
Goal Predictive Infused Robot Teleoperation

with Kinect Depth Camera

by

Christopher Schultz
B.S., University of Wisconsin - Madison, 2011

Thesis submitted in partial fulfillment of the requirements
for the degree of Master of Science in Computer Science

in the Graduate College of the
University of Illinois at Chicago, 2016

Chicago, Illinois

Defense Committee:
Brian D. Ziebart, Chair and Advisor
Piotr J. Gmytrasiewicz
Milos Zefran, Electrical and Computer Engineering

This thesis is dedicated to Margaret Hemphill and my family. Without their unwavering

support, this work would not have been possible.

ii

ACKNOWLEDGMENT

I would like to thank my advisor - Professor Brian Ziebart - who oversaw the development

of this work over the past two years. I would also like to thank Professor Piotr Gmytrasiewicz

and Professor Milos Zefran for their participation on my Masters thesis committee.

I would like to thank my fellow co-authors of the submitted ICRA 2017 manuscript of this

work: Sanket Gaurav, Mathew Monfort, and Lingfei Zhang. Key machine learning algorithms

utilized in this work were developed in Mathew Monforts PhD work at UIC. Sanket Gaurav and

Lingfei Zhang assisted greatly in this work by writing code and providing valuable opinions.

See the appendices for details about this submitted manuscript.

I would like to thank the undergraduates who assisted me on this work throughout the past

two years: David Labek, Filip Radzikowski, and Chris Griffith.

Finally, I would to thank the National Science Foundation (NSF) for its grant in support

of this work specifically through NSF NRI Award No. 1227495.

CS

iii

TABLE OF CONTENTS

CHAPTER PAGE

1 INTRODUCTION . 1
1.1 Problem Statement . 1
1.2 Thesis Statement . 2
1.3 Outline of Document . 3

2 BACKGROUND . 5
2.1 Depth Camera and OpenNI Skeleton Tracking 5
2.2 Robotic Teleoperation . 9
2.3 Robotic Arm Systems and Forward/Inverse Kinematics 11
2.4 Inverse Optimal Control . 15

3 LEARNING HUMAN-ROBOT POSE CORRESPONDENCE . 19
3.1 Setup . 19
3.2 Training . 22
3.3 Results and Discussion . 23

4 GOAL PREDICTION VIA INVERSE LINEAR-QUADRATIC
REGULATION . 26
4.1 Setup . 26
4.2 Cost Matrices Learning . 27
4.3 Goal Likelihood Estimation . 27

5 GOAL-BASED CONTROL ASSISTANCE 31
5.1 Setup . 31
5.2 α Mixing Strategies . 32

6 VALIDATION EXPERIMENTS . 35
6.1 Setup . 35
6.2 Results and Discussion . 37

7 CONCLUSIONS AND FUTURE WORK 42

APPENDICES . 44
Appendix A . 45

2 TELEOPERATION DEMONSTRATION VIDEO 47

iv

TABLE OF CONTENTS (Continued)

CHAPTER PAGE

CITED LITERATURE . 48

VITA . 52

v

LIST OF TABLES

TABLE PAGE
I Right Arm Correspondence Validation Error 24
II Left Arm Correspondence Validation Error 24
III Abbreviated Correspondence Model Parameters for Right Robot

S1 Joint . 25
IV Abbreviated Correspondence Model Parameters for Left Robot S1

Joint . 25
V Average Improvement of Completion Time and Distance Traveled 38

vi

LIST OF FIGURES

FIGURE PAGE
1 Overview of the Developed Teleoperation System 2
2 Microsoft Kinect Layout . 6
3 Structured Light Principle . 6
4 Point Cloud Data Visualization Example 8
5 OpenNI Example . 8
6 Unilateral and Bilateral Teleoperation 9
7 Example Robot Arm . 11
8 End-effector of Robot Arm Example 12
9 OpenNI Skeleton Model . 20
10 Baxter Joints . 21
11 M Cost Matrix Training Results . 28
12 Mf Cost Matrix Training Results . 28
13 Inverse LQR Model Results Example 29
14 α Selection Methods . 32
15 Experimental Testing Sequence . 36
16 Teleoperation System Time Improvement Results 39
17 Teleoperation System Distance Improvement Results 40
18 Teleoperation System Trajectory Improvement Example 41

vii

LIST OF ABBREVIATIONS

BCI Brain-Computer Interface

DOF Degrees of Freedom

ICRA IEEE International Conference on Robotics and

Automation

IEEE Institute of Electrical and Electronics Engineers

IR Infrared Spectrum Light

LQR Linear-Quadratic Control

RGB Red, Green, and Blue video data

viii

SUMMARY

Using depth camera technology developed in recent years, a human’s pose demonstrations

can be used as inputs into unilateral robotic teleoperation. This teleoperation system provides

an intuitive and effective means of control for the human operator. However, the imprecision

of low-cost depth cameras and difficulties with the frame of reference for the human operator

introduce inefficiencies in the teleoperation process when performing tasks that require precise

robotic interactions with the robot’s work space.

We developed a goal-predictive teleoperation system that addresses these difficulties for the

human operator by adding goal-directed aid to the teleoperation control process. Our approach

used inverse optimal control to predict the intended final state of the robotic system from the

current motion trajectory in real time and then adapted the degree of autonomy between the

operator’s demonstrations and autonomous completion of the predicted task. We evaluated our

approach by using a Microsoft Kinect depth camera as an input sensor to control a Rethink

Robotics Baxter robot. The results verify the effectiveness of our developed goal-predictive

teleoperation system.

ix

CHAPTER 1

INTRODUCTION

1.1 Problem Statement

Effective robots are critically needed in a number of settings where human capabilities are

limited. These include operation in settings that are unsafe for a human presence [1], when

lifting heavy objects that exceed the limits of human physical strength [2], and/or when precise

movements are needed at fine scales that are beyond the precision of unaided human motor

control [3]. Despite significant advancements in artificial intelligence [4,5], human teleoperators

are still more adept at many of the robotic motion planning and manipulation tasks [6] encoun-

tered in these settings, which require versatility and high-level problem solving. Furthermore,

programming by demonstration through teleoperation is an attractive modality for enabling

end-users without computer programming expertise to create desired autonomous behavior [7].

Methods that improve the efficiency of teleoperation by sharing autonomy between human

operator and autonomous controller [8, 9] –leveraging the advantages of each– are needed to

further improve the efficiency of completing these tasks.

A natural input mechanism for humanoid robot teleoperation is for the end-user to simply

demonstrate the desired robot movements to a passively observing sensor and have the move-

ments imitated by the robot [10–12]. There are two key challenges to this form of unilateral

teleoperation. First, the translation from human to robotic poses is often complicated due to

1

2

Figure 1. An overview of our developed teleoperation system.

differences in physical embodiment. Joint angle limitations of human operators and humanoid

robots can differ significantly, for example. Second, apart from motion capture systems [13–15],

which are very precise but require a calibrated environment and are relatively expensive, hu-

man pose estimates are often susceptible to sensor noise. Depth cameras, like the Microsoft

Kinect, are relatively inexpensive, but can produce skeleton tracking errors that may make

them unsuitable for fine-grained teleoperation tasks on their own.

1.2 Thesis Statement

We investigated goal-predictive pose-based robotic teleoperation from depth camera data:

the task of using the knowledge of possible task completion goals to improve the efficiency

of robotic teleoperation from depth camera data [8]. Our developed approach is composed of

three main steps. First, we developed a correspondence between the human operator’s tracked

skeleton and robotic joint positions. This correspondence is used to translate from human

3

operator pose to a robot pose. Second, we learned a model for goal prediction using inverse

optimal control for linear-quadratic systems [16]. This model provides a posterior probability

estimate for each possible target or goal in the robot’s work space given the partial trajectory.

Third, we applied control assistance policies based on the confidence of the goal prediction

component to robotic teleoperation. These policies increase the autonomy of the controller when

predicted goal certainty is high. We evaluated our approach experimentally on teleoperated

pointing tasks using the Baxter robot from Rethink Robotics [17] as the robotic platform and

a Microsoft Kinect [18] as the input sensor.

1.3 Outline of Document

The order of discussion in this document is as follows:

First, we discuss the associated background technologies and relevant topics in the domains

of robotics and machine learning in Chapter 2. For example, we review depth camera technology

and the principles of inverse optimal control.

Next, we discuss the three main components of the our approach in separate chapters: (1)

learning a correspondence between human operator pose and robot pose; (2) predicting the

intended goal of the operator given a partial trajectory; and (3) control assistance when goal

prediction confidence is high.

Then, we detail the experimental setup used to validate the developed goal-predictive tele-

operation system in Chapter 6. We discuss the experimental results as well which validate the

success of the developed goal-predictive teleoperation system.

4

Finally, in Chapter 7, we discuss the conclusions of this thesis and future extensions. There

are many possible extensions of our developed system that can build on the success of this

thesis.

CHAPTER 2

BACKGROUND

2.1 Depth Camera and OpenNI Skeleton Tracking

A depth camera gathers both depth and traditional RGB video data of its field of view. The

type of depth camera used in this work is structured-light based, specifically Microsoft’s Kinect

camera. Structured-light depth cameras obtain depth data by projecting a structured pattern

of light onto its field of view. In the case of the Kinect camera, the pattern projected is in the

IR spectrum of light to not interfere with the visible light of the scene. A camera at a baseline

distance b away from the projection source observes the projected pattern. Because the pattern

detection camera has a different perspective on the scene than the projection source, the project

pattern will appear distorted from the perspective of the camera [19]. This is referred to as

the disparity of the pattern, notated as m(x, y) and can be measured by a depth camera. This

disparity can be used to calculate the depth of a pixel through [19]:

depth =
b ∗ f
m(x, y)

(2.1)

where the f is the focal length of the pattern detecting camera. With camera calibration, RGB

data of the scene, gathered from a separate camera than the pattern detection camera, can be

combined with the depth calculated from Equation 2.1 to create 3-d data. The Kinect camera

can specifically gather 3-d data captions at 30 Hz at a resolution of 640 by 480 [19].

5

6

Figure 2. Layout of a Microsoft Kinect camera.

Figure 3. Example projected pattern setup used by structured-light type depth cameras.

7

The data outputted from a depth camera is point cloud formatted data. Point cloud data

is a matrix of pixels with each pixel having x,y,z data and RGB color data. A visualized

example of point cloud data can be seen in Figure 4. Computer vision algorithms have been

developed to segment “humanoid” shapes out of raw point cloud data, [20] for example. The

OpenNI software framework 1 leverages segmentation algorithms to extract “humanoid” shapes

out of a point data cloud. The OpenNI framework then overlays human skeleton models on

the segmented data. The skeleton model data consists of 15 skeleton points each having x,y,z

translation and w,x,y,z rotational data (105 total data points). A visualized example of the

OpenNI output can be seen in Figure 5.

Each “humanoid” shape in the depth camera’s field of view is considered as a separate user

by the OpenNI framework and tracked with a separate skeleton model. The OpenNI framework

does require some calibration prior to the skeleton tracking of a user. However, the calibration

is handled automatically when the OpenNI framework detects a new user in the associated

depth camera’s field of vision.

1https://github.com/ros-drivers/openni_launch

https://github.com/ros-drivers/openni_launch

8

Figure 4. Visualized example of point cloud data.

Figure 5. Visualized Example of OpenNI skeleton tracking data.

9

Figure 6. Control scheme differences between unilateral and bilateral teleoperation.

2.2 Robotic Teleoperation

Robotic teleoperation refers to robotic control with human participation [21]. There are

generally two types of teleoperation systems: unilateral and bilateral control. In unilateral

control, a human teleoperator provides control inputs to a robot through a master control

interface, such as a joystick, which then provides input into a robot slave controller. The slave

controller performs the robotic system manipulations based off of the output from the master

control interface. Bilateral control is unilateral control with an additional feedback loop in which

a robotic slave controller provides feedback to the master control interface. This additional

feedback allows the master control interface to provide feedback to human teleoperators. An

10

example of bilateral control is a joystick that provides mechanical resistance to a human operator

when a robot makes contact with objects or obstacles in its environment [21].

A number of recent teleoperation systems enable the operator to demonstrate desired control

through pose data collected from depth cameras [22]. These types of teleoperation interfaces

are unilateral and have been primarily developed to faithfully reproduce the operator’s be-

haviors [12, 23]. Some use gesture recognition as a command signaling mechanism to improve

teleoperation [24]. The approach developed in this work differs though in that it infers intentions

rather than recognizing pre-programmed directives from depth camera data.

Unfortunately, teleoperation using depth cameras can be difficult for human operators. This

is due to noisy sensor or tracking output from depth cameras, poor translation from human input

to robotic output, and latency between the human input and robot output [21,25]. Nevertheless,

these interfaces are appealing from a cost and flexibility standpoint. A significant research

direction has investigated assistive teleoperation [8], in which control is achieved through shared

autonomy. One example is teleoperation for free-form tasks using mouse cursor input, in which

the task is inferred and used to optimize low-level robotic motions [26]. A recent approach in

the brain-computer interface (BCI) teleoperation domain [9] has attempted to address these

type of teleoperation issues by infusing a correcting assist action, Aassist, to a teleoperation

control action, Atel. The exact Aassist value and the degree in which it is added to Atel is

based off of the predicted intention of the teleoperation action. This assisting action addition

was shown in [9] to improve task completion metrics in robot teleoperation applications.

11

Figure 7. Example of a 3 DOF robot arm. ωi denotes the joint angle of joint i

2.3 Robotic Arm Systems and Forward/Inverse Kinematics

Robotic arm systems are typically viewed as a system of joints and rigid bodies known as

links [27]. As one joint moves in an arm system, the translation and rotation of the links of the

system change depending on the geometric configuration of the arm. The Degrees of Freedom

(DOF) of an arm system is number of joints in the arm system. Figure 7 shows an example 3

DOF robotic arm system.

The control of motion of a robotic arm system is typically defined by movements of robotic

arm joints [27]. Specifically, motion control schemes are used that manipulate joint angles

depending on desired joint position, joint velocity, torque applied, etc. [27]. Joint control

approaches are natural approaches to arm control as the manipulation elements of a robotic

arm system are servomotors in the joints of the arm [27].

12

Figure 8. End-effector space of the Figure 7 example. F0 is the origin coordinate frame and
F3 is the end-effector coordinate frame. F1 and F2 are intermediate coordinate frames.

Although motion control is handled in the joint space of a robotic arm, planning out the

motion of the arm is difficult using the joint space [27]. This is because one joint’s movement

can affect any of the translation and rotation of the rigid body links “downstream” of the joint

in the arm system. To simplify the complexities of planning out arm motion, the notion of an

arm end-effector is used. An arm end-effector is an imaginary point at the end of a robotic arm.

The end-effector’s translation and rotation are referenced from some origin point, e.g. center

of mass of the associated robot. Figure 8 shows the end-effector of Figure 7. Motion planning

of the arm can be achieved by first planning out an end-effector’s trajectory and then finding

a sequence of joint movements to achieve the desired end-effector trajectory.

13

Forward kinematics refers to converting from the joint angles of a robot arm to the end-

effector location and rotation, i.e. from joint space to end-effector space. The forward kinemat-

ics problem is often expressed in terms of a 4x4 transform matrix [27]:

iTj =



rxx rxy rxz
ipxj

ryx ryy ryz
ip
y
j

rzx rzy rzz
ipzj

0 0 0 1


(2.2)

where iTj denotes the transform matrix between the coordinate frame i and j, the r elements

denote the rotation between the coordinate frame i and j between specific translation dimension,

and the p elements denote translational offsets from coordinate frame i to j [27]. Both the r

and p elements of the transform matrix are functions of the current joint angles. Relating the

joint angles to r and p depends on the geometric configuration of an arm system and can be

determined using methods in standard robotics sources, for example [27], or supplied by a robot

manufacturer.

Relating this transform matrix back to the forward kinematics problem, if frame i is the

origin frame of the robotic system and frame j is the end-effector frame, an end-effector’s

translation and rotation can be extracted from the transform matrix. In Figure 8, the forward

kinematics results can be extracted from the 0T3 transform matrix. The p elements of the

transformation matrix are the x,y,z translations of the end-effector as the origin frame is the

zero point of the arm system. The rotation of the end-effector is typically expressed in a more

14

compact representation than the rotation elements r directly [27]. There are many options

available, but the quaternion rotation representation of w,x,y,z is often used in this work. The

w,x,y,z rotation dimensions can be related back to r elements of the transform matrix by 1:


rxx rxy rxz

ryx ryy ryz

rzx rzy rzz

 =


w2 + x2 − y2 − z2 2(xy−wz) 2(xz+wy)

2(xy+wz) w2 − x2 + y2 − z2 2(yz−wx)

2(xz−wy) 2(yz+wx) w2 − x2 − y2 + z2

 (2.3)

where ||(w, x, y, x)|| = 1.

Although forward kinematics is useful, it does not address translating an arm’s end-effector

trajectory into joint movements. To do so requires reversing forward kinematics that is referred

to as inverse kinematics. Inverse kinematics is much more difficult to solve than forward kine-

matics. The difficulty with inverse kinematics is that there are typically many, if not an infinite

number of, joint configurations that lead to the exact same end-effector position [27].

To understand this, consider an end-effector that is specified in x,y,z translational dimen-

sions and three rotational angles (it is possible to represent 3-d rotation in only three rotation

dimensions rather than the quaternion w,x,y,z dimensions; Euler angles for example [27]). This

end-effector is specified with 6 DOF (three translational and three rotational values). The ex-

ample arm in Figure 7 and Figure 8 is a 3 DOF arm. In this case, the inverse kinematics problem

1http://www.cprogramming.com/tutorial/3d/quaternions.html

http://www.cprogramming.com/tutorial/3d/quaternions.html

15

is said to be under-specified for the Figure 7 and Figure 8 example because there are less arm

variables, i.e. joints, than the specified end-effector. When inverse kinematics is underspecified

for an arm system, there are no closed form solutions to inverse kinematics [27]. Now consider a

6 DOF robotic arm, In this case, the inverse kinematics problem is said to be specified and does

have many closed form solutions. To understand why there are many solutions, arm joint angles

are related to an end-effector through trigonometric functions (sin, cos, tan, etc.). Going from

an end-effector to joint angles requires inverting these trigonometric functions (arcsin, arccos,

arctan, etc.) Inverse trigonometric functions yield multiple joint angles. This is the root of the

multiple closed form solutions in this case. Lastly, consider a robotic arm with more than 6

DOF. In this case, some of the joint angles are redundant for the inverse kinematics calculation

which can lead to an infinite number of solutions [27].

Because of the range of possible solutions to an inverse kinematics problem, numerical

techniques are frequently used to find approximately optimal solutions considering the current

arm joint angles to the desired locations. Numerical inverse kinematics techniques continue to

be an area of active research. For example, IKFast, developed recently in [28], is a popular

general solution framework for inverse kinematics. Robot manufacturers frequently developed

their own techniques using heuristics, etc. for a particular robot.

2.4 Inverse Optimal Control

Inverse optimal control (also known as inverse reinforcement learning) [29–31] seeks a reward

or cost function that rationalizes demonstrated control sequences [31]. Though ill-posed in

its simplest formulation [30], extensions that seek to provide predictive guarantees create a

16

well-defined machine learning task [32]. Maximum entropy inverse optimal control [33], for

example, seeks to provide robust predictions of the control policy under the logarithmic loss,

while learning parameters that define a cost function for inverse reinforcement learning purposes.

In this work, we leveraged extensions of maximum entropy inverse optimal control in linear-

quadratic control (LQR) settings [16,34,35]. In these settings, it is assumed that the dynamics of

a system being investigated can be represented by a continuous linear state-space representation,

st+1 = Ast +Bat + εt, (2.4)

where st denotes the state of the system at time t, at denotes the action at time t, εt denotes

some zero mean Gaussian noise, and A and B define the system dynamics.

A state-action cost function,

cost(st,at) =

at
st


T

M

at
st

 , t < T, (2.5)

and a final state cost penalizing the final state, sT, from deviating from the desired target, sG,

cost(sT) = (sT − sG)TMf (sT − sG), (2.6)

17

are learned by updating the M and Mf coefficient matrices through demonstrated behaviors

using the principle of maximum casual entropy [34]. Specifically, this is done by solving the

constrained optimization problem maximizing the casual entropy [16],

H(a||s) , Eπ̂

[
−

T∑
t=1

log π̂(a||s)

]
,

such that the predictive policy distribution, π̂(a||s) = π(a1|s1)π(a2|s2) · · ·π(aT |sT), matches

the demonstrated quadratic state properties, π̃, in feature expectation through the following

optimization constraints,

Eπ̂


T−1∑
t=1

at
st


at
st


T
 = Eπ̃


T−1∑
t=1

at
st


at
st


T
 , and

Eπ̂
[
(sT − sG)(sT − sG)

T
]
= Eπ̃

[
(sT − sG)(sT − sG)

T
]
.

This optimization allows the state-conditioned probabilistic policy, π̂, to be formed using

the following recursively defined equations,

π̂(at|st) = e
Q(st,at)−V(st), (2.7)

Q(st,at) = Eτ(st+1|st,at)[V(st+1|st,at)] + cost(st,at), (2.8)

V(st) =


softmax

at

Q(st,at), t < T

(st − sG)
TMf (st − sG), t = T,

(2.9)

18

where the policy distribution is penalized for deviating from the desired goal location, sG,

at time T and the softmax function is a smoothed interpolation of the maximum function,

softmax
x

f(x) = log
∫
x e
f(x)dx.

After training is complete, (Equation 2.7) through (Equation 2.9) allow the probability of

each possible target being the desired goal of an observed partial trajectory to be estimated [16].

CHAPTER 3

LEARNING HUMAN-ROBOT POSE CORRESPONDENCE

3.1 Setup

We used a Microsoft Kinect to obtain point cloud data of a human teleoperator and applied

the OpenNI framework to the Kinect data to overlay a digital skeleton model on the human

teleoperator’s captured depth camera data. The OpenNI Skeleton model has 105 data points,

15 skeleton points each having x,y,z translation and w,x,y,z rotational data. We used these 105

data points (shown in Figure 9) as features, denoted as XOpenNI, to build a correspondence

to a Rethink Robotics Baxter Research Robot’s1 two arm joint positions. The Baxter Robot

arms are 7 DOF arms, the joint labels are shown in Figure 10. The joint values are denoted as:

Yjoints = [so, s1, e0, e1, w0, w1, w2]
T (3.1)

We assumed the correspondence from XOpenNI to Yjoints is a linear relationship:

Yjoints = XT
OpenNIΘ+ ε (3.2)

where Θ is a coefficient matrix and ε is some zero mean Gaussian noise, i.e. ε ∼ N(0, Σ2).

Given some OpenNI data, we predicted the corresponding robot joints through regression:

1http://sdk.rethinkrobotics.com/wiki/Main_Page

19

http://sdk.rethinkrobotics.com/wiki/Main_Page

20

Figure 9. OpenNI skeleton model. Each data point shown has x,y,z translational and w,x,y,z
rotational data.

21

Figure 10. Baxter robot seven joints.

22

ŶT
joints = XT

OpenNIΘ̂ (3.3)

where ŶT
joints denotes predicted joint values and Θ̂ is the estimated coefficient matrix.

3.2 Training

We learned Θ̂ for each robot arm by collecting data from the Baxter robot as a demonstrator

moves the robot arms in “zero-gravity” mode. The arm movements started from a neutral arm

position to a final position. While a demonstrator moves one robot arm, another demonstrator

mimicked the robot’s arm motions with his/her arms and tried to stay synchronized with the

robot arm movements. Both the robot arm joints and the corresponding OpenNI Skeleton

data were recorded together. We varied the demonstrators to ensure a generalized correlation

between human teleoperators and arm joints.

Θ̂ is determined by:

min
Θ̂

∑
(YT

joints − ŶT
joints)

2 + λ
∑

|Θ̂| (3.4)

where λ is a regularization coefficient that penalizes the complexity of the models to increase

the generality of Θ̂. As λ increases, Θ̂ terms will be driven towards zero [36]. Optimization of

Equation 3.41 results in Θ̂.

Our final training data set consisted of 11,935 examples for the right arm model and 10,770

examples for the left arm model.

1we used the sci-kit learn python package to solve for Θ̂: http://scikit-learn.org/stable/

modules/generated/sklearn.linear_model.Lasso.html

http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Lasso.html
http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Lasso.html

23

3.3 Results and Discussion

For the final fit, we used 30% of the collected data as a validation set for the correspondence

model. We assessed the fitted correspondence model’s prediction abilities by the squared error

between the predicted joint values and actual joint values squared. The final training error

results are shown in Table I and Table II. The right and left arm models performed best when

λ = 0.

Evident by the best performing λ in Table I and Table II, regularization did not the improve

models’ validation variances. This means regularization during training was a hindrance to the

performance of the trained correspondence models. This likely means that enough data was

collected to generalize the correspondence models without regularization.

Table III and Table IV show abbreviated parameter training results. The magnitudes of

these parameters cannot be used by themselves to determine the importance of any one of the

OpenNI values to a robot arm joint. This is because magnitudes of each OpenNI data point

are different which affect the magnitudes of the associated parameters.

24

TABLE I

Right Arm Correspondence Validation Error

Joint λ = 0.1 λ = 0.01 λ = 0.001 λ = 0 1

s0 0.126 0.073 0.058 0.043
s1 0.041 0.021 0.016 0.013
e0 0.049 0.032 0.019 0.015
e1 0.157 0.093 0.075 0.068
w0 0.147 0.108 0.094 0.075
w1 0.022 0.017 0.014 0.012
w2 0.050 0.036 0.024 0.017

average 0.084 0.054 0.043 0.035

1 λ = 0 corresponds to a standard linear regression
2 units of reported values are rad2

TABLE II

Left Arm Correspondence Validation Error

Joint λ = 0.1 λ = 0.01 λ = 0.001 λ = 0 1

s0 0.091 0.068 0.040 0.028
s1 0.049 0.027 0.018 0.013
e0 0.039 0.020 0.012 0.001
e1 0.099 0.077 0.057 0.051
w0 0.067 0.039 0.028 0.023
w1 0.032 0.020 0.015 0.014
w2 0.000 0.000 0.000 0.000

average 0.054 0.036 0.024 0.020

1 λ = 0 corresponds to a standard linear regression
2 units of reported values are rad2

25

TABLE III

Abbreviated Correspondence Model Parameters for Right Robot S1
Joint

Torso1 Right Shoulder 1 Right Elbow 1 Right Hand 1

xtranslation 1.63 0.05 0.17 0.58

ytranslation 0.42 0.12 0.14 0.31

ztranslation 0.96 0.12 0.06 0.96

wrotation 0.22 0.86 0.83 22320

xrotation 1.14 0.26 0.86 39923

yrotation 0.45 0.38 0.36 22289

zrotation 0.93 1.12 0.73 39922

1 from OpenNI framework skeleton model
2 only shows 28 out the 105 parameters needed to predict right S1

joint correspondence

TABLE IV

Abbreviated Correspondence Model Parameters for Left Robot S1
Joint

Torso 1 Left Shoulder 1 Left Elbow 1 Left Hand 1

xtranslation 1.07 0.20 0.46 0.94

ytranslation 0.43 0.10 0.09 0.39

ztranslation 2.21 0.01 0.19 3.61

wrotation 0.30 0.20 0.33 7358

xrotation 0.17 1.17 0.01 12824

yrotation 0.03 1.11 0.42 7369

zrotation 0.09 0.23 0.12 12822

1 from OpenNI framework skeleton model
2 only shows 28 out the 105 parameters needed to predict left S1

joint correspondence

CHAPTER 4

GOAL PREDICTION VIA INVERSE LINEAR-QUADRATIC

REGULATION

4.1 Setup

We defined a goal as a location in x,y,z translational space that may be reached by the

robot arm end-effector. As discussed in Chapter 2, the end-effector is the imaginary endpoint

of the robot arm, which can be calculated through the arm’s geometry using forward kinematics

[37]. The end-effector has both x,y,z translational and w,x,y,z, rotational dimensions referenced

from the associated robot’s coordinate frame - however, we only considered the translational

dimensions of the end-effector for the goal prediction task in this work. End-effector trajectories,

as opposed to arm joint angle movements, were used for this goal prediction task as end-effector

movements can be modeled easily as a Linear-Quadratic Regulation problem [16].

Our approach to goal prediction was to predict the intent of an end-effector trajectory

through space in reference to a goal position. Following the approach outlined in [16], we

assumed the linear dynamics of (Equation 2.4), in which the state of the end-effector is defined

as:

st = [xt, yt, zt, ẋt, ẏt, żt, ẍt, ÿt, z̈t, 1]
T , (4.1)

and end-effector actions as:

at = [ẋt, ẏt, żt]
T , (4.2)

26

27

where (ẋt, ẏt, żt) are velocities, (ẍt, ÿt, z̈t) are accelerations, and a constant of 1 is added

to the state representation to incorporate linear features into the quadratic cost function in

(Equation 2.5). Additionally, we represented the goal state i of the end-effector using only the

goal’s translational position,

sGi
= [xGi

, yGi
, zGi

, 0, 0, 0, 0, 0, 0, 0]T . (4.3)

4.2 Cost Matrices Learning

We learned the cost matrix coefficients M and Mf from end-effector position data where a

human demonstrator moved the robot arms in “zero-gravity” mode from a neutral start position

to a goal position. We combined both right and left arm trajectory data into one dataset to

train one set of cost matrices. This is because we found that the resulting inverse LQR model

generalized to both arms. Our final training consisted of 404 trajectories.

We learned the cost matrices by maximizing causal entropy [34] using gradient descent with

an adaptive learning rate [16]. The results are shown in Figure 11 and Figure 12.

There are a lot of zero elements in the learned cost matrices, specifically the velocity and

acceleration terms. This was deliberately done; by forcing the solver to keep these elements as

zero, the resulting cost matrices generalize across different system orientations and setups [16].

4.3 Goal Likelihood Estimation

From the learned cost matrices, we inferred probabilities of different possible goal states that

the operator may want the end-effector to be in given the observed partial trajectory of the

28



−1.61 0.96 −0.98 0.00 0.00 0.00 −1.02 0.97 −0.98 −1.33
0.54 −0.62 −1.69
0.96 −2.19 0.95 0.00 0.00 0.00 0.97 −1.29 0.97 0.49

−4.35 0.47 0.25

−0.98 0.95 −1.63 0.00 0.00 0.00 −0.98 0.97 −1.03 −0.62
0.52 −1.48 −1.19
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00

−1.02 0.97 −0.98 0.00 0.00 0.00 −1.61 0.96 −0.98 −2.44
0.51 −0.57 −0.16
0.97 −1.29 0.97 0.00 0.00 0.00 0.96 −2.06 0.96 0.51

−10.6 0.50 0.13

−0.98 0.97 −1.02 0.00 0.00 0.00 −0.98 0.96 −1.63 −0.57
0.50 −2.88 −0.16
−1.33 0.49 −0.62 0.00 0.00 0.00 −2.44 0.51 −0.57 −5.41
−0.24 0.12 0.19

0.54 −4.35 0.52 0.00 0.00 0.00 0.51 −10.6 0.50 −0.24
−25.9 −0.26 −0.14
−0.62 0.47 −1.48 0.00 0.00 0.00 −0.57 0.50 −2.88 0.12

−0.26 −6.56 0.20


Figure 11. M Cost Matrix Training Results. Used for both arm predictions. Size is 13 x 13.



−1.17 0.94 −0.77 0.00 0.00 0.00 0.00 0.00 0.00 −1.89
0.94 −1.39 0.97 0.00 0.00 0.00 0.00 0.00 0.00 0.44

−0.77 0.97 −1.26 0.00 0.00 0.00 0.00 0.00 0.00 −1.39
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

−1.89 0.44 −1.39 0.00 0.00 0.00 0.00 0.00 0.00 0.00


Figure 12. Mf Cost Matrix Training Results. Used for both arm predictions. Size is 10 x 10.

29

t
0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

P
(S

G
i
|t
ra
je
ct
o
ry

in
it
−
>
t)

goal 1 goal 2 goal 3 goal 4 goal 5

Figure 13. The predicted goal probabilities from the trained inverse LQR model over time for
a sequence of robotic arm moves toward a goal.

end-effector in real time. These goal state probabilities are defined as P(sGi
|trajectoryinit→t)

and the probability of the most likely intended goal of the partial trajectory, I, as:

I = max
i
P(sGi

| trajectoryinit→t). (4.4)

From [16], P(sGi
|trajectoryinit→t) can be calculated through:

P(sGi
|trajectoryinit→t) ∝

t∏
1

π(at|st, sGi
)P(sGi

|st) (4.5)

where π(at|st, sGi
) is calculated through the learned cost matrices and previous recursive

equations, and P(sGi
|st) can be thought of as the prior probability distribution of goal states

30

given the partial trajectory alone. In this work, a distance prior was used for P(sGi
|st), similar

to the one used in [16]:

P(sGi
|st) ∝ e−βdist(st,sGi

), (4.6)

where dist(st, sGi
) is a function that computes the Euclidean distance between the spatial

coordinates of st and sGi
, and β is an adjustable coefficient that increases the importance of

distance on the distribution. As dist(st, sGi
) decreases, P(sGi

|st) increases effectively making

closer targets more probable. Figure 13 depicts the predicted goal probability from the trained

model change over time as an arm moves toward a specific goal.

CHAPTER 5

GOAL-BASED CONTROL ASSISTANCE

5.1 Setup

Using the goal predictions model from Chapter 4, we adjusted the level of autonomy between

human and autonomous control. The specific approach, employed from [9,38], was to consider

an action taken by a robot at time t, Ar,t, to be a linear combination of a teleoperation action,

Atel,t and an assisting action, Aassist,t:

Ar,t = αAtel,t + (1− α)Aassist,t (5.1)

where α is a mixing coefficient. When α is close to 1, Ar,t is mainly a function of the tele-

operation translated action Atel,t. As alpha decreases towards 0, Ar,t becomes increasingly a

function of an assist action Aassist,t. By defining α as a function of predicted intent [16], a

noisy teleoperation action can be corrected by mixing in an appropriate assisting action that

reflects the true intention of the teleoperation action.

For this work, we used an arm joint angle based position controller1. Because of this, the

denoted action variables in (Equation 5.1) for this work were arm joint positions. Specifically,

Atel,t was the joint values from the linear correspondence model trained from a human tele-

1http://sdk.rethinkrobotics.com/wiki/Arm_Control_Modes

31

http://sdk.rethinkrobotics.com/wiki/Arm_Control_Modes

32

0.1 0.2 0.3 0.4

I

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.0

α

sigmoid assist step assist no assist

Figure 14. Three α selection methods after final parameter adjustments.

operator to robot arm joints discussed in Chapter 3. Aassist,t was calculated by finding the

end-effector goal with the highest probability from the goal prediction model and applying in-

verse kinematics1 to the goal position with the current arm joint positions as a seed to the

inverse kinematic calculations. Then, Atel,t and Aassist,t were linearly mixed together per

(Equation 5.1) to form Ar,t which was used by the joint position arm controller to manipulate

the robot arms.

5.2 α Mixing Strategies

We considered three different approaches for adjusting the value of the mixing coefficient α in

/eqrefactionmixing.Thefirstapproachwasanoassistapproachwhereα is 1.0 for all I values.

1http://sdk.rethinkrobotics.com/wiki/IK_Service_Example

http://sdk.rethinkrobotics.com/wiki/IK_Service_Example

33

As α remains at 1.0 regardless of I, this method prevented any assisting action from being

applied to a teleoperation control action. For this reason, we refer to this α approach in this

work as the no assist approach in this work.

The second approach varied α as a sigmoid function of I [9]:

α =
1

1+ e−a(1−I)+o
(5.2)

where a and o are adjustable parameters. Because this approach varied α as I varied, the

approach resulted in an Ar,t that is a linear mixture of an assisting action and a teleoperation

control action. We refer to this α approach in this work as the sigmoid assist approach.

The last approach we considered was α as a step function of I [8]:

α =


1.0, if I < Ithreshold

c, else

(5.3)

where Ithreshold and c are adjustable parameters. Like the sigmoid assist, this method did mix

in an assisting action with a teleoperation control action. We refer to this α approach in this

work as the step assist approach. Figure 14 shows the three alpha methods as a function of I

after our final parameter adjustments.

As discussed in [9], it is important to set an αmin where the value of α cannot drop below. If

α decreases too much, Aassist,t becomes dominant in (Equation 5.1) where if the guessed intent

of a partial trajectory is wrong the human teleoperator will never be able to correct the arm

34

because Atel,t will not be a large enough component in Ar,t. We set an αmin value for this work

of 0.60.

CHAPTER 6

VALIDATION EXPERIMENTS

6.1 Setup

To test our approach, we selected ten different end-effector goal locations, five for each of

the Baxter arms. The selected goals were different than any of the goals used to train the

goal prediction and linear correspondence models. The goals were visually shown in the testing

space around the robot with approximately four-inch diameter spheres numbered to reflect the

goal index they were associated with. There was a Kinect camera directly in front of the robot

testing space setup where the human demonstrator’s OpenNI skeleton data was captured. The

Kinect camera was positioned so that a demonstrator could see both the Baxter robot and the

goals.

For each demonstrator, all three of the α selection criteria were tested twice. The order

in which the assist and no assist α selection methods were used was randomized between

demonstrators. A demonstrator was never told what α selection method was being used at a

given time.

For a given α selection test, all ten goals were tested in a random order. One goal test is

referred to as a goal test sequence. A sequence always started with the robot arms at neutral

positions that were the same for every sequence. The demonstrator was told what the objective

35

36

Figure 15. The steps of a task in the testing sequence.

37

goal was prior to the start of any goal test sequence through a graphics display and given five

seconds to prepare. After this countdown, the sequence started.

At the start of a test sequence, the associated arm position controller of the selected goal

was enabled. The input used by the arm controller was the output from (Equation 5.1), where

the α mixing coefficient was based off the associated α mixing strategy. The objective of the

sequence was to get the associated arm’s end-effector within 0.13 meters of the selected goal,

calculated by Euclidean distance. The demonstrator had to keep the end-effector within the

distance tolerance for 2.0 seconds to register the sequence as a success. The demonstrator had

15 seconds to complete a sequence, otherwise, a timeout was recorded for the sequence. When

using an assist method, the α value was kept at 1.0 until the arm end-effector traveled at least

0.6 meters. This was to allow a partial trajectory to be established for the inverse LQR goal

prediction model.

6.2 Results and Discussion

We used the metrics of the completion time and the end-effector distance traveled to evaluate

each sequence. The end-effector distance traveled was calculated by summing up the Euclidean

distances between controller steps. If a timeout occurs for a sequence, the completion time was

recorded as the timeout setting amount, which was 15 seconds.

Overall, we gathered 18 completed testing sets of data from human demonstrators. Each

demonstrator contributed 60 data points, 6 α selection tests each having 10 goals.

Averaging the sequence results of all 18 demonstrators (Table V), we observed an average

decrease in completion time of 1 to 2 seconds and distance traveled by 0.5 meters or less when

38

TABLE V

Average Improvement of Completion Time and Distance Traveled

∆t [s]1 p-value2 ∆d [m]1 p-value2

No Assist to Sigmoid 2.1 2.8e-6 0.47 2.2e-5

No Assist to Step 1.3 5.8e-5 0.29 4.9e-5

Step to Sigmoid 0.8 1.3e-2 0.18 5.7e-5

1 Average improvement across all participants with both left
and right arm results. Results shown are decrease improve-
ments.

2 The p-values computed using pairwise t-testing for each par-
ticipant comparing participant’s average results from each of
the control strategies. Shown p-values are one-sided.

comparing the assist methods to the no assist method. These results might appear to be

moderate improvements. However, considering the relatively easy task used to test with, these

results are of practical importance.

The sigmoid assist method provided a larger improvement than the step assist method.

This result is not surprising given that the sigmoid assist provides a continuous range of α

values compared to the two α value outputs of the step assist method. The p-values of these

results, calculated using a paired statistical test for different methods using paired teleoperation

sequences to each goal, show that these observed improvements are statistically significant.

Averaging the sequence results on a per-goal basis (Figure 16, Figure 17) improvements

are seen in both task completion time and distance traveled across all 10 goals when comparing

39

1 2 3 4 5

Goal Index

−10

−5

0

5

10

∆
t

[s
]

1 2 3 4 5

Goal Index

−10

−5

0

5

10

∆
t

[s
]

1 2 3 4 5

Goal Index

−10

−5

0

5

10
∆

t
[s

]

1 2 3 4 5

Goal Index

−10

−5

0

5

10

∆
t

[s
]

1 2 3 4 5

Goal Index

−10

−5

0

5

10

∆
t

[s
]

1 2 3 4 5

Goal Index

−10

−5

0

5

10

∆
t

[s
]

Figure 16. Time improvements results for both arms. Plots in the first row show the
improvement from using no assist to using the sigmoid assist, plots in the second row show

the improvement from using no assist to using the step assist, and plots in the last show the
improvement from using step assist to sigmoid assist. The left column is the left arm results

and the right column is the right arm results.

results of the assisting methods and no assist method as well. For a majority of the goals, the

sigmoid assist method out performs the step assist method.

We observed the improvements the assist methods provide in the actual arm end-effector

trajectories of the test sequences as well. For example, in Figure 18, one demonstrator was able

to teleoperate the arm in a much more efficient path to the goal with the assist methods. When

no assist was applied, the end-effector trajectory appears more sporadic, taking longer to stabi-

lize near the goal coordinates. Although this is one specific example of improvement, it provides

insight into how the assisting actions are actually improving the efficiency of teleoperation.

40

1 2 3 4 5

Goal Index

−2

−1

0

1

2

∆
d
 [

m
]

1 2 3 4 5

Goal Index

−2

−1

0

1

2

∆
d
 [

m
]

1 2 3 4 5

Goal Index

−2

−1

0

1

2

∆
d
 [

m
]

1 2 3 4 5

Goal Index

−2

−1

0

1

2

∆
d
 [

m
]

1 2 3 4 5

Goal Index

−2

−1

0

1

2

∆
d
 [

m
]

1 2 3 4 5

Goal Index

−2

−1

0

1

2

∆
d
 [

m
]

Figure 17. Distance traveled results for both arms. Plots in the first row show the
improvement from using no assist to using the sigmoid assist. Plots in the second row show

the improvement from using no assist to using the step assist. Plots in the last show the
improvement from using step assist to sigmoid assist. The left column contains the left arm

results and the right column contains the right arm results.

41

0 50 100 150
−0.5

0.0

0.5

1.0

1.5

2.0
x y z

0 50 100 150
−0.5

0.0

0.5

1.0

1.5

2.0

2.5

0 50 100 150

tcontroller

−0.5
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

d
g
o
a
l

Figure 18. Example of the improvement that the assisting methods provide to the arm
end-effector trajectory. Data is from the same participant attempting to teleoperate a robot

arm from the neutral position to the same goal position. From the top, the first plot is the no
assist method end-effector trajectory result, the second plot is the sigmoid assist method, and

the last plot is the step assist method. All three translational dimensions (x,y,z) of an
end-effector are shown. The tcontroller axis represents time referenced by the arm controller
time step since the start of a testing sequence. The dgoal axis represents the fraction of the

distance the arm end-effector has traveled towards the goal.

CHAPTER 7

CONCLUSIONS AND FUTURE WORK

In this work, we showed that inverse optimal control approaches, specifically inverse LQR,

can be used to extract the intent of teleoperation control actions in real time. This intent can

be used to improve teleoperation task completion efficiency by applying an assist action to a

teleoperation control action. Specifically, the results were shown in a depth camera teleoperation

setting.

There are many interesting extensions to this work to consider in the future. First, we

believe the improvements shown in this work will increase as the difficulty of the teleoperation

task increases. Therefore, extending this work to more complicated teleoperation tasks, such

as grasping objects and more difficult arm navigation tasks, would show if the improvements

this developed teleoperation system provide increase as a function of task complexity.

Second, it is possible to predict the best action to get a robot arm end-effector into a goal

state from the inverse LQR model. Instead of using goal coordinates and inverse kinematics

for Aassist,t, we want to use these predicted actions as Aassist,t instead.

Lastly, incorporating obstacle avoidance with the assist action would be very beneficial.

In [39], it was shown that the inverse LQR prediction method can incorporate waypoint states

sW,i into this inverse optimal control formulation with an additional cost term in the cost

function shown above. Using this waypoint formulation addition, we believe it is possible,

through arm demonstrations that avoid obstacles during training, that a cost function can be

42

43

learned that provides next actions that avoid obstacles. With the completion of the second

extension just mentioned above, this next action could be used as Aassist,t.

APPENDICES

44

45

Appendix A

IEEE MANUSCRIPT COPYRIGHT NOTICE

Much of this work has been submitted to IEEE for consideration for ICRA 2017 under

the manuscript [40]. My fellow co-authors for this manuscript are Sanket Gaurav 1, Mathew

Monfort2, Lingfei Zhang1, and Brian D. Ziebart1.

This thesis document uses excerpts from [40] without citation as this thesis document is an

expansion of the manuscript.

Please note: if this submitted manuscript is accepted, IEEE will retain the copyright on

all figures, tables, and text excerpts in the accepted manuscript. IEEE’s thesis reuse policy is

available on the web 3.

Specific figures used in this thesis that are included in the first submitted manuscript are:

• Figure 13

• Figure 14

• Figure 15

1Sanket Gaurav, Lingfei Zhang, and Brian D. Ziebart are with the Department of Computer Science,
University of Illinois at Chicago, 851 S. Morgan St. (M/C 152) Chicago, IL 60607 sgaura2@uic.edu,
lzhang44@uic.edu, and bziebart@uic.edu

2Mathew Monfort is with the Computer Science and Artificial Intelligence Laboratory, Massachusetts
Institute of Technology, 32 Vassar St, Cambridge, MA 02139 mmonfort@mit.edu

3https://www.ieee.org/publications_standards/publications/rights/permissions_faq.

pdf

https://www.ieee.org/publications_standards/publications/rights/permissions_faq.pdf
https://www.ieee.org/publications_standards/publications/rights/permissions_faq.pdf

46

• Table V

• Figure 16

• Figure 17

• Figure 18

CHAPTER 2

TELEOPERATION DEMONSTRATION VIDEO

A demonstration video of the final goal-predictive teleoperation system can be found at

https://youtu.be/czQ7v7OGKkk.

47

https://youtu.be/czQ7v7OGKkk

CITED LITERATURE

1. Nagatani, K., Kiribayashi, S., Okada, Y., Otake, K., Yoshida, K., Tadokoro, S., Nishimura,
T., Yoshida, T., Koyanagi, E., Fukushima, M., et al.: Emergency response to the
nuclear accident at the fukushima daiichi nuclear power plants using mobile rescue
robots. Journal of Field Robotics, 30(1):44–63, 2013.

2. Harada, K., Kajita, S., Saito, H., Morisawa, M., Kanehiro, F., Fujiwara, K.,
Kaneko, K., and Hirukawa, H.: A humanoid robot carrying a heavy ob-
ject. In Proceedings of the 2005 IEEE International Conference on Robotics and
Automation, pages 1712–1717. IEEE, 2005.

3. Lendvay, T. S., Hannaford, B., and Satava, R. M.: Future of robotic surgery. The Cancer
Journal, 19(2):109–119, 2013.

4. Levine, S., Finn, C., Darrell, T., and Abbeel, P.: End-to-end training of deep visuomotor
policies. Journal of Machine Learning Research, 17(39):1–40, 2016.

5. Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., Graves,
A., Riedmiller, M., Fidjeland, A. K., Ostrovski, G., et al.: Human-level control
through deep reinforcement learning. Nature, 518(7540):529–533, 2015.

6. Latombe, J.-C.: Robot motion planning, volume 124. Springer Science & Business Media,
2012.

7. Argall, B. D., Chernova, S., Veloso, M., and Browning, B.: A survey of robot learning from
demonstration. Robotics and autonomous systems, 57(5):469–483, 2009.

8. Dragan, A. D. and Srinivasa, S. S.: Formalizing assistive teleoperation. MIT Press, July,
2012.

9. Muelling, K., Venkatraman, A., Valois, J.-S., Downey, J., Weiss, J., Javdani, S., Hebert,
M., Schwartz, A. B., Collinger, J. L., and Bagnell, J. A.: Autonomy infused tele-
operation with application to bci manipulation. arXiv preprint arXiv:1503.05451,
2015.

48

49

10. Song, W., Guo, X., Jiang, F., Yang, S., Jiang, G., and Shi, Y.: Teleoperation humanoid
robot control system based on kinect sensor. In Intelligent Human-Machine Systems
and Cybernetics (IHMSC), 2012 4th International Conference on, volume 2, pages

264–267. IEEE, 2012.

11. Du, G., Zhang, P., Mai, J., and Li, Z.: Markerless kinect-based hand tracking for robot
teleoperation. International Journal of Advanced Robotic Systems, 9, 2012.

12. Du, G. and Zhang, P.: Markerless human–robot interface for dual robot manipulators
using kinect sensor. Robotics and Computer-Integrated Manufacturing, 30(2):150–
159, 2014.

13. Moeslund, T. B., Hilton, A., and Krüger, V.: A survey of advances in vision-based
human motion capture and analysis. Computer vision and image understanding,
104(2):90–126, 2006.

14. Shingade, A. and Ghotkar, A.: Animation of 3d human model using markerless motion
capture applied to sports. arXiv preprint arXiv:1402.2363, 2014.

15. Shiratori, T., Park, H. S., Sigal, L., Sheikh, Y., and Hodgins, J. K.: Motion capture from
body-mounted cameras. In ACM Transactions on Graphics (TOG), volume 30,
page 31. ACM, 2011.

16. Monfort, M., Liu, A., and Ziebart, B. D.: Intent prediction and trajectory forecasting via
predictive inverse linear-quadratic regulation. In AAAI, pages 3672–3678, 2015.

17. Ju, Z., Yang, C., and Ma, H.: Kinematics modeling and experimental verification of baxter
robot. In Control Conference (CCC), 2014 33rd Chinese, pages 8518–8523. IEEE,
2014.

18. Zhang, Z.: Microsoft kinect sensor and its effect. IEEE multimedia, 19(2):4–10, 2012.

19. Sarbolandi, H., Lefloch, D., and Kolb, A.: Kinect range sensing: Structured-light versus
time-of-flight kinect. Computer Vision and Image Understanding, 139:1–20, 2015.

20. Gulshan, V., Lempitsky, V., and Zisserman, A.: Humanising grabcut: Learning to segment
humans using the kinect. In Computer Vision Workshops (ICCV Workshops), 2011
IEEE International Conference on, pages 1127–1133. IEEE, 2011.

50

21. Vertut, J.: Teleoperation and robotics: applications and technology, volume 3. Springer
Science & Business Media, 2013.

22. Shotton, J., Girshick, R., Fitzgibbon, A., Sharp, T., Cook, M., Finocchio, M., Moore,
R., Kohli, P., Criminisi, A., Kipman, A., et al.: Efficient human pose estimation
from single depth images. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 35(12):2821–2840, 2013.

23. Reddivari, H., Yang, C., Ju, Z., Liang, P., Li, Z., and Xu, B.: Teleoperation control of
baxter robot using body motion tracking. In Multisensor Fusion and Information
Integration for Intelligent Systems (MFI), 2014 International Conference on, pages
1–6. IEEE, 2014.

24. Hu, C., Meng, M. Q., Liu, P. X., and Wang, X.: Visual gesture recognition for human-
machine interface of robot teleoperation. In Intelligent Robots and Systems,
2003.(IROS 2003). Proceedings. 2003 IEEE/RSJ International Conference on, vol-
ume 2, pages 1560–1565. IEEE, 2003.

25. Chen, J. Y., Haas, E. C., and Barnes, M. J.: Human performance issues and user in-
terface design for teleoperated robots. IEEE Transactions on Systems, Man, and
Cybernetics, Part C (Applications and Reviews), 37(6):1231–1245, 2007.

26. Hauser, K.: Recognition, prediction, and planning for assisted teleoperation of freeform
tasks. Autonomous Robots, 35(4):241–254, 2013.

27. Siciliano, B. and Khatib, O.: Springer handbook of robotics. Springer Science & Business
Media, 2008.

28. Diankov, R.: Automated construction of robotic manipulation programs. 2010.

29. Kalman, R.: When is a linear control system optimal? Trans. ASME, J. Basic Engrg.,
86:51–60, 1964.

30. Ng, A. Y., Russell, S. J., et al.: Algorithms for inverse reinforcement learning. In Icml,
pages 663–670, 2000.

31. Abbeel, P. and Ng, A. Y.: Apprenticeship learning via inverse reinforcement learning. In
Proc. International Conference on Machine Learning, pages 1–8, 2004.

51

32. Ratliff, N., Bagnell, J. A., and Zinkevich, M.: Maximum margin planning. In Proc.
International Conference on Machine Learning, pages 729–736, 2006.

33. Ziebart, B. D., Maas, A. L., Bagnell, J. A., and Dey, A. K.: Human behavior modeling with
maximum entropy inverse optimal control. In Association for the Advancement of
Artificial Intelligence Spring Symposium: Human Behavior Modeling, 2009.

34. Ziebart, B. D., Bagnell, J. A., and Dey, A. K.: The principle of maximum causal entropy
for estimating interacting processes. IEEE Transactions on Information Theory,
59(4):1966–1980, 2013.

35. Levine, S. and Koltun, V.: Continuous inverse optimal control with locally optimal exam-
ples. In International Conference on Machine Learning, 2012.

36. Murphy, K. P.: Machine Learning: A Probabilistic Perspective. MIT press, 2012.

37. Spong, M. W. and Vidyasagar, M.: Robot dynamics and control. John Wiley & Sons,
2008.

38. Dragan, A. D. and Srinivasa, S. S.: A policy-blending formalism for shared control. The
International Journal of Robotics Research, 32(7):790–805, 2013.

39. Byravan, A., Montfort, M., Ziebart, B., Boots, B., and Fox, D.: Layered hy-
brid inverse optimal control for learning robot manipulation from demonstration.
In NIPS workshop on autonomous learning robots. http:// www. ias. informatik.
tu-darmstadt. de/ uploads/ ALR2014/ Byravan ALR2014. pdf. Citeseer, 2014.

40. Schultz, C., Gaurav, S., Monfort, M., Zhang, L., and Ziebart, B. D.: Goal-predictive robotic
teleoperation from noisy sensors. In Submitted to IEEE ICRA 2017 IEEE. IEEE.

VITA

NAME: Christopher Schultz

EDUCATION: B.S., Chemical Engineering, University of Wisconsin - Madison, Madison, Wis-

consin, 2011

M.S., Computer Science, University of Illinois at Chicago, Chicago, Illinois, 2016

TEACHING: Department of Computer Science, University of Illinois at Chicago, Chicago,

Illinois: Computer Systems Teaching Assistant, 2016

EXPERIENCE: Diadoki, Inc. Chicago, IL Developer, 2015 - 2016

Exelon Generation, Warrenville, IL Developer Intern, 2015 - 2016

Veolia Water Solutions and Technologies, Plainfield, IL Project Engineer, 2012

- 2014

International Titanium Powder, a Cristal Global Company, Lockport, IL

Process Development Engineer, 2011 - 2012

PUBLICATIONS: Schultz, C., Gaurav, S., Monfort, M., Zhang, L., and Ziebart, B. D.: Goal-

predictive robotic teleoperation from noisy sensors. Submitted to IEEE ICRA

2017.

52

	to1 INTRODUCTION
	 Problem Statement
	 Thesis Statement
	 Outline of Document

	to2 Background
	 Depth Camera and OpenNI Skeleton Tracking
	 Robotic Teleoperation
	 Robotic Arm Systems and Forward/Inverse Kinematics
	 Inverse Optimal Control

	to3 Learning Human-Robot Pose Correspondence
	 Setup
	 Training
	 Results and Discussion

	to4 Goal Prediction via Inverse Linear-Quadratic Regulation
	 Setup
	 Cost Matrices Learning
	 Goal Likelihood Estimation

	to5 Goal-Based Control Assistance
	 Setup
	 Mixing Strategies

	to6 Validation Experiments
	 Setup
	 Results and Discussion

	to7 Conclusions and Future Work
	to APPENDICES
	to Appendix A
	to2 Teleoperation Demonstration Video
	to CITED LITERATURE
	to VITA

