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PREFACE

In this work, exact analyses of some structures are considered. These structures contain

lenses and trenches that are made or filled by DNG Metamaterial. In double negative metama-

terials (DNG), both permittivity and permeability are negative resulting in a negative index

of refraction. DNGs are also referred to as negative index metamaterials (NIM). What is a

metamaterial? In recent years, there has been a growing interest in the fabricated structures

and composite materials that either mimic known material responses or qualitatively have new,

physically realizable response functions that do not occur or may not be readily available in

nature. The unconventional response functions of these metamaterials are often generated by

artificially fabricated inclusions or inhomogeneities embedded in a host medium or connected to

or embedded on a host surface. Exotic properties for such metamaterials have been predicted;

many experiments have confirmed our basic understanding of many of them. The underlying

interest in metamaterials is the potential to have the ability to engineer the electromagnetic

and optical properties of materials for a variety of applications. The impact of metamaterials

may be enormous: If one can tailor and manipulate the wave properties, significant decreases

in the size and weight of components, devices, and systems along with enhancements in their

performance appear to be realizable.
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SUMMARY

This research focuses on the exact electromagnetic analysis of various double negative

(DNG) metamaterial structures. The boundaries of these structures are coordinate surfaces

of the elliptic cylinder coordinate system. Four structures are considered: (1) the elliptic cylin-

der, (2) a semielliptical cavity flush mounted under an aperture, (3) a quarter elliptic channel

at the corner between two metallic walls and (4) a multilayered elliptical cylinder. All these

structures are made of or filled with DNG metamaterial. Inside a DNG metamaterial both

permittivity and permeability are negative resulting in a negative index of refraction. These

two-dimensional boundary-value problems are solved exactly, in the frequency domain, when

the primary field is either a plane wave of arbitrary polarization and direction of incidence

or an electric or magnetic line source. The electromagnetic fields in the various regions and

the incident fields are expressed in terms of infinite series of elliptic-cylinder wave functions,

involving products of radial and angular Mathieu functions. Numerical results shown to clarify

the effect of DNG metamaterials in these geometries.
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CHAPTER 1

BACKGROUND

In this work, the following structures: (1) the elliptic cylinder, (2) a semielliptical cavity

flush mounted under an aperture, (3) a quarter elliptic channel at the corner between two

metallic walls and (4) a multilayered elliptical cylinder are studied. Similar structures have

been investigated in (1), (2), (3), (4), (5), (6), (7), (8). The novelty of this work is that

these structures contain DNG metamaterials. In order to introduce these structures, we begin

by recalling some mathematical details for the elliptic cylinder coordinate system, Mathieu

functions and DNG metamaterials.

1.1 Elliptic Cylinder Coordinate System

This work focus on electromagnetic behavior of various DNG Metamaterial structures with

elliptical surfaces. Therefore, it is worth to mention about elliptic cylinder coordinate system,

which we will be using heavily.

Referring to Figure 1, the two foci F1 and F2 are located at −d/2 and +d/2, respectively, on

the x-axis of the Cartesian coordinate system. The rectangular coordinates (x, y, z) are related

to the elliptic cylinder coordinates (u, v, z) by:

1



2

Figure 1. Elliptic Cylinder Coordinate System

x =
d

2
coshu cos v, (1.1)

y =
d

2
sinhu sin v,

z = z
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where 0 ≤ u <∞, 0 ≤ v ≤ 2π, −∞ < z <∞.

The v coordinates represent the angle of the asymptotes to the hyperbolic cylinders sym-

metrical about the x-axis. The u coordinates are confocal elliptic cylinders centered on the

origin. When u = 0 the ellipse reduces to a line and it gets closer to a circle when u has larger

values.

1.2 Geometries of the Problems

Various DNG Metamaterial structures with elliptical surfaces are considered.

The first geometry analyzed consists of an infinite cylinder of elliptical cross section made

of a DNG metamaterial whose permittivity and permeability are real and opposite to the

corresponding parameters in the surrounding space, see Figure 2.

The second geometry is a semielliptical trench flush-mounted under an infinite perfect elec-

tric conductor plane, see Figure 10. The trench is slotted along the interfocal distance of its

cross-section, and is filled with a DNG metamaterial that is isoimpedance to the material filling

the half-space above the trench.

The third geometry is a partially covered cavity, or trench, located along the edge of two

intersecting metallic walls perpendicular to each other. The cross-section of the cavity is a

quarter ellipse and is slotted along the interfocal distance, see Figure 20. The cavity is filled

with a DNG metamaterial that is isoimpedance to the material filling the half-space above the

trench.
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The fourth geometry is a confocal elliptic cylindrical layer made of double-negative meta-

material. The space inside and outside the layer is filled with a lossless homogeneous double-

positive medium, see Figure 27.

These two-dimensional boundary-value problems are solved exactly, in the frequency do-

main, when the primary field is either a plane wave of arbitrary polarization and direction of

incidence or an electric or magnetic line source.

The electromagnetic fields in the various regions and the incident fields are expressed in

terms of infinite series of elliptic-cylinder wave functions, involving products of radial and

angular Mathieu functions. In the free space or in the DPS region, the electric permittivity is

ε and the magnetic permeability is µ, whereas in the DNG region the same quantities become

−ε and −µ, respectively. The wavevector is k =
√
εµ in DPS region and k = −√εµ inside

DNG media. We define a dimensionless parameter c = kd/2 in the DPS material and −c in

DNG metamaterial. The intrinsic impedance Z =
√
µ/ε is the same for both media. The

wavenumbers in the DPS and DNG region have opposite signs, however, it is still possible to

enforce the boundary conditions at the surface of the boundaries on a mode to mode basis that

leads to an exact analytical solution for the modal expansion coefficients.

1.3 Mathieu Functions

The Mathieu functions are the solutions to the Mathieu differential equation and they are

discussed in, e.g. (9), (10). Mathieu functions appear naturally in the solution of the Helmholtz

equation in cylindrical coordinates. There is an analogy between the solution of the scattering

of an electromagnetic wave by a circular cylinder and an elliptic cylinder. The Mathieu radial



5

functions correspond to the Bessel functions and the Mathieu angular functions correspond to

the trigonometric functions. We will make frequent use of the following expansions.

1.4 Expansion of a plane wave in terms of Mathieu functions

A plane wave may be expanded in a series of elliptic-cylinder functions (11) as

exp[jk(x cosϕ0 + y sinϕ0)] =
√

8π
∞∑
m=0

jm

[
1

N
(e)
m

Re(1)
m (c, u)Sem(c, v)Sem(c, ϕ0)

+
1

N
(o)
m

Ro(1)
m (c, u)Som(c, v)Som(c, ϕ0)

]
, (u ≥ u1) (1.2)

1.5 Expansion of a cylindrical wave in terms of Mathieu Functions

Similarly, a Hankel functions of the second kind may be expanded in a series of elliptic-

cylinder functions (11):

H
(2)
0 (kR) =4

∞∑
m=0

[
1

N
(e)
m

Re(1)
m (c, u<)Re(4)

m (c, u>)Sem(c, v)Sem(c, v0)+

1

N
(o)
m

Ro(1)
m (c, u<)Ro(4)

m (c, u>)Som(c, v)Som(c, v0)

]
, (1.3)

1.6 Relationship Between Electric and Magnetic Field

Using Maxwell’s equations and expanding them in elliptic cylindrical coordinate system, we

can obtain the magnetic field from the electric field by

H1,2 =
j

cZ
√
ξ2 − η2

(
∂E(1,2)z

∂v
û−

∂E(1,2)z

∂u
v̂

)
. (1.4)
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In a similar way, electric field can be obtained from

E1,2 =
jZ

c
√
ξ2 − η2

(
−
∂H(1,2)z

∂v
û+

∂H(1,2)z

∂u
v̂

)
. (1.5)



CHAPTER 2

ELECTROMAGNETIC SCATTERING BY AN ELLIPTIC DNG

METAMATERIAL CYLINDER

2.1 INTRODUCTION

The first geometry we consider consists of an infinite cylinder of elliptical cross section made

of a DNG metamaterial, shown in Figure 2. The primary field is a plane wave of arbitrary

polarization propagating in a direction perpendicular to the axis of the cylinder. The elliptical

cylinder has real and negative refractive index. The medium surrounding the cylinder is double-

positive (DPS) having real but positive refractive index. Both media have the same intrinsic

impedance value, Z1 = Z2.

2.2 PLANE WAVE INCIDENCE

2.2.1 E-polarization

Consider a plane wave incident perpendicularly to the cylinder axis and polarized parallel

to z-axis , with primary electric field

Ei = ẑEiz = ẑ exp[jk(x cosϕ0 + y sinϕ0)]. (2.1)

7



8

Figure 2. Geometry of the problem.

The incident field may be expanded in a series of elliptic-cylinder functions (11)

Eiz =
√

8π
∞∑
m=0

jm

[
1

N
(e)
m

Re(1)
m (c, u)Sem(c, v)Sem(c, ϕ0) +

1

N
(o)
m

Ro(1)
m (c, u)Som(c, v)Som(c, ϕ0)

]
,

(u ≥ u1). (2.2)
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The scattered electric field outside the cylinder can be written as

Esz =
√

8π
∞∑
m=0

jm

[
cm

N
(e)
m

Re(4)
m (c, u)Sem(c, v)Sem(c, ϕ0) +

dm

N
(o)
m

Ro(4)
m (c, u)Som(c, v)Som(c, ϕ0)

]
,

(u ≥ u1) (2.3)

and the electric field inside the cylinder is

E1z =
√

8π
∞∑
m=0

jm

[
am

N
(e)
m

Re(1)
m (−c, u)Sem(−c, v)Sem(−c, ϕ0)+

bm

N
(o)
m

Ro(1)
m (−c, u)Som(−c, v)Som(−c, ϕ0)

]
, (0 ≤ u ≤ u1). (2.4)

Using the properties of Mathieu functions, we can obtain

E1z =
√

8π
∞∑
m=0

jm

[
am

N
(e)
m

Re(1)
m (−c, u)Sem(c, v)Sem(c, ϕ0)+

bm

N
(o)
m

Ro(1)
m (−c, u)Som(c, v)Sem(c, ϕ0)

]
, (0 ≤ u ≤ u1). (2.5)

The magnetic fields are

H i
v +Hs

v =
−j

cZ
√
ξ2 − η2

∂

∂u
(Eiz + Esz), (u ≥ u1) (2.6)
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and

H1v =
j

cZ
√
ξ2 − η2

∂

∂u
E1z, (0 ≤ u ≤ u1). (2.7)

and the unknown expansion coefficients am, bm, cm, dm may be determined by the application

of the boundary conditions, i.e. the continuity of the tangential components of the total electric

and magnetic fields, across the interface u = u1

(
Eiz + Esz

)
u=u1

= (E1z)u=u1
, (2.8)

(
H i
v +Hs

v

)
u=u1

= (H1v)u=u1
. (2.9)

The result is

am =
−j√

ξ21 − 1∆(e)
, (2.10)

bm =
−j√

ξ21 − 1∆(o)
, (2.11)

cm =
∆(c)

∆(e)
, (2.12)

dm =
∆(d)

∆(o)
, (2.13)
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where

∆(e) =Re(1)
m (−c, u1)Re(4)′

m (c, u1) + Re(4)
m (c, u1)Re(1)′

m (−c, u1), (2.14)

∆(o) =Ro(1)
m (−c, u1)Ro(4)′

m (c, u1) + Ro(4)
m (c, u1)Ro(1)′

m (−c, u1), (2.15)

∆(c) =−
[
Re(1)

m (−c, u1)Re(1)′
m (c, u1) + Re(1)′

m (−c, u1)Re(1)
m (c, u1)

]
, (2.16)

∆(d) =−
[
Ro(1)

m (−c, u1)Ro(1)′
m (c, u1) + Ro(1)′

m (−c, u1)Ro(1)
m (c, u1)

]
. (2.17)

Details of the computations leading to the previous results are given in Appendix-A. We may

write the far field as

Esz |ξ→∞ ≈ P (e)(φ)
√

2
πkρ

exp(−jkρ+ j
π

4
) (2.18)

where we introduce a far field coefficient P (e)(φ)

P (e)(φ) = 2π
∞∑
m=0

(−1m)

[
cm

N
(e)
m

Sem(c, v)Sem(c, ϕ0) +
dm

N
(o)
m

Som(c, v)Som(c, ϕ0)

]
. (2.19)

The bistatic radar cross section (RCS) per unit length is

σ(e)(φ) =
4
k

∣∣∣P (e)(φ)
∣∣∣2 . (2.20)
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2.2.2 H-polarization

The analysis is similar to that for E-Polarization. The incident magnetic field is

H i = ẑH i
z = ẑ exp[jk(x cosϕ0 + y sinϕ0)] (2.21)

and may be expanded as

H i
z =
√

8π
∞∑
m=0

jm

[
1

N
(e)
m

Re(1)
m (c, u)Sem(c, v)Sem(c, ϕ0) +

1

N
(o)
m

Ro(1)
m (c, u)Som(c, v)Som(c, ϕ0)

]
,

(u ≥ u1). (2.22)

The scattered magnetic field outside the cylinder can be written as

Hs
z =
√

8π
∞∑
m=0

jm

[
em

N
(e)
m

Re(4)
m (c, u)Sem(c, v)Sem(c, ϕ0) +

fm

N
(o)
m

Ro(4)
m (c, u)Som(c, v)Som(c, ϕ0)

]
,

(u ≥ u1). (2.23)

The magnetic field inside the cylinder is:

H1z =
√

8π
∞∑
m=0

jm

[
gm

N
(e)
m

Re(1)
m (−c, u)Sem(c, v)Sem(c, ϕ0)+

hm

N
(o)
m

Ro(1)
m (−c, u)Som(c, v)Som(c, ϕ0)

]
, (0 ≤ u ≤ u1). (2.24)
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The total electric field inside and outside the cylinder is

Eiv + Esv =
jZ

c
√
ξ2 − η2

∂

∂u
(H i

z +Hs
z ), (u ≥ u1) (2.25)

and

E1v =
−jZ

c
√
ξ2 − η2

∂

∂u
H1z, (0 ≤ u ≤ u1). (2.26)

The boundary conditions can be written as

(
H i
z +Hs

z

)
u=u1

= (H1z)u=u1
, (2.27)

(
Eiv + Esv

)
u=u1

= (E1v)u=u1
. (2.28)

When we apply the boundary conditions, we find that the modal coefficients are equal to those

for E-polarization

gm = am, em = cm (2.29)

hm = bm, fm = dm. (2.30)

The far field is
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Hs
z |ξ→∞ ≈ P (h)(φ)

√
2
πkρ

exp(−jkρ+ j
π

4
) (2.31)

where the far field coefficient is P (h)(φ) = P (e)(φ), and the bistatic radar cross section is the

same for both polarizations: σ(h)(φ) = σ(e)(φ).

2.3 SIMULATION AND NUMERICAL RESULTS

To examine the scattering effect of the cylinder, we look at the bistatic radar cross section

(RCS) per unit length. The expression of the RCS for both polarizations is

σ(φ) =
4
k
|P (φ)|2 . (2.32)

Let us consider the RCS normalized to the wavelength

σ(φ)
λ

=
2
π
|P (φ)|2 (2.33)

where λ = 2π/k is the wavelength, and P (φ) is given by (Equation A.25).



15

Figure 3 shows the eigenfunction solution for our problem, for different values of c. The

value of c is controlled by the frequency and the focal distance d:

c =
kd

2
=
πd

λ
(2.34)

In Figure 3, we used ϕ0 = π/4 and u = 0.25. To analyze the effect of c, we have used 4

different c values (c = 0.5, c = 1.55, c = 2.5, c = 3.5). For small values of c, the reflection from

the cylinder is pronounced. However, when c is approximately equal or larger than 2, energy

transmission in the forward direction prevails.
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Figure 3. Normalized RCS with u1 = 0.25 and c = 0.5, 1.5, 2.5, 3.5



CHAPTER 3

EXACT IMAGING BY AN ELLIPTIC LENS

3.1 INTRODUCTION

The imaging of an isotropic line source located at one of the focal lines of an elliptic cylin-

drical lens made of DNG metamaterial has been studied in the optical limit (12). It has been

shown that the line source is imaged onto a non-isotropic virtual line source located at the

other focal line of the lens. Here, an exact electromagnetic solution of the same problem is

obtained as an infinite series of elliptic-cylinder wave functions, each term of the series consist-

ing of products of radial and angular Mathieu functions. The numerical results are compared

with the optical limit obtained in (12). Some preliminary results were previously presented at

a conference (13) and (14).

The double-positive (DPS) material filling the infinite space outside the lens is characterized

by a real positive electric permittivity ε and a real positive magnetic permeability µ, while the

corresponding parameters inside the DNG lens are a real negative permittivity −ε and a real

negative permeability −µ. As a consequence of causality, the refractive index outside the lens

is real positive, and is the opposite of the real negative refractive index inside the lens, while

the intrinsic impedance has the same real positive value Z =
√

(µ/ε) everywhere (15).

The time-dependence factor exp(+jωt) is omitted throughout. The wave number is k =

ω
√

(εµ) in the DPS medium and −k in the DNG material.

17
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3.2 Geometry of the problem

A cross-sectional view of the structure in a plane z = constant is shown in Figure 4.

Figure 4. Cross section of the geometry of the problem.

The rectangular coordinates (x, y, z) are related to the elliptic cylinder coordinates (u, v, z) by

x = (d/2) coshu cos v, y = (d/2) sinhu sin v, z = z, where d is the inter focal distance, 0 ≤ u <
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∞, 0 ≤ v ≤ 2π, and −∞ < z <∞. Curves u = constant are ellipses and curves v = constant

are hyperbolas. We define the dimensionless real positive parameter c = kd/2 = πd/λ, where

λ is the wavelength.

3.3 Line source incidence

3.3.1 E-polarization

Consider an electric line source parallel to the z-axis and located at (x0, y0) ≡ (u0, v0) inside

the DNG lens, whose primary electric field is

Ei = ẑEiz = ẑH
(2)
0 (−kR) (3.1)

where

R =
√

(x− x0)2 + (y − y0)2 (3.2)

is the distance between the line source and the observation point (x, y) ≡ (u, v) and H
(2)
0 is

the Hankel function of the second kind. The incident field may be expanded in a series of

elliptic-cylinder wave functions (1)-(11):

Ei1z = H
(2)
0 (−kR) = 4

∞∑
m=0[

1

N
(e)
m

Re(1)
m (−c, u<)Re(4)

m (−c, u>)Sem(−c, v0)Sem(−c, v)+

1

N
(o)
m

Ro(1)
m (−c, u<)Ro(4)

m (−c, u>)Som(−c, v0)Som(−c, v)

]
(3.3)
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where u< (u>) is the smaller (larger) between u and u0. When the electric line source is located

inside the lens at the focal line (x0 = d/2, y0 = 0) the incident electric field only contains even

functions and it becomes

Ei1z = 4
∞∑
m=0

1

N
(e)
m

Re(1)
m (−c, 0)Re(4)

m (−c, u)Sem(c, v) (3.4)

because of properties of Mathieu functions (1) and the fact that the angular Mathieu functions

Sem and Som are even functions of the parameter c has been taken into account. It should be

noted that the Mathieu radial functions are not even functions of c (16). The scattered field

inside the lens is

Es1z = 4
∞∑
m=0

am

N
(e)
m

Re(1)
m (−c, u)Sem(c, v). (3.5)

Outside the lens, the scattered field is

Es2z = 4
∞∑
m=0

bm

N
(e)
m

Re(4)
m (c, u)Sem(c, v), (u ≥ u1) (3.6)

and it satisfies the radiation condition because it contains the radial functions of the fourth kind,

Re(4)
m . The modal expansion coefficients a(e)

m and b
(e)
m , are obtained by imposing the boundary
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conditions on the continuity of the total tangential components of E and H across the interface

at u = u1, yielding

am =
−Re(1)

m (−c, 0)
∆

[
Re(4)′

m (c, u1)Re(4)
m (−c, u1) + Re(4)

m (c, u1)Re(4)′
m (−c, u1)

]
, (3.7)

bm =
−Re(1)

m (−c, 0)
∆

[
Re(4)′

m (−c, u1)Re(1)
m (−c, u1)− Re(4)

m (−c, u1)Re(1)′
m (−c, u1)

]
(3.8)

where

∆ = Re(1)
m (−c, u1)Re(4)′

m (c, u1) + Re(1)′
m (−c, u1)Re(4)

m (c, u1) (3.9)

and the prime means the derivative with respect to the argument u. Detailed derivations of the

modal coefficients are given in Appendix-B.

3.3.2 H-polarization

The analysis is similar to that for E-polarization. For a magnetic line source located at F1

in Figure 20, the incident magnetic field is

Hi = ẑH i
z, (3.10)

with

H i
1z = 4

∞∑
m=0

1

N
(e)
m

Re(1)
m (−c, 0)Re(4)

m (−c, u)Sem(−c, 0)Sem(−c, v). (3.11)
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The scattered magnetic field inside the lens is

Hs
1z = 4

∞∑
m=0

cm

N
(e)
m

Re(1)
m (−c, u)Sem(−c, v) (3.12)

and the total magnetic fields outside the lens is

Hs
2z = 4

∞∑
m=0

dm

N
(e)
m

Re(4)
m (c, u)Sem(c, v). (3.13)

The modal coefficients are obtained from the application of the boundary conditions and, be-

cause of duality, one finds cm = am and dm = bm.

3.3.3 Far Field Expressions

For E polarization, the scattered field is given by equation (Equation B.5). When the

Mathieu radial function Re(4)
m (c, u) is replaced by its asymptotic expression jm exp(−jkρ +

jπ/4)
√
kρ, one finds

Es2z ≈ 4
exp(−jkρ+ jπ/4)√

kρ

∞∑
m=0

bm
jm

N
(e)
m

Sem(c, v). (3.14)
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In order to obtain results that are not dependent upon the distance ρ from the origin, we divide

the previous expression by exp(−j(kρ − π/4)/
√
kρ so that we obtain the far field radiation

pattern

P (e)(v) = 4
∞∑
m=0

bm
jm

N
(e)
m

Sem(c, v). (3.15)

Similarly, for H polarization, using (Equation 3.13) and the asymptotic expression of Re(4)
m (c, u),

we obtain the expression for far field radiation

Hs
2z ≈ 4

exp(−jkρ+ jπ/4)√
kρ

∞∑
m=0

dm
jm

N
(e)
m

Sem(c, v) (3.16)

from which we extract the far field radiation pattern

P (h)(v) = 4
∞∑
m=0

dm
jm

N
(e)
m

Sem(c, v). (3.17)

3.4 Numerical results

We compare the far-field radiation pattern of (Equation 3.15) with the exact geometrical

optics solution presented in (12). For this purpose, we consider two ellipses with u1 = 0.5
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and u1 = 0.8. Each ellipse is represented normalized to its major axis 2a in Figure 5, which

emphasizes also the variation in eccentricity

χ =
d

2a
=

1
coshu1

(3.18)

by showing a comparison with a circle. The two ellipses have major axes with different lengths

so that we compare numerical results in terms of the ratio between the wavelength and the

major axis, i.e.

r =
2a
λ

=
d coshu1

λ
. (3.19)

Hence, the eccentricity controls the different behavior of the solutions corresponding to the

same value of the ratio r. The solution presented in (12) is formulated in terms of the power

emitted per unit angle, computed as

p(v) =
1− χ2

1 + χ2 − 2χ cos v
(3.20)

which corresponds to r =∞. Therefore the previous formula is compared with the magnitude

square of the far-field radiation pattern (Equation 3.15), i.e.

∣∣∣P (e)(v)
∣∣∣2 = 16

∣∣∣∣∣
∞∑
m=0

bm
jm

N
(e)
m

Sem(c, v)

∣∣∣∣∣
2

. (3.21)

For a magnetic line source, |P (h)(v)|2 is given by (Equation 3.21) with bm replaced by dm.
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Figure 6 shows the normalized polar plot of
∣∣P (e)(v)

∣∣2 for E polarization and the geometrical

optics solution p(v) for an ellipse with u1 = 0.5 and eccentricity χ = 0.8868. When the ellipse

is electrically small, r = 0.1 the far-field result is significantly different from the geometrical

optics solution because it is closer to an omni directional pattern. However, when the ellipse

is electrically larger, r = 1 and r = 3, a better agreement with the geometrical optics solution

is observed. Similar conclusions may be made for the results computed for H polarization and

reported in Figure 8 and Figure 9.

A second set of results is shown in Figure 7 for an ellipse with u1 = 0.8 and eccentricity

χ = 0.748. Similar to the previous case, the agreement with the geometrical optics solution

improves when the ellipse becomes electrically large. However, in this second case, when r = 3

the pattern
∣∣P (e)(v)

∣∣2 is much closer to the geometrical optics solution. We attribute this closer

agreement to the smaller value of eccentricity for the ellipse with u1 = 0.8. In fact, with a

smaller eccentricity, the shape of the second ellipse is closer to a circle (as evident in Figure 5)

and at each point of the ellipse the curvature is also smaller. Therefore, each point of the border

of the ellipse is locally flatter thus better approaching the geometrical optics limit.

Finally, all the numerical results correspond to the summation of the first 16 terms of

the series (Equation 3.21) and the evaluation of Mathieu function was accomplished using

an extension of the Fortran code described in (17) combined with the acceleration technique

(18). The series (Equation 3.21) converges slowly and one needs to stop the summation before

numerical instabilities occur.
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Figure 5. Normalized cross sections of the two ellipses considered in the numerical examples
and comparison with a circle.
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Figure 6. Comparison between the far-field pattern
∣∣P (e)(v)

∣∣2 given by (Equation 3.21) and
the geometrical optics solution p(v) of (Equation 3.20) computed for an ellipse with u1 = 0.5.

The values are normalized to their maxima and plotted on a linear scale. The results
represent: far-field pattern for r = 0.1 or c = 0.279 (dash-dot line); far-field pattern for r = 1

or c = 2.786 (dashed line); far-field pattern for r = 3 or c = 8.358 (thin solid line); and,
geometrical optics solution (thick solid line, r =∞).
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Figure 7. Comparison between the far-field pattern
∣∣P (e)(v)

∣∣2 given by (Equation 3.21) and
the geometrical optics solution p(v) of (Equation 3.20) computed for an ellipse with u1 = 0.8.

The values are normalized to their maxima and plotted on a linear scale. The results
represent: far-field pattern for r = 0.1 or c = 0.235 (dash-dot line); far-field pattern for r = 1

or c = 2.348 (dashed line); far-field pattern for r = 3 or c = 7.047 (thin solid line); and,
geometrical optics solution (thick solid line, r =∞).
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Figure 8. Comparison between the far-field pattern
∣∣P (h)(v)

∣∣2 and the geometrical optics
solution p(v) of (Equation 3.20) computed for an ellipse with u1 = 0.5. The values are

normalized to their maxima and plotted on a linear scale. The results represent: far-field
pattern for r = 0.1 or c = 0.235 (dash-dot line); far-field pattern for r = 1 or c = 2.348

(dashed line); far-field pattern for r = 3 or c = 7.047 (thin solid line); and, geometrical optics
solution (thick solid line, r =∞).
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Figure 9. Comparison between the far-field pattern
∣∣P (h)(v)

∣∣2 and the geometrical optics
solution p(v) of (Equation 3.20) computed for an ellipse with u1 = 0.8. The values are

normalized to their maxima and plotted on a linear scale. The results represent: far-field
pattern for r = 0.1 or c = 0.235 (dash-dot line); far-field pattern for r = 1 or c = 2.348

(dashed line); far-field pattern for r = 3 or c = 7.047 (thin solid line); and, geometrical optics
solution (thick solid line, r =∞).
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3.5 Conclusions

The exact electromagnetic solution for the two-dimensional problem of a DNG lens fed by

a line source located at one focal point was compared with the geometrical optics solution of

the same problem. The numerical comparison show that the agreement with the geometrical

optics solution improves for electrically large ellipses and, for the same value of the ratio r, the

agreement is better when the ellipse has a smaller eccentricity.

This solution extends also the list of exact canonical solutions of boundary value electro-

magnetic scattering problems involving metamaterials.



CHAPTER 4

ELECTROMAGNETIC SCATTERING BY A SEMIELLIPTICAL

TRENCH FILLED WITH DNG METAMATERIAL

4.1 INTRODUCTION

An exact solution to boundary-value problems of plane wave scattering by a semielliptical

trench filled with double negative (DNG) metamaterial is presented. The DNG material has

real and negative refractive index. The medium surrounding the cylinder is double-positive

(DPS) having real but positive refractive index. Both media have the same intrinsic impedance

value (Z1 = Z2).

4.2 GEOMETRY OF THE PROBLEM

A cross-sectional view of the structure in a plane z = constant is shown in Figure 10.

Outside the semielliptical trench u = u1, the electric permittivity is ε and the magnetic

permeability is µ, whereas inside the trench the same quantities become−ε and−µ, respectively.

The wave vector is k =
√
εµ outside the ellipse and k = −√εµ inside the ellipse. We define

a dimensionless parameter c = kd/2 in the DPS material outside the trench and −c inside the

trench of DNG material. The intrinsic impedance Z =
√
µ/ε is the same inside and outside

the trench.

32
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Figure 10. Geometry of the problem.

4.3 PLANE WAVE INCIDENCE

4.3.1 E-polarization

Consider a plane wave incident perpendicularly to the cylinder axis and polarized parallel

to z-axis , with primary electric field

Ei = ẑEi1z. (4.1)
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The incident field will be same as in Equation 2.2

Ei1z =
√

8π
∞∑
m=0

jm

[
1

N
(e)
m

Re(1)
m (c, u)Sem(c, v)Sem(c, ϕ0) +

1

N
(o)
m

Ro(1)
m (c, u)Som(c, v)Som(c, ϕ0)

]
.

(4.2)

The total electric field in medium 1 can be written as

E1z = Ei1z + Er1z + Ed1z (4.3)

where Er1z is the reflected field by the metallic plane at y = 0 and Ed1z is the diffracted field by

the trench (1). Reflected electric field can be written by using method of images as,

Er1z = −
√

8π
∞∑
m=0

jm

[
1

N
(e)
m

Re(1)
m (c, u)Sem(c, v)Sem(c, ϕ0)− 1

N
(o)
m

Ro(1)
m (c, u)Som(c, v)Som(c, ϕ0)

]

(4.4)

hence,

Ei1z + Er1z = 2
√

8π
∞∑
m=0

jm

N
(o)
m

Ro(1)
m (c, u)Som(c, v)Som(c, ϕ0). (4.5)

The diffracted field can be written as,
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Edz =
√

8π
∞∑
m=0

cm
jm

N
(o)
m

Ro(4)
m (c, u)Som(c, v)Som(c, ϕ0). (4.6)

The total electric field inside the trench is

E2z =
√

8π
∞∑
m=0

jm
am

N
(o)
m

[
Ro(1)

m (−c, u)− Ro(1)
m (−c, u1)

Ro(4)
m (−c, u1)

Ro(4)
m (−c, u)

]
Som(c, v)Som(c, ϕ0). (4.7)

We can find the modal coefficients by applying the boundary conditions. The tangential

component of the total electric and magnetic fields in both media are equal for u = 0

(E1z)u=0 = (E2z)u=0, (H1v)u=0 = −(H2v)u=0. (4.8)

Applying these boundary conditions yields the modal coefficients am and cm as

am
Ro(1)

m (−c, u1)

Ro(4)
m (−c, u1)

Ro(4)
m (−c, 0) + cmRo(4)

m (c, 0) = 0, (4.9)
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am

[
Ro(1)

m
′(−c, 0)− Ro(1)

m (−c, u1)

Ro(4)
m (−c, u1)

Ro(4)
m
′(−c, 0)

]
− cmRo(4)

m
′(c, 0) = 2Ro(1)

m
′(−c, 0) (4.10)

where ′ means ∂
∂u . Hence

cm =
2

∆m

Ro(1)
m (−c, u1)

Ro(4)
m (−c, u1)

Ro(4)
m (−c, 0)Ro(1)

m
′(c, 0) (4.11)

where

∆m =
Ro(1)

m (−c, u1)

Ro(4)
m (−c, u1)

[
Ro(4)

m (c, 0)Ro(4)
m
′(−c, 0)− Ro(4)

m (−c, 0)Ro(4)
m
′(c, 0)

]
−

Ro(4)
m (c, 0)Ro(1)

m
′(−c, 0). (4.12)

Detailed procedure finding the modal coefficients am and cm is given in Appendix-C.

We can obtain the bistatic RCS as

σ(e)(φ) =
4
k

∣∣∣P (e)(φ)
∣∣∣2 =

2λ
π

∣∣∣P (e)(φ)
∣∣∣2 (4.13)

where the far field coefficient P (e)(φ) is
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P (e)(φ) = 2π
∞∑
m=0

cm
(−1)m

N
(o)
m

Som(c, v)Som(c, ϕ0). (4.14)

4.3.2 H-polarization

The analysis is similar to that for E-polarization. The incident magnetic field is

H i
1z = exp[jk(x cosϕ0 + y sinϕ0)]

=
√

8π
∞∑
m=0

[
jm

N
(e)
m

Re(1)
m (c, u)Sem(c, v)Sem(c, ϕ0) +

jm

N
(o)
m

Ro(1)
m (c, u)Som(c, v)Som(c, ϕ0)

]
.

(4.15)

The total magnetic field in medium 1 is

H1z = H i
1z +Hr

1z +Hd
1z. (4.16)

By image theory,

Hr
1z =

√
8π

∞∑
m=0

[
jm

N
(e)
m

Re(1)
m (c, u)Sem(c, v)Sem(c, ϕ0)− jm

N
(o)
m

Ro(1)
m (c, u)Som(c, v)Som(c, ϕ0)

]
.

(4.17)
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Hence,

H i
1z +Hr

1z = 2
√

8π
∞∑
m=0

jm

N
(e)
m

Re(1)
m (c, u)Sem(c, v)Sem(c, ϕ0). (4.18)

The diffracted magnetic field can be written,

Hd
1z =

√
8π

∞∑
m=0

dm
jm

N
(e)
m

Re(4)
m (c, u)Sem(c, v)Sem(c, ϕ0). (4.19)

The total magnetic field in medium 2 is

H2z =
√

8π
∞∑
m=0

jm
bm

N
(e)
m

[
Re(1)

m (−c, u)− Re(1)
m
′(−c, u1)

Re(4)
m
′(−c, u1)

Re(4)
m (−c, u)

]
Sem(c, v)Sem(c, ϕ0).

(4.20)

The boundary conditions are

(H1z)u=0 = (H2z)u=0, (E1v)u=0 = −(E2v)u=0. (4.21)

The modal coefficients can be found from
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bm

[
Re(1)

m (−c, 0)− Re(1)
m
′(−c, u1)

Re(4)
m
′(−c, u1)

Re(4)
m (−c, 0)

]
− dmRe(4)

m (c, 0) = 2Re(1)
m (c, 0), (4.22)

bm
Re(1)

m
′(−c, u1)

Re(4)
m
′(−c, u1)

Re(4)
m
′(−c, 0) + dmRe(4)

m
′(c, 0) = 0. (4.23)

These equations will give us bm and dm

dm =
2

Γm
Re(1)

m
′(−c, ξ1)

Re(4)
m
′(−c, ξ1)

Re(4)
m
′(−c, 0)Re(1)

m (c, 0) (4.24)

where

Γm =
Re(1)

m
′(−c, u1)

Ro(4)
m
′(−c, u1)

[
Re(4)

m (−c, 0)Re(4)
m
′(c, 0)− Re(4)

m (c, 0)Re(4)
m
′(−c, 0)

]
− Re(4)

m
′(c, 0)Re(1)

m (−c, 0).

(4.25)

The normalized bistatic RCS is

σ(h)(φ)
λ

=
2
π

∣∣∣P (h)(φ)
∣∣∣2 (4.26)

where the far field coefficient P (h)(φ) is
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P (h)(φ) = 2π
∞∑
m=0

dm
(−1)m

N
(e)
m

Sem(c, v)Sem(c, ϕ0). (4.27)

4.4 NUMERICAL RESULTS

The scattering effect of trench can be investigated easily by looking at the normalized

bistatic RCS as given by Equation 4.13 and Equation 4.26.

The value of c is controlled by the frequency and the focal distance d

c =
kd

2
=
πd

λ
. (4.28)

Fig Figure 11 and Figure 12 show the polar plots for two different u1 values. The incidence

angle is ϕ0 = π/4 and u1 = 0.5 in Fig Figure 11 and u1 = 0.75 in Fig Figure 12. To analyze

the effect of c , we have used 4 different c values: c = 0.5, c = 0.75, c = 1, c = 2.

Similarly, we can plot the normalized RCS for H-polarization. Again, we use the incidence

angle ϕ0 = π/4 and u1 = 0.5 in Fig Figure 13 and u1 = 0.75 in Fig Figure 14. To analyze the

effect of c , we have used 4 different c values: c = 0.5, c = 0.75, c = 1, c = 2 again.
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Figure 11. Normalized RCS for E-polarization with u1 = 0.5 and c = 0.5, 0.75, 1.0, 2.0

Figure 12. Normalized RCS for E-polarization with u1 = 0.75 and c = 0.5, 0.75, 1.0, 2.0
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Figure 13. Normalized RCS for H-polarization with u1 = 0.5 and c = 0.5, 0.75, 1.0, 2.0

Figure 14. Normalized RCS for H-polarization with u1 = 0.75 and c = 0.5, 0.75, 1.0, 2.0



CHAPTER 5

RADIATION OF A LINE SOURCE BY A SLOTTED SEMIELLIPTICAL

TRENCH FILLED WITH DNG METAMATERIAL

5.1 INTRODUCTION

The geometry analyzed in this chapter consist of a metallic trench, or channel, of semiellip-

tical cross section slotted along the inter focal strip and flush-mounted under a metallic infinite

plane. The trench is filled with double-negative metamaterial, whose electric permittivity and

permeability are real and of opposite sign of the corresponding parameters of the material (e.g.

air) occupying the half-space above the trench.

5.2 GEOMETRY OF THE PROBLEM

A cross-sectional view of the structure in a plane z = constant is shown in Figure 20.

Outside the semielliptical trench u = u1, the electric permittivity is ε and the magnetic

permeability is µ, whereas inside the trench the same quantities become−ε and−µ, respectively.

The wave vector is k =
√
εµ outside the ellipse and k = −√εµ inside the ellipse. We define a

dimensionless parameter c = kd/2 in the DPS material outside the trench and −c inside the

trench of DNG material. The intrinsic impedance Z =
√
µ/ε is the same inside and outside

the trench.

43
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Figure 15. Geometry of the problem.

5.3 LINE SOURCE INCIDENCE

5.3.1 E-Polarization

Consider an electric line source parallel to the z-axis and located at (x0, y0) ≡ (u0, v0) ≡

(ξ0, η0) whose primary electric field is

Ei = ẑEiz = ẑH
(2)
0 (kR) (5.1)
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where

R =
√

(x− x0)2 + (y − y0)2 (5.2)

is the distance between the line source and the observation point (x, y) ≡ (u, v). The incident

field may be expanded in a series of elliptic-cylinder functions (11):

Ei1z = H
(2)
0 (kR) =4

∞∑
m=0

[
1

N
(e)
m

Re(1)
m (c, u<)Re(4)

m (c, u>)Sem(c, v0)Sem(c, v)+

1

N
(o)
m

Ro(1)
m (c, u<)Ro(4)

m (c, u>)

]
Som(c, v0)Som(c, v) (5.3)

where u< (u>) is the smaller (larger) between u and u0.

Let us first examine the case of a line source in the half-space above the channel (i.e.,

0 < v0 < π).

The total field in the half-space y ≥ 0 is

E1z = Ei1z + Er1z + Ed1z (5.4)

where Er1z is the field reflected by the infinite metal plane at y = 0 when no channel is present,

and Ed1z is the diffracted field due to the presence of the cavity-backed slot By considering the

image of the line source into the ground plane, it is found that

Ei1z + Er1z = H
(2)
0 (kR)−H(2)

0 (kR̃) (5.5)
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where

R̃ =
√

(x− x0)2 + (y + y0)2 (5.6)

is the distance between the observation point. As a result we can write,

Ei1z + Er1z = 8
∞∑
m=0

1

N
(o)
m

Ro(1)
m (c, u<)Ro(4)

m (c, u>)Som(c, v0)Som(c, v). (5.7)

The diffracted field Ed1z in y ≥ 0 and the total electric field inside the trench are given by,

Ed1z = 4
∞∑
m=0

am

N
(o)
m

Ro(4)
m (c, u0)Ro(4)

m (c, u)Som(c, v0)Som(c, v), (5.8)

E2z =4
∞∑
m=0

cm

N
(o)
m

Ro(4)
m (−c, u0)

[
Ro(1)

m (−c, u)− Ro(1)
m (−c, u1)

Ro(4)
m (−c, u1)

Ro(4)
m (−c, u)

]
×

Som(−c, v0)Som(−c, v). (5.9)

The unknown modal coefficients am and cm are determined by imposing the continuity of

the total tangential electric and magnetic fields across the interface (ξ = 1) ≡ (u = 0).

cm =
−2Ro(4)

m (c, u0)Ro(4)
m (c, 0)Ro(1)′

m (c, 0)
∆m

, (5.10)

am =
−2Ro(4)

m (−c, u0)Ro(4)
m (−c, 0)Ro(1)′

m (c, 0)
∆m

Ro(1)
m (−c, u1)

Ro(4)
m (−c, u1)

, (5.11)
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where

∆m =Ro(4)
m (−c, u0)

[
Ro(4)

m (c, 0)Ro(1)′
m (−c, 0)− Ro(1)

m (−c, u1)

Ro(4)
m (−c, u1)

Ro(4)
m (c, 0)Ro(4)′

m (−c, 0)+

Ro(1)
m (−c, u1)

Ro(4)
m (−c, u1)

Ro(4)′
m (c, 0)Ro(4)

m (−c, 0)

]
. (5.12)

The behavior of the field scattered by the DNG cavity may be examined at large distance by

considering

Ed1z|ξ→∞,Im(c)<0 ≈
e−jkρ√
kρ

P (e)(φ;u0, v0), (5.13)

where

P (e)(φ;u0, v0) = 4
∞∑
m=0

jm

N
(o)
m

amRo(4)
m (c, u0)Som(c, v0)Som(c, φ) (5.14)

is a far-field coefficients that depends not only on the angle of observation φ but also on the

source location (u0, v0).

Let us now consider the case of a line source located inside the channel (u0 < u1, π < v0 <

2π). The total electric field inside the channel is

E2z = Ei2z + Er2z + Es2z (5.15)
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where Ei2z is the incident field given by (Equation 5.3). Er2z is the reflected field when no

slot is present. As a result Ei2z + Er2z is still given by (Equation 5.7). However, Es2z contains a

linear combination of Ro(1)
m (−c, u) and Ro(4)

m (−c, u). The infinite series for the total field E1z

in y > 0 must satisfy the radiation condition, hence contains only Ro(4)
m (c, u). The total fields

for both media are

E2z =4
∞∑
m=0

1

N
(o)
m

[
2Ro(1)

m (−c, u<)Ro(4)
m (−c, u>) + emRo(1)

m (−c, u) + fmRo(4)
m (−c, u)

]
×

Som(c, v0)Som(c, v), (5.16)

E1z = 4
∞∑
m=0

gm

N
(o)
m

Ro(4)
m (c, u)Som(c, v0)Som(c, v). (5.17)

Imposing the boundary conditions will give us the modal coefficients em and fm as,

em =
∆em

∆
, (5.18)

fm =
∆fm

∆
, (5.19)

gm = −Ro(4)
m (−c, 0)

Ro(4)
m (c, 0)

fm, (5.20)

where
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∆em =2Ro(4)
m (−c, u1)

[
−Ro(1)

m (−c, u0)

(
Ro(4)′

m (−c, 0)− Ro(4)
m (−c, 0)

Ro(4)
m (c, 0)

)

+Ro(1)′
m (−c, 0)Ro(4)

m (−c, u0)
]
, (5.21)

∆fm = −2Ro(1)′
m (−c, 0)

[
Ro(1)

m (−c, u1)Ro(4)
m (−c, u0)− Ro(1)

m (−c, u0)Ro(4)
m (−c, u1)

]
, (5.22)

∆ = Ro(1)
m (−c, u1)

[
Ro(4)′

m (−c, 0)− Ro(4)
m (−c, 0)

Ro(4)
m (c, 0)

Ro(4)′
m (c, 0)

]
− Ro(1)′

m (−c, 0)Ro(4)
m (−c, u1).

(5.23)

5.3.2 H-Polarization

The analysis is similar to that for E-Polarization. Consider an magnetic line source parallel

to the z-axis and located at (x0, y0) ≡ (u0, v0) ≡ (ξ0, η0), Magnetic field is given by;

H i
1z =4

∞∑
m=0

[
1

N
(e)
m

Re(1)
m (c, u<)Re(4)

m (c, u>)Sem(c, v0)Sem(c, v) +
1

N
(o)
m

Ro(1)
m (c, u<)Ro(4)

m (c, u>)

]

Som(c, v0)Som(c, v) (5.24)
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where u< (u>) is the smaller (larger) between u and u0. The magnetic source located outside

of the trench so u< = u and u> = u0. The total magnetic field in the half-space y ≥ 0 is

H1z = H i
1z +Hr

1z +Hd
1z (5.25)

H1z = 4
∞∑
m=0

1

N
(e)
m

[
2Re(1)

m (c, u<)Re(4)
m (c, u>) + ãmRe(4)

m (c, u0)Re(4)
m (c, u)

]
Sem(c, v0)Sem(c, v).

(5.26)

The total magnetic field inside the trench is given by,

H2z = 4
∞∑
m=0

b̃m

N
(e)
m

Re(4)
m (−c, u0)

[
Re(1)

m (−c, u)− Re(1)
m
′(−c, u1)

Re(4)
m
′(−c, u1)

Re(4)
m (−c, u)

]
Sem(c, v0)Sem(c, v).

(5.27)

Modal coefficients ãm and b̃m can be found by imposing the boundary conditions.

ãm =
∆ãm

∆
, (5.28)

b̃m =
∆b̃m

∆
(5.29)

where
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∆ãm = 2
Re(4)

m (−c, u0)

Re(4)
m (c, u0)

[(
Re(1)

m (−c, 0)− Re(1)
m
′(−c, u1)

Re(4)
m
′(−c, u1)

Re(4)
m (−c, 0)

)
Re(1)

m
′(c, 0) −(

Re(1)
m
′(−c, 0)− Re(1)

m
′(−c, u1)

Re(4)
m
′(−c, u1)

Re(4)
m
′(−c, 0)

)
Re(1)

m (c, 0)

]
, (5.30)

∆b̃m = 2
[
Re(1)

m (c, 0)Re(4)
m
′(c, 0)− Re(1)

m
′(c, 0)Re(4)

m (c, 0)
]
, (5.31)

∆ =
Re(4)

m (−c, u0)

Re(4)
m (c, u0)

[(
Re(1)

m
′(−c, 0)− Re(1)

m
′(−c, u1)

Re(4)
m
′(−c, u1)

Re(4)
m
′(−c, 0)

)
Re(4)

m (c, 0)−(
Re(1)

m (−c, 0)− Re(1)
m
′(−c, u1)

Re(4)
m
′(−c, u1)

Re(4)
m (−c, 0)

)
Re(4)

m
′(c, 0)

]
. (5.32)

5.4 NUMERICAL RESULTS

The scattering effect of trench can be easily investigated by looking at the square magnitude

of the far-field coefficient given by (Equation 5.14)

σ(e)(φ;u0, v0) =
∣∣∣P (e)(φ;u0, v0)

∣∣∣2 . (5.33)
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The value of c is controlled by the frequency and the focal distance d:

c =
kd

2
=
πd

λ
(5.34)

Figure 16 shows the far-field behavior when we move the line source in v-axis. Figure 18

and Figure 19 show the polar plots for four different u1 and u0 values. The location of the line

source is (u0, v0) where we have used v0 = π/4 and c = 1. To analyze the effect of c, we have

used four different c values: c = 1, 1.5, 2 and 4 in Figure 17.

Details of the computation of Mathieu functions are given in (17; 18).
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Figure 16. Far-field behavior, given by (Equation 5.14) for E-polarization with
v0 = 1o, 30o, 45o, 90o, u0 = 1, u1 = 0.5 and c = 1.

Figure 17. Far-field behavior, given by (Equation 5.14) for E-polarization with
v0 = 45o, u0 = 1, u1 = 0.5 and c = 1, 1.5, 2, 4.
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Figure 18. Far-field behavior, given by (Equation 5.14)for E-polarization with
v0 = 45o, u0 = 1, u1 = 0.25, 0.5, 1.0, 1.5 and c = 1.

Figure 19. Far-field behavior, given by (Equation 5.14) for E-polarization with
v0 = 45o, u0 = 0.25, 0.5, 1.0, 1.5, u1 = 0.25 and c = 1.



CHAPTER 6

ELECTROMAGNETIC RADIATION AND SCATTERING FOR A GAP

IN A CORNER BACKED BY A CAVITY FILLED WITH DNG

METAMATERIAL

6.1 INTRODUCTION

We consider the two-dimensional geometry of Figure 20 where a partially covered cavity is

located at the corner of two metallic walls perpendicular to each other. The cavity has a cross

section that is a quarter ellipse, and is slotted from the focus to the center of the ellipse. The

cavity is partially covered by a thin metallic strip that extends from the focal line away from the

central line of the ellipse, as part of the metallic wall under which the cavity is flush-mounted.

The cavity is filled with a double-negative lossless metamaterial whose electric permittivity and

magnetic permeability are real and opposite to the corresponding parameters of the quarter-

space above the cavity. Causality requires that the index of refraction of the DNG material be

negative and its intrinsic impedance positive.

Two types of sources are considered. One is a plane wave with arbitrary direction of in-

cidence in the quarter space (x > 0, y > 0) and polarized with the electric or the magnetic

field parallel to the z axis. The other one is an electric or magnetic line source parallel to

the z axis. This two-dimensional boundary-value problem is solved exactly, in the frequency

domain. In elliptic cylindrical coordinates, the primary and secondary field components are
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expanded in infinite series of eigenfunctions that are products of radial and angular Mathieu

functions, where the Stratton-Chu normalization is adopted (see e.g. (10; 19; 11)). Since the

angular Mathieu functions are the same for positive and negative refractive index, it is possible

to determine analytically the modal expansion coefficients of the secondary fields, by imposing

the boundary conditions.

The only two-dimensional problem involving radiation and scattering by a cavity flush-

mounted under a metallic plane for which an exact analytical solution exists is that of a slotted

semielliptical channel (20; 21). A related geometry is the cavity-backed gap in a corner (22; 6).

These geometries involve materials inside and outside the channel that are isorefractive to each

other. Recently, the analysis performed in (20; 21) was extended to the case of a trench filled

with DNG metamaterial (23; 24). The present work is an extension of the geometry analyzed

in (22; 6) to the case of a corner cavity filled with DNG metamaterial and presented in (25).

Numerical results are shown for fields both inside and outside the cavity, for several cavity

configurations and different primary sources.

6.2 GEOMETRY OF THE PROBLEM

A cross-sectional view of the structure in a plane z = constant is shown in Figure 20. It is

identical to that considered in (6), except for the material filling the trench.
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Figure 20. Geometry of the problem.
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The metallic walls OA(x = 0) and OE(y = 0) are perpendicular to each other. The trench

OBC is flush-mounted under the horizontal wall OE, and its cross-section is a quarter ellipse

with semi-major axis OC and semi-minor axis OB. The wall OE is slotted along the slit of

width OD equal to half the inter focal distance d of the elliptical trench. The trench is partially

covered by the thin metal baffle DC.

Outside the cavity, the electric permittivity is ε and the magnetic permeability is µ, whereas

inside the cavity the same quantities become −ε and −µ, respectively.

The wave vector is k =
√
εµ outside the cavity and −√εµ inside the cavity. We define a

dimensionless parameter c = kd/2 in the material outside the cavity and −c inside the cavity

filled with DNG material. The intrinsic impedance Z =
√
µ/ε is the same inside and outside

the cavity. The fact that in a DNG metamaterial the signs of the square roots must be chosen

so that the refractive index is negative but the intrinsic impedance is positive is dictated by

causality, not just by the radiation condition. The opposite choice, i.e. a positive refractive

index and a negative intrinsic impedance, would therefore be physically incorrect (see (15)).

6.3 PLANE WAVE INCIDENCE

6.3.1 E-polarization

Consider a plane wave incident perpendicularly to the trench axis and polarized parallel to

z-axis, with primary electric field

Ei = ẑEi1z = ẑ exp[jk(x cosϕ0 + y sinϕ0)] (6.1)
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Incident field will be the same as in Equation 2.2

Ei1z =
√

8π
∞∑
m=0

jm

[
1

N
(e)
m

Re(1)
m (c, u)Sem(c, v)Sem(c, ϕ0) +

1

N
(o)
m

Ro(1)
m (c, u)Som(c, v)Som(c, ϕ0)

]
.

(6.2)

The total electric field in medium 1 can be written as the sum of a geometric-optics field

Ego1z due to the corner reflector without the trench and a diffracted field Ed1z due to the presence

of the trench

E1z = Ego1z + Ed1z. (6.3)

The geometric-optics field is the sum of four terms

Ego1z = Ei1z + EOE1z + EOA1z + EOA,OE1z (6.4)

where, referring to Figure 21, the field EOE1z corresponds to a wave with incidence angle 2π−ϕ0

multiplied by a reflection coefficient −1, the field EOA1z corresponds to a wave with incidence

angle π − ϕ0 multiplied by a reflection coefficient −1, and the field EOA,OE1z corresponds to a

doubly reflected wave, i.e., a wave with incidence angle π + ϕ0 and reflection coefficient 1.

When the even and odd functions of ϕ0 are separated out in the various field components,

it is found that the overall geometric-optics field is
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Figure 21. Geometric-optics contribution for plane-wave incidence.

Ego1z = 8
√

2π
∞∑
l=1

(−1)l

N
(o)
2l

Ro(1)
2l (c, u)So2l(c, v)So2l(c, ϕ0). (6.5)

The diffracted field can be written as

Ed1z =8
√

2π
∞∑
l=1

(−1)l

N
(o)
2l

alRo(4)
2l (c, u)So2l(c, v)So2l(c, ϕ0). (6.6)
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The total electric field inside the trench is

E2z = 8
√

2π
∞∑
l=1

(−1)l

N
(o)
2l

bl

[
Ro(4)

2l (−c, u1)

Ro(1)
2l (−c, u1)

Ro(1)
2l (−c, u)− Ro(4)

2l (−c, u)

]
So2l(c, v)So2l(c, ϕ0).

(6.7)

The modal coefficients can be found by applying the boundary conditions. The tangential

component of the total electric and magnetic fields in both media are equal across u = 0

E1z|u=0 = E2z|u=0 , H1v|u=0 = − H2v|u=0 . (6.8)

Therefore, applying the boundary conditions yields the modal coefficients al and bl as

al = −
Ro(4)

2l (−c, 0)Ro(1)′

2l (c, 0)
∆1

, (6.9)

bl = −
Ro(1)′

2l (c, 0)Ro(4)
2l (c, 0)

∆1
, (6.10)

where

∆1 = Ro(4)
2l (−c, 0)Ro(1)′

2l (−c, 0)
Ro(4)

2l (−c, u1)

Ro(1)
2l (−c, u1)

+ Ro(4)′

2l (c, 0)Ro(4)
2l (−c, 0)− Ro(4)

2l (c, 0)Ro(4)′

2l (−c, 0).

(6.11)
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Detailed calculations of al and bl are given in Appendix-D. Within the quarter space (x >

0, y > 0), the bistatic RCS σ(e)(φ) is, in general, given by ( see e.g. (11))

σ(e)(φ) = lim
ρ→∞

2πρ
|Es|
|Ei|

(6.12)

and in the case of this partially covered trench it becomes

σ(e)(φ)
λ

= 128π

∣∣∣∣∣
∞∑
l=1

al

N
(o)
2l

So2l(c, v)So2l(c, ϕ0)

∣∣∣∣∣
2

. (6.13)

6.3.2 H-polarization

The analysis is similar to that for E-polarization, hence only the results are given. The

incident magnetic field is

H i = ẑH i
1z, (6.14)

H i
1z = exp[jk(x cosϕ0 + y sinϕ0)] =

√
8π

∞∑
m=0

[
jm

N
(e)
m

Re(1)
m (c, u)Sem(c, v)Sem(c, ϕ0) +

jm

N
(o)
m

Ro(1)
m (c, u)Som(c, v)Som(c, ϕ0)

]
. (6.15)

The total magnetic field in medium-1 is

H1z = Hgo
1z +Hd

1z, (6.16)
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where the geometric-optics field Hgo
1z is

Hgo
1z =8

√
2π

∞∑
l=0

(−1)l

N
(e)
2l

Re(1)
2l (c, u)Se2l(c, v)Se2l(c, ϕ0) (6.17)

corresponding to the sum of four plane waves that are equivalent to those of Figure 21, provided

that the electric field is replaced with a z directed magnetic field and all reflection coefficients

are 1. Only the even Mathieu functions of even order appear because of the boundary conditions

of the two metallic walls. The diffracted field due to the slotted trench is

Hd
1z = 8

√
2π

∞∑
l=0

(−1)l

N
(e)
2l

clRe(4)
2l (c, u)Se2l(c, v)Se2l(c, ϕ0). (6.18)

the field inside the trench is

H2z =8
√

2π
∞∑
l=0

(−1)l

N
(e)
2l

dl

[
Re(4)′

2l (−c, u1)

Re(1)′

2l (−c, u1)
Re(1)

2l (−c, u)− Re(4)
2l (−c, u)

]
Se2l(c, v)Se2l(c, ϕ0)

(6.19)

where the prime means the derivative with respect to u. The boundary conditions are

H1z|u=0 = H2z|u=0 , (6.20)

E1v|u=0 = − E2v|u=0 , (6.21)
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which yield the expansion coefficients

cl = −
Re(4)′

2l (−c, 0)Re(1)
2l (c, 0)

∆2
, (6.22)

dl =
Re(4)′

2l (c, 0)Re(1)
2l (c, 0)

∆2
, (6.23)

where

∆2 = Re(4)
2l (c, 0)Re(4)′

2l (−c, 0) + Re(4)′

2l (c, 0)

[
Re(4)′

2l (−c, u1)

Re(1)′

2l (−c, u1)
Re(1)

2l (−c, 0)− Re(4)
2l (−c, 0)

]
. (6.24)

The bistatic RCS σ(h)(φ) of the partially covered trench is

σ(h)(φ)
λ

= 128π

∣∣∣∣∣
∞∑
l=1

cl

N
(e)
2l

Se2l(c, v)Se2l(c, ϕ0)

∣∣∣∣∣
2

. (6.25)

6.4 LINE SOURCE INCIDENCE

6.4.1 E-polarization

Consider an electric line source parallel to the z-axis and located at (x0, y0) ≡ (u0, v0) whose

primary electric field is

Ei = ẑEiz = ẑH
(2)
0 (kR) (6.26)



65

where

R =
√

(x− x0)2 + (y − y0)2 (6.27)

is the distance between the line source and the observation point (x, y) ≡ (u, v). The incident

field may be expanded in a series of elliptic-cylinder functions (11)

Ei1z = H
(2)
0 (kR) = 4

∞∑
m=0

[
1

N
(e)
m

Re(1)
m (c, u<)Re(4)

m (c, u>)Sem(c, v)Sem(c, v0)

+
1

N
(o)
m

Ro(1)
m (c, u<)Ro(4)

m (c, u>)Som(c, v)Som(c, v0)

]
, (6.28)

where u< (u>) is the smaller (larger) between u and u0.

In the quarter space (x ≥ 0, y ≥ 0) outside the trench, the total electric field E1z may be

written as the sum of the diffracted field and the geometrical-optics field. The geometrical-

optics field Ego1z is the total field that would be present in the absence of the trench and is the

sum of the fields due to four line sources, i.e., the primary line source and its three images.

Ego1z =H(2)
0 (kR)−H(2)

0 (kR1)−H(2)
0 (kR2) +H

(2)
0 (kR3) (6.29)
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where

R1 =
√

(x− x0)2 + (y + y0)2, (6.30)

R2 =
√

(x+ x0)2 + (y − y0)2, (6.31)

R3 =
√

(x+ x0)2 + (y + y0)2. (6.32)

Referring to Figure 22, the image line S1 is located at (x0,−y0) ≡ (u0, 2π−ϕ0), the image line

S2 at (−x0, y0) ≡ (u0, π − ϕ0), and the image line S3 at (−x0,−y0) ≡ (u0, π + ϕ0).

By expanding the Hankel functions in series of elliptic-cylinder functions and utilizing prop-

erties of the angular Mathieu functions, it can be found that

Ego1z =16
∞∑
l=0

1

N
(o)
2l

Ro(1)
2l (c, u<)Ro(4)

2l (c, u>)So2l(c, v)So2l(c, v0), (6.33)

which involves only odd Mathieu functions of even order. The diffracted field Ed1z due to the

presence of the trench in (x ≥ 0, y ≥ 0) and the total field inside the trench are given by, on

consideration of the boundary conditions

Ed1z = 16
∞∑
l=1

el

N
(o)
2l

Ro(4)
2l (c, u0)Ro(4)

2l (c, u)So2l(c, v)So2l(c, v0) (6.34)

E2z = 16
∞∑
l=1

fl

N
(o)
2l

Ro(4)
2l (−c, u0)

[
Ro(4)

2l (−c, u1)

Ro(1)
2l (−c, u1)

Ro(1)
2l (−c, u)− Ro(4)

2l (−c, u)

]
. (6.35)
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Figure 22. Geometric-optics contribution for line-source excitation.

The magnetic field is still related to the electric field by (Equation 1.4). The unknown modal

coefficients el and fl are determined by imposing the continuity of the total tangential electric

and magnetic fields across the interface ξ = 1 or u = 0, yielding

el = −Ro(4)
2l (−c, u0)Ro(4)

2l (−c, o)Ro(1)′

2l (c, 0)
Ro(4)

2l (c, u0)
∆3

, (6.36)

fl = −
Ro(1)′

2l (c, 0)Ro(4)
2l (c, u0)Ro(4)

2l (c, 0)Ro(4)
2l (c, u0)

∆3
, (6.37)
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where

∆3 =Ro(4)
2l (c, u0)Ro(4)

2l (−c, u0)
[
Ro(4)

2l (c, 0)

(
Ro(4)

2l (−c, u1)

Ro(1)
2l (−c, u1)

Ro(1)′

2l (−c, 0)− Ro(4)′

2l (−c, 0)

)
+

Ro(4)
2l (−c, 0)Ro(4)′

2l (c, 0)
]
. (6.38)

The behavior of the field scattered by the DNG cavity may be examined at large distance by

considering

Ed1z|u→∞,Im(c)<0 ≈
e−jkρ+jπ/4√

kρ
P (e)(φ;u0, v0), (6.39)

where

P (e)(φ;u0, v0) = 16
∞∑
l=1

(−1)l

N
(o)
2l

elRo(4)
2l (c, u0)So2l(c, v)So2l(c, v0) (6.40)

is a far-field coefficient that depends not only on the angle of observation φ but also on the

source location (u0, v0). In the derivation of (Equation 6.40), Ro(4)
2l (c, u) in (Equation 6.34) was

evaluated with an asymptotic expansion for the Mathieu radial function.
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6.4.2 H-polarization

The derivations are similar to those for E-polarization, hence only the results are given.

For a magnetic line source parallel to the z-axis and located outside the trench at (x0, y0) ≡

(u0, v0) ≡ (ξ0, η0) the primary magnetic field is

H i = ẑH i
z = ẑH

(2)
0 (kR). (6.41)

Once again, the total magnetic field in medium-1, H1z, may be written as the sum of diffracted

field and the geometrical-optics field. The geometrical-optics field Hgo
1z is the total field that

would be present in the absence of the trench and is the sum of the fields due to four line

sources, i.e., the primary line source and its three images.

Hgo
1z =H(2)

0 (kR)−H(2)
0 (kR1)−H(2)

0 (kR2) +H
(2)
0 (kR3) (6.42)

Hgo
1z = 16

∞∑
l=0

l

N
(e)
2l

Re(1)
2l (c, u<)Re(4)

2l (c, u>)Se2l(c, v)Se2l(c, v0). (6.43)
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The diffracted field Hd
1z due to the presence of the trench in (x ≥ 0, y ≥ 0) and the total

field inside the trench are given by

Hd
1z =16

∞∑
l=0

gl

N
(e)
2l

Re(4)
2l (c, u0)Re(4)

2l (c, u)Se2l(c, v)Se2l(c, v0), (6.44)

H2z =16
∞∑
l=0

hl

N
(e)
2l

Re(4)
2l (−c, u0)

[
Re(4)′

2l (−c, u1)

Re(1)′

2l (−c, u1)
Re(1)

2l (−c, u)− Re(4)
2l (−c, u)

]
×

Se2l(−c, v)Se2l(−c, v0). (6.45)

The electric field is related to the magnetic field by (Equation 1.5). The unknown modal

coefficients gl and hl are determined by applying the boundary condition across u = 0, yielding

gl =− Re(1)
2l (c, 0)Re(4)

2l (c, u0)Re(4)
2l (−c, u0)

Re(4)′

2l (−c, 0)
∆4

, (6.46)

hl =
Re(4)′

2l (c, 0)Re(4)
2l (c, u0)Re(1)

2l (c, 0)Re(4)
2l (c, u0)

∆4
, (6.47)

where

∆4 =Re(4)
2l (c, u0)Re(4)

2l (−c, u0)

[
Re(4)′

2l (c, 0)

(
Re(4)′

2l (−c, u1)

Re(1)′

2l (−c, u1)
Re(1)

2l (−c, 0)− Re(4)
2l (−c, 0)

)
+

Re(4)
2l (c, 0)Re(4)′

2l (−c, 0)
]
. (6.48)



71

Similarly, the behavior of the field scattered magnetic field by the DNG cavity may be examined

at large distance by considering

Hd
1z|u→∞,Im(c)<0 ≈

e−jkρ+jπ/4√
kρ

P (h)(φ;u0, v0), (6.49)

where

P (h)(φ;u0, v0) = 16
∞∑
l=1

(−1)l

N
(e)
2l

glRe(4)
2l (c, u0)Se2l(c, v)Se2l(c, v0) (6.50)

is a far-field coefficients that depends not only on the angle of observation φ but also on the

source location (u0, v0).

6.5 NUMERICAL RESULTS

The evaluation of Mathieu functions was accomplished using the Fortran code described in

(17). The numerical results described in this section were obtained after summing the first 20

terms of the pertinent series and using the acceleration method described in (18).

6.5.1 Plane Wave Incidence

The scattering effect of trench can be investigated easily by looking at the normalized

bistatic RCS as given by (Equation 6.13) and (Equation 6.25). The value of c is controlled by

the frequency and the focal distance d through

c =
kd

2
=
πd

λ
. (6.51)
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What is important is the relative value of parameters inside and outside the trench, not their

absolute value. Since the medium outside the trench is of infinite extent, it may be safely

assumed to be free space; however, this restriction is not necessary for the validity of our

calculations. The effect of the variation of c is examined in Figure 23, where an E-polarized

plane wave is incident at an angle ϕ0 = π/4. Three cases were examined: c = 1, c = 2, and

c = 3. When c = 1 the RCS is so much smaller than for the other two cases that it simply

appears as a point at the origin of the polar diagram. The observed behavior of higher RCS

values when c is increased agrees with what is expected from scattering theory. Figure 24

shows the effect of the variable c values with an H-polarized plane wave with same incident

angle.

6.5.2 Line Source Incidence

The scattering effect of trench can be easily investigated by looking at the square magnitude

of the far-field coefficient (Equation 6.40)

ψ(e)(φ;u0, v0) =
∣∣∣P (e)(φ;u0, v0)

∣∣∣2 . (6.52)

Figure 25 shows the far-field behavior for different locations of the electric line source along the

ellipse u = 1, for a corner gap with c = 2 and u1 = 0.5. One observes that as the source moves

from close to the wall at y = 0 (v0 = 5π/180) to the bisectrix of the xy plane the intensity of

the pattern increases, while the shape of the beam is the same.
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Similarly, the scattering effect of a magnetic line source may be investigated by looking at

the square magnitude of the far-field coefficient

ψ(h)(φ;u0, v0) =
∣∣∣P (h)(φ;u0, v0)

∣∣∣2 . (6.53)

The scattering effect of a magnetic line source can be examined by looking at Figure 26

6.6 CONCLUSION

An exact solution to the boundary-value problem of a trench of quarter-elliptical cross

section filled with DNG metamaterial, slotted along its inter focal strip and flush-mounted in

the corner of two metallic walls perpendicular to each other has been obtained by separation of

variables in the frequency domain, for both plane wave and line source excitations. Numerical

results have been shown for the far-field coefficient.

Our result enriches the catalog of canonical solutions for two-dimensional boundary-value

problems, and may be useful in validating computer codes that have been developed for complex

geometries and penetrable media.
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Figure 23. Polar plot of the normalized bistatic RCS σ(e)(φ) given by (Equation 6.13) on a
linear scale for an E-polarized plane wave is incident at an angle φ0 = π/4. Dash-dot line:

c = 2, and solid line: c = 3. The values for c = 1 are so much smaller that corresponds to the
origin in the scale used for this figure.

Figure 24. Polar plot of the normalized bistatic RCS σ(h)(φ) given by (Equation 6.25) on a
linear scale for an H-polarized plane wave is incident at an angle φ0 = π/4. Thick solid line:

c = 1, dash-dot line: c = 2, and thin solid line: c = 3.
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Figure 25. Polar plot of the far-field coefficient ψ(e)(φ;u0, v0) given by (Equation 6.52) using
a linear scale. The results represent a line source at S1 (thick solid line); S2 (dash-dot line);

and S3 (thin solid line). In all three cases c = 2. Units are (V/m)2.

Figure 26. Polar plot of the far-field coefficient ψ(h)(φ;u0, v0) given by (Equation 6.53) using
a linear scale. The results represent a line source at S1 (thin solid line); S2 (dash-dot line); S3

(thick dash line). In all three cases c = 2. Units are (V/m)2.



CHAPTER 7

RADIATION BY A LINE SOURCE SHIELDED BY A CONFOCAL

ELLIPTIC LAYER OF DNG METAMATERIAL

7.1 Introduction

A confocal elliptic cylindrical layer made of double-negative (DNG) metamaterial is consid-

ered. The space inside and outside the layer is filled with a lossless homogeneous double-positive

(DPS) medium characterized by a real positive electric permittivity ε1 and a real positive mag-

netic permeability µ1, whereas the DNG sheath is characterized by a real negative permittivity

−ε2 and a real negative permeability −µ2. The isorefractive condition ε1µ1 = ε2µ2 is assumed.

Consequently, the wavenumber is

k` = −(−1)`ω
√
ε`µ`, (7.1)

where ω is the angular frequency, and ` = 1 in the DPS regions of space and ` = 2 inside

the DNG sheath, meaning that the real positive wavenumber in the DPS regions has the same

magnitude but opposite sign to the real negative wavenumber in the DNG layer. The real

positive intrinsic impedances are

Z` =
√
µ`
ε`
. (7.2)
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The primary field is an electric or magnetic line source parallel to the generators of the cylindri-

cal sheath and located anywhere inside the DPS medium encased by the sheath. The analysis is

conducted in phaser domain with the time-dependence factor exp(+jωt) omitted throughout.

In all regions, the field components are expressed as infinite series of Mathieu functions whose

modal expansion coefficients are found analytically by imposing the boundary conditions.

This novel analytical solution is evaluated numerically for different values of the parameters

involved: dimensions and thickness of the sheath in terms of wavelength, eccentricity of the

elliptical cross-section of the sheath, ratio of the intrinsic impedances of the DPS and DNG

media, location of the line source. Particular attention is devoted to the radiated far field and

to the field inside the DNG layer.

A simplified solution is obtained when the intrinsic impedances of the DPS and DNG media

are equal and the source is located in the plane containing the focal lines of the elliptical sheath.

In particular, a comparison with a geometrical-optics solution is performed when the source

coincides with a focal line; this simplified solution was presented at a conference (26) and it has

been published in AWPL (27). Previous works have examined the case of an elliptic cylinder

completely filled with DNG metamaterial and excited by a line source located at a focal line,

both from an optical (12) and an electromagnetic (28) viewpoint.

7.2 Geometry of the problem

A cross-section of the structure is shown in Figure 27. The generators of the elliptic-

cylindrical sheath are parallel to the z-axis, and the elliptic cylinder coordinates (u, v, z) are

related to the rectangular coordinates (x, y, z) by x = d/2 coshu cos v, y = d/2 sinhu sin v,
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z = z, where 0 ≤ u < ∞, 0 ≤ v ≤ 2π, −∞ < z < ∞ and d is the inter focal distance between

the focal lines F1 and F2. The dimensionless parameters

c = k1d/2 = πd/λ, ζ = Z1/Z2, (7.3)

where λ is the wavelength, are introduced. The inner and outer surfaces of the DNG sheath

correspond to u = u1 and u = u2, respectively. The position of the line source is indicated

by S in Figure 27. Because of symmetries, we may restrict the location of the first quadrant,

corresponding to coordinates u0 and v0 such that 0 ≤ u0 ≤ u1, 0 ≤ v0 ≤ π/2.

7.3 Analytical Solution

Consider an isotropic electric line source with electric field

Ei = ẑEi1z = ẑH
(2)
0 (kR) (7.4)

where H(2)
0 is the Hankel function of the second kind and R is the distance of the observation

point from the line source. This field may be expanded in an infinite series of products of radial

and angular Mathieu functions (11):

Ei1z =4
∞∑
m=0

[
1

N
(e)
m

Re(1)
m (c, u<)Re(4)

m (c, u>)Sem(c, v0)Sem(c, v)+

1

N
(o)
m

Ro(1)
m (c, u<)Ro(4)

m (c, u>)Som(c, v0)Som(c, v)

]
, (u<, u>) ≤ u1) (7.5)
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Figure 27. Cross-section of the structure

where ui<(u>) is the smaller (larger) between u and u0. The total electric field in the DPS

region enclosed by the DNG sheath is

E1z = Ei1z + Ed1z, (7.6)
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where

Ed1z =4
∞∑
m=0

[
a

(e)
m

N
(e)
m

Re(1)
m (c, u0)Re(1)

m (c, u)Sem(c, v0)Sem(c, v)+

a
(o)
m

N
(o)
m

Ro(1)
m (c, u0)Ro(1)

m (c, u)Som(c, v0)Som(c, v)

]
, (u ≤ u1). (7.7)

The electric field radiated into the infinite DPS space surrounding the structure is

Es1z =4
∞∑
m=0

[
c
(e)
m

N
(e)
m

Re(1)
m (c, u0)Re(4)

m (c, u)Sem(c, v0)Sem(c, v)+

c
(o)
m

N
(o)
m

Ro(1)
m (c, u0)Ro(4)

m (c, u)Som(c, v0)Som(c, v)

]
, (u ≥ u2). (7.8)

The electric field inside the DNG layer is

E2z =4
∞∑
m=0

[
Re(1)

m (c, u0)

N
(e)
m

[
b(e)m Re(1)

m (−c, u) + d(e)
m Re(4)

m (−c, u)
]
Sem(c, v0)Sem(c, v) +

Ro(1)
m (c, u0)

N
(o)
m[

b(o)m Ro(1)
m (−c, u) + d(o)

m Ro(4)
m (−c, u)

]
Sem(c, v0)Sem(c, v)

]
, (u1 ≤ u ≤ u2) (7.9)

where the fact that the angular functions Sem and Som are even functions of the parameter c

has been taken into account.
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The modal expansion coefficients a(e,o)
m , b(e,o)m , d(e,o)

m and c
(e,o)
m are determined by imposing

the boundary conditions, i.e. the continuity of the tangential field components Ez and Hv

across the interfaces u = u1 and u = u2. The magnetic field component Hv is related to Ez by

Hlv =
(−1)lj
cZl

1√
cosh2 u− cos2 v

E′lz, (7.10)

where l = 1(2) for DPS (DNG) media, and here and in the following the prime means derivative

with respect to u. It is found that

a(e)
m =

1
∆(e)

[
A(e)
m (u1)B(e)

m (u2)−A(e)
m (u2)B(e)

m (u1)
]
, (7.11)

b(e)m =
−jB(e)

m (u2)
∆(e)

, (7.12)

c(e)m =
−ζ
∆(e)

, (7.13)

d(e)
m =

jA
(e)
m (u2)
∆(e)

, (7.14)

where

A(e)
m (u) = Re(1)

m (−c, u)Re(4)′
m (c, u) + ζRe(1)′

m (−c, u)Re(4)
m (c, u), (7.15)

B(e)
m (u) = Re(1)

m (−c, u)Re(4)′
m (c, u) + ζRe(4)′

m (−c, u)Re(4)
m (c, u), (7.16)
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∆(e) =A(e)
m (ξ2)

[
Re(1)′

m (c, u1)Re(4)
m (−c, u1) + ξRe(1)

m (c, u1)Re(4)′
m (−c, u1)

]
−

B(e)
m (ξ2)

[
Re(1)′

m (c, u1)Re(1)
m (−c, u1) + ξRe(1)

m (c, u1)Re(1)′
m (−c, u1)

]
. (7.17)

The coefficients a(o)
m , b(o)m , d(o)

m and c
(o)
m are obtained by replacing Re(1,4)

m and their derivatives

with Ro(1,4)
m and their derivatives everywhere in the expressions for a(o)

m , b(o)m , d(o)
m and c

(o)
m

respectively.

In the absence of a DNG sheath, it is easily verified that

a(e,o)
m |ξ1=ξ2 = 0, (7.18)

c(e,o)m |ξ1=ξ2 = 1 (7.19)

as should be expected. With reference to circular cylindrical coordinates (ρ, φ, z) (see Fig.1),

the radiated far field is

Es1z|kρ→∞ ≈ P (e)(ϕ)
e−jkρ+j

π
4

√
kρ

, (7.20)

where the far-field coefficient is

P (e)(ϕ) =4
∞∑
m=0

jm

[
c
(e)
m

N
(e)
m

Re(1)
m (c, u0)Sem(c, v0)Sem(c, ϕ)+

c
(o)
m

N
(o)
m

Ro(1)
m (c, u0)Som(c, v0)Som(c, ϕ)

]
. (7.21)
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In the absence of the DNG sheath, the far-field coefficient is that of the line source (6), and is

equal to one. Hence, the far-field power pattern normalized to the power pattern without the

DNG sheath is

P (ϕ) =
∣∣∣P (e)(ϕ)

∣∣∣2 . (7.22)

Simplifications in the formulas of this section occur when the line source is located either in the

x = 0 plane or in the y = 0 plane of Fig.1. In particular, if the source coincides with the focal

line F1 of Fig.1, so that u0 = v0 = 0, the far-field coefficient (Equation 7.21) simplifies to

P (e)(ϕ)|u0=v0=0 =4
∞∑
m=0

jm

N
(e)
m

c(e)m Re(1)
m (c, 1)Sem(c, ϕ). (7.23)

The solution for an isotropic magnetic line source is obtained by duality from the solution for

an electric line source.

7.4 A Geometrical Optics Solution

Consider the particular case of an isotropic line source located at the focal line F1. With

reference to the cross-section of Figure 28, the optical ray F1A is totally transmitted across

the interface u = u1 in the direction AB, as though it were produced by an anisotropic virtual

line source located at the other focal line F2. Along AB, the normalized power emitted per unit

angle is (12)

p(β) =
1− χ2

1

1 + χ2
1 − 2χ1 cosβ

, (7.24)
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where β is the angle that the direction F2AB of propagation forms with the positive x-axis.

The eccentricity of the cross-sectional ellipse u = u` is

χ` =
d

2a`
, (` = 1, 2) (7.25)

where a` is the semi-major axis of the ellipse.

The optical ray AB is totally transmitted across the interface u = u2 in the direction F1BC.

If the virtual line source at F2 were isotropic, the normalized power emitted per unit angle in

the direction BC would be

piso =
1− χ2

2

1 + χ2
2 + 2χ2 cosα

, (7.26)

where α is the angle that the direction F1BC forms with the positive x-axis. Therefore, the

optical power emitted per unit angle along BC, normalized to the power emitted isotropically

per unit angle by the line source at F1, is

p(α) = piso(α)p(β) =
(1− χ2

1)(1− χ2
2)

(1 + χ2
1 − 2χ1 cosβ)(1 + χ2

2 + 2χ2 cosα)
. (7.27)

To complete the optical solution, it remains to express β as a function of α. After some

geometrical manipulations, it is found that

cosβ =
(1 + χ2

2) cosα+ 2χ2

1 + χ2
2 + 2χ2 cosα)

. (7.28)
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Figure 28. Geometry of the problem for the geometrical optics solution.
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7.5 Numerical Results

We first examine comparisons between the radiated power pattern given by (Equation 7.22)

and the geometrical optical solution of (Equation 7.27). The results are parameterized accord-

ing to the ratio

r =
2a1

λ
. (7.29)

A smaller value of the ratio correspond to an electrically small cross-section, while a large value

of the ratio is associated with an electrically large cross-section, up to infinity that corresponds

to the geometrical optics case. Referring to Figure 29, when r = 0.05 the radiated power

pattern is a slightly flattened circle; when r = 0.1, the flattening becomes more prominent;

and, when r = 4.3 the power radiated pattern approaches the geometrical optics solution.

Next, we examine the effect of changing ζ, while keeping constant all other parameters.

Figure 30 indicates quite significant changes of the normalized radiated power pattern of

(Equation 7.22) when ζ = 0.1, 1, 10.

The last numerical example is the behavior of the magnitude of the the electric field within

the DNG, which is represented in Figure 31 for various values of the ratio r. For smaller

values of r there are fewer oscillations within the DNG layer, while the behavior becomes more

complex for larger values of r.

The computations of the Mathieu functions were carried out with an extension of the soft-

ware described in (17) and the acceleration technique described in (18).
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Figure 29. Normalized radiated power patterns for a structure with u1 = 0.3, u2 = 0.5,
ζ = 10. The dashed line represents r = 0.05 (or c = 0.15); the dash-dot line represents r = 0.1

(or c = 0.3); the thin solid line represents r = 4.3 (or c = 12.92); and the thick solid line
represents the GO solution.

7.6 Conclusion

The novel two-dimensional boundary value problem of radiation from a line source shielded

by a confocal elliptic layer of DNG metamaterial has been solved exactly. Numerical data for

the radiated far-field and the field inside the sheath have been exhibited.
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Figure 30. Effect of the variation of the parameter ζ of (Equation 7.3) for a structure with
u1 = 0.5, u2 = 0.8 and a line source located at u0 = 0.25, v0 = 0, with r = 2. Normalized

radiated power patterns for ζ = 0.1, dashed line; ζ = 1, thin solid line; and ζ = 10 thick solid
line
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Figure 31. Behavior of |Ez| within the DNG layer with u1 = 0.3, u2 = 0.5, ζ = 10 for various
values of the ratio r and for a source located at u0 = 0, v0 = 0.
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Appendix A

DERIVATION OF ELECTROMAGNETIC SCATTERING BY AN

ELLIPTIC DNG METAMATERIAL CYLINDER

Eiz =
√

8π
∞∑
m=0

jm

[
1

N
(e)
m

Re(1)
m (c, u)Sem(c, v)Sem(c, ϕ0) +

1

N
(o)
m

Ro(1)
m (c, u)Som(c, v)Som(c, ϕ0)

]
,

(u ≥ u1). (A.1)

The scattered electric field outside the cylinder can be written as

Esz =
√

8π
∞∑
m=0

jm

[
cm

N
(e)
m

Re(4)
m (c, u)Sem(c, v)Sem(c, ϕ0) +

dm

N
(o)
m

Ro(4)
m (c, u)Som(c, v)Som(c, ϕ0)

]
,

(u ≥ u1). (A.2)

Since

Sem(−c, v) = Sem(c, v),

Som(−c, v) = Som(c, v), (A.3)

then
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E1z =
√

8π
∞∑
m=0

jm

[
am

N
(e)
m

Re(1)
m (−c, u)Sem(−c, v)Sem(−c, ϕ0)+

bm

N
(o)
m

Ro(1)
m (−c, u)Som(−c, v)Som(−c, ϕ0)

]
, (0 ≤ u ≤ u1). (A.4)

The magnetic fields are

H i
v +Hs

v =
−j

cZ
√
ξ2 − η2

∂

∂u
(Eiz + Esz); (u ≥ u1) (A.5)

and

H1v =
j

cZ
√
ξ2 − η2

∂

∂u
E1z, (0 ≤ u ≤ u1). (A.6)

Boundary Conditions;

(
Eiz + Esz

)
u=u1

= (E1z)u=u1
, (A.7)

(
H i
v +Hs

v

)
u=u1

= (H1v)u=u1
, (A.8)
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amRe(1)
m (−c, u1)− cmRe(4)

m (c, u1) = Re(1)
m (c, u1), (A.9)

amRe(1)′
m (−c, u1) + cmRe(4)′

m (c, u1) = −Re(1)′
m (c, u1) (A.10)

and

bmRo(1)
m (−c, u1)− dmRo(4)

m (c, u1) = Ro(1)
m (c, u1), (A.11)

bmRo(1)′
m (−c, u1) + dmRo(4)′

m (c, u1) = −Ro(1)′
m (c, u1) (A.12)

where ′ is ∂
∂u evaluated at u = u1.

∆(e) =

∣∣∣∣∣∣∣∣
Re(1)

m (−c, u1) −Re(4)
m (c, u1)

Re(1)
m
′(−c, u1) Re(4)′

m (c, u1)

∣∣∣∣∣∣∣∣ ,

am =
1√

ξ21 − 1∆(e)

∣∣∣∣∣∣∣∣
Re(1)

m (c, u1) −Re(4)
m (c, u1)

−Re(1)
m
′(c, u1) Re(4)′

m (c, u1)

∣∣∣∣∣∣∣∣ .

From Wronskian relation we can note that

Ro, e(1)
m (c, u)Ro, e(4)′

m (c, u)− Ro, e(4)
m (c, u)Ro, e(1)′

m (c, u) = −j (A.13)
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Therefore, am can be found as

am =
−j√

ξ21 − 1∆(e)
. (A.14)

Similarly

∆(o) =

∣∣∣∣∣∣∣∣
Ro(1)

m (−c, u1) −Ro(4)
m (c, u1)

Ro(1)
m
′(−c, u1) Ro(4)′

m (c, u1)

∣∣∣∣∣∣∣∣ ,

bm =
1√

ξ21 − 1∆(o)

∣∣∣∣∣∣∣∣
Ro(1)

m (c, u1) −Ro(4)
m (c, u1)

−Ro(1)′
m (c, u1) Ro(4)′

m (c, u1)

∣∣∣∣∣∣∣∣ ,

am =
−j√

ξ21 − 1∆(e)
, (A.15)

bm =
−j√

ξ21 − 1∆(o)
, (A.16)

cm =
∆(c)

∆(e)
, (A.17)

dm =
∆(d)

∆(o)
, (A.18)
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where

∆(e) =Re(1)
m (−c, u1)Re(4)′

m (c, u1) + Re(4)
m (c, u1)Re(1)′

m (−c, u1), (A.19)

∆(o) =Ro(1)
m (−c, u1)Ro(4)′

m (c, u1) + Ro(4)
m (c, u1)Ro(1)′

m (−c, u1), (A.20)

∆(c) =−
[
Re(1)

m (−c, u1)Re(1)′
m (c, u1) + Re(1)′

m (−c, u1)Re(1)
m (c, u1)

]
, (A.21)

∆(d) =−
[
Ro(1)

m (−c, u1)Ro(1)′
m (c, u1) + Ro(1)′

m (−c, u1)Ro(1)
m (c, u1)

]
. (A.22)

Far-field coefficient P (e)(φ) can be found by using Asymptotic expansions of Radial Mathieu

functions

Re, o(4)
m (c, ξ)|ξ→∞,Imc<0 ≈

jm√
kρ

exp(−jkρ+ j
π

4
), (A.23)

Esz |ξ→∞ ≈ P (e)(φ)
√

2
πkρ

exp(−jkρ+ j
π

4
) (A.24)

where the far field coefficient P (e)(φ) is

P (e)(φ) = 2π
∞∑
m=0

(−1m)

[
cm

N
(e)
m

Sem(c, v)Sem(c, ϕ0) +
dm

N
(o)
m

Som(c, v)Som(c, ϕ0)

]
. (A.25)

The bistatic radar cross section (RCS) per unit length is
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σ(e)(φ) =
4
k

∣∣∣P (e)(φ)
∣∣∣2 . (A.26)

Following the same procedure calculation for H-polarization can be found easily.
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DERIVATIONS OF MODAL COEFFICIENTS OF EXACT IMAGING BY

AN ELLIPTIC LENS

B.1 E-Polarization

The incident field may be expanded in a series of elliptic-cylinder wave functions (1)-(11):

Ei1z = H
(2)
0 (−kR) = 4

∞∑
m=0[

1

N
(e)
m

Re(1)
m (−c, u<)Re(4)

m (−c, u>)Sem(−c, v0)Sem(−c, v)+

1

N
(o)
m

Ro(1)
m (−c, u<)Ro(4)

m (−c, u>)Som(−c, v0)Som(−c, v)

]
(B.1)

where u< (u>) is the smaller (larger) between u and u0. When the electric line source is located

inside the lens at the focal line (x0 = d/2, y0 = 0) the incident electric field only contains even

functions and it becomes

Ei1z = 4
∞∑
m=0

1

N
(e)
m

Re(1)
m (−c, 0)Re(4)

m (−c, u)Sem(c, v) (B.2)
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where we have also used

Sem(−c, v) = Sem(c, v),

Som(−c, v) = Som(c, v). (B.3)

The scattered field inside the lens is also only contain even functions

Es1z = 4
∞∑
m=0

am

N
(e)
m

Re(1)
m (−c, u)Sem(c, v). (B.4)

Outside the lens, the scattered field is

Es2z = 4
∞∑
m=0

bm

N
(e)
m

Re(4)
m (c, u)Sem(c, v), (u ≥ u1). (B.5)

The magnetic fields are

H1v|u=u1 = H i
1v +Hs

1v =
−j

cZ
√
ξ21 − η2

∂

∂u
(Ei1z + Es1z), (u ≥ u1), (B.6)

H1v|u=u1 =
−j

cZ
√
ξ21 − η2

4
∞∑
m=0

1

N
(e)
m

[
Re(1)

m (−c, 0)Re(4)′
m (−c, u) + amRe(1)′

m (−c, u)
]

Sem(c, v), (u ≥ u1)

(B.7)
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and

H2v|u=u1 =
−j

cZ
√
ξ21 − η2

∂

∂u
(Es2z), (u ≥ u1), (B.8)

H2v|u=u1 =
−j

cZ
√
ξ21 − η2

4
∞∑
m=0

bm

N
(e)
m

Re(4)′
m (c, u)Sem(c, v), (u ≥ u1). (B.9)

Boundary Conditions;

(
Ei1z + Es1z

)
u=u1

= (Es2z)u=u1
, (B.10)

(
H i

1v +Hs
1v

)
u=u1

= − (Hs
2v)u=u1

, (B.11)

amRe(1)
m (−c, u1)− bmRe(4)

m (c, u1) = −Re(1)
m (−c, 0)Re(4)

m (−c, u1), (B.12)

amRe(1)′
m (−c, u1) + bmRe(4)′

m (c, u1) = −Re(1)
m (−c, 0)Re(4)′

m (−c, u1) (B.13)

where ′ is ∂
∂u evaluated at u = u1.
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∆ =

∣∣∣∣∣∣∣∣
Re(1)

m (−c, u1) −Re(4)
m (c, u1)

Re(1)′
m (−c, u1) Re(4)′

m (c, u1)

∣∣∣∣∣∣∣∣ ,

∆ = Re(1)
m (−c, u1)Re(4)′

m (c, u1) + Re(1)′
m (−c, u1)Re(4)

m (c, u1), (B.14)

am =
1
∆

∣∣∣∣∣∣∣∣
−Re(1)

m (−c, 0)Re(4)
m (−c, u1) −Re(4)

m (c, u1)

−Re(1)
m (−c, 0)Re(4)′

m (−c, u1) Re(4)′
m (c, u1)

∣∣∣∣∣∣∣∣ ,

bm =
1
∆

∣∣∣∣∣∣∣∣
Re(1)

m (−c, u1) −Re(1)
m (−c, 0)Re(4)

m (−c, u1)

Re(1)′
m (−c, u1) −Re(1)

m (−c, 0)Re(4)′
m (−c, u1)

∣∣∣∣∣∣∣∣ ,

am =
−Re(1)

m (−c, 0)
∆

[
Re(4)′

m (c, u1)Re(4)
m (−c, u1) + Re(4)

m (c, u1)Re(4)′
m (−c, u1)

]
, (B.15)

bm =
−Re(1)

m (−c, 0)
∆

[
Re(4)′

m (−c, u1)Re(1)
m (−c, u1)− Re(4)

m (−c, u1)Re(1)′
m (−c, u1)

]
, (B.16)

(B.17)
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The modal coefficients for H-polarization can be found easily by following the same proce-

dure.
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DERIVATIONS OF RADIATION OF A LINE SOURCE BY A SLOTTED

SEMIELLIPTICAL TRENCH FILLED WITH DNG METAMATERIAL

C.1 E-Polarization

C.1.1 Finding the Modal Coefficients When the Line Source is Outside the Trench

The total field in the half-space y ≥ 0 is

E1z = Ei1z + Er1z + Ed1z, (C.1)

E1z = 4
∞∑
m=0

1

N
(o)
m

[
2Ro(1)

m (c, u<)Ro(4)
m (c, u>) + amRo(4)

m (c, u0)Ro(4)
m (c, u)

]
Som(c, v0)Som(c, v)

(C.2)

where u< = u and u> = u0. The electric field inside the trench

E2z =4
∞∑
m=0

cm

N
(o)
m

Ro(4)
m (−c, u0)

[
Ro(1)

m (−c, u)− Ro(1)
m (−c, u1)

Ro(4)
m (−c, u1)

Ro(4)
m (−c, u)

]
Som(−c, v0)Som(−c, v).

(C.3)
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Boundary condition; (E1z)u=0 = (E2z)u=0 where one needs to observe that [Som(c, v)]v=v0 =

−[Som(c, v)]v=2π−v0 . As a result, we can find

amRo(4)
m (c, u0)Ro(4)

m (c, 0)− cmRo(4)
m (−c, u0)

Ro(1)
m (−c, u1)

Ro(4)
m (−c, u1)

Ro(4)
m (−c, 0) = 0. (C.4)

Continuity of H field across u = 0 yields us
(
∂E2z
∂u = −∂E1z

∂u

)
where we have taken into

account;

• Angular function are odd so there is a sign reversal going across u = 0,

• Unit vector v̂ reverses going across u = 0,

• (c) changes sign across u = 0.

2Ro(1)
m
′(c, 0)Ro(4)

m (c, u0) + amRo(4)
m (c, u0)Ro(4)

m
′(c, 0) =

− cmRo(4)
m (−c, u0)

[
Ro(1)

m
′(−c, 0)− Ro(1)

m (−c, u1)

Ro(4)
m (−c, u1)

Ro(4)
m
′(−c, 0)

]
, (C.5)

amRo(4)
m (c, u0)Ro(4)

m
′(c, 0) + cmRo(4)

m (−c, u0)

[
Ro(1)

m
′(−c, 0)− Ro(1)

m (−c, u1)

Ro(4)
m (−c, u1)

Ro(4)
m
′(−c, 0)

]
=

− 2Ro(1)
m
′(c, 0)Ro(4)

m (c, u0), (C.6)

From Equation C.2 and from Equation C.6 we can find the modal coefficients.
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∆ =

∣∣∣∣∣∣∣∣
Ro(4)

m (c, u0)Ro(4)
m (c, 0) −Ro(4)

m (−c, u0)Ro
(1)
m (−c,u1)

Ro
(4)
m (−c,u1)

Ro(4)
m (−c, 0)

Ro(4)
m (c, u0)Ro(4)

m
′(c, 0) Ro(4)

m (−c, u0)
[
Ro(1)

m
′(−c, 0)− Ro

(1)
m (−c,u1)

Ro
(4)
m (−c,u1)

Ro(4)
m
′(−c, 0)

]
∣∣∣∣∣∣∣∣ ,

∆ =Ro(4)
m (c, u0)Ro(4)

m (c, 0)Ro(4)
m (−c, u0)

[
Ro(1)

m
′(−c, 0)− Ro(1)

m (−c, u1)

Ro(4)
m (−c, u1)

Ro(4)
m
′(−c, 0)

]
+

Ro(4)
m (c, u0)Ro(4)

m
′(c, 0)Ro(4)

m (−c, u0)
Ro(1)

m (−c, u1)

Ro(4)
m (−c, u1)

Ro(4)
m (−c, 0), (C.7)

∆ =Ro(4)
m (c, u0)Ro(4)

m (−c, u0)

[
Ro(1)

m
′(−c, 0)Ro(4)

m (c, 0)− Ro(4)
m (c, 0)Ro(1)

m (−c, u1)

Ro(4)
m (−c, u1)

Ro(4)
m
′(−c, 0)+

Ro(4)
m
′(c, 0)Ro(4)

m (−c, 0)
Ro(1)

m (−c, u1)

Ro(4)
m (−c, u1)

]
, (C.8)

∆am =

∣∣∣∣∣∣∣∣
0 −Ro(4)

m (−c, u0)Ro
(1)
m (−c,u1)

Ro
(4)
m (−c,u1)

Ro(4)
m (−c, 0)

−2Ro(1)
m
′(c, 0)Ro(4)

m (c, u0) Ro(4)
m (−c, u0)

[
Ro(1)

m
′(−c, 0)− Ro

(1)
m (−c,u1)

Ro
(4)
m (−c,u1)

Ro(4)
m
′(−c, 0)

]
∣∣∣∣∣∣∣∣ ,

∆am = −2Ro(1)
m
′(c, 0)Ro(4)

m (c, u0)Ro(4)
m (−c, u0)

Ro(1)
m (−c, u1)

Ro(4)
m (−c, u1)

Ro(4)
m (−c, 0), (C.9)
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∆cm =

∣∣∣∣∣∣∣∣
Ro(4)

m (c, u0)Ro(4)
m (c, 0) 0

Ro(4)
m (c, u0)Ro(4)

m
′(c, 0) −2Ro(1)

m
′(c, 0)Ro(4)

m (c, u0)

∣∣∣∣∣∣∣∣ ,

∆cm = −2Ro(4)
m (c, 0)Ro(4)

m (c, u0)Ro(1)
m
′(c, 0)Ro(4)

m (c, u0). (C.10)

Finally, the modal coefficients am and cm can be found by using the fractions below.

am =
∆am

∆
, cm =

∆cm
∆

(C.11)

cm =
−2Ro(4)

m (c, u0)Ro(4)
m (c, 0)Ro(1)′

m (c, 0)
∆m

, (C.12)

am =
−2Ro(4)

m (−c, u0)Ro(4)
m (−c, 0)Ro(1)′

m (c, 0)
∆m

Ro(1)
m (−c, u1)

Ro(4)
m (−c, u1)

, (C.13)

where

∆m =Ro(4)
m (−c, u0)

[
Ro(4)

m (c, 0)Ro(1)′
m (−c, 0)− Ro(1)

m (−c, u1)

Ro(4)
m (−c, u1)

Ro(4)
m (c, 0)Ro(4)′

m (−c, 0)+

Ro(1)
m (−c, u1)

Ro(4)
m (−c, u1)

Ro(4)′
m (c, 0)Ro(4)

m (−c, 0)

]
. (C.14)
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C.1.2 Finding the Modal Coefficients When the Line Source is Inside the Trench

Tangential component of H field inside the channel along ξ = 1

H2v =
j

cZ
√

1− η2

{
4
∞∑
m=0

[
2

N
(o)
m

Ro(1)
m
′(−c, 0)Ro(4)

m (−c, u0) + emRo(1)
m
′(−c, 0) + fmRo(4)

m
′(−c, 0)

]}

Som(c, v0)Som(c, v). (C.15)

Tangential component of H field outside the channel along u = 0

H1v =
−j

cZ
√

1− η2

{
4
∞∑
m=0

gm

N
(o)
m

Ro(4)
m
′(c, 0)Som(c, v0)Som(c, v)

}
. (C.16)

Continuity of Hv across u = 0 yields H1v = H2v.Once again, along u = 0, the v̂ unit vector

reverses direction and the angular function Som(±c, v) is odd so that this introduces another

change of sign. Therefore,

2Ro(1)
m
′(−c, 0)Ro(4)

m (−c, u0) + emRo(1)
m
′(−c, 0) + fmRo(4)

m
′(−c, 0) = −gmRo(4)

m
′(c, 0) (C.17)

Total field inside the trench is,

E2z =4
∞∑
m=0

1

N
(o)
m

[
2Ro(1)

m (−c, u<)Ro(4)
m (−c, u>) + emRo(1)

m (−c, u) + fmRo(4)
m (−c, u)

]
Som(c, v0)Som(c, v). (C.18)
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Total field outside the channel will be

E1z =4
∞∑
m=0

gm

N
(o)
m

Ro(4)
m (c, u)Som(c, v0)Som(c, v). (C.19)

Continuity of Ez across u = 0 yields

fmRo(4)
m (−c, 0) = −gmRo(4)

m (c, 0) =⇒ gm = −Ro(4)
m (−c, 0)

Ro(4)
m (c, 0)

fm. (C.20)

Another condition is Ez = 0 on u = u1. Hence,

2Ro(1)
m (−c, u0)Ro(4)

m (−c, u1) + emRo(1)
m (−c, u1) + fmRo(4)

m (−c, u1) = 0 (C.21)

If we substitute Equation C.20 into Equation C.17, we will get

emRo(1)
m
′(−c, 0) + fm

[
Ro(4)

m
′(−c, 0)− Ro(4)

m
′(c, 0)

Ro(4)
m (−c, 0)

Ro(4)
m (c, 0)

]
= −2Ro(1)

m
′(−c, 0)Ro(4)

m (−c, u0).

(C.22)

If we rewrite Equation C.21, we obtain

emRo(1)
m (−c, u1) + fmRo(4)

m (−c, u1) = −2Ro(1)
m (−c, u0)Ro(4)

m (−c, u1). (C.23)

Now let us solve Equation C.23 and Equation C.22 for em and fm,
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∆ =

∣∣∣∣∣∣∣∣
Ro(1)

m (−c, u1) Ro(4)
m (−c, u1)

Ro(1)
m
′(−c, 0)

[
Ro(4)

m
′(−c, 0)− Ro

(4)
m (−c,0)

Ro
(4)
m (c,0)

Ro(4)
m
′(c, 0)

]
∣∣∣∣∣∣∣∣ ,

∆ = Ro(1)
m (−c, u1)

[
Ro(4)

m
′(−c, 0)− Ro(4)

m (−c, 0)

Ro(4)
m (c, 0)

Ro(4)
m
′(c, 0)

]
− Ro(4)

m (−c, u1)Ro(1)
m
′(−c, 0).

(C.24)

∆em =

∣∣∣∣∣∣∣∣
−2Ro(1)

m (−c, u0)Ro(4)
m (−c, u1) Ro(4)

m (−c, u1)

−2Ro(1)
m
′(−c, 0)Ro(4)

m (−c, u0)
[
Ro(4)

m
′(−c, 0)− Ro

(4)
m (−c,0)

Ro
(4)
m (c,0)

Ro(4)
m
′(c, 0)

]
∣∣∣∣∣∣∣∣ ,

∆em =2Ro(4)
m (−c, u1)

{
−Ro(1)

m (−c, u0)

[
Ro(4)

m
′(−c, 0)− Ro(4)

m (−c, 0)

Ro(4)
m (c, 0)

Ro(4)
m
′(c, 0)

]
+

Ro(1)
m
′(−c, 0)Ro(4)

m (−c, u0)

}
, (C.25)

∆fm =

∣∣∣∣∣∣∣∣
Ro(1)

m (−c, u1) −2Ro(1)
m (−c, u0)Ro(4)

m (−c, u1)

Ro(1)
m
′(−c, 0) −2Ro(1)

m
′(−c, 0)Ro(4)

m (−c, u0)

∣∣∣∣∣∣∣∣ ,
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∆fm = −2Ro(1)
m
′(−c, 0)

{
Ro(1)

m (−c, u1)Ro(4)
m (−c, u0)− Ro(1)

m (−c, u0)Ro(4)
m (−c, u1)

}
. (C.26)

We can find the modal coefficients by,

em =
∆em

∆
, fm =

∆fm
∆

. (C.27)

C.2 H-Polarization

H i
1z = 4

∞∑
m=0

[
1

N
(e)
m

Re(1)
m (c, u<)Re(4)

m (c, u>)Sem(c, v0)Sem(c, v) +
1

N
(o)
m

Ro(1)
m (c, u<)Ro(4)

m (c, u>)

]

Som(c, v0)Som(c, v) (C.28)

where u< (u>) is the smaller (larger) between u and u0. The magnetic source located outside

of the trench so u< = u and u> = u0. The total magnetic field in the half-space y ≥ 0 is

H1z = H i
1z +Hr

1z +Hd
1z (C.29)

H1z = 4
∞∑
m=0

1

N
(e)
m

[
2Re(1)

m (c, u)Re(4)
m (c, u0) + ãmRe(4)

m (c, u0)Re(4)
m (c, u)

]
Sem(c, v0)Sem(c, v).

(C.30)
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The total magnetic field inside the trench is given by

H2z = 4
∞∑
m=0

b̃m

N
(e)
m

Re(4)
m (−c, u0)

[
Re(1)

m (−c, u)− Re(1)
m
′(−c, u1)

Re(4)
m
′(−c, u1)

Re(4)
m (−c, u)

]
Sem(c, v0)Sem(c, v)

(C.31)

∂H1z

∂u
= 4

∞∑
m=0

1

N
(e)
m

[
2Re(1)

m
′(c, u)Re(4)

m (c, u0) + ãmRe(4)
m (c, u0)Re(4)

m
′(c, u)

]
Sem(c, v0)Sem(c, v)

(C.32)

∂H2z

∂u
= 4

∞∑
m=0

b̃m

N
(e)
m

Re(4)
m (−c, u0)

[
Re(1)

m
′(−c, u)− Re(1)

m
′(−c, u1)

Re(4)
m
′(−c, u1)

Re(4)
m
′(−c, u)

]
Sem(c, v0)Sem(c, v)

(C.33)

• Angular Mathieu functions do not change sign

• Unit vector v̂ add (−)

• c introduces another minus sign so the boundary conditions will be,

∂(H1z)
∂ξ

∣∣∣∣
ξ=1

=
∂H2z

∂ξ

∣∣∣∣
ξ=1

, H1z|ξ=1 = H2z|ξ=1 . (C.34)
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If we apply the boundary conditions we will get

A =
Re(4)

m (−c, u0)

Re(4)
m (c, u0)

, (C.35)

B = Re(1)
m (−c, 0)− Re(1)

m
′(−c, u1)

Re(4)
m
′(−c, u1)

Re(4)
m (−c, 0), (C.36)

C = Re(1)
m
′(−c, 0)− Re(1)

m
′(−c, u1)

Re(4)
m
′(−c, u1)

Re(4)
m
′(−c, 0) (C.37)

and

ãmRe(4)
m (c, 0)− b̃m

Re(4)
m (−c, u0)

Re(4)
m (c, u0)

[
Re(1)

m (−c, 0)− Re(1)
m
′(−c, u1)

Re(4)
m
′(−c, u1)

Re(4)
m (−c, 0)

]
= −2Re(1)

m (c, 0),

ãmRe(4)
m
′(c, 0)− b̃m

Re(4)
m (−c, u0)

Re(4)
m (c, u0)

[
Re(1)

m
′(−c, 0)− Re(1)

m
′(−c, u1)

Re(4)
m
′(−c, u1)

Re(4)
m
′(−c, 0)

]
= −2Re(1)

m
′(c, 0).

(C.38)

Solving last equations yields the following result,

∆ =

∣∣∣∣∣∣∣∣∣
Re(4)

m (c, 0) Re
(4)
m (−c,u0)

Re
(4)
m (c,u0)

[
Re(1)

m (−c, 0)− Re
(1)
m

′(−c,u1)

Re
(4)
m

′(−c,u1)
Re(4)

m (−c, 0)
]

Re(4)
m
′(c, 0) Re

(4)
m (−c,u0)

Re
(4)
m (c,u0)

[
Re(1)

m
′(−c, 0)− Re

(1)
m

′(−c,u1)

Re
(4)
m

′(−c,u1)
Re(4)

m
′(−c, 0)

]
∣∣∣∣∣∣∣∣∣ ,
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∆ =
Re(4)

m (−c, u0)

Re(4)
m (c, u0)

[(
Re(1)

m
′(−c, 0)− Re(1)

m
′(−c, u1)

Re(4)
m
′(−c, u1)

Re(4)
m
′(−c, 0)

)
Re(4)

m (c, 0)−(
Re(1)

m (−c, 0)− Re(1)
m
′(−c, u1)

Re(4)
m
′(−c, u1)

Re(4)
m (−c, 0)

)
Re(4)

m
′(c, 0)

]
, (C.39)

∆ãm =

∣∣∣∣∣∣∣∣∣
−2Re(1)

m (c, 0) Re
(4)
m (−c,u0)

Re
(4)
m (c,u0)

[
Re(1)

m (−c, 0)− Re
(1)
m

′(−c,u1)

Re
(4)
m

′(−c,u1)
Re(4)

m (−c, 0)
]

−2Re(1)
m
′(c, 0) Re

(4)
m (−c,u0)

Re
(4)
m (c,u0)

[
Re(1)

m
′(−c, 0)− Re

(1)
m

′(−c,u1)

Re
(4)
m

′(−c,u1)
Re(4)

m
′(−c, 0)

]
∣∣∣∣∣∣∣∣∣ ,

∆ãm = 2
Re(4)

m (−c, u0)

Re(4)
m (c, u0)

[(
Re(1)

m (−c, 0)− Re(1)
m
′(−c, u1)

Re(4)
m
′(−c, u1)

Re(4)
m (−c, 0)

)
Re(1)

m
′(c, 0)−(

Re(1)
m
′(−c, 0)− Re(1)

m
′(−c, u1)

Re(4)
m
′(−c, u1)

Re(4)
m
′(−c, 0)

)
Re(1)

m (c, 0)

]
, (C.40)

∆b̃m =

∣∣∣∣∣∣∣∣
Re(4)

m (c, 0) −2Re(1)
m (c, 0)

Re(4)
m
′(c, 0) −2Re(1)

m
′(c, 0)

∣∣∣∣∣∣∣∣ ,

∆b̃m = 2
[
Re(1)

m (c, 0)Re(4)
m
′(c, 0)− Re(1)

m
′(c, 0)Re(4)

m (c, 0)
]
. (C.41)
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DERIVATIONS OF ELECTROMAGNETIC RADIATION AND

SCATTERING FOR A GAP IN A CORNER BACKED BY A CAVITY

FILLED WITH DNG METAMATERIAL

Derivations are quite similar with the other chapters so only derivations for magnetic line

source incidence has been given. Remaining parts can be easilly found by similar approaches.

D.1 Magnetic Line Source Incidence

The primary magnetic field is

H i = ẑH i
z = ẑH

(2)
0 (kR). (D.1)

H i
1z = H

(2)
0 (kR) = 4

∞∑
m=0

[
1

N
(e)
m

Re(1)
m (c, u<)Re(4)

m (c, u>)Sem(c, v)Sem(c, v0)

+
1

N
(o)
m

Ro(1)
m (c, u<)Ro(4)

m (c, u>)Som(c, v)Som(c, v0)

]
, (D.2)

Hgo
1z = H

(2)
0 (kR) +H

(2)
0 (kR1) +H

(2)
0 (kR2) +H

(2)
0 (kR3), (D.3)



114

Appendix D (Continued)

where

R1 =
√

(x− x0)2 + (y + y0)2, (D.4)

R2 =
√

(x+ x0)2 + (y − y0)2, (D.5)

R3 =
√

(x+ x0)2 + (y + y0)2. (D.6)

Referring to Figure 22, the image line S1 is located at (x0,−y0) ≡ (u0, 2π− v0), the image line

S2 at (−x0, y0) ≡ (u0, π − v0), and the image line S3 at (−x0,−y0) ≡ (u0, π + v0).

for S1 ≡ (u0, 2π − v0),

Sem(c, 2π − v0)→ Sem(c, v0), (D.7)

Som(c, 2π − v0)→ −Som(c, v0). (D.8)

The field due to the line source at S1 can be written as

HS1
1z = H

(2)
0 (kR1) = 4

∞∑
m=0

[
1

N
(e)
m

Re(1)
m (c, u<)Re(4)

m (c, u>)Sem(c, v)Sem(c, v0)

− 1

N
(o)
m

Ro(1)
m (c, u<)Ro(4)

m (c, u>)Som(c, v)Som(c, v0)

]
, (D.9)
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for S2 ≡ (u0, π − v0),

Sem(c, π − v0)→ (−1)mSem(c, v0), (D.10)

Som(c, π − v0)→ −(−1)mSom(c, v0). (D.11)

The field due to the line source at S2 is

HS2
1z = H

(2)
0 (kR2) = 4

∞∑
m=0

[
(−1)m

N
(e)
m

Re(1)
m (c, u<)Re(4)

m (c, u>)Sem(c, v)Sem(c, v0)

−(−1)m

N
(o)
m

Ro(1)
m (c, u<)Ro(4)

m (c, u>)Som(c, v)Som(c, v0)

]
, (D.12)

for S3 ≡ (u0, π + v0),

Sem(c, π + v0)→ (−1)mSem(c, v0), (D.13)

Som(c, π + v0)→ (−1)mSom(c, v0). (D.14)

The field due to the line source at S3,

HS3
1z = H

(2)
0 (kR3) = 4

∞∑
m=0

[
(−1)m

N
(e)
m

Re(1)
m (c, u<)Re(4)

m (c, u>)Sem(c, v)Sem(c, v0)

+
(−1)m

N
(o)
m

Ro(1)
m (c, u<)Ro(4)

m (c, u>)Som(c, v)Som(c, v0)

]
. (D.15)

The geometrical optic field becomes,
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Hgo
1z = 16

∞∑
l=0

l

N
(e)
2l

Re(1)
2l (c, u<)Re(4)

2l (c, u>)Se2l(c, v)Se2l(c, v0). (D.16)
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