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SUMMARY

There has been tremendous growth in the study of non-holomorphic automorphic forms

in recent decades. Progress has been made toward a Saito-Kurokawa lift, including a non-

holomorphic Shimura lift and a lift from the non-holomorphic analogue of the Kohnen plus

space to Jacobi Maass forms. A large gap remains in our understanding of Siegel Maass forms,

which are the non-holomorphic analogue of Siegel modular forms. Relatively few results are

known with a high degree of generality, and even basic results have not been developed in some

cases.

In the case of Siegel Maass wave forms of weight 0, Niwa, in 1991, utilized explicit differ-

ential operators given by Nakajima (1982) to develop the Fourier series expansion. However,

Nakajima’s quartic differential operator is not invariant under the action of the desired slash

operator, and so we still lack a valid Fourier expansion for Siegel Maass wave forms of weight

0.

In this thesis, we introduce Siegel Maass wave forms of weight 0, which are simultaneous

eigenvectors of Maass’ Casimir operators, rather than the operators given by Nakajima, and

follow the method of Niwa to obtain a fourth order ordinary differential equation, which must

be satisfied by the Fourier coefficients of such wave forms.

In Chapter 2, we review the theory of holomorphic Siegel modular forms and the classical

Saito-Kurokawa lift. In Section 3.1, we define Siegel Maass wave forms of weight 0, and in

v



SUMMARY (Continued)

Section 3.2, we describe non-holomorphic automorphic forms involved in a Saito-Kurokawa lift,

as well as the maps between them which have previously been established.

In Section 4.1, we explicitly compute the Casimir operators which form the basis for our

definition of Siegel Maass wave forms, followed by the computation of the system of differential

equations satisfied by these forms, in Section 4.2. In Section 4.3, through a series of changes of

variable, we reduce this system of differential equations to a single fourth order ordinary linear

differential equation. The Fourier coefficient of a wave form, corresponding to the identity

matrix, will satisfy this differential equation. We discuss the proof given by Niwa for the

solutions to his ordinary differential equation and his method for obtaining the first solution

by theta lifting, in Section 4.4, and finally we conclude in Section 4.5 by giving the Fourier

coefficients corresponding to definite matrices, according to Hori.

vi



CHAPTER 1

INTRODUCTION

1.1 History and motivation

Since the mid-1900s, Siegel modular forms have become a vibrant area of inquiry. A Siegel

modular form of degree n is a higher dimensional analogue of an elliptic modular form. It is a

complex-valued function on the Siegel upper half space Hn of degree n, which is holomorphic,

transforms in a certain way under the action of the symplectic group, and is bounded on Siegel’s

fundamental domain. For n > 1, this last condition is fulfilled automatically by any function

satisfying the first two. Many properties of holomorphic Siegel modular forms are well known;

see, for example [16]. Various “lifting” theorems have been established, which provide great

insight into the relationships between Siegel modular forms and other number theoretic objects.

One such lifting theorem is the Saito-Kurokawa lift. Proved in 1979, by Maass [19–21],

Andrianov [2], and Zagier [30], this established, in the degree two case, a lift from elliptic

modular forms of weight 2k− 2 and level 1 to a subspace of holomorphic Siegel modular forms

of weight k and level 1, called the Spezialschar, which is characterized by certain identities

among the Fourier coefficients. The lifting is the composition of three maps. The first is from

the Maass Spezialschar of Siegel modular forms on the full modular group, to Jacobi forms of

weight k and index 1, and utilizes the Fourier-Jacobi expansion of a Siegel modular form. The

second maps Jacobi forms to Kohnen’s plus subspace of half-integral weight modular forms

1
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on Γ0(4), and the third is the Shimura isomorphism between modular forms of integral and

half-integral weight. The diagram below (Skoruppa [29]) illustrates the relationships between

these spaces.

Siegel modular forms
of degree 2

Jacobi forms

elliptic modular forms
of half-integral weight

elliptic modular forms
of integral weight

Maass lift

Kohnen

Shimura lift

theta lift

Skoruppa,
Zagier

Saito-Kurokawa lift

In contrast, much less is known about Siegel Maass forms, which are the non-holomorphic

analogue of Siegel modular forms. The holomorphicity of Siegel modular forms is replaced by

the requirement that a Siegel Maass form be a simultaneous eigenfunction of certain differential

operators; following Borel [3], the Casimir operators are a natural choice, since they are the

images under group actions of the canonical elements of the center of the universal enveloping

algebra. This makes them in general more difficult to work with (for example, even the Fourier

coefficients involve much more complicated functions than holomorphic modular forms), and

it is only very recent developments in areas like non-holomorphic Jacobi forms (Pitale [25],

Bringmann and Richter [7], Bringmann, Raum, and Richter [6], etc.) that have made Siegel

Maass forms more accessible for study.

It would be very useful to have a non-holomorphic version of the Saito-Kurokawa lift, and

indeed, partial results have already been obtained. In [15], Katok and Sarnak establish a non-

holomorphic Shimura correspondence, between Maass forms of weight k − 1/2 with respect to
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Γ0(4) and Maass-Hecke eigenforms. Furthermore, Pitale [25] broadens previous attempts at a

theory of non-holomorphic Jacobi Maass forms, and establishes a correspondence between his

Jacobi Maass forms and the Kohnen plus space of Maass forms. Bringmann and Richter [7]

have also improved on Pitale’s definition of Maass-Jacobi forms, and Bringmann, Raum, and

Richter [5] further improve it to include those with singularities. This leaves the lift from Jacobi

Maass forms to Siegel Maass forms an open question.

1.2 Planned scope of thesis

It seems unlikely that the Saito-Kurokawa lift can be completed in the classical method

as in Eichler and Zagier [10], whereby a lift is constructed using the Fourier-Jacobi expansion

on the Siegel modular form: In the Fourier-Jacobi expansion of a Siegel Maass wave form,

F (Z) =
∑

m∈Z φm(z1, z2, y3)e2πimx3 , the coefficients φm generally depend on y3 and are thus

not Jacobi forms. Regardless, other approaches to obtaining a non-holomorphic Saito-Kurokawa

lift will utilize a Fourier expansion for Siegel Maass forms.

Niwa [23] had established such an expansion. However, in [6], the authors remark that one

of the differential operators on which Niwa’s result rests, is not actually invariant under the

action of the symplectic group. This differential operator was given explicitly by Nakajima [22].

As a result, a correct proof of the Fourier expansion is lacking.

In this thesis, we give a correct expansion of the differential operator given in Nakajima

and follow Niwa to obtain an ordinary differential equation which is satisfied by the Fourier

coefficients of a Siegel Maass wave form.
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Niwa derived a Fourier expansion of generalized Whittaker functions which are simultaneous

eigenfunctions of the differential operators given in Nakajima [22]. In particular, he gives

the generators of the algebra of Sp(2,R)-invariant differential operators on H2. This algebra

is isomorphic to C[∆1,∆2], the commutative polynomial ring of two variables over C. The

quadratic operator, ∆1, is the Laplacian for the invariant metric on H2, and Nakajima explicitly

computed a choice for the quartic operator, ∆2. It is this quartic operator which is shown in

[6] to be not invariant. The quadratic operator we consider, H1 is the same, up to a factor of

−4, as Nakajima’s ∆1, and we use the quartic operator H2 computed in Maass [18]. Then we

define Siegel Maass wave forms of weight 0 to be smooth functions

f : H2 → C,

which are Sp(2,Z)-invariant, are common eigenfunctions of H1 and H2, and satisfy a growth

condition.

1.3 Avenues of future research

Many questions in the study of Siegel Maass forms, including the Saito-Kurokawa lift, require

a Fourier expansion. Kohnen’s limit process, adapted in [6] to real-analytic Siegel Maass forms,

may be further adaptable to the Siegel Maass forms above. Another approach would be to

adapt the methods of Duke and Imamoḡlu [9], in using Imai’s converse theorem in [14] to give

another proof of the standard Saito-Kurokawa lift.
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Further areas of consideration which may be more accessible with a Fourier expansion, are

extending the Ikeda and Duke-Imamoḡlu liftings to Siegel Maass forms of arbitrary even degree,

characterizations of the Fourier coefficients, non-holomorphic converse theorems in the vein of

Imai, L-functions, considering all of the above with respect to congruence subgroups, rather

than the full modular group, etc.



CHAPTER 2

THE HOLOMORPHIC THEORY

2.1 Siegel modular forms

What we now call Siegel modular forms were developed by C.L. Siegel in the 1930s, as

a higher degree generalization of elliptic modular forms on SL(2,Z). This was motivated by

Siegel’s investigations of the Minkowski-Hasse principle for quadratic forms over Q. Siegel

modular forms represent one of the most important kinds of automorphic forms in several

complex variables. Various “lifting” theorems have been proven, one of the most important

of which is the Saiko-Kurokawa lift. We summarize the basic properties of holomorphic Siegel

modular forms and a proof of this lift. The reader is referred to van der Geer’s “Siegel Modular

Forms and their Applications,” in [8], Freitag [11], and Klingen [16] for a more comprehensive

treatment of these topics.

2.1.1 Basic properties

The symplectic group, Sp(g,R), generalizes SL(2,R), and is defined as

Sp(g,R) =

M =

A B

C D

 ∈ GL(2g,R) | j[M ] = j


where j =

(
0 I
−I 0

)
, I denotes the g×g identity matrix, a[b] := tbab, and bt denotes the transpose

of b. This is equivalent to requiring that the g × g matrices A,B,C,D satisfy A Bt = B At ,

6
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C Dt = D Ct , and A Dt −B Ct = 1g. In general, for R a Euclidean ring, Sp(g,R) is generated by

the matrices j,
(
E S
0 E

)
, and

(
Ut 0

0 U−1

)
, where S ∈ Mg(R) is symmetric, and U ∈ GLn(R). The

subgroup Γg := Sp(g,Z) is a discrete subgroup of Sp(g,R), and is called the Siegel modular

group, analogous to the modular group SL(g,Z) ⊂ SL(g,R).

The Siegel upper half space of degree g consists of all g × g complex symmetric matrices

whose imaginary part is positive definite:

Hg :=
{
z = x+ iy ∈ M(g,C) | tz = z, y > 0

}
.

Sp(g,Z) acts on Hg by M〈z〉 := (az + b)(cz + d)−1 where M =
(
a b
c d

)
∈ Sp(g,Z) and z ∈ Hg.

Indeed, Sp(g,R)/{±1} is the group of biholomorphic automorphisms of Hg, acting faithfully

and transitively, with stabilizer of iI the unitary group U(g). We further define the congruence

subgroups

Γg(n) = {γ ∈ Sp(g,Z) | γ ≡ 12g (mod n)}.

Finally, we come to the definition of scalar-valued (or, classical) Siegel modular forms.

Definition 1. A scalar-valued Siegel modular form of weight k and degree (or genus) g is a

holomorphic function f : Hg → C such that

f(γ〈z〉) = det(cz + d)kf(z)

for all γ =
(
a b
c d

)
∈ Γg. When g = 1, we require also that f is holomorphic at ∞.
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Modular forms of weight k and degree g form a finite-dimensional vector space, which we

denote by Mk(Γg). There is, of course, a more general notion of scalar-valued modular forms,

but we shall omit it here, and in the following, “Siegel modular form” shall always mean a

scalar-valued Siegel modular form. Similarly, it is also possible to define Siegel modular forms

for congruence subgroups, but we shall generally only deal with the full Siegel modular group.

A Siegel modular form f has a Fourier expansion

f(z) =
∑
n

a(n)e2πitr(nz)

with a(n) ∈ C and n ranging over half-integral symmetric symmetric g × g matrices. Here, n

half-integral means that the diagonal entries nk are integers, and twice the off-diagonal entries

are integers, that is, 2nkl ∈ Z (k 6= l). We will, at times, use the notation qn = e2πitr(nz), in

analogy with the classical case. The coefficients are given by

a(n) =

∫
x mod 1

f(z)e−2πitr(nz)dx

where dx =
∏
k≤l dxkl is the Euclidean volume element in the x-space, and the integral runs

over −1/2 ≤ xij ≤ 1/2. It is well-known that Siegel modular forms of odd or negative weight

vanish. Let f =
∑

n a(n)e2πitr(nz) ∈ Mk(Γg). Then a(n) = 0 for n not positive semi-definite.

This leads to the well-known Koecher principle:
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Theorem 1. f ∈Mk(Γg) is bounded on any subset of Hg of the form

{z ∈ Hg | Im(z) = y ≥ cI} (c > 0).

As in the case of classical modular forms, we have a notion of cusp form.

Definition 2. The Siegel operator Φ on Siegel modular forms of degree g is defined by

Φf = lim
t→∞

f

z′ 0

0 it


where z′ ∈ Hg−1 and t ∈ R.

This limit is defined because of the Koecher principle. The Siegel operator defines a linear

map Mk(Γg) → Mk(Γg−1), where Mk(Γ0) = C by convention. The kernel of this linear map

forms the subspace of cusp forms:

Definition 3. f ∈Mk(Γg) is called a cusp form if Φf = 0.

We denote the space of cusp forms by Sk = Sk(Γg). Cusp forms can be characterized by

their Fourier expansions.

Proposition 1. f ∈Mk(Γg) (g ≥ 1) is a cusp form if and only if

f(z) =
∑
n>0

a(n)e2πitr(nz)
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where n ranges over half-integral positive definite g × g matrices. That is, a(n) = 0 for all n

that are semi-definite, but not definite.

When g = 2, we can write Z ∈ H2 as Z =
( τ z
z τ ′
)

where τ, τ ′ ∈ H and z ∈ C satisfy

Im(z)2 < Im(τ)Im(τ ′). We then write f(τ, z, τ ′). Similarly, N positive semi-definite and half-

integral can be written
( n r/2
r/2 m

)
with n, r,m ∈ Z, n,m ≥ 0, and r2 ≤ 4nm, and we put

a(n, r,m) in place of the Fourier coefficient a(N). Then the Fourier expansion of f is

f(Z) =
∑

n,r,m∈Z
n,m,4nm−r2≥0

a(n, r,m)e2πi(nτ+rz+mτ ′).

The terms can then be rearranged to obtain the Fourier-Jacobi expansion of the Siegel

modular form:

f(τ, z, τ ′) =

∞∑
m=0

φm(τ, z)e2πimτ ′ .

This expansion will play a pivotal role in the proof of the Saito-Kurokawa lift, as will be seen

below.

2.1.2 Hecke operators and L-functions

In the case of elliptic modular forms, Hecke operators provide arithmetic information from

the Fourier coefficients of modular forms. In particular, for f =
∑

n a(n)qn a normalized

common eigenform of the Hecke operators, then the eigenvalue λ(p) of f under the Hecke

operator T (p) is equal to the Fourier coefficient a(p). Here, qn = e2πinz, as is standard, and

normalized means that the first Fourier coefficient, a(1), is equal to 1.
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Hecke operators play a similarly important role in the theory of Siegel modular forms. Let

G = GSp(2g,Q) := {M ∈ GL(2g,Q) | j[M ] = ν(M)j, ν(M) ∈ Q∗} be the group of rational

symplectic similitudes, and let G+ := {γ ∈ G | ν(M) > 0}. Then G+ is a semi-group, and

Γg ∈ G+. Let L(Γg, G) be the free C-module generated by the right cosets Γgx for x ∈ Γg\G+.

Let H(Γ, G) = L(Γg, G)Γg be the subspace of L(Γg, G) invariant under right multiplication by

Γg. H(Γg, G) is endowed with the structure of an algebra, by defining the following product:

For T1 =
∑

x∈Γg\G axΓgx and T2 =
∑
∈Γg\G byΓgy, define

T1 · T2 :=
∑

x,y∈Γg\G

axbyΓgxy.

Since H(Γg, G) is generated by double cosets ΓgxΓg, with x ∈ G+, we have that T1 · T2 ∈

H(Γg, G). With this multiplication, H(Γg, G) is a commutative associative algebra with unity,

called the Hecke algebra. The Hecke algebra can be written as the product of local Hecke

algebras: H(Γg, G) = ⊗pHp = ⊗pH(Γg, G ∩ GL(2g,Z[p−1])). The local Hecke algebra Hp is

generated by the g + 1 double cosets

T (p) = Γg

1g 0

0 p1g

Γg
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and

Ti(p
2) = Γg



1g−i

p1i

p21g−1

p1i


Γg,

where 0 ≤ i < g. We can also define Hecke operators T (m) for m ∈ N by T (m) :=∑
x ∈ Γg\OmΓgx, where Om := {x ∈ GL(2n,Z) | j[x] = mj}. For m = p prime, T (m) co-

incides with the T (p) introduced above, and for m = p2, T (m) is a sum
∑g

i=0 Ti(p
2). It is

further known that

Hom(Hp,C) ≡ (C∗)g+1/WG, (2.1)

where WG is the Weyl group of G.

For f ∈Mk(Γp) and γ =
(
a b
c d

)
∈ G+, set

f |γ,k(z) = rgn−g(g+1)/2
γ det(cz + d)−kf(γ〈z〉)

where r
gn−g(g+1)/2
γ is a scalar factor of γ included for cohomological considerations. Now, define

Tf :=
∑
i

f |γi,k.
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This gives a linear operator on Mk(Γg). Thus the Hecke algebra operates on Siegel modular

forms. Moreover, the Hecke operators are Hermitian with respect to the Petersson inner product

〈f, h〉 =

∫
Fg

f(z)h(z)(det y)k
dydy

(det y)g+1

where Fg is a fundamental domain, f ∈ Mk(Γg) and h ∈ Sk(Γg). Hence, Sk(Γg) has a basis of

common eigenfunctions of all T ∈ H(Γg, G). Now, if f is such an eigenfunction with eigenvalues

λ(T ) for T ∈ H(Γg, G), then the map Hp → C defined by T → λ(T ) is a homomorphism for each

p, and thus, by the isomorphism Equation 2.1, is determined by (α0, α1, . . . , αg) ∈ (C∗)g+1/WG.

These non-zero complex numbers, αi, are called the Satake parameters of f .

Recall that, in the case of g = 1, for an eigenform f =
∑

n a(n)qn ∈ Mk(Γ1) of the Hecke

algebra, there is an associated Dirichlet series
∑

n≥1 a(n)n−s for s ∈ C with Re(s) > k/2 + 1.

When f ∈ Sk(Γ1), we have holomorphic continuation of the L-function to the whole s-plane,

and it satisfies a functional equation. It has an Euler product

∑
n≥1

a(n)n−s =
∏
p

(1− a(p)p−s + pk−1−2s)−1.

Similarly, for f ∈ Sk(Γg) a common eigenform of the Hecke operators, we define the following

two L-functions. The standard zeta function is

Df (s) =
∏
p

Df,p(p
−s)−1
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with local Euler factor at p

Df,p(t) = (1− t)
g∏
i=1

(1− αit)(1− α−1
i t).

The spinor zeta function is defined to be

Zf (s) =
∏
p

Zf,p(p
−s)−1

with local Euler factor at p

Zf,p(t) = (1− α0t)

g∏
r=1

∏
1≤i1<···<ir≤g

(1− α0αi1 · · ·αir t).

The standard zeta function has a meromorphic continuation to C and a functional equation

with respect to s 7→ 1− s for all g. For g = 2, Andrianov [1] proved that

Φf (s) := Γ(s)Γ(s− k + 2)(2π)−2sZf (s)

is meromorphic with finitely many poles and satisfies the functional equation

Φ(f, 2k − 2− s) = (−1)kΦf (s).
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2.2 The Saito-Kurokawa lift

Proved primarily by Maass [19–21], and completed by Andrianov [2] and Zagier [30], the

Saito-Kurokawa lift establishes a correspondence between classical modular forms and Siegel

modular forms of degree 2.

We must first define M∗k (Γ2), the Maass subspace of Siegel modular forms. The Maass

subspace consists of forms F (Z) =
∑

N≥0 a(N)e2πitr(NZ) whose Fourier coefficients a(N) depend

only on the discriminant d = 4mn − r2 and the greatest common divisor gcd(n, r,m) (N =( n r/2
r/2 m

)
). Writing a([n, r,m]) for a(N), the condition that F ∈M∗k (Γ2) can be stated as

a([n, r,m]) =
∑

d>0,d|(n,r,m)

dk−1a([1,
r

d
,
mn

d2
]).

We denote by S∗k(Γ2) the space of cusp forms in M∗k (Γ2).

Theorem 2 (Saito-Kurokawa lift). The Maass subspace S∗k(Γ2) is spanned by Hecke eigenforms,

which are in 1− 1 correspondence with normalized Hecke eigenforms f ∈ S2k−2(Γ1), with

ZF (s) = ζ(s− k + 1)ζ(s− k + 2)L(f, s) (2.2)

where both L-functions are the spinor L-functions.

The correspondence is the composition of three maps, which we will briefly sketch here.
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The first is between Siegel modular forms in the Maass subspace, and Jacobi forms of

the same weight and index 1. A Jacobi form on Γ1 = SL(2,Z) is a holomorphic function

φ : H× C→ C satisfying the transformation equations

φ(
aτ + b

cτ + d
,

z

cτ + d
) = (cτ + d)ke

2πimcz
cτ+d φ(τ, z)

and

φ(τ, z + λτ + µ) = e−2πim(λ2τ+2λz)φ(τ, z),

and having a Fourier expansion

φ(τ, z) =
∞∑
n=0

∑
r∈Z

r2≤4nm

c(n, r)e2πi(nτ+rz)

for
(
a b
c d

)
∈ Γ1, (λ µ) ∈ Z2. The natural numbers k and m are called the weight and index of

the Jacobi form, respectively. We will sometimes use the notation q = e2πiτ and ζ = e2πiz, so

that the Fourier expansion is written
∑
c(n, r)qnζr. We denote by Jk,m the space of Jacobi

forms of degree k and index m. A cusp form is a Jacobi form for which c(n, r) = 0 if r2 = 4nm.

There is an operator Vl acting on Jacobi forms of weight k and index m to Jacobi forms of

the same weight and index kl. It is given by

(φ|k,mVl)(τ, z) = lk−1
∑(

a b
c d

)
∈Γ1\M2(Z)

ad−bc=l

(cτ + d)−ke2πiml−cz
2

cτ+d
φ(aτ+b
cτ+d

, lz
cτ+d

).
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The action on Fourier coefficients is

φ|Vl =
∑
n,r

 ∑
a|(n,r,l)

ak−1c

(
nl

a2
,
r

a

) qnζr.

The coefficients, φm(τ, z), in the Fourier-Jacobi expansion of a Siegel modular form of weight

k and degree 2 are themselves Jacobi forms of weight k and index m, as was shown by Piatetski-

Shapiro [24]. This gives an injective map H : Mk(Γ2) →
∏
m≥0 Jk,m. We have a map in the

other direction, V : Jk,1 →Mk(Γ2) due to Maass [19]: For a Jacobi form of weight k and index

m, the functions φ|Vm for m ≥ 0 are the Fourier-Jacobi coefficients of a Siegel modular form

Vφ of weight k and degree 2. The map V is itself injective with image the set of F ∈ Mk(Γ2)

satisfying F = V(H(F )). Maass [19] shows that this is precisely the Maass subspace. Hence,

H and V provide inverse isomorphisms M∗k (Γ2) ∼= Jk,1.

The second map takes a subspace of half-integral weight modular forms to Jacobi forms of

index 1. The Kohnen plus space of half-integral weight modular forms is defined by

M+
k−1/2(4N) =

h ∈Mk−1/2(Γ0(4N)) |h =
∞∑
m=0

(−1)k−1m≡0,1 (mod 4)

c(m)qm


where Γ0(N) :=

{(
a b
c d

)
∈ SL(2,Z) | c ≡ 0 (mod N)

}
.

Now, the coefficients c(n, r) of a Jacobi form of index m depend only on the discriminant

4nm−r2 and on the value of r modulo 2m, so that one can actually write c(n, r) = cr(4nm−r2)



18

where cr(N) = cr′(N) for r ≡ r′ (mod 2m). Then we have the following isomorphism between

M+
k−1/2(Γ0(4)) and Jk,1:

∑
N≥0

N≡0,3 (mod 4)

c(N)qN 7→
∑
n,r∈Z
4n≥r2

c(4n− r2)qnζr.

This correspondence is compatible with Petersson scalar products and with the actions of the

Hecke operators.

Finally, Shimura [27, 28] established an isomorphism between half-integral weight modular

forms and even weight modular forms, such that the corresponding Hecke eigenvalues agree.

The composition of these three maps gives a lift from S2k−2(Γ1) to S∗k(Γ2).



CHAPTER 3

THE NON-HOLOMORPHIC SETTING

3.1 Siegel Maass wave forms of weight 0

3.1.1 Basic properties

Let Γ = Γ2 = Sp(2,Z), and recall the action in Section 2.1.1,

M〈Z〉 = (AZ +B)(CZ +D)−1,

where M =
(
A B
C D

)
∈ Γ and Z ∈ H2. Let H1 and H2 be the generators of the center of the

universal enveloping algebra, which is isomorphic to the algebra of all Γ-invariant differential

operators. An explicit expansion of H1 and H2 is given in Section 4.1.

Definition 4. A Siegel Maass wave form of weight 0 is a smooth function F : H2 → C which

satisfies the following conditions:

1. F is Γ-invariant:

F (M〈Z〉) = F (Z) ∀M ∈ Γ, Z ∈ H2

2. F is a common eigenfunction of H1 and H2:


H1F = d1F

H2F = d2F

19



20

for some d1, d2 ∈ C

3. F satisfies the growth condition

|F (Z)| ≤ c(sup{tr(Im(Z)), tr(Im(Z)−1})n

for some 0 ≤ c ∈ R and some n ∈ N.

LetM(Γ) =Md1,d2(Γ) denote the vector space of Siegel Maass wave forms of weight 0 with

eigenvalues d1, d2 for H1 and H2. By a result of Harish-Chandra [12, Theorem 1], this space is

finite dimensional.

For P a parabolic subgroup of Sp(2,Q), let N be its unipotent radical. A Siegel Maass form

F satisfiying the further condition

∫
N(Z)/N(R)

F (n〈Z〉)dn = 0

for any parabolic P , is called a cusp form. (N(Z) = N(Q) ∩ Γ and dn is Haar measure for N).

Cusp forms decay rapidly along cusps of Γ, hence are bounded on H2\Γ ([4, 12]). We denote

by S(Γ) the space of Siegel Maass cusp forms. This space has a Hermitian inner product,

(F1, F2) =

∫
Γ\H

F1(Z)F2(Z)
dZ

det(Im(Z))3
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where dZ = dx1dx2dx3dy1dy2dy3. Finally, Hecke operators are mutually commutative and self-

adjoint with respect to this inner product, so S(Γ) has a basis consisting of common eigenforms

of all Hecke operators ([13]).

Applying the Γ-invariance of F for the matrix

M =

I S

0 I

 ∈ Γ,

where S is symmetric, we obtain

F (Z) = F (M〈Z〉) = F ((IZ + S)(0Z + I)−1) = F (Z + S)

for Z ∈ H2. Thus, the wave form has the Fourier expansion

F (Z) =
∑
N∈N2

a(N,Y )e2πitr(NX)

where Z = X + iY , and N2 = {N ∈M2(Q) | tN = N, half-integral}.
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Now, in analogy with holomorphic Siegel modular forms, we establish a Fourier-Jacobi

expansion of Siegel Maass wave forms. Write Z = X + iY =
(
z1 z2
z2 z3

)
∈ H2 with zj = xj + iyj .

Further, write N ∈ N2 as N =
( n r/2
r/2 m

)
. Then tr(NX) = nx1 + rx2 +mx3 and we can write

F (Z) = F (z1, z2, z3)

=
∑
N∈N2

a(N,Y )e2πitr(NX)

=
∑

n,r,m∈Z
a(n, r,m, y1, y2, y3)e2πi(nx1+rx2+mx3)

=
∑
m∈Z

φm(z1, z2, y3)e2πimx3

by rearrangement of terms. As in the holomorphic case,

F (Z) =
∑
m∈Z

φm(z1, z2, y3)e2πimx3 (3.1)

is called the Fourier-Jacobi expansion of the wave form.

3.1.2 Hecke operators and the Andrianov L-function

We now discuss Hecke operators for Siegel Maass wave forms, as in [13, Section 2]. For each

m ∈ Z, set

Sm = {M ∈M4(Z) |Mj Mt = mj}
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where j =
(

0 I
−I 0

)
as in Section 2.1.1 and put

S =
∞⋃
m=1

Sm.

Define a function F |M on H2, for each F ∈M(Γ) and M =
(
A B
C D

)
∈ S, by

(F |M)(Z) = F (M〈Z〉) = F ((AZ +B)(CZ +D)−1)

for Z ∈ H2. Then

(F |M)|M ′ = F |MM ′ for all M,M ′ ∈ S

and we can define the Hecke operators T (m) on M(Γ) for m ∈ Z by

T (m)F = m−3
∑

M∈Γ\Sm

F |M.

For M ∈ Γ, F |M = F by definition of Siegel Maass wave form, so the action of T (m) is well-

defined, and T (m)F ∈ M(Γ). For m,m′ ∈ N, properties of the abstract Hecke ring due to

Shimura [26] imply 
T (m)T (m′) = T (m′)T (m)

T (m)T (m′) = T (mm′) if (m,m′) = 1

(3.2)
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and that the formal power series
∑∞

δ=0 T (pδ)tδ, for p prime, is given by

∞∑
δ=0

T (pδ)tδ = (1− p−4t2)

× [1− T (p)t+ {T (p)2 − T (p2)− p−4}t2

− T (p)p−3t3 + p−6t4]−1.

Let F ∈ M(Γ) be a common eigenform of the Hecke operators T (m), m ∈ Z, with eigen-

values λF (M) ∈ C; that is,

T (m)F = λF (m)F.

Hori [13] defines the Andrianov L-function attached to F to be

LF (s) = ζ(2s+ 4)
∑
m∈N

λF (m)m−s.

Let

Qp,F (t) = 1− λF (p)t+ {λf (p)2 − λF (p2)− p−4}t2 − λF (p)p−3t3 + p−6t4.

Then the Andrianov L-function has an Euler product

LF (s) =
∏
p

Qp,F (p−s)

because of the properties Equation 3.2 of the Hecke operators. This L-function is a special case

of the Langlands automorphic L-function, corresponding to the spinor representation of the
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dual group SO(5,C) of Sp(g,R). For Re(s) large enough, it is absolutely convergent for cusp

forms.

3.2 Progress toward a non-holomorphic Saito-Kurokawa lift

3.2.1 Non-holomorphic Shimura lift

In [15], Katok and Sarnak develop a non-holomorphic Shimura correspondence. Let Γ1 =

SL2(Z), H be the upper half space, and set

U = L2
cusp(Γ1\H)

= {f : H→ C|f(γ〈z〉) = f(z)∀γ ∈ Γ1,∫
Γ1\H

|f |2dxdy
y2

<∞,
∫ 1

0
f(x, y)dx = 0 for a. e. y}.

This is a Hilbert space with the usual inner product. It is invariant under the action of the

Laplacian

∆0 = y2

(
∂2

∂x2
+

∂2

∂y2

)

and the Hecke operators

Tp(f)(z) =
∑
n 6=0

{
p1/2b(np) + p−1/2b

(
n

p

)}
W0,ir(4π|n|y)e(nx)

where b(n) is the nth Fourier coefficient in the expansion

f(z) =
∑
n6=0

b(n)W0,ir(4π|n|y)e(nx),
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Wβ,µ(y) is the usual Whittaker function normalized so that Wβ,µ(y) ∼ e−y/2yβ as y → ∞,

and b(np ) is assumed to be zero if p does not divide n. These operators commute, and U has

an orthogonal basis consisting of common eigenfunctions for ∆0 and Tp. These eigenforms are

called Maass-Hecke eigenforms of weight 0.

Now let

V = L2
cusp(Γ0(4)\H, J)

= {f : H→ C|f(γ〈z〉) = J(γ, z)f(z)∀γ ∈ Γ0(4),

f is cuspidal and square integrable},

where J(γ, z) = θ(γ〈z〉)
θ(z) , θ(z) = y1/4

∑∞
n=−∞ e(n

2z), and f cuspidal means that the zeroth

Fourier coefficient is 0 at the three cusps of Γ0(4)\H. Then V is a Hilbert space, invariant

under the action of the weight-1/2 Laplacian

∆1/2 = y2

(
∂2

∂x2
+

∂2

∂y2

)
− 1

2
iy
∂

∂x

and the Hecke operators Tp2 for p 6= 2. Now set

L = τ2σ,
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where

τ2(f(z)) = eiπ/4
(
z

|z|

)−1/2

f(−1/4z)

σ(f(z)) =

√
2

4

∑
v mod 4

f

(
a+ v

4

)
.

Then ∆1/2, Tp2 , and L commute and are self-adjoint, so V is spanned by common eigenforms,

f1, f2, . . . of these operators. Let V + be the subspace of V on which Lf = f . This space will

essentially take the place of Kohnen’s plus space from the holomorphic setting, as we shall see.

In fact, it can be characterized by Maass forms from V whose Fourier coefficients vanish for

n ≡ 2, 3 mod 4.

Denote by ρj(n) the Fourier coefficients of the weight 1/2 Maass forms fj . We will typically

assume ϕ ∈ U is normalized so that b(1) = 1. Associated to ϕ ∈ U is the L-function

L(ϕ, s) =

∞∑
n=1

b(n)

ns−1/2
.

Let

Θ(z, g) = v1/2θ(z, g)

= v3/4
∑
h∈Z3

e(u(h2
2 − 4h1h2)f3(

√
vg−1(h))

be Siegel’s Θ-function coming from the Weil representation, where z = u+iv ∈ H1, g ∈ SL(2,R),

h = (h1, h2, h3) ∈ Z3, and f3(h) = e−2π(2h2
1+h2

2+2h2
3).
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Now we are ready to state the non-holomorphic Shimura correspondence. If ϕ ∈ U is a

normalized Maaß-Hecke cusp form, then

f(z) =

∫
Γ1\SL2(R)

ϕ(g)Θ(z, g)dg

is in V +. Conversely,

Theorem 3. [15, Proposition 4.1, p. 213] Let z = u+iv ∈ Z, w ∈ H, f(z) ∈ V + be a weight 1/2

Maaß-Hecke form with Fourier coefficients ρ(n). Let ψ(w) =
∫

Γ0(4)\H f(z)Θ(z, w)dudv
v2 . Then

1. ψ(w) ∈ U .

2. ψ is a common eignfunction of Tp and ∆0.

3. If ρ(1) = 0, then ψ ≡ 0.

If ρ(1) 6= 0, then ψ = 3
√

(2)π1/4ρ(1)φ where ρ ∈ U is the unique normalized Maaß form

with Fourier expansion 2
∑∞

n=1 a(n)W0,2ir(4πny) cos(sπnx) having the same eigenvalues

as ψ, whose Fourier coefficients are defined from the equation ζ(s + 1)
∑∞

n=1
ρ(n2)

ns−1/2 =

ρ(1)
∑∞

n=1 a(n)n−s.

We note here that, while Katok-Sarnak established this only for k = 0, one can generalize

all of this to any k. We will want this more general definition in the next section, so we give it

now. Let G be the group consisting of pairs (γ, φ(τ)), where γ =
(
a b
c d

)
∈ GL+

2 (R) and φ(τ) is

a function on H such that φ(τ) = tdet(γ)−1/4
(
cτ+d
|cτ+d|

)1/2
with t ∈ C, |t| = 1. The group law is

given by

(γ1, φ1(τ))(̇γ2, φ2(τ)) = (γ1γ2, φ1(γ2〈τ〉)φ2(τ)),
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where γ〈τ〉 := aτ+b
cτ+d .

For γ =
(
a b
c d

)
∈ Γ0(4), set

εd =


1, d ≡ 1 mod 4

i, d ≡ 3 mod 4.

Let θ(τ) := y1/4
∑∞

n=−∞ e(n
2τ), and

j(γ, τ) :=
( c
d

)
ε−1
d

(
cτ + d

|cτ + d|

)1/2

=
θ(γ〈τ〉)
θ(τ)

where
( ·
·
)

is the Legendre symbol. Then there is an injective homomorphism

Γ0(4) −→ G

γ 7−→ γ∗ := (γ, j(γ, τ)

Now define, for k ∈ Z, a slash operator on functions on the upper half plane:

(f ||k−1/2(γ, φ))(τ) := f(γ〈τ〉)φ(τ)−(2k−1).

Then a smooth function f : H→ C is called a Maass form of weight k − 1/2 with respect to

Γ0(4) if it satisfies:

1. For every γ ∈ Γ0(4), we have f ||k−1/2γ
∗ = f .
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2. ∆k−1/2f = Λf for some Λ ∈ C where ∆k−1/2 is the Laplace Beltrami operator given by

∆k−1/2 := y2

(
∂2

∂x2
+

∂2

∂y2

)
−
(
k − 1

2

)
iy
∂

∂x
.

3. f(τ) = O(yN ) as y →∞ for some N > 0.

If f vanishes at the cusps of Γ0(4), then f is called a Maass cusp form. We denote the space

of weight k − 1/2 Maass (resp. cusp) forms by Mk−1/2(Γ0(4)) (resp. Sk−1/2(Γ0(4)), and now

the Fourier expansion of f ∈Mk−1/2(Γ0(4)) can be written as

f(τ) =
∑
n∈Z

c(n)W
sgn(n)

k−1/2
2

, il
2

(4π|n|y)e(nx)

where Λ = −(1/4 + (l/2)2). If f is a cusp form, then c(0) = 0. Define the plus space

M+
k−1/2(Γ0(4)) to be the subspace of those Maass forms whose Fourier coefficients c(n) vanish

whenever (−1)k−1n ≡ 2, 3 mod 4.

3.2.2 The lift to Jacobi-Maass forms

Now we can define Jacobi-Maass forms, as in Pitale [25] and look at the second isomorphism

in a nonholomorphic Saito-Kurokawa lift. Let GJ(R) = SL(2,R) nH(R) be the Jacobi group,

and denote the discrete subgroup SL(2,Z) n H(Z) by ΓJ . Here, H is the Heisenberg group

consisting of elements (λ, µ, κ) := (X,κ), where X = (λ, µ). There are two different coordinate

systems on GJ(R), and it will be convenient to switch back and forth between them:
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1. The EZ-coordinates (due to Eichler and Zagier) (x, y, θ, λ, µ, κ) produce the element

M(X,κ) ∈ GJ(R),

where

M =

1 x

0 1


y1/2 0

0 y−1/2


 cos θ sin θ

− sin θ cos θ


with x ∈ R, y ∈ R+, 0 ≤ θ < 2π, X = (λ, µ) ∈ R2, and κ ∈ R.

2. The S-coordinates (due to Siegel) (x, y, θ, p, q, κ) give the element (Y, κ)M ∈ GJ(R) where

M is as above and Y = (p, q) = XM−1 ∈ R2.

The action of GJ(R) on H× C is then given by:

1. If g = M(X,κ) ∈ GJ(R) is given in EZ-coordinates, then for τ ∈ H, z ∈ C, we have

g(τ, z) :=

(
M〈τ〉, z + λτ + µ

cτ + d

)

where M =
(
a b
c d

)
and M〈τ〉 = aτ+b

cτ+d as usual.

2. In the S-coordinates, we have

GJ(R)/(SO(2)× R) −̃→H× C

g = (p, q, κ)M 7−→ g(i, 0) = (τ, pτ + q)

where τ = M〈i〉.
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There is a non-holomorphic factor of automorphy jnhk,m (k ∈ Z,m ∈ N) for the Jacobi group,

given in the EZ-coordinates by

jnhk,m(g, (τ, z)) := e(m(κ− c(z + λτ + µ)2

cτ + d
+ λ2τ + 2λz + λµ))

(
cτ + d

|cτ + d|

)−k
.

In the S-coordinates, it looks much simpler:

jnhk,m(g, (i, 0)) = e(m(κ+ pz))eikθ where z = p(x+ iy) + q.

The automorphy factor satisfies a cocycle condition, and we can define a slash operator on

functions on F : H× C→ C by

(F |k,mg)(τ, z) := jnhk,m(g, (τ, z))F (g(τ, z))

for g ∈ GJ(R), (τ, z) ∈ H× C.

Now, put

Ck,mF =
5

8
F − 2(τ − τ̄)2Fτ τ̄ − (k − 1)(τ − τ̄)Fτ̄ − k(τ − τ̄)Fτ

+
k(τ − τ̄)

8πim
Fzz +

(τ − τ̄)2

4πim
Fτ̄ zz

+
k(τ − τ̄)

4πim
Fzz̄ +

(τ − τ̄)(z − z̄)
4πim

Fzzz̄ − 2(τ − τ̄)(z − z̄)Fτ z̄ +
(τ − τ̄)2

4πim
Fτzz̄

+

(
(z − z̄)2

2
+
k(τ − τ̄)

8πim

)
Fzz̄ +

(τ − τ̄)(z − z̄)
4πim

Fzz̄z̄.
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This is the pullback of the standard Casimir operator by jnhk,m. If F is holomorphic in the z

variable, then the last two lines of this will be zero; if it is also holomorphic in the τ variable,

then Ck,m becomes simply 5
8F − k(τ − τ̄)Fτ + k(τ−τ̄)

8πim Fzz, which bears a strong resemblance to

the heat operator 8πim∂τ − ∂2
z .

Pitale ([25, Definition 3.2, p. 93]) defines a Jacobi Maass form as follows.

Definition 5. A smooth function F : H × C → C is called a Jacobi Maass form of weight

k ∈ Z and index m ∈ N with respect to ΓJ if

1. (F |k,mγ)(τ, z) = F (τ, z) for all γ ∈ ΓJ and (τ, z) ∈ H× C,

2. Ck,mF = λF

3. F (τ, z) = O(yN ) as y →∞ for some N > 0.

Such a form will be called as cusp form if it further satisfies the condition

∫ 1

0

∫ 1

0
F


1 x

0 1

 (0, u, 0)(τ, z)

 e(−(nx+ ru))dxdu = 0

for all n, r ∈ Z with 4nm − r2 = 0. We denote by J nhk,m the vector space of all Jacobi Maass

forms of weight k and index m with respect to ΓJ , and the subspace of cusp forms by J nh, cusp
k,m .

Now, let ε = (−1)k−1. For

f(τ) =
∑
n∈Z

c(n)W
sgn(n)

k−1/2
2

, il
2

(4π|n|y)e(nx) ∈M+
k−1/2(Γ0(4)),
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define

f (0)(τ) =
∑
n∈Z

c(4n)W
sgn(n)

k−1/2
2

, il
2

(4π|n|y)e(nx)

and

f (1)(τ) =
∑
n∈Z

c(4n+ ε)W
sgn(n)

k−1/2
2

, il
2

(4π|n+
ε

4
|y)e((n+

ε

4
)x).

Then explicit computation [25, p. 96] yields

f(τ) = (f (0) + f (1))(4τ),

and we see from the Fourier expansions of f (0) and f (1), that they are eigenfunctions of ∆k−1/2

with the same eigenvalue as f .

We will now restrict our attention to Jacobi Maass forms of even weight k and index m = 1.

Define the theta series for τ = x+ iy ∈ H and z ∈ C, j = 0, 1:

Θ̃(j)(τ, z) := y
1
4

∑
r∈Z

r≡j mod 2

e(τ
r2

4
)e(zr).

For f ∈M+
k−1/2(Γ0(4)) with k even, define Ff : H× C→ C by

Ff (τ, z) := f (0)Θ̃(0)(τ, z) + f (1)Θ̃(1)(τ, z).

It is shown in [25, Theorem 4.4], that this is precisely the desired lift:
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Theorem 4. Let f ∈M+
k−1/2(Γ0(4)) with k even and Ff be the smooth function defined above.

Then

1. Ff ∈ J nhk,1 ,

2. Ff ∈ J nh, cusp
k,1 if and only if f ∈ S+

k−1/2(Γ0(4)),

3. If ∆k−1/2f = Λf , then we have Ck,1Ff = 2ΛFf .

Using the definitions of these theta series and the Fourier expansion of f (j), we obtain the

Fourier expansion of Ff

Ff (τ, z) =
∑
r,n∈Z

c(4n− r2)y
1
4W

sgn(n− r2
4

)
k−1/2

2
, il

2

(
4π|n− r2

4
|y
)
e−2π r

2

4
ye(nx)e(rz).

This implies that the map f 7→ Ff is injective, so for even k, the space J nhk,1 is infinite di-

mensional. Finally, the image is the subspace Ĵ nhk,1 consisting of those Jacobi forms that are

holomorphic in the z-variable ([25, Theorem 4.5]). So we have an isomorphism

Ĵ nhk,1 ∼=M+
k−1/2(Γ0(4)).

This map has the added property that it is compatible with the action of the Hecke operators:
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Theorem 5. [25, Theorem 6.1] Let M+
k−1/2(Γ0(4)), k even, be a Hecke eigenform with eigen-

value λp for every odd prime p. Then the corresponding Jacobi-Maass form Ff is an eigenfunc-

tion of the operator

TpF := pk−4
∑

M∈SL2(Z)/M3(Z)

det(M)=p2

gcd(M)=1

∑
(λ,µ)∈(Z/pZ)2

F |k,1(det(M))−
1
2M(λ, µ, 0).

Moreover, if µp is the eigenvalue of Ff under Tp, then

µp = pk−3/2λp.

Finally, we discuss how this definition of Jacobi Maass forms in compatible with the repre-

sentation theory of the Jacobi group. In particular, fix a half-integral weight Maass cusp form

f ∈ S+
k−1/2(Γ0(4)) (k even) such that, for every odd prime p,

Tpf = λpf

∆k−1/2f = Λf
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where Λ = 1
4(s2 − 1). Let π̃f = ⊗πp be the irreducible cuspidal (genuine) automorphic rep-

resentation of S̃L2(A) corresponding to f . Let Ff ∈ Ĵ nhk,1 be the corresponding Jacobi Maass

forms with

Ck,1Ff = 2λpFf =
1

2
(s2 − 1)Ff ,

TpFf = µpFf = pk−3/2λpFf .

Let πF be the irreducible cuspidal automorphic representation of

GJ(A) = GJ(Z)GJ(R)
∏
p<∞

GJ(Zp)

corresponding to Ff . To construct πF , first lift Ff to a function φF on GJ(A) as follows: if

g = γg∞k0 ∈ GJ(A), with γ ∈ GJ(A), g∞ ∈ GJ(R), k0 ∈
∏
p<∞G

J(Zp) , then set

πF (g) := (Ff |k,mg∞)(i, 0) = jnhk,m(g∞, (i, 0))Ff (g∞(i, 0)).

So πF is the space of right translates of φF , and the group GJ(A) acts by right translation.

Then [25, Theorem 7.5]

πF = π̃f ⊗ π1
SW

where π1
SW is the global Schrödinger-Weil representation of GJ(A), which is the expected rela-

tionship.
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Remark. The functions φm(z1, z2, y3) in Equation 3.1 are dependent on y3, so the Fourier-

Jacobi coefficients of a Siegel Maass wave form are not, in general, themselves Jacobi Maass

forms. Therefore, one does not expect to be able to lift Jacobi Maass forms to Siegel Maass

wave forms in a manner analogous to the holomorphic case, by means of Fourier-Jacobi coeffi-

cients (see Section 2.2). So a non-holomorphic Saito-Kurokawa lift is likely not obtainable by

mimicking the classical construction.



CHAPTER 4

FOURIER EXPANSION OF WAVE FORMS

4.1 Generators of the central enveloping algebra

For functions f : H2 → C, and for fixed α, β ∈ C with α− β ∈ Z, define the slash operator

(f |α,βM)(Z) := det(CZ +D)−α det(CZ̄ +D)−βf(M〈Z〉)

for all M ∈ Γ2.

The center of the universal enveloping algebra of Sp(2,R) is generated by the Casimir

elements. The images of these elements under the slash operator are a quadratic and quartic

operator, called the Casimir operators, and they generate the C-algebra of differential operators

invariant under the slash operator above. Maass [18] computed these operators H1, H2, and we

use the notation of [6], with α = β = 0 to write them explicitly. As in [6], let

∂Z :=

 ∂1
1
2∂2

1
2∂2 ∂3

 and ∂̄Z :=

 ∂1
1
2∂2

1
2 ∂̄2 ∂̄3

 ,

39
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where ∂i = ∂
∂zi

= 1
2( ∂
∂xi
− i ∂∂yi ) and ∂̄i = ∂

∂z̄i
= 1

2( ∂
∂xi

+ i ∂∂yi ). Set Kα = αI + (Z − Z̄)∂Z̄ ,

Λβ = −βI2 + (Z − Z̄)∂Z̄ , and

Ωα,β : = Λβ− 3
2
Kα + α(β − 3

2
)I

= −4Y t(Y ∂Z̄)∂Z − 2iβY ∂Z + 2iαY ∂Z̄ .

Defining A
(1)
α,β := Ωα,β − α(β − 3

2)I, then [6] gives that the Casimir operators generating the

C-algebra of differential operators invariant with respect to the slash operator on the Siegel

upper half space H2 are

H
(α,β)
1 := tr(A

(1)
α,β) and (4.1)

H
(α,β)
2 := tr(A

(1)
α,βA

(1)
α,β)− tr(ΛβA

(1)
α,β) +

1

2
tr(Λβ)tr(A

(1)
α,β), (4.2)

where tr(A) denotes the trace of A ∈M2(C).

Setting α = β = 0, H1 := H
(0,0)
1 , and H2 := H

(0,0)
2 , and d = y1y3− y2

2 we obtain by explicit

computation

H1 = −4

3∑
i,j=1

yi yj ∂i∂̄j + 4d(∂1∂̄3 + ∂̄1∂3 −
1

2
∂2∂̄2)

= −4
(
y2

1∂1∂̄1 + y1y2∂1∂̄2 + y2
2∂1∂̄3 + y1y2∂̄1∂2 +

1

2
y1y3∂2∂̄2 +

1

2
y2

2∂2∂̄2

+ y2y3∂2∂̄3 + y2
2 ∂̄1∂3 + y2y3∂̄2∂3 + y2

2∂3∂̄3

)
(4.3)
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and

H2 = 16
3∑

i,j,k,l=1

yi yj yk yl ∂i∂j ∂̄k∂̄l − 32d
( 3∑
i,j=1

yi yj∂i∂̄j
)(
∂1∂̄3 + ∂̄1∂3 −

1

2
∂2∂̄2

)
+ 16d2

(
∂1∂̄3 + ∂̄1∂3 −

1

2
∂2∂̄2

)2 − 32d2(∂1∂3 −
1

4
∂2

2)(∂̄1∂̄3 −
1

4
∂̄2

2)

+ 4i

3∑
i,j,k=1

yi yj yk ∂i∂̄j ∂̄k − 4id(

3∑
i=1

yi∂̄i)(∂1∂̄3 + ∂̄1∂3 −
1

2
∂2∂̄2)

− 8id(
3∑
i=1

yi∂̄i)(∂̄1∂̄3 −
1

4
∂̄2

2)

= 2
(

8y4
1∂

2
1 ∂̄

2
1 + 16y3

1y2∂
2
1 ∂̄1∂̄2 + 16y3

1y2∂1∂̄
2
1∂2 + 8y2

1y
2
2∂

2
1 ∂̄

2
2 + 16y2

1y
2
2∂

2
1 ∂̄1∂̄3

+ 24y2
1y

2
2∂1∂̄1∂2∂̄2 + 8y2

1y
2
2 ∂̄

2
1∂

2
2 + 16y2

1y
2
2∂1∂̄

2
1∂3 + 16y1y

3
2∂

2
1 ∂̄2∂̄3 + 8y1y

3
2∂1∂2∂̄

2
2

+ 16y1y
3
2∂1∂̄1∂2∂̄3 + 8y1y

3
2 ∂̄1∂

2
2 ∂̄2 + 16y1y

3
2∂1∂̄1∂̄2∂3 + 16y1y

3
2 ∂̄

2
1∂2∂3

+ 8y4
2∂

2
1 ∂̄

2
3 + 8y4

2∂1∂2∂̄2∂̄3 + y4
2∂

2
2 ∂̄

2
2 + 4y2

2 ∂̄1∂
2
2 ∂̄3 + 4y4

2∂1∂̄
2
2∂3 + 8y4

2 ∂̄1∂2∂̄2∂3

+ 8y4
2 ∂̄

2
1∂

2
3 + 8y3

1y3∂1∂̄1∂2∂̄2 + 8y2
1y2y3∂1∂2∂̄

2
2 + 16y2

1y2y3∂1∂̄1∂2∂̄3

+ 8y2
1y2y3∂̄1∂

2
2 ∂̄3 + 16y2

1y2y3∂1∂̄1∂̄2∂3 + 24y1y
2
2y3∂1∂2∂̄2∂̄3 + 6y1y

2
2y3∂

2
2 ∂̄

2
2

+ 8y1y
2
2y3∂̄1∂

2
2 ∂̄3 + 8y1y

2
2y3∂1∂̄

2
2∂3 + 32y1y

2
2y3∂1∂̄1∂3∂̄3 + 24y1y

2
2y3∂̄1∂2∂̄2∂3

+ 16y3
2y3∂1∂2∂̄

2
3 + 8y3

2y3∂
2
2 ∂̄2∂̄3 + 16y3

2y3∂∂̄2∂3∂̄3 + 8y3
2y3∂2∂̄

2
2∂3

+ 16y3
2y3∂̄1∂2∂3∂̄3 + 16y3

2y3∂̄1∂̄2∂
2
3 + y2

1y
2
3∂

2
2 ∂̄

2
2 + 4y2

1y
2
3 ∂̄1∂

2
2 ∂̄3 + 4y2

1y
2
3∂1∂̄

2
2∂3

+ 8y1y2y
2
3∂

2
2 ∂̄2∂̄3 + 16y1y2y

2
3 ∂̄1∂2∂3∂̄3 + 8y1y2y

2
3∂

2
2 ∂̄2∂̄3 + 16y1y2y

2
3∂1∂̄2∂3∂̄3

+ 8y2
2y

2
3∂

2
2 ∂̄

2
3 + 16y2

2y
2
3∂1∂3∂̄

2
3 + 24y2

2y
2
3∂2∂̄2∂3∂̄3 + 8y2

2y
2
3 ∂̄

2
2∂

2
3 + 16y2

2y
2
3 ∂̄1∂

2
3 ∂̄3

+ 8y1y
3
3∂2∂̄2∂3∂̄3 + 16y2y

3
3∂2∂3∂̄

2
3 + 16y2y

3
3 ∂̄2∂

2
3 ∂̄2 + 8y4

3∂
2
3 ∂̄

2
3
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+ i
(
2y3

1∂1∂̄
2
1 + 4y2

1y2∂1∂̄1∂̄2 + 2y2
1y2∂̄

2
1∂2 + y1y

2
2∂1∂̄

2
2 + 6y1y

2
2∂1∂̄1∂̄3 + 3y1y

2
2 ∂̄1∂2∂̄2

+ 2y1y
2
2 ∂̄

2
1∂3 + 2y3

2∂1∂̄2∂̄3 + 4y3
2 ∂̄1∂2∂̄3 + 2y3

2 ∂̄1∂̄2∂3 + y2
1y3∂1∂̄

2
2 − 2y2

1y3∂1∂̄1∂̄3

+ y2
1y3∂̄1∂2∂̄2 + 2y1y2y3∂1∂̄2∂̄3 + 2y1y2y3∂2∂̄

2
2 + 2y1y2y3∂̄1∂̄2∂3 + 2y2

2y3∂1∂̄
2
3

+ 3y2
2y3∂2∂̄2∂̄3 + y2

2y3∂̄
2
2∂3 + 6y2

2y3∂̄1∂3∂̄3 + y1y
2
3∂2∂̄2∂̄3 + y1y

2
3 ∂̄

2
2∂3 − 2y1y

2
3 ∂̄1∂3∂̄3

+ 2y2y
2
3∂2∂̄

2
3 + 4y2y

2
3 ∂̄2∂3∂̄3 + 2y3

3∂3∂̄
2
3

))
. (4.4)

4.2 Siegel Maass wave forms of weight 0

Now, for d1, d2 ∈ C, we consider the space W of generalized Whittaker functions, that is,

functions

f : H2 → C, f(Z) = g(Y )e2πitr(X),

which satisfy

H1f = d1f,

H2f = d2f

where Z = X + iY ∈ H2, g some functions of Y , and the trace of X is tr(X) = x1 + x3.
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Observe that

∂i(g(Y )e2πitr(X)) :=
1

2
(
∂

∂xi
− i ∂

∂yi
)(g(Y )e2πitr(X)) =


(πi− 1

2
∂
∂yi

)g(Y )e2πi(x1+x3) if i = 1, 3

−1
2 i

∂
∂yi
g(Y )e2πi(x1+x3) if i = 2

and

∂̄i(g(Y )e2πitr(X)) :=
1

2
(
∂

∂xi
+ i

∂

∂yi
)(g(Y )e2πitr(X)) =


(πi+ 1

2
∂
∂yi

)g(Y )e2πi(x1+x3) if i = 1, 3

1
2 i

∂
∂yi
g(Y )e2πi(x1+x3) if i = 2.

By applying H1 and H2 to the product g(Y )e2πitr(X), we obtain that g satisfies

(−4)
1

8

(
4y2y3

∂2

∂y2∂y3
+ 4y3

2

∂2

∂y3∂y1
+ 2y2

3

∂2

∂y2
3

+ 4y2y1
∂2

∂y2∂y1

+ y3y1
∂2

∂y2
2

+ y2
2

∂2

∂y2
2

+ 2t21
∂2

∂y2
1

− 8π2y2
3 − 16π2y2

2 − 8π2y2
1

)
g = d1g (4.5)

and

(
2(y1 + y3)

(
2π3(y2

1 + 2y2
2 + y3)− 4π3d− π2(d− (y2

1 + y2
2))

∂

∂y1
− π2(d− (y2

2 + y2
3))

∂

∂y3

+ π2y2(y1 + y3)
∂

∂y2

)
+ πy1(d− (y2

1 + y2
2))

∂2

∂y2
1

+ πy3(d− (y2
2 + y2

3))
∂2

∂y2
3

− πy2
2(y1 + y3)

( ∂2

∂y2
2

+ 2
∂2

∂y1∂y3

)
− 2πy2

(
(y2

1 + y2
2)

∂2

∂y1∂y2
+ (y2

2 + y2
3)

∂2

∂y2∂y3

)
+ 16π4

(
(y2

1 + y2
2)2 + (y2

2 + y2
3)2 + 2y2

2(y2
1 + y2

3)2
)

− 4π2
(
4y2(y2

1 + 2y2
2 + y2

3)(y1
∂2

∂y1∂y2
+ y2

∂2

∂y1∂y3
+ y3

∂2

∂y2∂y3
)
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+ 2(2y2
2d+ (y2

1 + y2
2)2)

∂2

∂y2
1

+ 2(2y2
2d+ (y2

2 + y2
3)2)

∂2

∂y2
3

+ ((y1y3 + y2
2)(y2

1 + 2y2
2 + y2

3)− d2)
∂2

∂y2
2

)
− 1

2

(
y3

1

∂3

∂y3
1

+ y1y2y3
∂3

∂y3
2

+ y3
3

∂3

∂y3
3

)
− 3

2
y2

(
y2

1

∂3

∂y2
1∂y2

+ y2
3

∂3

∂y2∂y2
3

)
− (y2

2 +
1

2
y1y3)

(
y1

∂3

∂y1∂y2
2

+ y3
∂3

∂y2
2∂y3

)
+ (

1

2
y1y3 − 2y2

2)
(
y1

∂3

∂y2
1∂y3

+ y3
∂3

∂y1∂y2
3

)
− y2(y1y3 + 2y2

2)
∂3

∂y1∂y2∂y3

+
(
y4

1

∂4

∂y4
1

+ y4
3

∂4

∂y4
3

)
+

1

8

(
y4

2 + 6y1y
2
2y3 + y2

1y
2
3

) ∂4

∂y4
2

+ 4y2

(
y3

1

∂4

∂y3
1∂y2

+ y3
3

∂4

∂y2∂y3
3

)
+ (y1y3 + 5y2

2)
(
y2

1

∂4

∂y2
1∂y

2
2

+ y2
3

∂4

∂y2
2∂y

2
3

)
+ 2y2(y1y3 + y2

2)
(
y1

∂4

∂y1∂y3
2

+ y3
∂4

∂y3
2∂y3

)
+ 4y2

2

(
y2

1

∂4

∂y3
1∂y3

+ y2
3

∂4

∂y1∂y2
3

)
+ 4y2(y1y3 + 2y2

2)
(
y1

∂4

∂y2
1∂y2∂y3

+ y3
∂4

∂y1∂y2∂y2
3

)
+ (y1y3(y1y3 + 5y2

2) + 3y2
2(y1y3 + y2

2))
∂4

∂y1∂y2
2∂y3

)
g = d2g. (4.6)

4.3 Reduction of the differential equations

Since Y is symmetric and positive definite, we can make the change of variables

y1 y2

y2 y3

 =

t1 0

0 t2


cos θ − sin θ

sin θ cos θ


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where a[b] := tbab, and we put g(Y ) = h(θ, t1, t2). In particular,

y1 = t1 cos2 θ + t2 sin2 θ,

y2 = −1

2
(t1 − t2) sin 2θ,

y3 = t1 sin2 θ + t2 cos2 θ,

and, via the Jacobian,

∂

∂y1
= −1

2
(t1 − t2)−1 sin 2θ

∂

∂θ
+ cos2 θ

∂

∂t1
+ sin2 θ

∂

∂t2

∂

∂y2
= − (t1 − t2)−1 cos 2θ

∂

∂θ
− sin 2θ

∂

∂t1
+ sin 2θ

∂

∂t2

∂

∂y3
=

1

2
(t1 − t2)−1 sin 2θ

∂

∂θ
+ sin2 θ

∂

∂t1
+ cos2 θ

∂

∂t2
.

From Equation 4.5 and Equation 4.6, we then obtain the differential equations satisfied by

h(θ, t1, t2):

−(−4)
1

8
(t1 − t2)−2

(
8π2(t1 − t2)2(t21 + t22)− 2t1t2(t1 − t2)

( ∂
∂t1
− ∂

∂t2

)
− 2(t1 − t2)2

(
t21
∂2

∂t21
+ t22

∂2

∂t22

)
− t1t2

∂2

∂θ2

)
h(θ, t1, t2) = d1h(θ, t1, t2) (4.7)

and

1

8
(t1 − t2)−4

(
8(t1 − t2)4(t41 + t42)π4 − 32(t1 − t2)6(t1 + t2)π3
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+ 16π2t1(t1 − t2)3(t31 − 5t21t2 + 3t1t
2
2 − t32)

∂

∂t1

+ 16π2t2(t1 − t2)3(3t31 − 3t21t2 + 5t1t
2
2 − t32)

∂

∂t2

− 32π2t1t2(t1 − t2)(t21 − t1t2 + t22)
∂2

∂θ2

− 64π2(t1 − t2)4
(
t41
∂2

∂t21
+ t42

∂2

∂t22

)
− 8π(t1 − t2)5

(
t21
∂2

∂t21
− t22

∂2

∂t22

)
+ 8t1t2(t1 − t2)(5t21 − 9t1t2 + 5t22)

( ∂
∂t1
− ∂

∂t2

)
− 4t1t2(t1 − t2)2

(
t1(10t1 − 9t2)

∂2

∂t21
+ t2(9t1 − 10t2)

∂2

∂t22

)
− 4(t1 − t2)3

(
t31(t1 − 5t2)

∂2

∂t31
+ t32(5t1 − t2)

∂3

∂t32

)
+ 8(t1 − t2)4

(
t41
∂4

∂t41
+ t42

∂4

∂t42

)
+ 8t1t2(t1 − t2)2(5t21 − 9t1t2 + 5t22)

∂2

∂t1∂t2

− 12t1t2(t1 − t2)4
(
t1

∂3

∂t21∂t2
+ t2

∂3

∂t1∂t22

)
− 4t1t2(t1 − t2)

(
t1(9t1 − 8t2)

∂3

∂θ2∂t1
+ t2(8t1 − 9t2)

∂3

∂θ2∂t2

)
+ 8t1t2(t1 − t2)2

(
t21

∂4

∂θ2∂t21
+ t1t2

∂4

∂θ2∂t1∂t2
+ t22

∂4

∂θ2∂t22

)
+ t21t

2
2

∂4

∂θ4

)
h(θ, t1, t2) = d2h(θ, t1, t2). (4.8)
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Being periodic with respect to θ, h has a Fourier expansion

h(θ, t1, t2) =
∑
n∈Z

Bn(t1, t2)e2niθ.

Applying Equation 4.7 and Equation 4.8 to each term of the sum above, we obtain thatBn(t1, t2)

satisfies

−1

4
(t1 − t2)−2

(
4(t1 − t2)2(t21 + t22)π2 + 2n2t1t2 − (t1 − t2)2

(
t21
∂2

∂t21
+ t22

∂2

∂t22

)
− t1t2(t1 − t2)

( ∂
∂t1
− ∂

∂t2

))
Bn = d1Bn (4.9)

and

1

8
(t1 − t2)−4

(
8(t1 − t2)4(t41 + t42)π4 − 32(t1 − t2)6(t1 + t2)π3 + 16n4t21t

2
2

+ 4t1t2
(
32π2(t1 − t2)2(t21 − t1t2 + t22)− (56t21 − 96t1t2 + 56t22)

)
n2

+ 8t1(t1 − t2)
(
2π2(t1 − t2)2(t31 − 5t21t2 + 3t1t

2
2 − t32) + t2(5t21 − 9t1t2 + 5t22)

+ 2n2t1t2(9t1 − 8t2)
) ∂
∂t1

+ 8t2(t1 − t2)
(
2π2(t1 − t2)2(3t31 − 3t21t2 + 5t1t

2
2 − t32)− t1(5t21 − 9t1t2 + 5t22)

+ 2n2t1t2(8t1 − 9t2)
) ∂
∂t2

− 4t21(t1 − t2)2
(
8n2t1t2 + 16π2t21(t1 − t2)2 + 2π(t1 − t2)3 + t2(10t1 − 9t2)

) ∂2

∂t21

− 4t22(t1 − t2)2
(
8n2t1t2 + 16π2t22(t1 − t2)2 − 2π(t1 − t2)3 + t1(9t1 − 10t2)

) ∂2

∂t22
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− 4(t1 − t2)3
(
t31(t1 − 5t2)

∂2

∂t31
+ t32(5t1 − t2)

∂3

∂t32

)
+ 8(t1 − t2)4

(
t41
∂4

∂t41
+ t42

∂4

∂t42

)
− 8t1t2(t1 − t2)2(4n2t1t2 − 5t21 + 9t1t2 − 5t22)

∂2

∂t1∂t2

− 12t1t2(t1 − t2)4
(
t1

∂3

∂t21∂t2
+ t2

∂3

∂t1∂t22

))
Bn = d2Bn. (4.10)

Now, since Equation 4.9 and Equation 4.10 are invariant under n → −n, we can assume

n ≥ 0 in the following. Set x = t1 − t2 and y = t1 + t2 with y > 0 and |x| < y, and put

Bn(t1, t2) = Cn(x, y).

Then t1 = 1
2(x+ y), t2 = −1

2(x− y), and using the chain rule to write the partial derivatives of

Bn with respect to t1 and t2 in terms of x and y, we obtain the following differential equations

satisfied by Cn(x, y):

(−4)
1

8x2

(
4πx2(x2 + y2) + (y2 − x2)n2 − x2(x2 + y2)

∂2

∂y2

− x2(x2 + y2)
∂2

∂x2
− x(y2 − x2)

∂

∂x
− 4x3y

∂2

∂x∂y

)
Cn = d1Cn, (4.11)
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1

8x4

(
52n2x4 + n4x4 − 24n2π2x6 + π4x8 + 32π3x6y − 48n2x2y2 − 2n4x2y2

+ 16n2π4x4y2 + 6π4x6y2 − 4n2y4 + n4y4 + 8n2π2x2y2 + π4x4y4

+ (−36n2x4y + 16π2x6y + 36n2x2y3)
∂

∂y

+ (2n2x6 − 8π2x8 − 8πx6y + 4n2x4y2 − 48π2x6y2 − 6n2x2y4 − 8π2x4y4)
∂2

∂y2

− 4x6y
∂3

∂y3
+ (x8 + 6x2y2 + x4y4)

( ∂4

∂y4
+

∂4

∂x4

)
+ (−19x5 − 34n2x5 + 24π2x7 + 18x3y2 + 32n2x3y2 + xy4 + 2n2xy4 − 8π2x3y4)

∂

∂x

+ (−8πx7 + 20x5y + 16n2x5y − 64π2x7y − 8πx5y2 − 20x3y3 − 16n2x3y3 − 64π2x5y3)
∂2

∂x∂y

+ (−6x7 − 12x5y2 + 6x3y4)
∂3

∂x∂y2
+ (16x7y + 16x5y3)

( ∂4

∂x∂y3
+

∂4

∂x3∂y

)
+ (19x6 + 6n2x6 − 8π2x8 − 8πx6y − 18x4y2 − 4n2x4y2 − 48π2x6y2 − x2y4

− 2n2x2y4 − 8π2x4y4)
∂2

∂x2
+ (−24x6y + 12x4y3)

∂3

∂x2∂y

+ (6x8 + 36x6y2 + 6x4y4)
∂4

∂x2∂y2
+ (−6x7 + 2x3y4)

∂3

∂x3

)
Cn = d2Cn. (4.12)

Now, set Cn(x, y) = (x2 − y2)
∑∞

k=0 ak(y)xk where ak(y) = 0 for any k < m, where m is a

positive integer such that am(y) 6= 0. Then, Equation 4.11 implies

(−4)
1

8

(
(k2 + 2k + n2 − 4π2y2 − 2)ak + ((k + 2)2 − n2)y2ak+2 − 4π2ak−2

+ 4(k + 1)ya′k + a′′k−2 + y2a′′k
)

= d1ak. (4.13)
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When k = m−2, by virtue of the fact that m is a smallest positive integer such that am(y) 6= 0,

we have that ak = ak−2 = a′k = a′k = a′′k = a′′k−2 = 0, and thus

((k + 2)2 − n2)y2ak+2 = (m2 − n2)y2am = 0.

Since am 6= 0 and y > 0, we must have that m = ±n, and since n,m > 0, m = n.

Lemma 1. With m as above, if k 6≡ m (mod 2), then ak(y) = 0.

Proof. We use strong induction. For k = m− 1, as above, we have that ak = ak−2 = a′k = a′k =

a′′k = a′′k−2 = 0, and hence

((k + 2)2 − n2)y2ak+2 = ((m+ 1)2 − n2)y2am+1 = 0.

Since y > 0, if am+1 6= 0, we must have

(m+ 1)2 − n2 = m2 + 2m+ 1− n2 = 2m+ 1 = 0.

But this is a contradiction since m is a positive integer. Thus, am+1 = 0.

Now, suppose k = m + j, where j is a positive odd integer so that k 6≡ m (mod 2), and

ak = am+j = 0 and ai = 0 for odd i < k = m+ j. We show that am+j+2 = 0. By assumption,

am+j = am+j−2 = 0 hence also their derivatives. So, setting k = m+ j, Equation 4.13 becomes

((m+ j + 2)2 − n2)y2am+j+2 = 0.
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Since y > 0, this implies that either am+j+2 = 0 or (m+ j + 2)2 − n2 = 0. Suppose am+j+2 6=

0.Then 0 = m2 +2mj+4(m+j)+j2 +4−n2 = 2mj+4(m+j)+j2 +4, but m and j are positive,

so this is a contradiction. Hence am+j+2 = 0, and, by induction, we have the result.

Furthermore, Equation 4.12 yields the following differential equation for ak:

1

8

(
(48k − 12k2 − 4k3 + k4 − 8n2 − 16kn2 + 6k2n2 + n4 − 8kπy − 8k2πy

+ 16π2y2 − 48kπ2y2 − 48k2π2y2 + 16n2π2y2 + π4y4)ak

− 2π2(4k2 − 16k + 12n2 − 8− 16πy − 3π2y2)ak−2 + π4ak−4

− 2(24− 30k2 − 18k3 − 3k4 − 10n2 + 2kn2 + 2k2n2 + n4 − 4n2π2y2

+ 16π2y2 + 16kπ2y2 + 4k2π2y2)y2ak+2

+ ((k + 2)2 − n2)((k + 4)2 − n2)y4ak+4

+ 4(4− 17k + 4k3 − 3n2 + 4kn2 − 2kπy − 8π2y2 − 16kπ2y2)ya′k

− 8π(k + 8kπy − 6πy)a′k−2

+ 4((k + 2)2 − n2)(5 + 4k)y3a′k+2

+ 4(−3 + 6k + 9k2 + n2 − 2π2y2)y2a′′k

+ 2(−6− 6k + 3k2 + n2 − 4πy − 24π2y2)a′′k−2

− 8π2a′′k−4 + 6((k + 2)2 − n2)y4a′′k+2

+ 4(4k − 3)ya
(3)
k−2 + 8(2k + 1)y3a

(3)
k

+ y4a
(4)
k + 6y2a

(4)
k−2 + a

(4)
k−4

)
= d2ak (4.14)
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for all k ∈ Z.

Next, we derive a single ordinary differential equation for an. We set k = m = n in

Equation 4.13 and solve for an+2, obtaining,

an+2 = − 1

4(n+ 1)y2

(
2(d1 + n2 + n− 2π2y2 − 1)an + 4(n+ 1)ya′n + y2a′′n

)
.

Similarly, setting k = m+ 2 = n+ 2 in Equation 4.13, we find

an+4 = − 1

8(n+ 2)y2

(
2(d1 + n2 + 3n− 2π2y2 + 2)an+2 + 4(n+ 3)a′n+2

+ y2a′′n+2 + +a′′n − 4π2an
)

are easily computed, where a
(j)
k denotes the jth derivative of ak. Then substituting these

values, the Differential Equation 4.14 yields the following fourth order linear ordinary differential

equation for an:

−((8n2 − 40n− 4)d1 − 4d2
1 + 8d2 + 8− 20n− 36n2 − 4n3 + 4n4

+ 8nπy + 8n2πy + 48π2y2 + 15π4y4)an(y)

− 4(4(n− 2)d1 − 14− 17n+ 3n2 + 4n3 + 2nπy − 4π2y2)ya′n(y)

− 4(2d1 − 5 + 9n+ 6n2 − 4π2y2)y2a′′n(y)

− 4(4n+ 5)y3a(3)
n (y)− 4y4a(4)

n (y) = 0. (4.15)
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4.4 Solutions of the ordinary differential equation

In this section, we discuss the method of Niwa to obtain solutions to his ordinary differential

equation [23, Equation (1.12)]. As was explained earlier, in [23], Niwa used the differential

operators ∆1 and ∆2 given by Nakajima [22] and obtained an ordinary differential equation,

analogous to our Equation 4.15, satisfied by an. Since the quartic operator of Nakajima is not

invariant under the necessary slash operator, Niwa’s ordinary differential equation is inaccurate.

However, his method for obtaining the first of the four solutions utilizes basic properties of the

Whittaker functions and the differential operators, rather than the ordinary differential equation

itself, we conjecture that this first solution also satisfies our ordinary differential equation.

Conjecture 1. The solution

Cn(y) =

∫ ∞
1

∫ ∞
1

Pnv1
(z1)Pnv2

(z2)(z2
1 − 1)n/2(z2

2 − 1)n/2e−2πz1z2ydz1dz2

given by Niwa [23, Proposition 1] is a solution to Equation 4.15, after a suitable change of

parameters. Furthermore, it is the only solution of rapid decay to this differential equation.

First, we sketch Niwa’s proof of the solutions to the ordinary differential equation [23,

Equation (1.12)]. Niwa introduces parameters λ1 and λ2 to describe these solutions, yielding

another ordinary differential equation [23, Equation (1.14)]. His choice of parameters is

d1 =
λ1 + λ2 − 2

8
, d2 =

(λ1 − λ2)2

256
− λ1 + λ2

32
+

3

64
. (4.16)
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For v ∈ C and m ∈ Z, Pmv (z) and Qmv (z) denote the associated Legendre functions of

the first and second kind, respectively. That is, they are independent solutions of Legendre’s

differential equation

d

dz

(
(1− z2)

d

dz

)
u(z) + v(v + 1)u(z)− m2

1− z2
u(z) = 0. (4.17)

Set

c11 = −Q0
v2

(0) c12 = P 0
v2

(0)

c21 = − d
dzQ

0
v2

(0) c22 = d
dzQ

0
v2

(0).

Then c12 6= 0, c22 6= 0 for −1 < Re(v2) < 0. Set ([23, Equation (1.19)])

R0
v2

(z) = c11P
0
v2

(z) + c12Q
0
v2

(z)

S0
v2

(z) = c21P
0
v2

(z) + c22Q
0
v2

(z). (4.18)

Then [23, Proposition 1] describes the solutions to Niwa’s ordinary differential equation:

Proposition 2. Put νi = −1+
√

1+4λi
2 for i = 1, 2, and assume that −1 < Re(νi) < 0 and that

λ1, λ2 are not integers. Then there exist polynomials h1, h2 in y−1 of degree n− 1 such that

An(y) =

∫ ∞
0

(∫ ∞
1

R0
ν1

(z1)Pnν2
(z2)(−2πyz2)−n(z2

2 − 1)n/2e−2πz1z2ydz2

)
dz1 − h1,

Bn(y) =

∫ ∞
0

(∫ ∞
1

S0
ν1

(z1)Pnν2
(z2)(−2πyz2)−n(z2

2 − 1)n/2e−2πz1z2ydz2

)
dz1 − h2,

Cn(y) =

∫ ∞
1

∫ ∞
1

Pnν1
(z1)Pnν2

(z2)(z2
1 − 1)n/2(z2

2 − 1)n/2e−2πz1z2ydz1dz2
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are linearly independent solutions of the ordinary differential equation. If λ1 and λ2 are fur-

thermore real, then there exists a polynomial h3 in y−1 of degree n such that the three functions

above, together with

Dn(y) =

∫ 1

0

(∫ 1

−1
Pnν1

(z1)Pnν2
(−z2)(z2

1 − 1)n/2(z2
2 − 1)n/2e−2πz1z2ydz2

)
dz1 (4.19)

+ i−n
Γ(ν1 + n+ 1)

Γ(ν1 − n+ 1)

∫ 1

0

(∫ ∞
1

P 0
ν1

(z1)Pnν2
(−z2)(−2πyz2)−n (4.20)

×(z2
2 − 1)n/2e−2πz1z2ydz2

)
dz1 + h3 (4.21)

generate all the solutions of the ordinary differential equation

By direct computation, Niwa shows the existence of h1, h2, and h3 such that these are

solutions. We can see by inspection that yAn(y) and yBn(y) are bounded, that Cn(y) decays

rapidly, and that Dn(y) grows rapidly as y →∞. Furthermore, we see An and Bn have different

asymptotic expansions by considering

∫ ε

0

(∫ ∞
1

R0
ν1

(z1)Pnν2
(z2)(−2πyz2)−n(z2

2 − 1)n/2e−2πz1z2ydz2

)
dz1,

∫ ε

0

(∫ ∞
1

S0
ν1

(z1)Pnν2
(z2)(−2πyz2)−n(z2

2 − 1)n/2e−2πz1z2ydz2

)
dz1

for small ε, so the functions An, Bn, Cn, Dn are linearly independent.
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Using the recurrence relation [23, Equation (1.9.1)] and partial integration with Legendre’s

differential equation, Niwa obtains (Proposition 2) that the functions

Cn(x, y) =(x2 − y2)

∫ ∞
1

∫ ∞
1

Pnν1
(z1)Pnν2

(z2)

× Jn(2πi(z2
1 − 1)1/2(z2

2 − 1)1/2x)e−2πz1z2ydz1dz2 (4.22)

are solutions to his Equations (1.8.1) and (1.8.2), where Jn denotes the Bessel function of the

first kind. Note that our Equation 4.11 and Equation 4.12 correspond to Niwa’s equations

(1.8.1) and (1.8.2).

Finally, Niwa ([23, Theorem 1]) proves

Theorem 6. Put νi = −1+
√

1+4λi
2 for i = 1, 2 and assume −1 < Re(νi) < 0 and that λ1, λ2 ∈

R \ Z.

Let f(X + iY ) = g(Y )e2πitr(X) be a generalized Whittaker function (i.e. it satisfies ∆iF =

diF for i = 1, 2 with d1, d2 as in Equation 4.16). Assume that g(Y ) is a real analytic function

of t1 − t2 with

Y =

y1 y2

y2 y3

 =

t1 0

0 t2


cos θ − sin θ

sin θ cos θ


and that for all positive integers m, a, b, c, the convergence

(tr(Y ))m
∂a+b+c

∂ya1∂y
b
2∂y

c
3

g(Y )→ 0
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holds uniformly on compact sets of y1 − y3 and y2 when tr(Y )→ 0. Then g(Y ) is expanded as

g(Y ) =
∑
n∈Z

bnCn(t1 + t2, t1 − t2)e2niθ

where bn ∈ C and Cn(x, y) is the function defined above.

Now, we describe Niwa’s derivation of the solution Cn(y). He considers a Siegel modular

form lifted from a Maass wave cusp form by theta correspondence ([23, Section 2]). He then

constructs the other solutions by considering integral representations similar to that for the

first solution.

Niwa [23, Section 2] defines a theta function, involving a Dirichlet character χ modulo N

an odd squarefree integer,

θ(Z, z1, z2)

where Z ∈ H2, z1, z2 ∈ H1. In Theorem 2, p. 181, he derives a system of differential equations

satisfied by θ(Z, z1, z2), when acted on by the differential operators ∆1 and ∆2. Now, let ϕ1

and ϕ2 be Maass wave cusp forms with character χ; so ϕi satisfies

y2

(
∂2

∂x2
+

∂2

∂y2

)
ϕi(z) = λiϕi(z)

for i = 1, 2. Setting d0z = y−2dxdy for z = x+ iy, define ([23, Equation (2.6)])

Fϕ1,ϕ2(Z) =

∫
Γ\H1

∫
Γ\H1

θ(Z, z1, z2)ϕ1(z1)ϕ2(z2)d0z1d0z2 (4.23)
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where Γ = Γ0(N). Then Niwa asserts that

∆1Fϕ1,ϕ2(Z) = d1Fϕ1,ϕ2(Z), ∆1Fϕ1,ϕ2(Z) = d1Fϕ1,ϕ2(Z), (4.24)

with d1, d2 defined by Equation 4.16 for λ1, λ2, and further that

Fϕ1,ϕ2(σZ) = χ(d)Fϕ1,ϕ2(Z)

holds for σ in the set

σ ∈


σ =





a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44





∣∣∣∣∣∣∣∣∣∣∣∣

σ ∈ Sp(2,Q),

a21, a31, a32, a41, a42 ∈ NZ,

Na13 ∈ Z, other aij ∈ Z



and with lower right block
(
a b
c d

)
. Then there is a lattice T ⊂

{(
a b
c d

)
|a, b, c ∈ Z

}
containing(

N 0
0 1

)
such that we can expand

Fϕ1,ϕ2(Z) =
∑
T∈T

A(T, Y )e2πitr(TX). (4.25)
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Then by Equation 4.24, the function

W (Y ) = A


N 0

0 1

 ,


√
N
−1

0

0 1

Y


√
N
−1

0

0 1




is a generalized Whittaker function. Niwa then claims that direct calculation shows

W


t1 0

0 t2


cos θ − sin θ

sin θ cos θ


 =

∑
n∈Z

bnCn(t1 − t2, t1 + t2)eniθ

where Cn is as in Equation 4.22.

4.5 Conclusion

From this analysis, we expect that there is a unique solution to Equation 4.15 that decays

rapidly, and that, in fact, Niwa’s solution Cn(Y ) will satisfy our ordinary differential equation.

Then Niwa’s Theorem 1 gives the expansion for our g(Y ). Observe that the first term in the

Fourier expansion of a Siegel Maass wave form is a generalized Whittaker function. Hence, for

F (Z) =
∑

N∈N2
A(N,Y )e2πitr(NX), we expect

A(I, Y ) =
∑
n∈Z

aI,n(F )Cn(x, y)e2niθ.

Then by Hori [13, p. 202] and uniqueness of Fourier expansion, we can write, for N definite,

a(N,Y ) =
∑
n∈Z

aN,n(F )WN,n(Y ), aN,n(F ) ∈ C
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where

WN (n, Y ) = Cn(N1/2Y N1/2) if N > 0

WN (n, Y ) = Cn((−N)1/2Y (−N)1/2) if N < 0. (4.26)
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