formed by that node. . . . . . . 13

10 A complete binary tree of height H. The node concerned is at height h
and we are looking for nodes at a distance d not in the subtree formed
by that node. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

11 A complete binary tree of height H. T denotes the total number of nodes
in the tree whereas th denotes the total number of the nodes contained
in the subtree not including the node itself. . . . . . . . . . . . . . . . . . 17

12 A snapshot of ConceptNet 4.0 graph. . . . . . . . . . . . . . . . . . . . . 20

vi



SUMMARY

Betweenness Centrality and Analogy Solver are the main themes of this Thesis Report. In

the first part we study betweenness centrality on general trees with some results regarding the

relation between k-betweenness centrality and betweenness centrality. We also study complete

binary trees to derive some new formulas with regards to number of shortest paths through a

vertex. In the second part we provide an approach which tries to solve analogies using Con-

ceptNet 4.0. A detailed analysis of few examples and results on the data set is also provided.
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CHAPTER 1

INTRODUCTION

With the advent of Information Age, Large Networks have become an integral part our day

to day life. Whether we know it or not, but we are surrounded by it all the times. For e.g.,

Facebook uses large graph to maintain information about all their users, scientists are studying

Protein-Protein interaction networks to gain valuable insights about diseases, etc,. The Internet

is also a network made of a large number of nodes where each node can represent a computer

or a group of computers. Studying these large networks provides us with the opportunity to

explore more about the structure, properties, vulnerabilities, etc,. But this comes at a price,

every network is different in organization and features, and calls for a systematic and different

approach for the study of each one of them.

Different measures, like centrality, have been invented since a long time to generalize some of the

properties of large networks. One such centrality measure that we discuss in this thesis report is

betweenness centrality and its variant. We discuss both form theoretical and application point

of view.

From theoretical point of view, we discuss about the behavior of betweenness centrality in

complete binary trees. We also discuss some of the general properties of the complete binary

trees that can help us explore more about betweenness centrality. Betweenness centrality in

case of general tree is also is also discussed. A special section pertaining to k-betweenness

centrality is also presented where we study the study the basic definition, with some examples,

1
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and examine a particular behavior, Zig-Zag in k-betweenness centrality, found in certain trees.

Construction of such trees is also provided.

In the last section we discuss an approach using ConceptNet4.0, a large semantic network, to

solve SAT analogies. We also take help of spreading activation technique. A detailed description

of all the algorithms used is also presented in this section. We also give a list of 5 examples

that try to tell us more about the reasons for success or failures of our algorithms. We conclude

this section showing the results of the experiment.



CHAPTER 2

BETWEENNESS CENTRALITY

2.1 Introduction

Centrality indices have proved to be a very critical tool for analyzing networks . It helps us

calculate the importance, in an intuitive way, of nodes in the network with respect to other

nodes. Of the many centrality measures, we will discuss a centrality measure based on shortest

paths, defined for vertices. Betweenness centrality (CB) is measure of centrality which is the

ratio of total number of shortest paths passing through a node, excluding the paths that start

and end on the given node, to the total number of shortest paths in the network. It can also be

visualized as a relative measure of a node’s participation in a communication network assuming

that all communication takes place using shortest paths and all the nodes are communicating.

We can also interpret CB(v) as the probability that v is involved in communication. According

to (3) we can say,

Let δst(v) denote the fraction of shortest paths between s and t that contain vertex v:

δst(v) = σst(v)
σst

where σst = 1 and σst(v) = 1 or 0

where σst denotes the number of all shortest-path between s and t. Then the betweenness

centrality CB(v) of a vertex is given by:

CB(v) =
∑

s 6=v∈V

∑
t6=v∈V

δst(v)

Accordingly a node is more central in the network if more shortest paths pass through it

3
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connecting other nodes.

For instance, consider the tree that is shown below.

Figure 1. A simple tree (1).

In this example we can easily see from the table given below that the node 13 is more central

as compared to other nodes followed by 3, 6, 9, 12 and so on.
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2.2 k-Betweenness Centrality

If we limit the length of Shortest Paths, say at-most ”k”, it is called k-Betweenness Cen-

trality (CkB). It is this new localized measure which looks to provide some promising features.

A claim is made by (1) which states that CkB is an approximation for CB in large networks. This

implies that the calculation of localized values can help us make decisions about global values.

It is evidently true in the case of the tree in 2.1. Table II shows the different k-betweenness

centrality values for the tree in 2.1. As we can see in this example the k-betweenness centrality

certainly increases with increasing value of k.

But this raises a question: Is is true that k-Betweenness Centrality (CkB) is monotoni-

cally increasing with k? This may be true in some of the cases, like the example presented

before, but there are certain trees where the k-betweenness centrality values of some nodes

oscillate up and down with respect to each other. We call such a behavior as Zig-Zag in

k-Betweenness Centrality. Figure 2.2 provides a simple example of such a tree.

Calculation of betweenness centrality values for different nodes for different values of k is pre-

Node Betweenness Centrality Value (CB)

13 0.818
3, 6, 9, 12 0.303
2, 5, 8, 11 0.167
1, 4, 7, 10 0.000

TABLE I

Betweenness Centrality measures for the nodes of the tree shown in 2.1. Taken from (1).
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Node(s) CB2 CB3 CB4 CB5 CB6 = CB

13 0.273 0.506 0.709 0.788 0.818

3, 6, 9, 12 0.045 0.141 0.217 0.279 0.303

2, 5, 8, 11 0.045 0.056 0.098 0.131 0.167

1, 4, 7, 10 0.000 0.000 0.000 0.000 0.000

TABLE II

Betweenness Centrality measures for the nodes of the tree shown in 2.1. Taken from (1).

sented below in the form of a graph. Here each continuous line represent different k-betweenness

centrality values for a particular node. As we can see from the graph shown that many lines

cross each other many times indicating that their CkB values go up and down with respect to

each other. In this case it is very difficult to predict the behavior of betweenness centrality

from k-betweenness centrality.
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Figure 2. A simple tree in which the k-betweenness centrality of some nodes oscillate up and
down.

Figure 3. k-Betweenness Centrality for Tree in Figure 2.2
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Another interesting example is given in Figure 1.4 where k-betweenness centrality of a particular

vertex goes up and down with respect to itself.

Figure 4. A simple tree in which the k-betweenness centrality of node 1 oscillates up & down

with respect to itself. C2
B(1) = 1

15 , C3
B(1) = 2

32 and C4
B(1) = 7

42 . Therefore we can say that

C2
B(1) > C3

B(1) < C4
B(1)

We study such kind of behavior as these are the cases where calculating the k-betweenness

centrality (CBk ) will not help us in approximating the betweenness centrality (CB). Following

we provide a construction of such a tree where k-betweenness centrality of nodes oscillates up
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& down with respect to each other.

Claim: For every m, there exists a tree Tm and vertices vm, um such that CkB(vm) and CkB(um)

have at least m zig-zags.

Proof: Construction of a tree with k zig-zags in CkB between vertices u and v is given below:

1. Let us make a path of length of greater than 2k.

Figure 5. A simple path consisting of more than 2k vertices.

2. Consider a tree given in the picture.

Figure 6. A simple tree where i vertices constitute the stem and mi are tail vertices.
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3. Add ai to the vertex u and bi to the vertex v where subscripts of a can take only even values

and subscripts of b can take only odd values. Here we deviate from the normal convention of

using mi and denote the trees added to the vertex v as bi and trees added to the vertex u as ai.

Figure 7. A simple tree where i vertices constitute the stem and mi are tail vertices.

Pi(u) denotes the number of paths of length i passing through the vertex u.

P2i(u) ≥ ai

P2i(v) ≤ O
(
(b1 + b2 + ...+ bi−1 + k2)2

)
ai ≥ P2i(v) and

P2i+1(v) ≥ bi

P2i+1(u) ≤ O
(
(a1 + a2 + ...+ ai + k2)2

)
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bi ≥ P2i+1(u)

Here the point of consideration is that the subtree that is being added to the vertex u or v has

length and tail vertices chosen in such a way that the total number of paths of length l passing

through one vertex in will always be less than the number of paths of length l+1 passing through

the other. This will cause the k-betweenness centrality of the nodes concerned to oscillate with

respect to each other. The resulting tree will have at least k zig-zags in k-betweenness centrality

considering nodes u and v. �
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2.3 Complete Binary Tree

Complete binary tree is a binary tree in which each node has two children except the leaf

nodes. Due to this property the number of nodes at a particular height h is 2H−h where

0 ≤ h ≤ H(taking into consideration the leaf nodes) and the total number of nodes in tree is

given by 2H+1 − 1 where H is the height of tree. Here we make the assumption that height of

the tree increases from leaf nodes to the top and thus, the root node is at height H.

Figure 8. A Complete binary tree of height H. As we can see all the nodes except the leaf
node have 2 children. The leaf nodes have the lowest height 0, and the root has the highest, H.

2.3.1 Nodes at a distance d

In this section we provide an explicit formula for calculating the number of nodes at distance

d from a particular node, not contained in the subtree of that node.
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Figure 9. A complete binary tree of height H. We are looking for nodes at a distance d not
contained in the subtree formed by that node.

d: Distance d from a particular node.

∃ path of length d if: 1 ≤ d ≤ 2H − h

h: Height of the node. 0 ≤ h < H

H: Height of the Tree(calculated from the root).

f : MAX(1, dd−h2 e)

g: MIN (H − h, d)
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Claim: f ≤ g

Proof: As we know 1 ≤ d and dd−h2 e < d, so MAX(1, d−h
2 ) ≤ d

And, as 0 ≤ h < H ⇒ 1 ≤ H − h,

and 1 ≤ d ≤ 2H − h⇒ dd−h2 e ≤ H − h

So MAX(1, dd−h2 e) ≤ H − h

Therefore f ≤ g. �

What we are trying to say in the derivation below is that for calculating the number of nodes

we can go some distance in the upward direction, j, and then again go downward, d− j, which

adds to the total distance d. A point to remember is that we are always talking in terms of

complete binary tree ignoring the subtree formed by that node. The bounds for the value of j

depends on the height of the tree, height of the node and distance d.

if g < d

N =

g∑
j=f

2d−j−1 =
1

2

g∑
j=f

2d−j = 2d−1
g∑

j=f

1

2j
= 2d−1.

1

2f

g−f∑
j=0

1

2j
= 2d−1.

1

2f

(
2− 1

2g−f

)

= 2d−f − 2d−g−1
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if g = d

N =

g∑
j=f

2d−j−1 +
1

2
=

1

2

g∑
j=f

2d−j +
1

2
= 2d−1

g∑
j=f

1

2j
+

1

2
= 2d−1.

1

2f

g−f∑
j=0

1

2j
+

1

2

= 2d−1.
1

2f

(
2− 1

2g−f

)
+

1

2
= 2d−f − 2d−g−1 +

1

2
= 2d−f − 1

2
+

1

2

= 2d−f

Therefore,

N =


2d−f − 2d−g−1 if g < d

2d−f if g = d

2.3.2 Total number of paths of length k through a vertex

In this section we provide an explicit formula for calculating the total number of shortest paths

of length exactly k passing through a vertex of a complete binary tree. Lets us assume that the

vertex is at height h as all the nodes at a particular height will have the same value.

For going a distance d we can go a distance j in the upward direction and then again d− j in
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Figure 10. A complete binary tree of height H. The node concerned is at height h and we are
looking for nodes at a distance d not in the subtree formed by that node.

the downward direction. The maximum distance we can go in the upward direction is limited

to the root of the tree.

Pk =
∑b

d=a
2k−d.

(
2d−f − 2d−g−1

)
= 2k

∑b

d=a

(
1

2f
− 1

2g+1

)

a = MAX (1, k − h)

b = MIN (2H − h, k − 1)

f = MAX (1, dd−h2 e)

g = MIN (H − h, d)

Using the above formula we can find the k-betweenness but the use of Max, Min, Ceiling in

the summation presents us with a lot of cases to handle and prevents getting the closed form.
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In future we plan to use to use this formula for determining whether Complete Binary Trees

exhibit zig-zags in k-betweenness centrality.

2.3.3 Total number of paths through a vertex

In this section we provide an explicit formula for calculating the total number of paths passing

through a vertex of a complete binary tree.

Let th = number of children nodes of vertex including children, grand children and so on.

Figure 11. A complete binary tree of height H. T denotes the total number of nodes in the
tree whereas th denotes the total number of the nodes contained in the subtree not including

the node itself.
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th = 21 + 22 + ...+ 2h = 2h+1 − 2

Let T denote the total number of vertices in the tree. T = 2H+1 − 1.

Therefore, total number of shortest paths through a node at height h is given by

P = (2H+1 − 2h+1)(2h+1 − 2) + (2h − 1)2

where (2H+1 − 2h+1)(2h+1 − 2) denote the total number of paths from the subtree to the rest

of the tree and (2h − 1)2 denote the number paths in the subtree itself.



CHAPTER 3

ANALOGY SOLVER

What is an Analogy?

An analogy is of the from A : B :: C : D which means A is to B as C is to D. For example,

Ruler : Line :: Compass : Circle, says that a ruler is used to draw a line and in the same way

compass is used to draw a circle. In other words we can say that the features that are used to

connect A to B are the same as those that are used to connect C to D. Usually an analogy is

given in the form of an example word pair and some options.

Given: Ruler : Line

A. Stamp : Letter

B. Period : Dot

C. Key : Door

D. Compass : Circle

E. Thermometer : Degree

where A to E are options to select from.

In the above example To Draw is the feature that connects Ruler to Line and the same

feature also connects Compass to Circle.

19
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3.1 A brief introduction to ConceptNet 4.0

It is a large semantic Network in which each node represents a concept. A concept is connected

to other concepts using some predefined relations.

Figure 12. A snapshot of ConceptNet 4.0 graph.
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For instance,

Concept1: Fish

Concept2: SeaCreature

Relation: IsA

Concept1 and Concept2 represent 2 nodes to the ConceptNet 4.0 which are connected by a

relation ”IsA”. ConceptNet 4.0 permits directed relations which says that that if Concept1 is

connected via a particular relation to Concept2. It doesn’t necessarily imply that Concept2 is

connected to Concept1 via the same relation. It also permits multiple relations between 2 nodes.

For the work contained in this thesis we are working with a sparse multi graph representation

of ConceptNet 4.0. There are a total of 279497 concepts in the graph. For more details on the

graph and ConceptNet 4.0 refer (4). Some of the simple properties of graph are shown in the

table.
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Relation General Idea

HasFirstSubevent What do you do first to accomplish it?

HasLastSubevent What do you do last to accomplish it?

HasPrerequisite What do you need to do first?

MadeOf What is it made of?

IsA What kind of thing is it?

AtLocation Where would you find it?

UsedFor What do you use it for?

CapableOf What can it do?

MotivatedByGoal Why would you do it?

Desires What does it want?

ConceptuallyRelatedTo

DefinedAs How do you define it?

InstanceOf *What type of thing is it a specific example of?

SymbolOf

HasA

CausesDesire What does it make you want to do?

Causes What does it make happen?

HasSubevent What do you do to accomplish it?

HasProperty What properties does it have?

PartOf What is it part of?

ReceivesAction What can you do to it?

InheritsFrom

CreatedBy How do you bring it into existence?

HasPainCharacter *What is the character of pain associated with it?

HasPainIntensity *What is the intensity of pain associated with it?

LocatedNear

SimilarSize

TABLE III

Types of Relation

Concept Degree

person 19,172

something 2,893

human 1, 794

this 1, 637

child 1, 500

fun 1, 378

water 1, 366

book 1, 241

it 1, 208

man 1, 204

dog 1, 152

money 1, 133

party 1, 128

paint 1, 124

music 1, 123

horse 1, 122

car 1, 114

write 1, 095

house 1, 089

dance 1, 076

food 1, 042

cat 1, 010

exercise 986

animal 971

eat 960

drink 927

home 906

TABLE IV

Top 27 Concepts with respect to
degree.
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3.2 Algorithms

In this section we provide the pseudo code of algorithms used to solve the analogies. In each

section we provide the basic outline of the algorithm.

3.2.1 Baseline Algorithm

The very first algorithm that we would like to mention is the baseline algorithm which is a

main component binding together various small algorithms. Only those analogies are tested for

which all the concepts are present in the graph.

Algorithm 1 BaseLine Algorithm

// Stem Concept pair is the given concept pair in the Analogy.

// Candidate Pairs are the options given with the Analogy.

1: ConceptsPresent ← Check whether all the concepts present in the Analogy

question are present in the graph(ConceptNet4.0).

2: if ConceptsPresent is true then
3: StemDirectlyConnected ← Check whether the Concept Pair given in the

Question are Directly Connected.

4: if StemDirectlyConnected is true then
5: RelationsS ← Get all the relations connecting the stem concept pairs.

6: for Each Candidate Concept Pair Ci1, Ci2 do
7: RelationsCi ← Get all the relations connecting Ci1, Ci2.

8: χ← 0
9: for Each RelationsCi do
10: if RelationsCi = RelationsS then
11: χ← χ+ 1

12: if χ 6= 1 then
13: Run Refinement Algorithms

14: else
15: Output the matching Candidate.

16: else
17: Run Spreading Activation based Algorithm
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Algorithm 2 Refinement Algorithm 1: NeighborHood Similarity

1: S = S1, S2 Stem Concept Pair

2: for Each Candidate Concept Pair Ci1, Ci2 do
3: s1 ← Calculate the number of Shared Neighbors between Ci1 and S1.
4: s2 ← Calculate the number of Shared Neighbors between Ci2 and S2.
5: Γi ← s1 + s2
6: if Unique Maximum Γ exists then
7: return χ← Maximum value of Γ
8: else
9: return Randomly any Maximum Value

3.2.2 Refinement Algorithms

In this section we provide 2 algorithms which help in resolving ties. The first Refinement Algo-

rithm that we have is the NeighborHood Similarity. In essence this algorithm computes the

number of common/shared neighbors between the respective concepts in the stem concept pair

and candidate concept pairs. The candidate which has the highest number of shared neighbors

is chosen. Again if we have any ties between the candidates, we randomly choose any candidate

which has the maximum value.

The second refinement algorithm that we use is the Squared Euclidean Distance.

The idea is that we treat as features the ratios of the relations for incoming and outgoing edges in

order to characterize the similarity between different concepts. Here the NormalizedRelationVector

is normalized vector that shows the distribution of edges and has size 2.27 = 54 where the first

27 are for Incoming Edges and second 27 for Outgoing edges. Each entry in the vector indicates

the ratio of the type of edges that are coming into the node or going out form the node. Here
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Algorithm 3 Refinement Algorithm 2: Squared Euclidean Distance

1: rs1 ← NormalizedRelationVector(S1)
2: rs2 ← NormalizedRelationVector(S2)
3: for Each Candidate Concept Pair Ci1, Ci2 do
4: Γi ← 0
5: rci1 ← NormalizedRelationVector(ci1)
6: rci2 ← NormalizedRelationVector(ci2)
7: Γi ← SquaredEuclidean(rs1, rci1) + SquaredEuclidean(rs2, rci2)

8: if Unique Minimum Γ exists then
9: return χ← Minimum value of Γ
10: else
11: return Randomly any Minimum Value

we calculate the Squared Euclidean Distance between the vectors and choose the Candidate

Pair which reduces this distance.

3.2.3 Spreading Activation

When the Concepts in the Stem are not directly connected we use the spreading activation

technique. During this phase we perform spreading activation starting with stem concept pair

which provides a modified graph as output. This new graph contains activation values for each

node. We need to extract Primary Paths from this modified graph. By Primary Path we

mean the paths which receive highest activation. We can use Dijkstra Shortest path algorithm

to find primary paths. But to convert the problem of finding paths of highest activation to

the problem of finding paths of minimum weight we subtract some initial value, I, from each

node’s activation value. These paths are of the form [Stem Concept 1] − > [Related Via]
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− > [Concept i] − > ..... − > [Related Via] − > [Stem Concept 2].

For instance,

1: architect (46965, 41287) >-(Related Via) 10-> design (6756, 6175)

>-(Related Via) 4-> blueprint (119899, 104550)

Each path provides an array of relations that can be used to connect the two concepts. These

relation are directed. After we have the paths between the stem concepts we try to find the

”Same Path” between the candidate pairs. Here ”Same Path” implies that the sequence of

relations that are used to connect the stem concept pair is also connecting the candidate pair

maintaining the direction and order of relations. If more than 1 candidate pairs satisfy this

constraint we again resort to refinement algorithms for resolving ties. Only the tied candidate

pairs are sent to the refinement algorithms.

3.2.4 Path Similarity

This is a very simple algorithm where we find a measure of similarity between the primary path

of the stem concept pair and candidate concept pair. The ides used here is the same as that

of the NeighborHood Similarity but instead of using the stem concept pairs and candidate

pairs as reference we use the concepts that are on the path. This algorithm is only used to

resolve ties when we are able to find multiple candidate pairs which are connected by the same

primary path.
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Algorithm 4 Spreading Activation

1: S = S1, S2 Stem Concept Pair

2: Tie← 0
3: ModifiedGraph ← Run Spreading Activation using S1 and S2 as the Starting

Nodes.

// After running Spreading Activation nodes of the graph will have

// Activation Values.

4: for Each Node u ∈ModifiedGraph do
5: ActivationValue(v)← I−ActivationValue(v)

// Here I is some Initial value which is greater than the Max

// ActivationValue

6: PrimaryPath← Run Dijkstra Algorithm to return Minimum Weight Path.

7: for Each Candidate Concept Pair Ci1, Ci2 do
8: Γi ← Check if the same path exists between the Candidate Concept Pairs

considering only the type and direction of links.

9: if Γi is True then
10: Tie← Tie+ 1

11: if then|Tie| = 1
12: return True(Γ)
13: else
14: Run Refinement Algorithms on Tied Options.

3.3 The ”FIVE” Examples

In this section we provide detailed analysis of 5 sample analogy questions. We present the both

the cases: success or failure.

3.3.1 Question 1: Bird is to Avian as Dog is to Canine

We are given the following:

Ex] bird (756) :: avian (177790)

A) plant (649) :: tropical (44522)

B) meat (1586) :: carnivorous (46038)
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Algorithm 5 Path Similarity

1: Let Ps = {s1, s2...} be the concepts on the Primary Path between the Stem

Concept Pair.

2: for Each Concept Ci1, Ci2 do
3: Let Pi = {c1, c2...} be the Path between the Candidate Concept Pair Ci1, Ci2
4: Γi ← 0
5: for Each Concept ci ∈ Pi do
6: s← NeighborHood Similarity(ci, si)
7: Γi ← s+ Γi
8: if Unique Maximum Γ exists then
9: return χ← Maximum value of Γ
10: else
11: return Randomly any Maximum Value

C) snake (326) :: slippery (3830)

D) dog (482) :: canine (41066)

E) lung (6631) :: amphibian (16006)

Answer: D

The Concepts in the question are directly connected.

The answer to the given analogy is: D

This is the case where all the concept pairs are directly connected in the graph via a single

edge. Here the relation that is used to connect Bird to Avian is also used to connect dog

to canine. Also the other candidate concept pairs are directly connected but they don’t have

such a relation connecting them. So our algorithm directly outputs the answer. A point to note

is that no refinement algorithm is used in this case as we don’t encounter any ties between the

Candidates.
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3.3.2 Question 2: Consider is to Contemplate as Examine is to Scrutinize

No Refinement Algorithm is used in this case also.

Ex] consider (20870) :: contemplate (1521)

A) smile (1362) :: greet (23369)

B) write (1625) :: compose (26303)

C) complain (30064) :: bicker (128151)

D) examine (22640) :: scrutinize (44370)

E) ignore (20165) :: notice (36883)

Answer: D

The Concepts in the question are directly connected.

The answer to the given analogy is: B

In this case we make a mistake as all the concepts are directly connected. But the relation that is

used to connect Consider to Contemplate is not present between Examine and Scrutinize.

Rather different relations, IsA and HasProperty, connects Write and Compose. The same

relations are present between Consider andContemplate, so we output the answer B. This

type of analogy is typically very hard for ConceptNet4.0 to answer using the current approach.

Again as there are no ties no refinement algorithm is used here.



30

option concept 1 concept 2 forward rels backward rels

given consider contemplate HasProperty (20)
IsA (5)

(a) smile greet

(b) write compose HasProperty (20)
IsA (5)
ConceptuallyRelatedTo (12)

(c) complain bicker

(d) examine scrutinize Causes (18)
(e) ignore notice

TABLE V

Directly connected concepts.

concept # outgoing neighbors # incoming neighbors

consider 30 3
contemplate 134 22

smile 163 151
greet 4 25

write 642 146
compose 0 2

complain 6 15
bicker 0 1

examine 581 19
scrutinize 0 2

ignore 1 7
notice 52 19

TABLE VI

Number of distinct outgoing and incoming neighbors for the various concepts that appear in
the analogy consider/contemplate.
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3.3.3 Question 3: Weave is to Fabric as Write is to Text

Ex] weave (54095) :: fabric (1644)

A) illustrate (35440) :: manual (102080)

B) hang (29962) :: picture (2047)

C) sew (13162) :: thread (13496)

D) bake (8340) :: oven (8254)

E) write (1625) :: text (4040)

Answer: E

Spreading Activation..There are 105 concepts active (stopOnMerge = YES).

After 1 / 10 passes the labels were merged.

********* Added additional node with index 5872

********* Added additional node with index 8844

********* Added additional node with index 44277

Intermediate nodes = 3

These are: 5872 8844 44277

The paths list contains 5 different nodes.



32

The paths are:

1: fabric (1913, 1644) >-(Related Via) 4-> wool (6425, 5872)

>-(Related Via) 6 -> weave (62164, 54095)

2: fabric (1913, 1644) >-(Related Via) 4-> cotton (9729, 8844)

>-(Related Via) 4 -> weave (62164, 54095)

3: fabric (1913, 1644) >-(Related Via) 10-> stitch (50513, 44277)

>-(Related Via) 4 -> weave (62164, 54095)

4: weave (62164, 54095) >-(Related Via) 6-> wool (6425, 5872)

>-(Related Via) 3 -> fabric (1913, 1644)

5: weave (62164, 54095) >-(Related Via) 4-> cotton (9729, 8844)

>-(Related Via) 18 -> fabric (1913, 1644)

6: weave (62164, 54095) >-(Related Via) 4-> stitch (50513, 44277)

>-(Related Via) 10 -> fabric (1913, 1644)

Participating nodes are

- fabric (1913)

- wool (6425)

- cotton (9729)

- stitch (50513)

- weave (62164)

0 ] Path Similarity : 0
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1 ] Path Similarity : 0

2 ] Path Similarity : 0

3 ] Path Similarity : 0

4 ] Path Similarity : 5

The answer to the given analogy is: E

In this example we don’t have the stem concept pair directly connected so we run spreading

activation. We get 6 primary paths in this case. We predict the correct answer due to the path

similarity algorithm.

3.3.4 Question 4: Abbreviation is to Word as Abstract is to Report

Ex] abbreviation (31710) :: word (44)

A) outline (40088) :: story (952)

B) plot (53249) :: fiction (47443)

C) page (5727) :: paper (128)

D) paragraph (32562) :: book (1748)

E) abstract (62995) :: report (23112)

Answer: E

Spreading Activation..There are 237 concepts active (stopOnMerge = YES).

After 1 / 10 passes the labels were merged.

********* Added additional node with index 117



34

Intermediate nodes = 1

These are: 117

The paths list contains 3 different nodes.

The paths are:

1: word (51, 44) >-(Related Via) 14-> it (137, 117) >-(Related Via) 4

-> abbreviation (35769, 31710)

2: abbreviation (35769, 31710) >-(Related Via) 4->

it (137, 117) >-(Related Via) 14-> word (51, 44)

Participating nodes are

- word (51)

- it (137)

- abbreviation (35769)

0 ] Path Similarity : 0

1 ] Path Similarity : 1

2 ] Path Similarity : 56

3 ] Path Similarity : 2

4 ] Path Similarity : 0

The answer to the given analogy is: C

Here we answer incorrectly.
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3.3.5 Question 5: Skull is to Head as Skeleton is to Body

Ex] skull (14433) :: head (9278)

A) heart (12847) :: organ (13307)

B) finger (3032) :: hand (1992)

C) skeleton (7415) :: body (1593)

D) elbow (14539) :: joint (70004)

E) scalp (73877) :: hair (4500)

Answer: C

RefinementAlgorithm 1

NeighborHood Similarities.

A) 7

B) 24

C) 0

D) 2

E) 3

The answer to the given analogy is: B

In this case we don’t answer correctly as the neighborhood similarity of Finger and Hand to

Head and Skull is more than compared to any of the candidates. Finger and Organ has

more common neighbors with Skull and Head. In total they have 24 common neighbors. But

at the same time if Refinement Algorithm 2: Squared Euclidean Distance is used, we get the

following results:
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RefinementAlgorithm 2

Squared Euclidean Distance

A) 0.213261

B) 0.433141

C) 0.000000

D) 0.314762

E) 0.108700

The answer to the given analogy is: B

This presents us the case where Squared Euclidean Distance finds the answer whereas Neigh-

borhood Similarity does not.
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3.4 Results

In this section we present the results of the algorithms on the Data Set. In total 105 questions

were tested. We tried different refinement algorithms when faced with tied options. Also 2

variants of Neighborhood Similarity were used to resolve ties in the case when more than

one candidate pair had same path between them. One was Neighborhood Similarity and

other was Path Similarity. The results are presented below.

Refinement Algo. Refinement Algo. in Correct/Total
Spreading Activation

NeighborHood Similarity PathSimilarity based on 28/105
NeighborHood Similarity

Squared Euclidean PathSimilarity based on 27/105
Distance NeighborHood Similarity

NeighborHood Similarity NeighborHood Similarity 30/105

Squared Euclidean NeighborHood Similarity 31/105
Distance

TABLE VII

Results of the various combinations of refinement algorithms.
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Algorithm Score Algorithm Score

1 Phrase Vectors 0:382 11 Holonym:member 0:200

2 Thesaurus Paths 0:250 12 Similarity:dict 0:180

3 Synonym 0:207 13 Similarity:wordsmyth 0:294

4 Antonym 0:240 14 Combined [16] 0:450

5 Hypernym 0:227 15 Proposed (SVM) 0:401

6 Hyponym 0:249 16 WordNet [19] 0:428

7 Meronym:substance 0:200 17 VSM [15] 0:471

8 Meronym:part 0:208 18 Pertinence [13] 0:535

9 Meronym:member 0:200 19 LRA [12] 0:561

10 Holonym:substance 0:200 20 Human 0:570

TABLE VIII

Results of the previous similarity measures. Taken from (2).

Table VIII shows results of the previous algorithms.
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