
High Performance Embedded Solutions for Memory and Compute Intense

Applications

BY

UMER I. CHEEMA
B.Sc. Electrical Engineering, University of Engineering & Technology, Lahore, Pakistan, 2008

M.S. Electrical & Computer Engineering, University of Illinois at Chicago, 2014

THESIS

Submitted as partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Electrical and Computer Engineering

in the Graduate College of the
University of Illinois at Chicago, 2016

Chicago, Illinois

Defense Committee:

Ashfaq Khokhar, Advisor
Rashid Ansari, Chair & Co-advisor
Wenjing Rao
Hulya Seferoglu
John Lillis, Computer Science



Copyright by

Umer I. Cheema

2016



Dedicated to my parents: Sajida and Iftikhar

ii



ACKNOWLEDGMENTS

My time at UIC has been a tremendous learning experience not only in academics but also

in all other aspects of life. I owe my success to all my teachers throughout my academics. First

of all, I would like to thank my PhD advisor, Professor Ashfaq Khokhar, for his consistent

feedback and support throughout my PhD. He let me chose an independent path which was

tougher but I got to work on something that I really enjoyed and learned much more during

the process than I would have otherwise. I would also like to thank my co-adviser, Professor

Rashid Ansari, for his consistent support especially after Professor Khokhar left UIC.

I would also like to thank my thesis Committee members Prof. Wenjing Rao, Prof. Hulya

Seferoglu and Prof. John Lillis, for their feedback and encouraging comments. I got to work

with Prof. Wenjing Rao as a Teaching Assistant as well as a student. I took a lot of inspiration

from her teaching methods as well as the work ethics.

I would like to thank Prof. Vahe Caliskan, for entrusting me to teach key undergraduate

courses and his consistent help and support during my time as course instructor. Thanks to

Prof. Robert Becker for the wonderful learning experience I had as his Teaching Assistant. I

would also like to thank all the professors I took my PhD course work with: Prof. Grygory

Turon, Prof. Masud Chowdhury, Prof. Ajay Kshemkalyani, Prof. Prasad Sistla, Prof. Mitchell

Theys, Prof. Tadao Murata, Prof. Shantanu Dutt and Prof. Michael Stroscio. Throughout

my stay at UIC, I had the opportunity to interact with some amazing people. I would like

to acknowledge Gregory Nash for the discussions about the trends in industry related to my

iii



ACKNOWLEDGMENTS (Continued)

thesis. His knowledge in the field helped me chose the right tools for my research. I had a

great interaction with Mohamed Hefeida - the senior. Observing him go through the PhD

process, gave me inspiration and a better understanding of the process. I regret the accident

we had in racket ball game that gave him a lot of pain. Mohamed Ali was my lab mate as

well as apartment mate for the longest. I didnt get to see him a lot because of his off-campus

commitments but I learned a lot from him in multiple domains. To Kamran Lodhi, we had

some great road trips together and his spicy cooking was always enjoyable. To Ansab Ali, who

always had quality high-end games that I could enjoy on his computer. To Fahad Saeed, for

being a great example and inspiration throughout my PhD. To Fadi Almasalha, for the help

and support when I first came to Chicago. I would also like to thank my lab-mates: Xi Xu,

Yasaman Keshtkarjahromi, Nazanin Makkinejad and Shafagh Kamkar for the time we spent

together. The ECE department staff - Erica Plys, Agustina Alvarado, Ala Wroblewski, Beverly

Miller, Mona Hurt, Evelyn Reyes, Mihai Bora, Martha Salinas, George Ashman and Harold

Sosa - were very helpful in the administrative matters. I would also like to thank my fellow

graduate students - Pitamber Shukla, Jian Xu, Mehak Gill, Narueporn Nartasilpa and Soumik

Sen - who did a great job assisting me in teaching so I could focus well on my research. Some

other friends I had good time with were Ahmad Khalil, Muzammil Rafique, Farukh Ijaz, Talal

Haider, Ahsan Shahid, Sumra Bari and Rasheed Abdulkader.

Coming to Chicago from the other side of the globe was initially an overwhelming experi-

ence. My uncle, Zafar Singhera and his family, Arusa and Fakhar, made this transition relatively

easier. The supply of tasty food from California was a life saver during the early days. My

iv



ACKNOWLEDGMENTS (Continued)

uncle has been an inspiration for me right from my child hood and his consistent guidance and

support played a vital part in my academics. Next, I would like to thank my family. It is really

hard to find the words to thank them for their contribution in my life. To my sisters: Aafia,

whose motivational quotes kept my morale up throughout the course of this work. Sobia, the

best help and source of feedback I had all along my academics. Qudsia, for her endless stories

and jokes whenever I felt down. To Shahid and my nephews, Abdullah and Rayan, for the

refreshing talks. To my parents Sajida and Iftikhar, the best human beings in my life. Their

unconditional love, support and hard-work is the reason behind any success that I had and I

dedicate this thesis to them.

UIC

v



ACKNOWLEDGMENTS (Continued)

Contribution of Authors

I would like to acknowledge Prof. Ashfaq Khokhar for his feedback related to the selection of

the compute intense problems addressed in this work. His feedback helped improve arbitration

aspect of Re-gridding architecture discussed in chapter 2 and scalability aspect of matrix inver-

sion architecture in chapter 3. Prof. Rashid Ansari and Prof. Ashfaq Khokhar gave consistent

feedback on improving the presentation of the proposed solutions. Gregory Nash helped in

selecting the tools for the experimentation. His feedback helped improve the architecture of

FpMA units as well as the openCL implementation for Re-gridding architecture in chapter 2 .

vi



TABLE OF CONTENTS

CHAPTER PAGE

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Heterogeneous Computing Platforms . . . . . . . . . . . . . . . 1

1.1.1 Design Space for Heterogeneous Computing Platforms 2
1.1.2 Heterogeneous Computing Architectures in Embed-

ded Systems . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 FPGAs as a High-performance Computing Platform . . . . . . 6

1.2.1 Programmability . . . . . . . . . . . . . . . . . . . . . 7
1.2.2 Application domains . . . . . . . . . . . . . . . . . . 8

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.4 Thesis organization . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 RE-GRIDDING ARCHITECTURE FOR ACCELERATING NON-
UNIFORM FAST FOURIER TRANSFORM . . . . . . . . . . . . . 15
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.1 Spectral Sampling Trajectories . . . . . . . . . . . . 17
2.1.2 Re-Gridding or Data-Translation . . . . . . . . . . . 23

2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.3 Proposed Re-Gridding Architecture . . . . . . . . . . . . . . . . 27

2.3.1 Points Representation . . . . . . . . . . . . . . . . . . 28
2.3.2 Data-translator Components . . . . . . . . . . . . . . 31
2.3.3 Data-flow through the System . . . . . . . . . . . . . 37

2.4 Hardware Implementation . . . . . . . . . . . . . . . . . . . . . . 38
2.4.1 Optimized Verilog Based Implementation . . . . . . 38
2.4.2 OpenCL Implementation . . . . . . . . . . . . . . . . 42
2.4.3 Comparison of Implementations . . . . . . . . . . . . 53

2.5 Comparison with Related Work . . . . . . . . . . . . . . . . . . . 54
2.5.1 Verilog Implementation . . . . . . . . . . . . . . . . . 55
2.5.2 OpenCL Implementation . . . . . . . . . . . . . . . . 56

2.6 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . 62

3 HARDWARE EFFICIENT ARCHITECTURE FOR MATRIX
INVERSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.1.1 Gauss-Jordan Elimination Algorithm . . . . . . . . 64
3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.3 Hardware Optimization using Modified Gauss-Jordan Algorithm 67

3.3.1 Pipeline Utilization . . . . . . . . . . . . . . . . . . . 71

vii



TABLE OF CONTENTS (Continued)

CHAPTER PAGE

3.4 Proposed Architecture and Data-flow . . . . . . . . . . . . . . . 71
3.4.1 Data-flow . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.4.2 Scalability . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.5 Performance Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 74
3.5.1 Performance comparison with related work . . . . . 75

3.6 Hardware Complexity Analysis . . . . . . . . . . . . . . . . . . . 76
3.7 Experimental Setup and Results . . . . . . . . . . . . . . . . . . 78
3.8 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . 80

4 A HIGH PERFORMANCE ARCHITECTURE FOR COMPUT-
ING BURROWS-WHEELER TRANSFORM ON FPGAS . . . . 89
4.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.3 Flowthrough FIFO based technique for computing BWT in

Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
4.4 Proposed architecture and data-flow . . . . . . . . . . . . . . . . 95

4.4.1 Suffix Block and Address Generator . . . . . . . . . 95
4.4.2 Parallel Suffix Sorter . . . . . . . . . . . . . . . . . . 95
4.4.3 FIFO Network . . . . . . . . . . . . . . . . . . . . . . 97
4.4.4 BWT index generator . . . . . . . . . . . . . . . . . . 97

4.5 Complexity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 98
4.5.1 Hardware Complexity Analysis . . . . . . . . . . . . 98
4.5.2 Time Complexity Analysis . . . . . . . . . . . . . . . 99

4.6 Experimental Setup & Results . . . . . . . . . . . . . . . . . . . 100
4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5 AN FPGA BASED HIGHLY PIPELINED AND SCALABLE
ARCHITECTURE FOR MEDIAN FILTERING . . . . . . . . . . . 107
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
5.3 Proposed Architecture and Data flow . . . . . . . . . . . . . . . 111

5.3.1 Row Sorter . . . . . . . . . . . . . . . . . . . . . . . . 111
5.3.2 Sorted-Row Buffers . . . . . . . . . . . . . . . . . . . 111
5.3.3 Merger block . . . . . . . . . . . . . . . . . . . . . . . 114
5.3.4 Data-flow . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . 115
5.5 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . 120

6 CONCLUSION AND FUTURE DIRECTIONS . . . . . . . . . . . 123

CITED LITERATURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

viii



TABLE OF CONTENTS (Continued)

CHAPTER PAGE

APPENDIX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

ix



LIST OF TABLES

TABLE PAGE

I COMPARISON BETWEEN DEDICATED HARDWARE AND CPU
BASED SOLUTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

II THROUGHPUTS FOR VARIOUS SIZES OF TILE, CONVOLU-
TION WINDOW AND TARGET SET T . . . . . . . . . . . . . . . . 41

III POWER AND PERFORMANCE FOR DIFFERENT TRAJECTO-
RIES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

IV PERFORMANCE FOR LARGE MATRIX SIZES IN TERMS OF
NUMBER OF CLOCK CYCLES . . . . . . . . . . . . . . . . . . . . . 77

V PERCENTAGE REDUCTION IN HARDWARE RESOURCES FOR
FLOATING-POINT COMPUTATION UNITS COMPARED TO PIPELINED
IMPLEMENTATION OF GJ . . . . . . . . . . . . . . . . . . . . . . . 78

VI PERFORMANCE FOR VARIOUS MATRIX SIZES . . . . . . . . . 79

VII COMPARISON OF HARDWARE COMPLEXITY BETWEEN PAR-
ALLEL SORTER IN AND PARALLEL SUFFIX SORTER USED IN
OUR PROPOSED ARCHITECTURE FOR BWT . . . . . . . . . . 100

VIII PERFORMANCE COMPARISON OF PROPOSED BWT ARCHI-
TECTURE WITH WEAVESORTERAND PARALLEL SORTER FOR
A STRING OF SIZE 128 AND LCP = 8 . . . . . . . . . . . . . . . . 105

IX THROUGHPUT IN TERMS OF IMAGE SLICE RATE FOR VAR-
IOUS NUMBER OF MEDIANPIPES . . . . . . . . . . . . . . . . . . 121

x



LIST OF FIGURES

FIGURE PAGE

1 Heterogeneous Computing platform . . . . . . . . . . . . . . . . . . . . . . 2

2 Design Space for Heterogeneous Computing platforms . . . . . . . . . . 5

3 Complexity of Embedded Software. Source: (1) . . . . . . . . . . . . . . 6

4 Example of heterogeneous SoC architecture for mobile devices . . . . . 7

5 NuFFT algorithm flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

6 Radial Trajectory. (Generated using (2)) . . . . . . . . . . . . . . . . . . 19

7 Spiral Trajectory. Generated using (2) . . . . . . . . . . . . . . . . . . . . 20

8 Polar/Curvilinear trajectory. Generated using (3) . . . . . . . . . . . . . 21

9 Cartesian Trajectory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

10 Visual Representation of the Re-gridding process . . . . . . . . . . . . . 22

11 Pseudo code for Re-gridding processes in 2-dimension. The values of si
and tk are denoted by v(si) and v(tk) respectively. (six , siy) and (tkx , tky)
denote the respective co-ordinates. . . . . . . . . . . . . . . . . . . . . . . 24

12 Mapping between Tiles and point FIFO. The boundaries of the tiles are
shown by dotted blue line and tiles are numbered from 1 - 12. Grey
dots indicates the target points, crosses indicates the source points and
dotted red box indicates the convolution widow for each source point.
The FIFOs at the bottom are shown filled with the source points and
have the same index as the tile they correspond to. . . . . . . . . . . . . 29

13 The proposed Re-Gridding (Data Translator) architecture depicting the
data-flow through its components. The solid lines indicate the data flow
and dotted lines indicate control lines. . . . . . . . . . . . . . . . . . . . . 30

xi



LIST OF FIGURES (Continued)

FIGURE PAGE

14 The convolution operation of the source point with the interpolation
kernel function to update the target point values. The red box on the
tile indicates the convolution window. . . . . . . . . . . . . . . . . . . . . 34

15 Logical connection of Floating point Multiplier and Adder (FpMA) units
to target points in fetched tile indicated by color coding: (a) Array of
FpMAs units, each box represents an FpMA unit (cell). The co-ordinates
in each box indicates the index of the FpMA unit in a 2-d array format
(b) A tile of size 8 x 8. Each box represents a target point of the tile. The
co-ordinates in each box indicate the co-ordinate of target point in the
2-d tile. For clarity, logical connection of (0,0) FpMA unit is indicated
with dotted line as well . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

16 Architecture of the proposed Pipelined Floating Multiplier and Adder
(FpMA) unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

17 OpenCL based Experimental Setup . . . . . . . . . . . . . . . . . . . . . . 43

18 Reading Order of Point-FIFOs could be decided a priori based on the
known Trajectory. The figure shows the target frame divided into 16 tiles. 44

19 Comparison of Hardware Resources for TSA and GA based Architectures
for target set size of 1024× 1024, tile size of 256× 256, α = 4 and σ = 2 47

20 Throughput comparison for trajectory specific architectures . . . . . . . 48

21 Throughput comparison for trajectory specific architectures . . . . . . . 49

22 Comparison of Power Consumption and Hardware Resources for tile size
of 256× 256 and 128× 128 when the size of target point set is 512× 512 50

23 Scalability of Hardware Resources, MFLOPS and throughput with the
target set size and tile size for GA based architecture . . . . . . . . . . . 51

24 Scalability of Hardware Resources, MFLOPS with the target set size for
TSA based architecture. The vertical axis on left indicates the count for
resources and the vertical axis on right is for MFLOPS. . . . . . . . . . 52

25 Comparison of OpenCL implementation with Optimized Verilog based
implementation for a target set of size 256× 256, α = 4 and σ = 2 . . . 53

xii



LIST OF FIGURES (Continued)

FIGURE PAGE

26 Performance comparison of the verilog implementation of the proposed
architecture with existing FPGA (4; 5) and GPU (6) based techniques
for a target point set of 256 × 256 . . . . . . . . . . . . . . . . . . . . . . 56

27 Throughput comparison of Spiral Trajectory with related work . . . . . 57

28 Comparison of Power efficiency for Spiral Trajectory with related work 58

29 Throughput comparison of Radial Trajectory with related work . . . . . 59

30 Comparison of Power efficiency for Radial Trajectory with related work 60

31 Comparison of throughput and power efficiency for Random trajectory
and a target set of size 1024× 1024 . . . . . . . . . . . . . . . . . . . . . 61

32 An N ×N matrix at the ith iteration . . . . . . . . . . . . . . . . . . . . 68

33 Pseudo-code Modified Gauss-Jordan Algorithm . . . . . . . . . . . . . . 70

34 Steps to find invert of a sample 3× 3 matrix. The augmented matrix is
shown along with the contents of the memory. The reciprocal is found
over three steps. The values in green indicate the values that required
for further computation and are stored in the memory. Values in red
indicate the values that are no longer required in computation . . . . . 82

35 Simplified architecture of pipelined Implementation of Gauss-Jordan Al-
gorithm. Two floating-point multiplication elements are required per row. 83

36 Simplified data-flow of Pipelined Implementation for Modified Gauss-
Jordan Algorithm. A single floating-point multiplication is required per
row as compared to two for the pipelined implementation of original
Gauss Jordan algorithm ( Figure 35) . . . . . . . . . . . . . . . . . . . . . 84

37 Computational flow scalability . . . . . . . . . . . . . . . . . . . . . . . . . 85

38 Block diagram of the data path . . . . . . . . . . . . . . . . . . . . . . . . 85

39 Comparison of proposed architecture (InvArch) (k = 8) against Duarte
et al. (7) (k = 8), Matos et al (8) (b = 8) and pipelined GJ implementa-
tion with same hardware resources as our proposed architecture (k = 8)
for a 1024× 1024 matrix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

xiii



LIST OF FIGURES (Continued)

FIGURE PAGE

40 Comparison of the hardware resources required for implementing floating
point blocks for different values of k. (a) gives the number of Adaptive
Look-Up Tables (ALUT)s and (b) gives the number of DSP blocks. The
numbers are for the area-optimized implementation of Altera Floating
point units on Startix IV FPGAs . . . . . . . . . . . . . . . . . . . . . . . 87

41 Comparison of pipeline-utilization for modified-gauss jordan algorithm
(left) with Gauss-jordan algorithm utilizing same number of floating
point multiplication units (right). Iterations are indicated with distinct
colors. Note that we assume number of NE blocks to be 8 in this figure
i.e., 8 multiplication and subtraction units. During the ith iteration,
for forward-elimination, result of normalized pivot (mik = aik/aii) is
buffered to be eliminate the elimination rows. For back-substitution,
normalized pivot row element is available in time for the first 7 iterations
but needs a single cycle stall for the last iteration. For same hardware
resources, the pipeline on right needs stall cycles every iteration. . . . . 88

42 Visual illustration of BWT: input string s along with Matrix M , matrix
Q and the Burrows-Wheeler Transform (BWT) . . . . . . . . . . . . . . 90

43 Limited sized suffices for a Single Block . . . . . . . . . . . . . . . . . . . 96

44 Connectivity of FIFOs between two stages . . . . . . . . . . . . . . . . . 98

45 Dataflow through the FIFO pipeline . . . . . . . . . . . . . . . . . . . . . 99

46 Effect of the size of Longest Common Prefix (LCP) on the total memory
used on pipleline of FIFOs for different string lengths. . . . . . . . . . . 101

47 Effect of size of Longest Common Prefix (LCP) on the number of Reg-
ister consumed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

48 Effect of the length of String on the total memory used on pipleline of
FIFOs for different different sizes of LCP . . . . . . . . . . . . . . . . . . 103

49 Effect of LCP on Throughput using a fixed string of size two thousand
characters. Longer LCP corresponds to more hardware complexity but
higher throughput. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

50 Performance (in terms of number of clock cycles) for various length of
strings having fixed LCP = 16 . . . . . . . . . . . . . . . . . . . . . . . . . 104

xiv



LIST OF FIGURES (Continued)

FIGURE PAGE

51 Block Diagram of three medianPipes . . . . . . . . . . . . . . . . . . . . . 112

52 First stage sorting using a single comparator . . . . . . . . . . . . . . . . 113

53 Merger Block using three Comparators . . . . . . . . . . . . . . . . . . . . 114

54 Parallel computation of median values in column C2 using two medi-
anPipes. The ordered pairs (R,C) represent a pixel, where R and C
represents row and column respectively. Rows R1 - R6 are sorted in
parallel. Merging sorted rows at R1, R2 and R3 compute the median
value at (2, 2). R2, R3 and R4 compute median at (3, 2) . . . . . . . . . 116

55 Computation for median values across the columns. Since a single col-
umn of image slice is read from the external memory, if the computation
of median values for C2 starts at ith cycle, the computation for C3 will
start at (i+ 1)th, C4 at (i+ 2)th and so on. The medianPipes dedicated
to the columns are re-used once the median values for the columns are
computed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

56 Resource usage for various number of medianPipes . . . . . . . . . . . . 118

57 Resource usage for pixel sizes of 8, 16 and 32 bits . . . . . . . . . . . . . 119

58 (a) Trend in pixel rate with respect to pixel size using 128 median pipes
for 768 pixels(b) Trend in pixel rate with respect to image slice size
(using 8-bit pixel) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

xv



LIST OF ABBREVIATIONS

ALUT Adaptive Look-up Tables

BWT Burrows Wheeler Transform

CS Compressed Sensing

CT Computed Tomography

DDR Double Data Rate

DSP Digital Signal Processing

FFT Fast Fourier Transform

FIFO First-In-First-Out

FPD Floating-point Division

FPM Floating-point Multiplication

FPS Floating-point Subtraction

FPGA Field Programmable Gate Array

FpMA Floating-point Multiplier and Adder

GA Generic Arbiter

GJ Gauss Jordan

GPU Graphics Processing Unit

IoT Internet of Things

xvi



LIST OF ABBREVIATIONS (Continued)

LCP Longest Common Prefix

MAC Multiply and Accumulate

MFLOPS Mega Floating-point Operations per Second

MRI Magnetic Resonance Imaging

MUX Multiplexer

NE Normalization and Elimination

NuDFT Non-uniform Discrete Fourier Transform

NuFFT Non-uniform Fast Fourier Transform

RAM Random Access Memory

SAR Synthetic Aperture Radar

SoC System-on-Chip

TSA Trajectory Specific Arbiter

VLSI Very Large Scale Integration

xvii



SUMMARY

The use of application-specific architectures has gained popularity in implementing solutions

to many compute intense tasks in recent years due mainly to the performance and power limita-

tions associated with high-end processor based systems. Considering their superior performance

at lower energy requirements, such targeted solutions have found applications in a number of do-

mains including Embedded Systems, Big-Data processing in Data centers, Computer Network

Security, Medical Imaging and Internet of Things (IoT). These application specific hardware

solutions could be used as stand-alone computation devices or as part of a heterogeneous com-

puting system. Heterogeneous Embedded Systems, in the form of System-on-Chip (SoC), are

used in applications ranging from smart hand-held devices, cars, drones to numerous other

battery-operated electronic devices. Their higher performance-to-power ratio for compute in-

tense tasks, like video processing, make them an ideal fit for battery-operated devices. In

computer networks domain, specialized architectures are designed for real-time Deep Packet

Inspection at high speed for network security. These hardware solutions also power the energy-

efficient data centers for big data processing and storage. With the growing interest in the

Cloud-centric IoT, there is a high potential for using power-efficient heterogeneous systems for

sensing, analysis and visualization of tremendous amount of data associated with IoT. At the

IoT node level, design space exploration of the hybrid (CPU-FPGA-GPU) nodes are already

being explored.

xviii



SUMMARY (Continued)

Considering the tremendous potential of application specific hardware solutions in diverse

range of applications, this thesis targets development of efficient solutions for various memory

and compute-intense applications. We specifically target FPGAs as the computing platform

considering the power-efficiency and the enormous design space associated with the platform

due to its inherent flexibility. The hardware solutions proposed as part of this thesis have shown

improved performance at reduced power compared with existing techniques.

The first computationally complex task we consider is the re-gridding process in Non-uniform

Fast Fourier Transform (NuFFT). Some applications of NuFFT include Synthetic Aperture

Radar (SAR), Computed Tomography (CT), and Magnetic Resonance Imaging (MRI). At the

heart of the NuFFT task is a Gridding algorithm that maps non-equispaced data points onto

a uniform grid using an interpolation function. This interpolation step, also referred to as

re-gridding or data-translation, is known to consume 88 − 90% of the overall computation

time of NuFFT. The dissertation proposes a novel FPGA based architecture for the memory

and compute intense re-gridding process. The proposed architecture is based on the novel

use of customizable hardware components such as FPGA block memory in First-In-First-Out

(FIFO) configuration, fill-status based arbiter, distributed storage of grid-points and an ar-

ray of pipelined single precision floating point multipliers and adders. The proposed solution

exhibits high performance over a wide range of configurations, data sizes and spectral sam-

pling trajectories. The architecture targets a generic solution for unknown trajectories and a

trajectory-specific variant that targets well known trajectories in MRI and SAR. Compared

with existing FPGA-based solutions, throughput is improved by over 9.6 times whereas compu-

xix



SUMMARY (Continued)

tational power efficiency (in terms of MFLOPS/Watt) is improved by over 15 times. Compared

with GPU-based techniques, over 9.6 times higher MFLOPS/watts was achieved at a compa-

rable performance.

Second, the thesis proposes an efficient architecture (InvArch) for computing matrix inver-

sion using Gauss-Jordan Elimination method. The proposed architecture exploits parallelism

through pipelined floating-point computational units and reduces the number of floating-point

multiplication units required compared with the existing pipelined implementations. The re-

duction in multiplication units results in over 80% reduction in hardware for floating point

computation units. The architecture performs in-place inversion and provides scalability across

the rows and columns. Hardware efficiency is achieved by reaping benefit from regularity in

computation and better utilization of pipelined computational resources. Multiple rows are

normalized within an iteration of Gauss-Jordan algorithm that allows reduction in number of

floating-point multiplication units in the elimination step. In addition to implementing the

architecture, an analytical performance model is also developed for InvArch and some related

works. InvArch achieves performance comparable to reference architectures in terms of clock

cycles and throughput while using significantly less hardware resources.

Third, an FPGA based architecture for Burrows Wheeler transform (BWT) has been pro-

posed. BWT has applications in diverse areas such as compressed string matching, biological

sequence analysis, error correction, and channel encoding. Numerous efforts have been made to

improve the performance of BWT in software and hardware. Its use in real-time applications

such as deep packet inspection and channel coding requires efficient hardware implementations

xx



SUMMARY (Continued)

that must yield high throughput. We explore novel hardware techniques to compute BWT.

Our techniques are based on using a limited length of suffixes, a parallel suffix sorter, and

an efficient First-In-First-Out (FIFO) memory pipeline to sort these suffixes. The hardware

complexity analysis shows that our technique scales linearly with the length of string and the

claim is verified by the hardware synthesis results. In terms of performance, our technique

outperforms the existing hardware-based techniques by over four times.

Fourth, a novel, FPGA-based, highly pipelined and scalable architecture (MedianPipe)for

median filtering has been proposed. Median filters and its variants are widely used for noise

suppression in image processing. All variants of median filter depend on the computation

of median values. MedianPipe is a highly pipelined architecture and hence an ideal fit for

FPGAs. Multiple MedianPipe modules are used depending on the size of image slice. The

overall hardware complexity of proposed architecture scales linearly with image-slice size. The

architecture for MedianPipe is based on the principle of merge sort and uses a median window

of size 3 x 3. Without loss of generality, the pixels of an image slice are assumed to be read

in a column major format. All the median values within the column of the image slice can be

computed in parallel using multiple MedianPipes. The computation of median values in the

following column is delayed by a clock cycle. Hardware resources scale linearly by varying the

number and size of pixels. The pixel rate achieved for various pixel sizes is well above 124 MHz

which is the standard for 1080p High-Definition.

Finally, the thesis is concluded by suggesting future directions for research based on the

proposed solutions.

xxi



CHAPTER 1

INTRODUCTION

Processors had an enormous performance gain in 1990s and early 2000s due to the steady

increase in clock frequency. Technology issues like power consumption, heat dissipation, leak-

age currents and signal propagation delays limit the increase in clock frequency beyond certain

limits. Apart from clock frequency, another front for improving the performance of processing

systems was to introduce parallelism at instruction level. But due to high data and control

dependency of instructions in a program, instruction-level parallelism cannot solely be relied

upon to achieve high performance demands in future. By exploiting parallelism at the thread-

and data-level, and employing multiple low frequency processing cores with higher power effi-

ciency enabled the processing systems achieve high-performance demands. In the multi/many

core era, the performance improvement is achieved using multiple, relatively simple cores in-

stead of single complex processor and by expressing the parallelism in the code itself. Although

the performance of the processing systems is increasing, computational demands of research,

software development and scientific computing are also becoming more complex.

1.1 Heterogeneous Computing Platforms

Due to the performance and power limitations of the high-end processors, heterogeneous

computing platforms have gained popularity in recent years. Since no processing core is an ideal

fit for all computational tasks, the focus has shifted towards designing systems to achieve better

1



2

Figure 1. Heterogeneous Computing platform

performance for certain work loads. Computationally intense applications are mapped on to

dedicated hardware solutions based on platforms like ASICs, GPUs and FPGAs. Owing to the

ability of these solutions to provide orders of magnitude higher performance compared with the

optimized implementations on general purpose processor cores at a lower power consumption

(9), the use of these dedicated hardware accelerators is increasing in all fronts of complex

computing. The performance, power and cost benefits at running complex tasks are outweighing

the inherent disadvantage of additional programming effort required. A summary of comparison

between general CPU-based and dedicated hardware solutions is given in Table I.

1.1.1 Design Space for Heterogeneous Computing Platforms

Design space for heterogeneous computing platforms can be roughly represented as shown

in Figure 2. General purpose processor (or CPU) is the most flexible computing platform

capable of running software for any application. But this flexibility comes at the cost of effi-

ciency. Application software is executed in the form instructions and performance is improved



3

TABLE I

COMPARISON BETWEEN DEDICATED HARDWARE AND CPU BASED SOLUTIONS

Metric Dedicated hardware solution CPU based

Performance - Memory bandwidth dedicated for data Limitations:

- No control latencies due to jump - Dark Silicon

and branch - Clock frequency Scaling

Ease and Flexibility Improved in recent years Better

of Programming

Energy-efficiency Better in term os total energy

Cost GPUs and FPGAs have bridged the gap Better



4

by adding parallelism at Instruction, Data, Thread and Core level. As we move towards the

right in Figure 2, computing platforms become less flexible but more domain-specific. FPGAs

are reconfigurable devices that are capable of implementing high-performance, power-efficient

application-specific custom implementations for the application at hand. The added flexibility

of reconfigurability in these platforms give them an additional benefit compared to all other

computing platforms. GPUs, in general, have greater computing power compared to FPGAs

and CPUs. Compared with CPUs, instead of having extensive logic for flow-control and data

caching, a bulk of processing nodes are added that makes them an ideal fit for computationally

intense parallel tasks. Digital Signal Processors (DSPs) have domain-specific instruction set

and specialized associated hardware. Flexibility is lower compared with CPUs and GPUs be-

cause writing application software requires detailed knowledge about the underlying hardware.

Application-Specific Instruction set Processor (ASIP) has customizable instruction set where

ASIP designer not only defines a part of instruction set but also the hardware associated for

these custom instructions. Application Specific Integrated Circuits (ASIC) on the extreme are

application-specific, fixed and non-flexible solutions that have the best power, form-factor and

performance efficiency compared with other computing platforms. Since the architecture is

fixed any change in application at hand requires redesign of ASIC. Cost and time of the overall

design cycle for ASICs is one major concern for solutions based on ASICs.

1.1.2 Heterogeneous Computing Architectures in Embedded Systems

Complexity of embedded software has been increasing tremendously in recent years (Fig-

ure 3) and hence the performance expectations from embedded systems are also increasing. For



5

Figure 2. Design Space for Heterogeneous Computing platforms

example, in mobile devices, a processing unit has to serve an increasing number of varied ap-

plications like computational photography, High-Definition (HD) video capture and playback,

interface with touch-screen and other wide range of sensors. As most of these applications

are expected to run in parallel, a single Central Processing Unit (CPU) cannot serve all these

applications efficiently.

In recent years, mobile devices employ System-on-Chip (SoC) based processing units that

have application-specific solutions for various classes of applications. An example of one such

SoC is snapDragon from Qualcomm (10) that utilizes dedicated processing cores for graphics

processing, sensor interfacing, computational photography and video playback as shown in

Figure 4.

The growth of embedded systems is much higher compared with other computing platforms

like desktop computers (11). As the future of computing is shifting towards embedded systems



6

Figure 3. Complexity of Embedded Software. Source: (1)

and the increased reliance of embedded systems on heterogeneous SoCs indicate the great

importance of heterogeneous architectures in computing in future.

1.2 FPGAs as a High-performance Computing Platform

FPGAs were traditionally used for prototyping. Due to the improvement in VLSI tech-

nology coupled with FPGAs inherent configurable nature attracted their use in acceleration

of compute and data intense applications. Reconfiguration allows the architecture to adapt

according to the change in computation demands. Another advantage of FPGAs is their lower

power consumption compared to GPUs.

Some of the major factors that allow FPGAs to achieve hardware acceleration compared to

general-processor based software solutions are (12):

• Compared with traditional processor based system there is no need for fetching instruc-

tions from the memory and hence memory bandwidth is completely allocated for data



7

Figure 4. Example of heterogeneous SoC architecture for mobile devices

• Parallelism can be achieved by generating multiple copies of processing units. Compared

to software technique, this can be viewed as loop unrolling.

• Straight-forward implementation of basic blocks of codes incurs no additional delays

• There are no latencies related to the control instructions like jumps and branches. Data-

paths and control units are implemented in hardware that select the output based on

control logic

1.2.1 Programmability

Compute Unified Device Architecture (CUDA) and OpenCL are the two major programming

frameworks for GPUs. These programming frameworks provide abstraction from the underlying

hardware. For FPGAs, Hardware Description Languages (HDLs) Verilog and VHDL, are the



8

two main tools for describing custom hardware. In recent years, FPGA vendors have provided

support for high level languages such as Impulse C, Handel C and Mitrion C (13). Lately,

FPGA vendors have also provided support to program FPGA platforms using selected features

of the OpenCL programming framework. Efforts have also been made to standardize various

aspects, like interfaces, in reconfigurable computing and various communities like OpenFPGA

(14) and Center for High-Performance Reconfigurable Computing (15) have been developed for

this purpose. The standardized interfaces would allow easy interfacing of FPGA solutions to

any system.

Considering the advances in hardware and the programmability of FPGAs along with

promise of high performance-to-power ratio motivates energy-efficient and high-throughput

hardware solutions for a wide range of complex computational tasks on FPGAs. We look

at some of the areas of applications for the hardware accelerators.

1.2.2 Application domains

This section provides overview of some domains that benefit from the hardware accelerators.

Big-Data Processing in Data centers

FPGAs have been successfully used in data-centers to accelerate Big-data services in data

centers. Microsoft’s Catapult project (16) explored the use of FPGAs to improve performance

and power-efficiency of various tasks in the data centers. Since GPUs are also capable of

providing massive parallelism, their use was also explored but the high power consumption of

current high-end GPUs made them unfit for conventional data-centers. Also, latency-sensitive

ranking tasks mapped better on FPGAs compared to GPUs. A medium scale FPGA deployment



9

resulted in 95% increase in throughput of ranking workload compared with software solution

and added only 10% overhead in power consumption and less than 30% overhead to cost of

individual server. The study concluded FPGAs to be a viable path forward towards continued

improvement in cost and capability of servers especially considering the power and technology

barriers in high-end processors.

Internet of Things

Deployment of IoT implies massive increase in the number of devices communicating with

each other as well as with the data centers through network communication infra-structure.

This will result in massive increase in the computing performance and power requirements

in the data centers. As discussed earlier, FPGA based solutions have already proved to be

viable path in improving the performance of data centers. At the network communication

level, there will be a tremendous increase in bandwidth requirements and hence higher need of

energy-efficient network communication and security. FPGAs being energy-efficient and high-

performance computational device, is capable of playing a significant part in improving the

network communication and security. At the device and IoT gateways level, power-efficient

compute solutions will be required especially for the battery operated devices. Considering

the reconfigurable nature and low-power requirements of FPGAs, they are capable of playing

significant role at this level also. The promise of FPGAs at the node level is well-recognized

by tech industry giants. Intel, in 2014, announced an Atom-FPGA hybrid to target the IoT

applications (17).



10

Computer Network Security

The scale of computer networks have been increasing continuously and rapidly. The future

with IoT, due to the addition of high number of heterogeneous devices, protocols and network

traffic, would necessitate the use of fast, real-time network security techniques. FPGAs have

already been found useful in real-time security of Computer Networks using Deep Packet In-

spection for intrusion detection (18). Their use in network security is expected to increase

manyfold.

Digital Signal Processing

Advances in hardware accelerator technology have extensively expanded the application

domain in Digital Signals Processing (DSP). The functional efficiency of hardware and pro-

grammability of software renders configurable platforms like FPGAs attractive to be used in

wide range of DSP applications including video, audio, speech and control. Due to the abun-

dance of programmable logic, various functional units of DSP systems can be directly realized

in hardware. Fine-grained parallelism, which is often required for high-sampling rates and

distributed computing in DSP applications, can also be extracted utilizing the abundant con-

figurable logic available. FPGA based designs should be highly pipelined in order to achieve

better clock frequency. Many operations in DSP applications, like image and speech processing,

are capable of being highly parallelized and pipelined. This renders FPGAs a naturally suited

platform for such applications (19).

Recent advancements in FPGA architecture to include special hardware for floating point

arithmetic (20) has helped FPGAs overcome the earlier disadvantage of handling the floating



11

point arithmetic. The added hardware is highly pipelined that allows FPGAs to operate at

high clock frequencies.

Computational Biology

The volume of available genetic data is doubling every six months (21) and hence the con-

ventional computing systems have not been able to to keep up. Sequence alignment is one such

computationally intense application in computational biology that has benefited from hardware

accelerators. Smith Waterman algorithm is one fundamental sequence alignment algorithm that

is implemented using dynamic programming and has a quadratic computational complexity in

software. When implemented in hardware, it achieves linear computational complexity due to

the massive parallelism provided by the FPGAs (21).

Sensor Systems and Sensor Networks

In sensor systems, the sensors having capabilities such as self-diagnostics and decision-

making are called smart sensors. Smart sensors are sometimes implemented using a embedded

FPGA-based device and benefit from the small size, low power consumption and high compu-

tational accuracy of FPGA based devices (22). Other applications of FPGA include Wireless

Sensor Networks (WSNs) where they are used for reducing the amount of data-transmissions

and providing flexibility at the sensor node (22).

1.3 Contributions

This thesis reaffirms the tremendous potential of targeted hardware accelerators to provide

high-performance and energy-efficient solutions to a wide range of data, memory and compute

intense tasks in various application domains. Some key contributions are listed below:



12

1. A novel memory-optimized and power-efficient architecture to accelerate the memory and

compute intense re-gridding process in NuFFT (23; 24): Re-gridding step is known to

be the most time-consuming task (over 90 % of the whole process) in the computation

of NuFFT. Re-gridding involves multiplication of each source point with an interpolation

kernel function. Various practical trajectories were considered for the sampling of source

points and high throughputs were achieved for wide range of configurations. Compared

with GPU implementations, comparable throughputs were achieved at much lower power

consumption. In addition to targeting arbitrary trajectory, proposed architecture was

extended to target known trajectories in MRI and SAR applications. Compared with

existing FPGA based techniques, up to 15 times better power efficiency was achieved in

terms of MFLOPS/Watt at up to 7.35 times the throughput. Compared with GPU based

technique, up to 9.6 times better power efficiency was achieved at comparable throughput.

2. A novel and hardware efficient architecture for matrix inversion (25): The architecture

targets Gauss-Jordan elimination method for matrix inversion and is based on normalizing

multiple rows in an iteration benefiting from the pipelined nature of floating point blocks

and thereby reducing the number of multiplication units required. This results in 80%

reduction in hardware resources for floating point computational logic compared to the

existing pipelined implementation. The proposed architecture also provides better scala-

bility and hardware efficiency at comparable performance. An analytical model was also

developed for the proposed architecture as well as a scalable version for the architecture

proposed in (7).



13

3. A high-performance hardware technique for the computationally intense Burrows-wheeler-

Transform (26): The use of Burrows-Wheeler Transform (BWT) in real time applications

requires efficient hardware implementations that must yield high throughput. A high

performance hardware technique to compute BWT on an FPGA has been proposed. The

hardware and time complexity of the proposed technique scale linearly with the length of

input string.

4. A highly pipelined FPGA based architecture for median filtering (27): Various variants

of median filters have been a key component for noise reduction in image processing.

Median filter is the core process in all these variants. Efficient hardware implementations

of median filter is hence highly desirable. A highly pipelined architecture for median

filtering has been proposed as part of this thesis. The proposed architecture scales linearly

with hardware resources and pixel sizes and achieves Pixel rates higher than those required

for standard 1080p HD video.

1.4 Thesis organization

Chapter 2 introduces NuFFT and its applications followed by the description of the grid-

ing algorithm used in the computation of NuFFT. The proposed architecture for known and

arbitrary trajectories, is described by explaining various functional components and the data-

flow. Verilog and OpenCL based Experimental setup is described. At the end of the chapter,

comparison between optimized Verilog and OpenCL based solution is made and the proposed

architecture is compared with GPU and other FPGA based solutions.



14

Chapter 3 describes hardware-efficient architecture for Gauss-Jordan based Matrix Inver-

sion. It also gives an analytical model for the proposed architecture and some related work for

comparison purposes.

Chapter 4 explains the proposed high-performance architecture for BWT. It briefly describes

BWT and existing hardware based techniques to compute BWT. The proposed architecture

and data-flow is explained in section 4.4 followed by a detailed analysis of hardware and time

complexity analysis in 4.5. Analysis is followed by experimental setup, results and comparison

with related work.

Chapter 5 starts with the description of Median filter and its applications followed by

brief overview of other hardware based median filtering. Next the proposed highly-pipelined

architecture for Median filter is presented followed by the experimental setup and results.

Chapter 6 concludes the thesis and points out the directions and avenues for future work.



CHAPTER 2

RE-GRIDDING ARCHITECTURE FOR ACCELERATING

NON-UNIFORM FAST FOURIER TRANSFORM

Part of this chapter is based on our work that has appeared in the proceedings of 22nd

IEEE International Symposium on Field-Programmable Custom Computing Machines (23) and

24th IEEE International Conference on Field Programmable Logic and Applications [Copy-

right c© 2014 IEEE] (28).

2.1 Introduction

The Discrete Fourier Transform (DFT) can be viewed as the Fourier Transform of a periodic

and regularly sampled signal. Non-Uniform Discrete Fourier Transform (NuDFT) is a general-

ization of the DFT for data that may not be regularly sampled in spatial or temporal domain.

This flexibility allows for benefits in situations where sensor placement cannot be guaranteed

to be regular or irregular sampling patterns allow more efficient information analysis. Some of

the salient applications of NuFFT include Synthetic Aperture Radar (SAR) (29), Computed

Tomography (CT) (30) and Magnetic Resonance Imaging (MRI) (31).

Consider a set S of size M consisting of non-equispaced source samples x. Let N be the

number of equispaced Cartesian grid cells of dimension d belonging to set IN and let fj be the

15



16

Figure 5. NuFFT algorithm flow

complex Fourier co-efficient corresponding to the grid cell j. NuDFT can be formally defined

as in equation Equation 2.1 (32).

fk =
∑
j∈IN

fje
−2πijxk (2.1)

Direct computation of NDFT requires O(MN) arithmetic operations. Non-Uniform Fast

Fourier Transform (NuFFT) helps computing NuDFT with some approximation in O(M +

N logN) complexity (4). It uses the Fast Fourier Transform (FFT) in combination with an

approximation scheme.



17

The main steps of the NuFFT algorithm are shown in Figure 5. The first step is density

compensation of the non-uniform samples in the source domain. Density compensation is

followed by translating non-uniformly distributed data to a uniform grid using interpolation

kernel functions. This re-gridding is performed in the source domain and is also referred to as

data-translation, gridding or re-sampling. Re-gridding is followed by domain transformation

using FFT (or IFFT). Finally, the transformed data is scaled in the target domain. For some

applications, the trajectory of the source samples is known a priori whereas in others the

trajectory may be arbitrary and the samples are available in a random order (33).

2.1.1 Spectral Sampling Trajectories

Performance of the re-gridding process greatly depends on the sampling trajectory of the

source points. Solutions tailor made for one particular sampling trajectory may perform poorly

for the other. In this work, we propose memory and power efficient generic solution for any

potential sampling trajectory. We also target some of the most common trajectories used in the

applications of NuFFT. MRI, which is one major application of NuFFT for image reconstruc-

tion, employs radial (Figure 6) and spiral (Figure 7) trajectories in addition to general Cartesian

( Figure 9) trajectory. Another important application of re-gridding is in SAR processing for

image reconstruction using the Polar/curvilinear trajectory ( Figure 8).

Random trajectory

A number of works in literature ((31; 4; 33; 5; 24)) target random trajectories to give a

generic solution for arbitrary sampling. Random trajectory is of growing interest in Compressive



18

sensing (31) where the aim is to reconstruct a signal by sampling at a rate much lower than

the Nyquist rate. An application for random sampling could be in Wireless Sensor Networks.

Radial trajectory

Radial trajectory is based on equispaced sampling along straight lines. These straight lines

are distributed equiangularly through out the spectrum and all pass through the origin. Radial

trajectory has applications in Magnetic Resonance Imaging (MRI) (34), Multi-dimensional

Wavelet analysis (35) and parallel-beam tomographic applications (36).

Radial trajectory has two major advantages compared to the general Cartesian trajectory.

1. Since all the straight lines pass through the origin, the repeated sampling gives signal

average over image space and hence are more tolerable to motion effects (37).

2. Under-sampling has a lower impact on Signal-to-Noise-Ratio (SNR) of a radial trajectory

based reconstructed image compared to Cartesian trajectory. Therefore, lesser samples

in radial trajectory give same image quality at a reduced scan time (38).

Sampling function for the radial trajectory is given in equation Equation 2.2. The data is

sampled equidistantly in radial hr and angular hθ direction. The spacing in angular direction is

decided based on Cθ parameter which is the equiangular projections that cover 1800 with initial

projection at 00. ∆hr is the spacing in radial direction and 2Cr are the number of samples on

each radial projection.



19

Figure 6. Radial Trajectory. (Generated using (2))

s(hr, hθ) = (
π

Cθ
)∆hr

2Cθ−1∑
m=0

Cr−1∑
n=0

[δ(hθ −m(
π

Cθ
)δ(hr − n∆hr)] (2.2)

Spiral trajectory

Spiral trajectory is useful in MRI applications. It allows oversampling near the spectrum

origin, which is desired for most MRI images, while meeting the fast-imaging requirements

(39). The use spiral trajectory for MRI is compelling for dynamic studies in cardiovascular,

spectroscopy, breast, renal and functional neuroimaging (40). The effectiveness is mainly due

to its efficient use of gradient power and moment-nulling motion compensation (40).



20

Figure 7. Spiral Trajectory. Generated using (2)

Spiral trajectory, h(t), in the (hx,hy)-plane can be formally defined by equation Equa-

tion 2.3. (41).

h(t) = Aω(t)ei[ω(t)+ψ0] (2.3)

where ω(t) is a function of time t and an important parameter in design of trajectory,

ψ0 = 2π(p − 1)/Cp, Cp is the number of interlaced stacked spirals and p is the spiral index

within the stack. This work does not target real-time generation of trajectory and utilizes the

stack-of-spiral trajectory generated by (2).



21

Figure 8. Polar/Curvilinear trajectory. Generated using (3)

Curvilinear trajectory

Curvilinear sampling trajectory (Figure 8) is encountered in Synthetic Aperture Radar

(SAR) applications. The challenge in SAR applications is in real-time and energy-efficient

image reconstruction which makes fast hardware implementations of this trajectory important

(42).

In this chapter, we propose a generic architecture to cater arbitrary trajectories as well as a

variant of the proposed architecture that is targeted towards known trajectories. Performance

comparison demonstrates that prior knowledge of the trajectory can be used to improve the

performance of NuFFT computation. The trajectory specific architecture targets Radial, Spiral,

Curvilinear and Cartesian trajectories.



22

Figure 9. Cartesian Trajectory

Figure 10. Visual Representation of the Re-gridding process



23

2.1.2 Re-Gridding or Data-Translation

Several re-gridding methods have been proposed in literature that vary in terms of accuracy

and associated complexity (43), (44). In this thesis, we focus on methods that are based on

convolving the non-uniformly spaced source points S with a convolution kernel function Φ. The

output of the convolution is a uniform grid of target points T.

T = Φ(T, S) ∗ S (2.4)

The spacing and range of the uniform grid can be expressed in terms of an oversampling

factor α (45). The relationship between the number of source |S| and target points |T | can be

expressed in terms of α.

|T | = α|S| (2.5)

Figure 10 shows the graphical representation of the re-gridding process for non-equispaced

source points. Each source point is multiplied by interpolation kernel function and resultant of

these products is computed. The resultant curve is sampled on a uniform grid to give the set

of target points T .

The basic procedure for computing the target point array is shown as pseudo-code in Fig-

ure 11. It is based on updating all the target points within a specified distance of the source

point using an interpolation kernel function Φ. In this thesis, we refer to this specified distance

as interpolation threshold σ. The process of updating the target points is repeated for all the



24

Figure 11. Pseudo code for Re-gridding processes in 2-dimension. The values of si and tk are

denoted by v(si) and v(tk) respectively. (six , siy) and (tkx , tky) denote the respective

co-ordinates.

source points in S. The final target array T is the translated version of S. S and T are assumed

to be available in external memory as they cannot fit in on-chip memory for large problem sizes.

Depending on the trajectory of source points, accesses to T for updating corresponding target

points lack data-locality for most the applications of NuFFT. This incurs significant delays due

to repeated memory accesses and hence re-gridding is known to be the most time consuming

step (over 90%) of the whole NUFFT computation (4).

Other works like (33), (46), (4) also use the same gridding algorithm for re-gridding but our

proposed architecture improves memory bandwidth utilization and hence improves on perfor-

mance and power consumption.



25

Challenges of Implementing Re-gridding in Hardware

Limited on-chip Memory

For large number of target points, it is usually not possible to fit all the target points in

the on-chip FPGA memory. The target set is available in a memory external to the device.

Updating the points, requires reading these points from the external memory and writing back.

Data-locality

Ordering of source point dictates the order in which the target points will be updated. If

the source point have poor geometric data-locality, the corresponding memory accesses to the

external memory also lack the data-locality.

Utilizing Memory Bandwidth Efficiency

Efficient utilization of memory bandwidth is the key to improve the performance of the

re-gridding process. Minimizing re-reads of source and target points from external memory

improves the efficiency of memory bandwidth.

In this chapter, we propose a novel on-chip buffering scheme to group the source points

together and hence improve the data-locality of accessing the target points in external mem-

ory. This results in better performance and power consumption. The novelty of the proposed

architecture is in the efficient use of FPGA on-device block memory for storing temporarily the

subsets of S and T , and the efficient usage of other customizable hardware components such

as fill-status based arbiter, decentralized memory control logic and an array of pipelined single

precision floating point multipliers and adders.



26

2.2 Related Work

Considering the growing gap between the on-chip throughput capacity and memory band-

width, efficient memory bandwidth utilization is most important to truly benefit from the par-

allel computation capability of GPUs and FPGAs. Several contributions ((47; 48)) have been

reported to improve the memory bandwidth efficiency for Fast Fourier Transform. Considering

the wide range of possible trajectories for the case of NuFFT, efficient memory utilization is

even more challenging. High performance implementations for computing NuFFT have been

pursued on various platforms including multi-core CPU’s, (31), (29), (30), Graphics Processing

Units (GPU) (31) and FPGAs (4),(5). Since the lack of locality in memory accesses is the ma-

jor bottleneck in the re-gridding process, all these work target efficient utilization of memory

bandwidth between the processing unit and the external memory.

Sorensen et al. (6) targeted the re-gridding process for NuFFT on GPU and multi-core CPU.

Like our approach, it extracts ”target driven” parallelism but has an additional overhead of

preprocessing to decide the processor each source point is going to map to. It divides the Target

Cartesian grid into rectangular regions and process each region on a distinct processor. They

specifically targeted Spiral and Radial trajectories that mainly have applications in MRI. Zhang

et al. (46) also proposed multi-core processor based approaches for better cache utilization.

Kestur et al. (4) proposed an FPGA based implementation employing a linked-list based

approach to improve the locality of memory accesses and hence the memory bandwidth effi-

ciency. Later they improved the performance of their framework in (5) and also targeted known



27

trajectories. To the best of our knowledge these two are the only FPGA based work that are

aimed at accelerating the re-gridding process of NuFFT other than our work published in (24).

Many efforts have been put to accelerate various applications of NuFFT. Some of the recent

works related to re-gridding process in SAR image reconstruction include (49), (42). Nash et al.

(49) proposed an FPGA based pipelined and implementation for Range Migration Algorithm

based SAR. Sadi et al. (42) demonstrated a specialized platform for regridding process in

SAR processing using 3D-stacked logic in memory. Image reconstruction in MRI is another

important application for NuFFT. Huang et al.(50) proposed a CPU and GPU based approach

for image reconstruction in 3-D MRI. Kalamkar et al. (31) also proposed a multi-core CPU

based technique for accelerating 3D NuFFT. In this work, we focus re-gridding process for 2D

NuFFT and its applications.

2.3 Proposed Re-Gridding Architecture

The proposed Re-gridding architecture, called Data-translator, is based on mapping uniform

grid of target points to a number of on-chip, block memory based FIFOs. The 2-Dimensional

(2D) uniform grid, that consists of an array of target points T, is subdivided into smaller 2D

sub-arrays, referred to as tiles in this thesis. The size of tile is chosen based on the resources

available on device. Each tile has a corresponding FIFO buffer that is used to group the source

points that affect any target point within the tile. The FIFO-to-tile mapping is illustrated in

Figure 12. The source points are read from the external memory and pushed into the FIFO(s)

that correspond to the tile(s) they affect. The idea is to group all the source points that affect

the same tile onto a single FIFO. One FIFO is read at a time and the corresponding tile is



28

loaded into the device from the memory. Once all the source points in the selected FIFO update

the corresponding target points, the fetched tile is written back and another FIFO-tile pair is

selected to be processed. The process is repeated till the target points corresponding to all

source point in S are updated.

As shown in Figure 15, the proposed Re-gridding architecture consists of memory interfaces,

multiple block memory based FIFO buffers, decentralized control logic, read arbiter, address

generator and an array of floating-point multipliers/adders (FpMAs). Rest of the section ex-

plains the architectural details of individual components and data-flow through the system.

2.3.1 Points Representation

Source Points

Each source point si is stored as a string of 128-bits. six and siy are the x and y co-ordinate

in single precision floating point format as defined in (51). The co-ordinates may have any

value within the specified range. Both real and imaginary part of si are also stored in single

precision floating point format. The set of source points S is available in external memory

in an arbitrary or application-specific order. It has to be noted that source points stored at

consecutive locations in external memory may not be contiguous in terms x and y coordinates.

Target Points

Set of target points T is also stored in external memory. Since target points are on uniform

grid, by storing them in order, the coordinates are no longer required to be stored as part of

the string. Target point is a string of 64-bits consisting of real and imaginary part expressed

as single precision floating point values.



29

Figure 12. Mapping between Tiles and point FIFO. The boundaries of the tiles are shown by

dotted blue line and tiles are numbered from 1 - 12. Grey dots indicates the target points,

crosses indicates the source points and dotted red box indicates the convolution widow for

each source point. The FIFOs at the bottom are shown filled with the source points and have

the same index as the tile they correspond to.



30

Figure 13. The proposed Re-Gridding (Data Translator) architecture depicting the data-flow

through its components. The solid lines indicate the data flow and dotted lines indicate

control lines.



31

2.3.2 Data-translator Components

Memory Interface

The proposed architecture has two memory interfaces: Source Interface (SI), that reads the

source points from the external memory and Target Tile Interface (TTI), used to read and write

target tiles from the external memory.

Point-FIFOs and Overflow-FIFO

There is a FIFO fm corresponding to each tile em in the target set T as depicted in Figure 12.

The set of FIFOs corresponding to tiles are referred as point-FIFOs. The decision to push an

incoming source point si into fm is made using a decentralized control logic. si may be pushed

into multiple FIFOs and if any FIFO corresponding to si is full, si is pushed into an extra

FIFO called the overflow FIFO. If the number of empty slots in the overflow FIFO become less

than the read burst size used by SI, read operation of source points from the external memory

is stalled. Overflow FIFO is emptied by repeatedly trying to write the source points contained

into the point-FIFOs. If any FIFO corresponding to the source point is still full, the point is

written back to the overflow-FIFO.

The total number of point-FIFOs depend on the size of the target frame T and the tile size.

If the target set has |T | points and a tile of size z × z is used, the total number of point-FIFOs

will be |T |/z2.

Decentralized control logic for the point FIFOs

The source points read from the memory through SI are pushed into the point-FIFOs de-

pending on their co-ordinates and interpolation threshold σ. Consider the mth tile em spanning



32

the Cartesian region (x, y) where Xml < x <= Xmh and Yml < y <= Ymh . m is called the tile

index of tile em. A source point si is pushed into fm, if the following conditions are satisfied:

Xml − σ < six ≤ Xmh + σ (2.6)

Yml − σ < siy ≤ Ymh + σ (2.7)

The control logic corresponding to each FIFO also keeps track of the Fill Status (FS), i.e.,

the number of points in the FIFO.

Read Arbiter

A single point-FIFO is read at a time. The selection of a particular point-FIFO to be read

is made by the read arbiter. The arbiter also controls the select line for the multiplexer at the

output of the point FIFOs. Since the arbiter is a centralized control, the hardware complexity

greatly depends on the number of tiles.

We develop General Arbiter (GA) based on arbitration scheme to target arbitrary or un-

known trajectories. This arbitration is based on Fill Status of FIFOs. FIFO that are full is

given the highest priority. In case multiple FIFOs are full, the FIFO corresponding to greater

tile index is given priority. When none of the FIFO is full, the decision is based on number of

points in the FIFO. The FIFO with highest point count is read first. Only the FIFO having

the highest count requests for read. When multiple FIFOs have the same highest count, the

tile with the greatest tile index is given highest priority.



33

To have better performance for known trajectories, we propose Trajectory Specific Arbiter

(TSA). Since the ordering of source points is known, the ordering in which the FIFOs are

selected can be decided a priori. This results in lower hardware complexity but the hardware is

specific to a particular trajectory. As part of this work, we target well-known trajectories that

are discussed in Section 2.1.1.

Tile Address Generator

If the read arbiter decides to read data from a FIFO fm, address generator generates the

address of the corresponding tile em in the memory and requests the TTI to read em from the

memory.

Floating point Multipliers and Adders (FpMAs) with associated Random Access

Memory (RAM)

Since for each source point, an array of (2σ)× (2σ) target points in the convolution window

need to be updated, we use an array of (2σ)× (2σ) FpMA units to compute all these values in

parallel as shown in Figure 14. An array of pre-computed values of interpolation kernel function

is stored locally in each FpMA unit in the form of a Look-Up-Table (LUT).

Mapping of Target tile points to FpMA units

Storing the contents of tile in a single RAM on the device restricts the number of simul-

taneous accesses to the target points. This severely hinders the extraction of parallelism in

the computation of target point values. Another way to store the tile on the device is to use

registers. This solves the problem of parallel access by using numerous multiplexers but the

approach is not efficient with respect to interconnect resources required for large tile sizes.



34

Figure 14. The convolution operation of the source point with the interpolation kernel

function to update the target point values. The red box on the tile indicates the convolution

window.



35

Figure 15. Logical connection of Floating point Multiplier and Adder (FpMA) units to target

points in fetched tile indicated by color coding: (a) Array of FpMAs units, each box

represents an FpMA unit (cell). The co-ordinates in each box indicates the index of the

FpMA unit in a 2-d array format (b) A tile of size 8 x 8. Each box represents a target point

of the tile. The co-ordinates in each box indicate the co-ordinate of target point in the 2-d

tile. For clarity, logical connection of (0,0) FpMA unit is indicated with dotted line as well



36

A distributed approach is proposed to store the values of fetched target tile on the device.

Each target point is mapped to a single FpMA unit and all target points mapped to the same

FpMA unit are stored in a single RAM. The mapping of an 8 × 8 tile onto an array of 4 × 4

FpMAs is shown in Figure 15. FpMA units are also indexed as a two dimensional array to

make mapping easier and more intuitive. If a target point tk is at index (xtk , ytk) in the tile,

the index (qx, qy) of the FpMA associated with it is given by the following expressions:

qx = xtk mod (2× σ) (2.8)

qy = ytk mod (2× σ) (2.9)

Architecture of FpMA

Each FpMA unit has a pipelined floating point multiplier along with a floating point adder

to perform the multiply and accumulate operation. The values of interpolation kernel functions

are addressed from the LUT based on the distance between the target point being updated

and the source point. The proposed architecture is based on pipelined floating point multiplier

and adder by Altera (20). In Figure 16, the depth of pipeline for floating-point multiplier is

5 whereas the floating point adder is single stage. A register pipeline is used to synchronize

the timing of source co-ordinates with multiplier output. A new source point is available every

clock cycle and the whole process of multiplication and accumulation is pipelined. An interface

with TTI is provided to read a new tile from memory and write back the fetched tile. For



37

Figure 16. Architecture of the proposed Pipelined Floating Multiplier and Adder (FpMA) unit

simplicity, Figure 16 does not show separate multipliers and adders for the real and complex

part of the values.

The hardware complexity of an FpMA cell depends on the size of the tile and σ. For a tile of

size z× z, the number of memory locations in the RAM of each FpMA would be (z2)/(4×σ2).

2.3.3 Data-flow through the System

The source points are written to external memory by an initializing bus master in the

format described earlier. All the target points are initialized to zero. SI reads source points

from external memory in a burst memory access mode. During each cycle of burst, a new source

point si is read and pushed into appropriate FIFO(s) by the decentralized control logic. If any

point-FIFO corresponding to si is full, si is pushed into the Overflow-FIFO. For the case of GA,



38

based on Fill-Status of FIFO buffers, GA selects the FIFO to be read. For TSA, the tile index

of next FIFO to be read is read from the memory. Address generator generates the address of

the selected tile. TTI requests the bus to read the specified tile from the memory. The contents

of the fetched tiles are distributed over the RAMs associated with the FpMA units. Each target

point has a single FpMA unit associated with it and all the target points associated with an

FpMA unit are stored in the RAM local to FpMA. Source point are read from the selected

FIFO at each clock cycle and all the target points within the fetched tile that are σ distance

from the source point are updated in parallel. SI and TTI access the memory through a shared

bus with the bursts from both interfaces interleaved. This implies that the source points are

read out from the FIFOs in between the FIFO-fill operation. This minimizes the chance of any

FIFO getting full. The arbitration share for each memory interface on the system bus can be

modified to give preference to a particular one. If SI is given a higher preference, the overall

FIFO fill-rate is greater than the rate of popping points out of FIFOs. This means grouping

more points together at the expense of higher probability of any FIFO getting filled.

2.4 Hardware Implementation

2.4.1 Optimized Verilog Based Implementation

An optimized implementation of the proposed architecture was done in Verilog for relatively

small target set size. To target larger target set sizes, an openCL implementation was also done

that is discussed in Section 2.4.2.



39

Experimental Setup

For verilog based implementation, synthesis and fitting is done using Altera Quartus II 13.1

for Stratix IV EP4SGX230KF40C2 device. Simulations are performed on Modelsim Altera

10.0d. The proposed architecture is integrated to a DDR2 memory controller using two standard

Avalon Bus Master Interfaces (52): SI and TTI. SI is 128-bit wide and reads source points

from the memory in the form of bursts. The upper limit on burst size is imposed by Avalon

Specifications (52). A maximum of 1024 points are read as a single burst and for larger number

of points, multiple burst transactions are done. The Target interface is 2048-bit wide and is

used to read/write the target points from/to the DDR2 memory in the form of bursts. Floating

point multiplier and adder in the FpMA units are generated using Altera Mega-wizard (20).

The initializing bus master, SI and TTI communicate with memory through the Avalon Bus

Interconnect that has built-in bus arbitration support. The arbitration shares amongst the

masters are programmable. For our experiments, equal arbitration share is given to the three

bus masters in the system. The optimized Verilog implementation is targeted only random

trajectories. The random trajectory for source points is generated using a MATLAB script.

The co-ordinates for the source points are generated randomly within the specified range. This

mimics the arbitrary sampling order. The real and imaginary parts of source point values are

also generated randomly. Each co-ordinate as well as real and imaginary parts are represented in

single precision floating point representation. The power analysis of the proposed architecture

is done using Altera’s Powerplay power analysis tool (53).



40

Results

The system was simulated using Modelsim Altera 10.0d. The simulation models for the

Avalon bus, memory controller and DDR2 memory were generated using Altera Qsys software.

The simulation gives highly precise results since the latency in the simulation models may

differ at most by two clock cycles compared to the design on board (54). Performance of the

proposed architecture is evaluated by simulating and computing the number of clock cycles

required. Using a clock frequency of 50 MHz, which is chosen to be less than the achieved

maximum frequency of 62.9 MHz, computation time for the translation process is calculated.

Based on this computed time throughput is calculated in terms of frames per second (fps). For

all the experiments, over-sampling factor α is taken to be equal to 4. This implies that for

target point set T of size 256 × 256, the sizes of corresponding S will be 128 × 128. Table

Table II shows the throughput for various sizes of tile, convolution window and set T .

Taking larger tile size meant larger part of T was available on the device at a time and more

number of source points are grouped together in a single FIFO. This improves the locality of

memory access and hence results in a higher throughput. Taking larger tile size for a fixed |T |

results in less number of point-FIFOs and hence reduction in the complexity of Multiplexer and

the centralized arbiter. Because of fewer number of FIFOs, size of an individual point-FIFO

can be increased to accommodate more points.

Larger convolution window (greater σ) results in more points pushed into multiple FIFOs

and hence higher computation time. For a four times bigger convolution window, throughput



41

was only reduced by 5 %. But it has to be noted that bigger convolution window results in

more number of FpMA units and hence higher hardware complexity.

TABLE II

THROUGHPUTS FOR VARIOUS SIZES OF TILE, CONVOLUTION WINDOW AND

TARGET SET T

Size of Target set σ Tile Size Throughput

256 x 256 2 16 x 16 586.38 fps

256 x 256 2 32 x 32 691.33 fps

256 x 256 4 32 x 32 654.57 fps

256 x 256 2 64 x 64 715.66 fps

128 x 128 2 64 x 64 3081.98 fps

Other parameters like memory bandwidth utilization, power consumption, Mega Floating

point Operations per Second (MFLOPS) and MFLOPS per watt were also computed. Memory

bandwidth utilization was computed by taking the ratio of time the memory interface was

active, to the overall computation time for the re-gridding process. For a target set T of size



42

256 × 256 and a tile size of 64 × 64, we have achieved 65.37% memory bandwidth utilization,

while spending 27.02 watts to reap 750.42 MFLOPS.

2.4.2 OpenCL Implementation

OpenCL is an ”open standard for parallel programming of heterogeneous systems” (55). An

OpenCL program has a host code that runs on the host machine and a device code.

Experimental Setup

To target bigger problem sizes and better experimentation of various design parameters,

the data-translator was also implemented using OpenCL solution on Altera Stratix V GX

5SGXEA7N2F45C2 FPGA. Data-translator is implemented in the form of multiple kernels in

the device code. These kernel functions are translated into architecture by Altera OpenCL

solution (56) which is implemented on FPGA. The FPGA is mounted on DE5 net (57) board

from Terasic that has two independent banks of on-board DDR3 RAM. The arrays of source and

target points are generated in the host code and transferred to the on-board DDR3 memory.

After the values of target points have been computed, the target array is copied back from

DDR3 to the host machine. The overall OpenCL setup is shown in Figure 17.

The host program generates source and target points sets. For the case of random tra-

jectory, the coordinates are generated randomly at run time of host program. For specified

trajectories, the coordinates, real and imaginary values are read from an external file. Spiral,

Radial and Cartesian trajectories were generated using the MATLAB framework provided by

(2). Curvilinear trajectories were generated using MATLAB script based on (3).



43

Figure 17. OpenCL based Experimental Setup

Performance of the proposed architecture is computed in host program by calculating the

time lapse of kernel execution. The time is measured in milliseconds using the standard openCL

libraries. Power consumption is estimated for the whole FPGA design using Powerplay Power

Analyzer tool (58).



44

Figure 18. Reading Order of Point-FIFOs could be decided a priori based on the known

Trajectory. The figure shows the target frame divided into 16 tiles.

The point-FIFOs are implemented using Altera OpenCL Channel extension (56). The

architectural components are implemented in the form of kernel functions. The data and

control exchange amongst the kernels is also done via channels.

Trajectory Specific Architecture

Since for known trajectories, the reading order for point-FIFOs could be decided a-priori,

an array having the index of point-FIFOs, in the order in which they have to be read, is loaded

by the host program to the on-board DDR3 memory. Since the ordering is predetermined,

trajectory specific arbiter is much simpler compared to generic arbiter.



45

Results for the Proposed Architectures

Performance and power characteristics for various values of design parameters are given in

table Table III. Throughput is reported in terms of frames per second (fps) and power efficiency

in terms of Mega Floating Point Operations per Second (MFLOPS) per watt. For all the results

reported in Table III, σ = 2 which implies a convolution window of size 4× 4.

Hardware Resource Utilization

Figure 19 shows a comparison of Hardware resources for GA and TSA based architectures

for target set size of 1024 × 1024, tile size of 256 × 256, α = 4 and σ = 2. It can be seen

that the number of DSP blocks is the same for both architectures since the window size and

hence the number of FpMA units are same. Block memory utilization is slightly higher for

trajectory specific architecture since buffer reading order, specified by host, is also stored in the

on-chip block memory. The hardware complexity associated with selecting the buffer to read

in architecture for arbitrary sampled data is reflected in higher number of Logic Elements (16.7

% higher) and Flip-flops (27 % higher) for GA compared to TSA.

Performance

Figure 20 shows the throughput comparison of various trajectories on GA and TSA based

architectures for a target sets of size 1024×1024, α = 4 and σ = 2. For TSA based architecture,

prior knowledge about the trajectory helps achieve better memory bandwidth utilization and

hence higher throughput compared to GA based architecture that relies on real-time decision

of the tile to be updated. For random trajectory, the chance of any FIFO buffer getting filled

is much lower compared to other specified trajectories as the points are uniformly distributed



46

TABLE III

POWER AND PERFORMANCE FOR DIFFERENT TRAJECTORIES

Trajectory Arbiter Size of α Tile Size Throughput MFLOPS MFLOPS/Watt

Target set

Cartesian TSA 512 x 512 4 256 x 256 153.76 fps 1127.98 37.37

Cartesian TSA 1024 x 1024 4 256 x 256 67.23 fps 644.9 64.85

Spiral TSA 512 x 512 4 256 x 256 150.86 fps 632.8 45.61

Spiral TSA 512 x 512 4 128 x 128 113.46 fps 475.91 24.06

Spiral TSA 1024 x 1024 4 256 x 256 55.83 fps 936.66 51.38

Curvilinear TSA 512 x 512 4 256 x 256 153.61 fps 1128.94 37.33

Curvilinear TSA 1024 x 1024 4 256 x 256 67.29 fps 644.3 64.91

Radial TSA 512 x 512 4 256 x 256 142.31 fps 596.9 43.02

Radial TSA 512 x 512 4 128 x 128 116.55 fps 488.83 24.71

Radial TSA 1024 x 1024 4 256 x 256 51.27 fps 860.14 47.18

Random GA 512 x 512 4 256 x 256 113.22 fps 474.05 27.47

Random GA 1024 x 1024 4 256 x 256 21.94 fps 368.05 18.21

Random GA 512 x 512 1 128 x 128 41.82 fps 701.57 50.567



47

Figure 19. Comparison of Hardware Resources for TSA and GA based Architectures for

target set size of 1024× 1024, tile size of 256× 256, α = 4 and σ = 2



48

Figure 20. Throughput comparison for trajectory specific architectures

and available in random order. Hence the performance of GA based architecture is the best for

random trajectory.

For TSA based architecture, since curvilinear and Cartesian are the most ”regular” tra-

jectories in terms of co-ordinate ordering, they achieve the highest throughput. Compared to

performance for GA on random trajectory, the performance of TSA for curvilinear and Carte-

sian trajectory is 3 times, for spiral trajectory is 2.55 times and 2.34 times for Radial.

Power Consumption

Since the arbiter is more complex for the architecture targeting random trajectories, it not

only results in higher hardware complexity (as shown in Figure 19) but also higher in higher

power consumption. The power consumption of the architecture targeted at arbitrary trajec-

tories and trajectory specific architecture as estimated by Altera Power Play Power analyzer



49

Figure 21. Throughput comparison for trajectory specific architectures

tool are 20.22 Watts and 18.23 Watts (for a target set of size 1024×1024, tile size of 256×256,

σ = 2 and α = 4.

Effect of Tile Size

As mentioned earlier, bigger tile size allow bigger portion of target set to be available on-

chip and hence better grouping of points. This results in better memory bandwidth efficiency

and hence higher throughput as indicated in table Table III. It also results in lower hardware

complexity for multiplexer and arbiter but higher memory usage specially for FpMA units.

Fig Figure 22 shows the comparison of power consumption and hardware resources for tile size

of 256 × 256 and 128 × 128 when the size of target point set is 512 × 512. Block RAMs are

higher for the greater tile size, as more points are stored in onchip block RAM per FpMA

unit. The number of block RAMs also include the resources allocated to Altera channel based



50

Figure 22. Comparison of Power Consumption and Hardware Resources for tile size of

256× 256 and 128× 128 when the size of target point set is 512× 512

FIFO buffers. The number of Logic Elements and Flipflops are lower for greater tile size as the

complexity of multiplexer and arbiter are reduced due to fewer number of FIFO buffers. Larger

tile size results in lower power consumption mainly due to lower hardware complexity and less

number of external memory accesses.

Scalability

We study the scalability of hardware resources and throughput against target set size for

GA and TSA based architecture. Figure 23 is for GA based architecture. It shows that the

throughput (in terms of frames per second) decreases as the target set size increases. MFLOPS



51

Figure 23. Scalability of Hardware Resources, MFLOPS and throughput with the target set

size and tile size for GA based architecture

increase as the frame size increases from 256×256 to 512×512 but for frame size of 1024×1024,

MFLOPS are lower compared to 512 × 512 which is understandable considering the overhead

incurred when the FIFO buffers are full and the reading operation of source points from external

memory has to be stalled. As expected, hardware resources also increase with the increase in

frame size when the tile size is constant. Effect of tile size on hardware resources has already

been discussed. Figure 24 shows the hardware resources and MFLOPS for known trajectories

on TSA based architecture. MFLOPS for 1024×1024 frame are greater than 512×512 for TSA

based architecture as opposed GA based architecture since trajectories are known a-priori.



52

Figure 24. Scalability of Hardware Resources, MFLOPS with the target set size for TSA

based architecture. The vertical axis on left indicates the count for resources and the vertical

axis on right is for MFLOPS.



53

Figure 25. Comparison of OpenCL implementation with Optimized Verilog based

implementation for a target set of size 256× 256, α = 4 and σ = 2

2.4.3 Comparison of Implementations

Comparison of the optimized Verilog based implementation with the openCL implementa-

tion shows that the throughput of Verilog implementation is 2.7 times higher for a target set of

size 256×256, α = 4 and σ = 2 (Fig Figure 25). Power consumption is twice but it still achieves

higher (1.36 times) MFLOPS/Watts. It has to be noted that Verilog based implementation is

based on the simulation and synthesis results on Stratix IV EP4SGX230KF40C2 device and

OpenCL implementation is based on Stratix V GX 5SGXEA7N2F45C2.



54

One of the reasons Verilog based implementation out performs openCL implementation is

the optimized implementation of Multiply and ACcumulate (MAC) operation. The floating-

point adder block in each FpMA unit in Verilog implementation takes a single cycle for compu-

tation. This allows pipelined implementation of MAC operations in verilog implementation at

the expense of lower clock frequency. Since openCL is a higher level language, it does not allow

this level of flexibility. MAC operations are implemented using loop constructs. OpenCL allows

pipelined and parallel implementation of loop constructs. If the loop is not parallelizable, the

compiler attempts to pipeline. Pipelining across multiple iterations of loops is only possible if

inputs to the following iterations do not depend on the output of previous iterations. If it is

dependent, like in case of MAC operations, successive iteration are issued when computation

of previous iteration is done. This incurs stall cycles and hence degrades the performance.

OpenCL implementation does not have the flexibility of controlling the relative reading rate of

source and target tiles from external memory. In Verilog, this could be controlled by changing

the arbitration share of SI and TTI interface. Overall, openCL allowed easy experimentation

but lower flexibility compared to Verilog based implementation.

2.5 Comparison with Related Work

Sorensen et al. (6) reported performance for re-gridding process for MRI trajectories on

CPU and GPU. There proposed algorithm was run on ATI FireStream 2U GPU with 1 GB of

memory. A 64-bit Linux machine running Fedora Core 6 on Intel Xeon 2.33 dual core processor

with 4GB Random Access Memory was used to run the reference design.



55

Kestur et al. (4) proposed an FPGA based implementation of the re-gridding process in

2010. They implemented the gridding method and used a linked-list based technique to map

the arbitrary samples dynamically. The results show that the FPGA based implementation

achieved superior per-Watt performance compared to CPU and GPU but the throughput was

quite low compared to the GPU version (6). Later, they reported improved framework and

throughput for various trajectories in 2011 (5). Both the implementations were targeted on

BEE3 board using two Virtex5 FPGAs.

2.5.1 Verilog Implementation

First, we compare the throughput and power consumption of the optimized verilog based

implementation of our proposed technique against FPGA implementations in (4; 5) and GPU(6)

based approach for a target set of size 256 × 256 and random trajectory. All these results are

for the same size of convolution window (σ = 2).

It can be seen from Figure 26 that compared to the throughput of FPGA based technique

proposed in (4), Verilog based optimized architecture achieves a 9.6 times speed up but has 1.35

times higher power consumption. Compared to (5), a speed up of 4.3 times is achieved at 1.1

times lower power consumption. When compared in terms of MFLOPS per watt, it achieves

7 times more MFLOPS per watt of power. Compared to the GPU based technique (6), the

throughput of our proposed architecture is marginally higher but the power consumption is 5.9

times lower.



56

Figure 26. Performance comparison of the verilog implementation of the proposed architecture

with existing FPGA (4; 5) and GPU (6) based techniques for a target point set of 256 × 256

2.5.2 OpenCL Implementation

OpenCL implementation was mainly targeted at bigger frame sizes and greater number of

source points. It was also used to implement the trajectory specific architectures. We compare

the performance and power efficiency for the following trajectories with related work.

Spiral

Figure 27 and Figure 28 compares TSA based architecture for spiral trajectory in terms of

throughput and power-efficiency (MFLOPS/Watt), respectively, with FPGA (4; 5), CPU (6)

and GPU (6) based solutions. For a target set of 1024 × 1024, our proposed architecture has

a marginally higher (6% higher) throughput compared to GPU implementation but at a much



57

Figure 27. Throughput comparison of Spiral Trajectory with related work

higher power efficiency (9.6 times). For smaller target set of size 512 × 512, the GPU has a

higher (1.4 times) throughput but power efficiency is better (8.45 times) for our FPGA based

architecture. Compared to FPGA based solutions (4; 5), proposed architecture achieves higher

throughput (7.35 and 4.77 times respectively) and better power efficiency (15.22 and 7.9 times)

for a target set of 1024 × 1024. For a target set of 512 × 512, the improvement in throughput

is 8.12 and 3.56 times whereas power efficiency is better by 11.7 and 7.72 times respectively.



58

Figure 28. Comparison of Power efficiency for Spiral Trajectory with related work

Radial

Figure 29 and Figure 30 compares the throughput and power-efficiency (MFLOPS/Watt),

respectively, of the proposed architecture for radial trajectory. For a target set of 1024× 1024,

GPU implementation has 1.5 times higher throughput than our proposed architecture but

power efficiency of our proposed architecture is still 6 times higher. For smaller target set of

size 512 × 512, the GPU again has a higher (1.76 times) throughput but power efficiency is

better (6.77 times) for our FPGA based architecture. Compared to FPGA based solutions

(4; 5), proposed architecture achieves higher throughput (6.74 and 4.38 times respectively) and



59

Figure 29. Throughput comparison of Radial Trajectory with related work

better power efficiency (13.97 and 7.21 times) for a target set of 1024× 1024. For a target set

of 512× 512, the improvement in throughput is 7.66 and 3.37 times whereas power efficiency is

better by 11 and 7.28 times respectively.

Random

Kestur et al. targeted random trajectories in (4). Figure 31 shows the throughput and

MFLOPS/Watt comparison for a target set of size 1024× 1024. The major reason for improve-

ment is better memory efficiency as source points are read only once and no preprocessing is

required to generate the ordering of source points.



60

Figure 30. Comparison of Power efficiency for Radial Trajectory with related work

Curvilinear

The major application of curvilinear trajectory is in SAR image reconstruction. A number

of efforts ( for example, (42; 49; 59)) have been made to accelerate the SAR image reconstruction

on a variety of platforms but most of the them report the overall throughput of the reconstruc-

tion process. In our work related to SAR image reconstruction (49), we reported a pipelined

NuFFT based architecture for Range Migration Algorithm based SAR image reconstruction.

The architecture achieved 570 frames per second (8.47 times the proposed architecture in this

work) for the SAR image reconstruction because of higher (1.6 times) clock frequency achieved



61

Figure 31. Comparison of throughput and power efficiency for Random trajectory and a

target set of size 1024× 1024

and one dimensional interpolation window. The architecture in this work, however, targets only

the regridding processes but is based on 2D interpolation window. Recently, (42) targeted the

regridding process in SAR imaging and demonstrated 1985.4 GFLOPS at 68.3 GFLOPS/Watt

for the same frame size on a 3D-stacking technology based Application Specific Integrated

Circuit (ASIC) platform. As the results are based on ASIC simulation tools and target the

3D-stacking technology it is not fair to compare it with platforms like FPGAs and GPUs.



62

2.6 Conclusions and Future Work

In this chapter, we proposed a novel power efficient architecture to accelerate the memory

and compute intense re-gridding process in NuFFT. Various practical trajectories were con-

sidered for the sampling of source points and high throughputs were achieved for wide range

of configurations at low power consumption. This was achieved by accessing the memory effi-

ciently using novel hardware components such as block memory based FIFO buffers, fill-status

based point-arbiter, decentralized memory control logic and an array of FpMA units. When

compared against GPU implementations, comparable throughputs were achieved at much lower

power consumption. In addition to targeting arbitrary trajectory, proposed architecture was ex-

tended to target known trajectories in MRI and SAR applications. Compared to existing FPGA

based technique, up to 15 times better power efficiency was achieved in terms of MFLOPS/Watt

at upto 7.35 times the throughput. Compared to GPU based technique, upto 9.6 times better

power efficiency was achieved at comparable throughput. As part of future work, optimized

Verilog based implementation targeting bigger frame sizes could be pursued. Since OpenCL

SDK are still new to FPGA domain, as these solutions improve, better optimizations and hence

throughput and power efficiency could be achieved.



CHAPTER 3

HARDWARE EFFICIENT ARCHITECTURE FOR MATRIX INVERSION

The contents of this chapter have been published in the proceedings of the 33rd IEEE Inter-

national Conference on Computer Design [Copyright c© 2015 IEEE] (25)

3.1 Introduction

Matrix inversion is a fundamental operation in many real-time applications. Some of these

applications include Orthogonal Matching Pursuit (OMP) in Compressive Sensing based signal

reconstruction (60), Multiple Input Multiple Output-Orthogonal Frequency Division Multi-

plexing (MIMO-OFDM) systems (61) and Cryptography(62). The computational complexity

of most matrix inversion algorithms for a N × N matrix is O(N3). Considering the real-time

applications of matrix inversion, efficient hardware solutions are needed that scale well with the

input size. Configurable hardware, like Field Programmable Gate Arrays (FPGAs), have shown

promise in high-performance computing, especially with the emergence of efficient floating-point

computation solutions on FPGAs (20). Lately, with the emergence of hard floating-point blocks

in FPGAs (63), the use of FPGAs as computational devices is expected to increase further.

In this work, we devise an efficient architecture for computing Gauss-Jordan based Matrix In-

version. The proposed architecture employs pipelined floating point units and reordering of

operations. The reordering includes normalizing multiple rows within an iteration and saving

63



64

on the multiplication operation during the elimination of rows. We use Altera’s FPGA platform

to quantify the performance and hardware utilization of the proposed architecture.

3.1.1 Gauss-Jordan Elimination Algorithm

Gauss-Jordan (GJ) Elimination algorithm computes the inverse of matrix using multiple

elementary row operations. In order to compute inverse of a matrix A of size N × N , the

algorithm defines an N × 2N augmented matrix that has matrix A on the left augmented and

an N ×N identity matrix to the right. A series of elementary row operations are performed on

the augmented matrix till the first N columns of augmented matrix are transformed to identity.

At this instant, the transformed identity matrix is the inverse of A.

[A|I] =⇒ [I|A−1] (3.1)

The algorithm is iterative in nature with the number of iterations being equal to N . The

algorithm consists of following steps (8):

1. Partial Pivoting : Pivot is defined as the largest element in column i from rows i till N .

Row i is interchanged with the row having pivot element.

2. Normalization: The ith row, called the pivot row, is normalized by the pivot element.

3. Forward Elimination: For all the rows below the pivot row, perform elimination by sub-

tracting a multiple of pivot row from each row. Increment i, and repeat the steps starting

from step 1, till the left matrix is transformed to an upper triangular matrix.



65

4. Back Substitution: All elements that are above the diagonal in column i, are eliminated

by subtracting a multiple of pivot row from each row. i is decremented and this step is

repeated till all elements above the diagonal become zero.

In this thesis, we modify the GJ algorithm to suit the pipelined computational resources.

We propose a scalable and hardware-efficient architecture for Gauss-Jordan Elimination based

matrix inversion. The elements of the matrix are assumed to be available in single-precision

floating-point format. An architecture for double precision is a straightforward extension by

replacing the single precision blocks with double precision floating-point blocks. The proposed

architecture has the following salient features:

• Hardware-efficiency is improved by minimizing the number Floating point multiplication

units used.

• Parallelism is exploited by benefiting from the pipelined nature of floating-point compu-

tation blocks and the reordering of operations.

• Scalability : The performance of the proposed architecture is scalable with respect to

hardware resources. Depending on hardware resources available in the device, number of

floating point compute units can be increased and hence the performance can be scaled.

The rest of the chapter is organized as follows: Section 5.2 describes other GJ algorithm

based architectures followed by description of hardware optimized architecture based on mod-

ified Gauss-Jordan algorithm in Section 3.3. Architectural details are given in Section 3.4

followed by detailed performance analysis in Section 3.5 and hardware complexity analysis in



66

Section 3.6. Experimental setup and results are given in Section 4.6 followed by conclusion and

future work in Section 3.8.

3.2 Related Work

Matos et al., in (64), presented an analysis and straightforward implementation of Gauss-

Jordan elimination on FPGAs. The proposed architecture had the memory complexity of

2N × N . Later they presented an improved version of their architecture in (8) where they

improved the memory efficiency by a factor of 2. The improved architecture, though memory-

optimized, assumes that enough computational resources are available and the performance is

modeled in terms of number of memory banks. For the case of floating point arithmetic, to

achieve better performance, pipelined floating point computational units are preferred (20; 65),

but to the best of our knowledge, (8) assumes single cycle computational units.

Moussa et al. (61) has implemented matrix inversion for floating-point complex matrix

inversion using GJ based method for small matrix sizes. Duarte et al. (7) and Garcia et

al. (66) also proposed pipelined floating point units based architectures for the Gauss-Jordan

based matrix inversion. In (7), the authors used a row processing unit that consists of two

multiplication and one subtraction floating point unit. This row processing unit computes all

the values of row in parallel. The paper does not talk about large matrices for which the

whole row cannot be computed in parallel due to the lack of computational resources. Our

architecture is similar in computing the elements row by row but compared to (7), it improves

the hardware efficiency by reducing a Floating point multiplier units. Scalability is improved

by providing scalability across columns using k processing units instead N to process a row.



67

The pipelined architecture by (66) uses a fixed number of floating point computation units and

benchmarks their parallel architecture against software approaches. This architecture performs

normalization of rows as the last step to reduce the number of multiplication operations.

A number of matrix inversion architectures based on other inversion algorithms like QR

decomposition ((67)), LDL decomposition ((68)) and Rank based (69) have also been proposed.

3.3 Hardware Optimization using Modified Gauss-Jordan Algorithm

To achieve better hardware efficiency and resource utilization of the pipelined floating-point

computation units, GJ algorithm is modified. The main difference is in normalizing multiple

rows instead of just the pivot row in a single iteration.

Before further explanation, we define some of the terms used throughout this chapter using

Figure 32. Modified Gauss-Jordan algorithm is iterative in nature. During the ith iteration,

we refer to the ith row as the pivot row and the element at ith column of pivot row as pivot

element. Rows above the pivot row are called substitution rows and the ones below are called

elimination rows.

Following steps are performed during the ith iteration of modified GJ algorithm:

1. Normalization: Normalize pivot row with pivot element and each elimination row with

the element in ith column of the elimination row.

2. Forward Elimination: Eliminate all rows below the pivot by straightforward subtraction

(No multiplication required).

3. Back Substitution: Eliminate all rows above the ith row by



68

Figure 32. An N ×N matrix at the ith iteration



69

(a) Multiplying element in ith column of substitution row with the pivot row

(b) Subtracting the product from the substitution row.

.

Pseudo-code for the algorithm is given in Figure 33 and the algorithm is applied to 3 × 3

matrix in Figure 34. It can be seen from Figure 34 that the algorithm performs in-place

inversion, i.e., no extra store N ×N storage is needed for the identity matrix rather (N −1)×1

memory is needed to keep the normalized values of diagonal elements of the initial identity

matrix.

The general GJ algorithm requires normalizing the pivot row with the pivot element. A

parallel and hardware efficient-way of doing this to use a single Floating-Point Division (FPD)

block in combination with multiple Floating Point Multiplication (FPM) blocks. Hardware-

efficiency is achieved due to the higher hardware complexity of FPD blocks compared to FPM

blocks (63). A single reciprocal is computed per iteration of the algorithm. Figure 35 shows the

simplified architecture for straightforward pipelined implementation of GJ algorithm. It should

be noticed that multiple (equal to N) FPM and Floating-point Subtraction (FPS) blocks are

used to compute row elements in parallel. This implementation has been done in (7).

We propose an architecture based on Modified GJ algorithm that achieves further hardware

efficiency by utilizing the pipelined nature of FPD block. During the ith iteration, reciprocals

of multiple values in ith column are computed using a pipelined FPD block. Compared with

general GJ algorithm, this modification saves a multiplication step in eliminating the elimination

rows since all the elimination rows are normalized. Figure 36 shows the simplified architecture



70

Figure 33. Pseudo-code Modified Gauss-Jordan Algorithm



71

for modified GJ algorithm. It should be noted that compared with Figure 35, only a single

FPM is used instead of two.

3.3.1 Pipeline Utilization

The FPD, FPM and FPS blocks are cascaded together to form a pipeline. If depth of

division, multiplication and subtraction pipelines are ld, lm and ls respectively, the overall

length, lt, of pipeline turns out to be lt = ld + lm + ls + 1. A buffer is used to store the value

of the pivot row elements during the forward elimination step.

For better explanation of pipeline utilization of the proposed architecture, consider the

example of an 8 × 8 matrix shown in Figure 41. ld, lm and ls are assumed to be 3, 2 and 2

respectively. It is assumed that the number of FPM and FPS blocks are equal to 8, i.e., all

the elements of a row are computed in parallel. The iterations are shown in distinct colors.

During each iteration, normalization of pivot row is followed by forward elimination and then

back-substitution. No back-substitution is required during the first step. In the subsequent

iterations, since the pipeline is filled with forward-elimination rows, no stalls are required to

wait for the normalized pivot row elements except during the last iteration. For comparison

purposes, pipeline utilization of general GJ algorithm is also shown. In this case, pipeline has

to be stalled every iteration to wait for the normalized pivot row elements.

3.4 Proposed Architecture and Data-flow

The data-path of the proposed architecture is shown in 5.3. It consists of k Normalization

and Elimination (NE) blocks. Each NE block consists of a FPM and a FPS block. We define

their pipelined depth as lm and ls respectively. The parameter k is selected based on the



72

available resources on the device. All k NE blocks are synchronized and perform normalization

and elimination operation on elements from k different columns. Each NE block has a local

Block memory based Random Access Memory (RAM) called Matrix RAM. The contents of the

matrix to be inverted are distributed over these RAMs. Each column of matrix is associated

with a unique NE block. This helps minimize the routing resource utilization of the design and

allows parallel access of data in a particular row.

A single pipelined FPD block is used since elements of a single row are processed in one cycle.

A separate RAM, called R-RAM, is used to store the values of diagonal elements in the initial

identity matrix present in augmented matrix. This memory is required since multiple rows are

normalized at once and hence the updated value of diagonal elements need to be stored. The

control of data-path is handled through a dispatch state-machine along with multiple counters

and pipelines for the control signals. The counters keep track of the iteration number, row index

and the range of columns being processed and help in achieving the overall synchronization.

3.4.1 Data-flow

Initialization

The matrix A to be inverted is stored in k Matrix RAMs in single precision floating point

format. All the values in R-RAM are initialized to one. The in-place matrix-inversion is done

in an iterative manner.

Normalization

During the ith iteration, reciprocal of all the elements in the pivot column and elimination

rows are computed using FPD in a pipelined fashion. First element fed to FPD is at ith row



73

and ith column followed by element in (i + 1)st row and ith column in following cycle and so

on. Reciprocals from FPD are fed to FPMs in all k NE blocks in order to normalize k values

in pivot and elimination rows.

If k = N , the complete row is processed in parallel but if k < N , only k values in a row can

be normalized in parallel. Once k columns in all pivot and elimination rows are normalized,

elements in next k columns are normalized in a second pass. When the last k − 1 values of

the ith row are being computed, the value in R-RAM corresponding to elimination row is also

normalized and stored in the pivot column of the elimination row. No extra FPM would be

required for this since element at ith column in current didn’t need any multiplication and FPM

on one NE block will be available (N is perfectly divisible by k).

Forward-Elimination

The values from FPM are available one value per cycle. Elements of pivot row are saved in

a row buffer and fed to FPS for subtraction from the elimination rows.

Back-Substitution

Back-substitution follows forward-elimination in a pipelined manner as shown in Fig Fig-

ure 41. It involves multiplication of values in pivot column of substitution row with the pivot

row and subtracting the result from the substitution row.

The repetition of these iteration N times results in an in-place inversion of matrix.

3.4.2 Scalability

Scalability across the rows is achieved by computing elements of one row at a time in a

pipelined manner. In order to add scalability across the columns, values across k (instead



74

of N) columns are computed in parallel, where k < N and is chosen based on the hardware

resources available. In ith iteration, other than the dependence of elements in ith column, all

the computational dependencies are within the same column. Hence computation of k columns

for a given iteration is completed before moving on to the next k columns. This also helps in

minimizing the memory interface traffic. This is illustrated in the Figure 37. If the on-chip

memory cannot fit elements in k columns of N rows, l rows can be saved, where l < N and the

rest of the rows can be read from the external memory. Depending on memory latency, stalling

the pipeline may be required in this case. However, in this work, we choose l = N , i.e., we

assume all the rows of a sub-matrix of size N × k can fit on the on-chip memory of the device.

3.5 Performance Analysis

The total number of clock cycles, c, required to compute inverse for a matrix of size N ×N

using k NE blocks is given by Equation 3.2. In the analysis, we assume that N > (lt − 1). It

has to be noted that during last lm − 1 iterations, the pipeline has to be stalled to wait for the

normalized pivot row elements. At the (N − j)th iteration, where 0 ≤ j < lm − 1, the pipeline

has to be stalled for lm − j − 1 clock cycles. In Figure 41, a stall of single cycle can be noticed

during the last iteration.

c = ld + lm + ls + [N2 + lm(lm − 1)/2− 1]× (N/k) (3.2)



75

3.5.1 Performance comparison with related work

For performance reference, we compare the performance of our proposed architecture with

that of a pipelined implementation of simple GJ algorithm in (7). Although (7) uses N NE

blocks, we develop a model for this pipelined approach assuming k NE blocks for better com-

parison. In terms of notations used in this chapter, the number of clock cycles cd required to

compute the invert of a matrix is given by equation Equation 3.3. Compared to our proposed

architecture, it utilizes an extra FPM per NE block but does not require the stall cycles during

the last few iterations.

cd = ld + 2× lm + ls +N2 × (N/k) (3.3)

The pipelined implementation of simple GJ algorithm utilizing the same amount of hardware

resources would require additional stall cycles per iteration. The number of clock cycles cm

required for simple GJ algorithm utilizing the same hardware resources is given by equation

Equation 3.4.

cm = ld + lm + ls + [(N + (lm− 1))×N ]× (N/k)− 1 (3.4)

By comparing Equation 3.2 and Equation 3.3, it can be seen that there is no significant drop

in performance using our proposed architecture compared to the pipelined implementation of

GJ algorithm in (7). If performance comparison is made using the same hardware resources



76

(comparing Equation 3.2 with Equation 3.4), our proposed architecture performs significantly

better, specially for large matrix sizes due to the additional stall cycles incurred every iteration.

In (8), memory optimized architecture for GJ algorithm has been proposed. It assumes

single cycle computation blocks and report performance in terms of memory banks. We compare

the performance when the number of memory banks (b) are equal to k. Figure 39 shows the

performance of the architectures discussed above for a matrix size of 1024× 1024.

Another GJ algorithm based architecture is proposed in (66). The authors report results

for relatively small matrix sizes only. For a 36× 36 matrix, the number of clock cycles required

are 12, 500 compared to 4, 089 required in the our proposed architecture using k = 12.

Performance of the InvArch for various large matrix sizes is shown in the table Table IV in

terms of number of clock cycles. The size of matrices and the value of k are chosen based on

resources available on Altera Straix IV FPGA.

3.6 Hardware Complexity Analysis

Performance comparison reveals that pipelined implementation of GJ algorithm (7) performs

only marginally better compared to InvArch but InvArch require much lower hardware resources

for floating point computational units. Since there are k NE blocks and our architecture reduces

one FPM per NE block, hardware complexity of InvArch is much lower than the pipelined

implementation of Gauss Jordan algorithm (7). Figure 40 shows a comparison of the hardware

resources of InvArch with (7). The percentage reduction in hardware resources for floating-point

computation units is given in table Table V for various values of k. Even for small number of NE



77

TABLE IV

PERFORMANCE FOR LARGE MATRIX SIZES IN TERMS OF NUMBER OF CLOCK

CYCLES

Matrix k Clock Projected Projected

Size cycles Computation Computation

(Thousands) Times Times

(100MHz) (200MHz)

256 x 256 128 131.2 1.31 ms 0.66 ms

512 x 512 128 1048.8 10.48 ms 5.24 ms

1024 x 1024 128 8389.1 83.89 ms 41.94 ms

2048 x 2048 128 67109.8 671.1 ms 335.5 ms



78

TABLE V

PERCENTAGE REDUCTION IN HARDWARE RESOURCES FOR FLOATING-POINT

COMPUTATION UNITS COMPARED TO PIPELINED IMPLEMENTATION OF GJ

k % reduction % reduction

in ALUTs in DSP blocks

8 80.21 66.67

16 86.12 80

32 89.4 88.89

64 91.15 94.11

128 92.5 96.97

256 92.5 98.46

units, the reduction in hardware resources is over 80%. Other GJ algorithm based architectures

do not give sufficient architecture information to deduce the hardware complexity.

3.7 Experimental Setup and Results

The design is described in Verilog Hardware Description Language using Altera Quartus

14.1 on Stratix IV FPGA. The floating point compute units used were generated using Altera’s

Megawizard. (20). The simulations were performed on Modelsim Altera 10.0d. For the ease



79

TABLE VI

PERFORMANCE FOR VARIOUS MATRIX SIZES

Matrix k Clock Computation

Size cycles Time (f = 200 MHz)

32 x 32 32 2,327 11.63 µs

64 x 64 64 6,647 33.23 µs

128 x 128 128 21,431 107.1µs

of implementation, following relaxations were made in the implemented architecture. The

implementation will be extended as part of future work to eliminate these relaxations:

1. Although two consecutive iterations of algorithm can be in the pipeline during the com-

putation as shown in Figure 41, it is assumed that an iteration is completed before the

start of next.

2. We assume k = N . This implies N NE blocks and hence the architecture did not fit in

FPGAs for larger matrices with DSP blocks being the bottleneck.

The computation times for various matrix sizes for the implemented architecture are given in

table Table VI. The clock counts are higher than the analytical model (equation Equation 3.2)

because the implemented architecture processes one iteration in pipeline at a time.



80

The value of k and N are chosen to be powers of 2 as it helps in better parameterization of

the architecture. Based on the available DSP resources on Stratix IV FPGA used, the maximum

value of k (that is power of 2) could be 128.

Since the number of NE blocks is k and these are the main source of hardware complexity,

the data-path complexity mainly depends on k. The operating frequency achieved for maximum

possible value of k = 128 is 237.02MHz. We project the results for bigger matrix sizes using

a clock frequency that is much lower than the one achieved for maximum k. The frequency is

chosen conservatively since the added complexity in control would be to cater for non-disjoint

iterations and k < N . But hardware complexity of the data-path would not change. Based

on the analytical model of the proposed technique in equation Equation 3.2 and operating

frequencies of 100MHz and 200MHz, the projected performance for higher matrix sizes are

computed in table Table IV.

Considering the higher number of normalization operations compared to the original GJ

algorithm, the precision of floating-point numbers may be effected. Precision analysis of the

proposed architecture is part of the future work.

3.8 Conclusions and Future Work

In this chapter, we proposed a novel and hardware efficient architecture for matrix inver-

sion. The architecture is based on normalizing multiple rows in an iteration benefiting from

the pipelined nature of floating point blocks and thereby reducing the number of multiplication

units required. This results in 80% reduction in hardware resources for floating point computa-

tional logic compared to the existing pipelined implementation. The proposed architecture also



81

provides better scalability and hardware efficiency at comparable performance. Better memory

complexities have been claimed in the GJ based architectures (N ×N compared with our ar-

chitecture (N + 1) × N) but either they are based on unreasonable assumption of computing

floating-point values in single cycle (8) or having higher hardware complexities (7). We also

present an analytical model of the proposed architecture as well as a scalable version for the

architecture proposed in (7). A precision comparison of the proposed architecture against the

general GJ based implementation would be done as part of future work. The FPGA implemen-

tation has to be improved using k < N NE blocks to compute for larger matrix sizes and also

improve the implementation to support processing elements from two successive iterations in

the pipeline simultaneously.



82

Figure 34. Steps to find invert of a sample 3× 3 matrix. The augmented matrix is shown

along with the contents of the memory. The reciprocal is found over three steps. The values

in green indicate the values that required for further computation and are stored in the

memory. Values in red indicate the values that are no longer required in computation



83

Figure 35. Simplified architecture of pipelined Implementation of Gauss-Jordan Algorithm.

Two floating-point multiplication elements are required per row.



84

Figure 36. Simplified data-flow of Pipelined Implementation for Modified Gauss-Jordan

Algorithm. A single floating-point multiplication is required per row as compared to two for

the pipelined implementation of original Gauss Jordan algorithm ( Figure 35)



85

Figure 37. Computational flow scalability

Figure 38. Block diagram of the data path



86

Figure 39. Comparison of proposed architecture (InvArch) (k = 8) against Duarte et al. (7)

(k = 8), Matos et al (8) (b = 8) and pipelined GJ implementation with same hardware

resources as our proposed architecture (k = 8) for a 1024× 1024 matrix.



87

Figure 40. Comparison of the hardware resources required for implementing floating point

blocks for different values of k. (a) gives the number of Adaptive Look-Up Tables (ALUT)s

and (b) gives the number of DSP blocks. The numbers are for the area-optimized

implementation of Altera Floating point units on Startix IV FPGAs



88

Figure 41. Comparison of pipeline-utilization for modified-gauss jordan algorithm (left) with

Gauss-jordan algorithm utilizing same number of floating point multiplication units (right).

Iterations are indicated with distinct colors. Note that we assume number of NE blocks to be

8 in this figure i.e., 8 multiplication and subtraction units. During the ith iteration, for

forward-elimination, result of normalized pivot (mik = aik/aii) is buffered to be eliminate the

elimination rows. For back-substitution, normalized pivot row element is available in time for

the first 7 iterations but needs a single cycle stall for the last iteration. For same hardware

resources, the pipeline on right needs stall cycles every iteration.



CHAPTER 4

A HIGH PERFORMANCE ARCHITECTURE FOR COMPUTING

BURROWS-WHEELER TRANSFORM ON FPGAS

The contents of this chapter have been published in the proceedings of 2013 International

Conference on Reconfigurable Computing and FPGAs [Copyright c© 2013 IEEE] (26)

4.1 Background

Burrows-Wheeler Transform (BWT), published in 1994 (70), revolutionized the data com-

pression world. BWT transforms the data into a form that has long sequences of the same

characters and hence it is easier to compress. Due to the similarity between BWT and suffix

arrays (71), FM-index (72) was developed which led to the use of BWT in string matching as

well. It has also found applications in Bioinformatics (73), Computational Biology (74), Image

processing (75), computer vision (76), Test Data Compression (77) and Communications (78).

In Bioinformatics, it is used for whole-gnome comparisons, genome annotation and measuring

distances between two sequences. In computer vision, it is used for image compression, machine

translation and shape matching. In the communications domain, it is used in channel coding.

Due to the real time nature of most of the applications, it is highly desirable to realize fast and

hardware efficient implementations of the BWT that yield high throughput. An intuitive way

to understand BWT is to view all the cyclic rotations for a string s of length n in the form of a

matrix M , as shown in Figure 42. Assume that all the rows of M are sorted lexicographically

89



90

Figure 42. Visual illustration of BWT: input string s along with Matrix M , matrix Q and the

Burrows-Wheeler Transform (BWT)

and stored in a matrix Q. The last column l of matrix Q along with j, wherej represents the

position of original string s in Q, is the BWT of the string. So BWT computation is basically

sorting of the all the cyclic rotations of BWT. Once we have the BWT, original string s can be

reconstructed efficiently from l and j by retrieving matrix Q column by column. For additional

details of BWT we refer to (78).



91

Computing the BWT in hardware by saving all the sorted rotations of s in the form of

matrices Q and M is not efficient, especially when the string size is large. The existing hardware

techniques to compute BWT are based on the observation that each character in column l of Q is

the prefix of character in the corresponding row of f . Also, since l and f are just permutations

of string s, they can be represented in terms of indexes of characters in the s. Consider a

character u in a particular row of column f and character v in column l of the same row. If i

and t are the index of u and v in s respectively, t can be determined from u using Equation 4.1.

t = (i− 1) mod n (4.1)

In other words, BWT can be computed from f in terms of indexes of characters in s. Since,

f is a sorted version of s, it can be determined by a single sorting iteration if there are no

repeated characters in s. When there are repeated characters in s, in order to have correct

index location of repeated characters in f , the ordering of repeated characters is determined

based on characters that precede repeating characters in s. Once column f is computed,

column l and hence BWT can be computed using Equation 4.1 by the procedure mentioned

above. In the hardware techniques proposed earlier ((79) and (80)), the ordering of repeated

characters is usually done by repeated sorting iterations. In this work, we propose an innovative

technique to compute BWT which is based on the observation that in general, we have common

prefixes amongst the cyclic rotations of string. These prefixes are usually not long but they



92

reduce the overall throughput due to multiple sorting iterations. During each iteration, multiple

suffix characters have to be loaded and compared, which incurs delays and hence reduction in

throughput. Instead of having multiple iterations to cater for these common prefixes, we save

a limited context for each character of string s and perform the sorting operation on these

contexts. We call these contexts blocks. A block of size k represents the kth order context,

where k is the size of the Longest Common Prefix (LCP) in the cycle rotations of string s. In

terms of matrix M , we use only the first k characters of each of the n cyclic rotations of string

s. Based on these blocks, BWT is computed using a suffix block generator, a tree structured

pipeline of flow through First-In-First-Out (FIFO) memories, and a parallel sorter. A variant of

BWT called the Sort Transform (ST) (81) also uses limited context to sort the string rotations.

Therefore, our implementation can be used for the ST computation as well.

4.2 Related Work

To the best of our knowledge, the first effort aimed at implementing BWT in hardware

was reported by Mukherjee et al. in (79) and it is based on saving the original index i of

characters in string s and sorting the string. For a group of same characters, comparison of

the following characters is made. This technique is based on Weavesorter algorithm. The basic

weavesorter operation starts by shifting the string s right character by character and performing

compare/swap operation at each step. When the string is completely inserted, the left-most

character is the smallest character in the string s. Next, the direction of shift operation is

changed and the string is shifted out character by character and compare swap/ operation is

performed at each step. The smallest character, amongst all the characters in Weavesorter, is



93

shifted out in each step. So, the output is a sorted version of the input string. To determine

the order of repeated characters, the following characters in the original string are inserted by

alternating the direction of insertion to the weavesorter but the original indices are maintained.

The process is repeated till the correct order is determined.

To improve on the weavesorter approach, (80) proposed parallel sorting strategy for sorting.

A single sorting iteration takes n/2 cycles at most. Index i of each character u in the original

string is saved in the form of (i, u). Note that for a particular row in Q, the last character (that

is in column l) will have an index that is one less than the index of the character in f. Hence the

problem of computing BWT is simplified to finding the order of characters in the first column

f in Q. As first column is simply the sorted version of s given there are no repeated characters

in s, the problem is reduced to a simple string sorting problem. But if there is character

repetition in s, the correct order of characters cannot be determined by single sorting iteration.

The relative order of the repeated characters is determined by sorting the suffix characters in

the same row. The following characters are loaded by shifting values amongst the registers. In

the worst case, it will take n sorting iterations to find the correct order of characters in first

column of Q. Once the correct order is determined, the index t of each character in BWT is

calculated using Equation 4.1.

For the case of common prefixes, shifting registers to load the following characters becomes

challenging and time consuming. Reading multiple suffix character from the memory itself

would reduce the throughput considerably since the memory accesses are slow and most memory

interfaces are single or dual port. The problem would even be worse for long strings, since there



94

will be a possibility of greater number of common prefixes and hence more characters have to

be shifted around the registers that would require more number of clock cycles. Our approach

minimizes the above mentioned common prefix problem by saving the k-order context for each

character where k is the size of LCP and uses parallel suffix sorter and pipeline of flow-through

queue structures to compute BWT. Further details are discussed in the next section.

4.3 Flowthrough FIFO based technique for computing BWT in Hardware

As mentioned earlier, our approach of computing BWT in hardware uses limited string

context to sort the sorted rotations of the input string. Hardware complexity is much less

compared to the trivial way of computing transform by sorting the complete sorted rotations.

If we look at it from the perspective of matrix M in Figure 42, only the first k characters

are used to sort rotations. Another way of looking at it would be to save kth order context

corresponding to each character of string s and sort these contexts. We call these contexts

blocks. Our technique, like the other two techniques described in the previous section, saves

the index of the characters in the original string along with the block. Once the blocks are

sorted, these indices are used to find indices for BWT using Equation 4.1. But our technique

improves the overall throughput and is highly suitable for BWT computation of long strings.

Some key innovations of our work are:

• Since the block size is equal to LCP and for most type of inputs, LCP is not long, these

blocks provide an excellent compromise between saving/sorting complete cyclic rotations

of string and doing multiple iterations of single character sorting operation.



95

• Since memory FIFOs, which are available in fair amount on modern FPGAs, are known

to give high throughputs for merge based sorting operations (82), we use FIFO memory

centric pipelined architecture to compute BWT for long strings at a high throughput.

• Since it is a single iteration, flow through approach for BWT computation, our tech-

nique gives a speed-up of over four when compared with the existing techniques using

comparable hardware.

4.4 Proposed architecture and data-flow

The architecture is a pipeline of various components. These components include Suffix

Block Generator, Parallel Suffix Sorter, flow through FIFO network and BWT index generator.

Each component is described in detail below.

4.4.1 Suffix Block and Address Generator

Since the address of each character in the original string need to be stored along with

suffices to find the BWT. The input string s is shifted in character by character and suffix

of length k corresponding to each character is registered. Address generator generates the

address corresponding to each block and saves it along with k characters. k such suffices

along with addresses are fed to the parallel suffix sorter for sorting. Initial sorting of blocks is

required before the FIFO based merge network since merge sorting is based on having sorted

subsequences.

4.4.2 Parallel Suffix Sorter

The basic architecture of the parallel suffix sorter is similar to the parallel sorter explained

in (80), the difference being the width of register stage and the number of comparators. In



96

Figure 43. Limited sized suffices for a Single Block

parallel sorter, the register stage saves a single character along with the address but in case of

parallel suffix sorter the whole suffix is saved. The comparison between contents of two registers

is also made over the whole block instead of just a single character. In other words, the width

of data-path is k. Although the number of comparators and the register sizes are increased,

but since we use only a single parallel suffix sorter and k is much less than the length of string

n, the overall hardware complexity of parallel suffix sorter is much less than the simple parallel

sorter corresponding to string of length n.



97

4.4.3 FIFO Network

The next stage in pipeline is the network of First-in-First-Out (FIFO) memory. A number

of FIFO based sorting techniques have been proposed (82; 83; 84; 85). The FIFO network has

a number of stages depending on the length of string n and the number of characters in one

block k. Each stage of network has a couple of FIFOs and a comparator. Two consecutive

stages are connected together as shown in figure Figure 44. The first stage gets input from

parallel sorter and the output of last stage goes to BWT index generator. At each stage, block

from the output of each FIFO is compared and the one that is lexicographically smaller is fed

to one of the FIFOs in the next stage. The FIFOs are filled using FIFO based merge sorting

technique proposed in (82). The two FIFOs in each stage are filled alternately. Once the FIFO

A of a particular stage d is filled, blocks from stage d1 are directed towards FIFO B and at the

same time blocks are read from both A and B. Blocks from A and B are compared, and the

lexicographically smaller block is fed to the next stage d+1. Hence, read and write operations at

each stage are parallelized with blocks being continuously read from previous stage and written

to next stage. Figure Figure 45 depicts the data flow through the first couple of stages in the

FIFO network.

4.4.4 BWT index generator

Once the blocks are sorted, index t for BWT is calculated by using index i saved as part of

the each block using equation Equation 4.1.



98

Figure 44. Connectivity of FIFOs between two stages

4.5 Complexity Analysis

4.5.1 Hardware Complexity Analysis

A major portion of the hardware cost is the FIFO memory blocks. There are two FIFOs

at each stage d and the size of FIFO at each stage is 2d × k. The total number of FIFO stages

would be log2 (n/k). The total complexity for the FIFO part of hardware turns out to be O(n).

For the parallel sorter the hardware complexity would be O(k2) which would not contribute

much to the overall hardware cost since n >> k. The results of the analysis are verified by the

experimental results explained in section 4.6. The hardware complexity of BWT computation



99

Figure 45. Dataflow through the FIFO pipeline

in (80) and (79) is also O(n) in terms of the number of registers required. So from hardware

complexity perspective our technique is as efficient as those reported in (80) and (79).

4.5.2 Time Complexity Analysis

Time complexity for finding BWT using our approach is also O(n) since for each FIFO

at stage d, half of the time for the stage is overlapped with the next FIFO stage d + 1. The

time complexity for the case of (80) would be O(n + |LCP |). For (79), the time complexity

depends on the number of common prefixes as well and hence it is even worst compared to

(80). However, it may be misleading just to consider the asymptotic time complexity as the

hardware is implemented on FPGA and the final throughput not only depends on algorithmic



100

TABLE VII

COMPARISON OF HARDWARE COMPLEXITY BETWEEN PARALLEL SORTER IN

AND PARALLEL SUFFIX SORTER USED IN OUR PROPOSED ARCHITECTURE FOR

BWT

Architecture Complexity

Parallel Sorter for sorting string of length n (80) O(n)

Parallel Suffix Sorter for sorting k blocks each of length k O(k2)

time complexity but also the hardware resources that are used in FPGAs. FIFOs are known to

give high throughputs for large amount of data (82) and hence our flow through FIFO based

architecture also gives high throughput for BWT computation.

4.6 Experimental Setup & Results

The design was synthesized for Stratix IV EP4SGX230KF-40C2 FPGA using Altera Quartus

II 12.0. The Register Transfer Logic (RTL) code was parameterized in terms of length of string

n and the block size k. The maximum clock frequency achieved was 131.34 MHz. The design

was simulated using Modelsim Altera 10.0 d. The number of clock cycles required to compute

the BWT depend on the number of stages in the FIFO network. Since at each clock cycle, a

block of data is forwarded from one stage of FIFO network to the next, string contents have

no effect on number of clock cycles. Only the length of string and block size affect the total



101

Figure 46. Effect of the size of Longest Common Prefix (LCP) on the total memory used on

pipleline of FIFOs for different string lengths.

number of clock cycles. Hence, random strings of various lengths and block sizes, generated

using (86), were used for our experiments. Throughput was calculated theoretically using the

number of clock cycles.

To study the impact of LCP on hardware complexity, two parameters were recorded: mem-

ory blocks used and the number of registers used. Memory blocks are the direct indication of

the amount of memory allocated to the FIFO pipeline. The number of registers gives an indi-

cation of the amount of hardware used to implement parallel suffix sorter, multiplexers, buffer

registers and control state machines. It can be seen in figure Figure 46 that the FIFO memory

increases linearly with the LCP size k which backs our analysis that the size of FIFOs vary

linearly with block size (FIFO size at depth d = 2d×k. Total size would be sum over d but still



102

Figure 47. Effect of size of Longest Common Prefix (LCP) on the number of Register

consumed

linear with respect to k). The number of registers in parallel suffix sorter scale quadratically

with size of LCP. This is evident from figure Figure 47 for the number of registers corresponding

to string of length of one thousand(K) characters. As the length of the string is increased, the

effect becomes much less pronounced since for longer string k is very small compared to n. The

impact of the length of string n on hardware complexity was also studied. Figure Figure 48

shows that for a given LCP size, memory size scales linearly with n as predicted by our analysis.

Throughput was also recorded against various LCP sizes keeping the length of string con-

stant. As expected the through put is greater for longer LCP (at the expense of higher hardware

complexity) since the number of FIFO stages (= log2(n/k)) is reduced for longer LCP, greater



103

Figure 48. Effect of the length of String on the total memory used on pipleline of FIFOs for

different different sizes of LCP

Figure 49. Effect of LCP on Throughput using a fixed string of size two thousand characters.

Longer LCP corresponds to more hardware complexity but higher throughput.



104

Figure 50. Performance (in terms of number of clock cycles) for various length of strings

having fixed LCP = 16

LCP size also means that more suffixes of greater length are sorted in the parallel sorter and

then fed to the FIFO network. As a confirmation to our analysis, Figure 50 depicts that the

time required for computation of BWT scales linearly with the length of string.

In (80), Parallel Sorter technique is compared to Weavesorter approach (79) using a rela-

tively small string size of 128 characters on a Virtex 2 xv2v2000. The throughput is reported in

terms of clock cycles and time in mille-seconds (ms). For a fair comparison with our technique,

we synthesize our design using a comparable Altera device: Stratix EP1S10B672C6 and use the

same string size. We compare the throughput in terms of number of clock cycles required to

compute BWT for a string of length 128 for the case where the length of LCP is 8. For parallel

sorter and weavesorter based technique, this would result in 8 sorting iterations. With block



105

size equal to 8 in our technique, we get the following improvement over the two mentioned

techniques.

Comparison in Table VIII suggests that our proposed technique achieves a speed up of 4.3

over the parallel sorter (77% reduction in clock cycles) and a speed up of 8.1 over the weavesorter

approach (87.6% reduction in number of clock cycles) for a string size of 128 characters on a

comparable device.

TABLE VIII

PERFORMANCE COMPARISON OF PROPOSED BWT ARCHITECTURE WITH

WEAVESORTERAND PARALLEL SORTER FOR A STRING OF SIZE 128 AND LCP = 8

Architecture Device Max Frequency Number of Time

Clock cycles (µsec)

Weavesorter Based Virtex xcv300 45 MHz 2304 51.2

Parallel Sorter Based Virtex 2 xv2v2000 51.67 MHz 1231.5 23.8

Proposed Architecture Stratix EP1S10B672C6 51.4 MHz 285 5.54



106

4.7 Summary

In this chapter, a novel high performance method for computing BWT on FPGAs was

proposed. The trade offs for various design parameters such as hardware complexity and

throughput were studied assuming different lengths of Longest Common Prefixes (LCP). In

our implementations, both hardware complexity and throughput scale linearly with LCP. Over

four times improvement in terms of clock cycles was achieved compared to the existing state of

the art hardware techniques in the published literature using a comparable device. Maximum

clock frequency of 131.34 MHz was achieved on Stratix IV EP4SGX230KF-40C2 FPGA which

may be further improved by applying various optimizations at the code and placement level.

Due to the dependence of block size on LCP of string, determination of block size for arbitrary

data is an open problem and will be addressed in our future work. The performance will also be

computed for standardized datasets used in various application domains e.g., Data compression

and DNA string matching.



CHAPTER 5

AN FPGA BASED HIGHLY PIPELINED AND SCALABLE

ARCHITECTURE FOR MEDIAN FILTERING

The outline of this work is published as a poster abstract in proceedings of 2015 ACM/SIGDA

International Symposium on Field-Programmable Gate Arrays (FPGA2015) (27)

5.1 Introduction

Median filtering (87) has been widely used for noise suppression in image processing. Several

types of noise may be added to the image in the image capturing and transmission process.

Some of the noise types include Gaussian noise, multiplicative noise, impulse noise etc. These

added noises might hinder the accuracy of subsequent image processing steps. Impulse noise

is usually divided into two main categories: random-valued-shot and salt-and-pepper noise.

Median filter is a nonlinear filter that is used for the suppression of salt-and-pepper noise. The

main principle of median filter is to consider a window of odd number of pixels around each

pixel p, sort all the pixels in the window and take the median (middle) value as the output value

for the pixel p. Median filter is a special case of rank order filter. The rth rank order filter takes

rth value in a sorted sequence of pixels in the window around the pixel p. Image dilation and

erosion operations (also called morphological filters) take the maximum and minimum value

in the sorted sequence of pixels in the window respectively (88). Our implementation can be

easily extended for rank order and morphological filters.

107



108

A median filter with a window of 3 × 3 or 5 × 5 pixels is sufficient if the noise intensity is

lower than 10 - 20% (89). Employing large window size can have an adverse effect on image

clarity and hence generally a window of size 3 × 3 is used (90). We refer to this window as

median window and we select a size of 3×3 for the median window. For larger noise intensities

multiple variants of median filters are proposed. Some of the these variants include Adaptive

Median Filters (91), weighted median filters (92), switching median filter (92) and weighted

order statistics filters (93). All these variants have the basic median filtering technique at the

core. Many hardware based techniques are proposed for median filters and its variants due to

its high demand in real time image processing. An overview of some various techniques is given

in 5.2.

Considering the growing size of images on displays and capturing devices, the performance

demands for performing real-time operations like median filtering is increasing. Our work is

part of the effort to improve the performance of real time median filtering of large images that

do not necessarily fit in the FPGAs. The key features of the proposed design are described

below.

• The proposed architecture is scalable to the image size and available hardware resources.

Depending on the available resources on the device, the performance can be scaled. Since

reading pixels from the external memory effect performance, our technique minimizes the

re-reading of pixels from external memory.



109

• Block memory in First-In-First-Out (FIFO) configuration have shown promise in high

performance sorting applications (82),(26). Our proposed architecture is also based on

the novel configuration of block memory to compute median filtering.

• The number of comparators required to compute median for a single window are reduced

compared to the famous FPGA based sliding window technique proposed by (94).

• The proposed technique is highly pipelined which makes it an ideal fit for FPGAs.

5.2 Related Work

A number of hardware techniques have been proposed for the median filters. Some of these

techniques are based on threshold decomposition (95), bit serial approach (96), histogram (97),

sorting network (89); (88); (90) and insert-delete (98).

Threshold decomposition is based on representing an n bit number into 2n − 1 threshold

values. The architecture allows high degree of parallelism but is poor at scalability. Bit-

serial approach is based on determining equivalent bit level representation of pixel values that

preserve the rank instead of representing them in threshold values. Insert delete approach is

based on keeping an ordered list of data. The list is continuously updated as the new data is

read continuously by comparing with the existing data in the ordered list and inserting at the

proper location. The size of the ordered list is maintained by removing the old data every time

the new data arrives.

Histogram based technique is based on principle similar to classical counting sort algorithm.

There is a separate counter ci corresponding to each possible pixel value vi. For 8-bit resolution,

the value of i ranges from 0 - 255 and hence there are 256 counters. These counters keep track



110

of the occurrence of pixel values in the window of interest. The values of counts are added in

an ascending order of i. For a window of size k × k, where k is an odd number greater than 1,

the value of i for which the sum of counts becomes equal to bk2/2c+ 1, represents the median

value of the window. Hardware implementation of histogram based technique (97) needs 256

counters, 127 adders and 128 comparators for 8-bit resolution.

Sorting network based median filtering technique is one of the most widely used technique in

hardware implementations. Sorting networks are based on a fixed structure of comparators and

hence they are free from scenario based control dependencies. This renders them suitable for

highly parallel processing architecture. Scalability is one important concern in design of sorting

network based architecture. Bubble sort and odd-even transpose network are two network based

sorting techniques. Bubble sort based technique (99) sorts 2k2 + 1 inputs using k2(2k2 + 1) two

input sorters and has area complexity of O(k4). Odd-even transposition network (100) needs

k2 compare and swap stages with each stage having (k2 − 1)/2 compare and swap units for a

k × k window size.

Our proposed architecture, medianPipe, is a sorting networking based technique that is

based on merge sort. Since fetching the whole image from external memory might not be

possible for big image sizes, we assume that the image is available in the form of slices. The size

of image slice is chosen based on the resources available in device. Once an image slice is fetched

from external memory, all the median values corresponding to the slice are computed. In order

to compute the median values at the borders of slice, slices are assumed to be overlapping by



111

couple of pixel width. Since the size of the slice is much bigger than the median window, the

number of pixels that had to be re-read are less.

The rest of the paper is organized as follows: The architecture and data flow for medianPipe

is explained in section 5.3 followed by results and discussion in section 5.4. The paper is

concluded in the final section 5.5.

5.3 Proposed Architecture and Data flow

The proposed architecture for medianPipe is based on the principle of merge sort. It consists

of two stepped sorting process. The first step is to sort the pixels within each row of median

window to get sorted rows. The second step is to merge these sorted rows to find the median.

The overall block diagram of medianPipe is shown in figure 5.3.

5.3.1 Row Sorter

The row sorter receives single pixel per cycle. A single comparator is used to sort the pixels

in three clock cycles as shown in figure 5.3.1. Using multiple comparators won’t increase the

overall performance because the bottleneck is the merger block.

5.3.2 Sorted-Row Buffers

The sorted rows are saved in block memory based FIFOs. These FIFO based buffers are

essential for the merge process. Since each sorted row, except the two rows close to bound-

ary, are part of three median windows, a separate row-buffer is used for the same sorted row

corresponding to each median window.



112

Figure 51. Block Diagram of three medianPipes



113

Figure 52. First stage sorting using a single comparator



114

Figure 53. Merger Block using three Comparators

5.3.3 Merger block

The sorted sub rows are merged to find the median value. This is done using the merging

block. It has three comparators and control logic to control the read operation of the sorted-row

buffers as shown in figure 5.3.3.

Since each row of median window is part of two other neighboring median windows, multiple

merger blocks are used to compute the medians corresponding neighboring windows.



115

5.3.4 Data-flow

The pixels are read from external memory in a burst mode. Without loss of generality, we

assume that the pixels are read column wise. Each row sorter receives a single pixel per cycle

for three consecutive clock cycles. These pixels are sorted by the row sorter and pushed into

the sorted-row buffers for all three median windows the row belongs to. The merger block reads

the pixels from the sorted-row buffers and median value is determined during the fifth cycle of

merge operation.

The median values corresponding to all pixels in a column of image slice are computed in

parallel as shown in figure Figure 54. After sorting all the rows corresponding to the median

windows of column C2 in parallel, a separate merger block per median value is used to compute

the median values in parallel.

In order to achieve maximum parallelism, the computation of the median values in column

C3 of image slice is started a cycle after computation for C2 since the pixels are assumed to be

read in a column major form, with one column available every cycle of burst.

Multiple medianPipes may be used in parallel to compute median values in a single column.

For consecutive columns, the median values are calculated in separate medianPipes as well.

MedianPipes allocated to a column Ci may be reused after 8 clock cycles for computation of

medians in C(i+ 8) since the median corresponding to Ci would have been computed till then.

5.4 Results and Discussion

MedianPipe is described using Verilog Hardware Description Language (HDL). Synthesis

and fitting is done using Altera Quartus II 13.1 for Stratix IV EP4SGX230KFC2. The simu-



116

Figure 54. Parallel computation of median values in column C2 using two medianPipes. The

ordered pairs (R,C) represent a pixel, where R and C represents row and column respectively.

Rows R1 - R6 are sorted in parallel. Merging sorted rows at R1, R2 and R3 compute the

median value at (2, 2). R2, R3 and R4 compute median at (3, 2)



117

Figure 55. Computation for median values across the columns. Since a single column of image

slice is read from the external memory, if the computation of median values for C2 starts at

ith cycle, the computation for C3 will start at (i+ 1)th, C4 at (i+ 2)th and so on. The

medianPipes dedicated to the columns are re-used once the median values for the columns are

computed



118

Figure 56. Resource usage for various number of medianPipes

lations were run on Modelsim Altera 10.0 d. The design is parameterized for pixel resolution

and image slice size. The hardware complexity of the design is specified in terms of number of

block memory bits and Adapted Look-Up Tables (ALUT). Throughput is calculated by comput-

ing clock frequency and number of clock cycles corresponding to the number of medianPipes

employed. Clock frequency is determined using Altera TimeQuest Timing analysis tool and

number of clock cycles using Modelsim. Throughput or pixel rate is reported in terms of Pixels

per second.



119

Figure 57. Resource usage for pixel sizes of 8, 16 and 32 bits

We study the scaling of hardware resources with the number of medianPipes. It can be seen

from Figure 56 that all hardware resources scale linearly with the number of medianPipes used.

Hence depending on the resources available on device, more medianPipes and hence bigger

image slice can be targeted. Hardware resources for various pixel sizes were also investigated

and again the resources scaled linearly with pixel size. Going from 16 to 32 bit pixel, the

number of block memory bits did not scale as for 32-bit pixel, the fitting operation did not use

any memory ALUTs.



120

Figure 58. (a) Trend in pixel rate with respect to pixel size using 128 median pipes for 768

pixels(b) Trend in pixel rate with respect to image slice size (using 8-bit pixel)

Pixel rate is studied by varying various parameters in the design space. Figure 58 shows

the pixel rates for various image slice sizes. The pixel rate drops for bigger image slice size if

the number of medianPipes is kept constant. The pixel rate was also studied with respect to

the number of medianPipes.

5.5 Conclusion and Future Work

A highly pipelined FPGA based architecture for median filtering is proposed. The proposed

technique scales linearly with hardware resources and pixel size. Pixel rates for various sizes of

image slices and pixel sizes give pixel rate higher than 124 MHz that is the standard for 1080p

High-Definition. As part of the future work, the pixel rate as well as the hardware complexity

could be improved. Applying different configuration of medianPipes, bigger image slices could



121

TABLE IX

THROUGHPUT IN TERMS OF IMAGE SLICE RATE FOR VARIOUS NUMBER OF

MEDIANPIPES

Number of Size of Slice Rate

MedianPipes image slice Kilo Slices

(pixels) per sec

64 1536 113

96 2304 75.2

128 3072 55.8

160 3840 43.4

192 4608 35.3



122

be targeted using the same number of medianPipes by trading the pixel rate. The architecture

could be applied to video streaming applications.



CHAPTER 6

CONCLUSION AND FUTURE DIRECTIONS

High-performance solutions for all four applications discussed in the previous chapters es-

tablish the importance of heterogeneous solutions in improving the performance and energy-

efficiency of memory, data and compute intense applications. Considering the performance and

power limitations of high-end processors, heterogeneous solutions based on computing plat-

forms like GPUs and FPGAs are being used to keep up with the increasing performance and

power-efficiency demands. Microsoft’s Catapult project (16) is an example of FPGA-based het-

erogeneous system that achieved two times speed up for image and text searches in Bing search.

Looking at the ever-growing market and a variety of applications for the embedded systems,

like cellular devices, the number of heterogeneous SoCs-based solutions is continuously going

up. Qualcomm’s SnapDragon (10) is one such example that has dedicated processing units for

applications such as sensor interfacing, video processing and computational photography.

The demand for heterogeneous computing systems is going to increase with the advent of

large-scale IoT deployment. The idea of IoT is to have enormous number of nodes connected

to internet that are communicating with each other as well as with the cloud data-center.

These nodes could be any device, sensor or actuator that is connected to the internet. Having

this unprecedented number of devices on the network, real-time computation and security

requirements will demand high performance as well as low-energy computing devices at the

network level. At the cloud data-center level, there will be enormous increase in the amount

123



124

of data-processing for sensing, analysis and visualizing of this Big-data. At the node level,

exploring the design space for CPU-FPGA-GPU SoC based hybrid platforms is required. As

many of the devices connected to internet are battery operated, providing high-performance

at affordable energy budget would require innovative heterogeneous computing architecture

solutions.

This thesis explored the design space for FPGA-based architectures targeting a variety

of memory and compute intense applications. In a broader perspective, this design space

exploration could be extended to include other computing platforms in the design space and

finding the best solution for a particular application on heterogeneous computing system. The

proposed solutions have applications in multiple domains. Future directions for individual

proposed solutions are given below.

BWT architecture described in chapter 4 could be extended to target compressed string

matching that has applications in large scale string processing applications like Big-data ana-

lytics in data-centers, Deep Packet Inspection in cyber network security and genome alignments

problems in Bio-informatics.

Matrix inversion architecture described in chapter 3 could be extended to target problems

like real-time cryptography, Multiple-Input-Multiple-Output Orthogonal Frequency Division

Multiplexing (MIMO-OFDM) systems and compressive sensing based signal reconstruction.

Re-gridding architecture described in chapter 2 could be extended to target image recon-

struction in Radar systems. High-performance Image reconstruction applications, like MRI,



125

are also a straight forward extension of the proposed architecture. The proposed architecture

targets 2-dimensional trajectories. The solution could also be extended for 3D MRI trajectories.

Median Filtering architecture proposed in chapter 5 could be extended for numerous variants

of Median filter. The technique for finding median could be applied to other applications that

require median filtering, for example, Web-mining.

The thesis establishes that high-performance embedded solutions are the way forward to

meeting the ever increasing demands of energy-efficient computing. Considering the future of

big-data processing, Network-security, and IoTs, the importance of these specialized solutions

in heterogeneous computing systems is going to increase tremendously and hence more research

efforts should be channeled in developing efficient embedded solutions as part of heterogeneous

computing architectures.



CITED LITERATURE

1. Increased Complexity in Embedded Software Systems, 2014. Available at:
http://www.ni.com/white-paper/52165/en/.

2. EPFL, Switzerland: MRI Simulation and Reconstruction - Matlab Framework
for MRI Simulation and Reconstruction, 2015. Available at:

http://bigwww.epfl.ch/algorithms/mri-reconstruction/.

3. Carrara, W. G.: Spotlight Synthetic Aperture Radar: Signal Processing Algorithms.
Artech, 1995.

4. Kestur, S., Park, S., Irick, K., and Narayanan, V.: Accelerating the nonuniform
fast fourier transform using fpgas. In Field-Programmable Custom Computing
Machines (FCCM), 2010 18th IEEE Annual International Symposium on, pages

19–26, 2010.

5. Kestur, S., Irick, K., Park, S., Al Maashri, A., Narayanan, V., and Chakrabarti, C.:
An algorithm-architecture co-design framework for gridding reconstruction using
fpgas. In Design Automation Conference (DAC), 2011 48th ACM/EDAC/IEEE,
pages 585–590, 2011.

6. Sorensen, T., Schaeffter, T., Noe, K., and Hansen, M.: Accelerating the nonequispaced
fast fourier transform on commodity graphics hardware. Medical Imaging, IEEE
Transactions on, 27(4):538–547, 2008.

7. Duarte, R., Neto, H., and Véstias, M.: Double-precision gauss-jordan algorithm with
partial pivoting on fpgas. In Digital System Design, Architectures, Methods and
Tools, 2009. DSD’09. 12th Euromicro Conference on, 2009.

8. de Matos, G. and Neto, H.: Memory optimized architecture for efficient gauss-jordan
matrix inversion. In Programmable Logic, 2007. SPL’07. 2007 3rd Southern
Conference on, pages 33–38. IEEE, 2007.

9. Amor, M., Doallo, R., Fraguela, B. B., Herrero, J. R., Quintana-Ort́ı, E. S., and Strzodka,
R.: Graphics processing unit computing and exploitation of hardware accelerators.
Concurrency and Computation: Practice and Experience, 25(8):1104–1106, 2013.

126



CITED LITERATURE (Continued) 127

10. Qualcomm Snapdragon, 2015. Available at: https://www.qualcomm.com/products/snapdragon.

11. Hennessy, J. L. and Patterson, D. A.: Computer architecture: a quantitative approach.
Elsevier, 2011.

12. Fernandez, E. B. C.: Hardware Implementation of a String Matching Algorithm Based
on the FM-Index, 2013.

13. Buell, D., El-Ghazawi, T., Gaj, K., and Kindratenko, V.: High-performance reconfigurable
computing. COMPUTER-IEEE COMPUTER SOCIETY-, 40(3):23, 2007.

14. OpenFPGA. Available at: http://www.openfpga.org/.

15. Center for High-Performance Reconfigurable Computing. Available at:
http://chrec.ufl.edu/.

16. Putnam, A., Caulfield, A., Chung, E., Chiou, D., Constantinides, K., Demme, J., Es-
maeilzadeh, H., Fowers, J., Gopal, G. P., Gray, J., Haselman, M., Hauck, S., Heil,
S., Hormati, A., Kim, J.-Y., Lanka, S., Larus, J., Peterson, E., Pope, S., Smith,
A., Thong, J., Xiao, P. Y., and Burger, D.: A reconfigurable fabric for acceler-
ating large-scale datacenter services. In 41st Annual International Symposium on
Computer Architecture (ISCA), June 2014.

17. Why hyperscalers and clouds are pushing intel into FPGAs?, 2015. Available at:
http://www.nextplatform.com/2015/07/29/why-hyperscalers-and-clouds-are-
pushing-intel-into-fpgas/.

18. Thinh, T. N., Hieu, T. T., Dung, V. Q., and Kittitornkun, S.: A fpga-based deep
packet inspection engine for network intrusion detection system. In Electrical
Engineering/Electronics, Computer, Telecommunications and Information

Technology (ECTI-CON), 2012 9th International Conference on, pages 1–4.
IEEE, 2012.

19. Tessier, R. and Burleson, W.: Reconfigurable computing for digital signal processing:
A survey. Journal of VLSI signal processing systems for signal, image and video
technology, 28(1-2):7–27, 2001.

20. Altera: Floating-Point Mega Functions, 2013. Available at:
http://www.altera.com/literature/ug/.



CITED LITERATURE (Continued) 128

21. Ramdas, T. and Egan, G.: A survey of fpgas for acceleration of high performance com-
puting and their application to computational molecular biology. In TENCON
2005 2005 IEEE Region 10, pages 1–6. IEEE, 2005.

22. Garćıa, G. J., Jara, C. A., Pomares, J., Alabdo, A., Poggi, L. M., and Torres, F.: A survey
on fpga-based sensor systems: Towards intelligent and reconfigurable low-power
sensors for computer vision, control and signal processing. Sensors, 14(4):6247–
6278, 2014.

23. Cheema, U. I., Nash, G., Ansari, R., and Khokhar, A. A.: Mem-
ory optimized re-gridding for non-uniform fast fourier transform on fpgas.
In Field-Programmable Custom Computing Machines (FCCM), 2014 IEEE 22th
Annual International Symposium on, 2014.

24. Cheema, U., Nash, G., Ansari, R., Khokhar, A., et al.: Power-efficient re-gridding architec-
ture for accelerating non-uniform fast fourier transform. In Field Programmable
Logic and Applications (FPL), 2014 24th International Conference on, pages 1–6.
IEEE, 2014.

25. Cheema, U. I., Nash, G., Ansari, R., and Khokhar, A. A.: Invarch: A hardware eficient
architecture for matrix inversion. In Computer Design (ICCD), 2015 33rd IEEE
International Conference on, pages 180–187, Oct 2015.

26. Cheema, U. I. and Khokhar, A. A.: Department of electrical and computer engineering
university of illinois at chicago chicago, usa. In Reconfigurable Computing and
FPGAs (ReConFig), 2013 International Conference on, pages 1–6. IEEE, 2013.

27. Cheema, U. I., Nash, G., Ansari, R., and Khokhar, A. A.: Medianpipes: An fpga based
highly pipelined and scalable technique for median filtering. In 23rd ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays (FPGA), 2015.

28. Cheema, U. I., Nash, G., Ansari, R., and Khokhar, A. A.: Power effi-
cient re-gridding architecture for accelerating non-uniform fast fourier trans-
form. In submitted to Field-Programmable Logic (FPL), 2014 IEEE 24th Annual
International Symposium on, 2014.

29. Kajbaf, H., Case, J., Zheng, Y., Kharkovsky, S., and Zoughi, R.: Quantitative and quali-
tative comparison of sar images from incomplete measurements using compressed
sensing and nonuniform fft. In Radar Conference (RADAR), 2011 IEEE, pages
592–596, 2011.



CITED LITERATURE (Continued) 129

30. O’Connor, Y. and Fessler, J.: Fourier-based forward and back-projectors in iterative fan-
beam tomographic image reconstruction. Medical Imaging, IEEE Transactions
on, 25(5):582–589, 2006.

31. Kalamkar, D., Trzasko, J., Sridharan, S., Smelyanskiy, M., Kim, D., Manduca, A., Shu, Y.,
Bernstein, M., Kaul, B., and Dubey, P.: High performance non-uniform fft on mod-
ern x86-based multi-core systems. In Parallel Distributed Processing Symposium
(IPDPS), 2012 IEEE 26th International, pages 449–460, 2012.

32. Potts, D., Steidl, G., and Tasche, M.: Fast fourier transforms for nonequispaced data: A
tutorial. In Modern sampling theory, pages 247–270. Springer, 2001.

33. Zhang, Y., Kandemir, M., Pitsianis, N. P., and Sun, X.: Exploring parallelization strate-
gies for nufft data translation. In Proceedings of the Seventh ACM International
Conference on Embedded Software, EMSOFT ’09, pages 187–196, New York, NY,
USA, 2009. ACM.

34. Feng, L., Grimm, R., Block, K. T., Chandarana, H., Kim, S., Xu, J., Axel, L., Sodickson,
D. K., and Otazo, R.: Golden-angle radial sparse parallel mri: Combination of
compressed sensing, parallel imaging, and golden-angle radial sampling for fast and
flexible dynamic volumetric mri. Magnetic resonance in medicine, 72(3):707–717,
2014.

35. Candès, E. J. and Donoho, D. L.: Ridgelets: A key to higher-dimensional
intermittency? Philosophical Transactions of the Royal Society of London A:
Mathematical, Physical and Engineering Sciences, 357(1760):2495–2509, 1999.

36. Delaney, A. H. and Bresler, Y.: A fast and accurate fourier algorithm for iterative parallel-
beam tomography. Image Processing, IEEE Transactions on, 5(5):740–753, 1996.

37. Buonincontri, G., Methner, C., Krieg, T., Carpenter, T. A., and Sawiak, S. J.: Tra-
jectory correction for free-breathing radial cine mri. Magnetic resonance imaging,
32(7):961–964, 2014.

38. Xie, J., Lai, P., Huang, F., Li, Y., and Li, D.: Cardiac magnetic resonance imaging
using radial k-space sampling and self-calibrated partial parallel reconstruction.
Magnetic resonance imaging, 28(4):495–506, 2010.

39. Kim, D.-h., Adalsteinsson, E., and Spielman, D. M.: Simple analytic variable density
spiral design. Magnetic resonance in medicine, 50(1):214–219, 2003.



CITED LITERATURE (Continued) 130

40. Meyer, C. H., Hu, B. S., Nishimura, D. G., and Macovski, A.: Fast spiral coronary artery
imaging. Magnetic Resonance in Medicine, 28(2):202–213, 1992.

41. Liang, Z.-P. and Lauterbur, P. C.: Principles of magnetic resonance imaging. SPIE Op-
tical Engineering Press, 2000.

42. Sadi, F., Akin, B., Popovici, D. T., Hoe, J. C., Pileggi, L., and Franchetti, F.: Al-
gorithm/hardware co-optimized sar image reconstruction with 3d-stacked logic
in memory. In High Performance Extreme Computing Conference (HPEC), 2014
IEEE, pages 1–6. IEEE, 2014.

43. Fessler, J. and Sutton, B.: Nonuniform fast fourier transforms using min-max interpola-
tion. Signal Processing, IEEE Transactions on, 51(2):560–574, 2003.

44. Schomberg, H. and Timmer, J.: The gridding method for image reconstruction by fourier
transformation. Medical Imaging, IEEE Transactions on, 14(3):596–607, 1995.

45. Dutt, A. and Rokhlin, V.: Fast fourier transforms for nonequispaced data. SIAM J. Sci.
Comput., 14(6):1368–1393, November 1993.

46. Zhang, Y., Liu, J., Kultursay, E., Kandemir, M., Pitsianis, N., and Sun, X.: Scalable paral-
lelization strategies to accelerate nufft data translation on multicores. In Euro-Par
2010 - Parallel Processing, eds. P. DAmbra, M. Guarracino, and D. Talia, vol-

ume 6272 of Lecture Notes in Computer Science, pages 125–136. Springer Berlin
Heidelberg, 2010.

47. Akın, B., Milder, P., Franchetti, F., Hoe, J. C., et al.: Memory bandwidth efficient two-
dimensional fast fourier transform algorithm and implementation for large problem
sizes. In Field-Programmable Custom Computing Machines (FCCM), 2012 IEEE
20th Annual International Symposium on, pages 188–191. IEEE, 2012.

48. Akin, B., Franchetti, F., and Hoe, J.: Understanding the design space of dram-optimized
hardware fft accelerators. In Application-specific Systems, Architectures and
Processors (ASAP), 2014 IEEE 25th International Conference on, pages 248–255,
June 2014.

49. Nash, G. T., Cheema, U. I., Ansari, R., and Khokhar, A. A.: Power-efficient rma sar
imaging using pipelined non-uniform fast fourier transform. In Radar Conference
(RadarCon), 2015 IEEE, pages 1600–1604. IEEE, 2015.



CITED LITERATURE (Continued) 131

50. Huang, T.-Y., Tang, Y.-W., and Ju, S.-Y.: Accelerating image registration of mri by gpu-
based parallel computation. Magnetic resonance imaging, 29(5):712–716, 2011.

51. Ieee standard for floating-point arithmetic. IEEE Std 754-2008, pages 1–70, 2008.

52. Altera: Avalon Interface Specifications, May 2013. Available at:
www.altera.com/literature/manual/.

53. Altera: PowerPlay Power Analysis, 2013. Available at:
http://www.altera.com/literature/hb/qts/.

54. Altera: Simulating Memory IP, 2013. Available at
:http://www.altera.com/literature/hb/external-memory/.

55. Khronos Group: The open standard for parallel programming of heterogeneous systems.
Available at: www.khronos.org/opencl/.

56. Altera: Altera SDK for OpenCL, 2015. Available at:
https://www.altera.com/products/design-software/embedded-software-
developers/opencl/overview.tablet.html.

57. Terasic: DE5-Net FPGA Development Kit. Available at: de5-net.terasic.com/.

58. Altera: PowerPlay Power Analyzer Support Resources, 2015. Available
at: https://www.altera.com/support/support-resources/operation-and-
testing/power/sof-qts-power.tablet.html.

59. Wang, D. and Ali, M.: Synthetic aperture radar on low power multi-core digital sig-
nal processor. In High Performance Extreme Computing (HPEC), 2012 IEEE
Conference on, pages 1–6. IEEE, 2012.

60. Rabah, H., Amira, A., Mohanty, B. K., Almaadeed, S., and Meher, P. K.: Fpga imple-
mentation of orthogonal matching pursuit for compressive sensing reconstruction.
2014.

61. Moussa, S., Abdel Razik, A. M., Dahmane, A. O., and Hamam, H.: Fpga implemen-
tation of floating-point complex matrix inversion based on gauss-jordan elimina-
tion. In Electrical and Computer Engineering (CCECE), 2013 26th Annual IEEE
Canadian Conference on, pages 1–4. IEEE, 2013.



CITED LITERATURE (Continued) 132

62. Zirra, P. and Wajiga, G.: Cryptographic algorithm using matrix inversion as data protec-
tion. Journal of Information & Communication Technology, 10, 2011.

63. Altera: Accelerating Design Development with Hard Floating-Point DSP Blocks in
FPGAs, December 2014. Available at: http://www.altera.com/.

64. de Matos, G. M. and Neto, H. C.: On reconfigurable architectures for efficient matrix inver-
sion. In Field Programmable Logic and Applications, 2006. FPL’06. International
Conference on, pages 1–6. IEEE, 2006.

65. LogiCORE IP Floating-Point Operator”,.

66. Arias-Garcia, J., Jacobi, R. P., Llanos, C. H., and Ayala-Rincon, M.: A suitable fpga im-
plementation of floating-point matrix inversion based on gauss-jordan elimination.
In Programmable Logic (SPL), 2011 VII Southern Conference on, pages 263–268.
IEEE, 2011.

67. Rosado, A., Iakymchuk, T., Bataller, M., and Wegrzyn, M.: Hardware-efficient ma-
trix inversion algorithm for complex adaptive systems. In Electronics, Circuits
and Systems (ICECS), 2012 19th IEEE International Conference on, pages 41–

44. IEEE, 2012.

68. Auras, D., Leupers, R., and Ascheid, G.: Efficient vlsi architectures for matrix inversion
in soft-input soft-output mmse mimo detectors. In Circuits and Systems (ISCAS),
2014 IEEE International Symposium on, pages 1018–1021. IEEE, 2014.

69. Burg, A., Haene, S., Perels, D., Luethi, P., Felber, N., and Fichtner, W.: Algorithm and
vlsi architecture for linear mmse detection in mimo-ofdm systems. In ISCAS, 2006.

70. Burrows, M. and Wheeler, D. J.: A block-sorting lossless data compression algorithm.
1994.

71. Manber, U. and Myers, G.: Suffix arrays: a new method for on-line string searches. siam
Journal on Computing, 22(5):935–948, 1993.

72. Ferragina, P. and Manzini, G.: Opportunistic data structures with applications.
In Foundations of Computer Science, 2000. Proceedings. 41st Annual Symposium
on, pages 390–398. IEEE, 2000.



CITED LITERATURE (Continued) 133

73. Adjeroh, D., Zhang, Y., Mukherjee, A., Powell, M., and Bell, T.: Dna sequence compres-
sion using the burrows-wheeler transform. In Bioinformatics Conference, 2002.
Proceedings. IEEE Computer Society, pages 303–313. IEEE, 2002.

74. Lucito, R., Healy, J., Alexander, J., Reiner, A., Esposito, D., Chi, M., Rodgers, L., Brady,
A., Sebat, J., Troge, J., et al.: Representational oligonucleotide microarray anal-
ysis: a high-resolution method to detect genome copy number variation. Genome
research, 13(10):2291–2305, 2003.

75. Baik, H., Ha, D. S., Yook, H.-G., Shin, S.-C., and Park, M.-S.: Selective ap-
plication of burrows-wheeler transformation for enhancement of jpeg entropy
coding. In International Conference on Information, Communications & Signal
Processing, 1999.

76. Adjeroh, D., Kandaswamy, U., Zhang, N., Mukherjee, A., Brown, M., and Bell, T.: Bwt-
based efficient shape matching. In Proceedings of the 2007 ACM symposium on
Applied computing, pages 1079–1085. ACM, 2007.

77. Yamaguchi, T. J., Ha, D. S., Ishida, M., and Ohmi, T.: A method for compressing test
data based on burrows-wheeler transformation. Computers, IEEE Transactions
on, 51(5):486–497, 2002.

78. Adjeroh, D., Bell, T., and Mukherjee, A.: The Burrows-Wheeler Transform:: Data
Compression, Suffix Arrays, and Pattern Matching. Springer, 2008.

79. Mukherjee, A., Motgi, N., Becker, J., Friebe, A., Habermann, C., and Glesner, M.: Pro-
totyping of efficient hardware algorithms for data compression in future commu-
nication systems. In Rapid System Prototyping, 12th International Workshop on,
2001., pages 58–63. IEEE, 2001.

80. Martinez, J., Cumplido, R., and Feregrino, C.: An fpga-based parallel sorting architecture
for the burrows wheeler transform. In Reconfigurable Computing and FPGAs,
2005. ReConFig 2005. International Conference on, pages 7–pp. IEEE, 2005.

81. Schindler, M.: A fast block-sorting algorithm for lossless data compression. In Proceedings
of the Conference on Data Compression, volume 469. Citeseer, 1997.

82. Koch, D. and Torresen, J.: Fpgasort: a high performance sorting architec-
ture exploiting run-time reconfiguration on fpgas for large problem sort-



CITED LITERATURE (Continued) 134

ing. In Proceedings of the 19th ACM/SIGDA international symposium on Field
programmable gate arrays, pages 45–54. ACM, 2011.

83. Mueller, R., Teubner, J., and Alonso, G.: Sorting networks on fpgas. The VLDB
JournalThe International Journal on Very Large Data Bases, 21(1):1–23, 2012.

84. Marcelino, R., Neto, H. C., and Cardoso, J. M.: Unbalanced fifo sorting for fpga-
based systems. In Electronics, Circuits, and Systems, 2009. ICECS 2009. 16th
IEEE International Conference on, pages 431–434. IEEE, 2009.

85. Marcelino, R., Neto, H., and Cardoso, J. M.: Sorting units for fpga-based embedded
systems. In Distributed Embedded Systems: Design, Middleware and Resources,
pages 11–22. Springer, 2008.

86. Random. Org., 2013. Available at: http://www.random.org/strings/.

87. J.W., T.: Nonlinear methods for smoothing data. EASCON, 1974.

88. Meena, S. and Linganagouda, K.: Rank based merge sorting network architecture for
2d median and morphological filters. In Advance Computing Conference, 2009.
IACC 2009. IEEE International, pages 473–479, March 2009.

89. Vasicek, Z. and Sekanina, L.: Novel hardware implementation of adaptive me-
dian filters. In Design and Diagnostics of Electronic Circuits and Systems, 2008.
DDECS 2008. 11th IEEE Workshop on, pages 1–6. IEEE, 2008.

90. Sanny, A. and Prasanna, V.: Energy-efficient median filter on fpga. In Reconfigurable
Computing and FPGAs (ReConFig), 2013 International Conference on, pages 1–

8, Dec 2013.

91. Hwang, H. and Haddad, R.: Adaptive median filters: new algorithms and results. Image
Processing, IEEE Transactions on, 4(4):499–502, 1995.

92. Brownrigg, D.: The weighted median filter. Communications of the ACM, 27(8):807–818,
1984.

93. Marshall, S.: New direct design method for weighted order statistic filters. IEE
Proceedings-Vision, Image and Signal Processing, 151(1):1–8, 2004.



CITED LITERATURE (Continued) 135

94. Bates, G. L. and Nooshabadi, S.: Fpga implementation of a median fil-
ter. In TENCON’97. IEEE Region 10 Annual Conference. Speech and Image
Technologies for Computing and Telecommunications., Proceedings of IEEE, vol-
ume 2, pages 437–440. IEEE, 1997.

95. Chang, L.-W. and Yu, S.-S.: A new implementation of generalized order statistic filter by
threshold decomposition. Signal Processing, IEEE Transactions on, 40(12):3062–
3066, 1992.

96. Kar, B. K. and Pradhan, D. K.: A new algorithm for order statistic and sorting. IEEE
transactions on signal processing, 41(8):2688–2694, 1993.

97. Fahmy, S., Cheung, P. Y. K., and Luk, W.: Novel fpga-based implementation of median
and weighted median filters for image processing. In Field Programmable Logic
and Applications, 2005. International Conference on, pages 142–147, Aug 2005.

98. Huang, T., Yang, G., and Tang, G.: A fast two-dimensional median filtering algo-
rithm. Acoustics, Speech and Signal Processing, IEEE Transactions on, 27(1):13–
18, 1979.

99. Benkrid, K., Crookes, D., and Benkrid, A.: Design and implementation of a novel al-
gorithm for general purpose median filtering on fpgas. In Circuits and Systems,
2002. ISCAS 2002. IEEE International Symposium on, volume 4, pages IV–425.

IEEE, 2002.

100. Knuth, D. E.: ”Sorting and Searching”, The art of Computer Programming,. Edison-
Wesley Publishing Company.

101. Arming, S., Fenkhuber, R., and Handl, T.: Data compression in hardwarethe
burrows-wheeler approach. In Design and Diagnostics of Electronic Circuits and
Systems (DDECS), 2010 IEEE 13th International Symposium on, pages 60–65.

IEEE, 2010.

102. Akin, B., Milder, P., Franchetti, F., and Hoe, J.: Memory bandwidth efficient two-
dimensional fast fourier transform algorithm and implementation for large problem
sizes. In Field-Programmable Custom Computing Machines (FCCM), 2012 IEEE
20th Annual International Symposium on, pages 188–191, 2012.



CITED LITERATURE (Continued) 136

103. Zhao, G., Li, S., Zhang, Z., and Liu, B.: Nufft-based near-field imaging method for target
scattering diagnostics. In Microwave Technology Computational Electromagnetics
(ICMTCE), 2011 IEEE International Conference on, pages 104–106, 2011.

104. Jacob, M.: Optimized least-square nonuniform fast fourier transform. Signal Processing,
IEEE Transactions on, 57(6):2165–2177, 2009.

105. Altera: Introduction to UniPHY IP, 2013. Available at:
http://www.altera.com/literature/hb/external-memory/.

106. Perreault, S. and Hebert, P.: Median filtering in constant time. Image Processing, IEEE
Transactions on, 16(9):2389–2394, Sept 2007.

107. Alekseychuk, A.: Hierarchical recursive running median. In Image Processing (ICIP),
2012 19th IEEE International Conference on, pages 109–112, Sept 2012.

108. Perreault, S. and Hébert, P.: Median filtering in constant time. Image Processing, IEEE
Transactions on, 16(9):2389–2394, 2007.

109. Weiss, B.: Fast median and bilateral filtering. In ACM Transactions on Graphics (TOG),
volume 25, pages 519–526. ACM, 2006.

110. Candès, E. J. et al.: Compressive sampling. In Proceedings of the international congress
of mathematicians, volume 3, pages 1433–1452. Madrid, Spain, 2006.

111. Baraniuk, R.: Compressive sensing. IEEE signal processing magazine, 24(4), 2007.

112. Maechler, P., Studer, C., Bellasi, D. E., Maleki, A., Burg, A., Felber, N., Kaeslin, H., and
Baraniuk, R. G.: Vlsi design of approximate message passing for signal restoration
and compressive sensing. Emerging and Selected Topics in Circuits and Systems,
IEEE Journal on, 2(3):579–590, 2012.

113. Septimus, A. and Steinberg, R.: Compressive sampling hardware reconstruc-
tion. In Circuits and Systems (ISCAS), Proceedings of 2010 IEEE International
Symposium on, pages 3316–3319. IEEE, 2010.

114. Mallat, S. G. and Zhang, Z.: Matching pursuits with time-frequency dictionaries. Signal
Processing, IEEE Transactions on, 41(12):3397–3415, 1993.



CITED LITERATURE (Continued) 137

115. Donoho, D. L., Maleki, A., and Montanari, A.: Message-passing algorithms for compressed
sensing. Proceedings of the National Academy of Sciences, 106(45):18914–18919,
2009.

116. Stanislaus, J. L. and Mohsenin, T.: High performance compressive sensing reconstruc-
tion hardware with qrd process. In Circuits and Systems (ISCAS), 2012 IEEE
International Symposium on, pages 29–32. IEEE, 2012.

117. Ren, F., Dorrace, R., Xu, W., and Markovic, D.: A single-precision compres-
sive sensing signal reconstruction engine on fpgas. In Field Programmable
Logic and Applications (FPL), 2013 23rd International Conference on, pages 1–4.
IEEE, 2013.

118. Bai, L., Maechler, P., Muehlberghuber, M., and Kaeslin, H.: High-speed compressed
sensing reconstruction on fpga using omp and amp. Rn, 1:0, 2012.

119. Matam, K. K., Le, H., and Prasanna, V. K.: Energy efficient architecture for matrix
multiplication on fpgas. In Field Programmable Logic and Applications (FPL),
2013 23rd International Conference on, pages 1–4. IEEE, 2013.

120. Chen, W. and Wassell, I. J.: Energy efficient signal acquisition via compressive sensing in
wireless sensor networks. In Wireless and Pervasive Computing (ISWPC), 2011
6th International Symposium on, pages 1–6. IEEE, 2011.

121. Xu, X., Ansari, R., and Khokhar, A.: Power-efficient algorithms for fourier analy-
sis over random wireless sensor network. In Distributed Computing in Sensor
Systems (DCOSS), 2012 IEEE 8th International Conference on, pages 109–115.

IEEE, 2012.



APPENDIX

PUBLISHING PERMISSIONS

Permission for (23):

138



139

APPENDIX (Continued)

Permission for (28):



140

APPENDIX (Continued)

Permission for (25):



141

APPENDIX (Continued)

Permission for (26):



VITA

NAME Umer Iftikhar Cheema

EDUCATION Ph.D, Electrical & Computer Engineering, University of Illinois at
Chicago, 2016

M.S., Electrical & Computer Engineering, University of Illinois at
Chicago, 2014

B.Sc., Electrical Engineering, University of Engineering & Technology,
Lahore, Pakistan, 2008

RESEARCH
EXPERIENCE

PhD Research, ECE Department, University of Illinois at Chicago,
Spring 2011 - Fall 2015

Visiting Researcher, Center for Research on Embedded Systems,
Halmstad University, Sweden Jun. 2014 - Aug. 2014

Research Assistant, ECE/College of Nursing, University of Illinois
at Chicago, Jan. 2012- Aug. 2013

Professional Researcher/Developer, National University of Sci-
ence & Technology, Pakistan, 2009 - 2010

TEACHING
EXPERIENCE

Instructor, ECE Department, University of Illinois at Chicago, Spring
2014 - Fall 2015

Teaching Assistant, ECE Department, University of Illinois at
Chicago, Spring 2011 - Fall 2013

INDUSTRY
EXPERIENCE

ASIC/FPGA Design & Verification Engineer, Whizz Silicon Inc.
(Off-shore) Sept 2008 - Dec. 2010

Intern Engineer, Wateen Telecom Private Limited, Pakistan Sum-
mer 2007

142



143

VITA (Continued)

JOURNAL AR-
TICLES

Cheema, Umer I.; Nash, Gregory; Ansari, Rashid; Khokhar, Ashfaq
A., Memory-Optimzed and Power-Efficient Re-gridding Architecture
for Non-uniform Fast Fourier Transform based applications”[In-review
- 2015] IEEE Transaction on Computers

Lodhi M., Cheema U., Stifter J., Wilkie D., Keenan G., Yao Y.,
Ansari R., Khokhar A. (2014). Death Anxiety in Hospitalized End-of-
Life Patients as Captured from a Structured Electronic Health Record:
Differences by Patient and Nurse Characteristics. Research in Geron-
tological Nursing. 7(5) 224-234. doi: 10.3928/19404921-20140818-01

Johnson, J., Lodhi, M., K., Cheema, U., Stifter, J., Dunn-Lopez,
K., Yao, Y., Johnson, A., Keenan, G., M., Ansari, R., Khokhar, A.,
Wilkie, D. (In review, Dec. 2014). Outcomes for End-of-Life Patients
with Anticipatory Grieving: Insights from Practice with Standardized
Nursing Terminologies within an Inter-operable Internet-based Elec-
tronic Health Record. Journal of Hospice & Palliative Care Nursing

CONFERENCE
PUBLICA-
TIONS

Cheema, Umer I.; Nash, Gregory; Ansari, Rashid; Khokhar, Ashfaq
A, ”InvArch: A Hardware-Efficient Architecture for Matrix Inversion,”
2015 IEEE 33rd International Conference on Computer Design (ICCD
2015)

Nash, Gregory T.; Cheema, Umer I.; Ansari, Rashid; Khokhar,
Ashfaq A., ”Power-efficient RMA SAR imaging using pipelined Non-
uniform Fast Fourier Transform,” 2015 IEEE Radar Conference
(RadarCon 2015)

Cheema, Umer I., et al. ”MedianPipes: An FPGA based Highly
Pipelined and Scalable Technique for Median Filtering” abstract at
Proceedings of 2015 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays (FPGA 2015)

Cheema, Umer I.; Nash, Gregory; Ansari, Rashid; Khokhar, Ash-
faq A., ”Power-efficient re-gridding architecture for accelerating Non-
uniform Fast Fourier Transform,” 2014 24th International Conference
on Field Programmable Logic and Applications (FPL 2014)



144

VITA (Continued)

Cheema, Umer I.; Nash, Gregory; Ansari, Rashid; Khokhar, Ash-
faq A, ”Memory Optimized Re-gridding for Non-uniform Fast Fourier
Transform on FPGAs,” (FCCM 2014)

Cheema, Umer I.; et al. ”A high performance architecture for com-
puting burrows-wheeler transform on FPGAs,” Reconfigurable Com-
puting and FPGAs (ReConFig), 2013 International Conference on,
Dec. 2013

Lodhi M., Cheema U., Stifter J., Keenan G.M., Wilkie D.J.,
Yao Y., Ansari R., Khokhar A.(In Review, 2014). Death Anxi-
ety - How Nurses Can Help Patients Die Comfortably. Anxiety.org
https://www.anxiety.org/.

Cheema, U. I., et al.Nursing Care of End-of-Life Patients Fac-
ing Death Anxiety, abstract at Midwest Nursing Research Societys
(MNRS) Annual Research Conference 2013

Lodhi, M. K., Cheema, U. I., et al. State of Nursing Care for Pa-
tients with Anticipatory Grieving: Lessons Learned from Standardized
Nursing Data, abstract at MNRS Annual Research Conference 2013

AWARDS UIC Graduate Student Council Travel Award Sept 2014, Feb 2015,
Oct 2015

Recipient of Full tuition Waiver and Assistantship by ECE Depart-
ment, UIC for the duration of doctoral studies

Awarded Merit Scholarship (2004 - 2008) by UET, Lahore on scoring
top grades in higher secondary education (Top 5% students get this
scholarship).

Awarded Dr. M.I.D Chughtai Medal by Forman Christian College for
scoring overall first position in Higher Secondary Exams (In a batch of
over 1,200 studens)

Awarded Talent Award 2005 by The Punjab School for extra-ordinary
academic performance


